xref: /linux/include/net/tcp.h (revision 606b2f490fb80e55d05cf0e6cec0b6c0ff0fc18f)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Definitions for the TCP module.
7  *
8  * Version:	@(#)tcp.h	1.0.5	05/23/93
9  *
10  * Authors:	Ross Biro
11  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *
13  *		This program is free software; you can redistribute it and/or
14  *		modify it under the terms of the GNU General Public License
15  *		as published by the Free Software Foundation; either version
16  *		2 of the License, or (at your option) any later version.
17  */
18 #ifndef _TCP_H
19 #define _TCP_H
20 
21 #define TCP_DEBUG 1
22 #define FASTRETRANS_DEBUG 1
23 
24 #include <linux/list.h>
25 #include <linux/tcp.h>
26 #include <linux/slab.h>
27 #include <linux/cache.h>
28 #include <linux/percpu.h>
29 #include <linux/skbuff.h>
30 #include <linux/dmaengine.h>
31 #include <linux/crypto.h>
32 #include <linux/cryptohash.h>
33 #include <linux/kref.h>
34 
35 #include <net/inet_connection_sock.h>
36 #include <net/inet_timewait_sock.h>
37 #include <net/inet_hashtables.h>
38 #include <net/checksum.h>
39 #include <net/request_sock.h>
40 #include <net/sock.h>
41 #include <net/snmp.h>
42 #include <net/ip.h>
43 #include <net/tcp_states.h>
44 #include <net/inet_ecn.h>
45 #include <net/dst.h>
46 
47 #include <linux/seq_file.h>
48 
49 extern struct inet_hashinfo tcp_hashinfo;
50 
51 extern struct percpu_counter tcp_orphan_count;
52 extern void tcp_time_wait(struct sock *sk, int state, int timeo);
53 
54 #define MAX_TCP_HEADER	(128 + MAX_HEADER)
55 #define MAX_TCP_OPTION_SPACE 40
56 
57 /*
58  * Never offer a window over 32767 without using window scaling. Some
59  * poor stacks do signed 16bit maths!
60  */
61 #define MAX_TCP_WINDOW		32767U
62 
63 /* Minimal accepted MSS. It is (60+60+8) - (20+20). */
64 #define TCP_MIN_MSS		88U
65 
66 /* The least MTU to use for probing */
67 #define TCP_BASE_MSS		512
68 
69 /* After receiving this amount of duplicate ACKs fast retransmit starts. */
70 #define TCP_FASTRETRANS_THRESH 3
71 
72 /* Maximal reordering. */
73 #define TCP_MAX_REORDERING	127
74 
75 /* Maximal number of ACKs sent quickly to accelerate slow-start. */
76 #define TCP_MAX_QUICKACKS	16U
77 
78 /* urg_data states */
79 #define TCP_URG_VALID	0x0100
80 #define TCP_URG_NOTYET	0x0200
81 #define TCP_URG_READ	0x0400
82 
83 #define TCP_RETR1	3	/*
84 				 * This is how many retries it does before it
85 				 * tries to figure out if the gateway is
86 				 * down. Minimal RFC value is 3; it corresponds
87 				 * to ~3sec-8min depending on RTO.
88 				 */
89 
90 #define TCP_RETR2	15	/*
91 				 * This should take at least
92 				 * 90 minutes to time out.
93 				 * RFC1122 says that the limit is 100 sec.
94 				 * 15 is ~13-30min depending on RTO.
95 				 */
96 
97 #define TCP_SYN_RETRIES	 5	/* number of times to retry active opening a
98 				 * connection: ~180sec is RFC minimum	*/
99 
100 #define TCP_SYNACK_RETRIES 5	/* number of times to retry passive opening a
101 				 * connection: ~180sec is RFC minimum	*/
102 
103 
104 #define TCP_ORPHAN_RETRIES 7	/* number of times to retry on an orphaned
105 				 * socket. 7 is ~50sec-16min.
106 				 */
107 
108 
109 #define TCP_TIMEWAIT_LEN (60*HZ) /* how long to wait to destroy TIME-WAIT
110 				  * state, about 60 seconds	*/
111 #define TCP_FIN_TIMEOUT	TCP_TIMEWAIT_LEN
112                                  /* BSD style FIN_WAIT2 deadlock breaker.
113 				  * It used to be 3min, new value is 60sec,
114 				  * to combine FIN-WAIT-2 timeout with
115 				  * TIME-WAIT timer.
116 				  */
117 
118 #define TCP_DELACK_MAX	((unsigned)(HZ/5))	/* maximal time to delay before sending an ACK */
119 #if HZ >= 100
120 #define TCP_DELACK_MIN	((unsigned)(HZ/25))	/* minimal time to delay before sending an ACK */
121 #define TCP_ATO_MIN	((unsigned)(HZ/25))
122 #else
123 #define TCP_DELACK_MIN	4U
124 #define TCP_ATO_MIN	4U
125 #endif
126 #define TCP_RTO_MAX	((unsigned)(120*HZ))
127 #define TCP_RTO_MIN	((unsigned)(HZ/5))
128 #define TCP_TIMEOUT_INIT ((unsigned)(3*HZ))	/* RFC 1122 initial RTO value	*/
129 
130 #define TCP_RESOURCE_PROBE_INTERVAL ((unsigned)(HZ/2U)) /* Maximal interval between probes
131 					                 * for local resources.
132 					                 */
133 
134 #define TCP_KEEPALIVE_TIME	(120*60*HZ)	/* two hours */
135 #define TCP_KEEPALIVE_PROBES	9		/* Max of 9 keepalive probes	*/
136 #define TCP_KEEPALIVE_INTVL	(75*HZ)
137 
138 #define MAX_TCP_KEEPIDLE	32767
139 #define MAX_TCP_KEEPINTVL	32767
140 #define MAX_TCP_KEEPCNT		127
141 #define MAX_TCP_SYNCNT		127
142 
143 #define TCP_SYNQ_INTERVAL	(HZ/5)	/* Period of SYNACK timer */
144 
145 #define TCP_PAWS_24DAYS	(60 * 60 * 24 * 24)
146 #define TCP_PAWS_MSL	60		/* Per-host timestamps are invalidated
147 					 * after this time. It should be equal
148 					 * (or greater than) TCP_TIMEWAIT_LEN
149 					 * to provide reliability equal to one
150 					 * provided by timewait state.
151 					 */
152 #define TCP_PAWS_WINDOW	1		/* Replay window for per-host
153 					 * timestamps. It must be less than
154 					 * minimal timewait lifetime.
155 					 */
156 /*
157  *	TCP option
158  */
159 
160 #define TCPOPT_NOP		1	/* Padding */
161 #define TCPOPT_EOL		0	/* End of options */
162 #define TCPOPT_MSS		2	/* Segment size negotiating */
163 #define TCPOPT_WINDOW		3	/* Window scaling */
164 #define TCPOPT_SACK_PERM        4       /* SACK Permitted */
165 #define TCPOPT_SACK             5       /* SACK Block */
166 #define TCPOPT_TIMESTAMP	8	/* Better RTT estimations/PAWS */
167 #define TCPOPT_MD5SIG		19	/* MD5 Signature (RFC2385) */
168 #define TCPOPT_COOKIE		253	/* Cookie extension (experimental) */
169 
170 /*
171  *     TCP option lengths
172  */
173 
174 #define TCPOLEN_MSS            4
175 #define TCPOLEN_WINDOW         3
176 #define TCPOLEN_SACK_PERM      2
177 #define TCPOLEN_TIMESTAMP      10
178 #define TCPOLEN_MD5SIG         18
179 #define TCPOLEN_COOKIE_BASE    2	/* Cookie-less header extension */
180 #define TCPOLEN_COOKIE_PAIR    3	/* Cookie pair header extension */
181 #define TCPOLEN_COOKIE_MIN     (TCPOLEN_COOKIE_BASE+TCP_COOKIE_MIN)
182 #define TCPOLEN_COOKIE_MAX     (TCPOLEN_COOKIE_BASE+TCP_COOKIE_MAX)
183 
184 /* But this is what stacks really send out. */
185 #define TCPOLEN_TSTAMP_ALIGNED		12
186 #define TCPOLEN_WSCALE_ALIGNED		4
187 #define TCPOLEN_SACKPERM_ALIGNED	4
188 #define TCPOLEN_SACK_BASE		2
189 #define TCPOLEN_SACK_BASE_ALIGNED	4
190 #define TCPOLEN_SACK_PERBLOCK		8
191 #define TCPOLEN_MD5SIG_ALIGNED		20
192 #define TCPOLEN_MSS_ALIGNED		4
193 
194 /* Flags in tp->nonagle */
195 #define TCP_NAGLE_OFF		1	/* Nagle's algo is disabled */
196 #define TCP_NAGLE_CORK		2	/* Socket is corked	    */
197 #define TCP_NAGLE_PUSH		4	/* Cork is overridden for already queued data */
198 
199 /* TCP thin-stream limits */
200 #define TCP_THIN_LINEAR_RETRIES 6       /* After 6 linear retries, do exp. backoff */
201 
202 extern struct inet_timewait_death_row tcp_death_row;
203 
204 /* sysctl variables for tcp */
205 extern int sysctl_tcp_timestamps;
206 extern int sysctl_tcp_window_scaling;
207 extern int sysctl_tcp_sack;
208 extern int sysctl_tcp_fin_timeout;
209 extern int sysctl_tcp_keepalive_time;
210 extern int sysctl_tcp_keepalive_probes;
211 extern int sysctl_tcp_keepalive_intvl;
212 extern int sysctl_tcp_syn_retries;
213 extern int sysctl_tcp_synack_retries;
214 extern int sysctl_tcp_retries1;
215 extern int sysctl_tcp_retries2;
216 extern int sysctl_tcp_orphan_retries;
217 extern int sysctl_tcp_syncookies;
218 extern int sysctl_tcp_retrans_collapse;
219 extern int sysctl_tcp_stdurg;
220 extern int sysctl_tcp_rfc1337;
221 extern int sysctl_tcp_abort_on_overflow;
222 extern int sysctl_tcp_max_orphans;
223 extern int sysctl_tcp_fack;
224 extern int sysctl_tcp_reordering;
225 extern int sysctl_tcp_ecn;
226 extern int sysctl_tcp_dsack;
227 extern int sysctl_tcp_mem[3];
228 extern int sysctl_tcp_wmem[3];
229 extern int sysctl_tcp_rmem[3];
230 extern int sysctl_tcp_app_win;
231 extern int sysctl_tcp_adv_win_scale;
232 extern int sysctl_tcp_tw_reuse;
233 extern int sysctl_tcp_frto;
234 extern int sysctl_tcp_frto_response;
235 extern int sysctl_tcp_low_latency;
236 extern int sysctl_tcp_dma_copybreak;
237 extern int sysctl_tcp_nometrics_save;
238 extern int sysctl_tcp_moderate_rcvbuf;
239 extern int sysctl_tcp_tso_win_divisor;
240 extern int sysctl_tcp_abc;
241 extern int sysctl_tcp_mtu_probing;
242 extern int sysctl_tcp_base_mss;
243 extern int sysctl_tcp_workaround_signed_windows;
244 extern int sysctl_tcp_slow_start_after_idle;
245 extern int sysctl_tcp_max_ssthresh;
246 extern int sysctl_tcp_cookie_size;
247 extern int sysctl_tcp_thin_linear_timeouts;
248 extern int sysctl_tcp_thin_dupack;
249 
250 extern atomic_t tcp_memory_allocated;
251 extern struct percpu_counter tcp_sockets_allocated;
252 extern int tcp_memory_pressure;
253 
254 /*
255  * The next routines deal with comparing 32 bit unsigned ints
256  * and worry about wraparound (automatic with unsigned arithmetic).
257  */
258 
259 static inline int before(__u32 seq1, __u32 seq2)
260 {
261         return (__s32)(seq1-seq2) < 0;
262 }
263 #define after(seq2, seq1) 	before(seq1, seq2)
264 
265 /* is s2<=s1<=s3 ? */
266 static inline int between(__u32 seq1, __u32 seq2, __u32 seq3)
267 {
268 	return seq3 - seq2 >= seq1 - seq2;
269 }
270 
271 static inline bool tcp_too_many_orphans(struct sock *sk, int shift)
272 {
273 	struct percpu_counter *ocp = sk->sk_prot->orphan_count;
274 	int orphans = percpu_counter_read_positive(ocp);
275 
276 	if (orphans << shift > sysctl_tcp_max_orphans) {
277 		orphans = percpu_counter_sum_positive(ocp);
278 		if (orphans << shift > sysctl_tcp_max_orphans)
279 			return true;
280 	}
281 
282 	if (sk->sk_wmem_queued > SOCK_MIN_SNDBUF &&
283 	    atomic_read(&tcp_memory_allocated) > sysctl_tcp_mem[2])
284 		return true;
285 	return false;
286 }
287 
288 /* syncookies: remember time of last synqueue overflow */
289 static inline void tcp_synq_overflow(struct sock *sk)
290 {
291 	tcp_sk(sk)->rx_opt.ts_recent_stamp = jiffies;
292 }
293 
294 /* syncookies: no recent synqueue overflow on this listening socket? */
295 static inline int tcp_synq_no_recent_overflow(const struct sock *sk)
296 {
297 	unsigned long last_overflow = tcp_sk(sk)->rx_opt.ts_recent_stamp;
298 	return time_after(jiffies, last_overflow + TCP_TIMEOUT_INIT);
299 }
300 
301 extern struct proto tcp_prot;
302 
303 #define TCP_INC_STATS(net, field)	SNMP_INC_STATS((net)->mib.tcp_statistics, field)
304 #define TCP_INC_STATS_BH(net, field)	SNMP_INC_STATS_BH((net)->mib.tcp_statistics, field)
305 #define TCP_DEC_STATS(net, field)	SNMP_DEC_STATS((net)->mib.tcp_statistics, field)
306 #define TCP_ADD_STATS_USER(net, field, val) SNMP_ADD_STATS_USER((net)->mib.tcp_statistics, field, val)
307 #define TCP_ADD_STATS(net, field, val)	SNMP_ADD_STATS((net)->mib.tcp_statistics, field, val)
308 
309 extern void tcp_v4_err(struct sk_buff *skb, u32);
310 
311 extern void tcp_shutdown (struct sock *sk, int how);
312 
313 extern int tcp_v4_rcv(struct sk_buff *skb);
314 
315 extern int tcp_v4_remember_stamp(struct sock *sk);
316 extern int tcp_v4_tw_remember_stamp(struct inet_timewait_sock *tw);
317 extern int tcp_sendmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg,
318 		       size_t size);
319 extern int tcp_sendpage(struct sock *sk, struct page *page, int offset,
320 			size_t size, int flags);
321 extern int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg);
322 extern int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb,
323 				 struct tcphdr *th, unsigned len);
324 extern int tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
325 			       struct tcphdr *th, unsigned len);
326 extern void tcp_rcv_space_adjust(struct sock *sk);
327 extern void tcp_cleanup_rbuf(struct sock *sk, int copied);
328 extern int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp);
329 extern void tcp_twsk_destructor(struct sock *sk);
330 extern ssize_t tcp_splice_read(struct socket *sk, loff_t *ppos,
331 			       struct pipe_inode_info *pipe, size_t len,
332 			       unsigned int flags);
333 
334 static inline void tcp_dec_quickack_mode(struct sock *sk,
335 					 const unsigned int pkts)
336 {
337 	struct inet_connection_sock *icsk = inet_csk(sk);
338 
339 	if (icsk->icsk_ack.quick) {
340 		if (pkts >= icsk->icsk_ack.quick) {
341 			icsk->icsk_ack.quick = 0;
342 			/* Leaving quickack mode we deflate ATO. */
343 			icsk->icsk_ack.ato   = TCP_ATO_MIN;
344 		} else
345 			icsk->icsk_ack.quick -= pkts;
346 	}
347 }
348 
349 extern void tcp_enter_quickack_mode(struct sock *sk);
350 
351 #define	TCP_ECN_OK		1
352 #define	TCP_ECN_QUEUE_CWR	2
353 #define	TCP_ECN_DEMAND_CWR	4
354 
355 static __inline__ void
356 TCP_ECN_create_request(struct request_sock *req, struct tcphdr *th)
357 {
358 	if (sysctl_tcp_ecn && th->ece && th->cwr)
359 		inet_rsk(req)->ecn_ok = 1;
360 }
361 
362 enum tcp_tw_status {
363 	TCP_TW_SUCCESS = 0,
364 	TCP_TW_RST = 1,
365 	TCP_TW_ACK = 2,
366 	TCP_TW_SYN = 3
367 };
368 
369 
370 extern enum tcp_tw_status tcp_timewait_state_process(struct inet_timewait_sock *tw,
371 						     struct sk_buff *skb,
372 						     const struct tcphdr *th);
373 extern struct sock * tcp_check_req(struct sock *sk,struct sk_buff *skb,
374 				   struct request_sock *req,
375 				   struct request_sock **prev);
376 extern int tcp_child_process(struct sock *parent, struct sock *child,
377 			     struct sk_buff *skb);
378 extern int tcp_use_frto(struct sock *sk);
379 extern void tcp_enter_frto(struct sock *sk);
380 extern void tcp_enter_loss(struct sock *sk, int how);
381 extern void tcp_clear_retrans(struct tcp_sock *tp);
382 extern void tcp_update_metrics(struct sock *sk);
383 extern void tcp_close(struct sock *sk, long timeout);
384 extern unsigned int tcp_poll(struct file * file, struct socket *sock,
385 			     struct poll_table_struct *wait);
386 extern int tcp_getsockopt(struct sock *sk, int level, int optname,
387 			  char __user *optval, int __user *optlen);
388 extern int tcp_setsockopt(struct sock *sk, int level, int optname,
389 			  char __user *optval, unsigned int optlen);
390 extern int compat_tcp_getsockopt(struct sock *sk, int level, int optname,
391 				 char __user *optval, int __user *optlen);
392 extern int compat_tcp_setsockopt(struct sock *sk, int level, int optname,
393 				 char __user *optval, unsigned int optlen);
394 extern void tcp_set_keepalive(struct sock *sk, int val);
395 extern void tcp_syn_ack_timeout(struct sock *sk, struct request_sock *req);
396 extern int tcp_recvmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg,
397 		       size_t len, int nonblock, int flags, int *addr_len);
398 extern void tcp_parse_options(struct sk_buff *skb,
399 			      struct tcp_options_received *opt_rx, u8 **hvpp,
400 			      int estab);
401 extern u8 *tcp_parse_md5sig_option(struct tcphdr *th);
402 
403 /*
404  *	TCP v4 functions exported for the inet6 API
405  */
406 
407 extern void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb);
408 extern int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb);
409 extern struct sock * tcp_create_openreq_child(struct sock *sk,
410 					      struct request_sock *req,
411 					      struct sk_buff *skb);
412 extern struct sock * tcp_v4_syn_recv_sock(struct sock *sk, struct sk_buff *skb,
413 					  struct request_sock *req,
414 					  struct dst_entry *dst);
415 extern int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb);
416 extern int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr,
417 			  int addr_len);
418 extern int tcp_connect(struct sock *sk);
419 extern struct sk_buff * tcp_make_synack(struct sock *sk, struct dst_entry *dst,
420 					struct request_sock *req,
421 					struct request_values *rvp);
422 extern int tcp_disconnect(struct sock *sk, int flags);
423 
424 
425 /* From syncookies.c */
426 extern __u32 syncookie_secret[2][16-4+SHA_DIGEST_WORDS];
427 extern struct sock *cookie_v4_check(struct sock *sk, struct sk_buff *skb,
428 				    struct ip_options *opt);
429 extern __u32 cookie_v4_init_sequence(struct sock *sk, struct sk_buff *skb,
430 				     __u16 *mss);
431 
432 extern __u32 cookie_init_timestamp(struct request_sock *req);
433 extern bool cookie_check_timestamp(struct tcp_options_received *opt, bool *);
434 
435 /* From net/ipv6/syncookies.c */
436 extern struct sock *cookie_v6_check(struct sock *sk, struct sk_buff *skb);
437 extern __u32 cookie_v6_init_sequence(struct sock *sk, struct sk_buff *skb,
438 				     __u16 *mss);
439 
440 /* tcp_output.c */
441 
442 extern void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
443 				      int nonagle);
444 extern int tcp_may_send_now(struct sock *sk);
445 extern int tcp_retransmit_skb(struct sock *, struct sk_buff *);
446 extern void tcp_retransmit_timer(struct sock *sk);
447 extern void tcp_xmit_retransmit_queue(struct sock *);
448 extern void tcp_simple_retransmit(struct sock *);
449 extern int tcp_trim_head(struct sock *, struct sk_buff *, u32);
450 extern int tcp_fragment(struct sock *, struct sk_buff *, u32, unsigned int);
451 
452 extern void tcp_send_probe0(struct sock *);
453 extern void tcp_send_partial(struct sock *);
454 extern int tcp_write_wakeup(struct sock *);
455 extern void tcp_send_fin(struct sock *sk);
456 extern void tcp_send_active_reset(struct sock *sk, gfp_t priority);
457 extern int tcp_send_synack(struct sock *);
458 extern void tcp_push_one(struct sock *, unsigned int mss_now);
459 extern void tcp_send_ack(struct sock *sk);
460 extern void tcp_send_delayed_ack(struct sock *sk);
461 
462 /* tcp_input.c */
463 extern void tcp_cwnd_application_limited(struct sock *sk);
464 
465 /* tcp_timer.c */
466 extern void tcp_init_xmit_timers(struct sock *);
467 static inline void tcp_clear_xmit_timers(struct sock *sk)
468 {
469 	inet_csk_clear_xmit_timers(sk);
470 }
471 
472 extern unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu);
473 extern unsigned int tcp_current_mss(struct sock *sk);
474 
475 /* Bound MSS / TSO packet size with the half of the window */
476 static inline int tcp_bound_to_half_wnd(struct tcp_sock *tp, int pktsize)
477 {
478 	if (tp->max_window && pktsize > (tp->max_window >> 1))
479 		return max(tp->max_window >> 1, 68U - tp->tcp_header_len);
480 	else
481 		return pktsize;
482 }
483 
484 /* tcp.c */
485 extern void tcp_get_info(struct sock *, struct tcp_info *);
486 
487 /* Read 'sendfile()'-style from a TCP socket */
488 typedef int (*sk_read_actor_t)(read_descriptor_t *, struct sk_buff *,
489 				unsigned int, size_t);
490 extern int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
491 			 sk_read_actor_t recv_actor);
492 
493 extern void tcp_initialize_rcv_mss(struct sock *sk);
494 
495 extern int tcp_mtu_to_mss(struct sock *sk, int pmtu);
496 extern int tcp_mss_to_mtu(struct sock *sk, int mss);
497 extern void tcp_mtup_init(struct sock *sk);
498 
499 static inline void tcp_bound_rto(const struct sock *sk)
500 {
501 	if (inet_csk(sk)->icsk_rto > TCP_RTO_MAX)
502 		inet_csk(sk)->icsk_rto = TCP_RTO_MAX;
503 }
504 
505 static inline u32 __tcp_set_rto(const struct tcp_sock *tp)
506 {
507 	return (tp->srtt >> 3) + tp->rttvar;
508 }
509 
510 static inline void __tcp_fast_path_on(struct tcp_sock *tp, u32 snd_wnd)
511 {
512 	tp->pred_flags = htonl((tp->tcp_header_len << 26) |
513 			       ntohl(TCP_FLAG_ACK) |
514 			       snd_wnd);
515 }
516 
517 static inline void tcp_fast_path_on(struct tcp_sock *tp)
518 {
519 	__tcp_fast_path_on(tp, tp->snd_wnd >> tp->rx_opt.snd_wscale);
520 }
521 
522 static inline void tcp_fast_path_check(struct sock *sk)
523 {
524 	struct tcp_sock *tp = tcp_sk(sk);
525 
526 	if (skb_queue_empty(&tp->out_of_order_queue) &&
527 	    tp->rcv_wnd &&
528 	    atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf &&
529 	    !tp->urg_data)
530 		tcp_fast_path_on(tp);
531 }
532 
533 /* Compute the actual rto_min value */
534 static inline u32 tcp_rto_min(struct sock *sk)
535 {
536 	struct dst_entry *dst = __sk_dst_get(sk);
537 	u32 rto_min = TCP_RTO_MIN;
538 
539 	if (dst && dst_metric_locked(dst, RTAX_RTO_MIN))
540 		rto_min = dst_metric_rtt(dst, RTAX_RTO_MIN);
541 	return rto_min;
542 }
543 
544 /* Compute the actual receive window we are currently advertising.
545  * Rcv_nxt can be after the window if our peer push more data
546  * than the offered window.
547  */
548 static inline u32 tcp_receive_window(const struct tcp_sock *tp)
549 {
550 	s32 win = tp->rcv_wup + tp->rcv_wnd - tp->rcv_nxt;
551 
552 	if (win < 0)
553 		win = 0;
554 	return (u32) win;
555 }
556 
557 /* Choose a new window, without checks for shrinking, and without
558  * scaling applied to the result.  The caller does these things
559  * if necessary.  This is a "raw" window selection.
560  */
561 extern u32 __tcp_select_window(struct sock *sk);
562 
563 /* TCP timestamps are only 32-bits, this causes a slight
564  * complication on 64-bit systems since we store a snapshot
565  * of jiffies in the buffer control blocks below.  We decided
566  * to use only the low 32-bits of jiffies and hide the ugly
567  * casts with the following macro.
568  */
569 #define tcp_time_stamp		((__u32)(jiffies))
570 
571 #define tcp_flag_byte(th) (((u_int8_t *)th)[13])
572 
573 #define TCPHDR_FIN 0x01
574 #define TCPHDR_SYN 0x02
575 #define TCPHDR_RST 0x04
576 #define TCPHDR_PSH 0x08
577 #define TCPHDR_ACK 0x10
578 #define TCPHDR_URG 0x20
579 #define TCPHDR_ECE 0x40
580 #define TCPHDR_CWR 0x80
581 
582 /* This is what the send packet queuing engine uses to pass
583  * TCP per-packet control information to the transmission code.
584  * We also store the host-order sequence numbers in here too.
585  * This is 44 bytes if IPV6 is enabled.
586  * If this grows please adjust skbuff.h:skbuff->cb[xxx] size appropriately.
587  */
588 struct tcp_skb_cb {
589 	union {
590 		struct inet_skb_parm	h4;
591 #if defined(CONFIG_IPV6) || defined (CONFIG_IPV6_MODULE)
592 		struct inet6_skb_parm	h6;
593 #endif
594 	} header;	/* For incoming frames		*/
595 	__u32		seq;		/* Starting sequence number	*/
596 	__u32		end_seq;	/* SEQ + FIN + SYN + datalen	*/
597 	__u32		when;		/* used to compute rtt's	*/
598 	__u8		flags;		/* TCP header flags.		*/
599 	__u8		sacked;		/* State flags for SACK/FACK.	*/
600 #define TCPCB_SACKED_ACKED	0x01	/* SKB ACK'd by a SACK block	*/
601 #define TCPCB_SACKED_RETRANS	0x02	/* SKB retransmitted		*/
602 #define TCPCB_LOST		0x04	/* SKB is lost			*/
603 #define TCPCB_TAGBITS		0x07	/* All tag bits			*/
604 
605 #define TCPCB_EVER_RETRANS	0x80	/* Ever retransmitted frame	*/
606 #define TCPCB_RETRANS		(TCPCB_SACKED_RETRANS|TCPCB_EVER_RETRANS)
607 
608 	__u32		ack_seq;	/* Sequence number ACK'd	*/
609 };
610 
611 #define TCP_SKB_CB(__skb)	((struct tcp_skb_cb *)&((__skb)->cb[0]))
612 
613 /* Due to TSO, an SKB can be composed of multiple actual
614  * packets.  To keep these tracked properly, we use this.
615  */
616 static inline int tcp_skb_pcount(const struct sk_buff *skb)
617 {
618 	return skb_shinfo(skb)->gso_segs;
619 }
620 
621 /* This is valid iff tcp_skb_pcount() > 1. */
622 static inline int tcp_skb_mss(const struct sk_buff *skb)
623 {
624 	return skb_shinfo(skb)->gso_size;
625 }
626 
627 /* Events passed to congestion control interface */
628 enum tcp_ca_event {
629 	CA_EVENT_TX_START,	/* first transmit when no packets in flight */
630 	CA_EVENT_CWND_RESTART,	/* congestion window restart */
631 	CA_EVENT_COMPLETE_CWR,	/* end of congestion recovery */
632 	CA_EVENT_FRTO,		/* fast recovery timeout */
633 	CA_EVENT_LOSS,		/* loss timeout */
634 	CA_EVENT_FAST_ACK,	/* in sequence ack */
635 	CA_EVENT_SLOW_ACK,	/* other ack */
636 };
637 
638 /*
639  * Interface for adding new TCP congestion control handlers
640  */
641 #define TCP_CA_NAME_MAX	16
642 #define TCP_CA_MAX	128
643 #define TCP_CA_BUF_MAX	(TCP_CA_NAME_MAX*TCP_CA_MAX)
644 
645 #define TCP_CONG_NON_RESTRICTED 0x1
646 #define TCP_CONG_RTT_STAMP	0x2
647 
648 struct tcp_congestion_ops {
649 	struct list_head	list;
650 	unsigned long flags;
651 
652 	/* initialize private data (optional) */
653 	void (*init)(struct sock *sk);
654 	/* cleanup private data  (optional) */
655 	void (*release)(struct sock *sk);
656 
657 	/* return slow start threshold (required) */
658 	u32 (*ssthresh)(struct sock *sk);
659 	/* lower bound for congestion window (optional) */
660 	u32 (*min_cwnd)(const struct sock *sk);
661 	/* do new cwnd calculation (required) */
662 	void (*cong_avoid)(struct sock *sk, u32 ack, u32 in_flight);
663 	/* call before changing ca_state (optional) */
664 	void (*set_state)(struct sock *sk, u8 new_state);
665 	/* call when cwnd event occurs (optional) */
666 	void (*cwnd_event)(struct sock *sk, enum tcp_ca_event ev);
667 	/* new value of cwnd after loss (optional) */
668 	u32  (*undo_cwnd)(struct sock *sk);
669 	/* hook for packet ack accounting (optional) */
670 	void (*pkts_acked)(struct sock *sk, u32 num_acked, s32 rtt_us);
671 	/* get info for inet_diag (optional) */
672 	void (*get_info)(struct sock *sk, u32 ext, struct sk_buff *skb);
673 
674 	char 		name[TCP_CA_NAME_MAX];
675 	struct module 	*owner;
676 };
677 
678 extern int tcp_register_congestion_control(struct tcp_congestion_ops *type);
679 extern void tcp_unregister_congestion_control(struct tcp_congestion_ops *type);
680 
681 extern void tcp_init_congestion_control(struct sock *sk);
682 extern void tcp_cleanup_congestion_control(struct sock *sk);
683 extern int tcp_set_default_congestion_control(const char *name);
684 extern void tcp_get_default_congestion_control(char *name);
685 extern void tcp_get_available_congestion_control(char *buf, size_t len);
686 extern void tcp_get_allowed_congestion_control(char *buf, size_t len);
687 extern int tcp_set_allowed_congestion_control(char *allowed);
688 extern int tcp_set_congestion_control(struct sock *sk, const char *name);
689 extern void tcp_slow_start(struct tcp_sock *tp);
690 extern void tcp_cong_avoid_ai(struct tcp_sock *tp, u32 w);
691 
692 extern struct tcp_congestion_ops tcp_init_congestion_ops;
693 extern u32 tcp_reno_ssthresh(struct sock *sk);
694 extern void tcp_reno_cong_avoid(struct sock *sk, u32 ack, u32 in_flight);
695 extern u32 tcp_reno_min_cwnd(const struct sock *sk);
696 extern struct tcp_congestion_ops tcp_reno;
697 
698 static inline void tcp_set_ca_state(struct sock *sk, const u8 ca_state)
699 {
700 	struct inet_connection_sock *icsk = inet_csk(sk);
701 
702 	if (icsk->icsk_ca_ops->set_state)
703 		icsk->icsk_ca_ops->set_state(sk, ca_state);
704 	icsk->icsk_ca_state = ca_state;
705 }
706 
707 static inline void tcp_ca_event(struct sock *sk, const enum tcp_ca_event event)
708 {
709 	const struct inet_connection_sock *icsk = inet_csk(sk);
710 
711 	if (icsk->icsk_ca_ops->cwnd_event)
712 		icsk->icsk_ca_ops->cwnd_event(sk, event);
713 }
714 
715 /* These functions determine how the current flow behaves in respect of SACK
716  * handling. SACK is negotiated with the peer, and therefore it can vary
717  * between different flows.
718  *
719  * tcp_is_sack - SACK enabled
720  * tcp_is_reno - No SACK
721  * tcp_is_fack - FACK enabled, implies SACK enabled
722  */
723 static inline int tcp_is_sack(const struct tcp_sock *tp)
724 {
725 	return tp->rx_opt.sack_ok;
726 }
727 
728 static inline int tcp_is_reno(const struct tcp_sock *tp)
729 {
730 	return !tcp_is_sack(tp);
731 }
732 
733 static inline int tcp_is_fack(const struct tcp_sock *tp)
734 {
735 	return tp->rx_opt.sack_ok & 2;
736 }
737 
738 static inline void tcp_enable_fack(struct tcp_sock *tp)
739 {
740 	tp->rx_opt.sack_ok |= 2;
741 }
742 
743 static inline unsigned int tcp_left_out(const struct tcp_sock *tp)
744 {
745 	return tp->sacked_out + tp->lost_out;
746 }
747 
748 /* This determines how many packets are "in the network" to the best
749  * of our knowledge.  In many cases it is conservative, but where
750  * detailed information is available from the receiver (via SACK
751  * blocks etc.) we can make more aggressive calculations.
752  *
753  * Use this for decisions involving congestion control, use just
754  * tp->packets_out to determine if the send queue is empty or not.
755  *
756  * Read this equation as:
757  *
758  *	"Packets sent once on transmission queue" MINUS
759  *	"Packets left network, but not honestly ACKed yet" PLUS
760  *	"Packets fast retransmitted"
761  */
762 static inline unsigned int tcp_packets_in_flight(const struct tcp_sock *tp)
763 {
764 	return tp->packets_out - tcp_left_out(tp) + tp->retrans_out;
765 }
766 
767 #define TCP_INFINITE_SSTHRESH	0x7fffffff
768 
769 static inline bool tcp_in_initial_slowstart(const struct tcp_sock *tp)
770 {
771 	return tp->snd_ssthresh >= TCP_INFINITE_SSTHRESH;
772 }
773 
774 /* If cwnd > ssthresh, we may raise ssthresh to be half-way to cwnd.
775  * The exception is rate halving phase, when cwnd is decreasing towards
776  * ssthresh.
777  */
778 static inline __u32 tcp_current_ssthresh(const struct sock *sk)
779 {
780 	const struct tcp_sock *tp = tcp_sk(sk);
781 	if ((1 << inet_csk(sk)->icsk_ca_state) & (TCPF_CA_CWR | TCPF_CA_Recovery))
782 		return tp->snd_ssthresh;
783 	else
784 		return max(tp->snd_ssthresh,
785 			   ((tp->snd_cwnd >> 1) +
786 			    (tp->snd_cwnd >> 2)));
787 }
788 
789 /* Use define here intentionally to get WARN_ON location shown at the caller */
790 #define tcp_verify_left_out(tp)	WARN_ON(tcp_left_out(tp) > tp->packets_out)
791 
792 extern void tcp_enter_cwr(struct sock *sk, const int set_ssthresh);
793 extern __u32 tcp_init_cwnd(struct tcp_sock *tp, struct dst_entry *dst);
794 
795 /* Slow start with delack produces 3 packets of burst, so that
796  * it is safe "de facto".  This will be the default - same as
797  * the default reordering threshold - but if reordering increases,
798  * we must be able to allow cwnd to burst at least this much in order
799  * to not pull it back when holes are filled.
800  */
801 static __inline__ __u32 tcp_max_burst(const struct tcp_sock *tp)
802 {
803 	return tp->reordering;
804 }
805 
806 /* Returns end sequence number of the receiver's advertised window */
807 static inline u32 tcp_wnd_end(const struct tcp_sock *tp)
808 {
809 	return tp->snd_una + tp->snd_wnd;
810 }
811 extern int tcp_is_cwnd_limited(const struct sock *sk, u32 in_flight);
812 
813 static inline void tcp_minshall_update(struct tcp_sock *tp, unsigned int mss,
814 				       const struct sk_buff *skb)
815 {
816 	if (skb->len < mss)
817 		tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
818 }
819 
820 static inline void tcp_check_probe_timer(struct sock *sk)
821 {
822 	struct tcp_sock *tp = tcp_sk(sk);
823 	const struct inet_connection_sock *icsk = inet_csk(sk);
824 
825 	if (!tp->packets_out && !icsk->icsk_pending)
826 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
827 					  icsk->icsk_rto, TCP_RTO_MAX);
828 }
829 
830 static inline void tcp_init_wl(struct tcp_sock *tp, u32 seq)
831 {
832 	tp->snd_wl1 = seq;
833 }
834 
835 static inline void tcp_update_wl(struct tcp_sock *tp, u32 seq)
836 {
837 	tp->snd_wl1 = seq;
838 }
839 
840 /*
841  * Calculate(/check) TCP checksum
842  */
843 static inline __sum16 tcp_v4_check(int len, __be32 saddr,
844 				   __be32 daddr, __wsum base)
845 {
846 	return csum_tcpudp_magic(saddr,daddr,len,IPPROTO_TCP,base);
847 }
848 
849 static inline __sum16 __tcp_checksum_complete(struct sk_buff *skb)
850 {
851 	return __skb_checksum_complete(skb);
852 }
853 
854 static inline int tcp_checksum_complete(struct sk_buff *skb)
855 {
856 	return !skb_csum_unnecessary(skb) &&
857 		__tcp_checksum_complete(skb);
858 }
859 
860 /* Prequeue for VJ style copy to user, combined with checksumming. */
861 
862 static inline void tcp_prequeue_init(struct tcp_sock *tp)
863 {
864 	tp->ucopy.task = NULL;
865 	tp->ucopy.len = 0;
866 	tp->ucopy.memory = 0;
867 	skb_queue_head_init(&tp->ucopy.prequeue);
868 #ifdef CONFIG_NET_DMA
869 	tp->ucopy.dma_chan = NULL;
870 	tp->ucopy.wakeup = 0;
871 	tp->ucopy.pinned_list = NULL;
872 	tp->ucopy.dma_cookie = 0;
873 #endif
874 }
875 
876 /* Packet is added to VJ-style prequeue for processing in process
877  * context, if a reader task is waiting. Apparently, this exciting
878  * idea (VJ's mail "Re: query about TCP header on tcp-ip" of 07 Sep 93)
879  * failed somewhere. Latency? Burstiness? Well, at least now we will
880  * see, why it failed. 8)8)				  --ANK
881  *
882  * NOTE: is this not too big to inline?
883  */
884 static inline int tcp_prequeue(struct sock *sk, struct sk_buff *skb)
885 {
886 	struct tcp_sock *tp = tcp_sk(sk);
887 
888 	if (sysctl_tcp_low_latency || !tp->ucopy.task)
889 		return 0;
890 
891 	__skb_queue_tail(&tp->ucopy.prequeue, skb);
892 	tp->ucopy.memory += skb->truesize;
893 	if (tp->ucopy.memory > sk->sk_rcvbuf) {
894 		struct sk_buff *skb1;
895 
896 		BUG_ON(sock_owned_by_user(sk));
897 
898 		while ((skb1 = __skb_dequeue(&tp->ucopy.prequeue)) != NULL) {
899 			sk_backlog_rcv(sk, skb1);
900 			NET_INC_STATS_BH(sock_net(sk),
901 					 LINUX_MIB_TCPPREQUEUEDROPPED);
902 		}
903 
904 		tp->ucopy.memory = 0;
905 	} else if (skb_queue_len(&tp->ucopy.prequeue) == 1) {
906 		wake_up_interruptible_sync_poll(sk_sleep(sk),
907 					   POLLIN | POLLRDNORM | POLLRDBAND);
908 		if (!inet_csk_ack_scheduled(sk))
909 			inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
910 						  (3 * tcp_rto_min(sk)) / 4,
911 						  TCP_RTO_MAX);
912 	}
913 	return 1;
914 }
915 
916 
917 #undef STATE_TRACE
918 
919 #ifdef STATE_TRACE
920 static const char *statename[]={
921 	"Unused","Established","Syn Sent","Syn Recv",
922 	"Fin Wait 1","Fin Wait 2","Time Wait", "Close",
923 	"Close Wait","Last ACK","Listen","Closing"
924 };
925 #endif
926 extern void tcp_set_state(struct sock *sk, int state);
927 
928 extern void tcp_done(struct sock *sk);
929 
930 static inline void tcp_sack_reset(struct tcp_options_received *rx_opt)
931 {
932 	rx_opt->dsack = 0;
933 	rx_opt->num_sacks = 0;
934 }
935 
936 /* Determine a window scaling and initial window to offer. */
937 extern void tcp_select_initial_window(int __space, __u32 mss,
938 				      __u32 *rcv_wnd, __u32 *window_clamp,
939 				      int wscale_ok, __u8 *rcv_wscale,
940 				      __u32 init_rcv_wnd);
941 
942 static inline int tcp_win_from_space(int space)
943 {
944 	return sysctl_tcp_adv_win_scale<=0 ?
945 		(space>>(-sysctl_tcp_adv_win_scale)) :
946 		space - (space>>sysctl_tcp_adv_win_scale);
947 }
948 
949 /* Note: caller must be prepared to deal with negative returns */
950 static inline int tcp_space(const struct sock *sk)
951 {
952 	return tcp_win_from_space(sk->sk_rcvbuf -
953 				  atomic_read(&sk->sk_rmem_alloc));
954 }
955 
956 static inline int tcp_full_space(const struct sock *sk)
957 {
958 	return tcp_win_from_space(sk->sk_rcvbuf);
959 }
960 
961 static inline void tcp_openreq_init(struct request_sock *req,
962 				    struct tcp_options_received *rx_opt,
963 				    struct sk_buff *skb)
964 {
965 	struct inet_request_sock *ireq = inet_rsk(req);
966 
967 	req->rcv_wnd = 0;		/* So that tcp_send_synack() knows! */
968 	req->cookie_ts = 0;
969 	tcp_rsk(req)->rcv_isn = TCP_SKB_CB(skb)->seq;
970 	req->mss = rx_opt->mss_clamp;
971 	req->ts_recent = rx_opt->saw_tstamp ? rx_opt->rcv_tsval : 0;
972 	ireq->tstamp_ok = rx_opt->tstamp_ok;
973 	ireq->sack_ok = rx_opt->sack_ok;
974 	ireq->snd_wscale = rx_opt->snd_wscale;
975 	ireq->wscale_ok = rx_opt->wscale_ok;
976 	ireq->acked = 0;
977 	ireq->ecn_ok = 0;
978 	ireq->rmt_port = tcp_hdr(skb)->source;
979 	ireq->loc_port = tcp_hdr(skb)->dest;
980 }
981 
982 extern void tcp_enter_memory_pressure(struct sock *sk);
983 
984 static inline int keepalive_intvl_when(const struct tcp_sock *tp)
985 {
986 	return tp->keepalive_intvl ? : sysctl_tcp_keepalive_intvl;
987 }
988 
989 static inline int keepalive_time_when(const struct tcp_sock *tp)
990 {
991 	return tp->keepalive_time ? : sysctl_tcp_keepalive_time;
992 }
993 
994 static inline int keepalive_probes(const struct tcp_sock *tp)
995 {
996 	return tp->keepalive_probes ? : sysctl_tcp_keepalive_probes;
997 }
998 
999 static inline u32 keepalive_time_elapsed(const struct tcp_sock *tp)
1000 {
1001 	const struct inet_connection_sock *icsk = &tp->inet_conn;
1002 
1003 	return min_t(u32, tcp_time_stamp - icsk->icsk_ack.lrcvtime,
1004 			  tcp_time_stamp - tp->rcv_tstamp);
1005 }
1006 
1007 static inline int tcp_fin_time(const struct sock *sk)
1008 {
1009 	int fin_timeout = tcp_sk(sk)->linger2 ? : sysctl_tcp_fin_timeout;
1010 	const int rto = inet_csk(sk)->icsk_rto;
1011 
1012 	if (fin_timeout < (rto << 2) - (rto >> 1))
1013 		fin_timeout = (rto << 2) - (rto >> 1);
1014 
1015 	return fin_timeout;
1016 }
1017 
1018 static inline int tcp_paws_check(const struct tcp_options_received *rx_opt,
1019 				 int paws_win)
1020 {
1021 	if ((s32)(rx_opt->ts_recent - rx_opt->rcv_tsval) <= paws_win)
1022 		return 1;
1023 	if (unlikely(get_seconds() >= rx_opt->ts_recent_stamp + TCP_PAWS_24DAYS))
1024 		return 1;
1025 
1026 	return 0;
1027 }
1028 
1029 static inline int tcp_paws_reject(const struct tcp_options_received *rx_opt,
1030 				  int rst)
1031 {
1032 	if (tcp_paws_check(rx_opt, 0))
1033 		return 0;
1034 
1035 	/* RST segments are not recommended to carry timestamp,
1036 	   and, if they do, it is recommended to ignore PAWS because
1037 	   "their cleanup function should take precedence over timestamps."
1038 	   Certainly, it is mistake. It is necessary to understand the reasons
1039 	   of this constraint to relax it: if peer reboots, clock may go
1040 	   out-of-sync and half-open connections will not be reset.
1041 	   Actually, the problem would be not existing if all
1042 	   the implementations followed draft about maintaining clock
1043 	   via reboots. Linux-2.2 DOES NOT!
1044 
1045 	   However, we can relax time bounds for RST segments to MSL.
1046 	 */
1047 	if (rst && get_seconds() >= rx_opt->ts_recent_stamp + TCP_PAWS_MSL)
1048 		return 0;
1049 	return 1;
1050 }
1051 
1052 #define TCP_CHECK_TIMER(sk) do { } while (0)
1053 
1054 static inline void tcp_mib_init(struct net *net)
1055 {
1056 	/* See RFC 2012 */
1057 	TCP_ADD_STATS_USER(net, TCP_MIB_RTOALGORITHM, 1);
1058 	TCP_ADD_STATS_USER(net, TCP_MIB_RTOMIN, TCP_RTO_MIN*1000/HZ);
1059 	TCP_ADD_STATS_USER(net, TCP_MIB_RTOMAX, TCP_RTO_MAX*1000/HZ);
1060 	TCP_ADD_STATS_USER(net, TCP_MIB_MAXCONN, -1);
1061 }
1062 
1063 /* from STCP */
1064 static inline void tcp_clear_retrans_hints_partial(struct tcp_sock *tp)
1065 {
1066 	tp->lost_skb_hint = NULL;
1067 	tp->scoreboard_skb_hint = NULL;
1068 }
1069 
1070 static inline void tcp_clear_all_retrans_hints(struct tcp_sock *tp)
1071 {
1072 	tcp_clear_retrans_hints_partial(tp);
1073 	tp->retransmit_skb_hint = NULL;
1074 }
1075 
1076 /* MD5 Signature */
1077 struct crypto_hash;
1078 
1079 /* - key database */
1080 struct tcp_md5sig_key {
1081 	u8			*key;
1082 	u8			keylen;
1083 };
1084 
1085 struct tcp4_md5sig_key {
1086 	struct tcp_md5sig_key	base;
1087 	__be32			addr;
1088 };
1089 
1090 struct tcp6_md5sig_key {
1091 	struct tcp_md5sig_key	base;
1092 #if 0
1093 	u32			scope_id;	/* XXX */
1094 #endif
1095 	struct in6_addr		addr;
1096 };
1097 
1098 /* - sock block */
1099 struct tcp_md5sig_info {
1100 	struct tcp4_md5sig_key	*keys4;
1101 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
1102 	struct tcp6_md5sig_key	*keys6;
1103 	u32			entries6;
1104 	u32			alloced6;
1105 #endif
1106 	u32			entries4;
1107 	u32			alloced4;
1108 };
1109 
1110 /* - pseudo header */
1111 struct tcp4_pseudohdr {
1112 	__be32		saddr;
1113 	__be32		daddr;
1114 	__u8		pad;
1115 	__u8		protocol;
1116 	__be16		len;
1117 };
1118 
1119 struct tcp6_pseudohdr {
1120 	struct in6_addr	saddr;
1121 	struct in6_addr daddr;
1122 	__be32		len;
1123 	__be32		protocol;	/* including padding */
1124 };
1125 
1126 union tcp_md5sum_block {
1127 	struct tcp4_pseudohdr ip4;
1128 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
1129 	struct tcp6_pseudohdr ip6;
1130 #endif
1131 };
1132 
1133 /* - pool: digest algorithm, hash description and scratch buffer */
1134 struct tcp_md5sig_pool {
1135 	struct hash_desc	md5_desc;
1136 	union tcp_md5sum_block	md5_blk;
1137 };
1138 
1139 #define TCP_MD5SIG_MAXKEYS	(~(u32)0)	/* really?! */
1140 
1141 /* - functions */
1142 extern int tcp_v4_md5_hash_skb(char *md5_hash, struct tcp_md5sig_key *key,
1143 			       struct sock *sk, struct request_sock *req,
1144 			       struct sk_buff *skb);
1145 extern struct tcp_md5sig_key * tcp_v4_md5_lookup(struct sock *sk,
1146 						 struct sock *addr_sk);
1147 extern int tcp_v4_md5_do_add(struct sock *sk, __be32 addr, u8 *newkey,
1148 			     u8 newkeylen);
1149 extern int tcp_v4_md5_do_del(struct sock *sk, __be32 addr);
1150 
1151 #ifdef CONFIG_TCP_MD5SIG
1152 #define tcp_twsk_md5_key(twsk)	((twsk)->tw_md5_keylen ? 		 \
1153 				 &(struct tcp_md5sig_key) {		 \
1154 					.key = (twsk)->tw_md5_key,	 \
1155 					.keylen = (twsk)->tw_md5_keylen, \
1156 				} : NULL)
1157 #else
1158 #define tcp_twsk_md5_key(twsk)	NULL
1159 #endif
1160 
1161 extern struct tcp_md5sig_pool * __percpu *tcp_alloc_md5sig_pool(struct sock *);
1162 extern void tcp_free_md5sig_pool(void);
1163 
1164 extern struct tcp_md5sig_pool	*tcp_get_md5sig_pool(void);
1165 extern void tcp_put_md5sig_pool(void);
1166 
1167 extern int tcp_md5_hash_header(struct tcp_md5sig_pool *, struct tcphdr *);
1168 extern int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *, struct sk_buff *,
1169 				 unsigned header_len);
1170 extern int tcp_md5_hash_key(struct tcp_md5sig_pool *hp,
1171 			    struct tcp_md5sig_key *key);
1172 
1173 /* write queue abstraction */
1174 static inline void tcp_write_queue_purge(struct sock *sk)
1175 {
1176 	struct sk_buff *skb;
1177 
1178 	while ((skb = __skb_dequeue(&sk->sk_write_queue)) != NULL)
1179 		sk_wmem_free_skb(sk, skb);
1180 	sk_mem_reclaim(sk);
1181 	tcp_clear_all_retrans_hints(tcp_sk(sk));
1182 }
1183 
1184 static inline struct sk_buff *tcp_write_queue_head(struct sock *sk)
1185 {
1186 	return skb_peek(&sk->sk_write_queue);
1187 }
1188 
1189 static inline struct sk_buff *tcp_write_queue_tail(struct sock *sk)
1190 {
1191 	return skb_peek_tail(&sk->sk_write_queue);
1192 }
1193 
1194 static inline struct sk_buff *tcp_write_queue_next(struct sock *sk, struct sk_buff *skb)
1195 {
1196 	return skb_queue_next(&sk->sk_write_queue, skb);
1197 }
1198 
1199 static inline struct sk_buff *tcp_write_queue_prev(struct sock *sk, struct sk_buff *skb)
1200 {
1201 	return skb_queue_prev(&sk->sk_write_queue, skb);
1202 }
1203 
1204 #define tcp_for_write_queue(skb, sk)					\
1205 	skb_queue_walk(&(sk)->sk_write_queue, skb)
1206 
1207 #define tcp_for_write_queue_from(skb, sk)				\
1208 	skb_queue_walk_from(&(sk)->sk_write_queue, skb)
1209 
1210 #define tcp_for_write_queue_from_safe(skb, tmp, sk)			\
1211 	skb_queue_walk_from_safe(&(sk)->sk_write_queue, skb, tmp)
1212 
1213 static inline struct sk_buff *tcp_send_head(struct sock *sk)
1214 {
1215 	return sk->sk_send_head;
1216 }
1217 
1218 static inline bool tcp_skb_is_last(const struct sock *sk,
1219 				   const struct sk_buff *skb)
1220 {
1221 	return skb_queue_is_last(&sk->sk_write_queue, skb);
1222 }
1223 
1224 static inline void tcp_advance_send_head(struct sock *sk, struct sk_buff *skb)
1225 {
1226 	if (tcp_skb_is_last(sk, skb))
1227 		sk->sk_send_head = NULL;
1228 	else
1229 		sk->sk_send_head = tcp_write_queue_next(sk, skb);
1230 }
1231 
1232 static inline void tcp_check_send_head(struct sock *sk, struct sk_buff *skb_unlinked)
1233 {
1234 	if (sk->sk_send_head == skb_unlinked)
1235 		sk->sk_send_head = NULL;
1236 }
1237 
1238 static inline void tcp_init_send_head(struct sock *sk)
1239 {
1240 	sk->sk_send_head = NULL;
1241 }
1242 
1243 static inline void __tcp_add_write_queue_tail(struct sock *sk, struct sk_buff *skb)
1244 {
1245 	__skb_queue_tail(&sk->sk_write_queue, skb);
1246 }
1247 
1248 static inline void tcp_add_write_queue_tail(struct sock *sk, struct sk_buff *skb)
1249 {
1250 	__tcp_add_write_queue_tail(sk, skb);
1251 
1252 	/* Queue it, remembering where we must start sending. */
1253 	if (sk->sk_send_head == NULL) {
1254 		sk->sk_send_head = skb;
1255 
1256 		if (tcp_sk(sk)->highest_sack == NULL)
1257 			tcp_sk(sk)->highest_sack = skb;
1258 	}
1259 }
1260 
1261 static inline void __tcp_add_write_queue_head(struct sock *sk, struct sk_buff *skb)
1262 {
1263 	__skb_queue_head(&sk->sk_write_queue, skb);
1264 }
1265 
1266 /* Insert buff after skb on the write queue of sk.  */
1267 static inline void tcp_insert_write_queue_after(struct sk_buff *skb,
1268 						struct sk_buff *buff,
1269 						struct sock *sk)
1270 {
1271 	__skb_queue_after(&sk->sk_write_queue, skb, buff);
1272 }
1273 
1274 /* Insert new before skb on the write queue of sk.  */
1275 static inline void tcp_insert_write_queue_before(struct sk_buff *new,
1276 						  struct sk_buff *skb,
1277 						  struct sock *sk)
1278 {
1279 	__skb_queue_before(&sk->sk_write_queue, skb, new);
1280 
1281 	if (sk->sk_send_head == skb)
1282 		sk->sk_send_head = new;
1283 }
1284 
1285 static inline void tcp_unlink_write_queue(struct sk_buff *skb, struct sock *sk)
1286 {
1287 	__skb_unlink(skb, &sk->sk_write_queue);
1288 }
1289 
1290 static inline int tcp_write_queue_empty(struct sock *sk)
1291 {
1292 	return skb_queue_empty(&sk->sk_write_queue);
1293 }
1294 
1295 static inline void tcp_push_pending_frames(struct sock *sk)
1296 {
1297 	if (tcp_send_head(sk)) {
1298 		struct tcp_sock *tp = tcp_sk(sk);
1299 
1300 		__tcp_push_pending_frames(sk, tcp_current_mss(sk), tp->nonagle);
1301 	}
1302 }
1303 
1304 /* Start sequence of the highest skb with SACKed bit, valid only if
1305  * sacked > 0 or when the caller has ensured validity by itself.
1306  */
1307 static inline u32 tcp_highest_sack_seq(struct tcp_sock *tp)
1308 {
1309 	if (!tp->sacked_out)
1310 		return tp->snd_una;
1311 
1312 	if (tp->highest_sack == NULL)
1313 		return tp->snd_nxt;
1314 
1315 	return TCP_SKB_CB(tp->highest_sack)->seq;
1316 }
1317 
1318 static inline void tcp_advance_highest_sack(struct sock *sk, struct sk_buff *skb)
1319 {
1320 	tcp_sk(sk)->highest_sack = tcp_skb_is_last(sk, skb) ? NULL :
1321 						tcp_write_queue_next(sk, skb);
1322 }
1323 
1324 static inline struct sk_buff *tcp_highest_sack(struct sock *sk)
1325 {
1326 	return tcp_sk(sk)->highest_sack;
1327 }
1328 
1329 static inline void tcp_highest_sack_reset(struct sock *sk)
1330 {
1331 	tcp_sk(sk)->highest_sack = tcp_write_queue_head(sk);
1332 }
1333 
1334 /* Called when old skb is about to be deleted (to be combined with new skb) */
1335 static inline void tcp_highest_sack_combine(struct sock *sk,
1336 					    struct sk_buff *old,
1337 					    struct sk_buff *new)
1338 {
1339 	if (tcp_sk(sk)->sacked_out && (old == tcp_sk(sk)->highest_sack))
1340 		tcp_sk(sk)->highest_sack = new;
1341 }
1342 
1343 /* Determines whether this is a thin stream (which may suffer from
1344  * increased latency). Used to trigger latency-reducing mechanisms.
1345  */
1346 static inline unsigned int tcp_stream_is_thin(struct tcp_sock *tp)
1347 {
1348 	return tp->packets_out < 4 && !tcp_in_initial_slowstart(tp);
1349 }
1350 
1351 /* /proc */
1352 enum tcp_seq_states {
1353 	TCP_SEQ_STATE_LISTENING,
1354 	TCP_SEQ_STATE_OPENREQ,
1355 	TCP_SEQ_STATE_ESTABLISHED,
1356 	TCP_SEQ_STATE_TIME_WAIT,
1357 };
1358 
1359 struct tcp_seq_afinfo {
1360 	char			*name;
1361 	sa_family_t		family;
1362 	struct file_operations	seq_fops;
1363 	struct seq_operations	seq_ops;
1364 };
1365 
1366 struct tcp_iter_state {
1367 	struct seq_net_private	p;
1368 	sa_family_t		family;
1369 	enum tcp_seq_states	state;
1370 	struct sock		*syn_wait_sk;
1371 	int			bucket, offset, sbucket, num, uid;
1372 	loff_t			last_pos;
1373 };
1374 
1375 extern int tcp_proc_register(struct net *net, struct tcp_seq_afinfo *afinfo);
1376 extern void tcp_proc_unregister(struct net *net, struct tcp_seq_afinfo *afinfo);
1377 
1378 extern struct request_sock_ops tcp_request_sock_ops;
1379 extern struct request_sock_ops tcp6_request_sock_ops;
1380 
1381 extern void tcp_v4_destroy_sock(struct sock *sk);
1382 
1383 extern int tcp_v4_gso_send_check(struct sk_buff *skb);
1384 extern struct sk_buff *tcp_tso_segment(struct sk_buff *skb, int features);
1385 extern struct sk_buff **tcp_gro_receive(struct sk_buff **head,
1386 					struct sk_buff *skb);
1387 extern struct sk_buff **tcp4_gro_receive(struct sk_buff **head,
1388 					 struct sk_buff *skb);
1389 extern int tcp_gro_complete(struct sk_buff *skb);
1390 extern int tcp4_gro_complete(struct sk_buff *skb);
1391 
1392 #ifdef CONFIG_PROC_FS
1393 extern int tcp4_proc_init(void);
1394 extern void tcp4_proc_exit(void);
1395 #endif
1396 
1397 /* TCP af-specific functions */
1398 struct tcp_sock_af_ops {
1399 #ifdef CONFIG_TCP_MD5SIG
1400 	struct tcp_md5sig_key	*(*md5_lookup) (struct sock *sk,
1401 						struct sock *addr_sk);
1402 	int			(*calc_md5_hash) (char *location,
1403 						  struct tcp_md5sig_key *md5,
1404 						  struct sock *sk,
1405 						  struct request_sock *req,
1406 						  struct sk_buff *skb);
1407 	int			(*md5_add) (struct sock *sk,
1408 					    struct sock *addr_sk,
1409 					    u8 *newkey,
1410 					    u8 len);
1411 	int			(*md5_parse) (struct sock *sk,
1412 					      char __user *optval,
1413 					      int optlen);
1414 #endif
1415 };
1416 
1417 struct tcp_request_sock_ops {
1418 #ifdef CONFIG_TCP_MD5SIG
1419 	struct tcp_md5sig_key	*(*md5_lookup) (struct sock *sk,
1420 						struct request_sock *req);
1421 	int			(*calc_md5_hash) (char *location,
1422 						  struct tcp_md5sig_key *md5,
1423 						  struct sock *sk,
1424 						  struct request_sock *req,
1425 						  struct sk_buff *skb);
1426 #endif
1427 };
1428 
1429 /* Using SHA1 for now, define some constants.
1430  */
1431 #define COOKIE_DIGEST_WORDS (SHA_DIGEST_WORDS)
1432 #define COOKIE_MESSAGE_WORDS (SHA_MESSAGE_BYTES / 4)
1433 #define COOKIE_WORKSPACE_WORDS (COOKIE_DIGEST_WORDS + COOKIE_MESSAGE_WORDS)
1434 
1435 extern int tcp_cookie_generator(u32 *bakery);
1436 
1437 /**
1438  *	struct tcp_cookie_values - each socket needs extra space for the
1439  *	cookies, together with (optional) space for any SYN data.
1440  *
1441  *	A tcp_sock contains a pointer to the current value, and this is
1442  *	cloned to the tcp_timewait_sock.
1443  *
1444  * @cookie_pair:	variable data from the option exchange.
1445  *
1446  * @cookie_desired:	user specified tcpct_cookie_desired.  Zero
1447  *			indicates default (sysctl_tcp_cookie_size).
1448  *			After cookie sent, remembers size of cookie.
1449  *			Range 0, TCP_COOKIE_MIN to TCP_COOKIE_MAX.
1450  *
1451  * @s_data_desired:	user specified tcpct_s_data_desired.  When the
1452  *			constant payload is specified (@s_data_constant),
1453  *			holds its length instead.
1454  *			Range 0 to TCP_MSS_DESIRED.
1455  *
1456  * @s_data_payload:	constant data that is to be included in the
1457  *			payload of SYN or SYNACK segments when the
1458  *			cookie option is present.
1459  */
1460 struct tcp_cookie_values {
1461 	struct kref	kref;
1462 	u8		cookie_pair[TCP_COOKIE_PAIR_SIZE];
1463 	u8		cookie_pair_size;
1464 	u8		cookie_desired;
1465 	u16		s_data_desired:11,
1466 			s_data_constant:1,
1467 			s_data_in:1,
1468 			s_data_out:1,
1469 			s_data_unused:2;
1470 	u8		s_data_payload[0];
1471 };
1472 
1473 static inline void tcp_cookie_values_release(struct kref *kref)
1474 {
1475 	kfree(container_of(kref, struct tcp_cookie_values, kref));
1476 }
1477 
1478 /* The length of constant payload data.  Note that s_data_desired is
1479  * overloaded, depending on s_data_constant: either the length of constant
1480  * data (returned here) or the limit on variable data.
1481  */
1482 static inline int tcp_s_data_size(const struct tcp_sock *tp)
1483 {
1484 	return (tp->cookie_values != NULL && tp->cookie_values->s_data_constant)
1485 		? tp->cookie_values->s_data_desired
1486 		: 0;
1487 }
1488 
1489 /**
1490  *	struct tcp_extend_values - tcp_ipv?.c to tcp_output.c workspace.
1491  *
1492  *	As tcp_request_sock has already been extended in other places, the
1493  *	only remaining method is to pass stack values along as function
1494  *	parameters.  These parameters are not needed after sending SYNACK.
1495  *
1496  * @cookie_bakery:	cryptographic secret and message workspace.
1497  *
1498  * @cookie_plus:	bytes in authenticator/cookie option, copied from
1499  *			struct tcp_options_received (above).
1500  */
1501 struct tcp_extend_values {
1502 	struct request_values		rv;
1503 	u32				cookie_bakery[COOKIE_WORKSPACE_WORDS];
1504 	u8				cookie_plus:6,
1505 					cookie_out_never:1,
1506 					cookie_in_always:1;
1507 };
1508 
1509 static inline struct tcp_extend_values *tcp_xv(struct request_values *rvp)
1510 {
1511 	return (struct tcp_extend_values *)rvp;
1512 }
1513 
1514 extern void tcp_v4_init(void);
1515 extern void tcp_init(void);
1516 
1517 #endif	/* _TCP_H */
1518