xref: /linux/include/net/tcp.h (revision 64ed7d8190611c96744fd2b89afe6aeb3054902b)
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Definitions for the TCP module.
8  *
9  * Version:	@(#)tcp.h	1.0.5	05/23/93
10  *
11  * Authors:	Ross Biro
12  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
13  */
14 #ifndef _TCP_H
15 #define _TCP_H
16 
17 #define FASTRETRANS_DEBUG 1
18 
19 #include <linux/list.h>
20 #include <linux/tcp.h>
21 #include <linux/bug.h>
22 #include <linux/slab.h>
23 #include <linux/cache.h>
24 #include <linux/percpu.h>
25 #include <linux/skbuff.h>
26 #include <linux/kref.h>
27 #include <linux/ktime.h>
28 #include <linux/indirect_call_wrapper.h>
29 
30 #include <net/inet_connection_sock.h>
31 #include <net/inet_timewait_sock.h>
32 #include <net/inet_hashtables.h>
33 #include <net/checksum.h>
34 #include <net/request_sock.h>
35 #include <net/sock_reuseport.h>
36 #include <net/sock.h>
37 #include <net/snmp.h>
38 #include <net/ip.h>
39 #include <net/tcp_states.h>
40 #include <net/tcp_ao.h>
41 #include <net/inet_ecn.h>
42 #include <net/dst.h>
43 #include <net/mptcp.h>
44 
45 #include <linux/seq_file.h>
46 #include <linux/memcontrol.h>
47 #include <linux/bpf-cgroup.h>
48 #include <linux/siphash.h>
49 
50 extern struct inet_hashinfo tcp_hashinfo;
51 
52 DECLARE_PER_CPU(unsigned int, tcp_orphan_count);
53 int tcp_orphan_count_sum(void);
54 
55 DECLARE_PER_CPU(u32, tcp_tw_isn);
56 
57 void tcp_time_wait(struct sock *sk, int state, int timeo);
58 
59 #define MAX_TCP_HEADER	L1_CACHE_ALIGN(128 + MAX_HEADER)
60 #define MAX_TCP_OPTION_SPACE 40
61 #define TCP_MIN_SND_MSS		48
62 #define TCP_MIN_GSO_SIZE	(TCP_MIN_SND_MSS - MAX_TCP_OPTION_SPACE)
63 
64 /*
65  * Never offer a window over 32767 without using window scaling. Some
66  * poor stacks do signed 16bit maths!
67  */
68 #define MAX_TCP_WINDOW		32767U
69 
70 /* Minimal accepted MSS. It is (60+60+8) - (20+20). */
71 #define TCP_MIN_MSS		88U
72 
73 /* The initial MTU to use for probing */
74 #define TCP_BASE_MSS		1024
75 
76 /* probing interval, default to 10 minutes as per RFC4821 */
77 #define TCP_PROBE_INTERVAL	600
78 
79 /* Specify interval when tcp mtu probing will stop */
80 #define TCP_PROBE_THRESHOLD	8
81 
82 /* After receiving this amount of duplicate ACKs fast retransmit starts. */
83 #define TCP_FASTRETRANS_THRESH 3
84 
85 /* Maximal number of ACKs sent quickly to accelerate slow-start. */
86 #define TCP_MAX_QUICKACKS	16U
87 
88 /* Maximal number of window scale according to RFC1323 */
89 #define TCP_MAX_WSCALE		14U
90 
91 /* urg_data states */
92 #define TCP_URG_VALID	0x0100
93 #define TCP_URG_NOTYET	0x0200
94 #define TCP_URG_READ	0x0400
95 
96 #define TCP_RETR1	3	/*
97 				 * This is how many retries it does before it
98 				 * tries to figure out if the gateway is
99 				 * down. Minimal RFC value is 3; it corresponds
100 				 * to ~3sec-8min depending on RTO.
101 				 */
102 
103 #define TCP_RETR2	15	/*
104 				 * This should take at least
105 				 * 90 minutes to time out.
106 				 * RFC1122 says that the limit is 100 sec.
107 				 * 15 is ~13-30min depending on RTO.
108 				 */
109 
110 #define TCP_SYN_RETRIES	 6	/* This is how many retries are done
111 				 * when active opening a connection.
112 				 * RFC1122 says the minimum retry MUST
113 				 * be at least 180secs.  Nevertheless
114 				 * this value is corresponding to
115 				 * 63secs of retransmission with the
116 				 * current initial RTO.
117 				 */
118 
119 #define TCP_SYNACK_RETRIES 5	/* This is how may retries are done
120 				 * when passive opening a connection.
121 				 * This is corresponding to 31secs of
122 				 * retransmission with the current
123 				 * initial RTO.
124 				 */
125 
126 #define TCP_TIMEWAIT_LEN (60*HZ) /* how long to wait to destroy TIME-WAIT
127 				  * state, about 60 seconds	*/
128 #define TCP_FIN_TIMEOUT	TCP_TIMEWAIT_LEN
129                                  /* BSD style FIN_WAIT2 deadlock breaker.
130 				  * It used to be 3min, new value is 60sec,
131 				  * to combine FIN-WAIT-2 timeout with
132 				  * TIME-WAIT timer.
133 				  */
134 #define TCP_FIN_TIMEOUT_MAX (120 * HZ) /* max TCP_LINGER2 value (two minutes) */
135 
136 #define TCP_DELACK_MAX	((unsigned)(HZ/5))	/* maximal time to delay before sending an ACK */
137 static_assert((1 << ATO_BITS) > TCP_DELACK_MAX);
138 
139 #if HZ >= 100
140 #define TCP_DELACK_MIN	((unsigned)(HZ/25))	/* minimal time to delay before sending an ACK */
141 #define TCP_ATO_MIN	((unsigned)(HZ/25))
142 #else
143 #define TCP_DELACK_MIN	4U
144 #define TCP_ATO_MIN	4U
145 #endif
146 #define TCP_RTO_MAX	((unsigned)(120*HZ))
147 #define TCP_RTO_MIN	((unsigned)(HZ/5))
148 #define TCP_TIMEOUT_MIN	(2U) /* Min timeout for TCP timers in jiffies */
149 
150 #define TCP_TIMEOUT_MIN_US (2*USEC_PER_MSEC) /* Min TCP timeout in microsecs */
151 
152 #define TCP_TIMEOUT_INIT ((unsigned)(1*HZ))	/* RFC6298 2.1 initial RTO value	*/
153 #define TCP_TIMEOUT_FALLBACK ((unsigned)(3*HZ))	/* RFC 1122 initial RTO value, now
154 						 * used as a fallback RTO for the
155 						 * initial data transmission if no
156 						 * valid RTT sample has been acquired,
157 						 * most likely due to retrans in 3WHS.
158 						 */
159 
160 #define TCP_RESOURCE_PROBE_INTERVAL ((unsigned)(HZ/2U)) /* Maximal interval between probes
161 					                 * for local resources.
162 					                 */
163 #define TCP_KEEPALIVE_TIME	(120*60*HZ)	/* two hours */
164 #define TCP_KEEPALIVE_PROBES	9		/* Max of 9 keepalive probes	*/
165 #define TCP_KEEPALIVE_INTVL	(75*HZ)
166 
167 #define MAX_TCP_KEEPIDLE	32767
168 #define MAX_TCP_KEEPINTVL	32767
169 #define MAX_TCP_KEEPCNT		127
170 #define MAX_TCP_SYNCNT		127
171 
172 /* Ensure that TCP PAWS checks are relaxed after ~2147 seconds
173  * to avoid overflows. This assumes a clock smaller than 1 Mhz.
174  * Default clock is 1 Khz, tcp_usec_ts uses 1 Mhz.
175  */
176 #define TCP_PAWS_WRAP (INT_MAX / USEC_PER_SEC)
177 
178 #define TCP_PAWS_MSL	60		/* Per-host timestamps are invalidated
179 					 * after this time. It should be equal
180 					 * (or greater than) TCP_TIMEWAIT_LEN
181 					 * to provide reliability equal to one
182 					 * provided by timewait state.
183 					 */
184 #define TCP_PAWS_WINDOW	1		/* Replay window for per-host
185 					 * timestamps. It must be less than
186 					 * minimal timewait lifetime.
187 					 */
188 /*
189  *	TCP option
190  */
191 
192 #define TCPOPT_NOP		1	/* Padding */
193 #define TCPOPT_EOL		0	/* End of options */
194 #define TCPOPT_MSS		2	/* Segment size negotiating */
195 #define TCPOPT_WINDOW		3	/* Window scaling */
196 #define TCPOPT_SACK_PERM        4       /* SACK Permitted */
197 #define TCPOPT_SACK             5       /* SACK Block */
198 #define TCPOPT_TIMESTAMP	8	/* Better RTT estimations/PAWS */
199 #define TCPOPT_MD5SIG		19	/* MD5 Signature (RFC2385) */
200 #define TCPOPT_AO		29	/* Authentication Option (RFC5925) */
201 #define TCPOPT_MPTCP		30	/* Multipath TCP (RFC6824) */
202 #define TCPOPT_FASTOPEN		34	/* Fast open (RFC7413) */
203 #define TCPOPT_EXP		254	/* Experimental */
204 /* Magic number to be after the option value for sharing TCP
205  * experimental options. See draft-ietf-tcpm-experimental-options-00.txt
206  */
207 #define TCPOPT_FASTOPEN_MAGIC	0xF989
208 #define TCPOPT_SMC_MAGIC	0xE2D4C3D9
209 
210 /*
211  *     TCP option lengths
212  */
213 
214 #define TCPOLEN_MSS            4
215 #define TCPOLEN_WINDOW         3
216 #define TCPOLEN_SACK_PERM      2
217 #define TCPOLEN_TIMESTAMP      10
218 #define TCPOLEN_MD5SIG         18
219 #define TCPOLEN_FASTOPEN_BASE  2
220 #define TCPOLEN_EXP_FASTOPEN_BASE  4
221 #define TCPOLEN_EXP_SMC_BASE   6
222 
223 /* But this is what stacks really send out. */
224 #define TCPOLEN_TSTAMP_ALIGNED		12
225 #define TCPOLEN_WSCALE_ALIGNED		4
226 #define TCPOLEN_SACKPERM_ALIGNED	4
227 #define TCPOLEN_SACK_BASE		2
228 #define TCPOLEN_SACK_BASE_ALIGNED	4
229 #define TCPOLEN_SACK_PERBLOCK		8
230 #define TCPOLEN_MD5SIG_ALIGNED		20
231 #define TCPOLEN_MSS_ALIGNED		4
232 #define TCPOLEN_EXP_SMC_BASE_ALIGNED	8
233 
234 /* Flags in tp->nonagle */
235 #define TCP_NAGLE_OFF		1	/* Nagle's algo is disabled */
236 #define TCP_NAGLE_CORK		2	/* Socket is corked	    */
237 #define TCP_NAGLE_PUSH		4	/* Cork is overridden for already queued data */
238 
239 /* TCP thin-stream limits */
240 #define TCP_THIN_LINEAR_RETRIES 6       /* After 6 linear retries, do exp. backoff */
241 
242 /* TCP initial congestion window as per rfc6928 */
243 #define TCP_INIT_CWND		10
244 
245 /* Bit Flags for sysctl_tcp_fastopen */
246 #define	TFO_CLIENT_ENABLE	1
247 #define	TFO_SERVER_ENABLE	2
248 #define	TFO_CLIENT_NO_COOKIE	4	/* Data in SYN w/o cookie option */
249 
250 /* Accept SYN data w/o any cookie option */
251 #define	TFO_SERVER_COOKIE_NOT_REQD	0x200
252 
253 /* Force enable TFO on all listeners, i.e., not requiring the
254  * TCP_FASTOPEN socket option.
255  */
256 #define	TFO_SERVER_WO_SOCKOPT1	0x400
257 
258 
259 /* sysctl variables for tcp */
260 extern int sysctl_tcp_max_orphans;
261 extern long sysctl_tcp_mem[3];
262 
263 #define TCP_RACK_LOSS_DETECTION  0x1 /* Use RACK to detect losses */
264 #define TCP_RACK_STATIC_REO_WND  0x2 /* Use static RACK reo wnd */
265 #define TCP_RACK_NO_DUPTHRESH    0x4 /* Do not use DUPACK threshold in RACK */
266 
267 extern atomic_long_t tcp_memory_allocated;
268 DECLARE_PER_CPU(int, tcp_memory_per_cpu_fw_alloc);
269 
270 extern struct percpu_counter tcp_sockets_allocated;
271 extern unsigned long tcp_memory_pressure;
272 
273 /* optimized version of sk_under_memory_pressure() for TCP sockets */
274 static inline bool tcp_under_memory_pressure(const struct sock *sk)
275 {
276 	if (mem_cgroup_sockets_enabled && sk->sk_memcg &&
277 	    mem_cgroup_under_socket_pressure(sk->sk_memcg))
278 		return true;
279 
280 	return READ_ONCE(tcp_memory_pressure);
281 }
282 /*
283  * The next routines deal with comparing 32 bit unsigned ints
284  * and worry about wraparound (automatic with unsigned arithmetic).
285  */
286 
287 static inline bool before(__u32 seq1, __u32 seq2)
288 {
289         return (__s32)(seq1-seq2) < 0;
290 }
291 #define after(seq2, seq1) 	before(seq1, seq2)
292 
293 /* is s2<=s1<=s3 ? */
294 static inline bool between(__u32 seq1, __u32 seq2, __u32 seq3)
295 {
296 	return seq3 - seq2 >= seq1 - seq2;
297 }
298 
299 static inline bool tcp_out_of_memory(struct sock *sk)
300 {
301 	if (sk->sk_wmem_queued > SOCK_MIN_SNDBUF &&
302 	    sk_memory_allocated(sk) > sk_prot_mem_limits(sk, 2))
303 		return true;
304 	return false;
305 }
306 
307 static inline void tcp_wmem_free_skb(struct sock *sk, struct sk_buff *skb)
308 {
309 	sk_wmem_queued_add(sk, -skb->truesize);
310 	if (!skb_zcopy_pure(skb))
311 		sk_mem_uncharge(sk, skb->truesize);
312 	else
313 		sk_mem_uncharge(sk, SKB_TRUESIZE(skb_end_offset(skb)));
314 	__kfree_skb(skb);
315 }
316 
317 void sk_forced_mem_schedule(struct sock *sk, int size);
318 
319 bool tcp_check_oom(struct sock *sk, int shift);
320 
321 
322 extern struct proto tcp_prot;
323 
324 #define TCP_INC_STATS(net, field)	SNMP_INC_STATS((net)->mib.tcp_statistics, field)
325 #define __TCP_INC_STATS(net, field)	__SNMP_INC_STATS((net)->mib.tcp_statistics, field)
326 #define TCP_DEC_STATS(net, field)	SNMP_DEC_STATS((net)->mib.tcp_statistics, field)
327 #define TCP_ADD_STATS(net, field, val)	SNMP_ADD_STATS((net)->mib.tcp_statistics, field, val)
328 
329 void tcp_tasklet_init(void);
330 
331 int tcp_v4_err(struct sk_buff *skb, u32);
332 
333 void tcp_shutdown(struct sock *sk, int how);
334 
335 int tcp_v4_early_demux(struct sk_buff *skb);
336 int tcp_v4_rcv(struct sk_buff *skb);
337 
338 void tcp_remove_empty_skb(struct sock *sk);
339 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size);
340 int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size);
341 int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg, int *copied,
342 			 size_t size, struct ubuf_info *uarg);
343 void tcp_splice_eof(struct socket *sock);
344 int tcp_send_mss(struct sock *sk, int *size_goal, int flags);
345 int tcp_wmem_schedule(struct sock *sk, int copy);
346 void tcp_push(struct sock *sk, int flags, int mss_now, int nonagle,
347 	      int size_goal);
348 void tcp_release_cb(struct sock *sk);
349 void tcp_wfree(struct sk_buff *skb);
350 void tcp_write_timer_handler(struct sock *sk);
351 void tcp_delack_timer_handler(struct sock *sk);
352 int tcp_ioctl(struct sock *sk, int cmd, int *karg);
353 enum skb_drop_reason tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb);
354 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb);
355 void tcp_rcv_space_adjust(struct sock *sk);
356 int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp);
357 void tcp_twsk_destructor(struct sock *sk);
358 void tcp_twsk_purge(struct list_head *net_exit_list);
359 ssize_t tcp_splice_read(struct socket *sk, loff_t *ppos,
360 			struct pipe_inode_info *pipe, size_t len,
361 			unsigned int flags);
362 struct sk_buff *tcp_stream_alloc_skb(struct sock *sk, gfp_t gfp,
363 				     bool force_schedule);
364 
365 static inline void tcp_dec_quickack_mode(struct sock *sk)
366 {
367 	struct inet_connection_sock *icsk = inet_csk(sk);
368 
369 	if (icsk->icsk_ack.quick) {
370 		/* How many ACKs S/ACKing new data have we sent? */
371 		const unsigned int pkts = inet_csk_ack_scheduled(sk) ? 1 : 0;
372 
373 		if (pkts >= icsk->icsk_ack.quick) {
374 			icsk->icsk_ack.quick = 0;
375 			/* Leaving quickack mode we deflate ATO. */
376 			icsk->icsk_ack.ato   = TCP_ATO_MIN;
377 		} else
378 			icsk->icsk_ack.quick -= pkts;
379 	}
380 }
381 
382 #define	TCP_ECN_OK		1
383 #define	TCP_ECN_QUEUE_CWR	2
384 #define	TCP_ECN_DEMAND_CWR	4
385 #define	TCP_ECN_SEEN		8
386 
387 enum tcp_tw_status {
388 	TCP_TW_SUCCESS = 0,
389 	TCP_TW_RST = 1,
390 	TCP_TW_ACK = 2,
391 	TCP_TW_SYN = 3
392 };
393 
394 
395 enum tcp_tw_status tcp_timewait_state_process(struct inet_timewait_sock *tw,
396 					      struct sk_buff *skb,
397 					      const struct tcphdr *th,
398 					      u32 *tw_isn);
399 struct sock *tcp_check_req(struct sock *sk, struct sk_buff *skb,
400 			   struct request_sock *req, bool fastopen,
401 			   bool *lost_race);
402 enum skb_drop_reason tcp_child_process(struct sock *parent, struct sock *child,
403 				       struct sk_buff *skb);
404 void tcp_enter_loss(struct sock *sk);
405 void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int newly_lost, int flag);
406 void tcp_clear_retrans(struct tcp_sock *tp);
407 void tcp_update_metrics(struct sock *sk);
408 void tcp_init_metrics(struct sock *sk);
409 void tcp_metrics_init(void);
410 bool tcp_peer_is_proven(struct request_sock *req, struct dst_entry *dst);
411 void __tcp_close(struct sock *sk, long timeout);
412 void tcp_close(struct sock *sk, long timeout);
413 void tcp_init_sock(struct sock *sk);
414 void tcp_init_transfer(struct sock *sk, int bpf_op, struct sk_buff *skb);
415 __poll_t tcp_poll(struct file *file, struct socket *sock,
416 		      struct poll_table_struct *wait);
417 int do_tcp_getsockopt(struct sock *sk, int level,
418 		      int optname, sockptr_t optval, sockptr_t optlen);
419 int tcp_getsockopt(struct sock *sk, int level, int optname,
420 		   char __user *optval, int __user *optlen);
421 bool tcp_bpf_bypass_getsockopt(int level, int optname);
422 int do_tcp_setsockopt(struct sock *sk, int level, int optname,
423 		      sockptr_t optval, unsigned int optlen);
424 int tcp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval,
425 		   unsigned int optlen);
426 void tcp_set_keepalive(struct sock *sk, int val);
427 void tcp_syn_ack_timeout(const struct request_sock *req);
428 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len,
429 		int flags, int *addr_len);
430 int tcp_set_rcvlowat(struct sock *sk, int val);
431 int tcp_set_window_clamp(struct sock *sk, int val);
432 void tcp_update_recv_tstamps(struct sk_buff *skb,
433 			     struct scm_timestamping_internal *tss);
434 void tcp_recv_timestamp(struct msghdr *msg, const struct sock *sk,
435 			struct scm_timestamping_internal *tss);
436 void tcp_data_ready(struct sock *sk);
437 #ifdef CONFIG_MMU
438 int tcp_mmap(struct file *file, struct socket *sock,
439 	     struct vm_area_struct *vma);
440 #endif
441 void tcp_parse_options(const struct net *net, const struct sk_buff *skb,
442 		       struct tcp_options_received *opt_rx,
443 		       int estab, struct tcp_fastopen_cookie *foc);
444 
445 /*
446  *	BPF SKB-less helpers
447  */
448 u16 tcp_v4_get_syncookie(struct sock *sk, struct iphdr *iph,
449 			 struct tcphdr *th, u32 *cookie);
450 u16 tcp_v6_get_syncookie(struct sock *sk, struct ipv6hdr *iph,
451 			 struct tcphdr *th, u32 *cookie);
452 u16 tcp_parse_mss_option(const struct tcphdr *th, u16 user_mss);
453 u16 tcp_get_syncookie_mss(struct request_sock_ops *rsk_ops,
454 			  const struct tcp_request_sock_ops *af_ops,
455 			  struct sock *sk, struct tcphdr *th);
456 /*
457  *	TCP v4 functions exported for the inet6 API
458  */
459 
460 void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb);
461 void tcp_v4_mtu_reduced(struct sock *sk);
462 void tcp_req_err(struct sock *sk, u32 seq, bool abort);
463 void tcp_ld_RTO_revert(struct sock *sk, u32 seq);
464 int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb);
465 struct sock *tcp_create_openreq_child(const struct sock *sk,
466 				      struct request_sock *req,
467 				      struct sk_buff *skb);
468 void tcp_ca_openreq_child(struct sock *sk, const struct dst_entry *dst);
469 struct sock *tcp_v4_syn_recv_sock(const struct sock *sk, struct sk_buff *skb,
470 				  struct request_sock *req,
471 				  struct dst_entry *dst,
472 				  struct request_sock *req_unhash,
473 				  bool *own_req);
474 int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb);
475 int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len);
476 int tcp_connect(struct sock *sk);
477 enum tcp_synack_type {
478 	TCP_SYNACK_NORMAL,
479 	TCP_SYNACK_FASTOPEN,
480 	TCP_SYNACK_COOKIE,
481 };
482 struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst,
483 				struct request_sock *req,
484 				struct tcp_fastopen_cookie *foc,
485 				enum tcp_synack_type synack_type,
486 				struct sk_buff *syn_skb);
487 int tcp_disconnect(struct sock *sk, int flags);
488 
489 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb);
490 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size);
491 void inet_sk_rx_dst_set(struct sock *sk, const struct sk_buff *skb);
492 
493 /* From syncookies.c */
494 struct sock *tcp_get_cookie_sock(struct sock *sk, struct sk_buff *skb,
495 				 struct request_sock *req,
496 				 struct dst_entry *dst);
497 int __cookie_v4_check(const struct iphdr *iph, const struct tcphdr *th);
498 struct sock *cookie_v4_check(struct sock *sk, struct sk_buff *skb);
499 struct request_sock *cookie_tcp_reqsk_alloc(const struct request_sock_ops *ops,
500 					    struct sock *sk, struct sk_buff *skb,
501 					    struct tcp_options_received *tcp_opt,
502 					    int mss, u32 tsoff);
503 
504 #if IS_ENABLED(CONFIG_BPF)
505 struct bpf_tcp_req_attrs {
506 	u32 rcv_tsval;
507 	u32 rcv_tsecr;
508 	u16 mss;
509 	u8 rcv_wscale;
510 	u8 snd_wscale;
511 	u8 ecn_ok;
512 	u8 wscale_ok;
513 	u8 sack_ok;
514 	u8 tstamp_ok;
515 	u8 usec_ts_ok;
516 	u8 reserved[3];
517 };
518 #endif
519 
520 #ifdef CONFIG_SYN_COOKIES
521 
522 /* Syncookies use a monotonic timer which increments every 60 seconds.
523  * This counter is used both as a hash input and partially encoded into
524  * the cookie value.  A cookie is only validated further if the delta
525  * between the current counter value and the encoded one is less than this,
526  * i.e. a sent cookie is valid only at most for 2*60 seconds (or less if
527  * the counter advances immediately after a cookie is generated).
528  */
529 #define MAX_SYNCOOKIE_AGE	2
530 #define TCP_SYNCOOKIE_PERIOD	(60 * HZ)
531 #define TCP_SYNCOOKIE_VALID	(MAX_SYNCOOKIE_AGE * TCP_SYNCOOKIE_PERIOD)
532 
533 /* syncookies: remember time of last synqueue overflow
534  * But do not dirty this field too often (once per second is enough)
535  * It is racy as we do not hold a lock, but race is very minor.
536  */
537 static inline void tcp_synq_overflow(const struct sock *sk)
538 {
539 	unsigned int last_overflow;
540 	unsigned int now = jiffies;
541 
542 	if (sk->sk_reuseport) {
543 		struct sock_reuseport *reuse;
544 
545 		reuse = rcu_dereference(sk->sk_reuseport_cb);
546 		if (likely(reuse)) {
547 			last_overflow = READ_ONCE(reuse->synq_overflow_ts);
548 			if (!time_between32(now, last_overflow,
549 					    last_overflow + HZ))
550 				WRITE_ONCE(reuse->synq_overflow_ts, now);
551 			return;
552 		}
553 	}
554 
555 	last_overflow = READ_ONCE(tcp_sk(sk)->rx_opt.ts_recent_stamp);
556 	if (!time_between32(now, last_overflow, last_overflow + HZ))
557 		WRITE_ONCE(tcp_sk_rw(sk)->rx_opt.ts_recent_stamp, now);
558 }
559 
560 /* syncookies: no recent synqueue overflow on this listening socket? */
561 static inline bool tcp_synq_no_recent_overflow(const struct sock *sk)
562 {
563 	unsigned int last_overflow;
564 	unsigned int now = jiffies;
565 
566 	if (sk->sk_reuseport) {
567 		struct sock_reuseport *reuse;
568 
569 		reuse = rcu_dereference(sk->sk_reuseport_cb);
570 		if (likely(reuse)) {
571 			last_overflow = READ_ONCE(reuse->synq_overflow_ts);
572 			return !time_between32(now, last_overflow - HZ,
573 					       last_overflow +
574 					       TCP_SYNCOOKIE_VALID);
575 		}
576 	}
577 
578 	last_overflow = READ_ONCE(tcp_sk(sk)->rx_opt.ts_recent_stamp);
579 
580 	/* If last_overflow <= jiffies <= last_overflow + TCP_SYNCOOKIE_VALID,
581 	 * then we're under synflood. However, we have to use
582 	 * 'last_overflow - HZ' as lower bound. That's because a concurrent
583 	 * tcp_synq_overflow() could update .ts_recent_stamp after we read
584 	 * jiffies but before we store .ts_recent_stamp into last_overflow,
585 	 * which could lead to rejecting a valid syncookie.
586 	 */
587 	return !time_between32(now, last_overflow - HZ,
588 			       last_overflow + TCP_SYNCOOKIE_VALID);
589 }
590 
591 static inline u32 tcp_cookie_time(void)
592 {
593 	u64 val = get_jiffies_64();
594 
595 	do_div(val, TCP_SYNCOOKIE_PERIOD);
596 	return val;
597 }
598 
599 /* Convert one nsec 64bit timestamp to ts (ms or usec resolution) */
600 static inline u64 tcp_ns_to_ts(bool usec_ts, u64 val)
601 {
602 	if (usec_ts)
603 		return div_u64(val, NSEC_PER_USEC);
604 
605 	return div_u64(val, NSEC_PER_MSEC);
606 }
607 
608 u32 __cookie_v4_init_sequence(const struct iphdr *iph, const struct tcphdr *th,
609 			      u16 *mssp);
610 __u32 cookie_v4_init_sequence(const struct sk_buff *skb, __u16 *mss);
611 u64 cookie_init_timestamp(struct request_sock *req, u64 now);
612 bool cookie_timestamp_decode(const struct net *net,
613 			     struct tcp_options_received *opt);
614 
615 static inline bool cookie_ecn_ok(const struct net *net, const struct dst_entry *dst)
616 {
617 	return READ_ONCE(net->ipv4.sysctl_tcp_ecn) ||
618 		dst_feature(dst, RTAX_FEATURE_ECN);
619 }
620 
621 #if IS_ENABLED(CONFIG_BPF)
622 static inline bool cookie_bpf_ok(struct sk_buff *skb)
623 {
624 	return skb->sk;
625 }
626 
627 struct request_sock *cookie_bpf_check(struct sock *sk, struct sk_buff *skb);
628 #else
629 static inline bool cookie_bpf_ok(struct sk_buff *skb)
630 {
631 	return false;
632 }
633 
634 static inline struct request_sock *cookie_bpf_check(struct net *net, struct sock *sk,
635 						    struct sk_buff *skb)
636 {
637 	return NULL;
638 }
639 #endif
640 
641 /* From net/ipv6/syncookies.c */
642 int __cookie_v6_check(const struct ipv6hdr *iph, const struct tcphdr *th);
643 struct sock *cookie_v6_check(struct sock *sk, struct sk_buff *skb);
644 
645 u32 __cookie_v6_init_sequence(const struct ipv6hdr *iph,
646 			      const struct tcphdr *th, u16 *mssp);
647 __u32 cookie_v6_init_sequence(const struct sk_buff *skb, __u16 *mss);
648 #endif
649 /* tcp_output.c */
650 
651 void tcp_skb_entail(struct sock *sk, struct sk_buff *skb);
652 void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb);
653 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
654 			       int nonagle);
655 int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs);
656 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs);
657 void tcp_retransmit_timer(struct sock *sk);
658 void tcp_xmit_retransmit_queue(struct sock *);
659 void tcp_simple_retransmit(struct sock *);
660 void tcp_enter_recovery(struct sock *sk, bool ece_ack);
661 int tcp_trim_head(struct sock *, struct sk_buff *, u32);
662 enum tcp_queue {
663 	TCP_FRAG_IN_WRITE_QUEUE,
664 	TCP_FRAG_IN_RTX_QUEUE,
665 };
666 int tcp_fragment(struct sock *sk, enum tcp_queue tcp_queue,
667 		 struct sk_buff *skb, u32 len,
668 		 unsigned int mss_now, gfp_t gfp);
669 
670 void tcp_send_probe0(struct sock *);
671 int tcp_write_wakeup(struct sock *, int mib);
672 void tcp_send_fin(struct sock *sk);
673 void tcp_send_active_reset(struct sock *sk, gfp_t priority,
674 			   enum sk_rst_reason reason);
675 int tcp_send_synack(struct sock *);
676 void tcp_push_one(struct sock *, unsigned int mss_now);
677 void __tcp_send_ack(struct sock *sk, u32 rcv_nxt);
678 void tcp_send_ack(struct sock *sk);
679 void tcp_send_delayed_ack(struct sock *sk);
680 void tcp_send_loss_probe(struct sock *sk);
681 bool tcp_schedule_loss_probe(struct sock *sk, bool advancing_rto);
682 void tcp_skb_collapse_tstamp(struct sk_buff *skb,
683 			     const struct sk_buff *next_skb);
684 
685 /* tcp_input.c */
686 void tcp_rearm_rto(struct sock *sk);
687 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req);
688 void tcp_reset(struct sock *sk, struct sk_buff *skb);
689 void tcp_fin(struct sock *sk);
690 void tcp_check_space(struct sock *sk);
691 void tcp_sack_compress_send_ack(struct sock *sk);
692 
693 /* tcp_timer.c */
694 void tcp_init_xmit_timers(struct sock *);
695 static inline void tcp_clear_xmit_timers(struct sock *sk)
696 {
697 	if (hrtimer_try_to_cancel(&tcp_sk(sk)->pacing_timer) == 1)
698 		__sock_put(sk);
699 
700 	if (hrtimer_try_to_cancel(&tcp_sk(sk)->compressed_ack_timer) == 1)
701 		__sock_put(sk);
702 
703 	inet_csk_clear_xmit_timers(sk);
704 }
705 
706 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu);
707 unsigned int tcp_current_mss(struct sock *sk);
708 u32 tcp_clamp_probe0_to_user_timeout(const struct sock *sk, u32 when);
709 
710 /* Bound MSS / TSO packet size with the half of the window */
711 static inline int tcp_bound_to_half_wnd(struct tcp_sock *tp, int pktsize)
712 {
713 	int cutoff;
714 
715 	/* When peer uses tiny windows, there is no use in packetizing
716 	 * to sub-MSS pieces for the sake of SWS or making sure there
717 	 * are enough packets in the pipe for fast recovery.
718 	 *
719 	 * On the other hand, for extremely large MSS devices, handling
720 	 * smaller than MSS windows in this way does make sense.
721 	 */
722 	if (tp->max_window > TCP_MSS_DEFAULT)
723 		cutoff = (tp->max_window >> 1);
724 	else
725 		cutoff = tp->max_window;
726 
727 	if (cutoff && pktsize > cutoff)
728 		return max_t(int, cutoff, 68U - tp->tcp_header_len);
729 	else
730 		return pktsize;
731 }
732 
733 /* tcp.c */
734 void tcp_get_info(struct sock *, struct tcp_info *);
735 
736 /* Read 'sendfile()'-style from a TCP socket */
737 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
738 		  sk_read_actor_t recv_actor);
739 int tcp_read_skb(struct sock *sk, skb_read_actor_t recv_actor);
740 struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off);
741 void tcp_read_done(struct sock *sk, size_t len);
742 
743 void tcp_initialize_rcv_mss(struct sock *sk);
744 
745 int tcp_mtu_to_mss(struct sock *sk, int pmtu);
746 int tcp_mss_to_mtu(struct sock *sk, int mss);
747 void tcp_mtup_init(struct sock *sk);
748 
749 static inline void tcp_bound_rto(struct sock *sk)
750 {
751 	if (inet_csk(sk)->icsk_rto > TCP_RTO_MAX)
752 		inet_csk(sk)->icsk_rto = TCP_RTO_MAX;
753 }
754 
755 static inline u32 __tcp_set_rto(const struct tcp_sock *tp)
756 {
757 	return usecs_to_jiffies((tp->srtt_us >> 3) + tp->rttvar_us);
758 }
759 
760 static inline void __tcp_fast_path_on(struct tcp_sock *tp, u32 snd_wnd)
761 {
762 	/* mptcp hooks are only on the slow path */
763 	if (sk_is_mptcp((struct sock *)tp))
764 		return;
765 
766 	tp->pred_flags = htonl((tp->tcp_header_len << 26) |
767 			       ntohl(TCP_FLAG_ACK) |
768 			       snd_wnd);
769 }
770 
771 static inline void tcp_fast_path_on(struct tcp_sock *tp)
772 {
773 	__tcp_fast_path_on(tp, tp->snd_wnd >> tp->rx_opt.snd_wscale);
774 }
775 
776 static inline void tcp_fast_path_check(struct sock *sk)
777 {
778 	struct tcp_sock *tp = tcp_sk(sk);
779 
780 	if (RB_EMPTY_ROOT(&tp->out_of_order_queue) &&
781 	    tp->rcv_wnd &&
782 	    atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf &&
783 	    !tp->urg_data)
784 		tcp_fast_path_on(tp);
785 }
786 
787 u32 tcp_delack_max(const struct sock *sk);
788 
789 /* Compute the actual rto_min value */
790 static inline u32 tcp_rto_min(const struct sock *sk)
791 {
792 	const struct dst_entry *dst = __sk_dst_get(sk);
793 	u32 rto_min = inet_csk(sk)->icsk_rto_min;
794 
795 	if (dst && dst_metric_locked(dst, RTAX_RTO_MIN))
796 		rto_min = dst_metric_rtt(dst, RTAX_RTO_MIN);
797 	return rto_min;
798 }
799 
800 static inline u32 tcp_rto_min_us(const struct sock *sk)
801 {
802 	return jiffies_to_usecs(tcp_rto_min(sk));
803 }
804 
805 static inline bool tcp_ca_dst_locked(const struct dst_entry *dst)
806 {
807 	return dst_metric_locked(dst, RTAX_CC_ALGO);
808 }
809 
810 /* Minimum RTT in usec. ~0 means not available. */
811 static inline u32 tcp_min_rtt(const struct tcp_sock *tp)
812 {
813 	return minmax_get(&tp->rtt_min);
814 }
815 
816 /* Compute the actual receive window we are currently advertising.
817  * Rcv_nxt can be after the window if our peer push more data
818  * than the offered window.
819  */
820 static inline u32 tcp_receive_window(const struct tcp_sock *tp)
821 {
822 	s32 win = tp->rcv_wup + tp->rcv_wnd - tp->rcv_nxt;
823 
824 	if (win < 0)
825 		win = 0;
826 	return (u32) win;
827 }
828 
829 /* Choose a new window, without checks for shrinking, and without
830  * scaling applied to the result.  The caller does these things
831  * if necessary.  This is a "raw" window selection.
832  */
833 u32 __tcp_select_window(struct sock *sk);
834 
835 void tcp_send_window_probe(struct sock *sk);
836 
837 /* TCP uses 32bit jiffies to save some space.
838  * Note that this is different from tcp_time_stamp, which
839  * historically has been the same until linux-4.13.
840  */
841 #define tcp_jiffies32 ((u32)jiffies)
842 
843 /*
844  * Deliver a 32bit value for TCP timestamp option (RFC 7323)
845  * It is no longer tied to jiffies, but to 1 ms clock.
846  * Note: double check if you want to use tcp_jiffies32 instead of this.
847  */
848 #define TCP_TS_HZ	1000
849 
850 static inline u64 tcp_clock_ns(void)
851 {
852 	return ktime_get_ns();
853 }
854 
855 static inline u64 tcp_clock_us(void)
856 {
857 	return div_u64(tcp_clock_ns(), NSEC_PER_USEC);
858 }
859 
860 static inline u64 tcp_clock_ms(void)
861 {
862 	return div_u64(tcp_clock_ns(), NSEC_PER_MSEC);
863 }
864 
865 /* TCP Timestamp included in TS option (RFC 1323) can either use ms
866  * or usec resolution. Each socket carries a flag to select one or other
867  * resolution, as the route attribute could change anytime.
868  * Each flow must stick to initial resolution.
869  */
870 static inline u32 tcp_clock_ts(bool usec_ts)
871 {
872 	return usec_ts ? tcp_clock_us() : tcp_clock_ms();
873 }
874 
875 static inline u32 tcp_time_stamp_ms(const struct tcp_sock *tp)
876 {
877 	return div_u64(tp->tcp_mstamp, USEC_PER_MSEC);
878 }
879 
880 static inline u32 tcp_time_stamp_ts(const struct tcp_sock *tp)
881 {
882 	if (tp->tcp_usec_ts)
883 		return tp->tcp_mstamp;
884 	return tcp_time_stamp_ms(tp);
885 }
886 
887 void tcp_mstamp_refresh(struct tcp_sock *tp);
888 
889 static inline u32 tcp_stamp_us_delta(u64 t1, u64 t0)
890 {
891 	return max_t(s64, t1 - t0, 0);
892 }
893 
894 /* provide the departure time in us unit */
895 static inline u64 tcp_skb_timestamp_us(const struct sk_buff *skb)
896 {
897 	return div_u64(skb->skb_mstamp_ns, NSEC_PER_USEC);
898 }
899 
900 /* Provide skb TSval in usec or ms unit */
901 static inline u32 tcp_skb_timestamp_ts(bool usec_ts, const struct sk_buff *skb)
902 {
903 	if (usec_ts)
904 		return tcp_skb_timestamp_us(skb);
905 
906 	return div_u64(skb->skb_mstamp_ns, NSEC_PER_MSEC);
907 }
908 
909 static inline u32 tcp_tw_tsval(const struct tcp_timewait_sock *tcptw)
910 {
911 	return tcp_clock_ts(tcptw->tw_sk.tw_usec_ts) + tcptw->tw_ts_offset;
912 }
913 
914 static inline u32 tcp_rsk_tsval(const struct tcp_request_sock *treq)
915 {
916 	return tcp_clock_ts(treq->req_usec_ts) + treq->ts_off;
917 }
918 
919 #define tcp_flag_byte(th) (((u_int8_t *)th)[13])
920 
921 #define TCPHDR_FIN 0x01
922 #define TCPHDR_SYN 0x02
923 #define TCPHDR_RST 0x04
924 #define TCPHDR_PSH 0x08
925 #define TCPHDR_ACK 0x10
926 #define TCPHDR_URG 0x20
927 #define TCPHDR_ECE 0x40
928 #define TCPHDR_CWR 0x80
929 
930 #define TCPHDR_SYN_ECN	(TCPHDR_SYN | TCPHDR_ECE | TCPHDR_CWR)
931 
932 /* State flags for sacked in struct tcp_skb_cb */
933 enum tcp_skb_cb_sacked_flags {
934 	TCPCB_SACKED_ACKED	= (1 << 0),	/* SKB ACK'd by a SACK block	*/
935 	TCPCB_SACKED_RETRANS	= (1 << 1),	/* SKB retransmitted		*/
936 	TCPCB_LOST		= (1 << 2),	/* SKB is lost			*/
937 	TCPCB_TAGBITS		= (TCPCB_SACKED_ACKED | TCPCB_SACKED_RETRANS |
938 				   TCPCB_LOST),	/* All tag bits			*/
939 	TCPCB_REPAIRED		= (1 << 4),	/* SKB repaired (no skb_mstamp_ns)	*/
940 	TCPCB_EVER_RETRANS	= (1 << 7),	/* Ever retransmitted frame	*/
941 	TCPCB_RETRANS		= (TCPCB_SACKED_RETRANS | TCPCB_EVER_RETRANS |
942 				   TCPCB_REPAIRED),
943 };
944 
945 /* This is what the send packet queuing engine uses to pass
946  * TCP per-packet control information to the transmission code.
947  * We also store the host-order sequence numbers in here too.
948  * This is 44 bytes if IPV6 is enabled.
949  * If this grows please adjust skbuff.h:skbuff->cb[xxx] size appropriately.
950  */
951 struct tcp_skb_cb {
952 	__u32		seq;		/* Starting sequence number	*/
953 	__u32		end_seq;	/* SEQ + FIN + SYN + datalen	*/
954 	union {
955 		/* Note :
956 		 * 	  tcp_gso_segs/size are used in write queue only,
957 		 *	  cf tcp_skb_pcount()/tcp_skb_mss()
958 		 */
959 		struct {
960 			u16	tcp_gso_segs;
961 			u16	tcp_gso_size;
962 		};
963 	};
964 	__u8		tcp_flags;	/* TCP header flags. (tcp[13])	*/
965 
966 	__u8		sacked;		/* State flags for SACK.	*/
967 	__u8		ip_dsfield;	/* IPv4 tos or IPv6 dsfield	*/
968 	__u8		txstamp_ack:1,	/* Record TX timestamp for ack? */
969 			eor:1,		/* Is skb MSG_EOR marked? */
970 			has_rxtstamp:1,	/* SKB has a RX timestamp	*/
971 			unused:5;
972 	__u32		ack_seq;	/* Sequence number ACK'd	*/
973 	union {
974 		struct {
975 #define TCPCB_DELIVERED_CE_MASK ((1U<<20) - 1)
976 			/* There is space for up to 24 bytes */
977 			__u32 is_app_limited:1, /* cwnd not fully used? */
978 			      delivered_ce:20,
979 			      unused:11;
980 			/* pkts S/ACKed so far upon tx of skb, incl retrans: */
981 			__u32 delivered;
982 			/* start of send pipeline phase */
983 			u64 first_tx_mstamp;
984 			/* when we reached the "delivered" count */
985 			u64 delivered_mstamp;
986 		} tx;   /* only used for outgoing skbs */
987 		union {
988 			struct inet_skb_parm	h4;
989 #if IS_ENABLED(CONFIG_IPV6)
990 			struct inet6_skb_parm	h6;
991 #endif
992 		} header;	/* For incoming skbs */
993 	};
994 };
995 
996 #define TCP_SKB_CB(__skb)	((struct tcp_skb_cb *)&((__skb)->cb[0]))
997 
998 extern const struct inet_connection_sock_af_ops ipv4_specific;
999 
1000 #if IS_ENABLED(CONFIG_IPV6)
1001 /* This is the variant of inet6_iif() that must be used by TCP,
1002  * as TCP moves IP6CB into a different location in skb->cb[]
1003  */
1004 static inline int tcp_v6_iif(const struct sk_buff *skb)
1005 {
1006 	return TCP_SKB_CB(skb)->header.h6.iif;
1007 }
1008 
1009 static inline int tcp_v6_iif_l3_slave(const struct sk_buff *skb)
1010 {
1011 	bool l3_slave = ipv6_l3mdev_skb(TCP_SKB_CB(skb)->header.h6.flags);
1012 
1013 	return l3_slave ? skb->skb_iif : TCP_SKB_CB(skb)->header.h6.iif;
1014 }
1015 
1016 /* TCP_SKB_CB reference means this can not be used from early demux */
1017 static inline int tcp_v6_sdif(const struct sk_buff *skb)
1018 {
1019 #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
1020 	if (skb && ipv6_l3mdev_skb(TCP_SKB_CB(skb)->header.h6.flags))
1021 		return TCP_SKB_CB(skb)->header.h6.iif;
1022 #endif
1023 	return 0;
1024 }
1025 
1026 extern const struct inet_connection_sock_af_ops ipv6_specific;
1027 
1028 INDIRECT_CALLABLE_DECLARE(void tcp_v6_send_check(struct sock *sk, struct sk_buff *skb));
1029 INDIRECT_CALLABLE_DECLARE(int tcp_v6_rcv(struct sk_buff *skb));
1030 void tcp_v6_early_demux(struct sk_buff *skb);
1031 
1032 #endif
1033 
1034 /* TCP_SKB_CB reference means this can not be used from early demux */
1035 static inline int tcp_v4_sdif(struct sk_buff *skb)
1036 {
1037 #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
1038 	if (skb && ipv4_l3mdev_skb(TCP_SKB_CB(skb)->header.h4.flags))
1039 		return TCP_SKB_CB(skb)->header.h4.iif;
1040 #endif
1041 	return 0;
1042 }
1043 
1044 /* Due to TSO, an SKB can be composed of multiple actual
1045  * packets.  To keep these tracked properly, we use this.
1046  */
1047 static inline int tcp_skb_pcount(const struct sk_buff *skb)
1048 {
1049 	return TCP_SKB_CB(skb)->tcp_gso_segs;
1050 }
1051 
1052 static inline void tcp_skb_pcount_set(struct sk_buff *skb, int segs)
1053 {
1054 	TCP_SKB_CB(skb)->tcp_gso_segs = segs;
1055 }
1056 
1057 static inline void tcp_skb_pcount_add(struct sk_buff *skb, int segs)
1058 {
1059 	TCP_SKB_CB(skb)->tcp_gso_segs += segs;
1060 }
1061 
1062 /* This is valid iff skb is in write queue and tcp_skb_pcount() > 1. */
1063 static inline int tcp_skb_mss(const struct sk_buff *skb)
1064 {
1065 	return TCP_SKB_CB(skb)->tcp_gso_size;
1066 }
1067 
1068 static inline bool tcp_skb_can_collapse_to(const struct sk_buff *skb)
1069 {
1070 	return likely(!TCP_SKB_CB(skb)->eor);
1071 }
1072 
1073 static inline bool tcp_skb_can_collapse(const struct sk_buff *to,
1074 					const struct sk_buff *from)
1075 {
1076 	return likely(tcp_skb_can_collapse_to(to) &&
1077 		      mptcp_skb_can_collapse(to, from) &&
1078 		      skb_pure_zcopy_same(to, from));
1079 }
1080 
1081 /* Events passed to congestion control interface */
1082 enum tcp_ca_event {
1083 	CA_EVENT_TX_START,	/* first transmit when no packets in flight */
1084 	CA_EVENT_CWND_RESTART,	/* congestion window restart */
1085 	CA_EVENT_COMPLETE_CWR,	/* end of congestion recovery */
1086 	CA_EVENT_LOSS,		/* loss timeout */
1087 	CA_EVENT_ECN_NO_CE,	/* ECT set, but not CE marked */
1088 	CA_EVENT_ECN_IS_CE,	/* received CE marked IP packet */
1089 };
1090 
1091 /* Information about inbound ACK, passed to cong_ops->in_ack_event() */
1092 enum tcp_ca_ack_event_flags {
1093 	CA_ACK_SLOWPATH		= (1 << 0),	/* In slow path processing */
1094 	CA_ACK_WIN_UPDATE	= (1 << 1),	/* ACK updated window */
1095 	CA_ACK_ECE		= (1 << 2),	/* ECE bit is set on ack */
1096 };
1097 
1098 /*
1099  * Interface for adding new TCP congestion control handlers
1100  */
1101 #define TCP_CA_NAME_MAX	16
1102 #define TCP_CA_MAX	128
1103 #define TCP_CA_BUF_MAX	(TCP_CA_NAME_MAX*TCP_CA_MAX)
1104 
1105 #define TCP_CA_UNSPEC	0
1106 
1107 /* Algorithm can be set on socket without CAP_NET_ADMIN privileges */
1108 #define TCP_CONG_NON_RESTRICTED 0x1
1109 /* Requires ECN/ECT set on all packets */
1110 #define TCP_CONG_NEEDS_ECN	0x2
1111 #define TCP_CONG_MASK	(TCP_CONG_NON_RESTRICTED | TCP_CONG_NEEDS_ECN)
1112 
1113 union tcp_cc_info;
1114 
1115 struct ack_sample {
1116 	u32 pkts_acked;
1117 	s32 rtt_us;
1118 	u32 in_flight;
1119 };
1120 
1121 /* A rate sample measures the number of (original/retransmitted) data
1122  * packets delivered "delivered" over an interval of time "interval_us".
1123  * The tcp_rate.c code fills in the rate sample, and congestion
1124  * control modules that define a cong_control function to run at the end
1125  * of ACK processing can optionally chose to consult this sample when
1126  * setting cwnd and pacing rate.
1127  * A sample is invalid if "delivered" or "interval_us" is negative.
1128  */
1129 struct rate_sample {
1130 	u64  prior_mstamp; /* starting timestamp for interval */
1131 	u32  prior_delivered;	/* tp->delivered at "prior_mstamp" */
1132 	u32  prior_delivered_ce;/* tp->delivered_ce at "prior_mstamp" */
1133 	s32  delivered;		/* number of packets delivered over interval */
1134 	s32  delivered_ce;	/* number of packets delivered w/ CE marks*/
1135 	long interval_us;	/* time for tp->delivered to incr "delivered" */
1136 	u32 snd_interval_us;	/* snd interval for delivered packets */
1137 	u32 rcv_interval_us;	/* rcv interval for delivered packets */
1138 	long rtt_us;		/* RTT of last (S)ACKed packet (or -1) */
1139 	int  losses;		/* number of packets marked lost upon ACK */
1140 	u32  acked_sacked;	/* number of packets newly (S)ACKed upon ACK */
1141 	u32  prior_in_flight;	/* in flight before this ACK */
1142 	u32  last_end_seq;	/* end_seq of most recently ACKed packet */
1143 	bool is_app_limited;	/* is sample from packet with bubble in pipe? */
1144 	bool is_retrans;	/* is sample from retransmission? */
1145 	bool is_ack_delayed;	/* is this (likely) a delayed ACK? */
1146 };
1147 
1148 struct tcp_congestion_ops {
1149 /* fast path fields are put first to fill one cache line */
1150 
1151 	/* return slow start threshold (required) */
1152 	u32 (*ssthresh)(struct sock *sk);
1153 
1154 	/* do new cwnd calculation (required) */
1155 	void (*cong_avoid)(struct sock *sk, u32 ack, u32 acked);
1156 
1157 	/* call before changing ca_state (optional) */
1158 	void (*set_state)(struct sock *sk, u8 new_state);
1159 
1160 	/* call when cwnd event occurs (optional) */
1161 	void (*cwnd_event)(struct sock *sk, enum tcp_ca_event ev);
1162 
1163 	/* call when ack arrives (optional) */
1164 	void (*in_ack_event)(struct sock *sk, u32 flags);
1165 
1166 	/* hook for packet ack accounting (optional) */
1167 	void (*pkts_acked)(struct sock *sk, const struct ack_sample *sample);
1168 
1169 	/* override sysctl_tcp_min_tso_segs */
1170 	u32 (*min_tso_segs)(struct sock *sk);
1171 
1172 	/* call when packets are delivered to update cwnd and pacing rate,
1173 	 * after all the ca_state processing. (optional)
1174 	 */
1175 	void (*cong_control)(struct sock *sk, const struct rate_sample *rs);
1176 
1177 
1178 	/* new value of cwnd after loss (required) */
1179 	u32  (*undo_cwnd)(struct sock *sk);
1180 	/* returns the multiplier used in tcp_sndbuf_expand (optional) */
1181 	u32 (*sndbuf_expand)(struct sock *sk);
1182 
1183 /* control/slow paths put last */
1184 	/* get info for inet_diag (optional) */
1185 	size_t (*get_info)(struct sock *sk, u32 ext, int *attr,
1186 			   union tcp_cc_info *info);
1187 
1188 	char 			name[TCP_CA_NAME_MAX];
1189 	struct module		*owner;
1190 	struct list_head	list;
1191 	u32			key;
1192 	u32			flags;
1193 
1194 	/* initialize private data (optional) */
1195 	void (*init)(struct sock *sk);
1196 	/* cleanup private data  (optional) */
1197 	void (*release)(struct sock *sk);
1198 } ____cacheline_aligned_in_smp;
1199 
1200 int tcp_register_congestion_control(struct tcp_congestion_ops *type);
1201 void tcp_unregister_congestion_control(struct tcp_congestion_ops *type);
1202 int tcp_update_congestion_control(struct tcp_congestion_ops *type,
1203 				  struct tcp_congestion_ops *old_type);
1204 int tcp_validate_congestion_control(struct tcp_congestion_ops *ca);
1205 
1206 void tcp_assign_congestion_control(struct sock *sk);
1207 void tcp_init_congestion_control(struct sock *sk);
1208 void tcp_cleanup_congestion_control(struct sock *sk);
1209 int tcp_set_default_congestion_control(struct net *net, const char *name);
1210 void tcp_get_default_congestion_control(struct net *net, char *name);
1211 void tcp_get_available_congestion_control(char *buf, size_t len);
1212 void tcp_get_allowed_congestion_control(char *buf, size_t len);
1213 int tcp_set_allowed_congestion_control(char *allowed);
1214 int tcp_set_congestion_control(struct sock *sk, const char *name, bool load,
1215 			       bool cap_net_admin);
1216 u32 tcp_slow_start(struct tcp_sock *tp, u32 acked);
1217 void tcp_cong_avoid_ai(struct tcp_sock *tp, u32 w, u32 acked);
1218 
1219 u32 tcp_reno_ssthresh(struct sock *sk);
1220 u32 tcp_reno_undo_cwnd(struct sock *sk);
1221 void tcp_reno_cong_avoid(struct sock *sk, u32 ack, u32 acked);
1222 extern struct tcp_congestion_ops tcp_reno;
1223 
1224 struct tcp_congestion_ops *tcp_ca_find(const char *name);
1225 struct tcp_congestion_ops *tcp_ca_find_key(u32 key);
1226 u32 tcp_ca_get_key_by_name(struct net *net, const char *name, bool *ecn_ca);
1227 #ifdef CONFIG_INET
1228 char *tcp_ca_get_name_by_key(u32 key, char *buffer);
1229 #else
1230 static inline char *tcp_ca_get_name_by_key(u32 key, char *buffer)
1231 {
1232 	return NULL;
1233 }
1234 #endif
1235 
1236 static inline bool tcp_ca_needs_ecn(const struct sock *sk)
1237 {
1238 	const struct inet_connection_sock *icsk = inet_csk(sk);
1239 
1240 	return icsk->icsk_ca_ops->flags & TCP_CONG_NEEDS_ECN;
1241 }
1242 
1243 static inline void tcp_ca_event(struct sock *sk, const enum tcp_ca_event event)
1244 {
1245 	const struct inet_connection_sock *icsk = inet_csk(sk);
1246 
1247 	if (icsk->icsk_ca_ops->cwnd_event)
1248 		icsk->icsk_ca_ops->cwnd_event(sk, event);
1249 }
1250 
1251 /* From tcp_cong.c */
1252 void tcp_set_ca_state(struct sock *sk, const u8 ca_state);
1253 
1254 /* From tcp_rate.c */
1255 void tcp_rate_skb_sent(struct sock *sk, struct sk_buff *skb);
1256 void tcp_rate_skb_delivered(struct sock *sk, struct sk_buff *skb,
1257 			    struct rate_sample *rs);
1258 void tcp_rate_gen(struct sock *sk, u32 delivered, u32 lost,
1259 		  bool is_sack_reneg, struct rate_sample *rs);
1260 void tcp_rate_check_app_limited(struct sock *sk);
1261 
1262 static inline bool tcp_skb_sent_after(u64 t1, u64 t2, u32 seq1, u32 seq2)
1263 {
1264 	return t1 > t2 || (t1 == t2 && after(seq1, seq2));
1265 }
1266 
1267 /* These functions determine how the current flow behaves in respect of SACK
1268  * handling. SACK is negotiated with the peer, and therefore it can vary
1269  * between different flows.
1270  *
1271  * tcp_is_sack - SACK enabled
1272  * tcp_is_reno - No SACK
1273  */
1274 static inline int tcp_is_sack(const struct tcp_sock *tp)
1275 {
1276 	return likely(tp->rx_opt.sack_ok);
1277 }
1278 
1279 static inline bool tcp_is_reno(const struct tcp_sock *tp)
1280 {
1281 	return !tcp_is_sack(tp);
1282 }
1283 
1284 static inline unsigned int tcp_left_out(const struct tcp_sock *tp)
1285 {
1286 	return tp->sacked_out + tp->lost_out;
1287 }
1288 
1289 /* This determines how many packets are "in the network" to the best
1290  * of our knowledge.  In many cases it is conservative, but where
1291  * detailed information is available from the receiver (via SACK
1292  * blocks etc.) we can make more aggressive calculations.
1293  *
1294  * Use this for decisions involving congestion control, use just
1295  * tp->packets_out to determine if the send queue is empty or not.
1296  *
1297  * Read this equation as:
1298  *
1299  *	"Packets sent once on transmission queue" MINUS
1300  *	"Packets left network, but not honestly ACKed yet" PLUS
1301  *	"Packets fast retransmitted"
1302  */
1303 static inline unsigned int tcp_packets_in_flight(const struct tcp_sock *tp)
1304 {
1305 	return tp->packets_out - tcp_left_out(tp) + tp->retrans_out;
1306 }
1307 
1308 #define TCP_INFINITE_SSTHRESH	0x7fffffff
1309 
1310 static inline u32 tcp_snd_cwnd(const struct tcp_sock *tp)
1311 {
1312 	return tp->snd_cwnd;
1313 }
1314 
1315 static inline void tcp_snd_cwnd_set(struct tcp_sock *tp, u32 val)
1316 {
1317 	WARN_ON_ONCE((int)val <= 0);
1318 	tp->snd_cwnd = val;
1319 }
1320 
1321 static inline bool tcp_in_slow_start(const struct tcp_sock *tp)
1322 {
1323 	return tcp_snd_cwnd(tp) < tp->snd_ssthresh;
1324 }
1325 
1326 static inline bool tcp_in_initial_slowstart(const struct tcp_sock *tp)
1327 {
1328 	return tp->snd_ssthresh >= TCP_INFINITE_SSTHRESH;
1329 }
1330 
1331 static inline bool tcp_in_cwnd_reduction(const struct sock *sk)
1332 {
1333 	return (TCPF_CA_CWR | TCPF_CA_Recovery) &
1334 	       (1 << inet_csk(sk)->icsk_ca_state);
1335 }
1336 
1337 /* If cwnd > ssthresh, we may raise ssthresh to be half-way to cwnd.
1338  * The exception is cwnd reduction phase, when cwnd is decreasing towards
1339  * ssthresh.
1340  */
1341 static inline __u32 tcp_current_ssthresh(const struct sock *sk)
1342 {
1343 	const struct tcp_sock *tp = tcp_sk(sk);
1344 
1345 	if (tcp_in_cwnd_reduction(sk))
1346 		return tp->snd_ssthresh;
1347 	else
1348 		return max(tp->snd_ssthresh,
1349 			   ((tcp_snd_cwnd(tp) >> 1) +
1350 			    (tcp_snd_cwnd(tp) >> 2)));
1351 }
1352 
1353 /* Use define here intentionally to get WARN_ON location shown at the caller */
1354 #define tcp_verify_left_out(tp)	WARN_ON(tcp_left_out(tp) > tp->packets_out)
1355 
1356 void tcp_enter_cwr(struct sock *sk);
1357 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst);
1358 
1359 /* The maximum number of MSS of available cwnd for which TSO defers
1360  * sending if not using sysctl_tcp_tso_win_divisor.
1361  */
1362 static inline __u32 tcp_max_tso_deferred_mss(const struct tcp_sock *tp)
1363 {
1364 	return 3;
1365 }
1366 
1367 /* Returns end sequence number of the receiver's advertised window */
1368 static inline u32 tcp_wnd_end(const struct tcp_sock *tp)
1369 {
1370 	return tp->snd_una + tp->snd_wnd;
1371 }
1372 
1373 /* We follow the spirit of RFC2861 to validate cwnd but implement a more
1374  * flexible approach. The RFC suggests cwnd should not be raised unless
1375  * it was fully used previously. And that's exactly what we do in
1376  * congestion avoidance mode. But in slow start we allow cwnd to grow
1377  * as long as the application has used half the cwnd.
1378  * Example :
1379  *    cwnd is 10 (IW10), but application sends 9 frames.
1380  *    We allow cwnd to reach 18 when all frames are ACKed.
1381  * This check is safe because it's as aggressive as slow start which already
1382  * risks 100% overshoot. The advantage is that we discourage application to
1383  * either send more filler packets or data to artificially blow up the cwnd
1384  * usage, and allow application-limited process to probe bw more aggressively.
1385  */
1386 static inline bool tcp_is_cwnd_limited(const struct sock *sk)
1387 {
1388 	const struct tcp_sock *tp = tcp_sk(sk);
1389 
1390 	if (tp->is_cwnd_limited)
1391 		return true;
1392 
1393 	/* If in slow start, ensure cwnd grows to twice what was ACKed. */
1394 	if (tcp_in_slow_start(tp))
1395 		return tcp_snd_cwnd(tp) < 2 * tp->max_packets_out;
1396 
1397 	return false;
1398 }
1399 
1400 /* BBR congestion control needs pacing.
1401  * Same remark for SO_MAX_PACING_RATE.
1402  * sch_fq packet scheduler is efficiently handling pacing,
1403  * but is not always installed/used.
1404  * Return true if TCP stack should pace packets itself.
1405  */
1406 static inline bool tcp_needs_internal_pacing(const struct sock *sk)
1407 {
1408 	return smp_load_acquire(&sk->sk_pacing_status) == SK_PACING_NEEDED;
1409 }
1410 
1411 /* Estimates in how many jiffies next packet for this flow can be sent.
1412  * Scheduling a retransmit timer too early would be silly.
1413  */
1414 static inline unsigned long tcp_pacing_delay(const struct sock *sk)
1415 {
1416 	s64 delay = tcp_sk(sk)->tcp_wstamp_ns - tcp_sk(sk)->tcp_clock_cache;
1417 
1418 	return delay > 0 ? nsecs_to_jiffies(delay) : 0;
1419 }
1420 
1421 static inline void tcp_reset_xmit_timer(struct sock *sk,
1422 					const int what,
1423 					unsigned long when,
1424 					const unsigned long max_when)
1425 {
1426 	inet_csk_reset_xmit_timer(sk, what, when + tcp_pacing_delay(sk),
1427 				  max_when);
1428 }
1429 
1430 /* Something is really bad, we could not queue an additional packet,
1431  * because qdisc is full or receiver sent a 0 window, or we are paced.
1432  * We do not want to add fuel to the fire, or abort too early,
1433  * so make sure the timer we arm now is at least 200ms in the future,
1434  * regardless of current icsk_rto value (as it could be ~2ms)
1435  */
1436 static inline unsigned long tcp_probe0_base(const struct sock *sk)
1437 {
1438 	return max_t(unsigned long, inet_csk(sk)->icsk_rto, TCP_RTO_MIN);
1439 }
1440 
1441 /* Variant of inet_csk_rto_backoff() used for zero window probes */
1442 static inline unsigned long tcp_probe0_when(const struct sock *sk,
1443 					    unsigned long max_when)
1444 {
1445 	u8 backoff = min_t(u8, ilog2(TCP_RTO_MAX / TCP_RTO_MIN) + 1,
1446 			   inet_csk(sk)->icsk_backoff);
1447 	u64 when = (u64)tcp_probe0_base(sk) << backoff;
1448 
1449 	return (unsigned long)min_t(u64, when, max_when);
1450 }
1451 
1452 static inline void tcp_check_probe_timer(struct sock *sk)
1453 {
1454 	if (!tcp_sk(sk)->packets_out && !inet_csk(sk)->icsk_pending)
1455 		tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
1456 				     tcp_probe0_base(sk), TCP_RTO_MAX);
1457 }
1458 
1459 static inline void tcp_init_wl(struct tcp_sock *tp, u32 seq)
1460 {
1461 	tp->snd_wl1 = seq;
1462 }
1463 
1464 static inline void tcp_update_wl(struct tcp_sock *tp, u32 seq)
1465 {
1466 	tp->snd_wl1 = seq;
1467 }
1468 
1469 /*
1470  * Calculate(/check) TCP checksum
1471  */
1472 static inline __sum16 tcp_v4_check(int len, __be32 saddr,
1473 				   __be32 daddr, __wsum base)
1474 {
1475 	return csum_tcpudp_magic(saddr, daddr, len, IPPROTO_TCP, base);
1476 }
1477 
1478 static inline bool tcp_checksum_complete(struct sk_buff *skb)
1479 {
1480 	return !skb_csum_unnecessary(skb) &&
1481 		__skb_checksum_complete(skb);
1482 }
1483 
1484 bool tcp_add_backlog(struct sock *sk, struct sk_buff *skb,
1485 		     enum skb_drop_reason *reason);
1486 
1487 
1488 int tcp_filter(struct sock *sk, struct sk_buff *skb);
1489 void tcp_set_state(struct sock *sk, int state);
1490 void tcp_done(struct sock *sk);
1491 int tcp_abort(struct sock *sk, int err);
1492 
1493 static inline void tcp_sack_reset(struct tcp_options_received *rx_opt)
1494 {
1495 	rx_opt->dsack = 0;
1496 	rx_opt->num_sacks = 0;
1497 }
1498 
1499 void tcp_cwnd_restart(struct sock *sk, s32 delta);
1500 
1501 static inline void tcp_slow_start_after_idle_check(struct sock *sk)
1502 {
1503 	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1504 	struct tcp_sock *tp = tcp_sk(sk);
1505 	s32 delta;
1506 
1507 	if (!READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_slow_start_after_idle) ||
1508 	    tp->packets_out || ca_ops->cong_control)
1509 		return;
1510 	delta = tcp_jiffies32 - tp->lsndtime;
1511 	if (delta > inet_csk(sk)->icsk_rto)
1512 		tcp_cwnd_restart(sk, delta);
1513 }
1514 
1515 /* Determine a window scaling and initial window to offer. */
1516 void tcp_select_initial_window(const struct sock *sk, int __space,
1517 			       __u32 mss, __u32 *rcv_wnd,
1518 			       __u32 *window_clamp, int wscale_ok,
1519 			       __u8 *rcv_wscale, __u32 init_rcv_wnd);
1520 
1521 static inline int __tcp_win_from_space(u8 scaling_ratio, int space)
1522 {
1523 	s64 scaled_space = (s64)space * scaling_ratio;
1524 
1525 	return scaled_space >> TCP_RMEM_TO_WIN_SCALE;
1526 }
1527 
1528 static inline int tcp_win_from_space(const struct sock *sk, int space)
1529 {
1530 	return __tcp_win_from_space(tcp_sk(sk)->scaling_ratio, space);
1531 }
1532 
1533 /* inverse of __tcp_win_from_space() */
1534 static inline int __tcp_space_from_win(u8 scaling_ratio, int win)
1535 {
1536 	u64 val = (u64)win << TCP_RMEM_TO_WIN_SCALE;
1537 
1538 	do_div(val, scaling_ratio);
1539 	return val;
1540 }
1541 
1542 static inline int tcp_space_from_win(const struct sock *sk, int win)
1543 {
1544 	return __tcp_space_from_win(tcp_sk(sk)->scaling_ratio, win);
1545 }
1546 
1547 /* Assume a 50% default for skb->len/skb->truesize ratio.
1548  * This may be adjusted later in tcp_measure_rcv_mss().
1549  */
1550 #define TCP_DEFAULT_SCALING_RATIO (1 << (TCP_RMEM_TO_WIN_SCALE - 1))
1551 
1552 static inline void tcp_scaling_ratio_init(struct sock *sk)
1553 {
1554 	tcp_sk(sk)->scaling_ratio = TCP_DEFAULT_SCALING_RATIO;
1555 }
1556 
1557 /* Note: caller must be prepared to deal with negative returns */
1558 static inline int tcp_space(const struct sock *sk)
1559 {
1560 	return tcp_win_from_space(sk, READ_ONCE(sk->sk_rcvbuf) -
1561 				  READ_ONCE(sk->sk_backlog.len) -
1562 				  atomic_read(&sk->sk_rmem_alloc));
1563 }
1564 
1565 static inline int tcp_full_space(const struct sock *sk)
1566 {
1567 	return tcp_win_from_space(sk, READ_ONCE(sk->sk_rcvbuf));
1568 }
1569 
1570 static inline void __tcp_adjust_rcv_ssthresh(struct sock *sk, u32 new_ssthresh)
1571 {
1572 	int unused_mem = sk_unused_reserved_mem(sk);
1573 	struct tcp_sock *tp = tcp_sk(sk);
1574 
1575 	tp->rcv_ssthresh = min(tp->rcv_ssthresh, new_ssthresh);
1576 	if (unused_mem)
1577 		tp->rcv_ssthresh = max_t(u32, tp->rcv_ssthresh,
1578 					 tcp_win_from_space(sk, unused_mem));
1579 }
1580 
1581 static inline void tcp_adjust_rcv_ssthresh(struct sock *sk)
1582 {
1583 	__tcp_adjust_rcv_ssthresh(sk, 4U * tcp_sk(sk)->advmss);
1584 }
1585 
1586 void tcp_cleanup_rbuf(struct sock *sk, int copied);
1587 void __tcp_cleanup_rbuf(struct sock *sk, int copied);
1588 
1589 
1590 /* We provision sk_rcvbuf around 200% of sk_rcvlowat.
1591  * If 87.5 % (7/8) of the space has been consumed, we want to override
1592  * SO_RCVLOWAT constraint, since we are receiving skbs with too small
1593  * len/truesize ratio.
1594  */
1595 static inline bool tcp_rmem_pressure(const struct sock *sk)
1596 {
1597 	int rcvbuf, threshold;
1598 
1599 	if (tcp_under_memory_pressure(sk))
1600 		return true;
1601 
1602 	rcvbuf = READ_ONCE(sk->sk_rcvbuf);
1603 	threshold = rcvbuf - (rcvbuf >> 3);
1604 
1605 	return atomic_read(&sk->sk_rmem_alloc) > threshold;
1606 }
1607 
1608 static inline bool tcp_epollin_ready(const struct sock *sk, int target)
1609 {
1610 	const struct tcp_sock *tp = tcp_sk(sk);
1611 	int avail = READ_ONCE(tp->rcv_nxt) - READ_ONCE(tp->copied_seq);
1612 
1613 	if (avail <= 0)
1614 		return false;
1615 
1616 	return (avail >= target) || tcp_rmem_pressure(sk) ||
1617 	       (tcp_receive_window(tp) <= inet_csk(sk)->icsk_ack.rcv_mss);
1618 }
1619 
1620 extern void tcp_openreq_init_rwin(struct request_sock *req,
1621 				  const struct sock *sk_listener,
1622 				  const struct dst_entry *dst);
1623 
1624 void tcp_enter_memory_pressure(struct sock *sk);
1625 void tcp_leave_memory_pressure(struct sock *sk);
1626 
1627 static inline int keepalive_intvl_when(const struct tcp_sock *tp)
1628 {
1629 	struct net *net = sock_net((struct sock *)tp);
1630 	int val;
1631 
1632 	/* Paired with WRITE_ONCE() in tcp_sock_set_keepintvl()
1633 	 * and do_tcp_setsockopt().
1634 	 */
1635 	val = READ_ONCE(tp->keepalive_intvl);
1636 
1637 	return val ? : READ_ONCE(net->ipv4.sysctl_tcp_keepalive_intvl);
1638 }
1639 
1640 static inline int keepalive_time_when(const struct tcp_sock *tp)
1641 {
1642 	struct net *net = sock_net((struct sock *)tp);
1643 	int val;
1644 
1645 	/* Paired with WRITE_ONCE() in tcp_sock_set_keepidle_locked() */
1646 	val = READ_ONCE(tp->keepalive_time);
1647 
1648 	return val ? : READ_ONCE(net->ipv4.sysctl_tcp_keepalive_time);
1649 }
1650 
1651 static inline int keepalive_probes(const struct tcp_sock *tp)
1652 {
1653 	struct net *net = sock_net((struct sock *)tp);
1654 	int val;
1655 
1656 	/* Paired with WRITE_ONCE() in tcp_sock_set_keepcnt()
1657 	 * and do_tcp_setsockopt().
1658 	 */
1659 	val = READ_ONCE(tp->keepalive_probes);
1660 
1661 	return val ? : READ_ONCE(net->ipv4.sysctl_tcp_keepalive_probes);
1662 }
1663 
1664 static inline u32 keepalive_time_elapsed(const struct tcp_sock *tp)
1665 {
1666 	const struct inet_connection_sock *icsk = &tp->inet_conn;
1667 
1668 	return min_t(u32, tcp_jiffies32 - icsk->icsk_ack.lrcvtime,
1669 			  tcp_jiffies32 - tp->rcv_tstamp);
1670 }
1671 
1672 static inline int tcp_fin_time(const struct sock *sk)
1673 {
1674 	int fin_timeout = tcp_sk(sk)->linger2 ? :
1675 		READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_fin_timeout);
1676 	const int rto = inet_csk(sk)->icsk_rto;
1677 
1678 	if (fin_timeout < (rto << 2) - (rto >> 1))
1679 		fin_timeout = (rto << 2) - (rto >> 1);
1680 
1681 	return fin_timeout;
1682 }
1683 
1684 static inline bool tcp_paws_check(const struct tcp_options_received *rx_opt,
1685 				  int paws_win)
1686 {
1687 	if ((s32)(rx_opt->ts_recent - rx_opt->rcv_tsval) <= paws_win)
1688 		return true;
1689 	if (unlikely(!time_before32(ktime_get_seconds(),
1690 				    rx_opt->ts_recent_stamp + TCP_PAWS_WRAP)))
1691 		return true;
1692 	/*
1693 	 * Some OSes send SYN and SYNACK messages with tsval=0 tsecr=0,
1694 	 * then following tcp messages have valid values. Ignore 0 value,
1695 	 * or else 'negative' tsval might forbid us to accept their packets.
1696 	 */
1697 	if (!rx_opt->ts_recent)
1698 		return true;
1699 	return false;
1700 }
1701 
1702 static inline bool tcp_paws_reject(const struct tcp_options_received *rx_opt,
1703 				   int rst)
1704 {
1705 	if (tcp_paws_check(rx_opt, 0))
1706 		return false;
1707 
1708 	/* RST segments are not recommended to carry timestamp,
1709 	   and, if they do, it is recommended to ignore PAWS because
1710 	   "their cleanup function should take precedence over timestamps."
1711 	   Certainly, it is mistake. It is necessary to understand the reasons
1712 	   of this constraint to relax it: if peer reboots, clock may go
1713 	   out-of-sync and half-open connections will not be reset.
1714 	   Actually, the problem would be not existing if all
1715 	   the implementations followed draft about maintaining clock
1716 	   via reboots. Linux-2.2 DOES NOT!
1717 
1718 	   However, we can relax time bounds for RST segments to MSL.
1719 	 */
1720 	if (rst && !time_before32(ktime_get_seconds(),
1721 				  rx_opt->ts_recent_stamp + TCP_PAWS_MSL))
1722 		return false;
1723 	return true;
1724 }
1725 
1726 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
1727 			  int mib_idx, u32 *last_oow_ack_time);
1728 
1729 static inline void tcp_mib_init(struct net *net)
1730 {
1731 	/* See RFC 2012 */
1732 	TCP_ADD_STATS(net, TCP_MIB_RTOALGORITHM, 1);
1733 	TCP_ADD_STATS(net, TCP_MIB_RTOMIN, TCP_RTO_MIN*1000/HZ);
1734 	TCP_ADD_STATS(net, TCP_MIB_RTOMAX, TCP_RTO_MAX*1000/HZ);
1735 	TCP_ADD_STATS(net, TCP_MIB_MAXCONN, -1);
1736 }
1737 
1738 /* from STCP */
1739 static inline void tcp_clear_retrans_hints_partial(struct tcp_sock *tp)
1740 {
1741 	tp->lost_skb_hint = NULL;
1742 }
1743 
1744 static inline void tcp_clear_all_retrans_hints(struct tcp_sock *tp)
1745 {
1746 	tcp_clear_retrans_hints_partial(tp);
1747 	tp->retransmit_skb_hint = NULL;
1748 }
1749 
1750 #define tcp_md5_addr tcp_ao_addr
1751 
1752 /* - key database */
1753 struct tcp_md5sig_key {
1754 	struct hlist_node	node;
1755 	u8			keylen;
1756 	u8			family; /* AF_INET or AF_INET6 */
1757 	u8			prefixlen;
1758 	u8			flags;
1759 	union tcp_md5_addr	addr;
1760 	int			l3index; /* set if key added with L3 scope */
1761 	u8			key[TCP_MD5SIG_MAXKEYLEN];
1762 	struct rcu_head		rcu;
1763 };
1764 
1765 /* - sock block */
1766 struct tcp_md5sig_info {
1767 	struct hlist_head	head;
1768 	struct rcu_head		rcu;
1769 };
1770 
1771 /* - pseudo header */
1772 struct tcp4_pseudohdr {
1773 	__be32		saddr;
1774 	__be32		daddr;
1775 	__u8		pad;
1776 	__u8		protocol;
1777 	__be16		len;
1778 };
1779 
1780 struct tcp6_pseudohdr {
1781 	struct in6_addr	saddr;
1782 	struct in6_addr daddr;
1783 	__be32		len;
1784 	__be32		protocol;	/* including padding */
1785 };
1786 
1787 union tcp_md5sum_block {
1788 	struct tcp4_pseudohdr ip4;
1789 #if IS_ENABLED(CONFIG_IPV6)
1790 	struct tcp6_pseudohdr ip6;
1791 #endif
1792 };
1793 
1794 /*
1795  * struct tcp_sigpool - per-CPU pool of ahash_requests
1796  * @scratch: per-CPU temporary area, that can be used between
1797  *	     tcp_sigpool_start() and tcp_sigpool_end() to perform
1798  *	     crypto request
1799  * @req: pre-allocated ahash request
1800  */
1801 struct tcp_sigpool {
1802 	void *scratch;
1803 	struct ahash_request *req;
1804 };
1805 
1806 int tcp_sigpool_alloc_ahash(const char *alg, size_t scratch_size);
1807 void tcp_sigpool_get(unsigned int id);
1808 void tcp_sigpool_release(unsigned int id);
1809 int tcp_sigpool_hash_skb_data(struct tcp_sigpool *hp,
1810 			      const struct sk_buff *skb,
1811 			      unsigned int header_len);
1812 
1813 /**
1814  * tcp_sigpool_start - disable bh and start using tcp_sigpool_ahash
1815  * @id: tcp_sigpool that was previously allocated by tcp_sigpool_alloc_ahash()
1816  * @c: returned tcp_sigpool for usage (uninitialized on failure)
1817  *
1818  * Returns 0 on success, error otherwise.
1819  */
1820 int tcp_sigpool_start(unsigned int id, struct tcp_sigpool *c);
1821 /**
1822  * tcp_sigpool_end - enable bh and stop using tcp_sigpool
1823  * @c: tcp_sigpool context that was returned by tcp_sigpool_start()
1824  */
1825 void tcp_sigpool_end(struct tcp_sigpool *c);
1826 size_t tcp_sigpool_algo(unsigned int id, char *buf, size_t buf_len);
1827 /* - functions */
1828 int tcp_v4_md5_hash_skb(char *md5_hash, const struct tcp_md5sig_key *key,
1829 			const struct sock *sk, const struct sk_buff *skb);
1830 int tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr,
1831 		   int family, u8 prefixlen, int l3index, u8 flags,
1832 		   const u8 *newkey, u8 newkeylen);
1833 int tcp_md5_key_copy(struct sock *sk, const union tcp_md5_addr *addr,
1834 		     int family, u8 prefixlen, int l3index,
1835 		     struct tcp_md5sig_key *key);
1836 
1837 int tcp_md5_do_del(struct sock *sk, const union tcp_md5_addr *addr,
1838 		   int family, u8 prefixlen, int l3index, u8 flags);
1839 void tcp_clear_md5_list(struct sock *sk);
1840 struct tcp_md5sig_key *tcp_v4_md5_lookup(const struct sock *sk,
1841 					 const struct sock *addr_sk);
1842 
1843 #ifdef CONFIG_TCP_MD5SIG
1844 struct tcp_md5sig_key *__tcp_md5_do_lookup(const struct sock *sk, int l3index,
1845 					   const union tcp_md5_addr *addr,
1846 					   int family, bool any_l3index);
1847 static inline struct tcp_md5sig_key *
1848 tcp_md5_do_lookup(const struct sock *sk, int l3index,
1849 		  const union tcp_md5_addr *addr, int family)
1850 {
1851 	if (!static_branch_unlikely(&tcp_md5_needed.key))
1852 		return NULL;
1853 	return __tcp_md5_do_lookup(sk, l3index, addr, family, false);
1854 }
1855 
1856 static inline struct tcp_md5sig_key *
1857 tcp_md5_do_lookup_any_l3index(const struct sock *sk,
1858 			      const union tcp_md5_addr *addr, int family)
1859 {
1860 	if (!static_branch_unlikely(&tcp_md5_needed.key))
1861 		return NULL;
1862 	return __tcp_md5_do_lookup(sk, 0, addr, family, true);
1863 }
1864 
1865 enum skb_drop_reason
1866 tcp_inbound_md5_hash(const struct sock *sk, const struct sk_buff *skb,
1867 		     const void *saddr, const void *daddr,
1868 		     int family, int l3index, const __u8 *hash_location);
1869 
1870 
1871 #define tcp_twsk_md5_key(twsk)	((twsk)->tw_md5_key)
1872 #else
1873 static inline struct tcp_md5sig_key *
1874 tcp_md5_do_lookup(const struct sock *sk, int l3index,
1875 		  const union tcp_md5_addr *addr, int family)
1876 {
1877 	return NULL;
1878 }
1879 
1880 static inline struct tcp_md5sig_key *
1881 tcp_md5_do_lookup_any_l3index(const struct sock *sk,
1882 			      const union tcp_md5_addr *addr, int family)
1883 {
1884 	return NULL;
1885 }
1886 
1887 static inline enum skb_drop_reason
1888 tcp_inbound_md5_hash(const struct sock *sk, const struct sk_buff *skb,
1889 		     const void *saddr, const void *daddr,
1890 		     int family, int l3index, const __u8 *hash_location)
1891 {
1892 	return SKB_NOT_DROPPED_YET;
1893 }
1894 #define tcp_twsk_md5_key(twsk)	NULL
1895 #endif
1896 
1897 int tcp_md5_alloc_sigpool(void);
1898 void tcp_md5_release_sigpool(void);
1899 void tcp_md5_add_sigpool(void);
1900 extern int tcp_md5_sigpool_id;
1901 
1902 int tcp_md5_hash_key(struct tcp_sigpool *hp,
1903 		     const struct tcp_md5sig_key *key);
1904 
1905 /* From tcp_fastopen.c */
1906 void tcp_fastopen_cache_get(struct sock *sk, u16 *mss,
1907 			    struct tcp_fastopen_cookie *cookie);
1908 void tcp_fastopen_cache_set(struct sock *sk, u16 mss,
1909 			    struct tcp_fastopen_cookie *cookie, bool syn_lost,
1910 			    u16 try_exp);
1911 struct tcp_fastopen_request {
1912 	/* Fast Open cookie. Size 0 means a cookie request */
1913 	struct tcp_fastopen_cookie	cookie;
1914 	struct msghdr			*data;  /* data in MSG_FASTOPEN */
1915 	size_t				size;
1916 	int				copied;	/* queued in tcp_connect() */
1917 	struct ubuf_info		*uarg;
1918 };
1919 void tcp_free_fastopen_req(struct tcp_sock *tp);
1920 void tcp_fastopen_destroy_cipher(struct sock *sk);
1921 void tcp_fastopen_ctx_destroy(struct net *net);
1922 int tcp_fastopen_reset_cipher(struct net *net, struct sock *sk,
1923 			      void *primary_key, void *backup_key);
1924 int tcp_fastopen_get_cipher(struct net *net, struct inet_connection_sock *icsk,
1925 			    u64 *key);
1926 void tcp_fastopen_add_skb(struct sock *sk, struct sk_buff *skb);
1927 struct sock *tcp_try_fastopen(struct sock *sk, struct sk_buff *skb,
1928 			      struct request_sock *req,
1929 			      struct tcp_fastopen_cookie *foc,
1930 			      const struct dst_entry *dst);
1931 void tcp_fastopen_init_key_once(struct net *net);
1932 bool tcp_fastopen_cookie_check(struct sock *sk, u16 *mss,
1933 			     struct tcp_fastopen_cookie *cookie);
1934 bool tcp_fastopen_defer_connect(struct sock *sk, int *err);
1935 #define TCP_FASTOPEN_KEY_LENGTH sizeof(siphash_key_t)
1936 #define TCP_FASTOPEN_KEY_MAX 2
1937 #define TCP_FASTOPEN_KEY_BUF_LENGTH \
1938 	(TCP_FASTOPEN_KEY_LENGTH * TCP_FASTOPEN_KEY_MAX)
1939 
1940 /* Fastopen key context */
1941 struct tcp_fastopen_context {
1942 	siphash_key_t	key[TCP_FASTOPEN_KEY_MAX];
1943 	int		num;
1944 	struct rcu_head	rcu;
1945 };
1946 
1947 void tcp_fastopen_active_disable(struct sock *sk);
1948 bool tcp_fastopen_active_should_disable(struct sock *sk);
1949 void tcp_fastopen_active_disable_ofo_check(struct sock *sk);
1950 void tcp_fastopen_active_detect_blackhole(struct sock *sk, bool expired);
1951 
1952 /* Caller needs to wrap with rcu_read_(un)lock() */
1953 static inline
1954 struct tcp_fastopen_context *tcp_fastopen_get_ctx(const struct sock *sk)
1955 {
1956 	struct tcp_fastopen_context *ctx;
1957 
1958 	ctx = rcu_dereference(inet_csk(sk)->icsk_accept_queue.fastopenq.ctx);
1959 	if (!ctx)
1960 		ctx = rcu_dereference(sock_net(sk)->ipv4.tcp_fastopen_ctx);
1961 	return ctx;
1962 }
1963 
1964 static inline
1965 bool tcp_fastopen_cookie_match(const struct tcp_fastopen_cookie *foc,
1966 			       const struct tcp_fastopen_cookie *orig)
1967 {
1968 	if (orig->len == TCP_FASTOPEN_COOKIE_SIZE &&
1969 	    orig->len == foc->len &&
1970 	    !memcmp(orig->val, foc->val, foc->len))
1971 		return true;
1972 	return false;
1973 }
1974 
1975 static inline
1976 int tcp_fastopen_context_len(const struct tcp_fastopen_context *ctx)
1977 {
1978 	return ctx->num;
1979 }
1980 
1981 /* Latencies incurred by various limits for a sender. They are
1982  * chronograph-like stats that are mutually exclusive.
1983  */
1984 enum tcp_chrono {
1985 	TCP_CHRONO_UNSPEC,
1986 	TCP_CHRONO_BUSY, /* Actively sending data (non-empty write queue) */
1987 	TCP_CHRONO_RWND_LIMITED, /* Stalled by insufficient receive window */
1988 	TCP_CHRONO_SNDBUF_LIMITED, /* Stalled by insufficient send buffer */
1989 	__TCP_CHRONO_MAX,
1990 };
1991 
1992 void tcp_chrono_start(struct sock *sk, const enum tcp_chrono type);
1993 void tcp_chrono_stop(struct sock *sk, const enum tcp_chrono type);
1994 
1995 /* This helper is needed, because skb->tcp_tsorted_anchor uses
1996  * the same memory storage than skb->destructor/_skb_refdst
1997  */
1998 static inline void tcp_skb_tsorted_anchor_cleanup(struct sk_buff *skb)
1999 {
2000 	skb->destructor = NULL;
2001 	skb->_skb_refdst = 0UL;
2002 }
2003 
2004 #define tcp_skb_tsorted_save(skb) {		\
2005 	unsigned long _save = skb->_skb_refdst;	\
2006 	skb->_skb_refdst = 0UL;
2007 
2008 #define tcp_skb_tsorted_restore(skb)		\
2009 	skb->_skb_refdst = _save;		\
2010 }
2011 
2012 void tcp_write_queue_purge(struct sock *sk);
2013 
2014 static inline struct sk_buff *tcp_rtx_queue_head(const struct sock *sk)
2015 {
2016 	return skb_rb_first(&sk->tcp_rtx_queue);
2017 }
2018 
2019 static inline struct sk_buff *tcp_rtx_queue_tail(const struct sock *sk)
2020 {
2021 	return skb_rb_last(&sk->tcp_rtx_queue);
2022 }
2023 
2024 static inline struct sk_buff *tcp_write_queue_tail(const struct sock *sk)
2025 {
2026 	return skb_peek_tail(&sk->sk_write_queue);
2027 }
2028 
2029 #define tcp_for_write_queue_from_safe(skb, tmp, sk)			\
2030 	skb_queue_walk_from_safe(&(sk)->sk_write_queue, skb, tmp)
2031 
2032 static inline struct sk_buff *tcp_send_head(const struct sock *sk)
2033 {
2034 	return skb_peek(&sk->sk_write_queue);
2035 }
2036 
2037 static inline bool tcp_skb_is_last(const struct sock *sk,
2038 				   const struct sk_buff *skb)
2039 {
2040 	return skb_queue_is_last(&sk->sk_write_queue, skb);
2041 }
2042 
2043 /**
2044  * tcp_write_queue_empty - test if any payload (or FIN) is available in write queue
2045  * @sk: socket
2046  *
2047  * Since the write queue can have a temporary empty skb in it,
2048  * we must not use "return skb_queue_empty(&sk->sk_write_queue)"
2049  */
2050 static inline bool tcp_write_queue_empty(const struct sock *sk)
2051 {
2052 	const struct tcp_sock *tp = tcp_sk(sk);
2053 
2054 	return tp->write_seq == tp->snd_nxt;
2055 }
2056 
2057 static inline bool tcp_rtx_queue_empty(const struct sock *sk)
2058 {
2059 	return RB_EMPTY_ROOT(&sk->tcp_rtx_queue);
2060 }
2061 
2062 static inline bool tcp_rtx_and_write_queues_empty(const struct sock *sk)
2063 {
2064 	return tcp_rtx_queue_empty(sk) && tcp_write_queue_empty(sk);
2065 }
2066 
2067 static inline void tcp_add_write_queue_tail(struct sock *sk, struct sk_buff *skb)
2068 {
2069 	__skb_queue_tail(&sk->sk_write_queue, skb);
2070 
2071 	/* Queue it, remembering where we must start sending. */
2072 	if (sk->sk_write_queue.next == skb)
2073 		tcp_chrono_start(sk, TCP_CHRONO_BUSY);
2074 }
2075 
2076 /* Insert new before skb on the write queue of sk.  */
2077 static inline void tcp_insert_write_queue_before(struct sk_buff *new,
2078 						  struct sk_buff *skb,
2079 						  struct sock *sk)
2080 {
2081 	__skb_queue_before(&sk->sk_write_queue, skb, new);
2082 }
2083 
2084 static inline void tcp_unlink_write_queue(struct sk_buff *skb, struct sock *sk)
2085 {
2086 	tcp_skb_tsorted_anchor_cleanup(skb);
2087 	__skb_unlink(skb, &sk->sk_write_queue);
2088 }
2089 
2090 void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb);
2091 
2092 static inline void tcp_rtx_queue_unlink(struct sk_buff *skb, struct sock *sk)
2093 {
2094 	tcp_skb_tsorted_anchor_cleanup(skb);
2095 	rb_erase(&skb->rbnode, &sk->tcp_rtx_queue);
2096 }
2097 
2098 static inline void tcp_rtx_queue_unlink_and_free(struct sk_buff *skb, struct sock *sk)
2099 {
2100 	list_del(&skb->tcp_tsorted_anchor);
2101 	tcp_rtx_queue_unlink(skb, sk);
2102 	tcp_wmem_free_skb(sk, skb);
2103 }
2104 
2105 static inline void tcp_push_pending_frames(struct sock *sk)
2106 {
2107 	if (tcp_send_head(sk)) {
2108 		struct tcp_sock *tp = tcp_sk(sk);
2109 
2110 		__tcp_push_pending_frames(sk, tcp_current_mss(sk), tp->nonagle);
2111 	}
2112 }
2113 
2114 /* Start sequence of the skb just after the highest skb with SACKed
2115  * bit, valid only if sacked_out > 0 or when the caller has ensured
2116  * validity by itself.
2117  */
2118 static inline u32 tcp_highest_sack_seq(struct tcp_sock *tp)
2119 {
2120 	if (!tp->sacked_out)
2121 		return tp->snd_una;
2122 
2123 	if (tp->highest_sack == NULL)
2124 		return tp->snd_nxt;
2125 
2126 	return TCP_SKB_CB(tp->highest_sack)->seq;
2127 }
2128 
2129 static inline void tcp_advance_highest_sack(struct sock *sk, struct sk_buff *skb)
2130 {
2131 	tcp_sk(sk)->highest_sack = skb_rb_next(skb);
2132 }
2133 
2134 static inline struct sk_buff *tcp_highest_sack(struct sock *sk)
2135 {
2136 	return tcp_sk(sk)->highest_sack;
2137 }
2138 
2139 static inline void tcp_highest_sack_reset(struct sock *sk)
2140 {
2141 	tcp_sk(sk)->highest_sack = tcp_rtx_queue_head(sk);
2142 }
2143 
2144 /* Called when old skb is about to be deleted and replaced by new skb */
2145 static inline void tcp_highest_sack_replace(struct sock *sk,
2146 					    struct sk_buff *old,
2147 					    struct sk_buff *new)
2148 {
2149 	if (old == tcp_highest_sack(sk))
2150 		tcp_sk(sk)->highest_sack = new;
2151 }
2152 
2153 /* This helper checks if socket has IP_TRANSPARENT set */
2154 static inline bool inet_sk_transparent(const struct sock *sk)
2155 {
2156 	switch (sk->sk_state) {
2157 	case TCP_TIME_WAIT:
2158 		return inet_twsk(sk)->tw_transparent;
2159 	case TCP_NEW_SYN_RECV:
2160 		return inet_rsk(inet_reqsk(sk))->no_srccheck;
2161 	}
2162 	return inet_test_bit(TRANSPARENT, sk);
2163 }
2164 
2165 /* Determines whether this is a thin stream (which may suffer from
2166  * increased latency). Used to trigger latency-reducing mechanisms.
2167  */
2168 static inline bool tcp_stream_is_thin(struct tcp_sock *tp)
2169 {
2170 	return tp->packets_out < 4 && !tcp_in_initial_slowstart(tp);
2171 }
2172 
2173 /* /proc */
2174 enum tcp_seq_states {
2175 	TCP_SEQ_STATE_LISTENING,
2176 	TCP_SEQ_STATE_ESTABLISHED,
2177 };
2178 
2179 void *tcp_seq_start(struct seq_file *seq, loff_t *pos);
2180 void *tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos);
2181 void tcp_seq_stop(struct seq_file *seq, void *v);
2182 
2183 struct tcp_seq_afinfo {
2184 	sa_family_t			family;
2185 };
2186 
2187 struct tcp_iter_state {
2188 	struct seq_net_private	p;
2189 	enum tcp_seq_states	state;
2190 	struct sock		*syn_wait_sk;
2191 	int			bucket, offset, sbucket, num;
2192 	loff_t			last_pos;
2193 };
2194 
2195 extern struct request_sock_ops tcp_request_sock_ops;
2196 extern struct request_sock_ops tcp6_request_sock_ops;
2197 
2198 void tcp_v4_destroy_sock(struct sock *sk);
2199 
2200 struct sk_buff *tcp_gso_segment(struct sk_buff *skb,
2201 				netdev_features_t features);
2202 struct sk_buff *tcp_gro_receive(struct list_head *head, struct sk_buff *skb);
2203 INDIRECT_CALLABLE_DECLARE(int tcp4_gro_complete(struct sk_buff *skb, int thoff));
2204 INDIRECT_CALLABLE_DECLARE(struct sk_buff *tcp4_gro_receive(struct list_head *head, struct sk_buff *skb));
2205 INDIRECT_CALLABLE_DECLARE(int tcp6_gro_complete(struct sk_buff *skb, int thoff));
2206 INDIRECT_CALLABLE_DECLARE(struct sk_buff *tcp6_gro_receive(struct list_head *head, struct sk_buff *skb));
2207 #ifdef CONFIG_INET
2208 void tcp_gro_complete(struct sk_buff *skb);
2209 #else
2210 static inline void tcp_gro_complete(struct sk_buff *skb) { }
2211 #endif
2212 
2213 void __tcp_v4_send_check(struct sk_buff *skb, __be32 saddr, __be32 daddr);
2214 
2215 static inline u32 tcp_notsent_lowat(const struct tcp_sock *tp)
2216 {
2217 	struct net *net = sock_net((struct sock *)tp);
2218 	u32 val;
2219 
2220 	val = READ_ONCE(tp->notsent_lowat);
2221 
2222 	return val ?: READ_ONCE(net->ipv4.sysctl_tcp_notsent_lowat);
2223 }
2224 
2225 bool tcp_stream_memory_free(const struct sock *sk, int wake);
2226 
2227 #ifdef CONFIG_PROC_FS
2228 int tcp4_proc_init(void);
2229 void tcp4_proc_exit(void);
2230 #endif
2231 
2232 int tcp_rtx_synack(const struct sock *sk, struct request_sock *req);
2233 int tcp_conn_request(struct request_sock_ops *rsk_ops,
2234 		     const struct tcp_request_sock_ops *af_ops,
2235 		     struct sock *sk, struct sk_buff *skb);
2236 
2237 /* TCP af-specific functions */
2238 struct tcp_sock_af_ops {
2239 #ifdef CONFIG_TCP_MD5SIG
2240 	struct tcp_md5sig_key	*(*md5_lookup) (const struct sock *sk,
2241 						const struct sock *addr_sk);
2242 	int		(*calc_md5_hash)(char *location,
2243 					 const struct tcp_md5sig_key *md5,
2244 					 const struct sock *sk,
2245 					 const struct sk_buff *skb);
2246 	int		(*md5_parse)(struct sock *sk,
2247 				     int optname,
2248 				     sockptr_t optval,
2249 				     int optlen);
2250 #endif
2251 #ifdef CONFIG_TCP_AO
2252 	int (*ao_parse)(struct sock *sk, int optname, sockptr_t optval, int optlen);
2253 	struct tcp_ao_key *(*ao_lookup)(const struct sock *sk,
2254 					struct sock *addr_sk,
2255 					int sndid, int rcvid);
2256 	int (*ao_calc_key_sk)(struct tcp_ao_key *mkt, u8 *key,
2257 			      const struct sock *sk,
2258 			      __be32 sisn, __be32 disn, bool send);
2259 	int (*calc_ao_hash)(char *location, struct tcp_ao_key *ao,
2260 			    const struct sock *sk, const struct sk_buff *skb,
2261 			    const u8 *tkey, int hash_offset, u32 sne);
2262 #endif
2263 };
2264 
2265 struct tcp_request_sock_ops {
2266 	u16 mss_clamp;
2267 #ifdef CONFIG_TCP_MD5SIG
2268 	struct tcp_md5sig_key *(*req_md5_lookup)(const struct sock *sk,
2269 						 const struct sock *addr_sk);
2270 	int		(*calc_md5_hash) (char *location,
2271 					  const struct tcp_md5sig_key *md5,
2272 					  const struct sock *sk,
2273 					  const struct sk_buff *skb);
2274 #endif
2275 #ifdef CONFIG_TCP_AO
2276 	struct tcp_ao_key *(*ao_lookup)(const struct sock *sk,
2277 					struct request_sock *req,
2278 					int sndid, int rcvid);
2279 	int (*ao_calc_key)(struct tcp_ao_key *mkt, u8 *key, struct request_sock *sk);
2280 	int (*ao_synack_hash)(char *ao_hash, struct tcp_ao_key *mkt,
2281 			      struct request_sock *req, const struct sk_buff *skb,
2282 			      int hash_offset, u32 sne);
2283 #endif
2284 #ifdef CONFIG_SYN_COOKIES
2285 	__u32 (*cookie_init_seq)(const struct sk_buff *skb,
2286 				 __u16 *mss);
2287 #endif
2288 	struct dst_entry *(*route_req)(const struct sock *sk,
2289 				       struct sk_buff *skb,
2290 				       struct flowi *fl,
2291 				       struct request_sock *req,
2292 				       u32 tw_isn);
2293 	u32 (*init_seq)(const struct sk_buff *skb);
2294 	u32 (*init_ts_off)(const struct net *net, const struct sk_buff *skb);
2295 	int (*send_synack)(const struct sock *sk, struct dst_entry *dst,
2296 			   struct flowi *fl, struct request_sock *req,
2297 			   struct tcp_fastopen_cookie *foc,
2298 			   enum tcp_synack_type synack_type,
2299 			   struct sk_buff *syn_skb);
2300 };
2301 
2302 extern const struct tcp_request_sock_ops tcp_request_sock_ipv4_ops;
2303 #if IS_ENABLED(CONFIG_IPV6)
2304 extern const struct tcp_request_sock_ops tcp_request_sock_ipv6_ops;
2305 #endif
2306 
2307 #ifdef CONFIG_SYN_COOKIES
2308 static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops,
2309 					 const struct sock *sk, struct sk_buff *skb,
2310 					 __u16 *mss)
2311 {
2312 	tcp_synq_overflow(sk);
2313 	__NET_INC_STATS(sock_net(sk), LINUX_MIB_SYNCOOKIESSENT);
2314 	return ops->cookie_init_seq(skb, mss);
2315 }
2316 #else
2317 static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops,
2318 					 const struct sock *sk, struct sk_buff *skb,
2319 					 __u16 *mss)
2320 {
2321 	return 0;
2322 }
2323 #endif
2324 
2325 struct tcp_key {
2326 	union {
2327 		struct {
2328 			struct tcp_ao_key *ao_key;
2329 			char *traffic_key;
2330 			u32 sne;
2331 			u8 rcv_next;
2332 		};
2333 		struct tcp_md5sig_key *md5_key;
2334 	};
2335 	enum {
2336 		TCP_KEY_NONE = 0,
2337 		TCP_KEY_MD5,
2338 		TCP_KEY_AO,
2339 	} type;
2340 };
2341 
2342 static inline void tcp_get_current_key(const struct sock *sk,
2343 				       struct tcp_key *out)
2344 {
2345 #if defined(CONFIG_TCP_AO) || defined(CONFIG_TCP_MD5SIG)
2346 	const struct tcp_sock *tp = tcp_sk(sk);
2347 #endif
2348 
2349 #ifdef CONFIG_TCP_AO
2350 	if (static_branch_unlikely(&tcp_ao_needed.key)) {
2351 		struct tcp_ao_info *ao;
2352 
2353 		ao = rcu_dereference_protected(tp->ao_info,
2354 					       lockdep_sock_is_held(sk));
2355 		if (ao) {
2356 			out->ao_key = READ_ONCE(ao->current_key);
2357 			out->type = TCP_KEY_AO;
2358 			return;
2359 		}
2360 	}
2361 #endif
2362 #ifdef CONFIG_TCP_MD5SIG
2363 	if (static_branch_unlikely(&tcp_md5_needed.key) &&
2364 	    rcu_access_pointer(tp->md5sig_info)) {
2365 		out->md5_key = tp->af_specific->md5_lookup(sk, sk);
2366 		if (out->md5_key) {
2367 			out->type = TCP_KEY_MD5;
2368 			return;
2369 		}
2370 	}
2371 #endif
2372 	out->type = TCP_KEY_NONE;
2373 }
2374 
2375 static inline bool tcp_key_is_md5(const struct tcp_key *key)
2376 {
2377 #ifdef CONFIG_TCP_MD5SIG
2378 	if (static_branch_unlikely(&tcp_md5_needed.key) &&
2379 	    key->type == TCP_KEY_MD5)
2380 		return true;
2381 #endif
2382 	return false;
2383 }
2384 
2385 static inline bool tcp_key_is_ao(const struct tcp_key *key)
2386 {
2387 #ifdef CONFIG_TCP_AO
2388 	if (static_branch_unlikely(&tcp_ao_needed.key) &&
2389 	    key->type == TCP_KEY_AO)
2390 		return true;
2391 #endif
2392 	return false;
2393 }
2394 
2395 int tcpv4_offload_init(void);
2396 
2397 void tcp_v4_init(void);
2398 void tcp_init(void);
2399 
2400 /* tcp_recovery.c */
2401 void tcp_mark_skb_lost(struct sock *sk, struct sk_buff *skb);
2402 void tcp_newreno_mark_lost(struct sock *sk, bool snd_una_advanced);
2403 extern s32 tcp_rack_skb_timeout(struct tcp_sock *tp, struct sk_buff *skb,
2404 				u32 reo_wnd);
2405 extern bool tcp_rack_mark_lost(struct sock *sk);
2406 extern void tcp_rack_advance(struct tcp_sock *tp, u8 sacked, u32 end_seq,
2407 			     u64 xmit_time);
2408 extern void tcp_rack_reo_timeout(struct sock *sk);
2409 extern void tcp_rack_update_reo_wnd(struct sock *sk, struct rate_sample *rs);
2410 
2411 /* tcp_plb.c */
2412 
2413 /*
2414  * Scaling factor for fractions in PLB. For example, tcp_plb_update_state
2415  * expects cong_ratio which represents fraction of traffic that experienced
2416  * congestion over a single RTT. In order to avoid floating point operations,
2417  * this fraction should be mapped to (1 << TCP_PLB_SCALE) and passed in.
2418  */
2419 #define TCP_PLB_SCALE 8
2420 
2421 /* State for PLB (Protective Load Balancing) for a single TCP connection. */
2422 struct tcp_plb_state {
2423 	u8	consec_cong_rounds:5, /* consecutive congested rounds */
2424 		unused:3;
2425 	u32	pause_until; /* jiffies32 when PLB can resume rerouting */
2426 };
2427 
2428 static inline void tcp_plb_init(const struct sock *sk,
2429 				struct tcp_plb_state *plb)
2430 {
2431 	plb->consec_cong_rounds = 0;
2432 	plb->pause_until = 0;
2433 }
2434 void tcp_plb_update_state(const struct sock *sk, struct tcp_plb_state *plb,
2435 			  const int cong_ratio);
2436 void tcp_plb_check_rehash(struct sock *sk, struct tcp_plb_state *plb);
2437 void tcp_plb_update_state_upon_rto(struct sock *sk, struct tcp_plb_state *plb);
2438 
2439 /* At how many usecs into the future should the RTO fire? */
2440 static inline s64 tcp_rto_delta_us(const struct sock *sk)
2441 {
2442 	const struct sk_buff *skb = tcp_rtx_queue_head(sk);
2443 	u32 rto = inet_csk(sk)->icsk_rto;
2444 	u64 rto_time_stamp_us = tcp_skb_timestamp_us(skb) + jiffies_to_usecs(rto);
2445 
2446 	return rto_time_stamp_us - tcp_sk(sk)->tcp_mstamp;
2447 }
2448 
2449 /*
2450  * Save and compile IPv4 options, return a pointer to it
2451  */
2452 static inline struct ip_options_rcu *tcp_v4_save_options(struct net *net,
2453 							 struct sk_buff *skb)
2454 {
2455 	const struct ip_options *opt = &TCP_SKB_CB(skb)->header.h4.opt;
2456 	struct ip_options_rcu *dopt = NULL;
2457 
2458 	if (opt->optlen) {
2459 		int opt_size = sizeof(*dopt) + opt->optlen;
2460 
2461 		dopt = kmalloc(opt_size, GFP_ATOMIC);
2462 		if (dopt && __ip_options_echo(net, &dopt->opt, skb, opt)) {
2463 			kfree(dopt);
2464 			dopt = NULL;
2465 		}
2466 	}
2467 	return dopt;
2468 }
2469 
2470 /* locally generated TCP pure ACKs have skb->truesize == 2
2471  * (check tcp_send_ack() in net/ipv4/tcp_output.c )
2472  * This is much faster than dissecting the packet to find out.
2473  * (Think of GRE encapsulations, IPv4, IPv6, ...)
2474  */
2475 static inline bool skb_is_tcp_pure_ack(const struct sk_buff *skb)
2476 {
2477 	return skb->truesize == 2;
2478 }
2479 
2480 static inline void skb_set_tcp_pure_ack(struct sk_buff *skb)
2481 {
2482 	skb->truesize = 2;
2483 }
2484 
2485 static inline int tcp_inq(struct sock *sk)
2486 {
2487 	struct tcp_sock *tp = tcp_sk(sk);
2488 	int answ;
2489 
2490 	if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) {
2491 		answ = 0;
2492 	} else if (sock_flag(sk, SOCK_URGINLINE) ||
2493 		   !tp->urg_data ||
2494 		   before(tp->urg_seq, tp->copied_seq) ||
2495 		   !before(tp->urg_seq, tp->rcv_nxt)) {
2496 
2497 		answ = tp->rcv_nxt - tp->copied_seq;
2498 
2499 		/* Subtract 1, if FIN was received */
2500 		if (answ && sock_flag(sk, SOCK_DONE))
2501 			answ--;
2502 	} else {
2503 		answ = tp->urg_seq - tp->copied_seq;
2504 	}
2505 
2506 	return answ;
2507 }
2508 
2509 int tcp_peek_len(struct socket *sock);
2510 
2511 static inline void tcp_segs_in(struct tcp_sock *tp, const struct sk_buff *skb)
2512 {
2513 	u16 segs_in;
2514 
2515 	segs_in = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
2516 
2517 	/* We update these fields while other threads might
2518 	 * read them from tcp_get_info()
2519 	 */
2520 	WRITE_ONCE(tp->segs_in, tp->segs_in + segs_in);
2521 	if (skb->len > tcp_hdrlen(skb))
2522 		WRITE_ONCE(tp->data_segs_in, tp->data_segs_in + segs_in);
2523 }
2524 
2525 /*
2526  * TCP listen path runs lockless.
2527  * We forced "struct sock" to be const qualified to make sure
2528  * we don't modify one of its field by mistake.
2529  * Here, we increment sk_drops which is an atomic_t, so we can safely
2530  * make sock writable again.
2531  */
2532 static inline void tcp_listendrop(const struct sock *sk)
2533 {
2534 	atomic_inc(&((struct sock *)sk)->sk_drops);
2535 	__NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENDROPS);
2536 }
2537 
2538 enum hrtimer_restart tcp_pace_kick(struct hrtimer *timer);
2539 
2540 /*
2541  * Interface for adding Upper Level Protocols over TCP
2542  */
2543 
2544 #define TCP_ULP_NAME_MAX	16
2545 #define TCP_ULP_MAX		128
2546 #define TCP_ULP_BUF_MAX		(TCP_ULP_NAME_MAX*TCP_ULP_MAX)
2547 
2548 struct tcp_ulp_ops {
2549 	struct list_head	list;
2550 
2551 	/* initialize ulp */
2552 	int (*init)(struct sock *sk);
2553 	/* update ulp */
2554 	void (*update)(struct sock *sk, struct proto *p,
2555 		       void (*write_space)(struct sock *sk));
2556 	/* cleanup ulp */
2557 	void (*release)(struct sock *sk);
2558 	/* diagnostic */
2559 	int (*get_info)(struct sock *sk, struct sk_buff *skb);
2560 	size_t (*get_info_size)(const struct sock *sk);
2561 	/* clone ulp */
2562 	void (*clone)(const struct request_sock *req, struct sock *newsk,
2563 		      const gfp_t priority);
2564 
2565 	char		name[TCP_ULP_NAME_MAX];
2566 	struct module	*owner;
2567 };
2568 int tcp_register_ulp(struct tcp_ulp_ops *type);
2569 void tcp_unregister_ulp(struct tcp_ulp_ops *type);
2570 int tcp_set_ulp(struct sock *sk, const char *name);
2571 void tcp_get_available_ulp(char *buf, size_t len);
2572 void tcp_cleanup_ulp(struct sock *sk);
2573 void tcp_update_ulp(struct sock *sk, struct proto *p,
2574 		    void (*write_space)(struct sock *sk));
2575 
2576 #define MODULE_ALIAS_TCP_ULP(name)				\
2577 	__MODULE_INFO(alias, alias_userspace, name);		\
2578 	__MODULE_INFO(alias, alias_tcp_ulp, "tcp-ulp-" name)
2579 
2580 #ifdef CONFIG_NET_SOCK_MSG
2581 struct sk_msg;
2582 struct sk_psock;
2583 
2584 #ifdef CONFIG_BPF_SYSCALL
2585 int tcp_bpf_update_proto(struct sock *sk, struct sk_psock *psock, bool restore);
2586 void tcp_bpf_clone(const struct sock *sk, struct sock *newsk);
2587 #endif /* CONFIG_BPF_SYSCALL */
2588 
2589 #ifdef CONFIG_INET
2590 void tcp_eat_skb(struct sock *sk, struct sk_buff *skb);
2591 #else
2592 static inline void tcp_eat_skb(struct sock *sk, struct sk_buff *skb)
2593 {
2594 }
2595 #endif
2596 
2597 int tcp_bpf_sendmsg_redir(struct sock *sk, bool ingress,
2598 			  struct sk_msg *msg, u32 bytes, int flags);
2599 #endif /* CONFIG_NET_SOCK_MSG */
2600 
2601 #if !defined(CONFIG_BPF_SYSCALL) || !defined(CONFIG_NET_SOCK_MSG)
2602 static inline void tcp_bpf_clone(const struct sock *sk, struct sock *newsk)
2603 {
2604 }
2605 #endif
2606 
2607 #ifdef CONFIG_CGROUP_BPF
2608 static inline void bpf_skops_init_skb(struct bpf_sock_ops_kern *skops,
2609 				      struct sk_buff *skb,
2610 				      unsigned int end_offset)
2611 {
2612 	skops->skb = skb;
2613 	skops->skb_data_end = skb->data + end_offset;
2614 }
2615 #else
2616 static inline void bpf_skops_init_skb(struct bpf_sock_ops_kern *skops,
2617 				      struct sk_buff *skb,
2618 				      unsigned int end_offset)
2619 {
2620 }
2621 #endif
2622 
2623 /* Call BPF_SOCK_OPS program that returns an int. If the return value
2624  * is < 0, then the BPF op failed (for example if the loaded BPF
2625  * program does not support the chosen operation or there is no BPF
2626  * program loaded).
2627  */
2628 #ifdef CONFIG_BPF
2629 static inline int tcp_call_bpf(struct sock *sk, int op, u32 nargs, u32 *args)
2630 {
2631 	struct bpf_sock_ops_kern sock_ops;
2632 	int ret;
2633 
2634 	memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
2635 	if (sk_fullsock(sk)) {
2636 		sock_ops.is_fullsock = 1;
2637 		sock_owned_by_me(sk);
2638 	}
2639 
2640 	sock_ops.sk = sk;
2641 	sock_ops.op = op;
2642 	if (nargs > 0)
2643 		memcpy(sock_ops.args, args, nargs * sizeof(*args));
2644 
2645 	ret = BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops);
2646 	if (ret == 0)
2647 		ret = sock_ops.reply;
2648 	else
2649 		ret = -1;
2650 	return ret;
2651 }
2652 
2653 static inline int tcp_call_bpf_2arg(struct sock *sk, int op, u32 arg1, u32 arg2)
2654 {
2655 	u32 args[2] = {arg1, arg2};
2656 
2657 	return tcp_call_bpf(sk, op, 2, args);
2658 }
2659 
2660 static inline int tcp_call_bpf_3arg(struct sock *sk, int op, u32 arg1, u32 arg2,
2661 				    u32 arg3)
2662 {
2663 	u32 args[3] = {arg1, arg2, arg3};
2664 
2665 	return tcp_call_bpf(sk, op, 3, args);
2666 }
2667 
2668 #else
2669 static inline int tcp_call_bpf(struct sock *sk, int op, u32 nargs, u32 *args)
2670 {
2671 	return -EPERM;
2672 }
2673 
2674 static inline int tcp_call_bpf_2arg(struct sock *sk, int op, u32 arg1, u32 arg2)
2675 {
2676 	return -EPERM;
2677 }
2678 
2679 static inline int tcp_call_bpf_3arg(struct sock *sk, int op, u32 arg1, u32 arg2,
2680 				    u32 arg3)
2681 {
2682 	return -EPERM;
2683 }
2684 
2685 #endif
2686 
2687 static inline u32 tcp_timeout_init(struct sock *sk)
2688 {
2689 	int timeout;
2690 
2691 	timeout = tcp_call_bpf(sk, BPF_SOCK_OPS_TIMEOUT_INIT, 0, NULL);
2692 
2693 	if (timeout <= 0)
2694 		timeout = TCP_TIMEOUT_INIT;
2695 	return min_t(int, timeout, TCP_RTO_MAX);
2696 }
2697 
2698 static inline u32 tcp_rwnd_init_bpf(struct sock *sk)
2699 {
2700 	int rwnd;
2701 
2702 	rwnd = tcp_call_bpf(sk, BPF_SOCK_OPS_RWND_INIT, 0, NULL);
2703 
2704 	if (rwnd < 0)
2705 		rwnd = 0;
2706 	return rwnd;
2707 }
2708 
2709 static inline bool tcp_bpf_ca_needs_ecn(struct sock *sk)
2710 {
2711 	return (tcp_call_bpf(sk, BPF_SOCK_OPS_NEEDS_ECN, 0, NULL) == 1);
2712 }
2713 
2714 static inline void tcp_bpf_rtt(struct sock *sk)
2715 {
2716 	if (BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), BPF_SOCK_OPS_RTT_CB_FLAG))
2717 		tcp_call_bpf(sk, BPF_SOCK_OPS_RTT_CB, 0, NULL);
2718 }
2719 
2720 #if IS_ENABLED(CONFIG_SMC)
2721 extern struct static_key_false tcp_have_smc;
2722 #endif
2723 
2724 #if IS_ENABLED(CONFIG_TLS_DEVICE)
2725 void clean_acked_data_enable(struct inet_connection_sock *icsk,
2726 			     void (*cad)(struct sock *sk, u32 ack_seq));
2727 void clean_acked_data_disable(struct inet_connection_sock *icsk);
2728 void clean_acked_data_flush(void);
2729 #endif
2730 
2731 DECLARE_STATIC_KEY_FALSE(tcp_tx_delay_enabled);
2732 static inline void tcp_add_tx_delay(struct sk_buff *skb,
2733 				    const struct tcp_sock *tp)
2734 {
2735 	if (static_branch_unlikely(&tcp_tx_delay_enabled))
2736 		skb->skb_mstamp_ns += (u64)tp->tcp_tx_delay * NSEC_PER_USEC;
2737 }
2738 
2739 /* Compute Earliest Departure Time for some control packets
2740  * like ACK or RST for TIME_WAIT or non ESTABLISHED sockets.
2741  */
2742 static inline u64 tcp_transmit_time(const struct sock *sk)
2743 {
2744 	if (static_branch_unlikely(&tcp_tx_delay_enabled)) {
2745 		u32 delay = (sk->sk_state == TCP_TIME_WAIT) ?
2746 			tcp_twsk(sk)->tw_tx_delay : tcp_sk(sk)->tcp_tx_delay;
2747 
2748 		return tcp_clock_ns() + (u64)delay * NSEC_PER_USEC;
2749 	}
2750 	return 0;
2751 }
2752 
2753 static inline int tcp_parse_auth_options(const struct tcphdr *th,
2754 		const u8 **md5_hash, const struct tcp_ao_hdr **aoh)
2755 {
2756 	const u8 *md5_tmp, *ao_tmp;
2757 	int ret;
2758 
2759 	ret = tcp_do_parse_auth_options(th, &md5_tmp, &ao_tmp);
2760 	if (ret)
2761 		return ret;
2762 
2763 	if (md5_hash)
2764 		*md5_hash = md5_tmp;
2765 
2766 	if (aoh) {
2767 		if (!ao_tmp)
2768 			*aoh = NULL;
2769 		else
2770 			*aoh = (struct tcp_ao_hdr *)(ao_tmp - 2);
2771 	}
2772 
2773 	return 0;
2774 }
2775 
2776 static inline bool tcp_ao_required(struct sock *sk, const void *saddr,
2777 				   int family, int l3index, bool stat_inc)
2778 {
2779 #ifdef CONFIG_TCP_AO
2780 	struct tcp_ao_info *ao_info;
2781 	struct tcp_ao_key *ao_key;
2782 
2783 	if (!static_branch_unlikely(&tcp_ao_needed.key))
2784 		return false;
2785 
2786 	ao_info = rcu_dereference_check(tcp_sk(sk)->ao_info,
2787 					lockdep_sock_is_held(sk));
2788 	if (!ao_info)
2789 		return false;
2790 
2791 	ao_key = tcp_ao_do_lookup(sk, l3index, saddr, family, -1, -1);
2792 	if (ao_info->ao_required || ao_key) {
2793 		if (stat_inc) {
2794 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAOREQUIRED);
2795 			atomic64_inc(&ao_info->counters.ao_required);
2796 		}
2797 		return true;
2798 	}
2799 #endif
2800 	return false;
2801 }
2802 
2803 /* Called with rcu_read_lock() */
2804 static inline enum skb_drop_reason
2805 tcp_inbound_hash(struct sock *sk, const struct request_sock *req,
2806 		 const struct sk_buff *skb,
2807 		 const void *saddr, const void *daddr,
2808 		 int family, int dif, int sdif)
2809 {
2810 	const struct tcphdr *th = tcp_hdr(skb);
2811 	const struct tcp_ao_hdr *aoh;
2812 	const __u8 *md5_location;
2813 	int l3index;
2814 
2815 	/* Invalid option or two times meet any of auth options */
2816 	if (tcp_parse_auth_options(th, &md5_location, &aoh)) {
2817 		tcp_hash_fail("TCP segment has incorrect auth options set",
2818 			      family, skb, "");
2819 		return SKB_DROP_REASON_TCP_AUTH_HDR;
2820 	}
2821 
2822 	if (req) {
2823 		if (tcp_rsk_used_ao(req) != !!aoh) {
2824 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAOBAD);
2825 			tcp_hash_fail("TCP connection can't start/end using TCP-AO",
2826 				      family, skb, "%s",
2827 				      !aoh ? "missing AO" : "AO signed");
2828 			return SKB_DROP_REASON_TCP_AOFAILURE;
2829 		}
2830 	}
2831 
2832 	/* sdif set, means packet ingressed via a device
2833 	 * in an L3 domain and dif is set to the l3mdev
2834 	 */
2835 	l3index = sdif ? dif : 0;
2836 
2837 	/* Fast path: unsigned segments */
2838 	if (likely(!md5_location && !aoh)) {
2839 		/* Drop if there's TCP-MD5 or TCP-AO key with any rcvid/sndid
2840 		 * for the remote peer. On TCP-AO established connection
2841 		 * the last key is impossible to remove, so there's
2842 		 * always at least one current_key.
2843 		 */
2844 		if (tcp_ao_required(sk, saddr, family, l3index, true)) {
2845 			tcp_hash_fail("AO hash is required, but not found",
2846 					family, skb, "L3 index %d", l3index);
2847 			return SKB_DROP_REASON_TCP_AONOTFOUND;
2848 		}
2849 		if (unlikely(tcp_md5_do_lookup(sk, l3index, saddr, family))) {
2850 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5NOTFOUND);
2851 			tcp_hash_fail("MD5 Hash not found",
2852 				      family, skb, "L3 index %d", l3index);
2853 			return SKB_DROP_REASON_TCP_MD5NOTFOUND;
2854 		}
2855 		return SKB_NOT_DROPPED_YET;
2856 	}
2857 
2858 	if (aoh)
2859 		return tcp_inbound_ao_hash(sk, skb, family, req, l3index, aoh);
2860 
2861 	return tcp_inbound_md5_hash(sk, skb, saddr, daddr, family,
2862 				    l3index, md5_location);
2863 }
2864 
2865 #endif	/* _TCP_H */
2866