xref: /linux/include/net/tcp.h (revision 65aa371ea52a92dd10826a2ea74bd2c395ee90a8)
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Definitions for the TCP module.
8  *
9  * Version:	@(#)tcp.h	1.0.5	05/23/93
10  *
11  * Authors:	Ross Biro
12  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
13  */
14 #ifndef _TCP_H
15 #define _TCP_H
16 
17 #define FASTRETRANS_DEBUG 1
18 
19 #include <linux/list.h>
20 #include <linux/tcp.h>
21 #include <linux/bug.h>
22 #include <linux/slab.h>
23 #include <linux/cache.h>
24 #include <linux/percpu.h>
25 #include <linux/skbuff.h>
26 #include <linux/kref.h>
27 #include <linux/ktime.h>
28 #include <linux/indirect_call_wrapper.h>
29 
30 #include <net/inet_connection_sock.h>
31 #include <net/inet_timewait_sock.h>
32 #include <net/inet_hashtables.h>
33 #include <net/checksum.h>
34 #include <net/request_sock.h>
35 #include <net/sock_reuseport.h>
36 #include <net/sock.h>
37 #include <net/snmp.h>
38 #include <net/ip.h>
39 #include <net/tcp_states.h>
40 #include <net/inet_ecn.h>
41 #include <net/dst.h>
42 #include <net/mptcp.h>
43 
44 #include <linux/seq_file.h>
45 #include <linux/memcontrol.h>
46 #include <linux/bpf-cgroup.h>
47 #include <linux/siphash.h>
48 
49 extern struct inet_hashinfo tcp_hashinfo;
50 
51 DECLARE_PER_CPU(unsigned int, tcp_orphan_count);
52 int tcp_orphan_count_sum(void);
53 
54 void tcp_time_wait(struct sock *sk, int state, int timeo);
55 
56 #define MAX_TCP_HEADER	L1_CACHE_ALIGN(128 + MAX_HEADER)
57 #define MAX_TCP_OPTION_SPACE 40
58 #define TCP_MIN_SND_MSS		48
59 #define TCP_MIN_GSO_SIZE	(TCP_MIN_SND_MSS - MAX_TCP_OPTION_SPACE)
60 
61 /*
62  * Never offer a window over 32767 without using window scaling. Some
63  * poor stacks do signed 16bit maths!
64  */
65 #define MAX_TCP_WINDOW		32767U
66 
67 /* Minimal accepted MSS. It is (60+60+8) - (20+20). */
68 #define TCP_MIN_MSS		88U
69 
70 /* The initial MTU to use for probing */
71 #define TCP_BASE_MSS		1024
72 
73 /* probing interval, default to 10 minutes as per RFC4821 */
74 #define TCP_PROBE_INTERVAL	600
75 
76 /* Specify interval when tcp mtu probing will stop */
77 #define TCP_PROBE_THRESHOLD	8
78 
79 /* After receiving this amount of duplicate ACKs fast retransmit starts. */
80 #define TCP_FASTRETRANS_THRESH 3
81 
82 /* Maximal number of ACKs sent quickly to accelerate slow-start. */
83 #define TCP_MAX_QUICKACKS	16U
84 
85 /* Maximal number of window scale according to RFC1323 */
86 #define TCP_MAX_WSCALE		14U
87 
88 /* urg_data states */
89 #define TCP_URG_VALID	0x0100
90 #define TCP_URG_NOTYET	0x0200
91 #define TCP_URG_READ	0x0400
92 
93 #define TCP_RETR1	3	/*
94 				 * This is how many retries it does before it
95 				 * tries to figure out if the gateway is
96 				 * down. Minimal RFC value is 3; it corresponds
97 				 * to ~3sec-8min depending on RTO.
98 				 */
99 
100 #define TCP_RETR2	15	/*
101 				 * This should take at least
102 				 * 90 minutes to time out.
103 				 * RFC1122 says that the limit is 100 sec.
104 				 * 15 is ~13-30min depending on RTO.
105 				 */
106 
107 #define TCP_SYN_RETRIES	 6	/* This is how many retries are done
108 				 * when active opening a connection.
109 				 * RFC1122 says the minimum retry MUST
110 				 * be at least 180secs.  Nevertheless
111 				 * this value is corresponding to
112 				 * 63secs of retransmission with the
113 				 * current initial RTO.
114 				 */
115 
116 #define TCP_SYNACK_RETRIES 5	/* This is how may retries are done
117 				 * when passive opening a connection.
118 				 * This is corresponding to 31secs of
119 				 * retransmission with the current
120 				 * initial RTO.
121 				 */
122 
123 #define TCP_TIMEWAIT_LEN (60*HZ) /* how long to wait to destroy TIME-WAIT
124 				  * state, about 60 seconds	*/
125 #define TCP_FIN_TIMEOUT	TCP_TIMEWAIT_LEN
126                                  /* BSD style FIN_WAIT2 deadlock breaker.
127 				  * It used to be 3min, new value is 60sec,
128 				  * to combine FIN-WAIT-2 timeout with
129 				  * TIME-WAIT timer.
130 				  */
131 #define TCP_FIN_TIMEOUT_MAX (120 * HZ) /* max TCP_LINGER2 value (two minutes) */
132 
133 #define TCP_DELACK_MAX	((unsigned)(HZ/5))	/* maximal time to delay before sending an ACK */
134 #if HZ >= 100
135 #define TCP_DELACK_MIN	((unsigned)(HZ/25))	/* minimal time to delay before sending an ACK */
136 #define TCP_ATO_MIN	((unsigned)(HZ/25))
137 #else
138 #define TCP_DELACK_MIN	4U
139 #define TCP_ATO_MIN	4U
140 #endif
141 #define TCP_RTO_MAX	((unsigned)(120*HZ))
142 #define TCP_RTO_MIN	((unsigned)(HZ/5))
143 #define TCP_TIMEOUT_MIN	(2U) /* Min timeout for TCP timers in jiffies */
144 #define TCP_TIMEOUT_INIT ((unsigned)(1*HZ))	/* RFC6298 2.1 initial RTO value	*/
145 #define TCP_TIMEOUT_FALLBACK ((unsigned)(3*HZ))	/* RFC 1122 initial RTO value, now
146 						 * used as a fallback RTO for the
147 						 * initial data transmission if no
148 						 * valid RTT sample has been acquired,
149 						 * most likely due to retrans in 3WHS.
150 						 */
151 
152 #define TCP_RESOURCE_PROBE_INTERVAL ((unsigned)(HZ/2U)) /* Maximal interval between probes
153 					                 * for local resources.
154 					                 */
155 #define TCP_KEEPALIVE_TIME	(120*60*HZ)	/* two hours */
156 #define TCP_KEEPALIVE_PROBES	9		/* Max of 9 keepalive probes	*/
157 #define TCP_KEEPALIVE_INTVL	(75*HZ)
158 
159 #define MAX_TCP_KEEPIDLE	32767
160 #define MAX_TCP_KEEPINTVL	32767
161 #define MAX_TCP_KEEPCNT		127
162 #define MAX_TCP_SYNCNT		127
163 
164 #define TCP_SYNQ_INTERVAL	(HZ/5)	/* Period of SYNACK timer */
165 
166 #define TCP_PAWS_24DAYS	(60 * 60 * 24 * 24)
167 #define TCP_PAWS_MSL	60		/* Per-host timestamps are invalidated
168 					 * after this time. It should be equal
169 					 * (or greater than) TCP_TIMEWAIT_LEN
170 					 * to provide reliability equal to one
171 					 * provided by timewait state.
172 					 */
173 #define TCP_PAWS_WINDOW	1		/* Replay window for per-host
174 					 * timestamps. It must be less than
175 					 * minimal timewait lifetime.
176 					 */
177 /*
178  *	TCP option
179  */
180 
181 #define TCPOPT_NOP		1	/* Padding */
182 #define TCPOPT_EOL		0	/* End of options */
183 #define TCPOPT_MSS		2	/* Segment size negotiating */
184 #define TCPOPT_WINDOW		3	/* Window scaling */
185 #define TCPOPT_SACK_PERM        4       /* SACK Permitted */
186 #define TCPOPT_SACK             5       /* SACK Block */
187 #define TCPOPT_TIMESTAMP	8	/* Better RTT estimations/PAWS */
188 #define TCPOPT_MD5SIG		19	/* MD5 Signature (RFC2385) */
189 #define TCPOPT_MPTCP		30	/* Multipath TCP (RFC6824) */
190 #define TCPOPT_FASTOPEN		34	/* Fast open (RFC7413) */
191 #define TCPOPT_EXP		254	/* Experimental */
192 /* Magic number to be after the option value for sharing TCP
193  * experimental options. See draft-ietf-tcpm-experimental-options-00.txt
194  */
195 #define TCPOPT_FASTOPEN_MAGIC	0xF989
196 #define TCPOPT_SMC_MAGIC	0xE2D4C3D9
197 
198 /*
199  *     TCP option lengths
200  */
201 
202 #define TCPOLEN_MSS            4
203 #define TCPOLEN_WINDOW         3
204 #define TCPOLEN_SACK_PERM      2
205 #define TCPOLEN_TIMESTAMP      10
206 #define TCPOLEN_MD5SIG         18
207 #define TCPOLEN_FASTOPEN_BASE  2
208 #define TCPOLEN_EXP_FASTOPEN_BASE  4
209 #define TCPOLEN_EXP_SMC_BASE   6
210 
211 /* But this is what stacks really send out. */
212 #define TCPOLEN_TSTAMP_ALIGNED		12
213 #define TCPOLEN_WSCALE_ALIGNED		4
214 #define TCPOLEN_SACKPERM_ALIGNED	4
215 #define TCPOLEN_SACK_BASE		2
216 #define TCPOLEN_SACK_BASE_ALIGNED	4
217 #define TCPOLEN_SACK_PERBLOCK		8
218 #define TCPOLEN_MD5SIG_ALIGNED		20
219 #define TCPOLEN_MSS_ALIGNED		4
220 #define TCPOLEN_EXP_SMC_BASE_ALIGNED	8
221 
222 /* Flags in tp->nonagle */
223 #define TCP_NAGLE_OFF		1	/* Nagle's algo is disabled */
224 #define TCP_NAGLE_CORK		2	/* Socket is corked	    */
225 #define TCP_NAGLE_PUSH		4	/* Cork is overridden for already queued data */
226 
227 /* TCP thin-stream limits */
228 #define TCP_THIN_LINEAR_RETRIES 6       /* After 6 linear retries, do exp. backoff */
229 
230 /* TCP initial congestion window as per rfc6928 */
231 #define TCP_INIT_CWND		10
232 
233 /* Bit Flags for sysctl_tcp_fastopen */
234 #define	TFO_CLIENT_ENABLE	1
235 #define	TFO_SERVER_ENABLE	2
236 #define	TFO_CLIENT_NO_COOKIE	4	/* Data in SYN w/o cookie option */
237 
238 /* Accept SYN data w/o any cookie option */
239 #define	TFO_SERVER_COOKIE_NOT_REQD	0x200
240 
241 /* Force enable TFO on all listeners, i.e., not requiring the
242  * TCP_FASTOPEN socket option.
243  */
244 #define	TFO_SERVER_WO_SOCKOPT1	0x400
245 
246 
247 /* sysctl variables for tcp */
248 extern int sysctl_tcp_max_orphans;
249 extern long sysctl_tcp_mem[3];
250 
251 #define TCP_RACK_LOSS_DETECTION  0x1 /* Use RACK to detect losses */
252 #define TCP_RACK_STATIC_REO_WND  0x2 /* Use static RACK reo wnd */
253 #define TCP_RACK_NO_DUPTHRESH    0x4 /* Do not use DUPACK threshold in RACK */
254 
255 extern atomic_long_t tcp_memory_allocated;
256 extern struct percpu_counter tcp_sockets_allocated;
257 extern unsigned long tcp_memory_pressure;
258 
259 /* optimized version of sk_under_memory_pressure() for TCP sockets */
260 static inline bool tcp_under_memory_pressure(const struct sock *sk)
261 {
262 	if (mem_cgroup_sockets_enabled && sk->sk_memcg &&
263 	    mem_cgroup_under_socket_pressure(sk->sk_memcg))
264 		return true;
265 
266 	return READ_ONCE(tcp_memory_pressure);
267 }
268 /*
269  * The next routines deal with comparing 32 bit unsigned ints
270  * and worry about wraparound (automatic with unsigned arithmetic).
271  */
272 
273 static inline bool before(__u32 seq1, __u32 seq2)
274 {
275         return (__s32)(seq1-seq2) < 0;
276 }
277 #define after(seq2, seq1) 	before(seq1, seq2)
278 
279 /* is s2<=s1<=s3 ? */
280 static inline bool between(__u32 seq1, __u32 seq2, __u32 seq3)
281 {
282 	return seq3 - seq2 >= seq1 - seq2;
283 }
284 
285 static inline bool tcp_out_of_memory(struct sock *sk)
286 {
287 	if (sk->sk_wmem_queued > SOCK_MIN_SNDBUF &&
288 	    sk_memory_allocated(sk) > sk_prot_mem_limits(sk, 2))
289 		return true;
290 	return false;
291 }
292 
293 void sk_forced_mem_schedule(struct sock *sk, int size);
294 
295 bool tcp_check_oom(struct sock *sk, int shift);
296 
297 
298 extern struct proto tcp_prot;
299 
300 #define TCP_INC_STATS(net, field)	SNMP_INC_STATS((net)->mib.tcp_statistics, field)
301 #define __TCP_INC_STATS(net, field)	__SNMP_INC_STATS((net)->mib.tcp_statistics, field)
302 #define TCP_DEC_STATS(net, field)	SNMP_DEC_STATS((net)->mib.tcp_statistics, field)
303 #define TCP_ADD_STATS(net, field, val)	SNMP_ADD_STATS((net)->mib.tcp_statistics, field, val)
304 
305 void tcp_tasklet_init(void);
306 
307 int tcp_v4_err(struct sk_buff *skb, u32);
308 
309 void tcp_shutdown(struct sock *sk, int how);
310 
311 int tcp_v4_early_demux(struct sk_buff *skb);
312 int tcp_v4_rcv(struct sk_buff *skb);
313 
314 void tcp_remove_empty_skb(struct sock *sk, struct sk_buff *skb);
315 int tcp_v4_tw_remember_stamp(struct inet_timewait_sock *tw);
316 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size);
317 int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size);
318 int tcp_sendpage(struct sock *sk, struct page *page, int offset, size_t size,
319 		 int flags);
320 int tcp_sendpage_locked(struct sock *sk, struct page *page, int offset,
321 			size_t size, int flags);
322 ssize_t do_tcp_sendpages(struct sock *sk, struct page *page, int offset,
323 		 size_t size, int flags);
324 int tcp_send_mss(struct sock *sk, int *size_goal, int flags);
325 void tcp_push(struct sock *sk, int flags, int mss_now, int nonagle,
326 	      int size_goal);
327 void tcp_release_cb(struct sock *sk);
328 void tcp_wfree(struct sk_buff *skb);
329 void tcp_write_timer_handler(struct sock *sk);
330 void tcp_delack_timer_handler(struct sock *sk);
331 int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg);
332 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb);
333 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb);
334 void tcp_rcv_space_adjust(struct sock *sk);
335 int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp);
336 void tcp_twsk_destructor(struct sock *sk);
337 ssize_t tcp_splice_read(struct socket *sk, loff_t *ppos,
338 			struct pipe_inode_info *pipe, size_t len,
339 			unsigned int flags);
340 
341 void tcp_enter_quickack_mode(struct sock *sk, unsigned int max_quickacks);
342 static inline void tcp_dec_quickack_mode(struct sock *sk,
343 					 const unsigned int pkts)
344 {
345 	struct inet_connection_sock *icsk = inet_csk(sk);
346 
347 	if (icsk->icsk_ack.quick) {
348 		if (pkts >= icsk->icsk_ack.quick) {
349 			icsk->icsk_ack.quick = 0;
350 			/* Leaving quickack mode we deflate ATO. */
351 			icsk->icsk_ack.ato   = TCP_ATO_MIN;
352 		} else
353 			icsk->icsk_ack.quick -= pkts;
354 	}
355 }
356 
357 #define	TCP_ECN_OK		1
358 #define	TCP_ECN_QUEUE_CWR	2
359 #define	TCP_ECN_DEMAND_CWR	4
360 #define	TCP_ECN_SEEN		8
361 
362 enum tcp_tw_status {
363 	TCP_TW_SUCCESS = 0,
364 	TCP_TW_RST = 1,
365 	TCP_TW_ACK = 2,
366 	TCP_TW_SYN = 3
367 };
368 
369 
370 enum tcp_tw_status tcp_timewait_state_process(struct inet_timewait_sock *tw,
371 					      struct sk_buff *skb,
372 					      const struct tcphdr *th);
373 struct sock *tcp_check_req(struct sock *sk, struct sk_buff *skb,
374 			   struct request_sock *req, bool fastopen,
375 			   bool *lost_race);
376 int tcp_child_process(struct sock *parent, struct sock *child,
377 		      struct sk_buff *skb);
378 void tcp_enter_loss(struct sock *sk);
379 void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int newly_lost, int flag);
380 void tcp_clear_retrans(struct tcp_sock *tp);
381 void tcp_update_metrics(struct sock *sk);
382 void tcp_init_metrics(struct sock *sk);
383 void tcp_metrics_init(void);
384 bool tcp_peer_is_proven(struct request_sock *req, struct dst_entry *dst);
385 void __tcp_close(struct sock *sk, long timeout);
386 void tcp_close(struct sock *sk, long timeout);
387 void tcp_init_sock(struct sock *sk);
388 void tcp_init_transfer(struct sock *sk, int bpf_op, struct sk_buff *skb);
389 __poll_t tcp_poll(struct file *file, struct socket *sock,
390 		      struct poll_table_struct *wait);
391 int tcp_getsockopt(struct sock *sk, int level, int optname,
392 		   char __user *optval, int __user *optlen);
393 bool tcp_bpf_bypass_getsockopt(int level, int optname);
394 int tcp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval,
395 		   unsigned int optlen);
396 void tcp_set_keepalive(struct sock *sk, int val);
397 void tcp_syn_ack_timeout(const struct request_sock *req);
398 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int nonblock,
399 		int flags, int *addr_len);
400 int tcp_set_rcvlowat(struct sock *sk, int val);
401 int tcp_set_window_clamp(struct sock *sk, int val);
402 void tcp_update_recv_tstamps(struct sk_buff *skb,
403 			     struct scm_timestamping_internal *tss);
404 void tcp_recv_timestamp(struct msghdr *msg, const struct sock *sk,
405 			struct scm_timestamping_internal *tss);
406 void tcp_data_ready(struct sock *sk);
407 #ifdef CONFIG_MMU
408 int tcp_mmap(struct file *file, struct socket *sock,
409 	     struct vm_area_struct *vma);
410 #endif
411 void tcp_parse_options(const struct net *net, const struct sk_buff *skb,
412 		       struct tcp_options_received *opt_rx,
413 		       int estab, struct tcp_fastopen_cookie *foc);
414 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th);
415 
416 /*
417  *	BPF SKB-less helpers
418  */
419 u16 tcp_v4_get_syncookie(struct sock *sk, struct iphdr *iph,
420 			 struct tcphdr *th, u32 *cookie);
421 u16 tcp_v6_get_syncookie(struct sock *sk, struct ipv6hdr *iph,
422 			 struct tcphdr *th, u32 *cookie);
423 u16 tcp_get_syncookie_mss(struct request_sock_ops *rsk_ops,
424 			  const struct tcp_request_sock_ops *af_ops,
425 			  struct sock *sk, struct tcphdr *th);
426 /*
427  *	TCP v4 functions exported for the inet6 API
428  */
429 
430 void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb);
431 void tcp_v4_mtu_reduced(struct sock *sk);
432 void tcp_req_err(struct sock *sk, u32 seq, bool abort);
433 void tcp_ld_RTO_revert(struct sock *sk, u32 seq);
434 int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb);
435 struct sock *tcp_create_openreq_child(const struct sock *sk,
436 				      struct request_sock *req,
437 				      struct sk_buff *skb);
438 void tcp_ca_openreq_child(struct sock *sk, const struct dst_entry *dst);
439 struct sock *tcp_v4_syn_recv_sock(const struct sock *sk, struct sk_buff *skb,
440 				  struct request_sock *req,
441 				  struct dst_entry *dst,
442 				  struct request_sock *req_unhash,
443 				  bool *own_req);
444 int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb);
445 int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len);
446 int tcp_connect(struct sock *sk);
447 enum tcp_synack_type {
448 	TCP_SYNACK_NORMAL,
449 	TCP_SYNACK_FASTOPEN,
450 	TCP_SYNACK_COOKIE,
451 };
452 struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst,
453 				struct request_sock *req,
454 				struct tcp_fastopen_cookie *foc,
455 				enum tcp_synack_type synack_type,
456 				struct sk_buff *syn_skb);
457 int tcp_disconnect(struct sock *sk, int flags);
458 
459 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb);
460 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size);
461 void inet_sk_rx_dst_set(struct sock *sk, const struct sk_buff *skb);
462 
463 /* From syncookies.c */
464 struct sock *tcp_get_cookie_sock(struct sock *sk, struct sk_buff *skb,
465 				 struct request_sock *req,
466 				 struct dst_entry *dst, u32 tsoff);
467 int __cookie_v4_check(const struct iphdr *iph, const struct tcphdr *th,
468 		      u32 cookie);
469 struct sock *cookie_v4_check(struct sock *sk, struct sk_buff *skb);
470 struct request_sock *cookie_tcp_reqsk_alloc(const struct request_sock_ops *ops,
471 					    struct sock *sk, struct sk_buff *skb);
472 #ifdef CONFIG_SYN_COOKIES
473 
474 /* Syncookies use a monotonic timer which increments every 60 seconds.
475  * This counter is used both as a hash input and partially encoded into
476  * the cookie value.  A cookie is only validated further if the delta
477  * between the current counter value and the encoded one is less than this,
478  * i.e. a sent cookie is valid only at most for 2*60 seconds (or less if
479  * the counter advances immediately after a cookie is generated).
480  */
481 #define MAX_SYNCOOKIE_AGE	2
482 #define TCP_SYNCOOKIE_PERIOD	(60 * HZ)
483 #define TCP_SYNCOOKIE_VALID	(MAX_SYNCOOKIE_AGE * TCP_SYNCOOKIE_PERIOD)
484 
485 /* syncookies: remember time of last synqueue overflow
486  * But do not dirty this field too often (once per second is enough)
487  * It is racy as we do not hold a lock, but race is very minor.
488  */
489 static inline void tcp_synq_overflow(const struct sock *sk)
490 {
491 	unsigned int last_overflow;
492 	unsigned int now = jiffies;
493 
494 	if (sk->sk_reuseport) {
495 		struct sock_reuseport *reuse;
496 
497 		reuse = rcu_dereference(sk->sk_reuseport_cb);
498 		if (likely(reuse)) {
499 			last_overflow = READ_ONCE(reuse->synq_overflow_ts);
500 			if (!time_between32(now, last_overflow,
501 					    last_overflow + HZ))
502 				WRITE_ONCE(reuse->synq_overflow_ts, now);
503 			return;
504 		}
505 	}
506 
507 	last_overflow = READ_ONCE(tcp_sk(sk)->rx_opt.ts_recent_stamp);
508 	if (!time_between32(now, last_overflow, last_overflow + HZ))
509 		WRITE_ONCE(tcp_sk(sk)->rx_opt.ts_recent_stamp, now);
510 }
511 
512 /* syncookies: no recent synqueue overflow on this listening socket? */
513 static inline bool tcp_synq_no_recent_overflow(const struct sock *sk)
514 {
515 	unsigned int last_overflow;
516 	unsigned int now = jiffies;
517 
518 	if (sk->sk_reuseport) {
519 		struct sock_reuseport *reuse;
520 
521 		reuse = rcu_dereference(sk->sk_reuseport_cb);
522 		if (likely(reuse)) {
523 			last_overflow = READ_ONCE(reuse->synq_overflow_ts);
524 			return !time_between32(now, last_overflow - HZ,
525 					       last_overflow +
526 					       TCP_SYNCOOKIE_VALID);
527 		}
528 	}
529 
530 	last_overflow = READ_ONCE(tcp_sk(sk)->rx_opt.ts_recent_stamp);
531 
532 	/* If last_overflow <= jiffies <= last_overflow + TCP_SYNCOOKIE_VALID,
533 	 * then we're under synflood. However, we have to use
534 	 * 'last_overflow - HZ' as lower bound. That's because a concurrent
535 	 * tcp_synq_overflow() could update .ts_recent_stamp after we read
536 	 * jiffies but before we store .ts_recent_stamp into last_overflow,
537 	 * which could lead to rejecting a valid syncookie.
538 	 */
539 	return !time_between32(now, last_overflow - HZ,
540 			       last_overflow + TCP_SYNCOOKIE_VALID);
541 }
542 
543 static inline u32 tcp_cookie_time(void)
544 {
545 	u64 val = get_jiffies_64();
546 
547 	do_div(val, TCP_SYNCOOKIE_PERIOD);
548 	return val;
549 }
550 
551 u32 __cookie_v4_init_sequence(const struct iphdr *iph, const struct tcphdr *th,
552 			      u16 *mssp);
553 __u32 cookie_v4_init_sequence(const struct sk_buff *skb, __u16 *mss);
554 u64 cookie_init_timestamp(struct request_sock *req, u64 now);
555 bool cookie_timestamp_decode(const struct net *net,
556 			     struct tcp_options_received *opt);
557 bool cookie_ecn_ok(const struct tcp_options_received *opt,
558 		   const struct net *net, const struct dst_entry *dst);
559 
560 /* From net/ipv6/syncookies.c */
561 int __cookie_v6_check(const struct ipv6hdr *iph, const struct tcphdr *th,
562 		      u32 cookie);
563 struct sock *cookie_v6_check(struct sock *sk, struct sk_buff *skb);
564 
565 u32 __cookie_v6_init_sequence(const struct ipv6hdr *iph,
566 			      const struct tcphdr *th, u16 *mssp);
567 __u32 cookie_v6_init_sequence(const struct sk_buff *skb, __u16 *mss);
568 #endif
569 /* tcp_output.c */
570 
571 void tcp_skb_entail(struct sock *sk, struct sk_buff *skb);
572 void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb);
573 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
574 			       int nonagle);
575 int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs);
576 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs);
577 void tcp_retransmit_timer(struct sock *sk);
578 void tcp_xmit_retransmit_queue(struct sock *);
579 void tcp_simple_retransmit(struct sock *);
580 void tcp_enter_recovery(struct sock *sk, bool ece_ack);
581 int tcp_trim_head(struct sock *, struct sk_buff *, u32);
582 enum tcp_queue {
583 	TCP_FRAG_IN_WRITE_QUEUE,
584 	TCP_FRAG_IN_RTX_QUEUE,
585 };
586 int tcp_fragment(struct sock *sk, enum tcp_queue tcp_queue,
587 		 struct sk_buff *skb, u32 len,
588 		 unsigned int mss_now, gfp_t gfp);
589 
590 void tcp_send_probe0(struct sock *);
591 void tcp_send_partial(struct sock *);
592 int tcp_write_wakeup(struct sock *, int mib);
593 void tcp_send_fin(struct sock *sk);
594 void tcp_send_active_reset(struct sock *sk, gfp_t priority);
595 int tcp_send_synack(struct sock *);
596 void tcp_push_one(struct sock *, unsigned int mss_now);
597 void __tcp_send_ack(struct sock *sk, u32 rcv_nxt);
598 void tcp_send_ack(struct sock *sk);
599 void tcp_send_delayed_ack(struct sock *sk);
600 void tcp_send_loss_probe(struct sock *sk);
601 bool tcp_schedule_loss_probe(struct sock *sk, bool advancing_rto);
602 void tcp_skb_collapse_tstamp(struct sk_buff *skb,
603 			     const struct sk_buff *next_skb);
604 
605 /* tcp_input.c */
606 void tcp_rearm_rto(struct sock *sk);
607 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req);
608 void tcp_reset(struct sock *sk, struct sk_buff *skb);
609 void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp, struct sk_buff *skb);
610 void tcp_fin(struct sock *sk);
611 
612 /* tcp_timer.c */
613 void tcp_init_xmit_timers(struct sock *);
614 static inline void tcp_clear_xmit_timers(struct sock *sk)
615 {
616 	if (hrtimer_try_to_cancel(&tcp_sk(sk)->pacing_timer) == 1)
617 		__sock_put(sk);
618 
619 	if (hrtimer_try_to_cancel(&tcp_sk(sk)->compressed_ack_timer) == 1)
620 		__sock_put(sk);
621 
622 	inet_csk_clear_xmit_timers(sk);
623 }
624 
625 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu);
626 unsigned int tcp_current_mss(struct sock *sk);
627 u32 tcp_clamp_probe0_to_user_timeout(const struct sock *sk, u32 when);
628 
629 /* Bound MSS / TSO packet size with the half of the window */
630 static inline int tcp_bound_to_half_wnd(struct tcp_sock *tp, int pktsize)
631 {
632 	int cutoff;
633 
634 	/* When peer uses tiny windows, there is no use in packetizing
635 	 * to sub-MSS pieces for the sake of SWS or making sure there
636 	 * are enough packets in the pipe for fast recovery.
637 	 *
638 	 * On the other hand, for extremely large MSS devices, handling
639 	 * smaller than MSS windows in this way does make sense.
640 	 */
641 	if (tp->max_window > TCP_MSS_DEFAULT)
642 		cutoff = (tp->max_window >> 1);
643 	else
644 		cutoff = tp->max_window;
645 
646 	if (cutoff && pktsize > cutoff)
647 		return max_t(int, cutoff, 68U - tp->tcp_header_len);
648 	else
649 		return pktsize;
650 }
651 
652 /* tcp.c */
653 void tcp_get_info(struct sock *, struct tcp_info *);
654 
655 /* Read 'sendfile()'-style from a TCP socket */
656 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
657 		  sk_read_actor_t recv_actor);
658 
659 void tcp_initialize_rcv_mss(struct sock *sk);
660 
661 int tcp_mtu_to_mss(struct sock *sk, int pmtu);
662 int tcp_mss_to_mtu(struct sock *sk, int mss);
663 void tcp_mtup_init(struct sock *sk);
664 
665 static inline void tcp_bound_rto(const struct sock *sk)
666 {
667 	if (inet_csk(sk)->icsk_rto > TCP_RTO_MAX)
668 		inet_csk(sk)->icsk_rto = TCP_RTO_MAX;
669 }
670 
671 static inline u32 __tcp_set_rto(const struct tcp_sock *tp)
672 {
673 	return usecs_to_jiffies((tp->srtt_us >> 3) + tp->rttvar_us);
674 }
675 
676 static inline void __tcp_fast_path_on(struct tcp_sock *tp, u32 snd_wnd)
677 {
678 	/* mptcp hooks are only on the slow path */
679 	if (sk_is_mptcp((struct sock *)tp))
680 		return;
681 
682 	tp->pred_flags = htonl((tp->tcp_header_len << 26) |
683 			       ntohl(TCP_FLAG_ACK) |
684 			       snd_wnd);
685 }
686 
687 static inline void tcp_fast_path_on(struct tcp_sock *tp)
688 {
689 	__tcp_fast_path_on(tp, tp->snd_wnd >> tp->rx_opt.snd_wscale);
690 }
691 
692 static inline void tcp_fast_path_check(struct sock *sk)
693 {
694 	struct tcp_sock *tp = tcp_sk(sk);
695 
696 	if (RB_EMPTY_ROOT(&tp->out_of_order_queue) &&
697 	    tp->rcv_wnd &&
698 	    atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf &&
699 	    !tp->urg_data)
700 		tcp_fast_path_on(tp);
701 }
702 
703 /* Compute the actual rto_min value */
704 static inline u32 tcp_rto_min(struct sock *sk)
705 {
706 	const struct dst_entry *dst = __sk_dst_get(sk);
707 	u32 rto_min = inet_csk(sk)->icsk_rto_min;
708 
709 	if (dst && dst_metric_locked(dst, RTAX_RTO_MIN))
710 		rto_min = dst_metric_rtt(dst, RTAX_RTO_MIN);
711 	return rto_min;
712 }
713 
714 static inline u32 tcp_rto_min_us(struct sock *sk)
715 {
716 	return jiffies_to_usecs(tcp_rto_min(sk));
717 }
718 
719 static inline bool tcp_ca_dst_locked(const struct dst_entry *dst)
720 {
721 	return dst_metric_locked(dst, RTAX_CC_ALGO);
722 }
723 
724 /* Minimum RTT in usec. ~0 means not available. */
725 static inline u32 tcp_min_rtt(const struct tcp_sock *tp)
726 {
727 	return minmax_get(&tp->rtt_min);
728 }
729 
730 /* Compute the actual receive window we are currently advertising.
731  * Rcv_nxt can be after the window if our peer push more data
732  * than the offered window.
733  */
734 static inline u32 tcp_receive_window(const struct tcp_sock *tp)
735 {
736 	s32 win = tp->rcv_wup + tp->rcv_wnd - tp->rcv_nxt;
737 
738 	if (win < 0)
739 		win = 0;
740 	return (u32) win;
741 }
742 
743 /* Choose a new window, without checks for shrinking, and without
744  * scaling applied to the result.  The caller does these things
745  * if necessary.  This is a "raw" window selection.
746  */
747 u32 __tcp_select_window(struct sock *sk);
748 
749 void tcp_send_window_probe(struct sock *sk);
750 
751 /* TCP uses 32bit jiffies to save some space.
752  * Note that this is different from tcp_time_stamp, which
753  * historically has been the same until linux-4.13.
754  */
755 #define tcp_jiffies32 ((u32)jiffies)
756 
757 /*
758  * Deliver a 32bit value for TCP timestamp option (RFC 7323)
759  * It is no longer tied to jiffies, but to 1 ms clock.
760  * Note: double check if you want to use tcp_jiffies32 instead of this.
761  */
762 #define TCP_TS_HZ	1000
763 
764 static inline u64 tcp_clock_ns(void)
765 {
766 	return ktime_get_ns();
767 }
768 
769 static inline u64 tcp_clock_us(void)
770 {
771 	return div_u64(tcp_clock_ns(), NSEC_PER_USEC);
772 }
773 
774 /* This should only be used in contexts where tp->tcp_mstamp is up to date */
775 static inline u32 tcp_time_stamp(const struct tcp_sock *tp)
776 {
777 	return div_u64(tp->tcp_mstamp, USEC_PER_SEC / TCP_TS_HZ);
778 }
779 
780 /* Convert a nsec timestamp into TCP TSval timestamp (ms based currently) */
781 static inline u32 tcp_ns_to_ts(u64 ns)
782 {
783 	return div_u64(ns, NSEC_PER_SEC / TCP_TS_HZ);
784 }
785 
786 /* Could use tcp_clock_us() / 1000, but this version uses a single divide */
787 static inline u32 tcp_time_stamp_raw(void)
788 {
789 	return tcp_ns_to_ts(tcp_clock_ns());
790 }
791 
792 void tcp_mstamp_refresh(struct tcp_sock *tp);
793 
794 static inline u32 tcp_stamp_us_delta(u64 t1, u64 t0)
795 {
796 	return max_t(s64, t1 - t0, 0);
797 }
798 
799 static inline u32 tcp_skb_timestamp(const struct sk_buff *skb)
800 {
801 	return tcp_ns_to_ts(skb->skb_mstamp_ns);
802 }
803 
804 /* provide the departure time in us unit */
805 static inline u64 tcp_skb_timestamp_us(const struct sk_buff *skb)
806 {
807 	return div_u64(skb->skb_mstamp_ns, NSEC_PER_USEC);
808 }
809 
810 
811 #define tcp_flag_byte(th) (((u_int8_t *)th)[13])
812 
813 #define TCPHDR_FIN 0x01
814 #define TCPHDR_SYN 0x02
815 #define TCPHDR_RST 0x04
816 #define TCPHDR_PSH 0x08
817 #define TCPHDR_ACK 0x10
818 #define TCPHDR_URG 0x20
819 #define TCPHDR_ECE 0x40
820 #define TCPHDR_CWR 0x80
821 
822 #define TCPHDR_SYN_ECN	(TCPHDR_SYN | TCPHDR_ECE | TCPHDR_CWR)
823 
824 /* This is what the send packet queuing engine uses to pass
825  * TCP per-packet control information to the transmission code.
826  * We also store the host-order sequence numbers in here too.
827  * This is 44 bytes if IPV6 is enabled.
828  * If this grows please adjust skbuff.h:skbuff->cb[xxx] size appropriately.
829  */
830 struct tcp_skb_cb {
831 	__u32		seq;		/* Starting sequence number	*/
832 	__u32		end_seq;	/* SEQ + FIN + SYN + datalen	*/
833 	union {
834 		/* Note : tcp_tw_isn is used in input path only
835 		 *	  (isn chosen by tcp_timewait_state_process())
836 		 *
837 		 * 	  tcp_gso_segs/size are used in write queue only,
838 		 *	  cf tcp_skb_pcount()/tcp_skb_mss()
839 		 */
840 		__u32		tcp_tw_isn;
841 		struct {
842 			u16	tcp_gso_segs;
843 			u16	tcp_gso_size;
844 		};
845 	};
846 	__u8		tcp_flags;	/* TCP header flags. (tcp[13])	*/
847 
848 	__u8		sacked;		/* State flags for SACK.	*/
849 #define TCPCB_SACKED_ACKED	0x01	/* SKB ACK'd by a SACK block	*/
850 #define TCPCB_SACKED_RETRANS	0x02	/* SKB retransmitted		*/
851 #define TCPCB_LOST		0x04	/* SKB is lost			*/
852 #define TCPCB_TAGBITS		0x07	/* All tag bits			*/
853 #define TCPCB_REPAIRED		0x10	/* SKB repaired (no skb_mstamp_ns)	*/
854 #define TCPCB_EVER_RETRANS	0x80	/* Ever retransmitted frame	*/
855 #define TCPCB_RETRANS		(TCPCB_SACKED_RETRANS|TCPCB_EVER_RETRANS| \
856 				TCPCB_REPAIRED)
857 
858 	__u8		ip_dsfield;	/* IPv4 tos or IPv6 dsfield	*/
859 	__u8		txstamp_ack:1,	/* Record TX timestamp for ack? */
860 			eor:1,		/* Is skb MSG_EOR marked? */
861 			has_rxtstamp:1,	/* SKB has a RX timestamp	*/
862 			unused:5;
863 	__u32		ack_seq;	/* Sequence number ACK'd	*/
864 	union {
865 		struct {
866 #define TCPCB_DELIVERED_CE_MASK ((1U<<20) - 1)
867 			/* There is space for up to 24 bytes */
868 			__u32 is_app_limited:1, /* cwnd not fully used? */
869 			      delivered_ce:20,
870 			      unused:11;
871 			/* pkts S/ACKed so far upon tx of skb, incl retrans: */
872 			__u32 delivered;
873 			/* start of send pipeline phase */
874 			u64 first_tx_mstamp;
875 			/* when we reached the "delivered" count */
876 			u64 delivered_mstamp;
877 		} tx;   /* only used for outgoing skbs */
878 		union {
879 			struct inet_skb_parm	h4;
880 #if IS_ENABLED(CONFIG_IPV6)
881 			struct inet6_skb_parm	h6;
882 #endif
883 		} header;	/* For incoming skbs */
884 	};
885 };
886 
887 #define TCP_SKB_CB(__skb)	((struct tcp_skb_cb *)&((__skb)->cb[0]))
888 
889 extern const struct inet_connection_sock_af_ops ipv4_specific;
890 
891 #if IS_ENABLED(CONFIG_IPV6)
892 /* This is the variant of inet6_iif() that must be used by TCP,
893  * as TCP moves IP6CB into a different location in skb->cb[]
894  */
895 static inline int tcp_v6_iif(const struct sk_buff *skb)
896 {
897 	return TCP_SKB_CB(skb)->header.h6.iif;
898 }
899 
900 static inline int tcp_v6_iif_l3_slave(const struct sk_buff *skb)
901 {
902 	bool l3_slave = ipv6_l3mdev_skb(TCP_SKB_CB(skb)->header.h6.flags);
903 
904 	return l3_slave ? skb->skb_iif : TCP_SKB_CB(skb)->header.h6.iif;
905 }
906 
907 /* TCP_SKB_CB reference means this can not be used from early demux */
908 static inline int tcp_v6_sdif(const struct sk_buff *skb)
909 {
910 #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
911 	if (skb && ipv6_l3mdev_skb(TCP_SKB_CB(skb)->header.h6.flags))
912 		return TCP_SKB_CB(skb)->header.h6.iif;
913 #endif
914 	return 0;
915 }
916 
917 extern const struct inet_connection_sock_af_ops ipv6_specific;
918 
919 INDIRECT_CALLABLE_DECLARE(void tcp_v6_send_check(struct sock *sk, struct sk_buff *skb));
920 INDIRECT_CALLABLE_DECLARE(int tcp_v6_rcv(struct sk_buff *skb));
921 INDIRECT_CALLABLE_DECLARE(void tcp_v6_early_demux(struct sk_buff *skb));
922 
923 #endif
924 
925 /* TCP_SKB_CB reference means this can not be used from early demux */
926 static inline int tcp_v4_sdif(struct sk_buff *skb)
927 {
928 #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
929 	if (skb && ipv4_l3mdev_skb(TCP_SKB_CB(skb)->header.h4.flags))
930 		return TCP_SKB_CB(skb)->header.h4.iif;
931 #endif
932 	return 0;
933 }
934 
935 /* Due to TSO, an SKB can be composed of multiple actual
936  * packets.  To keep these tracked properly, we use this.
937  */
938 static inline int tcp_skb_pcount(const struct sk_buff *skb)
939 {
940 	return TCP_SKB_CB(skb)->tcp_gso_segs;
941 }
942 
943 static inline void tcp_skb_pcount_set(struct sk_buff *skb, int segs)
944 {
945 	TCP_SKB_CB(skb)->tcp_gso_segs = segs;
946 }
947 
948 static inline void tcp_skb_pcount_add(struct sk_buff *skb, int segs)
949 {
950 	TCP_SKB_CB(skb)->tcp_gso_segs += segs;
951 }
952 
953 /* This is valid iff skb is in write queue and tcp_skb_pcount() > 1. */
954 static inline int tcp_skb_mss(const struct sk_buff *skb)
955 {
956 	return TCP_SKB_CB(skb)->tcp_gso_size;
957 }
958 
959 static inline bool tcp_skb_can_collapse_to(const struct sk_buff *skb)
960 {
961 	return likely(!TCP_SKB_CB(skb)->eor);
962 }
963 
964 static inline bool tcp_skb_can_collapse(const struct sk_buff *to,
965 					const struct sk_buff *from)
966 {
967 	return likely(tcp_skb_can_collapse_to(to) &&
968 		      mptcp_skb_can_collapse(to, from));
969 }
970 
971 /* Events passed to congestion control interface */
972 enum tcp_ca_event {
973 	CA_EVENT_TX_START,	/* first transmit when no packets in flight */
974 	CA_EVENT_CWND_RESTART,	/* congestion window restart */
975 	CA_EVENT_COMPLETE_CWR,	/* end of congestion recovery */
976 	CA_EVENT_LOSS,		/* loss timeout */
977 	CA_EVENT_ECN_NO_CE,	/* ECT set, but not CE marked */
978 	CA_EVENT_ECN_IS_CE,	/* received CE marked IP packet */
979 };
980 
981 /* Information about inbound ACK, passed to cong_ops->in_ack_event() */
982 enum tcp_ca_ack_event_flags {
983 	CA_ACK_SLOWPATH		= (1 << 0),	/* In slow path processing */
984 	CA_ACK_WIN_UPDATE	= (1 << 1),	/* ACK updated window */
985 	CA_ACK_ECE		= (1 << 2),	/* ECE bit is set on ack */
986 };
987 
988 /*
989  * Interface for adding new TCP congestion control handlers
990  */
991 #define TCP_CA_NAME_MAX	16
992 #define TCP_CA_MAX	128
993 #define TCP_CA_BUF_MAX	(TCP_CA_NAME_MAX*TCP_CA_MAX)
994 
995 #define TCP_CA_UNSPEC	0
996 
997 /* Algorithm can be set on socket without CAP_NET_ADMIN privileges */
998 #define TCP_CONG_NON_RESTRICTED 0x1
999 /* Requires ECN/ECT set on all packets */
1000 #define TCP_CONG_NEEDS_ECN	0x2
1001 #define TCP_CONG_MASK	(TCP_CONG_NON_RESTRICTED | TCP_CONG_NEEDS_ECN)
1002 
1003 union tcp_cc_info;
1004 
1005 struct ack_sample {
1006 	u32 pkts_acked;
1007 	s32 rtt_us;
1008 	u32 in_flight;
1009 };
1010 
1011 /* A rate sample measures the number of (original/retransmitted) data
1012  * packets delivered "delivered" over an interval of time "interval_us".
1013  * The tcp_rate.c code fills in the rate sample, and congestion
1014  * control modules that define a cong_control function to run at the end
1015  * of ACK processing can optionally chose to consult this sample when
1016  * setting cwnd and pacing rate.
1017  * A sample is invalid if "delivered" or "interval_us" is negative.
1018  */
1019 struct rate_sample {
1020 	u64  prior_mstamp; /* starting timestamp for interval */
1021 	u32  prior_delivered;	/* tp->delivered at "prior_mstamp" */
1022 	u32  prior_delivered_ce;/* tp->delivered_ce at "prior_mstamp" */
1023 	s32  delivered;		/* number of packets delivered over interval */
1024 	s32  delivered_ce;	/* number of packets delivered w/ CE marks*/
1025 	long interval_us;	/* time for tp->delivered to incr "delivered" */
1026 	u32 snd_interval_us;	/* snd interval for delivered packets */
1027 	u32 rcv_interval_us;	/* rcv interval for delivered packets */
1028 	long rtt_us;		/* RTT of last (S)ACKed packet (or -1) */
1029 	int  losses;		/* number of packets marked lost upon ACK */
1030 	u32  acked_sacked;	/* number of packets newly (S)ACKed upon ACK */
1031 	u32  prior_in_flight;	/* in flight before this ACK */
1032 	bool is_app_limited;	/* is sample from packet with bubble in pipe? */
1033 	bool is_retrans;	/* is sample from retransmission? */
1034 	bool is_ack_delayed;	/* is this (likely) a delayed ACK? */
1035 };
1036 
1037 struct tcp_congestion_ops {
1038 /* fast path fields are put first to fill one cache line */
1039 
1040 	/* return slow start threshold (required) */
1041 	u32 (*ssthresh)(struct sock *sk);
1042 
1043 	/* do new cwnd calculation (required) */
1044 	void (*cong_avoid)(struct sock *sk, u32 ack, u32 acked);
1045 
1046 	/* call before changing ca_state (optional) */
1047 	void (*set_state)(struct sock *sk, u8 new_state);
1048 
1049 	/* call when cwnd event occurs (optional) */
1050 	void (*cwnd_event)(struct sock *sk, enum tcp_ca_event ev);
1051 
1052 	/* call when ack arrives (optional) */
1053 	void (*in_ack_event)(struct sock *sk, u32 flags);
1054 
1055 	/* hook for packet ack accounting (optional) */
1056 	void (*pkts_acked)(struct sock *sk, const struct ack_sample *sample);
1057 
1058 	/* override sysctl_tcp_min_tso_segs */
1059 	u32 (*min_tso_segs)(struct sock *sk);
1060 
1061 	/* call when packets are delivered to update cwnd and pacing rate,
1062 	 * after all the ca_state processing. (optional)
1063 	 */
1064 	void (*cong_control)(struct sock *sk, const struct rate_sample *rs);
1065 
1066 
1067 	/* new value of cwnd after loss (required) */
1068 	u32  (*undo_cwnd)(struct sock *sk);
1069 	/* returns the multiplier used in tcp_sndbuf_expand (optional) */
1070 	u32 (*sndbuf_expand)(struct sock *sk);
1071 
1072 /* control/slow paths put last */
1073 	/* get info for inet_diag (optional) */
1074 	size_t (*get_info)(struct sock *sk, u32 ext, int *attr,
1075 			   union tcp_cc_info *info);
1076 
1077 	char 			name[TCP_CA_NAME_MAX];
1078 	struct module		*owner;
1079 	struct list_head	list;
1080 	u32			key;
1081 	u32			flags;
1082 
1083 	/* initialize private data (optional) */
1084 	void (*init)(struct sock *sk);
1085 	/* cleanup private data  (optional) */
1086 	void (*release)(struct sock *sk);
1087 } ____cacheline_aligned_in_smp;
1088 
1089 int tcp_register_congestion_control(struct tcp_congestion_ops *type);
1090 void tcp_unregister_congestion_control(struct tcp_congestion_ops *type);
1091 
1092 void tcp_assign_congestion_control(struct sock *sk);
1093 void tcp_init_congestion_control(struct sock *sk);
1094 void tcp_cleanup_congestion_control(struct sock *sk);
1095 int tcp_set_default_congestion_control(struct net *net, const char *name);
1096 void tcp_get_default_congestion_control(struct net *net, char *name);
1097 void tcp_get_available_congestion_control(char *buf, size_t len);
1098 void tcp_get_allowed_congestion_control(char *buf, size_t len);
1099 int tcp_set_allowed_congestion_control(char *allowed);
1100 int tcp_set_congestion_control(struct sock *sk, const char *name, bool load,
1101 			       bool cap_net_admin);
1102 u32 tcp_slow_start(struct tcp_sock *tp, u32 acked);
1103 void tcp_cong_avoid_ai(struct tcp_sock *tp, u32 w, u32 acked);
1104 
1105 u32 tcp_reno_ssthresh(struct sock *sk);
1106 u32 tcp_reno_undo_cwnd(struct sock *sk);
1107 void tcp_reno_cong_avoid(struct sock *sk, u32 ack, u32 acked);
1108 extern struct tcp_congestion_ops tcp_reno;
1109 
1110 struct tcp_congestion_ops *tcp_ca_find(const char *name);
1111 struct tcp_congestion_ops *tcp_ca_find_key(u32 key);
1112 u32 tcp_ca_get_key_by_name(struct net *net, const char *name, bool *ecn_ca);
1113 #ifdef CONFIG_INET
1114 char *tcp_ca_get_name_by_key(u32 key, char *buffer);
1115 #else
1116 static inline char *tcp_ca_get_name_by_key(u32 key, char *buffer)
1117 {
1118 	return NULL;
1119 }
1120 #endif
1121 
1122 static inline bool tcp_ca_needs_ecn(const struct sock *sk)
1123 {
1124 	const struct inet_connection_sock *icsk = inet_csk(sk);
1125 
1126 	return icsk->icsk_ca_ops->flags & TCP_CONG_NEEDS_ECN;
1127 }
1128 
1129 static inline void tcp_set_ca_state(struct sock *sk, const u8 ca_state)
1130 {
1131 	struct inet_connection_sock *icsk = inet_csk(sk);
1132 
1133 	if (icsk->icsk_ca_ops->set_state)
1134 		icsk->icsk_ca_ops->set_state(sk, ca_state);
1135 	icsk->icsk_ca_state = ca_state;
1136 }
1137 
1138 static inline void tcp_ca_event(struct sock *sk, const enum tcp_ca_event event)
1139 {
1140 	const struct inet_connection_sock *icsk = inet_csk(sk);
1141 
1142 	if (icsk->icsk_ca_ops->cwnd_event)
1143 		icsk->icsk_ca_ops->cwnd_event(sk, event);
1144 }
1145 
1146 /* From tcp_rate.c */
1147 void tcp_rate_skb_sent(struct sock *sk, struct sk_buff *skb);
1148 void tcp_rate_skb_delivered(struct sock *sk, struct sk_buff *skb,
1149 			    struct rate_sample *rs);
1150 void tcp_rate_gen(struct sock *sk, u32 delivered, u32 lost,
1151 		  bool is_sack_reneg, struct rate_sample *rs);
1152 void tcp_rate_check_app_limited(struct sock *sk);
1153 
1154 /* These functions determine how the current flow behaves in respect of SACK
1155  * handling. SACK is negotiated with the peer, and therefore it can vary
1156  * between different flows.
1157  *
1158  * tcp_is_sack - SACK enabled
1159  * tcp_is_reno - No SACK
1160  */
1161 static inline int tcp_is_sack(const struct tcp_sock *tp)
1162 {
1163 	return likely(tp->rx_opt.sack_ok);
1164 }
1165 
1166 static inline bool tcp_is_reno(const struct tcp_sock *tp)
1167 {
1168 	return !tcp_is_sack(tp);
1169 }
1170 
1171 static inline unsigned int tcp_left_out(const struct tcp_sock *tp)
1172 {
1173 	return tp->sacked_out + tp->lost_out;
1174 }
1175 
1176 /* This determines how many packets are "in the network" to the best
1177  * of our knowledge.  In many cases it is conservative, but where
1178  * detailed information is available from the receiver (via SACK
1179  * blocks etc.) we can make more aggressive calculations.
1180  *
1181  * Use this for decisions involving congestion control, use just
1182  * tp->packets_out to determine if the send queue is empty or not.
1183  *
1184  * Read this equation as:
1185  *
1186  *	"Packets sent once on transmission queue" MINUS
1187  *	"Packets left network, but not honestly ACKed yet" PLUS
1188  *	"Packets fast retransmitted"
1189  */
1190 static inline unsigned int tcp_packets_in_flight(const struct tcp_sock *tp)
1191 {
1192 	return tp->packets_out - tcp_left_out(tp) + tp->retrans_out;
1193 }
1194 
1195 #define TCP_INFINITE_SSTHRESH	0x7fffffff
1196 
1197 static inline bool tcp_in_slow_start(const struct tcp_sock *tp)
1198 {
1199 	return tp->snd_cwnd < tp->snd_ssthresh;
1200 }
1201 
1202 static inline bool tcp_in_initial_slowstart(const struct tcp_sock *tp)
1203 {
1204 	return tp->snd_ssthresh >= TCP_INFINITE_SSTHRESH;
1205 }
1206 
1207 static inline bool tcp_in_cwnd_reduction(const struct sock *sk)
1208 {
1209 	return (TCPF_CA_CWR | TCPF_CA_Recovery) &
1210 	       (1 << inet_csk(sk)->icsk_ca_state);
1211 }
1212 
1213 /* If cwnd > ssthresh, we may raise ssthresh to be half-way to cwnd.
1214  * The exception is cwnd reduction phase, when cwnd is decreasing towards
1215  * ssthresh.
1216  */
1217 static inline __u32 tcp_current_ssthresh(const struct sock *sk)
1218 {
1219 	const struct tcp_sock *tp = tcp_sk(sk);
1220 
1221 	if (tcp_in_cwnd_reduction(sk))
1222 		return tp->snd_ssthresh;
1223 	else
1224 		return max(tp->snd_ssthresh,
1225 			   ((tp->snd_cwnd >> 1) +
1226 			    (tp->snd_cwnd >> 2)));
1227 }
1228 
1229 /* Use define here intentionally to get WARN_ON location shown at the caller */
1230 #define tcp_verify_left_out(tp)	WARN_ON(tcp_left_out(tp) > tp->packets_out)
1231 
1232 void tcp_enter_cwr(struct sock *sk);
1233 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst);
1234 
1235 /* The maximum number of MSS of available cwnd for which TSO defers
1236  * sending if not using sysctl_tcp_tso_win_divisor.
1237  */
1238 static inline __u32 tcp_max_tso_deferred_mss(const struct tcp_sock *tp)
1239 {
1240 	return 3;
1241 }
1242 
1243 /* Returns end sequence number of the receiver's advertised window */
1244 static inline u32 tcp_wnd_end(const struct tcp_sock *tp)
1245 {
1246 	return tp->snd_una + tp->snd_wnd;
1247 }
1248 
1249 /* We follow the spirit of RFC2861 to validate cwnd but implement a more
1250  * flexible approach. The RFC suggests cwnd should not be raised unless
1251  * it was fully used previously. And that's exactly what we do in
1252  * congestion avoidance mode. But in slow start we allow cwnd to grow
1253  * as long as the application has used half the cwnd.
1254  * Example :
1255  *    cwnd is 10 (IW10), but application sends 9 frames.
1256  *    We allow cwnd to reach 18 when all frames are ACKed.
1257  * This check is safe because it's as aggressive as slow start which already
1258  * risks 100% overshoot. The advantage is that we discourage application to
1259  * either send more filler packets or data to artificially blow up the cwnd
1260  * usage, and allow application-limited process to probe bw more aggressively.
1261  */
1262 static inline bool tcp_is_cwnd_limited(const struct sock *sk)
1263 {
1264 	const struct tcp_sock *tp = tcp_sk(sk);
1265 
1266 	/* If in slow start, ensure cwnd grows to twice what was ACKed. */
1267 	if (tcp_in_slow_start(tp))
1268 		return tp->snd_cwnd < 2 * tp->max_packets_out;
1269 
1270 	return tp->is_cwnd_limited;
1271 }
1272 
1273 /* BBR congestion control needs pacing.
1274  * Same remark for SO_MAX_PACING_RATE.
1275  * sch_fq packet scheduler is efficiently handling pacing,
1276  * but is not always installed/used.
1277  * Return true if TCP stack should pace packets itself.
1278  */
1279 static inline bool tcp_needs_internal_pacing(const struct sock *sk)
1280 {
1281 	return smp_load_acquire(&sk->sk_pacing_status) == SK_PACING_NEEDED;
1282 }
1283 
1284 /* Estimates in how many jiffies next packet for this flow can be sent.
1285  * Scheduling a retransmit timer too early would be silly.
1286  */
1287 static inline unsigned long tcp_pacing_delay(const struct sock *sk)
1288 {
1289 	s64 delay = tcp_sk(sk)->tcp_wstamp_ns - tcp_sk(sk)->tcp_clock_cache;
1290 
1291 	return delay > 0 ? nsecs_to_jiffies(delay) : 0;
1292 }
1293 
1294 static inline void tcp_reset_xmit_timer(struct sock *sk,
1295 					const int what,
1296 					unsigned long when,
1297 					const unsigned long max_when)
1298 {
1299 	inet_csk_reset_xmit_timer(sk, what, when + tcp_pacing_delay(sk),
1300 				  max_when);
1301 }
1302 
1303 /* Something is really bad, we could not queue an additional packet,
1304  * because qdisc is full or receiver sent a 0 window, or we are paced.
1305  * We do not want to add fuel to the fire, or abort too early,
1306  * so make sure the timer we arm now is at least 200ms in the future,
1307  * regardless of current icsk_rto value (as it could be ~2ms)
1308  */
1309 static inline unsigned long tcp_probe0_base(const struct sock *sk)
1310 {
1311 	return max_t(unsigned long, inet_csk(sk)->icsk_rto, TCP_RTO_MIN);
1312 }
1313 
1314 /* Variant of inet_csk_rto_backoff() used for zero window probes */
1315 static inline unsigned long tcp_probe0_when(const struct sock *sk,
1316 					    unsigned long max_when)
1317 {
1318 	u8 backoff = min_t(u8, ilog2(TCP_RTO_MAX / TCP_RTO_MIN) + 1,
1319 			   inet_csk(sk)->icsk_backoff);
1320 	u64 when = (u64)tcp_probe0_base(sk) << backoff;
1321 
1322 	return (unsigned long)min_t(u64, when, max_when);
1323 }
1324 
1325 static inline void tcp_check_probe_timer(struct sock *sk)
1326 {
1327 	if (!tcp_sk(sk)->packets_out && !inet_csk(sk)->icsk_pending)
1328 		tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
1329 				     tcp_probe0_base(sk), TCP_RTO_MAX);
1330 }
1331 
1332 static inline void tcp_init_wl(struct tcp_sock *tp, u32 seq)
1333 {
1334 	tp->snd_wl1 = seq;
1335 }
1336 
1337 static inline void tcp_update_wl(struct tcp_sock *tp, u32 seq)
1338 {
1339 	tp->snd_wl1 = seq;
1340 }
1341 
1342 /*
1343  * Calculate(/check) TCP checksum
1344  */
1345 static inline __sum16 tcp_v4_check(int len, __be32 saddr,
1346 				   __be32 daddr, __wsum base)
1347 {
1348 	return csum_tcpudp_magic(saddr, daddr, len, IPPROTO_TCP, base);
1349 }
1350 
1351 static inline bool tcp_checksum_complete(struct sk_buff *skb)
1352 {
1353 	return !skb_csum_unnecessary(skb) &&
1354 		__skb_checksum_complete(skb);
1355 }
1356 
1357 bool tcp_add_backlog(struct sock *sk, struct sk_buff *skb);
1358 int tcp_filter(struct sock *sk, struct sk_buff *skb);
1359 void tcp_set_state(struct sock *sk, int state);
1360 void tcp_done(struct sock *sk);
1361 int tcp_abort(struct sock *sk, int err);
1362 
1363 static inline void tcp_sack_reset(struct tcp_options_received *rx_opt)
1364 {
1365 	rx_opt->dsack = 0;
1366 	rx_opt->num_sacks = 0;
1367 }
1368 
1369 void tcp_cwnd_restart(struct sock *sk, s32 delta);
1370 
1371 static inline void tcp_slow_start_after_idle_check(struct sock *sk)
1372 {
1373 	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1374 	struct tcp_sock *tp = tcp_sk(sk);
1375 	s32 delta;
1376 
1377 	if (!sock_net(sk)->ipv4.sysctl_tcp_slow_start_after_idle || tp->packets_out ||
1378 	    ca_ops->cong_control)
1379 		return;
1380 	delta = tcp_jiffies32 - tp->lsndtime;
1381 	if (delta > inet_csk(sk)->icsk_rto)
1382 		tcp_cwnd_restart(sk, delta);
1383 }
1384 
1385 /* Determine a window scaling and initial window to offer. */
1386 void tcp_select_initial_window(const struct sock *sk, int __space,
1387 			       __u32 mss, __u32 *rcv_wnd,
1388 			       __u32 *window_clamp, int wscale_ok,
1389 			       __u8 *rcv_wscale, __u32 init_rcv_wnd);
1390 
1391 static inline int tcp_win_from_space(const struct sock *sk, int space)
1392 {
1393 	int tcp_adv_win_scale = sock_net(sk)->ipv4.sysctl_tcp_adv_win_scale;
1394 
1395 	return tcp_adv_win_scale <= 0 ?
1396 		(space>>(-tcp_adv_win_scale)) :
1397 		space - (space>>tcp_adv_win_scale);
1398 }
1399 
1400 /* Note: caller must be prepared to deal with negative returns */
1401 static inline int tcp_space(const struct sock *sk)
1402 {
1403 	return tcp_win_from_space(sk, READ_ONCE(sk->sk_rcvbuf) -
1404 				  READ_ONCE(sk->sk_backlog.len) -
1405 				  atomic_read(&sk->sk_rmem_alloc));
1406 }
1407 
1408 static inline int tcp_full_space(const struct sock *sk)
1409 {
1410 	return tcp_win_from_space(sk, READ_ONCE(sk->sk_rcvbuf));
1411 }
1412 
1413 static inline void tcp_adjust_rcv_ssthresh(struct sock *sk)
1414 {
1415 	int unused_mem = sk_unused_reserved_mem(sk);
1416 	struct tcp_sock *tp = tcp_sk(sk);
1417 
1418 	tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
1419 	if (unused_mem)
1420 		tp->rcv_ssthresh = max_t(u32, tp->rcv_ssthresh,
1421 					 tcp_win_from_space(sk, unused_mem));
1422 }
1423 
1424 void tcp_cleanup_rbuf(struct sock *sk, int copied);
1425 
1426 /* We provision sk_rcvbuf around 200% of sk_rcvlowat.
1427  * If 87.5 % (7/8) of the space has been consumed, we want to override
1428  * SO_RCVLOWAT constraint, since we are receiving skbs with too small
1429  * len/truesize ratio.
1430  */
1431 static inline bool tcp_rmem_pressure(const struct sock *sk)
1432 {
1433 	int rcvbuf, threshold;
1434 
1435 	if (tcp_under_memory_pressure(sk))
1436 		return true;
1437 
1438 	rcvbuf = READ_ONCE(sk->sk_rcvbuf);
1439 	threshold = rcvbuf - (rcvbuf >> 3);
1440 
1441 	return atomic_read(&sk->sk_rmem_alloc) > threshold;
1442 }
1443 
1444 static inline bool tcp_epollin_ready(const struct sock *sk, int target)
1445 {
1446 	const struct tcp_sock *tp = tcp_sk(sk);
1447 	int avail = READ_ONCE(tp->rcv_nxt) - READ_ONCE(tp->copied_seq);
1448 
1449 	if (avail <= 0)
1450 		return false;
1451 
1452 	return (avail >= target) || tcp_rmem_pressure(sk) ||
1453 	       (tcp_receive_window(tp) <= inet_csk(sk)->icsk_ack.rcv_mss);
1454 }
1455 
1456 extern void tcp_openreq_init_rwin(struct request_sock *req,
1457 				  const struct sock *sk_listener,
1458 				  const struct dst_entry *dst);
1459 
1460 void tcp_enter_memory_pressure(struct sock *sk);
1461 void tcp_leave_memory_pressure(struct sock *sk);
1462 
1463 static inline int keepalive_intvl_when(const struct tcp_sock *tp)
1464 {
1465 	struct net *net = sock_net((struct sock *)tp);
1466 
1467 	return tp->keepalive_intvl ? : net->ipv4.sysctl_tcp_keepalive_intvl;
1468 }
1469 
1470 static inline int keepalive_time_when(const struct tcp_sock *tp)
1471 {
1472 	struct net *net = sock_net((struct sock *)tp);
1473 
1474 	return tp->keepalive_time ? : net->ipv4.sysctl_tcp_keepalive_time;
1475 }
1476 
1477 static inline int keepalive_probes(const struct tcp_sock *tp)
1478 {
1479 	struct net *net = sock_net((struct sock *)tp);
1480 
1481 	return tp->keepalive_probes ? : net->ipv4.sysctl_tcp_keepalive_probes;
1482 }
1483 
1484 static inline u32 keepalive_time_elapsed(const struct tcp_sock *tp)
1485 {
1486 	const struct inet_connection_sock *icsk = &tp->inet_conn;
1487 
1488 	return min_t(u32, tcp_jiffies32 - icsk->icsk_ack.lrcvtime,
1489 			  tcp_jiffies32 - tp->rcv_tstamp);
1490 }
1491 
1492 static inline int tcp_fin_time(const struct sock *sk)
1493 {
1494 	int fin_timeout = tcp_sk(sk)->linger2 ? : sock_net(sk)->ipv4.sysctl_tcp_fin_timeout;
1495 	const int rto = inet_csk(sk)->icsk_rto;
1496 
1497 	if (fin_timeout < (rto << 2) - (rto >> 1))
1498 		fin_timeout = (rto << 2) - (rto >> 1);
1499 
1500 	return fin_timeout;
1501 }
1502 
1503 static inline bool tcp_paws_check(const struct tcp_options_received *rx_opt,
1504 				  int paws_win)
1505 {
1506 	if ((s32)(rx_opt->ts_recent - rx_opt->rcv_tsval) <= paws_win)
1507 		return true;
1508 	if (unlikely(!time_before32(ktime_get_seconds(),
1509 				    rx_opt->ts_recent_stamp + TCP_PAWS_24DAYS)))
1510 		return true;
1511 	/*
1512 	 * Some OSes send SYN and SYNACK messages with tsval=0 tsecr=0,
1513 	 * then following tcp messages have valid values. Ignore 0 value,
1514 	 * or else 'negative' tsval might forbid us to accept their packets.
1515 	 */
1516 	if (!rx_opt->ts_recent)
1517 		return true;
1518 	return false;
1519 }
1520 
1521 static inline bool tcp_paws_reject(const struct tcp_options_received *rx_opt,
1522 				   int rst)
1523 {
1524 	if (tcp_paws_check(rx_opt, 0))
1525 		return false;
1526 
1527 	/* RST segments are not recommended to carry timestamp,
1528 	   and, if they do, it is recommended to ignore PAWS because
1529 	   "their cleanup function should take precedence over timestamps."
1530 	   Certainly, it is mistake. It is necessary to understand the reasons
1531 	   of this constraint to relax it: if peer reboots, clock may go
1532 	   out-of-sync and half-open connections will not be reset.
1533 	   Actually, the problem would be not existing if all
1534 	   the implementations followed draft about maintaining clock
1535 	   via reboots. Linux-2.2 DOES NOT!
1536 
1537 	   However, we can relax time bounds for RST segments to MSL.
1538 	 */
1539 	if (rst && !time_before32(ktime_get_seconds(),
1540 				  rx_opt->ts_recent_stamp + TCP_PAWS_MSL))
1541 		return false;
1542 	return true;
1543 }
1544 
1545 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
1546 			  int mib_idx, u32 *last_oow_ack_time);
1547 
1548 static inline void tcp_mib_init(struct net *net)
1549 {
1550 	/* See RFC 2012 */
1551 	TCP_ADD_STATS(net, TCP_MIB_RTOALGORITHM, 1);
1552 	TCP_ADD_STATS(net, TCP_MIB_RTOMIN, TCP_RTO_MIN*1000/HZ);
1553 	TCP_ADD_STATS(net, TCP_MIB_RTOMAX, TCP_RTO_MAX*1000/HZ);
1554 	TCP_ADD_STATS(net, TCP_MIB_MAXCONN, -1);
1555 }
1556 
1557 /* from STCP */
1558 static inline void tcp_clear_retrans_hints_partial(struct tcp_sock *tp)
1559 {
1560 	tp->lost_skb_hint = NULL;
1561 }
1562 
1563 static inline void tcp_clear_all_retrans_hints(struct tcp_sock *tp)
1564 {
1565 	tcp_clear_retrans_hints_partial(tp);
1566 	tp->retransmit_skb_hint = NULL;
1567 }
1568 
1569 union tcp_md5_addr {
1570 	struct in_addr  a4;
1571 #if IS_ENABLED(CONFIG_IPV6)
1572 	struct in6_addr	a6;
1573 #endif
1574 };
1575 
1576 /* - key database */
1577 struct tcp_md5sig_key {
1578 	struct hlist_node	node;
1579 	u8			keylen;
1580 	u8			family; /* AF_INET or AF_INET6 */
1581 	u8			prefixlen;
1582 	u8			flags;
1583 	union tcp_md5_addr	addr;
1584 	int			l3index; /* set if key added with L3 scope */
1585 	u8			key[TCP_MD5SIG_MAXKEYLEN];
1586 	struct rcu_head		rcu;
1587 };
1588 
1589 /* - sock block */
1590 struct tcp_md5sig_info {
1591 	struct hlist_head	head;
1592 	struct rcu_head		rcu;
1593 };
1594 
1595 /* - pseudo header */
1596 struct tcp4_pseudohdr {
1597 	__be32		saddr;
1598 	__be32		daddr;
1599 	__u8		pad;
1600 	__u8		protocol;
1601 	__be16		len;
1602 };
1603 
1604 struct tcp6_pseudohdr {
1605 	struct in6_addr	saddr;
1606 	struct in6_addr daddr;
1607 	__be32		len;
1608 	__be32		protocol;	/* including padding */
1609 };
1610 
1611 union tcp_md5sum_block {
1612 	struct tcp4_pseudohdr ip4;
1613 #if IS_ENABLED(CONFIG_IPV6)
1614 	struct tcp6_pseudohdr ip6;
1615 #endif
1616 };
1617 
1618 /* - pool: digest algorithm, hash description and scratch buffer */
1619 struct tcp_md5sig_pool {
1620 	struct ahash_request	*md5_req;
1621 	void			*scratch;
1622 };
1623 
1624 /* - functions */
1625 int tcp_v4_md5_hash_skb(char *md5_hash, const struct tcp_md5sig_key *key,
1626 			const struct sock *sk, const struct sk_buff *skb);
1627 int tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr,
1628 		   int family, u8 prefixlen, int l3index, u8 flags,
1629 		   const u8 *newkey, u8 newkeylen, gfp_t gfp);
1630 int tcp_md5_do_del(struct sock *sk, const union tcp_md5_addr *addr,
1631 		   int family, u8 prefixlen, int l3index, u8 flags);
1632 struct tcp_md5sig_key *tcp_v4_md5_lookup(const struct sock *sk,
1633 					 const struct sock *addr_sk);
1634 
1635 #ifdef CONFIG_TCP_MD5SIG
1636 #include <linux/jump_label.h>
1637 extern struct static_key_false tcp_md5_needed;
1638 struct tcp_md5sig_key *__tcp_md5_do_lookup(const struct sock *sk, int l3index,
1639 					   const union tcp_md5_addr *addr,
1640 					   int family);
1641 static inline struct tcp_md5sig_key *
1642 tcp_md5_do_lookup(const struct sock *sk, int l3index,
1643 		  const union tcp_md5_addr *addr, int family)
1644 {
1645 	if (!static_branch_unlikely(&tcp_md5_needed))
1646 		return NULL;
1647 	return __tcp_md5_do_lookup(sk, l3index, addr, family);
1648 }
1649 
1650 #define tcp_twsk_md5_key(twsk)	((twsk)->tw_md5_key)
1651 #else
1652 static inline struct tcp_md5sig_key *
1653 tcp_md5_do_lookup(const struct sock *sk, int l3index,
1654 		  const union tcp_md5_addr *addr, int family)
1655 {
1656 	return NULL;
1657 }
1658 #define tcp_twsk_md5_key(twsk)	NULL
1659 #endif
1660 
1661 bool tcp_alloc_md5sig_pool(void);
1662 
1663 struct tcp_md5sig_pool *tcp_get_md5sig_pool(void);
1664 static inline void tcp_put_md5sig_pool(void)
1665 {
1666 	local_bh_enable();
1667 }
1668 
1669 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *, const struct sk_buff *,
1670 			  unsigned int header_len);
1671 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp,
1672 		     const struct tcp_md5sig_key *key);
1673 
1674 /* From tcp_fastopen.c */
1675 void tcp_fastopen_cache_get(struct sock *sk, u16 *mss,
1676 			    struct tcp_fastopen_cookie *cookie);
1677 void tcp_fastopen_cache_set(struct sock *sk, u16 mss,
1678 			    struct tcp_fastopen_cookie *cookie, bool syn_lost,
1679 			    u16 try_exp);
1680 struct tcp_fastopen_request {
1681 	/* Fast Open cookie. Size 0 means a cookie request */
1682 	struct tcp_fastopen_cookie	cookie;
1683 	struct msghdr			*data;  /* data in MSG_FASTOPEN */
1684 	size_t				size;
1685 	int				copied;	/* queued in tcp_connect() */
1686 	struct ubuf_info		*uarg;
1687 };
1688 void tcp_free_fastopen_req(struct tcp_sock *tp);
1689 void tcp_fastopen_destroy_cipher(struct sock *sk);
1690 void tcp_fastopen_ctx_destroy(struct net *net);
1691 int tcp_fastopen_reset_cipher(struct net *net, struct sock *sk,
1692 			      void *primary_key, void *backup_key);
1693 int tcp_fastopen_get_cipher(struct net *net, struct inet_connection_sock *icsk,
1694 			    u64 *key);
1695 void tcp_fastopen_add_skb(struct sock *sk, struct sk_buff *skb);
1696 struct sock *tcp_try_fastopen(struct sock *sk, struct sk_buff *skb,
1697 			      struct request_sock *req,
1698 			      struct tcp_fastopen_cookie *foc,
1699 			      const struct dst_entry *dst);
1700 void tcp_fastopen_init_key_once(struct net *net);
1701 bool tcp_fastopen_cookie_check(struct sock *sk, u16 *mss,
1702 			     struct tcp_fastopen_cookie *cookie);
1703 bool tcp_fastopen_defer_connect(struct sock *sk, int *err);
1704 #define TCP_FASTOPEN_KEY_LENGTH sizeof(siphash_key_t)
1705 #define TCP_FASTOPEN_KEY_MAX 2
1706 #define TCP_FASTOPEN_KEY_BUF_LENGTH \
1707 	(TCP_FASTOPEN_KEY_LENGTH * TCP_FASTOPEN_KEY_MAX)
1708 
1709 /* Fastopen key context */
1710 struct tcp_fastopen_context {
1711 	siphash_key_t	key[TCP_FASTOPEN_KEY_MAX];
1712 	int		num;
1713 	struct rcu_head	rcu;
1714 };
1715 
1716 void tcp_fastopen_active_disable(struct sock *sk);
1717 bool tcp_fastopen_active_should_disable(struct sock *sk);
1718 void tcp_fastopen_active_disable_ofo_check(struct sock *sk);
1719 void tcp_fastopen_active_detect_blackhole(struct sock *sk, bool expired);
1720 
1721 /* Caller needs to wrap with rcu_read_(un)lock() */
1722 static inline
1723 struct tcp_fastopen_context *tcp_fastopen_get_ctx(const struct sock *sk)
1724 {
1725 	struct tcp_fastopen_context *ctx;
1726 
1727 	ctx = rcu_dereference(inet_csk(sk)->icsk_accept_queue.fastopenq.ctx);
1728 	if (!ctx)
1729 		ctx = rcu_dereference(sock_net(sk)->ipv4.tcp_fastopen_ctx);
1730 	return ctx;
1731 }
1732 
1733 static inline
1734 bool tcp_fastopen_cookie_match(const struct tcp_fastopen_cookie *foc,
1735 			       const struct tcp_fastopen_cookie *orig)
1736 {
1737 	if (orig->len == TCP_FASTOPEN_COOKIE_SIZE &&
1738 	    orig->len == foc->len &&
1739 	    !memcmp(orig->val, foc->val, foc->len))
1740 		return true;
1741 	return false;
1742 }
1743 
1744 static inline
1745 int tcp_fastopen_context_len(const struct tcp_fastopen_context *ctx)
1746 {
1747 	return ctx->num;
1748 }
1749 
1750 /* Latencies incurred by various limits for a sender. They are
1751  * chronograph-like stats that are mutually exclusive.
1752  */
1753 enum tcp_chrono {
1754 	TCP_CHRONO_UNSPEC,
1755 	TCP_CHRONO_BUSY, /* Actively sending data (non-empty write queue) */
1756 	TCP_CHRONO_RWND_LIMITED, /* Stalled by insufficient receive window */
1757 	TCP_CHRONO_SNDBUF_LIMITED, /* Stalled by insufficient send buffer */
1758 	__TCP_CHRONO_MAX,
1759 };
1760 
1761 void tcp_chrono_start(struct sock *sk, const enum tcp_chrono type);
1762 void tcp_chrono_stop(struct sock *sk, const enum tcp_chrono type);
1763 
1764 /* This helper is needed, because skb->tcp_tsorted_anchor uses
1765  * the same memory storage than skb->destructor/_skb_refdst
1766  */
1767 static inline void tcp_skb_tsorted_anchor_cleanup(struct sk_buff *skb)
1768 {
1769 	skb->destructor = NULL;
1770 	skb->_skb_refdst = 0UL;
1771 }
1772 
1773 #define tcp_skb_tsorted_save(skb) {		\
1774 	unsigned long _save = skb->_skb_refdst;	\
1775 	skb->_skb_refdst = 0UL;
1776 
1777 #define tcp_skb_tsorted_restore(skb)		\
1778 	skb->_skb_refdst = _save;		\
1779 }
1780 
1781 void tcp_write_queue_purge(struct sock *sk);
1782 
1783 static inline struct sk_buff *tcp_rtx_queue_head(const struct sock *sk)
1784 {
1785 	return skb_rb_first(&sk->tcp_rtx_queue);
1786 }
1787 
1788 static inline struct sk_buff *tcp_rtx_queue_tail(const struct sock *sk)
1789 {
1790 	return skb_rb_last(&sk->tcp_rtx_queue);
1791 }
1792 
1793 static inline struct sk_buff *tcp_write_queue_head(const struct sock *sk)
1794 {
1795 	return skb_peek(&sk->sk_write_queue);
1796 }
1797 
1798 static inline struct sk_buff *tcp_write_queue_tail(const struct sock *sk)
1799 {
1800 	return skb_peek_tail(&sk->sk_write_queue);
1801 }
1802 
1803 #define tcp_for_write_queue_from_safe(skb, tmp, sk)			\
1804 	skb_queue_walk_from_safe(&(sk)->sk_write_queue, skb, tmp)
1805 
1806 static inline struct sk_buff *tcp_send_head(const struct sock *sk)
1807 {
1808 	return skb_peek(&sk->sk_write_queue);
1809 }
1810 
1811 static inline bool tcp_skb_is_last(const struct sock *sk,
1812 				   const struct sk_buff *skb)
1813 {
1814 	return skb_queue_is_last(&sk->sk_write_queue, skb);
1815 }
1816 
1817 /**
1818  * tcp_write_queue_empty - test if any payload (or FIN) is available in write queue
1819  * @sk: socket
1820  *
1821  * Since the write queue can have a temporary empty skb in it,
1822  * we must not use "return skb_queue_empty(&sk->sk_write_queue)"
1823  */
1824 static inline bool tcp_write_queue_empty(const struct sock *sk)
1825 {
1826 	const struct tcp_sock *tp = tcp_sk(sk);
1827 
1828 	return tp->write_seq == tp->snd_nxt;
1829 }
1830 
1831 static inline bool tcp_rtx_queue_empty(const struct sock *sk)
1832 {
1833 	return RB_EMPTY_ROOT(&sk->tcp_rtx_queue);
1834 }
1835 
1836 static inline bool tcp_rtx_and_write_queues_empty(const struct sock *sk)
1837 {
1838 	return tcp_rtx_queue_empty(sk) && tcp_write_queue_empty(sk);
1839 }
1840 
1841 static inline void tcp_add_write_queue_tail(struct sock *sk, struct sk_buff *skb)
1842 {
1843 	__skb_queue_tail(&sk->sk_write_queue, skb);
1844 
1845 	/* Queue it, remembering where we must start sending. */
1846 	if (sk->sk_write_queue.next == skb)
1847 		tcp_chrono_start(sk, TCP_CHRONO_BUSY);
1848 }
1849 
1850 /* Insert new before skb on the write queue of sk.  */
1851 static inline void tcp_insert_write_queue_before(struct sk_buff *new,
1852 						  struct sk_buff *skb,
1853 						  struct sock *sk)
1854 {
1855 	__skb_queue_before(&sk->sk_write_queue, skb, new);
1856 }
1857 
1858 static inline void tcp_unlink_write_queue(struct sk_buff *skb, struct sock *sk)
1859 {
1860 	tcp_skb_tsorted_anchor_cleanup(skb);
1861 	__skb_unlink(skb, &sk->sk_write_queue);
1862 }
1863 
1864 void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb);
1865 
1866 static inline void tcp_rtx_queue_unlink(struct sk_buff *skb, struct sock *sk)
1867 {
1868 	tcp_skb_tsorted_anchor_cleanup(skb);
1869 	rb_erase(&skb->rbnode, &sk->tcp_rtx_queue);
1870 }
1871 
1872 static inline void tcp_rtx_queue_unlink_and_free(struct sk_buff *skb, struct sock *sk)
1873 {
1874 	list_del(&skb->tcp_tsorted_anchor);
1875 	tcp_rtx_queue_unlink(skb, sk);
1876 	sk_wmem_free_skb(sk, skb);
1877 }
1878 
1879 static inline void tcp_push_pending_frames(struct sock *sk)
1880 {
1881 	if (tcp_send_head(sk)) {
1882 		struct tcp_sock *tp = tcp_sk(sk);
1883 
1884 		__tcp_push_pending_frames(sk, tcp_current_mss(sk), tp->nonagle);
1885 	}
1886 }
1887 
1888 /* Start sequence of the skb just after the highest skb with SACKed
1889  * bit, valid only if sacked_out > 0 or when the caller has ensured
1890  * validity by itself.
1891  */
1892 static inline u32 tcp_highest_sack_seq(struct tcp_sock *tp)
1893 {
1894 	if (!tp->sacked_out)
1895 		return tp->snd_una;
1896 
1897 	if (tp->highest_sack == NULL)
1898 		return tp->snd_nxt;
1899 
1900 	return TCP_SKB_CB(tp->highest_sack)->seq;
1901 }
1902 
1903 static inline void tcp_advance_highest_sack(struct sock *sk, struct sk_buff *skb)
1904 {
1905 	tcp_sk(sk)->highest_sack = skb_rb_next(skb);
1906 }
1907 
1908 static inline struct sk_buff *tcp_highest_sack(struct sock *sk)
1909 {
1910 	return tcp_sk(sk)->highest_sack;
1911 }
1912 
1913 static inline void tcp_highest_sack_reset(struct sock *sk)
1914 {
1915 	tcp_sk(sk)->highest_sack = tcp_rtx_queue_head(sk);
1916 }
1917 
1918 /* Called when old skb is about to be deleted and replaced by new skb */
1919 static inline void tcp_highest_sack_replace(struct sock *sk,
1920 					    struct sk_buff *old,
1921 					    struct sk_buff *new)
1922 {
1923 	if (old == tcp_highest_sack(sk))
1924 		tcp_sk(sk)->highest_sack = new;
1925 }
1926 
1927 /* This helper checks if socket has IP_TRANSPARENT set */
1928 static inline bool inet_sk_transparent(const struct sock *sk)
1929 {
1930 	switch (sk->sk_state) {
1931 	case TCP_TIME_WAIT:
1932 		return inet_twsk(sk)->tw_transparent;
1933 	case TCP_NEW_SYN_RECV:
1934 		return inet_rsk(inet_reqsk(sk))->no_srccheck;
1935 	}
1936 	return inet_sk(sk)->transparent;
1937 }
1938 
1939 /* Determines whether this is a thin stream (which may suffer from
1940  * increased latency). Used to trigger latency-reducing mechanisms.
1941  */
1942 static inline bool tcp_stream_is_thin(struct tcp_sock *tp)
1943 {
1944 	return tp->packets_out < 4 && !tcp_in_initial_slowstart(tp);
1945 }
1946 
1947 /* /proc */
1948 enum tcp_seq_states {
1949 	TCP_SEQ_STATE_LISTENING,
1950 	TCP_SEQ_STATE_ESTABLISHED,
1951 };
1952 
1953 void *tcp_seq_start(struct seq_file *seq, loff_t *pos);
1954 void *tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos);
1955 void tcp_seq_stop(struct seq_file *seq, void *v);
1956 
1957 struct tcp_seq_afinfo {
1958 	sa_family_t			family;
1959 };
1960 
1961 struct tcp_iter_state {
1962 	struct seq_net_private	p;
1963 	enum tcp_seq_states	state;
1964 	struct sock		*syn_wait_sk;
1965 	int			bucket, offset, sbucket, num;
1966 	loff_t			last_pos;
1967 };
1968 
1969 extern struct request_sock_ops tcp_request_sock_ops;
1970 extern struct request_sock_ops tcp6_request_sock_ops;
1971 
1972 void tcp_v4_destroy_sock(struct sock *sk);
1973 
1974 struct sk_buff *tcp_gso_segment(struct sk_buff *skb,
1975 				netdev_features_t features);
1976 struct sk_buff *tcp_gro_receive(struct list_head *head, struct sk_buff *skb);
1977 INDIRECT_CALLABLE_DECLARE(int tcp4_gro_complete(struct sk_buff *skb, int thoff));
1978 INDIRECT_CALLABLE_DECLARE(struct sk_buff *tcp4_gro_receive(struct list_head *head, struct sk_buff *skb));
1979 INDIRECT_CALLABLE_DECLARE(int tcp6_gro_complete(struct sk_buff *skb, int thoff));
1980 INDIRECT_CALLABLE_DECLARE(struct sk_buff *tcp6_gro_receive(struct list_head *head, struct sk_buff *skb));
1981 int tcp_gro_complete(struct sk_buff *skb);
1982 
1983 void __tcp_v4_send_check(struct sk_buff *skb, __be32 saddr, __be32 daddr);
1984 
1985 static inline u32 tcp_notsent_lowat(const struct tcp_sock *tp)
1986 {
1987 	struct net *net = sock_net((struct sock *)tp);
1988 	return tp->notsent_lowat ?: net->ipv4.sysctl_tcp_notsent_lowat;
1989 }
1990 
1991 bool tcp_stream_memory_free(const struct sock *sk, int wake);
1992 
1993 #ifdef CONFIG_PROC_FS
1994 int tcp4_proc_init(void);
1995 void tcp4_proc_exit(void);
1996 #endif
1997 
1998 int tcp_rtx_synack(const struct sock *sk, struct request_sock *req);
1999 int tcp_conn_request(struct request_sock_ops *rsk_ops,
2000 		     const struct tcp_request_sock_ops *af_ops,
2001 		     struct sock *sk, struct sk_buff *skb);
2002 
2003 /* TCP af-specific functions */
2004 struct tcp_sock_af_ops {
2005 #ifdef CONFIG_TCP_MD5SIG
2006 	struct tcp_md5sig_key	*(*md5_lookup) (const struct sock *sk,
2007 						const struct sock *addr_sk);
2008 	int		(*calc_md5_hash)(char *location,
2009 					 const struct tcp_md5sig_key *md5,
2010 					 const struct sock *sk,
2011 					 const struct sk_buff *skb);
2012 	int		(*md5_parse)(struct sock *sk,
2013 				     int optname,
2014 				     sockptr_t optval,
2015 				     int optlen);
2016 #endif
2017 };
2018 
2019 struct tcp_request_sock_ops {
2020 	u16 mss_clamp;
2021 #ifdef CONFIG_TCP_MD5SIG
2022 	struct tcp_md5sig_key *(*req_md5_lookup)(const struct sock *sk,
2023 						 const struct sock *addr_sk);
2024 	int		(*calc_md5_hash) (char *location,
2025 					  const struct tcp_md5sig_key *md5,
2026 					  const struct sock *sk,
2027 					  const struct sk_buff *skb);
2028 #endif
2029 #ifdef CONFIG_SYN_COOKIES
2030 	__u32 (*cookie_init_seq)(const struct sk_buff *skb,
2031 				 __u16 *mss);
2032 #endif
2033 	struct dst_entry *(*route_req)(const struct sock *sk,
2034 				       struct sk_buff *skb,
2035 				       struct flowi *fl,
2036 				       struct request_sock *req);
2037 	u32 (*init_seq)(const struct sk_buff *skb);
2038 	u32 (*init_ts_off)(const struct net *net, const struct sk_buff *skb);
2039 	int (*send_synack)(const struct sock *sk, struct dst_entry *dst,
2040 			   struct flowi *fl, struct request_sock *req,
2041 			   struct tcp_fastopen_cookie *foc,
2042 			   enum tcp_synack_type synack_type,
2043 			   struct sk_buff *syn_skb);
2044 };
2045 
2046 extern const struct tcp_request_sock_ops tcp_request_sock_ipv4_ops;
2047 #if IS_ENABLED(CONFIG_IPV6)
2048 extern const struct tcp_request_sock_ops tcp_request_sock_ipv6_ops;
2049 #endif
2050 
2051 #ifdef CONFIG_SYN_COOKIES
2052 static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops,
2053 					 const struct sock *sk, struct sk_buff *skb,
2054 					 __u16 *mss)
2055 {
2056 	tcp_synq_overflow(sk);
2057 	__NET_INC_STATS(sock_net(sk), LINUX_MIB_SYNCOOKIESSENT);
2058 	return ops->cookie_init_seq(skb, mss);
2059 }
2060 #else
2061 static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops,
2062 					 const struct sock *sk, struct sk_buff *skb,
2063 					 __u16 *mss)
2064 {
2065 	return 0;
2066 }
2067 #endif
2068 
2069 int tcpv4_offload_init(void);
2070 
2071 void tcp_v4_init(void);
2072 void tcp_init(void);
2073 
2074 /* tcp_recovery.c */
2075 void tcp_mark_skb_lost(struct sock *sk, struct sk_buff *skb);
2076 void tcp_newreno_mark_lost(struct sock *sk, bool snd_una_advanced);
2077 extern s32 tcp_rack_skb_timeout(struct tcp_sock *tp, struct sk_buff *skb,
2078 				u32 reo_wnd);
2079 extern bool tcp_rack_mark_lost(struct sock *sk);
2080 extern void tcp_rack_advance(struct tcp_sock *tp, u8 sacked, u32 end_seq,
2081 			     u64 xmit_time);
2082 extern void tcp_rack_reo_timeout(struct sock *sk);
2083 extern void tcp_rack_update_reo_wnd(struct sock *sk, struct rate_sample *rs);
2084 
2085 /* At how many usecs into the future should the RTO fire? */
2086 static inline s64 tcp_rto_delta_us(const struct sock *sk)
2087 {
2088 	const struct sk_buff *skb = tcp_rtx_queue_head(sk);
2089 	u32 rto = inet_csk(sk)->icsk_rto;
2090 	u64 rto_time_stamp_us = tcp_skb_timestamp_us(skb) + jiffies_to_usecs(rto);
2091 
2092 	return rto_time_stamp_us - tcp_sk(sk)->tcp_mstamp;
2093 }
2094 
2095 /*
2096  * Save and compile IPv4 options, return a pointer to it
2097  */
2098 static inline struct ip_options_rcu *tcp_v4_save_options(struct net *net,
2099 							 struct sk_buff *skb)
2100 {
2101 	const struct ip_options *opt = &TCP_SKB_CB(skb)->header.h4.opt;
2102 	struct ip_options_rcu *dopt = NULL;
2103 
2104 	if (opt->optlen) {
2105 		int opt_size = sizeof(*dopt) + opt->optlen;
2106 
2107 		dopt = kmalloc(opt_size, GFP_ATOMIC);
2108 		if (dopt && __ip_options_echo(net, &dopt->opt, skb, opt)) {
2109 			kfree(dopt);
2110 			dopt = NULL;
2111 		}
2112 	}
2113 	return dopt;
2114 }
2115 
2116 /* locally generated TCP pure ACKs have skb->truesize == 2
2117  * (check tcp_send_ack() in net/ipv4/tcp_output.c )
2118  * This is much faster than dissecting the packet to find out.
2119  * (Think of GRE encapsulations, IPv4, IPv6, ...)
2120  */
2121 static inline bool skb_is_tcp_pure_ack(const struct sk_buff *skb)
2122 {
2123 	return skb->truesize == 2;
2124 }
2125 
2126 static inline void skb_set_tcp_pure_ack(struct sk_buff *skb)
2127 {
2128 	skb->truesize = 2;
2129 }
2130 
2131 static inline int tcp_inq(struct sock *sk)
2132 {
2133 	struct tcp_sock *tp = tcp_sk(sk);
2134 	int answ;
2135 
2136 	if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) {
2137 		answ = 0;
2138 	} else if (sock_flag(sk, SOCK_URGINLINE) ||
2139 		   !tp->urg_data ||
2140 		   before(tp->urg_seq, tp->copied_seq) ||
2141 		   !before(tp->urg_seq, tp->rcv_nxt)) {
2142 
2143 		answ = tp->rcv_nxt - tp->copied_seq;
2144 
2145 		/* Subtract 1, if FIN was received */
2146 		if (answ && sock_flag(sk, SOCK_DONE))
2147 			answ--;
2148 	} else {
2149 		answ = tp->urg_seq - tp->copied_seq;
2150 	}
2151 
2152 	return answ;
2153 }
2154 
2155 int tcp_peek_len(struct socket *sock);
2156 
2157 static inline void tcp_segs_in(struct tcp_sock *tp, const struct sk_buff *skb)
2158 {
2159 	u16 segs_in;
2160 
2161 	segs_in = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
2162 	tp->segs_in += segs_in;
2163 	if (skb->len > tcp_hdrlen(skb))
2164 		tp->data_segs_in += segs_in;
2165 }
2166 
2167 /*
2168  * TCP listen path runs lockless.
2169  * We forced "struct sock" to be const qualified to make sure
2170  * we don't modify one of its field by mistake.
2171  * Here, we increment sk_drops which is an atomic_t, so we can safely
2172  * make sock writable again.
2173  */
2174 static inline void tcp_listendrop(const struct sock *sk)
2175 {
2176 	atomic_inc(&((struct sock *)sk)->sk_drops);
2177 	__NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENDROPS);
2178 }
2179 
2180 enum hrtimer_restart tcp_pace_kick(struct hrtimer *timer);
2181 
2182 /*
2183  * Interface for adding Upper Level Protocols over TCP
2184  */
2185 
2186 #define TCP_ULP_NAME_MAX	16
2187 #define TCP_ULP_MAX		128
2188 #define TCP_ULP_BUF_MAX		(TCP_ULP_NAME_MAX*TCP_ULP_MAX)
2189 
2190 struct tcp_ulp_ops {
2191 	struct list_head	list;
2192 
2193 	/* initialize ulp */
2194 	int (*init)(struct sock *sk);
2195 	/* update ulp */
2196 	void (*update)(struct sock *sk, struct proto *p,
2197 		       void (*write_space)(struct sock *sk));
2198 	/* cleanup ulp */
2199 	void (*release)(struct sock *sk);
2200 	/* diagnostic */
2201 	int (*get_info)(const struct sock *sk, struct sk_buff *skb);
2202 	size_t (*get_info_size)(const struct sock *sk);
2203 	/* clone ulp */
2204 	void (*clone)(const struct request_sock *req, struct sock *newsk,
2205 		      const gfp_t priority);
2206 
2207 	char		name[TCP_ULP_NAME_MAX];
2208 	struct module	*owner;
2209 };
2210 int tcp_register_ulp(struct tcp_ulp_ops *type);
2211 void tcp_unregister_ulp(struct tcp_ulp_ops *type);
2212 int tcp_set_ulp(struct sock *sk, const char *name);
2213 void tcp_get_available_ulp(char *buf, size_t len);
2214 void tcp_cleanup_ulp(struct sock *sk);
2215 void tcp_update_ulp(struct sock *sk, struct proto *p,
2216 		    void (*write_space)(struct sock *sk));
2217 
2218 #define MODULE_ALIAS_TCP_ULP(name)				\
2219 	__MODULE_INFO(alias, alias_userspace, name);		\
2220 	__MODULE_INFO(alias, alias_tcp_ulp, "tcp-ulp-" name)
2221 
2222 #ifdef CONFIG_NET_SOCK_MSG
2223 struct sk_msg;
2224 struct sk_psock;
2225 
2226 #ifdef CONFIG_BPF_SYSCALL
2227 struct proto *tcp_bpf_get_proto(struct sock *sk, struct sk_psock *psock);
2228 int tcp_bpf_update_proto(struct sock *sk, struct sk_psock *psock, bool restore);
2229 void tcp_bpf_clone(const struct sock *sk, struct sock *newsk);
2230 #endif /* CONFIG_BPF_SYSCALL */
2231 
2232 int tcp_bpf_sendmsg_redir(struct sock *sk, struct sk_msg *msg, u32 bytes,
2233 			  int flags);
2234 #endif /* CONFIG_NET_SOCK_MSG */
2235 
2236 #if !defined(CONFIG_BPF_SYSCALL) || !defined(CONFIG_NET_SOCK_MSG)
2237 static inline void tcp_bpf_clone(const struct sock *sk, struct sock *newsk)
2238 {
2239 }
2240 #endif
2241 
2242 #ifdef CONFIG_CGROUP_BPF
2243 static inline void bpf_skops_init_skb(struct bpf_sock_ops_kern *skops,
2244 				      struct sk_buff *skb,
2245 				      unsigned int end_offset)
2246 {
2247 	skops->skb = skb;
2248 	skops->skb_data_end = skb->data + end_offset;
2249 }
2250 #else
2251 static inline void bpf_skops_init_skb(struct bpf_sock_ops_kern *skops,
2252 				      struct sk_buff *skb,
2253 				      unsigned int end_offset)
2254 {
2255 }
2256 #endif
2257 
2258 /* Call BPF_SOCK_OPS program that returns an int. If the return value
2259  * is < 0, then the BPF op failed (for example if the loaded BPF
2260  * program does not support the chosen operation or there is no BPF
2261  * program loaded).
2262  */
2263 #ifdef CONFIG_BPF
2264 static inline int tcp_call_bpf(struct sock *sk, int op, u32 nargs, u32 *args)
2265 {
2266 	struct bpf_sock_ops_kern sock_ops;
2267 	int ret;
2268 
2269 	memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
2270 	if (sk_fullsock(sk)) {
2271 		sock_ops.is_fullsock = 1;
2272 		sock_owned_by_me(sk);
2273 	}
2274 
2275 	sock_ops.sk = sk;
2276 	sock_ops.op = op;
2277 	if (nargs > 0)
2278 		memcpy(sock_ops.args, args, nargs * sizeof(*args));
2279 
2280 	ret = BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops);
2281 	if (ret == 0)
2282 		ret = sock_ops.reply;
2283 	else
2284 		ret = -1;
2285 	return ret;
2286 }
2287 
2288 static inline int tcp_call_bpf_2arg(struct sock *sk, int op, u32 arg1, u32 arg2)
2289 {
2290 	u32 args[2] = {arg1, arg2};
2291 
2292 	return tcp_call_bpf(sk, op, 2, args);
2293 }
2294 
2295 static inline int tcp_call_bpf_3arg(struct sock *sk, int op, u32 arg1, u32 arg2,
2296 				    u32 arg3)
2297 {
2298 	u32 args[3] = {arg1, arg2, arg3};
2299 
2300 	return tcp_call_bpf(sk, op, 3, args);
2301 }
2302 
2303 #else
2304 static inline int tcp_call_bpf(struct sock *sk, int op, u32 nargs, u32 *args)
2305 {
2306 	return -EPERM;
2307 }
2308 
2309 static inline int tcp_call_bpf_2arg(struct sock *sk, int op, u32 arg1, u32 arg2)
2310 {
2311 	return -EPERM;
2312 }
2313 
2314 static inline int tcp_call_bpf_3arg(struct sock *sk, int op, u32 arg1, u32 arg2,
2315 				    u32 arg3)
2316 {
2317 	return -EPERM;
2318 }
2319 
2320 #endif
2321 
2322 static inline u32 tcp_timeout_init(struct sock *sk)
2323 {
2324 	int timeout;
2325 
2326 	timeout = tcp_call_bpf(sk, BPF_SOCK_OPS_TIMEOUT_INIT, 0, NULL);
2327 
2328 	if (timeout <= 0)
2329 		timeout = TCP_TIMEOUT_INIT;
2330 	return timeout;
2331 }
2332 
2333 static inline u32 tcp_rwnd_init_bpf(struct sock *sk)
2334 {
2335 	int rwnd;
2336 
2337 	rwnd = tcp_call_bpf(sk, BPF_SOCK_OPS_RWND_INIT, 0, NULL);
2338 
2339 	if (rwnd < 0)
2340 		rwnd = 0;
2341 	return rwnd;
2342 }
2343 
2344 static inline bool tcp_bpf_ca_needs_ecn(struct sock *sk)
2345 {
2346 	return (tcp_call_bpf(sk, BPF_SOCK_OPS_NEEDS_ECN, 0, NULL) == 1);
2347 }
2348 
2349 static inline void tcp_bpf_rtt(struct sock *sk)
2350 {
2351 	if (BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), BPF_SOCK_OPS_RTT_CB_FLAG))
2352 		tcp_call_bpf(sk, BPF_SOCK_OPS_RTT_CB, 0, NULL);
2353 }
2354 
2355 #if IS_ENABLED(CONFIG_SMC)
2356 extern struct static_key_false tcp_have_smc;
2357 #endif
2358 
2359 #if IS_ENABLED(CONFIG_TLS_DEVICE)
2360 void clean_acked_data_enable(struct inet_connection_sock *icsk,
2361 			     void (*cad)(struct sock *sk, u32 ack_seq));
2362 void clean_acked_data_disable(struct inet_connection_sock *icsk);
2363 void clean_acked_data_flush(void);
2364 #endif
2365 
2366 DECLARE_STATIC_KEY_FALSE(tcp_tx_delay_enabled);
2367 static inline void tcp_add_tx_delay(struct sk_buff *skb,
2368 				    const struct tcp_sock *tp)
2369 {
2370 	if (static_branch_unlikely(&tcp_tx_delay_enabled))
2371 		skb->skb_mstamp_ns += (u64)tp->tcp_tx_delay * NSEC_PER_USEC;
2372 }
2373 
2374 /* Compute Earliest Departure Time for some control packets
2375  * like ACK or RST for TIME_WAIT or non ESTABLISHED sockets.
2376  */
2377 static inline u64 tcp_transmit_time(const struct sock *sk)
2378 {
2379 	if (static_branch_unlikely(&tcp_tx_delay_enabled)) {
2380 		u32 delay = (sk->sk_state == TCP_TIME_WAIT) ?
2381 			tcp_twsk(sk)->tw_tx_delay : tcp_sk(sk)->tcp_tx_delay;
2382 
2383 		return tcp_clock_ns() + (u64)delay * NSEC_PER_USEC;
2384 	}
2385 	return 0;
2386 }
2387 
2388 #endif	/* _TCP_H */
2389