1 /* SPDX-License-Identifier: GPL-2.0-or-later */ 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * Definitions for the TCP module. 8 * 9 * Version: @(#)tcp.h 1.0.5 05/23/93 10 * 11 * Authors: Ross Biro 12 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 13 */ 14 #ifndef _TCP_H 15 #define _TCP_H 16 17 #define FASTRETRANS_DEBUG 1 18 19 #include <linux/list.h> 20 #include <linux/tcp.h> 21 #include <linux/bug.h> 22 #include <linux/slab.h> 23 #include <linux/cache.h> 24 #include <linux/percpu.h> 25 #include <linux/skbuff.h> 26 #include <linux/kref.h> 27 #include <linux/ktime.h> 28 #include <linux/indirect_call_wrapper.h> 29 #include <linux/bits.h> 30 31 #include <net/inet_connection_sock.h> 32 #include <net/inet_timewait_sock.h> 33 #include <net/inet_hashtables.h> 34 #include <net/checksum.h> 35 #include <net/request_sock.h> 36 #include <net/sock_reuseport.h> 37 #include <net/sock.h> 38 #include <net/snmp.h> 39 #include <net/ip.h> 40 #include <net/tcp_states.h> 41 #include <net/tcp_ao.h> 42 #include <net/inet_ecn.h> 43 #include <net/dst.h> 44 #include <net/mptcp.h> 45 #include <net/xfrm.h> 46 47 #include <linux/seq_file.h> 48 #include <linux/memcontrol.h> 49 #include <linux/bpf-cgroup.h> 50 #include <linux/siphash.h> 51 52 extern struct inet_hashinfo tcp_hashinfo; 53 54 DECLARE_PER_CPU(unsigned int, tcp_orphan_count); 55 int tcp_orphan_count_sum(void); 56 57 static inline void tcp_orphan_count_inc(void) 58 { 59 this_cpu_inc(tcp_orphan_count); 60 } 61 62 static inline void tcp_orphan_count_dec(void) 63 { 64 this_cpu_dec(tcp_orphan_count); 65 } 66 67 DECLARE_PER_CPU(u32, tcp_tw_isn); 68 69 void tcp_time_wait(struct sock *sk, int state, int timeo); 70 71 #define MAX_TCP_HEADER L1_CACHE_ALIGN(128 + MAX_HEADER) 72 #define MAX_TCP_OPTION_SPACE 40 73 #define TCP_MIN_SND_MSS 48 74 #define TCP_MIN_GSO_SIZE (TCP_MIN_SND_MSS - MAX_TCP_OPTION_SPACE) 75 76 /* 77 * Never offer a window over 32767 without using window scaling. Some 78 * poor stacks do signed 16bit maths! 79 */ 80 #define MAX_TCP_WINDOW 32767U 81 82 /* Minimal accepted MSS. It is (60+60+8) - (20+20). */ 83 #define TCP_MIN_MSS 88U 84 85 /* The initial MTU to use for probing */ 86 #define TCP_BASE_MSS 1024 87 88 /* probing interval, default to 10 minutes as per RFC4821 */ 89 #define TCP_PROBE_INTERVAL 600 90 91 /* Specify interval when tcp mtu probing will stop */ 92 #define TCP_PROBE_THRESHOLD 8 93 94 /* After receiving this amount of duplicate ACKs fast retransmit starts. */ 95 #define TCP_FASTRETRANS_THRESH 3 96 97 /* Maximal number of ACKs sent quickly to accelerate slow-start. */ 98 #define TCP_MAX_QUICKACKS 16U 99 100 /* Maximal number of window scale according to RFC1323 */ 101 #define TCP_MAX_WSCALE 14U 102 103 /* urg_data states */ 104 #define TCP_URG_VALID 0x0100 105 #define TCP_URG_NOTYET 0x0200 106 #define TCP_URG_READ 0x0400 107 108 #define TCP_RETR1 3 /* 109 * This is how many retries it does before it 110 * tries to figure out if the gateway is 111 * down. Minimal RFC value is 3; it corresponds 112 * to ~3sec-8min depending on RTO. 113 */ 114 115 #define TCP_RETR2 15 /* 116 * This should take at least 117 * 90 minutes to time out. 118 * RFC1122 says that the limit is 100 sec. 119 * 15 is ~13-30min depending on RTO. 120 */ 121 122 #define TCP_SYN_RETRIES 6 /* This is how many retries are done 123 * when active opening a connection. 124 * RFC1122 says the minimum retry MUST 125 * be at least 180secs. Nevertheless 126 * this value is corresponding to 127 * 63secs of retransmission with the 128 * current initial RTO. 129 */ 130 131 #define TCP_SYNACK_RETRIES 5 /* This is how may retries are done 132 * when passive opening a connection. 133 * This is corresponding to 31secs of 134 * retransmission with the current 135 * initial RTO. 136 */ 137 138 #define TCP_TIMEWAIT_LEN (60*HZ) /* how long to wait to destroy TIME-WAIT 139 * state, about 60 seconds */ 140 #define TCP_FIN_TIMEOUT TCP_TIMEWAIT_LEN 141 /* BSD style FIN_WAIT2 deadlock breaker. 142 * It used to be 3min, new value is 60sec, 143 * to combine FIN-WAIT-2 timeout with 144 * TIME-WAIT timer. 145 */ 146 #define TCP_FIN_TIMEOUT_MAX (120 * HZ) /* max TCP_LINGER2 value (two minutes) */ 147 148 #define TCP_DELACK_MAX ((unsigned)(HZ/5)) /* maximal time to delay before sending an ACK */ 149 static_assert((1 << ATO_BITS) > TCP_DELACK_MAX); 150 151 #if HZ >= 100 152 #define TCP_DELACK_MIN ((unsigned)(HZ/25)) /* minimal time to delay before sending an ACK */ 153 #define TCP_ATO_MIN ((unsigned)(HZ/25)) 154 #else 155 #define TCP_DELACK_MIN 4U 156 #define TCP_ATO_MIN 4U 157 #endif 158 #define TCP_RTO_MAX_SEC 120 159 #define TCP_RTO_MAX ((unsigned)(TCP_RTO_MAX_SEC * HZ)) 160 #define TCP_RTO_MIN ((unsigned)(HZ / 5)) 161 #define TCP_TIMEOUT_MIN (2U) /* Min timeout for TCP timers in jiffies */ 162 163 #define TCP_TIMEOUT_MIN_US (2*USEC_PER_MSEC) /* Min TCP timeout in microsecs */ 164 165 #define TCP_TIMEOUT_INIT ((unsigned)(1*HZ)) /* RFC6298 2.1 initial RTO value */ 166 #define TCP_TIMEOUT_FALLBACK ((unsigned)(3*HZ)) /* RFC 1122 initial RTO value, now 167 * used as a fallback RTO for the 168 * initial data transmission if no 169 * valid RTT sample has been acquired, 170 * most likely due to retrans in 3WHS. 171 */ 172 173 #define TCP_RESOURCE_PROBE_INTERVAL ((unsigned)(HZ/2U)) /* Maximal interval between probes 174 * for local resources. 175 */ 176 #define TCP_KEEPALIVE_TIME (120*60*HZ) /* two hours */ 177 #define TCP_KEEPALIVE_PROBES 9 /* Max of 9 keepalive probes */ 178 #define TCP_KEEPALIVE_INTVL (75*HZ) 179 180 #define MAX_TCP_KEEPIDLE 32767 181 #define MAX_TCP_KEEPINTVL 32767 182 #define MAX_TCP_KEEPCNT 127 183 #define MAX_TCP_SYNCNT 127 184 185 /* Ensure that TCP PAWS checks are relaxed after ~2147 seconds 186 * to avoid overflows. This assumes a clock smaller than 1 Mhz. 187 * Default clock is 1 Khz, tcp_usec_ts uses 1 Mhz. 188 */ 189 #define TCP_PAWS_WRAP (INT_MAX / USEC_PER_SEC) 190 191 #define TCP_PAWS_MSL 60 /* Per-host timestamps are invalidated 192 * after this time. It should be equal 193 * (or greater than) TCP_TIMEWAIT_LEN 194 * to provide reliability equal to one 195 * provided by timewait state. 196 */ 197 #define TCP_PAWS_WINDOW 1 /* Replay window for per-host 198 * timestamps. It must be less than 199 * minimal timewait lifetime. 200 */ 201 /* 202 * TCP option 203 */ 204 205 #define TCPOPT_NOP 1 /* Padding */ 206 #define TCPOPT_EOL 0 /* End of options */ 207 #define TCPOPT_MSS 2 /* Segment size negotiating */ 208 #define TCPOPT_WINDOW 3 /* Window scaling */ 209 #define TCPOPT_SACK_PERM 4 /* SACK Permitted */ 210 #define TCPOPT_SACK 5 /* SACK Block */ 211 #define TCPOPT_TIMESTAMP 8 /* Better RTT estimations/PAWS */ 212 #define TCPOPT_MD5SIG 19 /* MD5 Signature (RFC2385) */ 213 #define TCPOPT_AO 29 /* Authentication Option (RFC5925) */ 214 #define TCPOPT_MPTCP 30 /* Multipath TCP (RFC6824) */ 215 #define TCPOPT_FASTOPEN 34 /* Fast open (RFC7413) */ 216 #define TCPOPT_EXP 254 /* Experimental */ 217 /* Magic number to be after the option value for sharing TCP 218 * experimental options. See draft-ietf-tcpm-experimental-options-00.txt 219 */ 220 #define TCPOPT_FASTOPEN_MAGIC 0xF989 221 #define TCPOPT_SMC_MAGIC 0xE2D4C3D9 222 223 /* 224 * TCP option lengths 225 */ 226 227 #define TCPOLEN_MSS 4 228 #define TCPOLEN_WINDOW 3 229 #define TCPOLEN_SACK_PERM 2 230 #define TCPOLEN_TIMESTAMP 10 231 #define TCPOLEN_MD5SIG 18 232 #define TCPOLEN_FASTOPEN_BASE 2 233 #define TCPOLEN_EXP_FASTOPEN_BASE 4 234 #define TCPOLEN_EXP_SMC_BASE 6 235 236 /* But this is what stacks really send out. */ 237 #define TCPOLEN_TSTAMP_ALIGNED 12 238 #define TCPOLEN_WSCALE_ALIGNED 4 239 #define TCPOLEN_SACKPERM_ALIGNED 4 240 #define TCPOLEN_SACK_BASE 2 241 #define TCPOLEN_SACK_BASE_ALIGNED 4 242 #define TCPOLEN_SACK_PERBLOCK 8 243 #define TCPOLEN_MD5SIG_ALIGNED 20 244 #define TCPOLEN_MSS_ALIGNED 4 245 #define TCPOLEN_EXP_SMC_BASE_ALIGNED 8 246 247 /* Flags in tp->nonagle */ 248 #define TCP_NAGLE_OFF 1 /* Nagle's algo is disabled */ 249 #define TCP_NAGLE_CORK 2 /* Socket is corked */ 250 #define TCP_NAGLE_PUSH 4 /* Cork is overridden for already queued data */ 251 252 /* TCP thin-stream limits */ 253 #define TCP_THIN_LINEAR_RETRIES 6 /* After 6 linear retries, do exp. backoff */ 254 255 /* TCP initial congestion window as per rfc6928 */ 256 #define TCP_INIT_CWND 10 257 258 /* Bit Flags for sysctl_tcp_fastopen */ 259 #define TFO_CLIENT_ENABLE 1 260 #define TFO_SERVER_ENABLE 2 261 #define TFO_CLIENT_NO_COOKIE 4 /* Data in SYN w/o cookie option */ 262 263 /* Accept SYN data w/o any cookie option */ 264 #define TFO_SERVER_COOKIE_NOT_REQD 0x200 265 266 /* Force enable TFO on all listeners, i.e., not requiring the 267 * TCP_FASTOPEN socket option. 268 */ 269 #define TFO_SERVER_WO_SOCKOPT1 0x400 270 271 272 /* sysctl variables for tcp */ 273 extern int sysctl_tcp_max_orphans; 274 extern long sysctl_tcp_mem[3]; 275 276 #define TCP_RACK_LOSS_DETECTION 0x1 /* Use RACK to detect losses */ 277 #define TCP_RACK_STATIC_REO_WND 0x2 /* Use static RACK reo wnd */ 278 #define TCP_RACK_NO_DUPTHRESH 0x4 /* Do not use DUPACK threshold in RACK */ 279 280 DECLARE_PER_CPU(int, tcp_memory_per_cpu_fw_alloc); 281 282 extern struct percpu_counter tcp_sockets_allocated; 283 extern unsigned long tcp_memory_pressure; 284 285 /* optimized version of sk_under_memory_pressure() for TCP sockets */ 286 static inline bool tcp_under_memory_pressure(const struct sock *sk) 287 { 288 if (mem_cgroup_sk_enabled(sk) && 289 mem_cgroup_sk_under_memory_pressure(sk)) 290 return true; 291 292 return READ_ONCE(tcp_memory_pressure); 293 } 294 /* 295 * The next routines deal with comparing 32 bit unsigned ints 296 * and worry about wraparound (automatic with unsigned arithmetic). 297 */ 298 299 static inline bool before(__u32 seq1, __u32 seq2) 300 { 301 return (__s32)(seq1-seq2) < 0; 302 } 303 #define after(seq2, seq1) before(seq1, seq2) 304 305 /* is s2<=s1<=s3 ? */ 306 static inline bool between(__u32 seq1, __u32 seq2, __u32 seq3) 307 { 308 return seq3 - seq2 >= seq1 - seq2; 309 } 310 311 static inline void tcp_wmem_free_skb(struct sock *sk, struct sk_buff *skb) 312 { 313 sk_wmem_queued_add(sk, -skb->truesize); 314 if (!skb_zcopy_pure(skb)) 315 sk_mem_uncharge(sk, skb->truesize); 316 else 317 sk_mem_uncharge(sk, SKB_TRUESIZE(skb_end_offset(skb))); 318 __kfree_skb(skb); 319 } 320 321 void sk_forced_mem_schedule(struct sock *sk, int size); 322 323 bool tcp_check_oom(const struct sock *sk, int shift); 324 325 326 extern struct proto tcp_prot; 327 328 #define TCP_INC_STATS(net, field) SNMP_INC_STATS((net)->mib.tcp_statistics, field) 329 #define __TCP_INC_STATS(net, field) __SNMP_INC_STATS((net)->mib.tcp_statistics, field) 330 #define TCP_DEC_STATS(net, field) SNMP_DEC_STATS((net)->mib.tcp_statistics, field) 331 #define TCP_ADD_STATS(net, field, val) SNMP_ADD_STATS((net)->mib.tcp_statistics, field, val) 332 333 void tcp_tsq_work_init(void); 334 335 int tcp_v4_err(struct sk_buff *skb, u32); 336 337 void tcp_shutdown(struct sock *sk, int how); 338 339 int tcp_v4_early_demux(struct sk_buff *skb); 340 int tcp_v4_rcv(struct sk_buff *skb); 341 342 void tcp_remove_empty_skb(struct sock *sk); 343 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size); 344 int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size); 345 int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg, int *copied, 346 size_t size, struct ubuf_info *uarg); 347 void tcp_splice_eof(struct socket *sock); 348 int tcp_send_mss(struct sock *sk, int *size_goal, int flags); 349 int tcp_wmem_schedule(struct sock *sk, int copy); 350 void tcp_push(struct sock *sk, int flags, int mss_now, int nonagle, 351 int size_goal); 352 void tcp_release_cb(struct sock *sk); 353 void tcp_wfree(struct sk_buff *skb); 354 void tcp_write_timer_handler(struct sock *sk); 355 void tcp_delack_timer_handler(struct sock *sk); 356 int tcp_ioctl(struct sock *sk, int cmd, int *karg); 357 enum skb_drop_reason tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb); 358 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb); 359 void tcp_rcv_space_adjust(struct sock *sk); 360 int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp); 361 void tcp_twsk_destructor(struct sock *sk); 362 void tcp_twsk_purge(struct list_head *net_exit_list); 363 ssize_t tcp_splice_read(struct socket *sk, loff_t *ppos, 364 struct pipe_inode_info *pipe, size_t len, 365 unsigned int flags); 366 struct sk_buff *tcp_stream_alloc_skb(struct sock *sk, gfp_t gfp, 367 bool force_schedule); 368 369 static inline void tcp_dec_quickack_mode(struct sock *sk) 370 { 371 struct inet_connection_sock *icsk = inet_csk(sk); 372 373 if (icsk->icsk_ack.quick) { 374 /* How many ACKs S/ACKing new data have we sent? */ 375 const unsigned int pkts = inet_csk_ack_scheduled(sk) ? 1 : 0; 376 377 if (pkts >= icsk->icsk_ack.quick) { 378 icsk->icsk_ack.quick = 0; 379 /* Leaving quickack mode we deflate ATO. */ 380 icsk->icsk_ack.ato = TCP_ATO_MIN; 381 } else 382 icsk->icsk_ack.quick -= pkts; 383 } 384 } 385 386 #define TCP_ECN_MODE_RFC3168 BIT(0) 387 #define TCP_ECN_QUEUE_CWR BIT(1) 388 #define TCP_ECN_DEMAND_CWR BIT(2) 389 #define TCP_ECN_SEEN BIT(3) 390 #define TCP_ECN_MODE_ACCECN BIT(4) 391 392 #define TCP_ECN_DISABLED 0 393 #define TCP_ECN_MODE_PENDING (TCP_ECN_MODE_RFC3168 | TCP_ECN_MODE_ACCECN) 394 #define TCP_ECN_MODE_ANY (TCP_ECN_MODE_RFC3168 | TCP_ECN_MODE_ACCECN) 395 396 static inline bool tcp_ecn_mode_any(const struct tcp_sock *tp) 397 { 398 return tp->ecn_flags & TCP_ECN_MODE_ANY; 399 } 400 401 static inline bool tcp_ecn_mode_rfc3168(const struct tcp_sock *tp) 402 { 403 return (tp->ecn_flags & TCP_ECN_MODE_ANY) == TCP_ECN_MODE_RFC3168; 404 } 405 406 static inline bool tcp_ecn_mode_accecn(const struct tcp_sock *tp) 407 { 408 return (tp->ecn_flags & TCP_ECN_MODE_ANY) == TCP_ECN_MODE_ACCECN; 409 } 410 411 static inline bool tcp_ecn_disabled(const struct tcp_sock *tp) 412 { 413 return !tcp_ecn_mode_any(tp); 414 } 415 416 static inline bool tcp_ecn_mode_pending(const struct tcp_sock *tp) 417 { 418 return (tp->ecn_flags & TCP_ECN_MODE_PENDING) == TCP_ECN_MODE_PENDING; 419 } 420 421 static inline void tcp_ecn_mode_set(struct tcp_sock *tp, u8 mode) 422 { 423 tp->ecn_flags &= ~TCP_ECN_MODE_ANY; 424 tp->ecn_flags |= mode; 425 } 426 427 enum tcp_tw_status { 428 TCP_TW_SUCCESS = 0, 429 TCP_TW_RST = 1, 430 TCP_TW_ACK = 2, 431 TCP_TW_SYN = 3, 432 TCP_TW_ACK_OOW = 4 433 }; 434 435 436 enum tcp_tw_status tcp_timewait_state_process(struct inet_timewait_sock *tw, 437 struct sk_buff *skb, 438 const struct tcphdr *th, 439 u32 *tw_isn, 440 enum skb_drop_reason *drop_reason); 441 struct sock *tcp_check_req(struct sock *sk, struct sk_buff *skb, 442 struct request_sock *req, bool fastopen, 443 bool *lost_race, enum skb_drop_reason *drop_reason); 444 enum skb_drop_reason tcp_child_process(struct sock *parent, struct sock *child, 445 struct sk_buff *skb); 446 void tcp_enter_loss(struct sock *sk); 447 void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int newly_lost, int flag); 448 void tcp_clear_retrans(struct tcp_sock *tp); 449 void tcp_update_metrics(struct sock *sk); 450 void tcp_init_metrics(struct sock *sk); 451 void tcp_metrics_init(void); 452 bool tcp_peer_is_proven(struct request_sock *req, struct dst_entry *dst); 453 void __tcp_close(struct sock *sk, long timeout); 454 void tcp_close(struct sock *sk, long timeout); 455 void tcp_init_sock(struct sock *sk); 456 void tcp_init_transfer(struct sock *sk, int bpf_op, struct sk_buff *skb); 457 __poll_t tcp_poll(struct file *file, struct socket *sock, 458 struct poll_table_struct *wait); 459 int do_tcp_getsockopt(struct sock *sk, int level, 460 int optname, sockptr_t optval, sockptr_t optlen); 461 int tcp_getsockopt(struct sock *sk, int level, int optname, 462 char __user *optval, int __user *optlen); 463 bool tcp_bpf_bypass_getsockopt(int level, int optname); 464 int do_tcp_setsockopt(struct sock *sk, int level, int optname, 465 sockptr_t optval, unsigned int optlen); 466 int tcp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval, 467 unsigned int optlen); 468 void tcp_reset_keepalive_timer(struct sock *sk, unsigned long timeout); 469 void tcp_set_keepalive(struct sock *sk, int val); 470 void tcp_syn_ack_timeout(const struct request_sock *req); 471 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, 472 int flags, int *addr_len); 473 int tcp_set_rcvlowat(struct sock *sk, int val); 474 int tcp_set_window_clamp(struct sock *sk, int val); 475 void tcp_update_recv_tstamps(struct sk_buff *skb, 476 struct scm_timestamping_internal *tss); 477 void tcp_recv_timestamp(struct msghdr *msg, const struct sock *sk, 478 struct scm_timestamping_internal *tss); 479 void tcp_data_ready(struct sock *sk); 480 #ifdef CONFIG_MMU 481 int tcp_mmap(struct file *file, struct socket *sock, 482 struct vm_area_struct *vma); 483 #endif 484 void tcp_parse_options(const struct net *net, const struct sk_buff *skb, 485 struct tcp_options_received *opt_rx, 486 int estab, struct tcp_fastopen_cookie *foc); 487 488 /* 489 * BPF SKB-less helpers 490 */ 491 u16 tcp_v4_get_syncookie(struct sock *sk, struct iphdr *iph, 492 struct tcphdr *th, u32 *cookie); 493 u16 tcp_v6_get_syncookie(struct sock *sk, struct ipv6hdr *iph, 494 struct tcphdr *th, u32 *cookie); 495 u16 tcp_parse_mss_option(const struct tcphdr *th, u16 user_mss); 496 u16 tcp_get_syncookie_mss(struct request_sock_ops *rsk_ops, 497 const struct tcp_request_sock_ops *af_ops, 498 struct sock *sk, struct tcphdr *th); 499 /* 500 * TCP v4 functions exported for the inet6 API 501 */ 502 503 void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb); 504 void tcp_v4_mtu_reduced(struct sock *sk); 505 void tcp_req_err(struct sock *sk, u32 seq, bool abort); 506 void tcp_ld_RTO_revert(struct sock *sk, u32 seq); 507 int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb); 508 struct sock *tcp_create_openreq_child(const struct sock *sk, 509 struct request_sock *req, 510 struct sk_buff *skb); 511 void tcp_ca_openreq_child(struct sock *sk, const struct dst_entry *dst); 512 struct sock *tcp_v4_syn_recv_sock(const struct sock *sk, struct sk_buff *skb, 513 struct request_sock *req, 514 struct dst_entry *dst, 515 struct request_sock *req_unhash, 516 bool *own_req); 517 int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb); 518 int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len); 519 int tcp_connect(struct sock *sk); 520 enum tcp_synack_type { 521 TCP_SYNACK_NORMAL, 522 TCP_SYNACK_FASTOPEN, 523 TCP_SYNACK_COOKIE, 524 }; 525 struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst, 526 struct request_sock *req, 527 struct tcp_fastopen_cookie *foc, 528 enum tcp_synack_type synack_type, 529 struct sk_buff *syn_skb); 530 int tcp_disconnect(struct sock *sk, int flags); 531 532 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb); 533 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size); 534 void inet_sk_rx_dst_set(struct sock *sk, const struct sk_buff *skb); 535 536 /* From syncookies.c */ 537 struct sock *tcp_get_cookie_sock(struct sock *sk, struct sk_buff *skb, 538 struct request_sock *req, 539 struct dst_entry *dst); 540 int __cookie_v4_check(const struct iphdr *iph, const struct tcphdr *th); 541 struct sock *cookie_v4_check(struct sock *sk, struct sk_buff *skb); 542 struct request_sock *cookie_tcp_reqsk_alloc(const struct request_sock_ops *ops, 543 struct sock *sk, struct sk_buff *skb, 544 struct tcp_options_received *tcp_opt, 545 int mss, u32 tsoff); 546 547 #if IS_ENABLED(CONFIG_BPF) 548 struct bpf_tcp_req_attrs { 549 u32 rcv_tsval; 550 u32 rcv_tsecr; 551 u16 mss; 552 u8 rcv_wscale; 553 u8 snd_wscale; 554 u8 ecn_ok; 555 u8 wscale_ok; 556 u8 sack_ok; 557 u8 tstamp_ok; 558 u8 usec_ts_ok; 559 u8 reserved[3]; 560 }; 561 #endif 562 563 #ifdef CONFIG_SYN_COOKIES 564 565 /* Syncookies use a monotonic timer which increments every 60 seconds. 566 * This counter is used both as a hash input and partially encoded into 567 * the cookie value. A cookie is only validated further if the delta 568 * between the current counter value and the encoded one is less than this, 569 * i.e. a sent cookie is valid only at most for 2*60 seconds (or less if 570 * the counter advances immediately after a cookie is generated). 571 */ 572 #define MAX_SYNCOOKIE_AGE 2 573 #define TCP_SYNCOOKIE_PERIOD (60 * HZ) 574 #define TCP_SYNCOOKIE_VALID (MAX_SYNCOOKIE_AGE * TCP_SYNCOOKIE_PERIOD) 575 576 /* syncookies: remember time of last synqueue overflow 577 * But do not dirty this field too often (once per second is enough) 578 * It is racy as we do not hold a lock, but race is very minor. 579 */ 580 static inline void tcp_synq_overflow(const struct sock *sk) 581 { 582 unsigned int last_overflow; 583 unsigned int now = jiffies; 584 585 if (sk->sk_reuseport) { 586 struct sock_reuseport *reuse; 587 588 reuse = rcu_dereference(sk->sk_reuseport_cb); 589 if (likely(reuse)) { 590 last_overflow = READ_ONCE(reuse->synq_overflow_ts); 591 if (!time_between32(now, last_overflow, 592 last_overflow + HZ)) 593 WRITE_ONCE(reuse->synq_overflow_ts, now); 594 return; 595 } 596 } 597 598 last_overflow = READ_ONCE(tcp_sk(sk)->rx_opt.ts_recent_stamp); 599 if (!time_between32(now, last_overflow, last_overflow + HZ)) 600 WRITE_ONCE(tcp_sk_rw(sk)->rx_opt.ts_recent_stamp, now); 601 } 602 603 /* syncookies: no recent synqueue overflow on this listening socket? */ 604 static inline bool tcp_synq_no_recent_overflow(const struct sock *sk) 605 { 606 unsigned int last_overflow; 607 unsigned int now = jiffies; 608 609 if (sk->sk_reuseport) { 610 struct sock_reuseport *reuse; 611 612 reuse = rcu_dereference(sk->sk_reuseport_cb); 613 if (likely(reuse)) { 614 last_overflow = READ_ONCE(reuse->synq_overflow_ts); 615 return !time_between32(now, last_overflow - HZ, 616 last_overflow + 617 TCP_SYNCOOKIE_VALID); 618 } 619 } 620 621 last_overflow = READ_ONCE(tcp_sk(sk)->rx_opt.ts_recent_stamp); 622 623 /* If last_overflow <= jiffies <= last_overflow + TCP_SYNCOOKIE_VALID, 624 * then we're under synflood. However, we have to use 625 * 'last_overflow - HZ' as lower bound. That's because a concurrent 626 * tcp_synq_overflow() could update .ts_recent_stamp after we read 627 * jiffies but before we store .ts_recent_stamp into last_overflow, 628 * which could lead to rejecting a valid syncookie. 629 */ 630 return !time_between32(now, last_overflow - HZ, 631 last_overflow + TCP_SYNCOOKIE_VALID); 632 } 633 634 static inline u32 tcp_cookie_time(void) 635 { 636 u64 val = get_jiffies_64(); 637 638 do_div(val, TCP_SYNCOOKIE_PERIOD); 639 return val; 640 } 641 642 /* Convert one nsec 64bit timestamp to ts (ms or usec resolution) */ 643 static inline u64 tcp_ns_to_ts(bool usec_ts, u64 val) 644 { 645 if (usec_ts) 646 return div_u64(val, NSEC_PER_USEC); 647 648 return div_u64(val, NSEC_PER_MSEC); 649 } 650 651 u32 __cookie_v4_init_sequence(const struct iphdr *iph, const struct tcphdr *th, 652 u16 *mssp); 653 __u32 cookie_v4_init_sequence(const struct sk_buff *skb, __u16 *mss); 654 u64 cookie_init_timestamp(struct request_sock *req, u64 now); 655 bool cookie_timestamp_decode(const struct net *net, 656 struct tcp_options_received *opt); 657 658 static inline bool cookie_ecn_ok(const struct net *net, const struct dst_entry *dst) 659 { 660 return READ_ONCE(net->ipv4.sysctl_tcp_ecn) || 661 dst_feature(dst, RTAX_FEATURE_ECN); 662 } 663 664 #if IS_ENABLED(CONFIG_BPF) 665 static inline bool cookie_bpf_ok(struct sk_buff *skb) 666 { 667 return skb->sk; 668 } 669 670 struct request_sock *cookie_bpf_check(struct sock *sk, struct sk_buff *skb); 671 #else 672 static inline bool cookie_bpf_ok(struct sk_buff *skb) 673 { 674 return false; 675 } 676 677 static inline struct request_sock *cookie_bpf_check(struct net *net, struct sock *sk, 678 struct sk_buff *skb) 679 { 680 return NULL; 681 } 682 #endif 683 684 /* From net/ipv6/syncookies.c */ 685 int __cookie_v6_check(const struct ipv6hdr *iph, const struct tcphdr *th); 686 struct sock *cookie_v6_check(struct sock *sk, struct sk_buff *skb); 687 688 u32 __cookie_v6_init_sequence(const struct ipv6hdr *iph, 689 const struct tcphdr *th, u16 *mssp); 690 __u32 cookie_v6_init_sequence(const struct sk_buff *skb, __u16 *mss); 691 #endif 692 /* tcp_output.c */ 693 694 void tcp_skb_entail(struct sock *sk, struct sk_buff *skb); 695 void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb); 696 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss, 697 int nonagle); 698 int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs); 699 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs); 700 void tcp_retransmit_timer(struct sock *sk); 701 void tcp_xmit_retransmit_queue(struct sock *); 702 void tcp_simple_retransmit(struct sock *); 703 void tcp_enter_recovery(struct sock *sk, bool ece_ack); 704 int tcp_trim_head(struct sock *, struct sk_buff *, u32); 705 enum tcp_queue { 706 TCP_FRAG_IN_WRITE_QUEUE, 707 TCP_FRAG_IN_RTX_QUEUE, 708 }; 709 int tcp_fragment(struct sock *sk, enum tcp_queue tcp_queue, 710 struct sk_buff *skb, u32 len, 711 unsigned int mss_now, gfp_t gfp); 712 713 void tcp_send_probe0(struct sock *); 714 int tcp_write_wakeup(struct sock *, int mib); 715 void tcp_send_fin(struct sock *sk); 716 void tcp_send_active_reset(struct sock *sk, gfp_t priority, 717 enum sk_rst_reason reason); 718 int tcp_send_synack(struct sock *); 719 void tcp_push_one(struct sock *, unsigned int mss_now); 720 void __tcp_send_ack(struct sock *sk, u32 rcv_nxt, u16 flags); 721 void tcp_send_ack(struct sock *sk); 722 void tcp_send_delayed_ack(struct sock *sk); 723 void tcp_send_loss_probe(struct sock *sk); 724 bool tcp_schedule_loss_probe(struct sock *sk, bool advancing_rto); 725 void tcp_skb_collapse_tstamp(struct sk_buff *skb, 726 const struct sk_buff *next_skb); 727 728 /* tcp_input.c */ 729 void tcp_rearm_rto(struct sock *sk); 730 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req); 731 void tcp_done_with_error(struct sock *sk, int err); 732 void tcp_reset(struct sock *sk, struct sk_buff *skb); 733 void tcp_fin(struct sock *sk); 734 void tcp_check_space(struct sock *sk); 735 void tcp_sack_compress_send_ack(struct sock *sk); 736 737 static inline void tcp_cleanup_skb(struct sk_buff *skb) 738 { 739 skb_dst_drop(skb); 740 secpath_reset(skb); 741 } 742 743 static inline void tcp_add_receive_queue(struct sock *sk, struct sk_buff *skb) 744 { 745 DEBUG_NET_WARN_ON_ONCE(skb_dst(skb)); 746 DEBUG_NET_WARN_ON_ONCE(secpath_exists(skb)); 747 __skb_queue_tail(&sk->sk_receive_queue, skb); 748 } 749 750 /* tcp_timer.c */ 751 void tcp_init_xmit_timers(struct sock *); 752 static inline void tcp_clear_xmit_timers(struct sock *sk) 753 { 754 if (hrtimer_try_to_cancel(&tcp_sk(sk)->pacing_timer) == 1) 755 __sock_put(sk); 756 757 if (hrtimer_try_to_cancel(&tcp_sk(sk)->compressed_ack_timer) == 1) 758 __sock_put(sk); 759 760 inet_csk_clear_xmit_timers(sk); 761 } 762 763 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu); 764 unsigned int tcp_current_mss(struct sock *sk); 765 u32 tcp_clamp_probe0_to_user_timeout(const struct sock *sk, u32 when); 766 767 /* Bound MSS / TSO packet size with the half of the window */ 768 static inline int tcp_bound_to_half_wnd(struct tcp_sock *tp, int pktsize) 769 { 770 int cutoff; 771 772 /* When peer uses tiny windows, there is no use in packetizing 773 * to sub-MSS pieces for the sake of SWS or making sure there 774 * are enough packets in the pipe for fast recovery. 775 * 776 * On the other hand, for extremely large MSS devices, handling 777 * smaller than MSS windows in this way does make sense. 778 */ 779 if (tp->max_window > TCP_MSS_DEFAULT) 780 cutoff = (tp->max_window >> 1); 781 else 782 cutoff = tp->max_window; 783 784 if (cutoff && pktsize > cutoff) 785 return max_t(int, cutoff, 68U - tp->tcp_header_len); 786 else 787 return pktsize; 788 } 789 790 /* tcp.c */ 791 void tcp_get_info(struct sock *, struct tcp_info *); 792 793 /* Read 'sendfile()'-style from a TCP socket */ 794 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc, 795 sk_read_actor_t recv_actor); 796 int tcp_read_sock_noack(struct sock *sk, read_descriptor_t *desc, 797 sk_read_actor_t recv_actor, bool noack, 798 u32 *copied_seq); 799 int tcp_read_skb(struct sock *sk, skb_read_actor_t recv_actor); 800 struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off); 801 void tcp_read_done(struct sock *sk, size_t len); 802 803 void tcp_initialize_rcv_mss(struct sock *sk); 804 805 int tcp_mtu_to_mss(struct sock *sk, int pmtu); 806 int tcp_mss_to_mtu(struct sock *sk, int mss); 807 void tcp_mtup_init(struct sock *sk); 808 809 static inline unsigned int tcp_rto_max(const struct sock *sk) 810 { 811 return READ_ONCE(inet_csk(sk)->icsk_rto_max); 812 } 813 814 static inline void tcp_bound_rto(struct sock *sk) 815 { 816 inet_csk(sk)->icsk_rto = min(inet_csk(sk)->icsk_rto, tcp_rto_max(sk)); 817 } 818 819 static inline u32 __tcp_set_rto(const struct tcp_sock *tp) 820 { 821 return usecs_to_jiffies((tp->srtt_us >> 3) + tp->rttvar_us); 822 } 823 824 u32 tcp_delack_max(const struct sock *sk); 825 826 /* Compute the actual rto_min value */ 827 static inline u32 tcp_rto_min(const struct sock *sk) 828 { 829 const struct dst_entry *dst = __sk_dst_get(sk); 830 u32 rto_min = READ_ONCE(inet_csk(sk)->icsk_rto_min); 831 832 if (dst && dst_metric_locked(dst, RTAX_RTO_MIN)) 833 rto_min = dst_metric_rtt(dst, RTAX_RTO_MIN); 834 return rto_min; 835 } 836 837 static inline u32 tcp_rto_min_us(const struct sock *sk) 838 { 839 return jiffies_to_usecs(tcp_rto_min(sk)); 840 } 841 842 static inline bool tcp_ca_dst_locked(const struct dst_entry *dst) 843 { 844 return dst_metric_locked(dst, RTAX_CC_ALGO); 845 } 846 847 /* Minimum RTT in usec. ~0 means not available. */ 848 static inline u32 tcp_min_rtt(const struct tcp_sock *tp) 849 { 850 return minmax_get(&tp->rtt_min); 851 } 852 853 /* Compute the actual receive window we are currently advertising. 854 * Rcv_nxt can be after the window if our peer push more data 855 * than the offered window. 856 */ 857 static inline u32 tcp_receive_window(const struct tcp_sock *tp) 858 { 859 s32 win = tp->rcv_wup + tp->rcv_wnd - tp->rcv_nxt; 860 861 if (win < 0) 862 win = 0; 863 return (u32) win; 864 } 865 866 /* Choose a new window, without checks for shrinking, and without 867 * scaling applied to the result. The caller does these things 868 * if necessary. This is a "raw" window selection. 869 */ 870 u32 __tcp_select_window(struct sock *sk); 871 872 void tcp_send_window_probe(struct sock *sk); 873 874 /* TCP uses 32bit jiffies to save some space. 875 * Note that this is different from tcp_time_stamp, which 876 * historically has been the same until linux-4.13. 877 */ 878 #define tcp_jiffies32 ((u32)jiffies) 879 880 /* 881 * Deliver a 32bit value for TCP timestamp option (RFC 7323) 882 * It is no longer tied to jiffies, but to 1 ms clock. 883 * Note: double check if you want to use tcp_jiffies32 instead of this. 884 */ 885 #define TCP_TS_HZ 1000 886 887 static inline u64 tcp_clock_ns(void) 888 { 889 return ktime_get_ns(); 890 } 891 892 static inline u64 tcp_clock_us(void) 893 { 894 return div_u64(tcp_clock_ns(), NSEC_PER_USEC); 895 } 896 897 static inline u64 tcp_clock_ms(void) 898 { 899 return div_u64(tcp_clock_ns(), NSEC_PER_MSEC); 900 } 901 902 /* TCP Timestamp included in TS option (RFC 1323) can either use ms 903 * or usec resolution. Each socket carries a flag to select one or other 904 * resolution, as the route attribute could change anytime. 905 * Each flow must stick to initial resolution. 906 */ 907 static inline u32 tcp_clock_ts(bool usec_ts) 908 { 909 return usec_ts ? tcp_clock_us() : tcp_clock_ms(); 910 } 911 912 static inline u32 tcp_time_stamp_ms(const struct tcp_sock *tp) 913 { 914 return div_u64(tp->tcp_mstamp, USEC_PER_MSEC); 915 } 916 917 static inline u32 tcp_time_stamp_ts(const struct tcp_sock *tp) 918 { 919 if (tp->tcp_usec_ts) 920 return tp->tcp_mstamp; 921 return tcp_time_stamp_ms(tp); 922 } 923 924 void tcp_mstamp_refresh(struct tcp_sock *tp); 925 926 static inline u32 tcp_stamp_us_delta(u64 t1, u64 t0) 927 { 928 return max_t(s64, t1 - t0, 0); 929 } 930 931 /* provide the departure time in us unit */ 932 static inline u64 tcp_skb_timestamp_us(const struct sk_buff *skb) 933 { 934 return div_u64(skb->skb_mstamp_ns, NSEC_PER_USEC); 935 } 936 937 /* Provide skb TSval in usec or ms unit */ 938 static inline u32 tcp_skb_timestamp_ts(bool usec_ts, const struct sk_buff *skb) 939 { 940 if (usec_ts) 941 return tcp_skb_timestamp_us(skb); 942 943 return div_u64(skb->skb_mstamp_ns, NSEC_PER_MSEC); 944 } 945 946 static inline u32 tcp_tw_tsval(const struct tcp_timewait_sock *tcptw) 947 { 948 return tcp_clock_ts(tcptw->tw_sk.tw_usec_ts) + tcptw->tw_ts_offset; 949 } 950 951 static inline u32 tcp_rsk_tsval(const struct tcp_request_sock *treq) 952 { 953 return tcp_clock_ts(treq->req_usec_ts) + treq->ts_off; 954 } 955 956 #define tcp_flag_byte(th) (((u_int8_t *)th)[13]) 957 958 #define TCPHDR_FIN BIT(0) 959 #define TCPHDR_SYN BIT(1) 960 #define TCPHDR_RST BIT(2) 961 #define TCPHDR_PSH BIT(3) 962 #define TCPHDR_ACK BIT(4) 963 #define TCPHDR_URG BIT(5) 964 #define TCPHDR_ECE BIT(6) 965 #define TCPHDR_CWR BIT(7) 966 #define TCPHDR_AE BIT(8) 967 #define TCPHDR_FLAGS_MASK (TCPHDR_FIN | TCPHDR_SYN | TCPHDR_RST | \ 968 TCPHDR_PSH | TCPHDR_ACK | TCPHDR_URG | \ 969 TCPHDR_ECE | TCPHDR_CWR | TCPHDR_AE) 970 #define tcp_flags_ntohs(th) (ntohs(*(__be16 *)&tcp_flag_word(th)) & \ 971 TCPHDR_FLAGS_MASK) 972 973 #define TCPHDR_ACE (TCPHDR_ECE | TCPHDR_CWR | TCPHDR_AE) 974 #define TCPHDR_SYN_ECN (TCPHDR_SYN | TCPHDR_ECE | TCPHDR_CWR) 975 976 /* State flags for sacked in struct tcp_skb_cb */ 977 enum tcp_skb_cb_sacked_flags { 978 TCPCB_SACKED_ACKED = (1 << 0), /* SKB ACK'd by a SACK block */ 979 TCPCB_SACKED_RETRANS = (1 << 1), /* SKB retransmitted */ 980 TCPCB_LOST = (1 << 2), /* SKB is lost */ 981 TCPCB_TAGBITS = (TCPCB_SACKED_ACKED | TCPCB_SACKED_RETRANS | 982 TCPCB_LOST), /* All tag bits */ 983 TCPCB_REPAIRED = (1 << 4), /* SKB repaired (no skb_mstamp_ns) */ 984 TCPCB_EVER_RETRANS = (1 << 7), /* Ever retransmitted frame */ 985 TCPCB_RETRANS = (TCPCB_SACKED_RETRANS | TCPCB_EVER_RETRANS | 986 TCPCB_REPAIRED), 987 }; 988 989 /* This is what the send packet queuing engine uses to pass 990 * TCP per-packet control information to the transmission code. 991 * We also store the host-order sequence numbers in here too. 992 * This is 44 bytes if IPV6 is enabled. 993 * If this grows please adjust skbuff.h:skbuff->cb[xxx] size appropriately. 994 */ 995 struct tcp_skb_cb { 996 __u32 seq; /* Starting sequence number */ 997 __u32 end_seq; /* SEQ + FIN + SYN + datalen */ 998 union { 999 /* Note : 1000 * tcp_gso_segs/size are used in write queue only, 1001 * cf tcp_skb_pcount()/tcp_skb_mss() 1002 */ 1003 struct { 1004 u16 tcp_gso_segs; 1005 u16 tcp_gso_size; 1006 }; 1007 }; 1008 __u16 tcp_flags; /* TCP header flags (tcp[12-13])*/ 1009 1010 __u8 sacked; /* State flags for SACK. */ 1011 __u8 ip_dsfield; /* IPv4 tos or IPv6 dsfield */ 1012 #define TSTAMP_ACK_SK 0x1 1013 #define TSTAMP_ACK_BPF 0x2 1014 __u8 txstamp_ack:2, /* Record TX timestamp for ack? */ 1015 eor:1, /* Is skb MSG_EOR marked? */ 1016 has_rxtstamp:1, /* SKB has a RX timestamp */ 1017 unused:4; 1018 __u32 ack_seq; /* Sequence number ACK'd */ 1019 union { 1020 struct { 1021 #define TCPCB_DELIVERED_CE_MASK ((1U<<20) - 1) 1022 /* There is space for up to 24 bytes */ 1023 __u32 is_app_limited:1, /* cwnd not fully used? */ 1024 delivered_ce:20, 1025 unused:11; 1026 /* pkts S/ACKed so far upon tx of skb, incl retrans: */ 1027 __u32 delivered; 1028 /* start of send pipeline phase */ 1029 u64 first_tx_mstamp; 1030 /* when we reached the "delivered" count */ 1031 u64 delivered_mstamp; 1032 } tx; /* only used for outgoing skbs */ 1033 union { 1034 struct inet_skb_parm h4; 1035 #if IS_ENABLED(CONFIG_IPV6) 1036 struct inet6_skb_parm h6; 1037 #endif 1038 } header; /* For incoming skbs */ 1039 }; 1040 }; 1041 1042 #define TCP_SKB_CB(__skb) ((struct tcp_skb_cb *)&((__skb)->cb[0])) 1043 1044 extern const struct inet_connection_sock_af_ops ipv4_specific; 1045 1046 #if IS_ENABLED(CONFIG_IPV6) 1047 /* This is the variant of inet6_iif() that must be used by TCP, 1048 * as TCP moves IP6CB into a different location in skb->cb[] 1049 */ 1050 static inline int tcp_v6_iif(const struct sk_buff *skb) 1051 { 1052 return TCP_SKB_CB(skb)->header.h6.iif; 1053 } 1054 1055 static inline int tcp_v6_iif_l3_slave(const struct sk_buff *skb) 1056 { 1057 bool l3_slave = ipv6_l3mdev_skb(TCP_SKB_CB(skb)->header.h6.flags); 1058 1059 return l3_slave ? skb->skb_iif : TCP_SKB_CB(skb)->header.h6.iif; 1060 } 1061 1062 /* TCP_SKB_CB reference means this can not be used from early demux */ 1063 static inline int tcp_v6_sdif(const struct sk_buff *skb) 1064 { 1065 #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV) 1066 if (skb && ipv6_l3mdev_skb(TCP_SKB_CB(skb)->header.h6.flags)) 1067 return TCP_SKB_CB(skb)->header.h6.iif; 1068 #endif 1069 return 0; 1070 } 1071 1072 extern const struct inet_connection_sock_af_ops ipv6_specific; 1073 1074 INDIRECT_CALLABLE_DECLARE(void tcp_v6_send_check(struct sock *sk, struct sk_buff *skb)); 1075 INDIRECT_CALLABLE_DECLARE(int tcp_v6_rcv(struct sk_buff *skb)); 1076 void tcp_v6_early_demux(struct sk_buff *skb); 1077 1078 #endif 1079 1080 /* TCP_SKB_CB reference means this can not be used from early demux */ 1081 static inline int tcp_v4_sdif(struct sk_buff *skb) 1082 { 1083 #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV) 1084 if (skb && ipv4_l3mdev_skb(TCP_SKB_CB(skb)->header.h4.flags)) 1085 return TCP_SKB_CB(skb)->header.h4.iif; 1086 #endif 1087 return 0; 1088 } 1089 1090 /* Due to TSO, an SKB can be composed of multiple actual 1091 * packets. To keep these tracked properly, we use this. 1092 */ 1093 static inline int tcp_skb_pcount(const struct sk_buff *skb) 1094 { 1095 return TCP_SKB_CB(skb)->tcp_gso_segs; 1096 } 1097 1098 static inline void tcp_skb_pcount_set(struct sk_buff *skb, int segs) 1099 { 1100 TCP_SKB_CB(skb)->tcp_gso_segs = segs; 1101 } 1102 1103 static inline void tcp_skb_pcount_add(struct sk_buff *skb, int segs) 1104 { 1105 TCP_SKB_CB(skb)->tcp_gso_segs += segs; 1106 } 1107 1108 /* This is valid iff skb is in write queue and tcp_skb_pcount() > 1. */ 1109 static inline int tcp_skb_mss(const struct sk_buff *skb) 1110 { 1111 return TCP_SKB_CB(skb)->tcp_gso_size; 1112 } 1113 1114 static inline bool tcp_skb_can_collapse_to(const struct sk_buff *skb) 1115 { 1116 return likely(!TCP_SKB_CB(skb)->eor); 1117 } 1118 1119 static inline bool tcp_skb_can_collapse(const struct sk_buff *to, 1120 const struct sk_buff *from) 1121 { 1122 /* skb_cmp_decrypted() not needed, use tcp_write_collapse_fence() */ 1123 return likely(tcp_skb_can_collapse_to(to) && 1124 mptcp_skb_can_collapse(to, from) && 1125 skb_pure_zcopy_same(to, from) && 1126 skb_frags_readable(to) == skb_frags_readable(from)); 1127 } 1128 1129 static inline bool tcp_skb_can_collapse_rx(const struct sk_buff *to, 1130 const struct sk_buff *from) 1131 { 1132 return likely(mptcp_skb_can_collapse(to, from) && 1133 !skb_cmp_decrypted(to, from)); 1134 } 1135 1136 /* Events passed to congestion control interface */ 1137 enum tcp_ca_event { 1138 CA_EVENT_TX_START, /* first transmit when no packets in flight */ 1139 CA_EVENT_CWND_RESTART, /* congestion window restart */ 1140 CA_EVENT_COMPLETE_CWR, /* end of congestion recovery */ 1141 CA_EVENT_LOSS, /* loss timeout */ 1142 CA_EVENT_ECN_NO_CE, /* ECT set, but not CE marked */ 1143 CA_EVENT_ECN_IS_CE, /* received CE marked IP packet */ 1144 }; 1145 1146 /* Information about inbound ACK, passed to cong_ops->in_ack_event() */ 1147 enum tcp_ca_ack_event_flags { 1148 CA_ACK_SLOWPATH = (1 << 0), /* In slow path processing */ 1149 CA_ACK_WIN_UPDATE = (1 << 1), /* ACK updated window */ 1150 CA_ACK_ECE = (1 << 2), /* ECE bit is set on ack */ 1151 }; 1152 1153 /* 1154 * Interface for adding new TCP congestion control handlers 1155 */ 1156 #define TCP_CA_NAME_MAX 16 1157 #define TCP_CA_MAX 128 1158 #define TCP_CA_BUF_MAX (TCP_CA_NAME_MAX*TCP_CA_MAX) 1159 1160 #define TCP_CA_UNSPEC 0 1161 1162 /* Algorithm can be set on socket without CAP_NET_ADMIN privileges */ 1163 #define TCP_CONG_NON_RESTRICTED BIT(0) 1164 /* Requires ECN/ECT set on all packets */ 1165 #define TCP_CONG_NEEDS_ECN BIT(1) 1166 #define TCP_CONG_MASK (TCP_CONG_NON_RESTRICTED | TCP_CONG_NEEDS_ECN) 1167 1168 union tcp_cc_info; 1169 1170 struct ack_sample { 1171 u32 pkts_acked; 1172 s32 rtt_us; 1173 u32 in_flight; 1174 }; 1175 1176 /* A rate sample measures the number of (original/retransmitted) data 1177 * packets delivered "delivered" over an interval of time "interval_us". 1178 * The tcp_rate.c code fills in the rate sample, and congestion 1179 * control modules that define a cong_control function to run at the end 1180 * of ACK processing can optionally chose to consult this sample when 1181 * setting cwnd and pacing rate. 1182 * A sample is invalid if "delivered" or "interval_us" is negative. 1183 */ 1184 struct rate_sample { 1185 u64 prior_mstamp; /* starting timestamp for interval */ 1186 u32 prior_delivered; /* tp->delivered at "prior_mstamp" */ 1187 u32 prior_delivered_ce;/* tp->delivered_ce at "prior_mstamp" */ 1188 s32 delivered; /* number of packets delivered over interval */ 1189 s32 delivered_ce; /* number of packets delivered w/ CE marks*/ 1190 long interval_us; /* time for tp->delivered to incr "delivered" */ 1191 u32 snd_interval_us; /* snd interval for delivered packets */ 1192 u32 rcv_interval_us; /* rcv interval for delivered packets */ 1193 long rtt_us; /* RTT of last (S)ACKed packet (or -1) */ 1194 int losses; /* number of packets marked lost upon ACK */ 1195 u32 acked_sacked; /* number of packets newly (S)ACKed upon ACK */ 1196 u32 prior_in_flight; /* in flight before this ACK */ 1197 u32 last_end_seq; /* end_seq of most recently ACKed packet */ 1198 bool is_app_limited; /* is sample from packet with bubble in pipe? */ 1199 bool is_retrans; /* is sample from retransmission? */ 1200 bool is_ack_delayed; /* is this (likely) a delayed ACK? */ 1201 }; 1202 1203 struct tcp_congestion_ops { 1204 /* fast path fields are put first to fill one cache line */ 1205 1206 /* return slow start threshold (required) */ 1207 u32 (*ssthresh)(struct sock *sk); 1208 1209 /* do new cwnd calculation (required) */ 1210 void (*cong_avoid)(struct sock *sk, u32 ack, u32 acked); 1211 1212 /* call before changing ca_state (optional) */ 1213 void (*set_state)(struct sock *sk, u8 new_state); 1214 1215 /* call when cwnd event occurs (optional) */ 1216 void (*cwnd_event)(struct sock *sk, enum tcp_ca_event ev); 1217 1218 /* call when ack arrives (optional) */ 1219 void (*in_ack_event)(struct sock *sk, u32 flags); 1220 1221 /* hook for packet ack accounting (optional) */ 1222 void (*pkts_acked)(struct sock *sk, const struct ack_sample *sample); 1223 1224 /* override sysctl_tcp_min_tso_segs */ 1225 u32 (*min_tso_segs)(struct sock *sk); 1226 1227 /* call when packets are delivered to update cwnd and pacing rate, 1228 * after all the ca_state processing. (optional) 1229 */ 1230 void (*cong_control)(struct sock *sk, u32 ack, int flag, const struct rate_sample *rs); 1231 1232 1233 /* new value of cwnd after loss (required) */ 1234 u32 (*undo_cwnd)(struct sock *sk); 1235 /* returns the multiplier used in tcp_sndbuf_expand (optional) */ 1236 u32 (*sndbuf_expand)(struct sock *sk); 1237 1238 /* control/slow paths put last */ 1239 /* get info for inet_diag (optional) */ 1240 size_t (*get_info)(struct sock *sk, u32 ext, int *attr, 1241 union tcp_cc_info *info); 1242 1243 char name[TCP_CA_NAME_MAX]; 1244 struct module *owner; 1245 struct list_head list; 1246 u32 key; 1247 u32 flags; 1248 1249 /* initialize private data (optional) */ 1250 void (*init)(struct sock *sk); 1251 /* cleanup private data (optional) */ 1252 void (*release)(struct sock *sk); 1253 } ____cacheline_aligned_in_smp; 1254 1255 int tcp_register_congestion_control(struct tcp_congestion_ops *type); 1256 void tcp_unregister_congestion_control(struct tcp_congestion_ops *type); 1257 int tcp_update_congestion_control(struct tcp_congestion_ops *type, 1258 struct tcp_congestion_ops *old_type); 1259 int tcp_validate_congestion_control(struct tcp_congestion_ops *ca); 1260 1261 void tcp_assign_congestion_control(struct sock *sk); 1262 void tcp_init_congestion_control(struct sock *sk); 1263 void tcp_cleanup_congestion_control(struct sock *sk); 1264 int tcp_set_default_congestion_control(struct net *net, const char *name); 1265 void tcp_get_default_congestion_control(struct net *net, char *name); 1266 void tcp_get_available_congestion_control(char *buf, size_t len); 1267 void tcp_get_allowed_congestion_control(char *buf, size_t len); 1268 int tcp_set_allowed_congestion_control(char *allowed); 1269 int tcp_set_congestion_control(struct sock *sk, const char *name, bool load, 1270 bool cap_net_admin); 1271 u32 tcp_slow_start(struct tcp_sock *tp, u32 acked); 1272 void tcp_cong_avoid_ai(struct tcp_sock *tp, u32 w, u32 acked); 1273 1274 u32 tcp_reno_ssthresh(struct sock *sk); 1275 u32 tcp_reno_undo_cwnd(struct sock *sk); 1276 void tcp_reno_cong_avoid(struct sock *sk, u32 ack, u32 acked); 1277 extern struct tcp_congestion_ops tcp_reno; 1278 1279 struct tcp_congestion_ops *tcp_ca_find(const char *name); 1280 struct tcp_congestion_ops *tcp_ca_find_key(u32 key); 1281 u32 tcp_ca_get_key_by_name(const char *name, bool *ecn_ca); 1282 #ifdef CONFIG_INET 1283 char *tcp_ca_get_name_by_key(u32 key, char *buffer); 1284 #else 1285 static inline char *tcp_ca_get_name_by_key(u32 key, char *buffer) 1286 { 1287 return NULL; 1288 } 1289 #endif 1290 1291 static inline bool tcp_ca_needs_ecn(const struct sock *sk) 1292 { 1293 const struct inet_connection_sock *icsk = inet_csk(sk); 1294 1295 return icsk->icsk_ca_ops->flags & TCP_CONG_NEEDS_ECN; 1296 } 1297 1298 static inline void tcp_ca_event(struct sock *sk, const enum tcp_ca_event event) 1299 { 1300 const struct inet_connection_sock *icsk = inet_csk(sk); 1301 1302 if (icsk->icsk_ca_ops->cwnd_event) 1303 icsk->icsk_ca_ops->cwnd_event(sk, event); 1304 } 1305 1306 /* From tcp_cong.c */ 1307 void tcp_set_ca_state(struct sock *sk, const u8 ca_state); 1308 1309 /* From tcp_rate.c */ 1310 void tcp_rate_skb_sent(struct sock *sk, struct sk_buff *skb); 1311 void tcp_rate_skb_delivered(struct sock *sk, struct sk_buff *skb, 1312 struct rate_sample *rs); 1313 void tcp_rate_gen(struct sock *sk, u32 delivered, u32 lost, 1314 bool is_sack_reneg, struct rate_sample *rs); 1315 void tcp_rate_check_app_limited(struct sock *sk); 1316 1317 static inline bool tcp_skb_sent_after(u64 t1, u64 t2, u32 seq1, u32 seq2) 1318 { 1319 return t1 > t2 || (t1 == t2 && after(seq1, seq2)); 1320 } 1321 1322 /* These functions determine how the current flow behaves in respect of SACK 1323 * handling. SACK is negotiated with the peer, and therefore it can vary 1324 * between different flows. 1325 * 1326 * tcp_is_sack - SACK enabled 1327 * tcp_is_reno - No SACK 1328 */ 1329 static inline int tcp_is_sack(const struct tcp_sock *tp) 1330 { 1331 return likely(tp->rx_opt.sack_ok); 1332 } 1333 1334 static inline bool tcp_is_reno(const struct tcp_sock *tp) 1335 { 1336 return !tcp_is_sack(tp); 1337 } 1338 1339 static inline unsigned int tcp_left_out(const struct tcp_sock *tp) 1340 { 1341 return tp->sacked_out + tp->lost_out; 1342 } 1343 1344 /* This determines how many packets are "in the network" to the best 1345 * of our knowledge. In many cases it is conservative, but where 1346 * detailed information is available from the receiver (via SACK 1347 * blocks etc.) we can make more aggressive calculations. 1348 * 1349 * Use this for decisions involving congestion control, use just 1350 * tp->packets_out to determine if the send queue is empty or not. 1351 * 1352 * Read this equation as: 1353 * 1354 * "Packets sent once on transmission queue" MINUS 1355 * "Packets left network, but not honestly ACKed yet" PLUS 1356 * "Packets fast retransmitted" 1357 */ 1358 static inline unsigned int tcp_packets_in_flight(const struct tcp_sock *tp) 1359 { 1360 return tp->packets_out - tcp_left_out(tp) + tp->retrans_out; 1361 } 1362 1363 #define TCP_INFINITE_SSTHRESH 0x7fffffff 1364 1365 static inline u32 tcp_snd_cwnd(const struct tcp_sock *tp) 1366 { 1367 return tp->snd_cwnd; 1368 } 1369 1370 static inline void tcp_snd_cwnd_set(struct tcp_sock *tp, u32 val) 1371 { 1372 WARN_ON_ONCE((int)val <= 0); 1373 tp->snd_cwnd = val; 1374 } 1375 1376 static inline bool tcp_in_slow_start(const struct tcp_sock *tp) 1377 { 1378 return tcp_snd_cwnd(tp) < tp->snd_ssthresh; 1379 } 1380 1381 static inline bool tcp_in_initial_slowstart(const struct tcp_sock *tp) 1382 { 1383 return tp->snd_ssthresh >= TCP_INFINITE_SSTHRESH; 1384 } 1385 1386 static inline bool tcp_in_cwnd_reduction(const struct sock *sk) 1387 { 1388 return (TCPF_CA_CWR | TCPF_CA_Recovery) & 1389 (1 << inet_csk(sk)->icsk_ca_state); 1390 } 1391 1392 /* If cwnd > ssthresh, we may raise ssthresh to be half-way to cwnd. 1393 * The exception is cwnd reduction phase, when cwnd is decreasing towards 1394 * ssthresh. 1395 */ 1396 static inline __u32 tcp_current_ssthresh(const struct sock *sk) 1397 { 1398 const struct tcp_sock *tp = tcp_sk(sk); 1399 1400 if (tcp_in_cwnd_reduction(sk)) 1401 return tp->snd_ssthresh; 1402 else 1403 return max(tp->snd_ssthresh, 1404 ((tcp_snd_cwnd(tp) >> 1) + 1405 (tcp_snd_cwnd(tp) >> 2))); 1406 } 1407 1408 /* Use define here intentionally to get WARN_ON location shown at the caller */ 1409 #define tcp_verify_left_out(tp) WARN_ON(tcp_left_out(tp) > tp->packets_out) 1410 1411 void tcp_enter_cwr(struct sock *sk); 1412 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst); 1413 1414 /* The maximum number of MSS of available cwnd for which TSO defers 1415 * sending if not using sysctl_tcp_tso_win_divisor. 1416 */ 1417 static inline __u32 tcp_max_tso_deferred_mss(const struct tcp_sock *tp) 1418 { 1419 return 3; 1420 } 1421 1422 /* Returns end sequence number of the receiver's advertised window */ 1423 static inline u32 tcp_wnd_end(const struct tcp_sock *tp) 1424 { 1425 return tp->snd_una + tp->snd_wnd; 1426 } 1427 1428 /* We follow the spirit of RFC2861 to validate cwnd but implement a more 1429 * flexible approach. The RFC suggests cwnd should not be raised unless 1430 * it was fully used previously. And that's exactly what we do in 1431 * congestion avoidance mode. But in slow start we allow cwnd to grow 1432 * as long as the application has used half the cwnd. 1433 * Example : 1434 * cwnd is 10 (IW10), but application sends 9 frames. 1435 * We allow cwnd to reach 18 when all frames are ACKed. 1436 * This check is safe because it's as aggressive as slow start which already 1437 * risks 100% overshoot. The advantage is that we discourage application to 1438 * either send more filler packets or data to artificially blow up the cwnd 1439 * usage, and allow application-limited process to probe bw more aggressively. 1440 */ 1441 static inline bool tcp_is_cwnd_limited(const struct sock *sk) 1442 { 1443 const struct tcp_sock *tp = tcp_sk(sk); 1444 1445 if (tp->is_cwnd_limited) 1446 return true; 1447 1448 /* If in slow start, ensure cwnd grows to twice what was ACKed. */ 1449 if (tcp_in_slow_start(tp)) 1450 return tcp_snd_cwnd(tp) < 2 * tp->max_packets_out; 1451 1452 return false; 1453 } 1454 1455 /* BBR congestion control needs pacing. 1456 * Same remark for SO_MAX_PACING_RATE. 1457 * sch_fq packet scheduler is efficiently handling pacing, 1458 * but is not always installed/used. 1459 * Return true if TCP stack should pace packets itself. 1460 */ 1461 static inline bool tcp_needs_internal_pacing(const struct sock *sk) 1462 { 1463 return smp_load_acquire(&sk->sk_pacing_status) == SK_PACING_NEEDED; 1464 } 1465 1466 /* Estimates in how many jiffies next packet for this flow can be sent. 1467 * Scheduling a retransmit timer too early would be silly. 1468 */ 1469 static inline unsigned long tcp_pacing_delay(const struct sock *sk) 1470 { 1471 s64 delay = tcp_sk(sk)->tcp_wstamp_ns - tcp_sk(sk)->tcp_clock_cache; 1472 1473 return delay > 0 ? nsecs_to_jiffies(delay) : 0; 1474 } 1475 1476 static inline void tcp_reset_xmit_timer(struct sock *sk, 1477 const int what, 1478 unsigned long when, 1479 bool pace_delay) 1480 { 1481 if (pace_delay) 1482 when += tcp_pacing_delay(sk); 1483 inet_csk_reset_xmit_timer(sk, what, when, 1484 tcp_rto_max(sk)); 1485 } 1486 1487 /* Something is really bad, we could not queue an additional packet, 1488 * because qdisc is full or receiver sent a 0 window, or we are paced. 1489 * We do not want to add fuel to the fire, or abort too early, 1490 * so make sure the timer we arm now is at least 200ms in the future, 1491 * regardless of current icsk_rto value (as it could be ~2ms) 1492 */ 1493 static inline unsigned long tcp_probe0_base(const struct sock *sk) 1494 { 1495 return max_t(unsigned long, inet_csk(sk)->icsk_rto, TCP_RTO_MIN); 1496 } 1497 1498 /* Variant of inet_csk_rto_backoff() used for zero window probes */ 1499 static inline unsigned long tcp_probe0_when(const struct sock *sk, 1500 unsigned long max_when) 1501 { 1502 u8 backoff = min_t(u8, ilog2(TCP_RTO_MAX / TCP_RTO_MIN) + 1, 1503 inet_csk(sk)->icsk_backoff); 1504 u64 when = (u64)tcp_probe0_base(sk) << backoff; 1505 1506 return (unsigned long)min_t(u64, when, max_when); 1507 } 1508 1509 static inline void tcp_check_probe_timer(struct sock *sk) 1510 { 1511 if (!tcp_sk(sk)->packets_out && !inet_csk(sk)->icsk_pending) 1512 tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0, 1513 tcp_probe0_base(sk), true); 1514 } 1515 1516 static inline void tcp_init_wl(struct tcp_sock *tp, u32 seq) 1517 { 1518 tp->snd_wl1 = seq; 1519 } 1520 1521 static inline void tcp_update_wl(struct tcp_sock *tp, u32 seq) 1522 { 1523 tp->snd_wl1 = seq; 1524 } 1525 1526 /* 1527 * Calculate(/check) TCP checksum 1528 */ 1529 static inline __sum16 tcp_v4_check(int len, __be32 saddr, 1530 __be32 daddr, __wsum base) 1531 { 1532 return csum_tcpudp_magic(saddr, daddr, len, IPPROTO_TCP, base); 1533 } 1534 1535 static inline bool tcp_checksum_complete(struct sk_buff *skb) 1536 { 1537 return !skb_csum_unnecessary(skb) && 1538 __skb_checksum_complete(skb); 1539 } 1540 1541 bool tcp_add_backlog(struct sock *sk, struct sk_buff *skb, 1542 enum skb_drop_reason *reason); 1543 1544 1545 int tcp_filter(struct sock *sk, struct sk_buff *skb, enum skb_drop_reason *reason); 1546 void tcp_set_state(struct sock *sk, int state); 1547 void tcp_done(struct sock *sk); 1548 int tcp_abort(struct sock *sk, int err); 1549 1550 static inline void tcp_sack_reset(struct tcp_options_received *rx_opt) 1551 { 1552 rx_opt->dsack = 0; 1553 rx_opt->num_sacks = 0; 1554 } 1555 1556 void tcp_cwnd_restart(struct sock *sk, s32 delta); 1557 1558 static inline void tcp_slow_start_after_idle_check(struct sock *sk) 1559 { 1560 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops; 1561 struct tcp_sock *tp = tcp_sk(sk); 1562 s32 delta; 1563 1564 if (!READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_slow_start_after_idle) || 1565 tp->packets_out || ca_ops->cong_control) 1566 return; 1567 delta = tcp_jiffies32 - tp->lsndtime; 1568 if (delta > inet_csk(sk)->icsk_rto) 1569 tcp_cwnd_restart(sk, delta); 1570 } 1571 1572 /* Determine a window scaling and initial window to offer. */ 1573 void tcp_select_initial_window(const struct sock *sk, int __space, 1574 __u32 mss, __u32 *rcv_wnd, 1575 __u32 *window_clamp, int wscale_ok, 1576 __u8 *rcv_wscale, __u32 init_rcv_wnd); 1577 1578 static inline int __tcp_win_from_space(u8 scaling_ratio, int space) 1579 { 1580 s64 scaled_space = (s64)space * scaling_ratio; 1581 1582 return scaled_space >> TCP_RMEM_TO_WIN_SCALE; 1583 } 1584 1585 static inline int tcp_win_from_space(const struct sock *sk, int space) 1586 { 1587 return __tcp_win_from_space(tcp_sk(sk)->scaling_ratio, space); 1588 } 1589 1590 /* inverse of __tcp_win_from_space() */ 1591 static inline int __tcp_space_from_win(u8 scaling_ratio, int win) 1592 { 1593 u64 val = (u64)win << TCP_RMEM_TO_WIN_SCALE; 1594 1595 do_div(val, scaling_ratio); 1596 return val; 1597 } 1598 1599 static inline int tcp_space_from_win(const struct sock *sk, int win) 1600 { 1601 return __tcp_space_from_win(tcp_sk(sk)->scaling_ratio, win); 1602 } 1603 1604 /* Assume a 50% default for skb->len/skb->truesize ratio. 1605 * This may be adjusted later in tcp_measure_rcv_mss(). 1606 */ 1607 #define TCP_DEFAULT_SCALING_RATIO (1 << (TCP_RMEM_TO_WIN_SCALE - 1)) 1608 1609 static inline void tcp_scaling_ratio_init(struct sock *sk) 1610 { 1611 tcp_sk(sk)->scaling_ratio = TCP_DEFAULT_SCALING_RATIO; 1612 } 1613 1614 /* Note: caller must be prepared to deal with negative returns */ 1615 static inline int tcp_space(const struct sock *sk) 1616 { 1617 return tcp_win_from_space(sk, READ_ONCE(sk->sk_rcvbuf) - 1618 READ_ONCE(sk->sk_backlog.len) - 1619 atomic_read(&sk->sk_rmem_alloc)); 1620 } 1621 1622 static inline int tcp_full_space(const struct sock *sk) 1623 { 1624 return tcp_win_from_space(sk, READ_ONCE(sk->sk_rcvbuf)); 1625 } 1626 1627 static inline void __tcp_adjust_rcv_ssthresh(struct sock *sk, u32 new_ssthresh) 1628 { 1629 int unused_mem = sk_unused_reserved_mem(sk); 1630 struct tcp_sock *tp = tcp_sk(sk); 1631 1632 tp->rcv_ssthresh = min(tp->rcv_ssthresh, new_ssthresh); 1633 if (unused_mem) 1634 tp->rcv_ssthresh = max_t(u32, tp->rcv_ssthresh, 1635 tcp_win_from_space(sk, unused_mem)); 1636 } 1637 1638 static inline void tcp_adjust_rcv_ssthresh(struct sock *sk) 1639 { 1640 __tcp_adjust_rcv_ssthresh(sk, 4U * tcp_sk(sk)->advmss); 1641 } 1642 1643 void tcp_cleanup_rbuf(struct sock *sk, int copied); 1644 void __tcp_cleanup_rbuf(struct sock *sk, int copied); 1645 1646 1647 /* We provision sk_rcvbuf around 200% of sk_rcvlowat. 1648 * If 87.5 % (7/8) of the space has been consumed, we want to override 1649 * SO_RCVLOWAT constraint, since we are receiving skbs with too small 1650 * len/truesize ratio. 1651 */ 1652 static inline bool tcp_rmem_pressure(const struct sock *sk) 1653 { 1654 int rcvbuf, threshold; 1655 1656 if (tcp_under_memory_pressure(sk)) 1657 return true; 1658 1659 rcvbuf = READ_ONCE(sk->sk_rcvbuf); 1660 threshold = rcvbuf - (rcvbuf >> 3); 1661 1662 return atomic_read(&sk->sk_rmem_alloc) > threshold; 1663 } 1664 1665 static inline bool tcp_epollin_ready(const struct sock *sk, int target) 1666 { 1667 const struct tcp_sock *tp = tcp_sk(sk); 1668 int avail = READ_ONCE(tp->rcv_nxt) - READ_ONCE(tp->copied_seq); 1669 1670 if (avail <= 0) 1671 return false; 1672 1673 return (avail >= target) || tcp_rmem_pressure(sk) || 1674 (tcp_receive_window(tp) <= inet_csk(sk)->icsk_ack.rcv_mss); 1675 } 1676 1677 extern void tcp_openreq_init_rwin(struct request_sock *req, 1678 const struct sock *sk_listener, 1679 const struct dst_entry *dst); 1680 1681 void tcp_enter_memory_pressure(struct sock *sk); 1682 void tcp_leave_memory_pressure(struct sock *sk); 1683 1684 static inline int keepalive_intvl_when(const struct tcp_sock *tp) 1685 { 1686 struct net *net = sock_net((struct sock *)tp); 1687 int val; 1688 1689 /* Paired with WRITE_ONCE() in tcp_sock_set_keepintvl() 1690 * and do_tcp_setsockopt(). 1691 */ 1692 val = READ_ONCE(tp->keepalive_intvl); 1693 1694 return val ? : READ_ONCE(net->ipv4.sysctl_tcp_keepalive_intvl); 1695 } 1696 1697 static inline int keepalive_time_when(const struct tcp_sock *tp) 1698 { 1699 struct net *net = sock_net((struct sock *)tp); 1700 int val; 1701 1702 /* Paired with WRITE_ONCE() in tcp_sock_set_keepidle_locked() */ 1703 val = READ_ONCE(tp->keepalive_time); 1704 1705 return val ? : READ_ONCE(net->ipv4.sysctl_tcp_keepalive_time); 1706 } 1707 1708 static inline int keepalive_probes(const struct tcp_sock *tp) 1709 { 1710 struct net *net = sock_net((struct sock *)tp); 1711 int val; 1712 1713 /* Paired with WRITE_ONCE() in tcp_sock_set_keepcnt() 1714 * and do_tcp_setsockopt(). 1715 */ 1716 val = READ_ONCE(tp->keepalive_probes); 1717 1718 return val ? : READ_ONCE(net->ipv4.sysctl_tcp_keepalive_probes); 1719 } 1720 1721 static inline u32 keepalive_time_elapsed(const struct tcp_sock *tp) 1722 { 1723 const struct inet_connection_sock *icsk = &tp->inet_conn; 1724 1725 return min_t(u32, tcp_jiffies32 - icsk->icsk_ack.lrcvtime, 1726 tcp_jiffies32 - tp->rcv_tstamp); 1727 } 1728 1729 static inline int tcp_fin_time(const struct sock *sk) 1730 { 1731 int fin_timeout = tcp_sk(sk)->linger2 ? : 1732 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_fin_timeout); 1733 const int rto = inet_csk(sk)->icsk_rto; 1734 1735 if (fin_timeout < (rto << 2) - (rto >> 1)) 1736 fin_timeout = (rto << 2) - (rto >> 1); 1737 1738 return fin_timeout; 1739 } 1740 1741 static inline bool tcp_paws_check(const struct tcp_options_received *rx_opt, 1742 int paws_win) 1743 { 1744 if ((s32)(rx_opt->ts_recent - rx_opt->rcv_tsval) <= paws_win) 1745 return true; 1746 if (unlikely(!time_before32(ktime_get_seconds(), 1747 rx_opt->ts_recent_stamp + TCP_PAWS_WRAP))) 1748 return true; 1749 /* 1750 * Some OSes send SYN and SYNACK messages with tsval=0 tsecr=0, 1751 * then following tcp messages have valid values. Ignore 0 value, 1752 * or else 'negative' tsval might forbid us to accept their packets. 1753 */ 1754 if (!rx_opt->ts_recent) 1755 return true; 1756 return false; 1757 } 1758 1759 static inline bool tcp_paws_reject(const struct tcp_options_received *rx_opt, 1760 int rst) 1761 { 1762 if (tcp_paws_check(rx_opt, 0)) 1763 return false; 1764 1765 /* RST segments are not recommended to carry timestamp, 1766 and, if they do, it is recommended to ignore PAWS because 1767 "their cleanup function should take precedence over timestamps." 1768 Certainly, it is mistake. It is necessary to understand the reasons 1769 of this constraint to relax it: if peer reboots, clock may go 1770 out-of-sync and half-open connections will not be reset. 1771 Actually, the problem would be not existing if all 1772 the implementations followed draft about maintaining clock 1773 via reboots. Linux-2.2 DOES NOT! 1774 1775 However, we can relax time bounds for RST segments to MSL. 1776 */ 1777 if (rst && !time_before32(ktime_get_seconds(), 1778 rx_opt->ts_recent_stamp + TCP_PAWS_MSL)) 1779 return false; 1780 return true; 1781 } 1782 1783 static inline void __tcp_fast_path_on(struct tcp_sock *tp, u32 snd_wnd) 1784 { 1785 /* mptcp hooks are only on the slow path */ 1786 if (sk_is_mptcp((struct sock *)tp)) 1787 return; 1788 1789 tp->pred_flags = htonl((tp->tcp_header_len << 26) | 1790 ntohl(TCP_FLAG_ACK) | 1791 snd_wnd); 1792 } 1793 1794 static inline void tcp_fast_path_on(struct tcp_sock *tp) 1795 { 1796 __tcp_fast_path_on(tp, tp->snd_wnd >> tp->rx_opt.snd_wscale); 1797 } 1798 1799 static inline void tcp_fast_path_check(struct sock *sk) 1800 { 1801 struct tcp_sock *tp = tcp_sk(sk); 1802 1803 if (RB_EMPTY_ROOT(&tp->out_of_order_queue) && 1804 tp->rcv_wnd && 1805 atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf && 1806 !tp->urg_data) 1807 tcp_fast_path_on(tp); 1808 } 1809 1810 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb, 1811 int mib_idx, u32 *last_oow_ack_time); 1812 1813 static inline void tcp_mib_init(struct net *net) 1814 { 1815 /* See RFC 2012 */ 1816 TCP_ADD_STATS(net, TCP_MIB_RTOALGORITHM, 1); 1817 TCP_ADD_STATS(net, TCP_MIB_RTOMIN, TCP_RTO_MIN*1000/HZ); 1818 TCP_ADD_STATS(net, TCP_MIB_RTOMAX, TCP_RTO_MAX*1000/HZ); 1819 TCP_ADD_STATS(net, TCP_MIB_MAXCONN, -1); 1820 } 1821 1822 /* from STCP */ 1823 static inline void tcp_clear_all_retrans_hints(struct tcp_sock *tp) 1824 { 1825 tp->retransmit_skb_hint = NULL; 1826 } 1827 1828 #define tcp_md5_addr tcp_ao_addr 1829 1830 /* - key database */ 1831 struct tcp_md5sig_key { 1832 struct hlist_node node; 1833 u8 keylen; 1834 u8 family; /* AF_INET or AF_INET6 */ 1835 u8 prefixlen; 1836 u8 flags; 1837 union tcp_md5_addr addr; 1838 int l3index; /* set if key added with L3 scope */ 1839 u8 key[TCP_MD5SIG_MAXKEYLEN]; 1840 struct rcu_head rcu; 1841 }; 1842 1843 /* - sock block */ 1844 struct tcp_md5sig_info { 1845 struct hlist_head head; 1846 struct rcu_head rcu; 1847 }; 1848 1849 /* - pseudo header */ 1850 struct tcp4_pseudohdr { 1851 __be32 saddr; 1852 __be32 daddr; 1853 __u8 pad; 1854 __u8 protocol; 1855 __be16 len; 1856 }; 1857 1858 struct tcp6_pseudohdr { 1859 struct in6_addr saddr; 1860 struct in6_addr daddr; 1861 __be32 len; 1862 __be32 protocol; /* including padding */ 1863 }; 1864 1865 union tcp_md5sum_block { 1866 struct tcp4_pseudohdr ip4; 1867 #if IS_ENABLED(CONFIG_IPV6) 1868 struct tcp6_pseudohdr ip6; 1869 #endif 1870 }; 1871 1872 /* 1873 * struct tcp_sigpool - per-CPU pool of ahash_requests 1874 * @scratch: per-CPU temporary area, that can be used between 1875 * tcp_sigpool_start() and tcp_sigpool_end() to perform 1876 * crypto request 1877 * @req: pre-allocated ahash request 1878 */ 1879 struct tcp_sigpool { 1880 void *scratch; 1881 struct ahash_request *req; 1882 }; 1883 1884 int tcp_sigpool_alloc_ahash(const char *alg, size_t scratch_size); 1885 void tcp_sigpool_get(unsigned int id); 1886 void tcp_sigpool_release(unsigned int id); 1887 int tcp_sigpool_hash_skb_data(struct tcp_sigpool *hp, 1888 const struct sk_buff *skb, 1889 unsigned int header_len); 1890 1891 /** 1892 * tcp_sigpool_start - disable bh and start using tcp_sigpool_ahash 1893 * @id: tcp_sigpool that was previously allocated by tcp_sigpool_alloc_ahash() 1894 * @c: returned tcp_sigpool for usage (uninitialized on failure) 1895 * 1896 * Returns: 0 on success, error otherwise. 1897 */ 1898 int tcp_sigpool_start(unsigned int id, struct tcp_sigpool *c); 1899 /** 1900 * tcp_sigpool_end - enable bh and stop using tcp_sigpool 1901 * @c: tcp_sigpool context that was returned by tcp_sigpool_start() 1902 */ 1903 void tcp_sigpool_end(struct tcp_sigpool *c); 1904 size_t tcp_sigpool_algo(unsigned int id, char *buf, size_t buf_len); 1905 /* - functions */ 1906 int tcp_v4_md5_hash_skb(char *md5_hash, const struct tcp_md5sig_key *key, 1907 const struct sock *sk, const struct sk_buff *skb); 1908 int tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr, 1909 int family, u8 prefixlen, int l3index, u8 flags, 1910 const u8 *newkey, u8 newkeylen); 1911 int tcp_md5_key_copy(struct sock *sk, const union tcp_md5_addr *addr, 1912 int family, u8 prefixlen, int l3index, 1913 struct tcp_md5sig_key *key); 1914 1915 int tcp_md5_do_del(struct sock *sk, const union tcp_md5_addr *addr, 1916 int family, u8 prefixlen, int l3index, u8 flags); 1917 void tcp_clear_md5_list(struct sock *sk); 1918 struct tcp_md5sig_key *tcp_v4_md5_lookup(const struct sock *sk, 1919 const struct sock *addr_sk); 1920 1921 #ifdef CONFIG_TCP_MD5SIG 1922 struct tcp_md5sig_key *__tcp_md5_do_lookup(const struct sock *sk, int l3index, 1923 const union tcp_md5_addr *addr, 1924 int family, bool any_l3index); 1925 static inline struct tcp_md5sig_key * 1926 tcp_md5_do_lookup(const struct sock *sk, int l3index, 1927 const union tcp_md5_addr *addr, int family) 1928 { 1929 if (!static_branch_unlikely(&tcp_md5_needed.key)) 1930 return NULL; 1931 return __tcp_md5_do_lookup(sk, l3index, addr, family, false); 1932 } 1933 1934 static inline struct tcp_md5sig_key * 1935 tcp_md5_do_lookup_any_l3index(const struct sock *sk, 1936 const union tcp_md5_addr *addr, int family) 1937 { 1938 if (!static_branch_unlikely(&tcp_md5_needed.key)) 1939 return NULL; 1940 return __tcp_md5_do_lookup(sk, 0, addr, family, true); 1941 } 1942 1943 #define tcp_twsk_md5_key(twsk) ((twsk)->tw_md5_key) 1944 void tcp_md5_destruct_sock(struct sock *sk); 1945 #else 1946 static inline struct tcp_md5sig_key * 1947 tcp_md5_do_lookup(const struct sock *sk, int l3index, 1948 const union tcp_md5_addr *addr, int family) 1949 { 1950 return NULL; 1951 } 1952 1953 static inline struct tcp_md5sig_key * 1954 tcp_md5_do_lookup_any_l3index(const struct sock *sk, 1955 const union tcp_md5_addr *addr, int family) 1956 { 1957 return NULL; 1958 } 1959 1960 #define tcp_twsk_md5_key(twsk) NULL 1961 static inline void tcp_md5_destruct_sock(struct sock *sk) 1962 { 1963 } 1964 #endif 1965 1966 int tcp_md5_alloc_sigpool(void); 1967 void tcp_md5_release_sigpool(void); 1968 void tcp_md5_add_sigpool(void); 1969 extern int tcp_md5_sigpool_id; 1970 1971 int tcp_md5_hash_key(struct tcp_sigpool *hp, 1972 const struct tcp_md5sig_key *key); 1973 1974 /* From tcp_fastopen.c */ 1975 void tcp_fastopen_cache_get(struct sock *sk, u16 *mss, 1976 struct tcp_fastopen_cookie *cookie); 1977 void tcp_fastopen_cache_set(struct sock *sk, u16 mss, 1978 struct tcp_fastopen_cookie *cookie, bool syn_lost, 1979 u16 try_exp); 1980 struct tcp_fastopen_request { 1981 /* Fast Open cookie. Size 0 means a cookie request */ 1982 struct tcp_fastopen_cookie cookie; 1983 struct msghdr *data; /* data in MSG_FASTOPEN */ 1984 size_t size; 1985 int copied; /* queued in tcp_connect() */ 1986 struct ubuf_info *uarg; 1987 }; 1988 void tcp_free_fastopen_req(struct tcp_sock *tp); 1989 void tcp_fastopen_destroy_cipher(struct sock *sk); 1990 void tcp_fastopen_ctx_destroy(struct net *net); 1991 int tcp_fastopen_reset_cipher(struct net *net, struct sock *sk, 1992 void *primary_key, void *backup_key); 1993 int tcp_fastopen_get_cipher(struct net *net, struct inet_connection_sock *icsk, 1994 u64 *key); 1995 void tcp_fastopen_add_skb(struct sock *sk, struct sk_buff *skb); 1996 struct sock *tcp_try_fastopen(struct sock *sk, struct sk_buff *skb, 1997 struct request_sock *req, 1998 struct tcp_fastopen_cookie *foc, 1999 const struct dst_entry *dst); 2000 void tcp_fastopen_init_key_once(struct net *net); 2001 bool tcp_fastopen_cookie_check(struct sock *sk, u16 *mss, 2002 struct tcp_fastopen_cookie *cookie); 2003 bool tcp_fastopen_defer_connect(struct sock *sk, int *err); 2004 #define TCP_FASTOPEN_KEY_LENGTH sizeof(siphash_key_t) 2005 #define TCP_FASTOPEN_KEY_MAX 2 2006 #define TCP_FASTOPEN_KEY_BUF_LENGTH \ 2007 (TCP_FASTOPEN_KEY_LENGTH * TCP_FASTOPEN_KEY_MAX) 2008 2009 /* Fastopen key context */ 2010 struct tcp_fastopen_context { 2011 siphash_key_t key[TCP_FASTOPEN_KEY_MAX]; 2012 int num; 2013 struct rcu_head rcu; 2014 }; 2015 2016 void tcp_fastopen_active_disable(struct sock *sk); 2017 bool tcp_fastopen_active_should_disable(struct sock *sk); 2018 void tcp_fastopen_active_disable_ofo_check(struct sock *sk); 2019 void tcp_fastopen_active_detect_blackhole(struct sock *sk, bool expired); 2020 2021 /* Caller needs to wrap with rcu_read_(un)lock() */ 2022 static inline 2023 struct tcp_fastopen_context *tcp_fastopen_get_ctx(const struct sock *sk) 2024 { 2025 struct tcp_fastopen_context *ctx; 2026 2027 ctx = rcu_dereference(inet_csk(sk)->icsk_accept_queue.fastopenq.ctx); 2028 if (!ctx) 2029 ctx = rcu_dereference(sock_net(sk)->ipv4.tcp_fastopen_ctx); 2030 return ctx; 2031 } 2032 2033 static inline 2034 bool tcp_fastopen_cookie_match(const struct tcp_fastopen_cookie *foc, 2035 const struct tcp_fastopen_cookie *orig) 2036 { 2037 if (orig->len == TCP_FASTOPEN_COOKIE_SIZE && 2038 orig->len == foc->len && 2039 !memcmp(orig->val, foc->val, foc->len)) 2040 return true; 2041 return false; 2042 } 2043 2044 static inline 2045 int tcp_fastopen_context_len(const struct tcp_fastopen_context *ctx) 2046 { 2047 return ctx->num; 2048 } 2049 2050 /* Latencies incurred by various limits for a sender. They are 2051 * chronograph-like stats that are mutually exclusive. 2052 */ 2053 enum tcp_chrono { 2054 TCP_CHRONO_UNSPEC, 2055 TCP_CHRONO_BUSY, /* Actively sending data (non-empty write queue) */ 2056 TCP_CHRONO_RWND_LIMITED, /* Stalled by insufficient receive window */ 2057 TCP_CHRONO_SNDBUF_LIMITED, /* Stalled by insufficient send buffer */ 2058 __TCP_CHRONO_MAX, 2059 }; 2060 2061 void tcp_chrono_start(struct sock *sk, const enum tcp_chrono type); 2062 void tcp_chrono_stop(struct sock *sk, const enum tcp_chrono type); 2063 2064 /* This helper is needed, because skb->tcp_tsorted_anchor uses 2065 * the same memory storage than skb->destructor/_skb_refdst 2066 */ 2067 static inline void tcp_skb_tsorted_anchor_cleanup(struct sk_buff *skb) 2068 { 2069 skb->destructor = NULL; 2070 skb->_skb_refdst = 0UL; 2071 } 2072 2073 #define tcp_skb_tsorted_save(skb) { \ 2074 unsigned long _save = skb->_skb_refdst; \ 2075 skb->_skb_refdst = 0UL; 2076 2077 #define tcp_skb_tsorted_restore(skb) \ 2078 skb->_skb_refdst = _save; \ 2079 } 2080 2081 void tcp_write_queue_purge(struct sock *sk); 2082 2083 static inline struct sk_buff *tcp_rtx_queue_head(const struct sock *sk) 2084 { 2085 return skb_rb_first(&sk->tcp_rtx_queue); 2086 } 2087 2088 static inline struct sk_buff *tcp_rtx_queue_tail(const struct sock *sk) 2089 { 2090 return skb_rb_last(&sk->tcp_rtx_queue); 2091 } 2092 2093 static inline struct sk_buff *tcp_write_queue_tail(const struct sock *sk) 2094 { 2095 return skb_peek_tail(&sk->sk_write_queue); 2096 } 2097 2098 #define tcp_for_write_queue_from_safe(skb, tmp, sk) \ 2099 skb_queue_walk_from_safe(&(sk)->sk_write_queue, skb, tmp) 2100 2101 static inline struct sk_buff *tcp_send_head(const struct sock *sk) 2102 { 2103 return skb_peek(&sk->sk_write_queue); 2104 } 2105 2106 static inline bool tcp_skb_is_last(const struct sock *sk, 2107 const struct sk_buff *skb) 2108 { 2109 return skb_queue_is_last(&sk->sk_write_queue, skb); 2110 } 2111 2112 /** 2113 * tcp_write_queue_empty - test if any payload (or FIN) is available in write queue 2114 * @sk: socket 2115 * 2116 * Since the write queue can have a temporary empty skb in it, 2117 * we must not use "return skb_queue_empty(&sk->sk_write_queue)" 2118 */ 2119 static inline bool tcp_write_queue_empty(const struct sock *sk) 2120 { 2121 const struct tcp_sock *tp = tcp_sk(sk); 2122 2123 return tp->write_seq == tp->snd_nxt; 2124 } 2125 2126 static inline bool tcp_rtx_queue_empty(const struct sock *sk) 2127 { 2128 return RB_EMPTY_ROOT(&sk->tcp_rtx_queue); 2129 } 2130 2131 static inline bool tcp_rtx_and_write_queues_empty(const struct sock *sk) 2132 { 2133 return tcp_rtx_queue_empty(sk) && tcp_write_queue_empty(sk); 2134 } 2135 2136 static inline void tcp_add_write_queue_tail(struct sock *sk, struct sk_buff *skb) 2137 { 2138 __skb_queue_tail(&sk->sk_write_queue, skb); 2139 2140 /* Queue it, remembering where we must start sending. */ 2141 if (sk->sk_write_queue.next == skb) 2142 tcp_chrono_start(sk, TCP_CHRONO_BUSY); 2143 } 2144 2145 /* Insert new before skb on the write queue of sk. */ 2146 static inline void tcp_insert_write_queue_before(struct sk_buff *new, 2147 struct sk_buff *skb, 2148 struct sock *sk) 2149 { 2150 __skb_queue_before(&sk->sk_write_queue, skb, new); 2151 } 2152 2153 static inline void tcp_unlink_write_queue(struct sk_buff *skb, struct sock *sk) 2154 { 2155 tcp_skb_tsorted_anchor_cleanup(skb); 2156 __skb_unlink(skb, &sk->sk_write_queue); 2157 } 2158 2159 void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb); 2160 2161 static inline void tcp_rtx_queue_unlink(struct sk_buff *skb, struct sock *sk) 2162 { 2163 tcp_skb_tsorted_anchor_cleanup(skb); 2164 rb_erase(&skb->rbnode, &sk->tcp_rtx_queue); 2165 } 2166 2167 static inline void tcp_rtx_queue_unlink_and_free(struct sk_buff *skb, struct sock *sk) 2168 { 2169 list_del(&skb->tcp_tsorted_anchor); 2170 tcp_rtx_queue_unlink(skb, sk); 2171 tcp_wmem_free_skb(sk, skb); 2172 } 2173 2174 static inline void tcp_write_collapse_fence(struct sock *sk) 2175 { 2176 struct sk_buff *skb = tcp_write_queue_tail(sk); 2177 2178 if (skb) 2179 TCP_SKB_CB(skb)->eor = 1; 2180 } 2181 2182 static inline void tcp_push_pending_frames(struct sock *sk) 2183 { 2184 if (tcp_send_head(sk)) { 2185 struct tcp_sock *tp = tcp_sk(sk); 2186 2187 __tcp_push_pending_frames(sk, tcp_current_mss(sk), tp->nonagle); 2188 } 2189 } 2190 2191 /* Start sequence of the skb just after the highest skb with SACKed 2192 * bit, valid only if sacked_out > 0 or when the caller has ensured 2193 * validity by itself. 2194 */ 2195 static inline u32 tcp_highest_sack_seq(struct tcp_sock *tp) 2196 { 2197 if (!tp->sacked_out) 2198 return tp->snd_una; 2199 2200 if (tp->highest_sack == NULL) 2201 return tp->snd_nxt; 2202 2203 return TCP_SKB_CB(tp->highest_sack)->seq; 2204 } 2205 2206 static inline void tcp_advance_highest_sack(struct sock *sk, struct sk_buff *skb) 2207 { 2208 tcp_sk(sk)->highest_sack = skb_rb_next(skb); 2209 } 2210 2211 static inline struct sk_buff *tcp_highest_sack(struct sock *sk) 2212 { 2213 return tcp_sk(sk)->highest_sack; 2214 } 2215 2216 static inline void tcp_highest_sack_reset(struct sock *sk) 2217 { 2218 tcp_sk(sk)->highest_sack = tcp_rtx_queue_head(sk); 2219 } 2220 2221 /* Called when old skb is about to be deleted and replaced by new skb */ 2222 static inline void tcp_highest_sack_replace(struct sock *sk, 2223 struct sk_buff *old, 2224 struct sk_buff *new) 2225 { 2226 if (old == tcp_highest_sack(sk)) 2227 tcp_sk(sk)->highest_sack = new; 2228 } 2229 2230 /* This helper checks if socket has IP_TRANSPARENT set */ 2231 static inline bool inet_sk_transparent(const struct sock *sk) 2232 { 2233 switch (sk->sk_state) { 2234 case TCP_TIME_WAIT: 2235 return inet_twsk(sk)->tw_transparent; 2236 case TCP_NEW_SYN_RECV: 2237 return inet_rsk(inet_reqsk(sk))->no_srccheck; 2238 } 2239 return inet_test_bit(TRANSPARENT, sk); 2240 } 2241 2242 /* Determines whether this is a thin stream (which may suffer from 2243 * increased latency). Used to trigger latency-reducing mechanisms. 2244 */ 2245 static inline bool tcp_stream_is_thin(struct tcp_sock *tp) 2246 { 2247 return tp->packets_out < 4 && !tcp_in_initial_slowstart(tp); 2248 } 2249 2250 /* /proc */ 2251 enum tcp_seq_states { 2252 TCP_SEQ_STATE_LISTENING, 2253 TCP_SEQ_STATE_ESTABLISHED, 2254 }; 2255 2256 void *tcp_seq_start(struct seq_file *seq, loff_t *pos); 2257 void *tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos); 2258 void tcp_seq_stop(struct seq_file *seq, void *v); 2259 2260 struct tcp_seq_afinfo { 2261 sa_family_t family; 2262 }; 2263 2264 struct tcp_iter_state { 2265 struct seq_net_private p; 2266 enum tcp_seq_states state; 2267 struct sock *syn_wait_sk; 2268 int bucket, offset, sbucket, num; 2269 loff_t last_pos; 2270 }; 2271 2272 extern struct request_sock_ops tcp_request_sock_ops; 2273 extern struct request_sock_ops tcp6_request_sock_ops; 2274 2275 void tcp_v4_destroy_sock(struct sock *sk); 2276 2277 struct sk_buff *tcp_gso_segment(struct sk_buff *skb, 2278 netdev_features_t features); 2279 struct tcphdr *tcp_gro_pull_header(struct sk_buff *skb); 2280 struct sk_buff *tcp_gro_lookup(struct list_head *head, struct tcphdr *th); 2281 struct sk_buff *tcp_gro_receive(struct list_head *head, struct sk_buff *skb, 2282 struct tcphdr *th); 2283 INDIRECT_CALLABLE_DECLARE(int tcp4_gro_complete(struct sk_buff *skb, int thoff)); 2284 INDIRECT_CALLABLE_DECLARE(struct sk_buff *tcp4_gro_receive(struct list_head *head, struct sk_buff *skb)); 2285 INDIRECT_CALLABLE_DECLARE(int tcp6_gro_complete(struct sk_buff *skb, int thoff)); 2286 INDIRECT_CALLABLE_DECLARE(struct sk_buff *tcp6_gro_receive(struct list_head *head, struct sk_buff *skb)); 2287 #ifdef CONFIG_INET 2288 void tcp_gro_complete(struct sk_buff *skb); 2289 #else 2290 static inline void tcp_gro_complete(struct sk_buff *skb) { } 2291 #endif 2292 2293 void __tcp_v4_send_check(struct sk_buff *skb, __be32 saddr, __be32 daddr); 2294 2295 static inline u32 tcp_notsent_lowat(const struct tcp_sock *tp) 2296 { 2297 struct net *net = sock_net((struct sock *)tp); 2298 u32 val; 2299 2300 val = READ_ONCE(tp->notsent_lowat); 2301 2302 return val ?: READ_ONCE(net->ipv4.sysctl_tcp_notsent_lowat); 2303 } 2304 2305 bool tcp_stream_memory_free(const struct sock *sk, int wake); 2306 2307 #ifdef CONFIG_PROC_FS 2308 int tcp4_proc_init(void); 2309 void tcp4_proc_exit(void); 2310 #endif 2311 2312 int tcp_rtx_synack(const struct sock *sk, struct request_sock *req); 2313 int tcp_conn_request(struct request_sock_ops *rsk_ops, 2314 const struct tcp_request_sock_ops *af_ops, 2315 struct sock *sk, struct sk_buff *skb); 2316 2317 /* TCP af-specific functions */ 2318 struct tcp_sock_af_ops { 2319 #ifdef CONFIG_TCP_MD5SIG 2320 struct tcp_md5sig_key *(*md5_lookup) (const struct sock *sk, 2321 const struct sock *addr_sk); 2322 int (*calc_md5_hash)(char *location, 2323 const struct tcp_md5sig_key *md5, 2324 const struct sock *sk, 2325 const struct sk_buff *skb); 2326 int (*md5_parse)(struct sock *sk, 2327 int optname, 2328 sockptr_t optval, 2329 int optlen); 2330 #endif 2331 #ifdef CONFIG_TCP_AO 2332 int (*ao_parse)(struct sock *sk, int optname, sockptr_t optval, int optlen); 2333 struct tcp_ao_key *(*ao_lookup)(const struct sock *sk, 2334 struct sock *addr_sk, 2335 int sndid, int rcvid); 2336 int (*ao_calc_key_sk)(struct tcp_ao_key *mkt, u8 *key, 2337 const struct sock *sk, 2338 __be32 sisn, __be32 disn, bool send); 2339 int (*calc_ao_hash)(char *location, struct tcp_ao_key *ao, 2340 const struct sock *sk, const struct sk_buff *skb, 2341 const u8 *tkey, int hash_offset, u32 sne); 2342 #endif 2343 }; 2344 2345 struct tcp_request_sock_ops { 2346 u16 mss_clamp; 2347 #ifdef CONFIG_TCP_MD5SIG 2348 struct tcp_md5sig_key *(*req_md5_lookup)(const struct sock *sk, 2349 const struct sock *addr_sk); 2350 int (*calc_md5_hash) (char *location, 2351 const struct tcp_md5sig_key *md5, 2352 const struct sock *sk, 2353 const struct sk_buff *skb); 2354 #endif 2355 #ifdef CONFIG_TCP_AO 2356 struct tcp_ao_key *(*ao_lookup)(const struct sock *sk, 2357 struct request_sock *req, 2358 int sndid, int rcvid); 2359 int (*ao_calc_key)(struct tcp_ao_key *mkt, u8 *key, struct request_sock *sk); 2360 int (*ao_synack_hash)(char *ao_hash, struct tcp_ao_key *mkt, 2361 struct request_sock *req, const struct sk_buff *skb, 2362 int hash_offset, u32 sne); 2363 #endif 2364 #ifdef CONFIG_SYN_COOKIES 2365 __u32 (*cookie_init_seq)(const struct sk_buff *skb, 2366 __u16 *mss); 2367 #endif 2368 struct dst_entry *(*route_req)(const struct sock *sk, 2369 struct sk_buff *skb, 2370 struct flowi *fl, 2371 struct request_sock *req, 2372 u32 tw_isn); 2373 u32 (*init_seq)(const struct sk_buff *skb); 2374 u32 (*init_ts_off)(const struct net *net, const struct sk_buff *skb); 2375 int (*send_synack)(const struct sock *sk, struct dst_entry *dst, 2376 struct flowi *fl, struct request_sock *req, 2377 struct tcp_fastopen_cookie *foc, 2378 enum tcp_synack_type synack_type, 2379 struct sk_buff *syn_skb); 2380 }; 2381 2382 extern const struct tcp_request_sock_ops tcp_request_sock_ipv4_ops; 2383 #if IS_ENABLED(CONFIG_IPV6) 2384 extern const struct tcp_request_sock_ops tcp_request_sock_ipv6_ops; 2385 #endif 2386 2387 #ifdef CONFIG_SYN_COOKIES 2388 static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops, 2389 const struct sock *sk, struct sk_buff *skb, 2390 __u16 *mss) 2391 { 2392 tcp_synq_overflow(sk); 2393 __NET_INC_STATS(sock_net(sk), LINUX_MIB_SYNCOOKIESSENT); 2394 return ops->cookie_init_seq(skb, mss); 2395 } 2396 #else 2397 static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops, 2398 const struct sock *sk, struct sk_buff *skb, 2399 __u16 *mss) 2400 { 2401 return 0; 2402 } 2403 #endif 2404 2405 struct tcp_key { 2406 union { 2407 struct { 2408 struct tcp_ao_key *ao_key; 2409 char *traffic_key; 2410 u32 sne; 2411 u8 rcv_next; 2412 }; 2413 struct tcp_md5sig_key *md5_key; 2414 }; 2415 enum { 2416 TCP_KEY_NONE = 0, 2417 TCP_KEY_MD5, 2418 TCP_KEY_AO, 2419 } type; 2420 }; 2421 2422 static inline void tcp_get_current_key(const struct sock *sk, 2423 struct tcp_key *out) 2424 { 2425 #if defined(CONFIG_TCP_AO) || defined(CONFIG_TCP_MD5SIG) 2426 const struct tcp_sock *tp = tcp_sk(sk); 2427 #endif 2428 2429 #ifdef CONFIG_TCP_AO 2430 if (static_branch_unlikely(&tcp_ao_needed.key)) { 2431 struct tcp_ao_info *ao; 2432 2433 ao = rcu_dereference_protected(tp->ao_info, 2434 lockdep_sock_is_held(sk)); 2435 if (ao) { 2436 out->ao_key = READ_ONCE(ao->current_key); 2437 out->type = TCP_KEY_AO; 2438 return; 2439 } 2440 } 2441 #endif 2442 #ifdef CONFIG_TCP_MD5SIG 2443 if (static_branch_unlikely(&tcp_md5_needed.key) && 2444 rcu_access_pointer(tp->md5sig_info)) { 2445 out->md5_key = tp->af_specific->md5_lookup(sk, sk); 2446 if (out->md5_key) { 2447 out->type = TCP_KEY_MD5; 2448 return; 2449 } 2450 } 2451 #endif 2452 out->type = TCP_KEY_NONE; 2453 } 2454 2455 static inline bool tcp_key_is_md5(const struct tcp_key *key) 2456 { 2457 if (static_branch_tcp_md5()) 2458 return key->type == TCP_KEY_MD5; 2459 return false; 2460 } 2461 2462 static inline bool tcp_key_is_ao(const struct tcp_key *key) 2463 { 2464 if (static_branch_tcp_ao()) 2465 return key->type == TCP_KEY_AO; 2466 return false; 2467 } 2468 2469 int tcpv4_offload_init(void); 2470 2471 void tcp_v4_init(void); 2472 void tcp_init(void); 2473 2474 /* tcp_recovery.c */ 2475 void tcp_mark_skb_lost(struct sock *sk, struct sk_buff *skb); 2476 void tcp_newreno_mark_lost(struct sock *sk, bool snd_una_advanced); 2477 extern s32 tcp_rack_skb_timeout(struct tcp_sock *tp, struct sk_buff *skb, 2478 u32 reo_wnd); 2479 extern bool tcp_rack_mark_lost(struct sock *sk); 2480 extern void tcp_rack_advance(struct tcp_sock *tp, u8 sacked, u32 end_seq, 2481 u64 xmit_time); 2482 extern void tcp_rack_reo_timeout(struct sock *sk); 2483 extern void tcp_rack_update_reo_wnd(struct sock *sk, struct rate_sample *rs); 2484 2485 /* tcp_plb.c */ 2486 2487 /* 2488 * Scaling factor for fractions in PLB. For example, tcp_plb_update_state 2489 * expects cong_ratio which represents fraction of traffic that experienced 2490 * congestion over a single RTT. In order to avoid floating point operations, 2491 * this fraction should be mapped to (1 << TCP_PLB_SCALE) and passed in. 2492 */ 2493 #define TCP_PLB_SCALE 8 2494 2495 /* State for PLB (Protective Load Balancing) for a single TCP connection. */ 2496 struct tcp_plb_state { 2497 u8 consec_cong_rounds:5, /* consecutive congested rounds */ 2498 unused:3; 2499 u32 pause_until; /* jiffies32 when PLB can resume rerouting */ 2500 }; 2501 2502 static inline void tcp_plb_init(const struct sock *sk, 2503 struct tcp_plb_state *plb) 2504 { 2505 plb->consec_cong_rounds = 0; 2506 plb->pause_until = 0; 2507 } 2508 void tcp_plb_update_state(const struct sock *sk, struct tcp_plb_state *plb, 2509 const int cong_ratio); 2510 void tcp_plb_check_rehash(struct sock *sk, struct tcp_plb_state *plb); 2511 void tcp_plb_update_state_upon_rto(struct sock *sk, struct tcp_plb_state *plb); 2512 2513 static inline void tcp_warn_once(const struct sock *sk, bool cond, const char *str) 2514 { 2515 WARN_ONCE(cond, 2516 "%scwn:%u out:%u sacked:%u lost:%u retrans:%u tlp_high_seq:%u sk_state:%u ca_state:%u advmss:%u mss_cache:%u pmtu:%u\n", 2517 str, 2518 tcp_snd_cwnd(tcp_sk(sk)), 2519 tcp_sk(sk)->packets_out, tcp_sk(sk)->sacked_out, 2520 tcp_sk(sk)->lost_out, tcp_sk(sk)->retrans_out, 2521 tcp_sk(sk)->tlp_high_seq, sk->sk_state, 2522 inet_csk(sk)->icsk_ca_state, 2523 tcp_sk(sk)->advmss, tcp_sk(sk)->mss_cache, 2524 inet_csk(sk)->icsk_pmtu_cookie); 2525 } 2526 2527 /* At how many usecs into the future should the RTO fire? */ 2528 static inline s64 tcp_rto_delta_us(const struct sock *sk) 2529 { 2530 const struct sk_buff *skb = tcp_rtx_queue_head(sk); 2531 u32 rto = inet_csk(sk)->icsk_rto; 2532 2533 if (likely(skb)) { 2534 u64 rto_time_stamp_us = tcp_skb_timestamp_us(skb) + jiffies_to_usecs(rto); 2535 2536 return rto_time_stamp_us - tcp_sk(sk)->tcp_mstamp; 2537 } else { 2538 tcp_warn_once(sk, 1, "rtx queue empty: "); 2539 return jiffies_to_usecs(rto); 2540 } 2541 2542 } 2543 2544 /* 2545 * Save and compile IPv4 options, return a pointer to it 2546 */ 2547 static inline struct ip_options_rcu *tcp_v4_save_options(struct net *net, 2548 struct sk_buff *skb) 2549 { 2550 const struct ip_options *opt = &TCP_SKB_CB(skb)->header.h4.opt; 2551 struct ip_options_rcu *dopt = NULL; 2552 2553 if (opt->optlen) { 2554 int opt_size = sizeof(*dopt) + opt->optlen; 2555 2556 dopt = kmalloc(opt_size, GFP_ATOMIC); 2557 if (dopt && __ip_options_echo(net, &dopt->opt, skb, opt)) { 2558 kfree(dopt); 2559 dopt = NULL; 2560 } 2561 } 2562 return dopt; 2563 } 2564 2565 /* locally generated TCP pure ACKs have skb->truesize == 2 2566 * (check tcp_send_ack() in net/ipv4/tcp_output.c ) 2567 * This is much faster than dissecting the packet to find out. 2568 * (Think of GRE encapsulations, IPv4, IPv6, ...) 2569 */ 2570 static inline bool skb_is_tcp_pure_ack(const struct sk_buff *skb) 2571 { 2572 return skb->truesize == 2; 2573 } 2574 2575 static inline void skb_set_tcp_pure_ack(struct sk_buff *skb) 2576 { 2577 skb->truesize = 2; 2578 } 2579 2580 static inline int tcp_inq(struct sock *sk) 2581 { 2582 struct tcp_sock *tp = tcp_sk(sk); 2583 int answ; 2584 2585 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) { 2586 answ = 0; 2587 } else if (sock_flag(sk, SOCK_URGINLINE) || 2588 !tp->urg_data || 2589 before(tp->urg_seq, tp->copied_seq) || 2590 !before(tp->urg_seq, tp->rcv_nxt)) { 2591 2592 answ = tp->rcv_nxt - tp->copied_seq; 2593 2594 /* Subtract 1, if FIN was received */ 2595 if (answ && sock_flag(sk, SOCK_DONE)) 2596 answ--; 2597 } else { 2598 answ = tp->urg_seq - tp->copied_seq; 2599 } 2600 2601 return answ; 2602 } 2603 2604 int tcp_peek_len(struct socket *sock); 2605 2606 static inline void tcp_segs_in(struct tcp_sock *tp, const struct sk_buff *skb) 2607 { 2608 u16 segs_in; 2609 2610 segs_in = max_t(u16, 1, skb_shinfo(skb)->gso_segs); 2611 2612 /* We update these fields while other threads might 2613 * read them from tcp_get_info() 2614 */ 2615 WRITE_ONCE(tp->segs_in, tp->segs_in + segs_in); 2616 if (skb->len > tcp_hdrlen(skb)) 2617 WRITE_ONCE(tp->data_segs_in, tp->data_segs_in + segs_in); 2618 } 2619 2620 /* 2621 * TCP listen path runs lockless. 2622 * We forced "struct sock" to be const qualified to make sure 2623 * we don't modify one of its field by mistake. 2624 * Here, we increment sk_drops which is an atomic_t, so we can safely 2625 * make sock writable again. 2626 */ 2627 static inline void tcp_listendrop(const struct sock *sk) 2628 { 2629 sk_drops_inc((struct sock *)sk); 2630 __NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENDROPS); 2631 } 2632 2633 enum hrtimer_restart tcp_pace_kick(struct hrtimer *timer); 2634 2635 /* 2636 * Interface for adding Upper Level Protocols over TCP 2637 */ 2638 2639 #define TCP_ULP_NAME_MAX 16 2640 #define TCP_ULP_MAX 128 2641 #define TCP_ULP_BUF_MAX (TCP_ULP_NAME_MAX*TCP_ULP_MAX) 2642 2643 struct tcp_ulp_ops { 2644 struct list_head list; 2645 2646 /* initialize ulp */ 2647 int (*init)(struct sock *sk); 2648 /* update ulp */ 2649 void (*update)(struct sock *sk, struct proto *p, 2650 void (*write_space)(struct sock *sk)); 2651 /* cleanup ulp */ 2652 void (*release)(struct sock *sk); 2653 /* diagnostic */ 2654 int (*get_info)(struct sock *sk, struct sk_buff *skb, bool net_admin); 2655 size_t (*get_info_size)(const struct sock *sk, bool net_admin); 2656 /* clone ulp */ 2657 void (*clone)(const struct request_sock *req, struct sock *newsk, 2658 const gfp_t priority); 2659 2660 char name[TCP_ULP_NAME_MAX]; 2661 struct module *owner; 2662 }; 2663 int tcp_register_ulp(struct tcp_ulp_ops *type); 2664 void tcp_unregister_ulp(struct tcp_ulp_ops *type); 2665 int tcp_set_ulp(struct sock *sk, const char *name); 2666 void tcp_get_available_ulp(char *buf, size_t len); 2667 void tcp_cleanup_ulp(struct sock *sk); 2668 void tcp_update_ulp(struct sock *sk, struct proto *p, 2669 void (*write_space)(struct sock *sk)); 2670 2671 #define MODULE_ALIAS_TCP_ULP(name) \ 2672 MODULE_INFO(alias, name); \ 2673 MODULE_INFO(alias, "tcp-ulp-" name) 2674 2675 #ifdef CONFIG_NET_SOCK_MSG 2676 struct sk_msg; 2677 struct sk_psock; 2678 2679 #ifdef CONFIG_BPF_SYSCALL 2680 int tcp_bpf_update_proto(struct sock *sk, struct sk_psock *psock, bool restore); 2681 void tcp_bpf_clone(const struct sock *sk, struct sock *newsk); 2682 #ifdef CONFIG_BPF_STREAM_PARSER 2683 struct strparser; 2684 int tcp_bpf_strp_read_sock(struct strparser *strp, read_descriptor_t *desc, 2685 sk_read_actor_t recv_actor); 2686 #endif /* CONFIG_BPF_STREAM_PARSER */ 2687 #endif /* CONFIG_BPF_SYSCALL */ 2688 2689 #ifdef CONFIG_INET 2690 void tcp_eat_skb(struct sock *sk, struct sk_buff *skb); 2691 #else 2692 static inline void tcp_eat_skb(struct sock *sk, struct sk_buff *skb) 2693 { 2694 } 2695 #endif 2696 2697 int tcp_bpf_sendmsg_redir(struct sock *sk, bool ingress, 2698 struct sk_msg *msg, u32 bytes, int flags); 2699 #endif /* CONFIG_NET_SOCK_MSG */ 2700 2701 #if !defined(CONFIG_BPF_SYSCALL) || !defined(CONFIG_NET_SOCK_MSG) 2702 static inline void tcp_bpf_clone(const struct sock *sk, struct sock *newsk) 2703 { 2704 } 2705 #endif 2706 2707 #ifdef CONFIG_CGROUP_BPF 2708 static inline void bpf_skops_init_skb(struct bpf_sock_ops_kern *skops, 2709 struct sk_buff *skb, 2710 unsigned int end_offset) 2711 { 2712 skops->skb = skb; 2713 skops->skb_data_end = skb->data + end_offset; 2714 } 2715 #else 2716 static inline void bpf_skops_init_skb(struct bpf_sock_ops_kern *skops, 2717 struct sk_buff *skb, 2718 unsigned int end_offset) 2719 { 2720 } 2721 #endif 2722 2723 /* Call BPF_SOCK_OPS program that returns an int. If the return value 2724 * is < 0, then the BPF op failed (for example if the loaded BPF 2725 * program does not support the chosen operation or there is no BPF 2726 * program loaded). 2727 */ 2728 #ifdef CONFIG_BPF 2729 static inline int tcp_call_bpf(struct sock *sk, int op, u32 nargs, u32 *args) 2730 { 2731 struct bpf_sock_ops_kern sock_ops; 2732 int ret; 2733 2734 memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp)); 2735 if (sk_fullsock(sk)) { 2736 sock_ops.is_fullsock = 1; 2737 sock_ops.is_locked_tcp_sock = 1; 2738 sock_owned_by_me(sk); 2739 } 2740 2741 sock_ops.sk = sk; 2742 sock_ops.op = op; 2743 if (nargs > 0) 2744 memcpy(sock_ops.args, args, nargs * sizeof(*args)); 2745 2746 ret = BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops); 2747 if (ret == 0) 2748 ret = sock_ops.reply; 2749 else 2750 ret = -1; 2751 return ret; 2752 } 2753 2754 static inline int tcp_call_bpf_2arg(struct sock *sk, int op, u32 arg1, u32 arg2) 2755 { 2756 u32 args[2] = {arg1, arg2}; 2757 2758 return tcp_call_bpf(sk, op, 2, args); 2759 } 2760 2761 static inline int tcp_call_bpf_3arg(struct sock *sk, int op, u32 arg1, u32 arg2, 2762 u32 arg3) 2763 { 2764 u32 args[3] = {arg1, arg2, arg3}; 2765 2766 return tcp_call_bpf(sk, op, 3, args); 2767 } 2768 2769 #else 2770 static inline int tcp_call_bpf(struct sock *sk, int op, u32 nargs, u32 *args) 2771 { 2772 return -EPERM; 2773 } 2774 2775 static inline int tcp_call_bpf_2arg(struct sock *sk, int op, u32 arg1, u32 arg2) 2776 { 2777 return -EPERM; 2778 } 2779 2780 static inline int tcp_call_bpf_3arg(struct sock *sk, int op, u32 arg1, u32 arg2, 2781 u32 arg3) 2782 { 2783 return -EPERM; 2784 } 2785 2786 #endif 2787 2788 static inline u32 tcp_timeout_init(struct sock *sk) 2789 { 2790 int timeout; 2791 2792 timeout = tcp_call_bpf(sk, BPF_SOCK_OPS_TIMEOUT_INIT, 0, NULL); 2793 2794 if (timeout <= 0) 2795 timeout = TCP_TIMEOUT_INIT; 2796 return min_t(int, timeout, TCP_RTO_MAX); 2797 } 2798 2799 static inline u32 tcp_rwnd_init_bpf(struct sock *sk) 2800 { 2801 int rwnd; 2802 2803 rwnd = tcp_call_bpf(sk, BPF_SOCK_OPS_RWND_INIT, 0, NULL); 2804 2805 if (rwnd < 0) 2806 rwnd = 0; 2807 return rwnd; 2808 } 2809 2810 static inline bool tcp_bpf_ca_needs_ecn(struct sock *sk) 2811 { 2812 return (tcp_call_bpf(sk, BPF_SOCK_OPS_NEEDS_ECN, 0, NULL) == 1); 2813 } 2814 2815 static inline void tcp_bpf_rtt(struct sock *sk, long mrtt, u32 srtt) 2816 { 2817 if (BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), BPF_SOCK_OPS_RTT_CB_FLAG)) 2818 tcp_call_bpf_2arg(sk, BPF_SOCK_OPS_RTT_CB, mrtt, srtt); 2819 } 2820 2821 #if IS_ENABLED(CONFIG_SMC) 2822 extern struct static_key_false tcp_have_smc; 2823 #endif 2824 2825 #if IS_ENABLED(CONFIG_TLS_DEVICE) 2826 void clean_acked_data_enable(struct tcp_sock *tp, 2827 void (*cad)(struct sock *sk, u32 ack_seq)); 2828 void clean_acked_data_disable(struct tcp_sock *tp); 2829 void clean_acked_data_flush(void); 2830 #endif 2831 2832 DECLARE_STATIC_KEY_FALSE(tcp_tx_delay_enabled); 2833 static inline void tcp_add_tx_delay(struct sk_buff *skb, 2834 const struct tcp_sock *tp) 2835 { 2836 if (static_branch_unlikely(&tcp_tx_delay_enabled)) 2837 skb->skb_mstamp_ns += (u64)tp->tcp_tx_delay * NSEC_PER_USEC; 2838 } 2839 2840 /* Compute Earliest Departure Time for some control packets 2841 * like ACK or RST for TIME_WAIT or non ESTABLISHED sockets. 2842 */ 2843 static inline u64 tcp_transmit_time(const struct sock *sk) 2844 { 2845 if (static_branch_unlikely(&tcp_tx_delay_enabled)) { 2846 u32 delay = (sk->sk_state == TCP_TIME_WAIT) ? 2847 tcp_twsk(sk)->tw_tx_delay : tcp_sk(sk)->tcp_tx_delay; 2848 2849 return tcp_clock_ns() + (u64)delay * NSEC_PER_USEC; 2850 } 2851 return 0; 2852 } 2853 2854 static inline int tcp_parse_auth_options(const struct tcphdr *th, 2855 const u8 **md5_hash, const struct tcp_ao_hdr **aoh) 2856 { 2857 const u8 *md5_tmp, *ao_tmp; 2858 int ret; 2859 2860 ret = tcp_do_parse_auth_options(th, &md5_tmp, &ao_tmp); 2861 if (ret) 2862 return ret; 2863 2864 if (md5_hash) 2865 *md5_hash = md5_tmp; 2866 2867 if (aoh) { 2868 if (!ao_tmp) 2869 *aoh = NULL; 2870 else 2871 *aoh = (struct tcp_ao_hdr *)(ao_tmp - 2); 2872 } 2873 2874 return 0; 2875 } 2876 2877 static inline bool tcp_ao_required(struct sock *sk, const void *saddr, 2878 int family, int l3index, bool stat_inc) 2879 { 2880 #ifdef CONFIG_TCP_AO 2881 struct tcp_ao_info *ao_info; 2882 struct tcp_ao_key *ao_key; 2883 2884 if (!static_branch_unlikely(&tcp_ao_needed.key)) 2885 return false; 2886 2887 ao_info = rcu_dereference_check(tcp_sk(sk)->ao_info, 2888 lockdep_sock_is_held(sk)); 2889 if (!ao_info) 2890 return false; 2891 2892 ao_key = tcp_ao_do_lookup(sk, l3index, saddr, family, -1, -1); 2893 if (ao_info->ao_required || ao_key) { 2894 if (stat_inc) { 2895 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAOREQUIRED); 2896 atomic64_inc(&ao_info->counters.ao_required); 2897 } 2898 return true; 2899 } 2900 #endif 2901 return false; 2902 } 2903 2904 enum skb_drop_reason tcp_inbound_hash(struct sock *sk, 2905 const struct request_sock *req, const struct sk_buff *skb, 2906 const void *saddr, const void *daddr, 2907 int family, int dif, int sdif); 2908 2909 #endif /* _TCP_H */ 2910