xref: /linux/include/net/tcp.h (revision 515c0ead788f4118a91b3ae55fe51f95543553ec)
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Definitions for the TCP module.
8  *
9  * Version:	@(#)tcp.h	1.0.5	05/23/93
10  *
11  * Authors:	Ross Biro
12  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
13  */
14 #ifndef _TCP_H
15 #define _TCP_H
16 
17 #define FASTRETRANS_DEBUG 1
18 
19 #include <linux/list.h>
20 #include <linux/tcp.h>
21 #include <linux/bug.h>
22 #include <linux/slab.h>
23 #include <linux/cache.h>
24 #include <linux/percpu.h>
25 #include <linux/skbuff.h>
26 #include <linux/kref.h>
27 #include <linux/ktime.h>
28 #include <linux/indirect_call_wrapper.h>
29 #include <linux/bits.h>
30 
31 #include <net/inet_connection_sock.h>
32 #include <net/inet_timewait_sock.h>
33 #include <net/inet_hashtables.h>
34 #include <net/checksum.h>
35 #include <net/request_sock.h>
36 #include <net/sock_reuseport.h>
37 #include <net/sock.h>
38 #include <net/snmp.h>
39 #include <net/ip.h>
40 #include <net/tcp_states.h>
41 #include <net/tcp_ao.h>
42 #include <net/inet_ecn.h>
43 #include <net/dst.h>
44 #include <net/mptcp.h>
45 #include <net/xfrm.h>
46 
47 #include <linux/seq_file.h>
48 #include <linux/memcontrol.h>
49 #include <linux/bpf-cgroup.h>
50 #include <linux/siphash.h>
51 
52 extern struct inet_hashinfo tcp_hashinfo;
53 
54 DECLARE_PER_CPU(unsigned int, tcp_orphan_count);
55 int tcp_orphan_count_sum(void);
56 
57 static inline void tcp_orphan_count_inc(void)
58 {
59 	this_cpu_inc(tcp_orphan_count);
60 }
61 
62 static inline void tcp_orphan_count_dec(void)
63 {
64 	this_cpu_dec(tcp_orphan_count);
65 }
66 
67 DECLARE_PER_CPU(u32, tcp_tw_isn);
68 
69 void tcp_time_wait(struct sock *sk, int state, int timeo);
70 
71 #define MAX_TCP_HEADER	L1_CACHE_ALIGN(128 + MAX_HEADER)
72 #define MAX_TCP_OPTION_SPACE 40
73 #define TCP_MIN_SND_MSS		48
74 #define TCP_MIN_GSO_SIZE	(TCP_MIN_SND_MSS - MAX_TCP_OPTION_SPACE)
75 
76 /*
77  * Never offer a window over 32767 without using window scaling. Some
78  * poor stacks do signed 16bit maths!
79  */
80 #define MAX_TCP_WINDOW		32767U
81 
82 /* Minimal accepted MSS. It is (60+60+8) - (20+20). */
83 #define TCP_MIN_MSS		88U
84 
85 /* The initial MTU to use for probing */
86 #define TCP_BASE_MSS		1024
87 
88 /* probing interval, default to 10 minutes as per RFC4821 */
89 #define TCP_PROBE_INTERVAL	600
90 
91 /* Specify interval when tcp mtu probing will stop */
92 #define TCP_PROBE_THRESHOLD	8
93 
94 /* After receiving this amount of duplicate ACKs fast retransmit starts. */
95 #define TCP_FASTRETRANS_THRESH 3
96 
97 /* Maximal number of ACKs sent quickly to accelerate slow-start. */
98 #define TCP_MAX_QUICKACKS	16U
99 
100 /* Maximal number of window scale according to RFC1323 */
101 #define TCP_MAX_WSCALE		14U
102 
103 /* urg_data states */
104 #define TCP_URG_VALID	0x0100
105 #define TCP_URG_NOTYET	0x0200
106 #define TCP_URG_READ	0x0400
107 
108 #define TCP_RETR1	3	/*
109 				 * This is how many retries it does before it
110 				 * tries to figure out if the gateway is
111 				 * down. Minimal RFC value is 3; it corresponds
112 				 * to ~3sec-8min depending on RTO.
113 				 */
114 
115 #define TCP_RETR2	15	/*
116 				 * This should take at least
117 				 * 90 minutes to time out.
118 				 * RFC1122 says that the limit is 100 sec.
119 				 * 15 is ~13-30min depending on RTO.
120 				 */
121 
122 #define TCP_SYN_RETRIES	 6	/* This is how many retries are done
123 				 * when active opening a connection.
124 				 * RFC1122 says the minimum retry MUST
125 				 * be at least 180secs.  Nevertheless
126 				 * this value is corresponding to
127 				 * 63secs of retransmission with the
128 				 * current initial RTO.
129 				 */
130 
131 #define TCP_SYNACK_RETRIES 5	/* This is how may retries are done
132 				 * when passive opening a connection.
133 				 * This is corresponding to 31secs of
134 				 * retransmission with the current
135 				 * initial RTO.
136 				 */
137 
138 #define TCP_TIMEWAIT_LEN (60*HZ) /* how long to wait to destroy TIME-WAIT
139 				  * state, about 60 seconds	*/
140 #define TCP_FIN_TIMEOUT	TCP_TIMEWAIT_LEN
141                                  /* BSD style FIN_WAIT2 deadlock breaker.
142 				  * It used to be 3min, new value is 60sec,
143 				  * to combine FIN-WAIT-2 timeout with
144 				  * TIME-WAIT timer.
145 				  */
146 #define TCP_FIN_TIMEOUT_MAX (120 * HZ) /* max TCP_LINGER2 value (two minutes) */
147 
148 #define TCP_DELACK_MAX	((unsigned)(HZ/5))	/* maximal time to delay before sending an ACK */
149 static_assert((1 << ATO_BITS) > TCP_DELACK_MAX);
150 
151 #if HZ >= 100
152 #define TCP_DELACK_MIN	((unsigned)(HZ/25))	/* minimal time to delay before sending an ACK */
153 #define TCP_ATO_MIN	((unsigned)(HZ/25))
154 #else
155 #define TCP_DELACK_MIN	4U
156 #define TCP_ATO_MIN	4U
157 #endif
158 #define TCP_RTO_MAX_SEC 120
159 #define TCP_RTO_MAX	((unsigned)(TCP_RTO_MAX_SEC * HZ))
160 #define TCP_RTO_MIN	((unsigned)(HZ / 5))
161 #define TCP_TIMEOUT_MIN	(2U) /* Min timeout for TCP timers in jiffies */
162 
163 #define TCP_TIMEOUT_MIN_US (2*USEC_PER_MSEC) /* Min TCP timeout in microsecs */
164 
165 #define TCP_TIMEOUT_INIT ((unsigned)(1*HZ))	/* RFC6298 2.1 initial RTO value	*/
166 #define TCP_TIMEOUT_FALLBACK ((unsigned)(3*HZ))	/* RFC 1122 initial RTO value, now
167 						 * used as a fallback RTO for the
168 						 * initial data transmission if no
169 						 * valid RTT sample has been acquired,
170 						 * most likely due to retrans in 3WHS.
171 						 */
172 
173 #define TCP_RESOURCE_PROBE_INTERVAL ((unsigned)(HZ/2U)) /* Maximal interval between probes
174 					                 * for local resources.
175 					                 */
176 #define TCP_KEEPALIVE_TIME	(120*60*HZ)	/* two hours */
177 #define TCP_KEEPALIVE_PROBES	9		/* Max of 9 keepalive probes	*/
178 #define TCP_KEEPALIVE_INTVL	(75*HZ)
179 
180 #define MAX_TCP_KEEPIDLE	32767
181 #define MAX_TCP_KEEPINTVL	32767
182 #define MAX_TCP_KEEPCNT		127
183 #define MAX_TCP_SYNCNT		127
184 
185 /* Ensure that TCP PAWS checks are relaxed after ~2147 seconds
186  * to avoid overflows. This assumes a clock smaller than 1 Mhz.
187  * Default clock is 1 Khz, tcp_usec_ts uses 1 Mhz.
188  */
189 #define TCP_PAWS_WRAP (INT_MAX / USEC_PER_SEC)
190 
191 #define TCP_PAWS_MSL	60		/* Per-host timestamps are invalidated
192 					 * after this time. It should be equal
193 					 * (or greater than) TCP_TIMEWAIT_LEN
194 					 * to provide reliability equal to one
195 					 * provided by timewait state.
196 					 */
197 #define TCP_PAWS_WINDOW	1		/* Replay window for per-host
198 					 * timestamps. It must be less than
199 					 * minimal timewait lifetime.
200 					 */
201 /*
202  *	TCP option
203  */
204 
205 #define TCPOPT_NOP		1	/* Padding */
206 #define TCPOPT_EOL		0	/* End of options */
207 #define TCPOPT_MSS		2	/* Segment size negotiating */
208 #define TCPOPT_WINDOW		3	/* Window scaling */
209 #define TCPOPT_SACK_PERM        4       /* SACK Permitted */
210 #define TCPOPT_SACK             5       /* SACK Block */
211 #define TCPOPT_TIMESTAMP	8	/* Better RTT estimations/PAWS */
212 #define TCPOPT_MD5SIG		19	/* MD5 Signature (RFC2385) */
213 #define TCPOPT_AO		29	/* Authentication Option (RFC5925) */
214 #define TCPOPT_MPTCP		30	/* Multipath TCP (RFC6824) */
215 #define TCPOPT_FASTOPEN		34	/* Fast open (RFC7413) */
216 #define TCPOPT_EXP		254	/* Experimental */
217 /* Magic number to be after the option value for sharing TCP
218  * experimental options. See draft-ietf-tcpm-experimental-options-00.txt
219  */
220 #define TCPOPT_FASTOPEN_MAGIC	0xF989
221 #define TCPOPT_SMC_MAGIC	0xE2D4C3D9
222 
223 /*
224  *     TCP option lengths
225  */
226 
227 #define TCPOLEN_MSS            4
228 #define TCPOLEN_WINDOW         3
229 #define TCPOLEN_SACK_PERM      2
230 #define TCPOLEN_TIMESTAMP      10
231 #define TCPOLEN_MD5SIG         18
232 #define TCPOLEN_FASTOPEN_BASE  2
233 #define TCPOLEN_EXP_FASTOPEN_BASE  4
234 #define TCPOLEN_EXP_SMC_BASE   6
235 
236 /* But this is what stacks really send out. */
237 #define TCPOLEN_TSTAMP_ALIGNED		12
238 #define TCPOLEN_WSCALE_ALIGNED		4
239 #define TCPOLEN_SACKPERM_ALIGNED	4
240 #define TCPOLEN_SACK_BASE		2
241 #define TCPOLEN_SACK_BASE_ALIGNED	4
242 #define TCPOLEN_SACK_PERBLOCK		8
243 #define TCPOLEN_MD5SIG_ALIGNED		20
244 #define TCPOLEN_MSS_ALIGNED		4
245 #define TCPOLEN_EXP_SMC_BASE_ALIGNED	8
246 
247 /* Flags in tp->nonagle */
248 #define TCP_NAGLE_OFF		1	/* Nagle's algo is disabled */
249 #define TCP_NAGLE_CORK		2	/* Socket is corked	    */
250 #define TCP_NAGLE_PUSH		4	/* Cork is overridden for already queued data */
251 
252 /* TCP thin-stream limits */
253 #define TCP_THIN_LINEAR_RETRIES 6       /* After 6 linear retries, do exp. backoff */
254 
255 /* TCP initial congestion window as per rfc6928 */
256 #define TCP_INIT_CWND		10
257 
258 /* Bit Flags for sysctl_tcp_fastopen */
259 #define	TFO_CLIENT_ENABLE	1
260 #define	TFO_SERVER_ENABLE	2
261 #define	TFO_CLIENT_NO_COOKIE	4	/* Data in SYN w/o cookie option */
262 
263 /* Accept SYN data w/o any cookie option */
264 #define	TFO_SERVER_COOKIE_NOT_REQD	0x200
265 
266 /* Force enable TFO on all listeners, i.e., not requiring the
267  * TCP_FASTOPEN socket option.
268  */
269 #define	TFO_SERVER_WO_SOCKOPT1	0x400
270 
271 
272 /* sysctl variables for tcp */
273 extern int sysctl_tcp_max_orphans;
274 extern long sysctl_tcp_mem[3];
275 
276 #define TCP_RACK_LOSS_DETECTION  0x1 /* Use RACK to detect losses */
277 #define TCP_RACK_STATIC_REO_WND  0x2 /* Use static RACK reo wnd */
278 #define TCP_RACK_NO_DUPTHRESH    0x4 /* Do not use DUPACK threshold in RACK */
279 
280 DECLARE_PER_CPU(int, tcp_memory_per_cpu_fw_alloc);
281 
282 extern struct percpu_counter tcp_sockets_allocated;
283 extern unsigned long tcp_memory_pressure;
284 
285 /* optimized version of sk_under_memory_pressure() for TCP sockets */
286 static inline bool tcp_under_memory_pressure(const struct sock *sk)
287 {
288 	if (mem_cgroup_sk_enabled(sk) &&
289 	    mem_cgroup_sk_under_memory_pressure(sk))
290 		return true;
291 
292 	return READ_ONCE(tcp_memory_pressure);
293 }
294 /*
295  * The next routines deal with comparing 32 bit unsigned ints
296  * and worry about wraparound (automatic with unsigned arithmetic).
297  */
298 
299 static inline bool before(__u32 seq1, __u32 seq2)
300 {
301         return (__s32)(seq1-seq2) < 0;
302 }
303 #define after(seq2, seq1) 	before(seq1, seq2)
304 
305 /* is s2<=s1<=s3 ? */
306 static inline bool between(__u32 seq1, __u32 seq2, __u32 seq3)
307 {
308 	return seq3 - seq2 >= seq1 - seq2;
309 }
310 
311 static inline void tcp_wmem_free_skb(struct sock *sk, struct sk_buff *skb)
312 {
313 	sk_wmem_queued_add(sk, -skb->truesize);
314 	if (!skb_zcopy_pure(skb))
315 		sk_mem_uncharge(sk, skb->truesize);
316 	else
317 		sk_mem_uncharge(sk, SKB_TRUESIZE(skb_end_offset(skb)));
318 	__kfree_skb(skb);
319 }
320 
321 void sk_forced_mem_schedule(struct sock *sk, int size);
322 
323 bool tcp_check_oom(const struct sock *sk, int shift);
324 
325 
326 extern struct proto tcp_prot;
327 
328 #define TCP_INC_STATS(net, field)	SNMP_INC_STATS((net)->mib.tcp_statistics, field)
329 #define __TCP_INC_STATS(net, field)	__SNMP_INC_STATS((net)->mib.tcp_statistics, field)
330 #define TCP_DEC_STATS(net, field)	SNMP_DEC_STATS((net)->mib.tcp_statistics, field)
331 #define TCP_ADD_STATS(net, field, val)	SNMP_ADD_STATS((net)->mib.tcp_statistics, field, val)
332 
333 void tcp_tsq_work_init(void);
334 
335 int tcp_v4_err(struct sk_buff *skb, u32);
336 
337 void tcp_shutdown(struct sock *sk, int how);
338 
339 int tcp_v4_early_demux(struct sk_buff *skb);
340 int tcp_v4_rcv(struct sk_buff *skb);
341 
342 void tcp_remove_empty_skb(struct sock *sk);
343 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size);
344 int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size);
345 int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg, int *copied,
346 			 size_t size, struct ubuf_info *uarg);
347 void tcp_splice_eof(struct socket *sock);
348 int tcp_send_mss(struct sock *sk, int *size_goal, int flags);
349 int tcp_wmem_schedule(struct sock *sk, int copy);
350 void tcp_push(struct sock *sk, int flags, int mss_now, int nonagle,
351 	      int size_goal);
352 void tcp_release_cb(struct sock *sk);
353 void tcp_wfree(struct sk_buff *skb);
354 void tcp_write_timer_handler(struct sock *sk);
355 void tcp_delack_timer_handler(struct sock *sk);
356 int tcp_ioctl(struct sock *sk, int cmd, int *karg);
357 enum skb_drop_reason tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb);
358 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb);
359 void tcp_rcv_space_adjust(struct sock *sk);
360 int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp);
361 void tcp_twsk_destructor(struct sock *sk);
362 void tcp_twsk_purge(struct list_head *net_exit_list);
363 ssize_t tcp_splice_read(struct socket *sk, loff_t *ppos,
364 			struct pipe_inode_info *pipe, size_t len,
365 			unsigned int flags);
366 struct sk_buff *tcp_stream_alloc_skb(struct sock *sk, gfp_t gfp,
367 				     bool force_schedule);
368 
369 static inline void tcp_dec_quickack_mode(struct sock *sk)
370 {
371 	struct inet_connection_sock *icsk = inet_csk(sk);
372 
373 	if (icsk->icsk_ack.quick) {
374 		/* How many ACKs S/ACKing new data have we sent? */
375 		const unsigned int pkts = inet_csk_ack_scheduled(sk) ? 1 : 0;
376 
377 		if (pkts >= icsk->icsk_ack.quick) {
378 			icsk->icsk_ack.quick = 0;
379 			/* Leaving quickack mode we deflate ATO. */
380 			icsk->icsk_ack.ato   = TCP_ATO_MIN;
381 		} else
382 			icsk->icsk_ack.quick -= pkts;
383 	}
384 }
385 
386 #define	TCP_ECN_MODE_RFC3168	BIT(0)
387 #define	TCP_ECN_QUEUE_CWR	BIT(1)
388 #define	TCP_ECN_DEMAND_CWR	BIT(2)
389 #define	TCP_ECN_SEEN		BIT(3)
390 #define	TCP_ECN_MODE_ACCECN	BIT(4)
391 
392 #define	TCP_ECN_DISABLED	0
393 #define	TCP_ECN_MODE_PENDING	(TCP_ECN_MODE_RFC3168 | TCP_ECN_MODE_ACCECN)
394 #define	TCP_ECN_MODE_ANY	(TCP_ECN_MODE_RFC3168 | TCP_ECN_MODE_ACCECN)
395 
396 static inline bool tcp_ecn_mode_any(const struct tcp_sock *tp)
397 {
398 	return tp->ecn_flags & TCP_ECN_MODE_ANY;
399 }
400 
401 static inline bool tcp_ecn_mode_rfc3168(const struct tcp_sock *tp)
402 {
403 	return (tp->ecn_flags & TCP_ECN_MODE_ANY) == TCP_ECN_MODE_RFC3168;
404 }
405 
406 static inline bool tcp_ecn_mode_accecn(const struct tcp_sock *tp)
407 {
408 	return (tp->ecn_flags & TCP_ECN_MODE_ANY) == TCP_ECN_MODE_ACCECN;
409 }
410 
411 static inline bool tcp_ecn_disabled(const struct tcp_sock *tp)
412 {
413 	return !tcp_ecn_mode_any(tp);
414 }
415 
416 static inline bool tcp_ecn_mode_pending(const struct tcp_sock *tp)
417 {
418 	return (tp->ecn_flags & TCP_ECN_MODE_PENDING) == TCP_ECN_MODE_PENDING;
419 }
420 
421 static inline void tcp_ecn_mode_set(struct tcp_sock *tp, u8 mode)
422 {
423 	tp->ecn_flags &= ~TCP_ECN_MODE_ANY;
424 	tp->ecn_flags |= mode;
425 }
426 
427 enum tcp_tw_status {
428 	TCP_TW_SUCCESS = 0,
429 	TCP_TW_RST = 1,
430 	TCP_TW_ACK = 2,
431 	TCP_TW_SYN = 3,
432 	TCP_TW_ACK_OOW = 4
433 };
434 
435 
436 enum tcp_tw_status tcp_timewait_state_process(struct inet_timewait_sock *tw,
437 					      struct sk_buff *skb,
438 					      const struct tcphdr *th,
439 					      u32 *tw_isn,
440 					      enum skb_drop_reason *drop_reason);
441 struct sock *tcp_check_req(struct sock *sk, struct sk_buff *skb,
442 			   struct request_sock *req, bool fastopen,
443 			   bool *lost_race, enum skb_drop_reason *drop_reason);
444 enum skb_drop_reason tcp_child_process(struct sock *parent, struct sock *child,
445 				       struct sk_buff *skb);
446 void tcp_enter_loss(struct sock *sk);
447 void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int newly_lost, int flag);
448 void tcp_clear_retrans(struct tcp_sock *tp);
449 void tcp_update_metrics(struct sock *sk);
450 void tcp_init_metrics(struct sock *sk);
451 void tcp_metrics_init(void);
452 bool tcp_peer_is_proven(struct request_sock *req, struct dst_entry *dst);
453 void __tcp_close(struct sock *sk, long timeout);
454 void tcp_close(struct sock *sk, long timeout);
455 void tcp_init_sock(struct sock *sk);
456 void tcp_init_transfer(struct sock *sk, int bpf_op, struct sk_buff *skb);
457 __poll_t tcp_poll(struct file *file, struct socket *sock,
458 		      struct poll_table_struct *wait);
459 int do_tcp_getsockopt(struct sock *sk, int level,
460 		      int optname, sockptr_t optval, sockptr_t optlen);
461 int tcp_getsockopt(struct sock *sk, int level, int optname,
462 		   char __user *optval, int __user *optlen);
463 bool tcp_bpf_bypass_getsockopt(int level, int optname);
464 int do_tcp_setsockopt(struct sock *sk, int level, int optname,
465 		      sockptr_t optval, unsigned int optlen);
466 int tcp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval,
467 		   unsigned int optlen);
468 void tcp_reset_keepalive_timer(struct sock *sk, unsigned long timeout);
469 void tcp_set_keepalive(struct sock *sk, int val);
470 void tcp_syn_ack_timeout(const struct request_sock *req);
471 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len,
472 		int flags, int *addr_len);
473 int tcp_set_rcvlowat(struct sock *sk, int val);
474 int tcp_set_window_clamp(struct sock *sk, int val);
475 void tcp_update_recv_tstamps(struct sk_buff *skb,
476 			     struct scm_timestamping_internal *tss);
477 void tcp_recv_timestamp(struct msghdr *msg, const struct sock *sk,
478 			struct scm_timestamping_internal *tss);
479 void tcp_data_ready(struct sock *sk);
480 #ifdef CONFIG_MMU
481 int tcp_mmap(struct file *file, struct socket *sock,
482 	     struct vm_area_struct *vma);
483 #endif
484 void tcp_parse_options(const struct net *net, const struct sk_buff *skb,
485 		       struct tcp_options_received *opt_rx,
486 		       int estab, struct tcp_fastopen_cookie *foc);
487 
488 /*
489  *	BPF SKB-less helpers
490  */
491 u16 tcp_v4_get_syncookie(struct sock *sk, struct iphdr *iph,
492 			 struct tcphdr *th, u32 *cookie);
493 u16 tcp_v6_get_syncookie(struct sock *sk, struct ipv6hdr *iph,
494 			 struct tcphdr *th, u32 *cookie);
495 u16 tcp_parse_mss_option(const struct tcphdr *th, u16 user_mss);
496 u16 tcp_get_syncookie_mss(struct request_sock_ops *rsk_ops,
497 			  const struct tcp_request_sock_ops *af_ops,
498 			  struct sock *sk, struct tcphdr *th);
499 /*
500  *	TCP v4 functions exported for the inet6 API
501  */
502 
503 void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb);
504 void tcp_v4_mtu_reduced(struct sock *sk);
505 void tcp_req_err(struct sock *sk, u32 seq, bool abort);
506 void tcp_ld_RTO_revert(struct sock *sk, u32 seq);
507 int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb);
508 struct sock *tcp_create_openreq_child(const struct sock *sk,
509 				      struct request_sock *req,
510 				      struct sk_buff *skb);
511 void tcp_ca_openreq_child(struct sock *sk, const struct dst_entry *dst);
512 struct sock *tcp_v4_syn_recv_sock(const struct sock *sk, struct sk_buff *skb,
513 				  struct request_sock *req,
514 				  struct dst_entry *dst,
515 				  struct request_sock *req_unhash,
516 				  bool *own_req);
517 int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb);
518 int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len);
519 int tcp_connect(struct sock *sk);
520 enum tcp_synack_type {
521 	TCP_SYNACK_NORMAL,
522 	TCP_SYNACK_FASTOPEN,
523 	TCP_SYNACK_COOKIE,
524 };
525 struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst,
526 				struct request_sock *req,
527 				struct tcp_fastopen_cookie *foc,
528 				enum tcp_synack_type synack_type,
529 				struct sk_buff *syn_skb);
530 int tcp_disconnect(struct sock *sk, int flags);
531 
532 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb);
533 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size);
534 void inet_sk_rx_dst_set(struct sock *sk, const struct sk_buff *skb);
535 
536 /* From syncookies.c */
537 struct sock *tcp_get_cookie_sock(struct sock *sk, struct sk_buff *skb,
538 				 struct request_sock *req,
539 				 struct dst_entry *dst);
540 int __cookie_v4_check(const struct iphdr *iph, const struct tcphdr *th);
541 struct sock *cookie_v4_check(struct sock *sk, struct sk_buff *skb);
542 struct request_sock *cookie_tcp_reqsk_alloc(const struct request_sock_ops *ops,
543 					    struct sock *sk, struct sk_buff *skb,
544 					    struct tcp_options_received *tcp_opt,
545 					    int mss, u32 tsoff);
546 
547 #if IS_ENABLED(CONFIG_BPF)
548 struct bpf_tcp_req_attrs {
549 	u32 rcv_tsval;
550 	u32 rcv_tsecr;
551 	u16 mss;
552 	u8 rcv_wscale;
553 	u8 snd_wscale;
554 	u8 ecn_ok;
555 	u8 wscale_ok;
556 	u8 sack_ok;
557 	u8 tstamp_ok;
558 	u8 usec_ts_ok;
559 	u8 reserved[3];
560 };
561 #endif
562 
563 #ifdef CONFIG_SYN_COOKIES
564 
565 /* Syncookies use a monotonic timer which increments every 60 seconds.
566  * This counter is used both as a hash input and partially encoded into
567  * the cookie value.  A cookie is only validated further if the delta
568  * between the current counter value and the encoded one is less than this,
569  * i.e. a sent cookie is valid only at most for 2*60 seconds (or less if
570  * the counter advances immediately after a cookie is generated).
571  */
572 #define MAX_SYNCOOKIE_AGE	2
573 #define TCP_SYNCOOKIE_PERIOD	(60 * HZ)
574 #define TCP_SYNCOOKIE_VALID	(MAX_SYNCOOKIE_AGE * TCP_SYNCOOKIE_PERIOD)
575 
576 /* syncookies: remember time of last synqueue overflow
577  * But do not dirty this field too often (once per second is enough)
578  * It is racy as we do not hold a lock, but race is very minor.
579  */
580 static inline void tcp_synq_overflow(const struct sock *sk)
581 {
582 	unsigned int last_overflow;
583 	unsigned int now = jiffies;
584 
585 	if (sk->sk_reuseport) {
586 		struct sock_reuseport *reuse;
587 
588 		reuse = rcu_dereference(sk->sk_reuseport_cb);
589 		if (likely(reuse)) {
590 			last_overflow = READ_ONCE(reuse->synq_overflow_ts);
591 			if (!time_between32(now, last_overflow,
592 					    last_overflow + HZ))
593 				WRITE_ONCE(reuse->synq_overflow_ts, now);
594 			return;
595 		}
596 	}
597 
598 	last_overflow = READ_ONCE(tcp_sk(sk)->rx_opt.ts_recent_stamp);
599 	if (!time_between32(now, last_overflow, last_overflow + HZ))
600 		WRITE_ONCE(tcp_sk_rw(sk)->rx_opt.ts_recent_stamp, now);
601 }
602 
603 /* syncookies: no recent synqueue overflow on this listening socket? */
604 static inline bool tcp_synq_no_recent_overflow(const struct sock *sk)
605 {
606 	unsigned int last_overflow;
607 	unsigned int now = jiffies;
608 
609 	if (sk->sk_reuseport) {
610 		struct sock_reuseport *reuse;
611 
612 		reuse = rcu_dereference(sk->sk_reuseport_cb);
613 		if (likely(reuse)) {
614 			last_overflow = READ_ONCE(reuse->synq_overflow_ts);
615 			return !time_between32(now, last_overflow - HZ,
616 					       last_overflow +
617 					       TCP_SYNCOOKIE_VALID);
618 		}
619 	}
620 
621 	last_overflow = READ_ONCE(tcp_sk(sk)->rx_opt.ts_recent_stamp);
622 
623 	/* If last_overflow <= jiffies <= last_overflow + TCP_SYNCOOKIE_VALID,
624 	 * then we're under synflood. However, we have to use
625 	 * 'last_overflow - HZ' as lower bound. That's because a concurrent
626 	 * tcp_synq_overflow() could update .ts_recent_stamp after we read
627 	 * jiffies but before we store .ts_recent_stamp into last_overflow,
628 	 * which could lead to rejecting a valid syncookie.
629 	 */
630 	return !time_between32(now, last_overflow - HZ,
631 			       last_overflow + TCP_SYNCOOKIE_VALID);
632 }
633 
634 static inline u32 tcp_cookie_time(void)
635 {
636 	u64 val = get_jiffies_64();
637 
638 	do_div(val, TCP_SYNCOOKIE_PERIOD);
639 	return val;
640 }
641 
642 /* Convert one nsec 64bit timestamp to ts (ms or usec resolution) */
643 static inline u64 tcp_ns_to_ts(bool usec_ts, u64 val)
644 {
645 	if (usec_ts)
646 		return div_u64(val, NSEC_PER_USEC);
647 
648 	return div_u64(val, NSEC_PER_MSEC);
649 }
650 
651 u32 __cookie_v4_init_sequence(const struct iphdr *iph, const struct tcphdr *th,
652 			      u16 *mssp);
653 __u32 cookie_v4_init_sequence(const struct sk_buff *skb, __u16 *mss);
654 u64 cookie_init_timestamp(struct request_sock *req, u64 now);
655 bool cookie_timestamp_decode(const struct net *net,
656 			     struct tcp_options_received *opt);
657 
658 static inline bool cookie_ecn_ok(const struct net *net, const struct dst_entry *dst)
659 {
660 	return READ_ONCE(net->ipv4.sysctl_tcp_ecn) ||
661 		dst_feature(dst, RTAX_FEATURE_ECN);
662 }
663 
664 #if IS_ENABLED(CONFIG_BPF)
665 static inline bool cookie_bpf_ok(struct sk_buff *skb)
666 {
667 	return skb->sk;
668 }
669 
670 struct request_sock *cookie_bpf_check(struct sock *sk, struct sk_buff *skb);
671 #else
672 static inline bool cookie_bpf_ok(struct sk_buff *skb)
673 {
674 	return false;
675 }
676 
677 static inline struct request_sock *cookie_bpf_check(struct net *net, struct sock *sk,
678 						    struct sk_buff *skb)
679 {
680 	return NULL;
681 }
682 #endif
683 
684 /* From net/ipv6/syncookies.c */
685 int __cookie_v6_check(const struct ipv6hdr *iph, const struct tcphdr *th);
686 struct sock *cookie_v6_check(struct sock *sk, struct sk_buff *skb);
687 
688 u32 __cookie_v6_init_sequence(const struct ipv6hdr *iph,
689 			      const struct tcphdr *th, u16 *mssp);
690 __u32 cookie_v6_init_sequence(const struct sk_buff *skb, __u16 *mss);
691 #endif
692 /* tcp_output.c */
693 
694 void tcp_skb_entail(struct sock *sk, struct sk_buff *skb);
695 void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb);
696 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
697 			       int nonagle);
698 int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs);
699 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs);
700 void tcp_retransmit_timer(struct sock *sk);
701 void tcp_xmit_retransmit_queue(struct sock *);
702 void tcp_simple_retransmit(struct sock *);
703 void tcp_enter_recovery(struct sock *sk, bool ece_ack);
704 int tcp_trim_head(struct sock *, struct sk_buff *, u32);
705 enum tcp_queue {
706 	TCP_FRAG_IN_WRITE_QUEUE,
707 	TCP_FRAG_IN_RTX_QUEUE,
708 };
709 int tcp_fragment(struct sock *sk, enum tcp_queue tcp_queue,
710 		 struct sk_buff *skb, u32 len,
711 		 unsigned int mss_now, gfp_t gfp);
712 
713 void tcp_send_probe0(struct sock *);
714 int tcp_write_wakeup(struct sock *, int mib);
715 void tcp_send_fin(struct sock *sk);
716 void tcp_send_active_reset(struct sock *sk, gfp_t priority,
717 			   enum sk_rst_reason reason);
718 int tcp_send_synack(struct sock *);
719 void tcp_push_one(struct sock *, unsigned int mss_now);
720 void __tcp_send_ack(struct sock *sk, u32 rcv_nxt, u16 flags);
721 void tcp_send_ack(struct sock *sk);
722 void tcp_send_delayed_ack(struct sock *sk);
723 void tcp_send_loss_probe(struct sock *sk);
724 bool tcp_schedule_loss_probe(struct sock *sk, bool advancing_rto);
725 void tcp_skb_collapse_tstamp(struct sk_buff *skb,
726 			     const struct sk_buff *next_skb);
727 
728 /* tcp_input.c */
729 void tcp_rearm_rto(struct sock *sk);
730 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req);
731 void tcp_done_with_error(struct sock *sk, int err);
732 void tcp_reset(struct sock *sk, struct sk_buff *skb);
733 void tcp_fin(struct sock *sk);
734 void tcp_check_space(struct sock *sk);
735 void tcp_sack_compress_send_ack(struct sock *sk);
736 
737 static inline void tcp_cleanup_skb(struct sk_buff *skb)
738 {
739 	skb_dst_drop(skb);
740 	secpath_reset(skb);
741 }
742 
743 static inline void tcp_add_receive_queue(struct sock *sk, struct sk_buff *skb)
744 {
745 	DEBUG_NET_WARN_ON_ONCE(skb_dst(skb));
746 	DEBUG_NET_WARN_ON_ONCE(secpath_exists(skb));
747 	__skb_queue_tail(&sk->sk_receive_queue, skb);
748 }
749 
750 /* tcp_timer.c */
751 void tcp_init_xmit_timers(struct sock *);
752 static inline void tcp_clear_xmit_timers(struct sock *sk)
753 {
754 	if (hrtimer_try_to_cancel(&tcp_sk(sk)->pacing_timer) == 1)
755 		__sock_put(sk);
756 
757 	if (hrtimer_try_to_cancel(&tcp_sk(sk)->compressed_ack_timer) == 1)
758 		__sock_put(sk);
759 
760 	inet_csk_clear_xmit_timers(sk);
761 }
762 
763 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu);
764 unsigned int tcp_current_mss(struct sock *sk);
765 u32 tcp_clamp_probe0_to_user_timeout(const struct sock *sk, u32 when);
766 
767 /* Bound MSS / TSO packet size with the half of the window */
768 static inline int tcp_bound_to_half_wnd(struct tcp_sock *tp, int pktsize)
769 {
770 	int cutoff;
771 
772 	/* When peer uses tiny windows, there is no use in packetizing
773 	 * to sub-MSS pieces for the sake of SWS or making sure there
774 	 * are enough packets in the pipe for fast recovery.
775 	 *
776 	 * On the other hand, for extremely large MSS devices, handling
777 	 * smaller than MSS windows in this way does make sense.
778 	 */
779 	if (tp->max_window > TCP_MSS_DEFAULT)
780 		cutoff = (tp->max_window >> 1);
781 	else
782 		cutoff = tp->max_window;
783 
784 	if (cutoff && pktsize > cutoff)
785 		return max_t(int, cutoff, 68U - tp->tcp_header_len);
786 	else
787 		return pktsize;
788 }
789 
790 /* tcp.c */
791 void tcp_get_info(struct sock *, struct tcp_info *);
792 
793 /* Read 'sendfile()'-style from a TCP socket */
794 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
795 		  sk_read_actor_t recv_actor);
796 int tcp_read_sock_noack(struct sock *sk, read_descriptor_t *desc,
797 			sk_read_actor_t recv_actor, bool noack,
798 			u32 *copied_seq);
799 int tcp_read_skb(struct sock *sk, skb_read_actor_t recv_actor);
800 struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off);
801 void tcp_read_done(struct sock *sk, size_t len);
802 
803 void tcp_initialize_rcv_mss(struct sock *sk);
804 
805 int tcp_mtu_to_mss(struct sock *sk, int pmtu);
806 int tcp_mss_to_mtu(struct sock *sk, int mss);
807 void tcp_mtup_init(struct sock *sk);
808 
809 static inline unsigned int tcp_rto_max(const struct sock *sk)
810 {
811 	return READ_ONCE(inet_csk(sk)->icsk_rto_max);
812 }
813 
814 static inline void tcp_bound_rto(struct sock *sk)
815 {
816 	inet_csk(sk)->icsk_rto = min(inet_csk(sk)->icsk_rto, tcp_rto_max(sk));
817 }
818 
819 static inline u32 __tcp_set_rto(const struct tcp_sock *tp)
820 {
821 	return usecs_to_jiffies((tp->srtt_us >> 3) + tp->rttvar_us);
822 }
823 
824 u32 tcp_delack_max(const struct sock *sk);
825 
826 /* Compute the actual rto_min value */
827 static inline u32 tcp_rto_min(const struct sock *sk)
828 {
829 	const struct dst_entry *dst = __sk_dst_get(sk);
830 	u32 rto_min = READ_ONCE(inet_csk(sk)->icsk_rto_min);
831 
832 	if (dst && dst_metric_locked(dst, RTAX_RTO_MIN))
833 		rto_min = dst_metric_rtt(dst, RTAX_RTO_MIN);
834 	return rto_min;
835 }
836 
837 static inline u32 tcp_rto_min_us(const struct sock *sk)
838 {
839 	return jiffies_to_usecs(tcp_rto_min(sk));
840 }
841 
842 static inline bool tcp_ca_dst_locked(const struct dst_entry *dst)
843 {
844 	return dst_metric_locked(dst, RTAX_CC_ALGO);
845 }
846 
847 /* Minimum RTT in usec. ~0 means not available. */
848 static inline u32 tcp_min_rtt(const struct tcp_sock *tp)
849 {
850 	return minmax_get(&tp->rtt_min);
851 }
852 
853 /* Compute the actual receive window we are currently advertising.
854  * Rcv_nxt can be after the window if our peer push more data
855  * than the offered window.
856  */
857 static inline u32 tcp_receive_window(const struct tcp_sock *tp)
858 {
859 	s32 win = tp->rcv_wup + tp->rcv_wnd - tp->rcv_nxt;
860 
861 	if (win < 0)
862 		win = 0;
863 	return (u32) win;
864 }
865 
866 /* Choose a new window, without checks for shrinking, and without
867  * scaling applied to the result.  The caller does these things
868  * if necessary.  This is a "raw" window selection.
869  */
870 u32 __tcp_select_window(struct sock *sk);
871 
872 void tcp_send_window_probe(struct sock *sk);
873 
874 /* TCP uses 32bit jiffies to save some space.
875  * Note that this is different from tcp_time_stamp, which
876  * historically has been the same until linux-4.13.
877  */
878 #define tcp_jiffies32 ((u32)jiffies)
879 
880 /*
881  * Deliver a 32bit value for TCP timestamp option (RFC 7323)
882  * It is no longer tied to jiffies, but to 1 ms clock.
883  * Note: double check if you want to use tcp_jiffies32 instead of this.
884  */
885 #define TCP_TS_HZ	1000
886 
887 static inline u64 tcp_clock_ns(void)
888 {
889 	return ktime_get_ns();
890 }
891 
892 static inline u64 tcp_clock_us(void)
893 {
894 	return div_u64(tcp_clock_ns(), NSEC_PER_USEC);
895 }
896 
897 static inline u64 tcp_clock_ms(void)
898 {
899 	return div_u64(tcp_clock_ns(), NSEC_PER_MSEC);
900 }
901 
902 /* TCP Timestamp included in TS option (RFC 1323) can either use ms
903  * or usec resolution. Each socket carries a flag to select one or other
904  * resolution, as the route attribute could change anytime.
905  * Each flow must stick to initial resolution.
906  */
907 static inline u32 tcp_clock_ts(bool usec_ts)
908 {
909 	return usec_ts ? tcp_clock_us() : tcp_clock_ms();
910 }
911 
912 static inline u32 tcp_time_stamp_ms(const struct tcp_sock *tp)
913 {
914 	return div_u64(tp->tcp_mstamp, USEC_PER_MSEC);
915 }
916 
917 static inline u32 tcp_time_stamp_ts(const struct tcp_sock *tp)
918 {
919 	if (tp->tcp_usec_ts)
920 		return tp->tcp_mstamp;
921 	return tcp_time_stamp_ms(tp);
922 }
923 
924 void tcp_mstamp_refresh(struct tcp_sock *tp);
925 
926 static inline u32 tcp_stamp_us_delta(u64 t1, u64 t0)
927 {
928 	return max_t(s64, t1 - t0, 0);
929 }
930 
931 /* provide the departure time in us unit */
932 static inline u64 tcp_skb_timestamp_us(const struct sk_buff *skb)
933 {
934 	return div_u64(skb->skb_mstamp_ns, NSEC_PER_USEC);
935 }
936 
937 /* Provide skb TSval in usec or ms unit */
938 static inline u32 tcp_skb_timestamp_ts(bool usec_ts, const struct sk_buff *skb)
939 {
940 	if (usec_ts)
941 		return tcp_skb_timestamp_us(skb);
942 
943 	return div_u64(skb->skb_mstamp_ns, NSEC_PER_MSEC);
944 }
945 
946 static inline u32 tcp_tw_tsval(const struct tcp_timewait_sock *tcptw)
947 {
948 	return tcp_clock_ts(tcptw->tw_sk.tw_usec_ts) + tcptw->tw_ts_offset;
949 }
950 
951 static inline u32 tcp_rsk_tsval(const struct tcp_request_sock *treq)
952 {
953 	return tcp_clock_ts(treq->req_usec_ts) + treq->ts_off;
954 }
955 
956 #define tcp_flag_byte(th) (((u_int8_t *)th)[13])
957 
958 #define TCPHDR_FIN	BIT(0)
959 #define TCPHDR_SYN	BIT(1)
960 #define TCPHDR_RST	BIT(2)
961 #define TCPHDR_PSH	BIT(3)
962 #define TCPHDR_ACK	BIT(4)
963 #define TCPHDR_URG	BIT(5)
964 #define TCPHDR_ECE	BIT(6)
965 #define TCPHDR_CWR	BIT(7)
966 #define TCPHDR_AE	BIT(8)
967 #define TCPHDR_FLAGS_MASK (TCPHDR_FIN | TCPHDR_SYN | TCPHDR_RST | \
968 			   TCPHDR_PSH | TCPHDR_ACK | TCPHDR_URG | \
969 			   TCPHDR_ECE | TCPHDR_CWR | TCPHDR_AE)
970 #define tcp_flags_ntohs(th) (ntohs(*(__be16 *)&tcp_flag_word(th)) & \
971 			    TCPHDR_FLAGS_MASK)
972 
973 #define TCPHDR_ACE (TCPHDR_ECE | TCPHDR_CWR | TCPHDR_AE)
974 #define TCPHDR_SYN_ECN	(TCPHDR_SYN | TCPHDR_ECE | TCPHDR_CWR)
975 
976 /* State flags for sacked in struct tcp_skb_cb */
977 enum tcp_skb_cb_sacked_flags {
978 	TCPCB_SACKED_ACKED	= (1 << 0),	/* SKB ACK'd by a SACK block	*/
979 	TCPCB_SACKED_RETRANS	= (1 << 1),	/* SKB retransmitted		*/
980 	TCPCB_LOST		= (1 << 2),	/* SKB is lost			*/
981 	TCPCB_TAGBITS		= (TCPCB_SACKED_ACKED | TCPCB_SACKED_RETRANS |
982 				   TCPCB_LOST),	/* All tag bits			*/
983 	TCPCB_REPAIRED		= (1 << 4),	/* SKB repaired (no skb_mstamp_ns)	*/
984 	TCPCB_EVER_RETRANS	= (1 << 7),	/* Ever retransmitted frame	*/
985 	TCPCB_RETRANS		= (TCPCB_SACKED_RETRANS | TCPCB_EVER_RETRANS |
986 				   TCPCB_REPAIRED),
987 };
988 
989 /* This is what the send packet queuing engine uses to pass
990  * TCP per-packet control information to the transmission code.
991  * We also store the host-order sequence numbers in here too.
992  * This is 44 bytes if IPV6 is enabled.
993  * If this grows please adjust skbuff.h:skbuff->cb[xxx] size appropriately.
994  */
995 struct tcp_skb_cb {
996 	__u32		seq;		/* Starting sequence number	*/
997 	__u32		end_seq;	/* SEQ + FIN + SYN + datalen	*/
998 	union {
999 		/* Note :
1000 		 * 	  tcp_gso_segs/size are used in write queue only,
1001 		 *	  cf tcp_skb_pcount()/tcp_skb_mss()
1002 		 */
1003 		struct {
1004 			u16	tcp_gso_segs;
1005 			u16	tcp_gso_size;
1006 		};
1007 	};
1008 	__u16		tcp_flags;	/* TCP header flags (tcp[12-13])*/
1009 
1010 	__u8		sacked;		/* State flags for SACK.	*/
1011 	__u8		ip_dsfield;	/* IPv4 tos or IPv6 dsfield	*/
1012 #define TSTAMP_ACK_SK	0x1
1013 #define TSTAMP_ACK_BPF	0x2
1014 	__u8		txstamp_ack:2,	/* Record TX timestamp for ack? */
1015 			eor:1,		/* Is skb MSG_EOR marked? */
1016 			has_rxtstamp:1,	/* SKB has a RX timestamp	*/
1017 			unused:4;
1018 	__u32		ack_seq;	/* Sequence number ACK'd	*/
1019 	union {
1020 		struct {
1021 #define TCPCB_DELIVERED_CE_MASK ((1U<<20) - 1)
1022 			/* There is space for up to 24 bytes */
1023 			__u32 is_app_limited:1, /* cwnd not fully used? */
1024 			      delivered_ce:20,
1025 			      unused:11;
1026 			/* pkts S/ACKed so far upon tx of skb, incl retrans: */
1027 			__u32 delivered;
1028 			/* start of send pipeline phase */
1029 			u64 first_tx_mstamp;
1030 			/* when we reached the "delivered" count */
1031 			u64 delivered_mstamp;
1032 		} tx;   /* only used for outgoing skbs */
1033 		union {
1034 			struct inet_skb_parm	h4;
1035 #if IS_ENABLED(CONFIG_IPV6)
1036 			struct inet6_skb_parm	h6;
1037 #endif
1038 		} header;	/* For incoming skbs */
1039 	};
1040 };
1041 
1042 #define TCP_SKB_CB(__skb)	((struct tcp_skb_cb *)&((__skb)->cb[0]))
1043 
1044 extern const struct inet_connection_sock_af_ops ipv4_specific;
1045 
1046 #if IS_ENABLED(CONFIG_IPV6)
1047 /* This is the variant of inet6_iif() that must be used by TCP,
1048  * as TCP moves IP6CB into a different location in skb->cb[]
1049  */
1050 static inline int tcp_v6_iif(const struct sk_buff *skb)
1051 {
1052 	return TCP_SKB_CB(skb)->header.h6.iif;
1053 }
1054 
1055 static inline int tcp_v6_iif_l3_slave(const struct sk_buff *skb)
1056 {
1057 	bool l3_slave = ipv6_l3mdev_skb(TCP_SKB_CB(skb)->header.h6.flags);
1058 
1059 	return l3_slave ? skb->skb_iif : TCP_SKB_CB(skb)->header.h6.iif;
1060 }
1061 
1062 /* TCP_SKB_CB reference means this can not be used from early demux */
1063 static inline int tcp_v6_sdif(const struct sk_buff *skb)
1064 {
1065 #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
1066 	if (skb && ipv6_l3mdev_skb(TCP_SKB_CB(skb)->header.h6.flags))
1067 		return TCP_SKB_CB(skb)->header.h6.iif;
1068 #endif
1069 	return 0;
1070 }
1071 
1072 extern const struct inet_connection_sock_af_ops ipv6_specific;
1073 
1074 INDIRECT_CALLABLE_DECLARE(void tcp_v6_send_check(struct sock *sk, struct sk_buff *skb));
1075 INDIRECT_CALLABLE_DECLARE(int tcp_v6_rcv(struct sk_buff *skb));
1076 void tcp_v6_early_demux(struct sk_buff *skb);
1077 
1078 #endif
1079 
1080 /* TCP_SKB_CB reference means this can not be used from early demux */
1081 static inline int tcp_v4_sdif(struct sk_buff *skb)
1082 {
1083 #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
1084 	if (skb && ipv4_l3mdev_skb(TCP_SKB_CB(skb)->header.h4.flags))
1085 		return TCP_SKB_CB(skb)->header.h4.iif;
1086 #endif
1087 	return 0;
1088 }
1089 
1090 /* Due to TSO, an SKB can be composed of multiple actual
1091  * packets.  To keep these tracked properly, we use this.
1092  */
1093 static inline int tcp_skb_pcount(const struct sk_buff *skb)
1094 {
1095 	return TCP_SKB_CB(skb)->tcp_gso_segs;
1096 }
1097 
1098 static inline void tcp_skb_pcount_set(struct sk_buff *skb, int segs)
1099 {
1100 	TCP_SKB_CB(skb)->tcp_gso_segs = segs;
1101 }
1102 
1103 static inline void tcp_skb_pcount_add(struct sk_buff *skb, int segs)
1104 {
1105 	TCP_SKB_CB(skb)->tcp_gso_segs += segs;
1106 }
1107 
1108 /* This is valid iff skb is in write queue and tcp_skb_pcount() > 1. */
1109 static inline int tcp_skb_mss(const struct sk_buff *skb)
1110 {
1111 	return TCP_SKB_CB(skb)->tcp_gso_size;
1112 }
1113 
1114 static inline bool tcp_skb_can_collapse_to(const struct sk_buff *skb)
1115 {
1116 	return likely(!TCP_SKB_CB(skb)->eor);
1117 }
1118 
1119 static inline bool tcp_skb_can_collapse(const struct sk_buff *to,
1120 					const struct sk_buff *from)
1121 {
1122 	/* skb_cmp_decrypted() not needed, use tcp_write_collapse_fence() */
1123 	return likely(tcp_skb_can_collapse_to(to) &&
1124 		      mptcp_skb_can_collapse(to, from) &&
1125 		      skb_pure_zcopy_same(to, from) &&
1126 		      skb_frags_readable(to) == skb_frags_readable(from));
1127 }
1128 
1129 static inline bool tcp_skb_can_collapse_rx(const struct sk_buff *to,
1130 					   const struct sk_buff *from)
1131 {
1132 	return likely(mptcp_skb_can_collapse(to, from) &&
1133 		      !skb_cmp_decrypted(to, from));
1134 }
1135 
1136 /* Events passed to congestion control interface */
1137 enum tcp_ca_event {
1138 	CA_EVENT_TX_START,	/* first transmit when no packets in flight */
1139 	CA_EVENT_CWND_RESTART,	/* congestion window restart */
1140 	CA_EVENT_COMPLETE_CWR,	/* end of congestion recovery */
1141 	CA_EVENT_LOSS,		/* loss timeout */
1142 	CA_EVENT_ECN_NO_CE,	/* ECT set, but not CE marked */
1143 	CA_EVENT_ECN_IS_CE,	/* received CE marked IP packet */
1144 };
1145 
1146 /* Information about inbound ACK, passed to cong_ops->in_ack_event() */
1147 enum tcp_ca_ack_event_flags {
1148 	CA_ACK_SLOWPATH		= (1 << 0),	/* In slow path processing */
1149 	CA_ACK_WIN_UPDATE	= (1 << 1),	/* ACK updated window */
1150 	CA_ACK_ECE		= (1 << 2),	/* ECE bit is set on ack */
1151 };
1152 
1153 /*
1154  * Interface for adding new TCP congestion control handlers
1155  */
1156 #define TCP_CA_NAME_MAX	16
1157 #define TCP_CA_MAX	128
1158 #define TCP_CA_BUF_MAX	(TCP_CA_NAME_MAX*TCP_CA_MAX)
1159 
1160 #define TCP_CA_UNSPEC	0
1161 
1162 /* Algorithm can be set on socket without CAP_NET_ADMIN privileges */
1163 #define TCP_CONG_NON_RESTRICTED		BIT(0)
1164 /* Requires ECN/ECT set on all packets */
1165 #define TCP_CONG_NEEDS_ECN		BIT(1)
1166 #define TCP_CONG_MASK	(TCP_CONG_NON_RESTRICTED | TCP_CONG_NEEDS_ECN)
1167 
1168 union tcp_cc_info;
1169 
1170 struct ack_sample {
1171 	u32 pkts_acked;
1172 	s32 rtt_us;
1173 	u32 in_flight;
1174 };
1175 
1176 /* A rate sample measures the number of (original/retransmitted) data
1177  * packets delivered "delivered" over an interval of time "interval_us".
1178  * The tcp_rate.c code fills in the rate sample, and congestion
1179  * control modules that define a cong_control function to run at the end
1180  * of ACK processing can optionally chose to consult this sample when
1181  * setting cwnd and pacing rate.
1182  * A sample is invalid if "delivered" or "interval_us" is negative.
1183  */
1184 struct rate_sample {
1185 	u64  prior_mstamp; /* starting timestamp for interval */
1186 	u32  prior_delivered;	/* tp->delivered at "prior_mstamp" */
1187 	u32  prior_delivered_ce;/* tp->delivered_ce at "prior_mstamp" */
1188 	s32  delivered;		/* number of packets delivered over interval */
1189 	s32  delivered_ce;	/* number of packets delivered w/ CE marks*/
1190 	long interval_us;	/* time for tp->delivered to incr "delivered" */
1191 	u32 snd_interval_us;	/* snd interval for delivered packets */
1192 	u32 rcv_interval_us;	/* rcv interval for delivered packets */
1193 	long rtt_us;		/* RTT of last (S)ACKed packet (or -1) */
1194 	int  losses;		/* number of packets marked lost upon ACK */
1195 	u32  acked_sacked;	/* number of packets newly (S)ACKed upon ACK */
1196 	u32  prior_in_flight;	/* in flight before this ACK */
1197 	u32  last_end_seq;	/* end_seq of most recently ACKed packet */
1198 	bool is_app_limited;	/* is sample from packet with bubble in pipe? */
1199 	bool is_retrans;	/* is sample from retransmission? */
1200 	bool is_ack_delayed;	/* is this (likely) a delayed ACK? */
1201 };
1202 
1203 struct tcp_congestion_ops {
1204 /* fast path fields are put first to fill one cache line */
1205 
1206 	/* return slow start threshold (required) */
1207 	u32 (*ssthresh)(struct sock *sk);
1208 
1209 	/* do new cwnd calculation (required) */
1210 	void (*cong_avoid)(struct sock *sk, u32 ack, u32 acked);
1211 
1212 	/* call before changing ca_state (optional) */
1213 	void (*set_state)(struct sock *sk, u8 new_state);
1214 
1215 	/* call when cwnd event occurs (optional) */
1216 	void (*cwnd_event)(struct sock *sk, enum tcp_ca_event ev);
1217 
1218 	/* call when ack arrives (optional) */
1219 	void (*in_ack_event)(struct sock *sk, u32 flags);
1220 
1221 	/* hook for packet ack accounting (optional) */
1222 	void (*pkts_acked)(struct sock *sk, const struct ack_sample *sample);
1223 
1224 	/* override sysctl_tcp_min_tso_segs */
1225 	u32 (*min_tso_segs)(struct sock *sk);
1226 
1227 	/* call when packets are delivered to update cwnd and pacing rate,
1228 	 * after all the ca_state processing. (optional)
1229 	 */
1230 	void (*cong_control)(struct sock *sk, u32 ack, int flag, const struct rate_sample *rs);
1231 
1232 
1233 	/* new value of cwnd after loss (required) */
1234 	u32  (*undo_cwnd)(struct sock *sk);
1235 	/* returns the multiplier used in tcp_sndbuf_expand (optional) */
1236 	u32 (*sndbuf_expand)(struct sock *sk);
1237 
1238 /* control/slow paths put last */
1239 	/* get info for inet_diag (optional) */
1240 	size_t (*get_info)(struct sock *sk, u32 ext, int *attr,
1241 			   union tcp_cc_info *info);
1242 
1243 	char 			name[TCP_CA_NAME_MAX];
1244 	struct module		*owner;
1245 	struct list_head	list;
1246 	u32			key;
1247 	u32			flags;
1248 
1249 	/* initialize private data (optional) */
1250 	void (*init)(struct sock *sk);
1251 	/* cleanup private data  (optional) */
1252 	void (*release)(struct sock *sk);
1253 } ____cacheline_aligned_in_smp;
1254 
1255 int tcp_register_congestion_control(struct tcp_congestion_ops *type);
1256 void tcp_unregister_congestion_control(struct tcp_congestion_ops *type);
1257 int tcp_update_congestion_control(struct tcp_congestion_ops *type,
1258 				  struct tcp_congestion_ops *old_type);
1259 int tcp_validate_congestion_control(struct tcp_congestion_ops *ca);
1260 
1261 void tcp_assign_congestion_control(struct sock *sk);
1262 void tcp_init_congestion_control(struct sock *sk);
1263 void tcp_cleanup_congestion_control(struct sock *sk);
1264 int tcp_set_default_congestion_control(struct net *net, const char *name);
1265 void tcp_get_default_congestion_control(struct net *net, char *name);
1266 void tcp_get_available_congestion_control(char *buf, size_t len);
1267 void tcp_get_allowed_congestion_control(char *buf, size_t len);
1268 int tcp_set_allowed_congestion_control(char *allowed);
1269 int tcp_set_congestion_control(struct sock *sk, const char *name, bool load,
1270 			       bool cap_net_admin);
1271 u32 tcp_slow_start(struct tcp_sock *tp, u32 acked);
1272 void tcp_cong_avoid_ai(struct tcp_sock *tp, u32 w, u32 acked);
1273 
1274 u32 tcp_reno_ssthresh(struct sock *sk);
1275 u32 tcp_reno_undo_cwnd(struct sock *sk);
1276 void tcp_reno_cong_avoid(struct sock *sk, u32 ack, u32 acked);
1277 extern struct tcp_congestion_ops tcp_reno;
1278 
1279 struct tcp_congestion_ops *tcp_ca_find(const char *name);
1280 struct tcp_congestion_ops *tcp_ca_find_key(u32 key);
1281 u32 tcp_ca_get_key_by_name(const char *name, bool *ecn_ca);
1282 #ifdef CONFIG_INET
1283 char *tcp_ca_get_name_by_key(u32 key, char *buffer);
1284 #else
1285 static inline char *tcp_ca_get_name_by_key(u32 key, char *buffer)
1286 {
1287 	return NULL;
1288 }
1289 #endif
1290 
1291 static inline bool tcp_ca_needs_ecn(const struct sock *sk)
1292 {
1293 	const struct inet_connection_sock *icsk = inet_csk(sk);
1294 
1295 	return icsk->icsk_ca_ops->flags & TCP_CONG_NEEDS_ECN;
1296 }
1297 
1298 static inline void tcp_ca_event(struct sock *sk, const enum tcp_ca_event event)
1299 {
1300 	const struct inet_connection_sock *icsk = inet_csk(sk);
1301 
1302 	if (icsk->icsk_ca_ops->cwnd_event)
1303 		icsk->icsk_ca_ops->cwnd_event(sk, event);
1304 }
1305 
1306 /* From tcp_cong.c */
1307 void tcp_set_ca_state(struct sock *sk, const u8 ca_state);
1308 
1309 /* From tcp_rate.c */
1310 void tcp_rate_skb_sent(struct sock *sk, struct sk_buff *skb);
1311 void tcp_rate_skb_delivered(struct sock *sk, struct sk_buff *skb,
1312 			    struct rate_sample *rs);
1313 void tcp_rate_gen(struct sock *sk, u32 delivered, u32 lost,
1314 		  bool is_sack_reneg, struct rate_sample *rs);
1315 void tcp_rate_check_app_limited(struct sock *sk);
1316 
1317 static inline bool tcp_skb_sent_after(u64 t1, u64 t2, u32 seq1, u32 seq2)
1318 {
1319 	return t1 > t2 || (t1 == t2 && after(seq1, seq2));
1320 }
1321 
1322 /* These functions determine how the current flow behaves in respect of SACK
1323  * handling. SACK is negotiated with the peer, and therefore it can vary
1324  * between different flows.
1325  *
1326  * tcp_is_sack - SACK enabled
1327  * tcp_is_reno - No SACK
1328  */
1329 static inline int tcp_is_sack(const struct tcp_sock *tp)
1330 {
1331 	return likely(tp->rx_opt.sack_ok);
1332 }
1333 
1334 static inline bool tcp_is_reno(const struct tcp_sock *tp)
1335 {
1336 	return !tcp_is_sack(tp);
1337 }
1338 
1339 static inline unsigned int tcp_left_out(const struct tcp_sock *tp)
1340 {
1341 	return tp->sacked_out + tp->lost_out;
1342 }
1343 
1344 /* This determines how many packets are "in the network" to the best
1345  * of our knowledge.  In many cases it is conservative, but where
1346  * detailed information is available from the receiver (via SACK
1347  * blocks etc.) we can make more aggressive calculations.
1348  *
1349  * Use this for decisions involving congestion control, use just
1350  * tp->packets_out to determine if the send queue is empty or not.
1351  *
1352  * Read this equation as:
1353  *
1354  *	"Packets sent once on transmission queue" MINUS
1355  *	"Packets left network, but not honestly ACKed yet" PLUS
1356  *	"Packets fast retransmitted"
1357  */
1358 static inline unsigned int tcp_packets_in_flight(const struct tcp_sock *tp)
1359 {
1360 	return tp->packets_out - tcp_left_out(tp) + tp->retrans_out;
1361 }
1362 
1363 #define TCP_INFINITE_SSTHRESH	0x7fffffff
1364 
1365 static inline u32 tcp_snd_cwnd(const struct tcp_sock *tp)
1366 {
1367 	return tp->snd_cwnd;
1368 }
1369 
1370 static inline void tcp_snd_cwnd_set(struct tcp_sock *tp, u32 val)
1371 {
1372 	WARN_ON_ONCE((int)val <= 0);
1373 	tp->snd_cwnd = val;
1374 }
1375 
1376 static inline bool tcp_in_slow_start(const struct tcp_sock *tp)
1377 {
1378 	return tcp_snd_cwnd(tp) < tp->snd_ssthresh;
1379 }
1380 
1381 static inline bool tcp_in_initial_slowstart(const struct tcp_sock *tp)
1382 {
1383 	return tp->snd_ssthresh >= TCP_INFINITE_SSTHRESH;
1384 }
1385 
1386 static inline bool tcp_in_cwnd_reduction(const struct sock *sk)
1387 {
1388 	return (TCPF_CA_CWR | TCPF_CA_Recovery) &
1389 	       (1 << inet_csk(sk)->icsk_ca_state);
1390 }
1391 
1392 /* If cwnd > ssthresh, we may raise ssthresh to be half-way to cwnd.
1393  * The exception is cwnd reduction phase, when cwnd is decreasing towards
1394  * ssthresh.
1395  */
1396 static inline __u32 tcp_current_ssthresh(const struct sock *sk)
1397 {
1398 	const struct tcp_sock *tp = tcp_sk(sk);
1399 
1400 	if (tcp_in_cwnd_reduction(sk))
1401 		return tp->snd_ssthresh;
1402 	else
1403 		return max(tp->snd_ssthresh,
1404 			   ((tcp_snd_cwnd(tp) >> 1) +
1405 			    (tcp_snd_cwnd(tp) >> 2)));
1406 }
1407 
1408 /* Use define here intentionally to get WARN_ON location shown at the caller */
1409 #define tcp_verify_left_out(tp)	WARN_ON(tcp_left_out(tp) > tp->packets_out)
1410 
1411 void tcp_enter_cwr(struct sock *sk);
1412 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst);
1413 
1414 /* The maximum number of MSS of available cwnd for which TSO defers
1415  * sending if not using sysctl_tcp_tso_win_divisor.
1416  */
1417 static inline __u32 tcp_max_tso_deferred_mss(const struct tcp_sock *tp)
1418 {
1419 	return 3;
1420 }
1421 
1422 /* Returns end sequence number of the receiver's advertised window */
1423 static inline u32 tcp_wnd_end(const struct tcp_sock *tp)
1424 {
1425 	return tp->snd_una + tp->snd_wnd;
1426 }
1427 
1428 /* We follow the spirit of RFC2861 to validate cwnd but implement a more
1429  * flexible approach. The RFC suggests cwnd should not be raised unless
1430  * it was fully used previously. And that's exactly what we do in
1431  * congestion avoidance mode. But in slow start we allow cwnd to grow
1432  * as long as the application has used half the cwnd.
1433  * Example :
1434  *    cwnd is 10 (IW10), but application sends 9 frames.
1435  *    We allow cwnd to reach 18 when all frames are ACKed.
1436  * This check is safe because it's as aggressive as slow start which already
1437  * risks 100% overshoot. The advantage is that we discourage application to
1438  * either send more filler packets or data to artificially blow up the cwnd
1439  * usage, and allow application-limited process to probe bw more aggressively.
1440  */
1441 static inline bool tcp_is_cwnd_limited(const struct sock *sk)
1442 {
1443 	const struct tcp_sock *tp = tcp_sk(sk);
1444 
1445 	if (tp->is_cwnd_limited)
1446 		return true;
1447 
1448 	/* If in slow start, ensure cwnd grows to twice what was ACKed. */
1449 	if (tcp_in_slow_start(tp))
1450 		return tcp_snd_cwnd(tp) < 2 * tp->max_packets_out;
1451 
1452 	return false;
1453 }
1454 
1455 /* BBR congestion control needs pacing.
1456  * Same remark for SO_MAX_PACING_RATE.
1457  * sch_fq packet scheduler is efficiently handling pacing,
1458  * but is not always installed/used.
1459  * Return true if TCP stack should pace packets itself.
1460  */
1461 static inline bool tcp_needs_internal_pacing(const struct sock *sk)
1462 {
1463 	return smp_load_acquire(&sk->sk_pacing_status) == SK_PACING_NEEDED;
1464 }
1465 
1466 /* Estimates in how many jiffies next packet for this flow can be sent.
1467  * Scheduling a retransmit timer too early would be silly.
1468  */
1469 static inline unsigned long tcp_pacing_delay(const struct sock *sk)
1470 {
1471 	s64 delay = tcp_sk(sk)->tcp_wstamp_ns - tcp_sk(sk)->tcp_clock_cache;
1472 
1473 	return delay > 0 ? nsecs_to_jiffies(delay) : 0;
1474 }
1475 
1476 static inline void tcp_reset_xmit_timer(struct sock *sk,
1477 					const int what,
1478 					unsigned long when,
1479 					bool pace_delay)
1480 {
1481 	if (pace_delay)
1482 		when += tcp_pacing_delay(sk);
1483 	inet_csk_reset_xmit_timer(sk, what, when,
1484 				  tcp_rto_max(sk));
1485 }
1486 
1487 /* Something is really bad, we could not queue an additional packet,
1488  * because qdisc is full or receiver sent a 0 window, or we are paced.
1489  * We do not want to add fuel to the fire, or abort too early,
1490  * so make sure the timer we arm now is at least 200ms in the future,
1491  * regardless of current icsk_rto value (as it could be ~2ms)
1492  */
1493 static inline unsigned long tcp_probe0_base(const struct sock *sk)
1494 {
1495 	return max_t(unsigned long, inet_csk(sk)->icsk_rto, TCP_RTO_MIN);
1496 }
1497 
1498 /* Variant of inet_csk_rto_backoff() used for zero window probes */
1499 static inline unsigned long tcp_probe0_when(const struct sock *sk,
1500 					    unsigned long max_when)
1501 {
1502 	u8 backoff = min_t(u8, ilog2(TCP_RTO_MAX / TCP_RTO_MIN) + 1,
1503 			   inet_csk(sk)->icsk_backoff);
1504 	u64 when = (u64)tcp_probe0_base(sk) << backoff;
1505 
1506 	return (unsigned long)min_t(u64, when, max_when);
1507 }
1508 
1509 static inline void tcp_check_probe_timer(struct sock *sk)
1510 {
1511 	if (!tcp_sk(sk)->packets_out && !inet_csk(sk)->icsk_pending)
1512 		tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
1513 				     tcp_probe0_base(sk), true);
1514 }
1515 
1516 static inline void tcp_init_wl(struct tcp_sock *tp, u32 seq)
1517 {
1518 	tp->snd_wl1 = seq;
1519 }
1520 
1521 static inline void tcp_update_wl(struct tcp_sock *tp, u32 seq)
1522 {
1523 	tp->snd_wl1 = seq;
1524 }
1525 
1526 /*
1527  * Calculate(/check) TCP checksum
1528  */
1529 static inline __sum16 tcp_v4_check(int len, __be32 saddr,
1530 				   __be32 daddr, __wsum base)
1531 {
1532 	return csum_tcpudp_magic(saddr, daddr, len, IPPROTO_TCP, base);
1533 }
1534 
1535 static inline bool tcp_checksum_complete(struct sk_buff *skb)
1536 {
1537 	return !skb_csum_unnecessary(skb) &&
1538 		__skb_checksum_complete(skb);
1539 }
1540 
1541 bool tcp_add_backlog(struct sock *sk, struct sk_buff *skb,
1542 		     enum skb_drop_reason *reason);
1543 
1544 
1545 int tcp_filter(struct sock *sk, struct sk_buff *skb, enum skb_drop_reason *reason);
1546 void tcp_set_state(struct sock *sk, int state);
1547 void tcp_done(struct sock *sk);
1548 int tcp_abort(struct sock *sk, int err);
1549 
1550 static inline void tcp_sack_reset(struct tcp_options_received *rx_opt)
1551 {
1552 	rx_opt->dsack = 0;
1553 	rx_opt->num_sacks = 0;
1554 }
1555 
1556 void tcp_cwnd_restart(struct sock *sk, s32 delta);
1557 
1558 static inline void tcp_slow_start_after_idle_check(struct sock *sk)
1559 {
1560 	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1561 	struct tcp_sock *tp = tcp_sk(sk);
1562 	s32 delta;
1563 
1564 	if (!READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_slow_start_after_idle) ||
1565 	    tp->packets_out || ca_ops->cong_control)
1566 		return;
1567 	delta = tcp_jiffies32 - tp->lsndtime;
1568 	if (delta > inet_csk(sk)->icsk_rto)
1569 		tcp_cwnd_restart(sk, delta);
1570 }
1571 
1572 /* Determine a window scaling and initial window to offer. */
1573 void tcp_select_initial_window(const struct sock *sk, int __space,
1574 			       __u32 mss, __u32 *rcv_wnd,
1575 			       __u32 *window_clamp, int wscale_ok,
1576 			       __u8 *rcv_wscale, __u32 init_rcv_wnd);
1577 
1578 static inline int __tcp_win_from_space(u8 scaling_ratio, int space)
1579 {
1580 	s64 scaled_space = (s64)space * scaling_ratio;
1581 
1582 	return scaled_space >> TCP_RMEM_TO_WIN_SCALE;
1583 }
1584 
1585 static inline int tcp_win_from_space(const struct sock *sk, int space)
1586 {
1587 	return __tcp_win_from_space(tcp_sk(sk)->scaling_ratio, space);
1588 }
1589 
1590 /* inverse of __tcp_win_from_space() */
1591 static inline int __tcp_space_from_win(u8 scaling_ratio, int win)
1592 {
1593 	u64 val = (u64)win << TCP_RMEM_TO_WIN_SCALE;
1594 
1595 	do_div(val, scaling_ratio);
1596 	return val;
1597 }
1598 
1599 static inline int tcp_space_from_win(const struct sock *sk, int win)
1600 {
1601 	return __tcp_space_from_win(tcp_sk(sk)->scaling_ratio, win);
1602 }
1603 
1604 /* Assume a 50% default for skb->len/skb->truesize ratio.
1605  * This may be adjusted later in tcp_measure_rcv_mss().
1606  */
1607 #define TCP_DEFAULT_SCALING_RATIO (1 << (TCP_RMEM_TO_WIN_SCALE - 1))
1608 
1609 static inline void tcp_scaling_ratio_init(struct sock *sk)
1610 {
1611 	tcp_sk(sk)->scaling_ratio = TCP_DEFAULT_SCALING_RATIO;
1612 }
1613 
1614 /* Note: caller must be prepared to deal with negative returns */
1615 static inline int tcp_space(const struct sock *sk)
1616 {
1617 	return tcp_win_from_space(sk, READ_ONCE(sk->sk_rcvbuf) -
1618 				  READ_ONCE(sk->sk_backlog.len) -
1619 				  atomic_read(&sk->sk_rmem_alloc));
1620 }
1621 
1622 static inline int tcp_full_space(const struct sock *sk)
1623 {
1624 	return tcp_win_from_space(sk, READ_ONCE(sk->sk_rcvbuf));
1625 }
1626 
1627 static inline void __tcp_adjust_rcv_ssthresh(struct sock *sk, u32 new_ssthresh)
1628 {
1629 	int unused_mem = sk_unused_reserved_mem(sk);
1630 	struct tcp_sock *tp = tcp_sk(sk);
1631 
1632 	tp->rcv_ssthresh = min(tp->rcv_ssthresh, new_ssthresh);
1633 	if (unused_mem)
1634 		tp->rcv_ssthresh = max_t(u32, tp->rcv_ssthresh,
1635 					 tcp_win_from_space(sk, unused_mem));
1636 }
1637 
1638 static inline void tcp_adjust_rcv_ssthresh(struct sock *sk)
1639 {
1640 	__tcp_adjust_rcv_ssthresh(sk, 4U * tcp_sk(sk)->advmss);
1641 }
1642 
1643 void tcp_cleanup_rbuf(struct sock *sk, int copied);
1644 void __tcp_cleanup_rbuf(struct sock *sk, int copied);
1645 
1646 
1647 /* We provision sk_rcvbuf around 200% of sk_rcvlowat.
1648  * If 87.5 % (7/8) of the space has been consumed, we want to override
1649  * SO_RCVLOWAT constraint, since we are receiving skbs with too small
1650  * len/truesize ratio.
1651  */
1652 static inline bool tcp_rmem_pressure(const struct sock *sk)
1653 {
1654 	int rcvbuf, threshold;
1655 
1656 	if (tcp_under_memory_pressure(sk))
1657 		return true;
1658 
1659 	rcvbuf = READ_ONCE(sk->sk_rcvbuf);
1660 	threshold = rcvbuf - (rcvbuf >> 3);
1661 
1662 	return atomic_read(&sk->sk_rmem_alloc) > threshold;
1663 }
1664 
1665 static inline bool tcp_epollin_ready(const struct sock *sk, int target)
1666 {
1667 	const struct tcp_sock *tp = tcp_sk(sk);
1668 	int avail = READ_ONCE(tp->rcv_nxt) - READ_ONCE(tp->copied_seq);
1669 
1670 	if (avail <= 0)
1671 		return false;
1672 
1673 	return (avail >= target) || tcp_rmem_pressure(sk) ||
1674 	       (tcp_receive_window(tp) <= inet_csk(sk)->icsk_ack.rcv_mss);
1675 }
1676 
1677 extern void tcp_openreq_init_rwin(struct request_sock *req,
1678 				  const struct sock *sk_listener,
1679 				  const struct dst_entry *dst);
1680 
1681 void tcp_enter_memory_pressure(struct sock *sk);
1682 void tcp_leave_memory_pressure(struct sock *sk);
1683 
1684 static inline int keepalive_intvl_when(const struct tcp_sock *tp)
1685 {
1686 	struct net *net = sock_net((struct sock *)tp);
1687 	int val;
1688 
1689 	/* Paired with WRITE_ONCE() in tcp_sock_set_keepintvl()
1690 	 * and do_tcp_setsockopt().
1691 	 */
1692 	val = READ_ONCE(tp->keepalive_intvl);
1693 
1694 	return val ? : READ_ONCE(net->ipv4.sysctl_tcp_keepalive_intvl);
1695 }
1696 
1697 static inline int keepalive_time_when(const struct tcp_sock *tp)
1698 {
1699 	struct net *net = sock_net((struct sock *)tp);
1700 	int val;
1701 
1702 	/* Paired with WRITE_ONCE() in tcp_sock_set_keepidle_locked() */
1703 	val = READ_ONCE(tp->keepalive_time);
1704 
1705 	return val ? : READ_ONCE(net->ipv4.sysctl_tcp_keepalive_time);
1706 }
1707 
1708 static inline int keepalive_probes(const struct tcp_sock *tp)
1709 {
1710 	struct net *net = sock_net((struct sock *)tp);
1711 	int val;
1712 
1713 	/* Paired with WRITE_ONCE() in tcp_sock_set_keepcnt()
1714 	 * and do_tcp_setsockopt().
1715 	 */
1716 	val = READ_ONCE(tp->keepalive_probes);
1717 
1718 	return val ? : READ_ONCE(net->ipv4.sysctl_tcp_keepalive_probes);
1719 }
1720 
1721 static inline u32 keepalive_time_elapsed(const struct tcp_sock *tp)
1722 {
1723 	const struct inet_connection_sock *icsk = &tp->inet_conn;
1724 
1725 	return min_t(u32, tcp_jiffies32 - icsk->icsk_ack.lrcvtime,
1726 			  tcp_jiffies32 - tp->rcv_tstamp);
1727 }
1728 
1729 static inline int tcp_fin_time(const struct sock *sk)
1730 {
1731 	int fin_timeout = tcp_sk(sk)->linger2 ? :
1732 		READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_fin_timeout);
1733 	const int rto = inet_csk(sk)->icsk_rto;
1734 
1735 	if (fin_timeout < (rto << 2) - (rto >> 1))
1736 		fin_timeout = (rto << 2) - (rto >> 1);
1737 
1738 	return fin_timeout;
1739 }
1740 
1741 static inline bool tcp_paws_check(const struct tcp_options_received *rx_opt,
1742 				  int paws_win)
1743 {
1744 	if ((s32)(rx_opt->ts_recent - rx_opt->rcv_tsval) <= paws_win)
1745 		return true;
1746 	if (unlikely(!time_before32(ktime_get_seconds(),
1747 				    rx_opt->ts_recent_stamp + TCP_PAWS_WRAP)))
1748 		return true;
1749 	/*
1750 	 * Some OSes send SYN and SYNACK messages with tsval=0 tsecr=0,
1751 	 * then following tcp messages have valid values. Ignore 0 value,
1752 	 * or else 'negative' tsval might forbid us to accept their packets.
1753 	 */
1754 	if (!rx_opt->ts_recent)
1755 		return true;
1756 	return false;
1757 }
1758 
1759 static inline bool tcp_paws_reject(const struct tcp_options_received *rx_opt,
1760 				   int rst)
1761 {
1762 	if (tcp_paws_check(rx_opt, 0))
1763 		return false;
1764 
1765 	/* RST segments are not recommended to carry timestamp,
1766 	   and, if they do, it is recommended to ignore PAWS because
1767 	   "their cleanup function should take precedence over timestamps."
1768 	   Certainly, it is mistake. It is necessary to understand the reasons
1769 	   of this constraint to relax it: if peer reboots, clock may go
1770 	   out-of-sync and half-open connections will not be reset.
1771 	   Actually, the problem would be not existing if all
1772 	   the implementations followed draft about maintaining clock
1773 	   via reboots. Linux-2.2 DOES NOT!
1774 
1775 	   However, we can relax time bounds for RST segments to MSL.
1776 	 */
1777 	if (rst && !time_before32(ktime_get_seconds(),
1778 				  rx_opt->ts_recent_stamp + TCP_PAWS_MSL))
1779 		return false;
1780 	return true;
1781 }
1782 
1783 static inline void __tcp_fast_path_on(struct tcp_sock *tp, u32 snd_wnd)
1784 {
1785 	/* mptcp hooks are only on the slow path */
1786 	if (sk_is_mptcp((struct sock *)tp))
1787 		return;
1788 
1789 	tp->pred_flags = htonl((tp->tcp_header_len << 26) |
1790 			       ntohl(TCP_FLAG_ACK) |
1791 			       snd_wnd);
1792 }
1793 
1794 static inline void tcp_fast_path_on(struct tcp_sock *tp)
1795 {
1796 	__tcp_fast_path_on(tp, tp->snd_wnd >> tp->rx_opt.snd_wscale);
1797 }
1798 
1799 static inline void tcp_fast_path_check(struct sock *sk)
1800 {
1801 	struct tcp_sock *tp = tcp_sk(sk);
1802 
1803 	if (RB_EMPTY_ROOT(&tp->out_of_order_queue) &&
1804 	    tp->rcv_wnd &&
1805 	    atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf &&
1806 	    !tp->urg_data)
1807 		tcp_fast_path_on(tp);
1808 }
1809 
1810 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
1811 			  int mib_idx, u32 *last_oow_ack_time);
1812 
1813 static inline void tcp_mib_init(struct net *net)
1814 {
1815 	/* See RFC 2012 */
1816 	TCP_ADD_STATS(net, TCP_MIB_RTOALGORITHM, 1);
1817 	TCP_ADD_STATS(net, TCP_MIB_RTOMIN, TCP_RTO_MIN*1000/HZ);
1818 	TCP_ADD_STATS(net, TCP_MIB_RTOMAX, TCP_RTO_MAX*1000/HZ);
1819 	TCP_ADD_STATS(net, TCP_MIB_MAXCONN, -1);
1820 }
1821 
1822 /* from STCP */
1823 static inline void tcp_clear_all_retrans_hints(struct tcp_sock *tp)
1824 {
1825 	tp->retransmit_skb_hint = NULL;
1826 }
1827 
1828 #define tcp_md5_addr tcp_ao_addr
1829 
1830 /* - key database */
1831 struct tcp_md5sig_key {
1832 	struct hlist_node	node;
1833 	u8			keylen;
1834 	u8			family; /* AF_INET or AF_INET6 */
1835 	u8			prefixlen;
1836 	u8			flags;
1837 	union tcp_md5_addr	addr;
1838 	int			l3index; /* set if key added with L3 scope */
1839 	u8			key[TCP_MD5SIG_MAXKEYLEN];
1840 	struct rcu_head		rcu;
1841 };
1842 
1843 /* - sock block */
1844 struct tcp_md5sig_info {
1845 	struct hlist_head	head;
1846 	struct rcu_head		rcu;
1847 };
1848 
1849 /* - pseudo header */
1850 struct tcp4_pseudohdr {
1851 	__be32		saddr;
1852 	__be32		daddr;
1853 	__u8		pad;
1854 	__u8		protocol;
1855 	__be16		len;
1856 };
1857 
1858 struct tcp6_pseudohdr {
1859 	struct in6_addr	saddr;
1860 	struct in6_addr daddr;
1861 	__be32		len;
1862 	__be32		protocol;	/* including padding */
1863 };
1864 
1865 union tcp_md5sum_block {
1866 	struct tcp4_pseudohdr ip4;
1867 #if IS_ENABLED(CONFIG_IPV6)
1868 	struct tcp6_pseudohdr ip6;
1869 #endif
1870 };
1871 
1872 /*
1873  * struct tcp_sigpool - per-CPU pool of ahash_requests
1874  * @scratch: per-CPU temporary area, that can be used between
1875  *	     tcp_sigpool_start() and tcp_sigpool_end() to perform
1876  *	     crypto request
1877  * @req: pre-allocated ahash request
1878  */
1879 struct tcp_sigpool {
1880 	void *scratch;
1881 	struct ahash_request *req;
1882 };
1883 
1884 int tcp_sigpool_alloc_ahash(const char *alg, size_t scratch_size);
1885 void tcp_sigpool_get(unsigned int id);
1886 void tcp_sigpool_release(unsigned int id);
1887 int tcp_sigpool_hash_skb_data(struct tcp_sigpool *hp,
1888 			      const struct sk_buff *skb,
1889 			      unsigned int header_len);
1890 
1891 /**
1892  * tcp_sigpool_start - disable bh and start using tcp_sigpool_ahash
1893  * @id: tcp_sigpool that was previously allocated by tcp_sigpool_alloc_ahash()
1894  * @c: returned tcp_sigpool for usage (uninitialized on failure)
1895  *
1896  * Returns: 0 on success, error otherwise.
1897  */
1898 int tcp_sigpool_start(unsigned int id, struct tcp_sigpool *c);
1899 /**
1900  * tcp_sigpool_end - enable bh and stop using tcp_sigpool
1901  * @c: tcp_sigpool context that was returned by tcp_sigpool_start()
1902  */
1903 void tcp_sigpool_end(struct tcp_sigpool *c);
1904 size_t tcp_sigpool_algo(unsigned int id, char *buf, size_t buf_len);
1905 /* - functions */
1906 int tcp_v4_md5_hash_skb(char *md5_hash, const struct tcp_md5sig_key *key,
1907 			const struct sock *sk, const struct sk_buff *skb);
1908 int tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr,
1909 		   int family, u8 prefixlen, int l3index, u8 flags,
1910 		   const u8 *newkey, u8 newkeylen);
1911 int tcp_md5_key_copy(struct sock *sk, const union tcp_md5_addr *addr,
1912 		     int family, u8 prefixlen, int l3index,
1913 		     struct tcp_md5sig_key *key);
1914 
1915 int tcp_md5_do_del(struct sock *sk, const union tcp_md5_addr *addr,
1916 		   int family, u8 prefixlen, int l3index, u8 flags);
1917 void tcp_clear_md5_list(struct sock *sk);
1918 struct tcp_md5sig_key *tcp_v4_md5_lookup(const struct sock *sk,
1919 					 const struct sock *addr_sk);
1920 
1921 #ifdef CONFIG_TCP_MD5SIG
1922 struct tcp_md5sig_key *__tcp_md5_do_lookup(const struct sock *sk, int l3index,
1923 					   const union tcp_md5_addr *addr,
1924 					   int family, bool any_l3index);
1925 static inline struct tcp_md5sig_key *
1926 tcp_md5_do_lookup(const struct sock *sk, int l3index,
1927 		  const union tcp_md5_addr *addr, int family)
1928 {
1929 	if (!static_branch_unlikely(&tcp_md5_needed.key))
1930 		return NULL;
1931 	return __tcp_md5_do_lookup(sk, l3index, addr, family, false);
1932 }
1933 
1934 static inline struct tcp_md5sig_key *
1935 tcp_md5_do_lookup_any_l3index(const struct sock *sk,
1936 			      const union tcp_md5_addr *addr, int family)
1937 {
1938 	if (!static_branch_unlikely(&tcp_md5_needed.key))
1939 		return NULL;
1940 	return __tcp_md5_do_lookup(sk, 0, addr, family, true);
1941 }
1942 
1943 #define tcp_twsk_md5_key(twsk)	((twsk)->tw_md5_key)
1944 void tcp_md5_destruct_sock(struct sock *sk);
1945 #else
1946 static inline struct tcp_md5sig_key *
1947 tcp_md5_do_lookup(const struct sock *sk, int l3index,
1948 		  const union tcp_md5_addr *addr, int family)
1949 {
1950 	return NULL;
1951 }
1952 
1953 static inline struct tcp_md5sig_key *
1954 tcp_md5_do_lookup_any_l3index(const struct sock *sk,
1955 			      const union tcp_md5_addr *addr, int family)
1956 {
1957 	return NULL;
1958 }
1959 
1960 #define tcp_twsk_md5_key(twsk)	NULL
1961 static inline void tcp_md5_destruct_sock(struct sock *sk)
1962 {
1963 }
1964 #endif
1965 
1966 int tcp_md5_alloc_sigpool(void);
1967 void tcp_md5_release_sigpool(void);
1968 void tcp_md5_add_sigpool(void);
1969 extern int tcp_md5_sigpool_id;
1970 
1971 int tcp_md5_hash_key(struct tcp_sigpool *hp,
1972 		     const struct tcp_md5sig_key *key);
1973 
1974 /* From tcp_fastopen.c */
1975 void tcp_fastopen_cache_get(struct sock *sk, u16 *mss,
1976 			    struct tcp_fastopen_cookie *cookie);
1977 void tcp_fastopen_cache_set(struct sock *sk, u16 mss,
1978 			    struct tcp_fastopen_cookie *cookie, bool syn_lost,
1979 			    u16 try_exp);
1980 struct tcp_fastopen_request {
1981 	/* Fast Open cookie. Size 0 means a cookie request */
1982 	struct tcp_fastopen_cookie	cookie;
1983 	struct msghdr			*data;  /* data in MSG_FASTOPEN */
1984 	size_t				size;
1985 	int				copied;	/* queued in tcp_connect() */
1986 	struct ubuf_info		*uarg;
1987 };
1988 void tcp_free_fastopen_req(struct tcp_sock *tp);
1989 void tcp_fastopen_destroy_cipher(struct sock *sk);
1990 void tcp_fastopen_ctx_destroy(struct net *net);
1991 int tcp_fastopen_reset_cipher(struct net *net, struct sock *sk,
1992 			      void *primary_key, void *backup_key);
1993 int tcp_fastopen_get_cipher(struct net *net, struct inet_connection_sock *icsk,
1994 			    u64 *key);
1995 void tcp_fastopen_add_skb(struct sock *sk, struct sk_buff *skb);
1996 struct sock *tcp_try_fastopen(struct sock *sk, struct sk_buff *skb,
1997 			      struct request_sock *req,
1998 			      struct tcp_fastopen_cookie *foc,
1999 			      const struct dst_entry *dst);
2000 void tcp_fastopen_init_key_once(struct net *net);
2001 bool tcp_fastopen_cookie_check(struct sock *sk, u16 *mss,
2002 			     struct tcp_fastopen_cookie *cookie);
2003 bool tcp_fastopen_defer_connect(struct sock *sk, int *err);
2004 #define TCP_FASTOPEN_KEY_LENGTH sizeof(siphash_key_t)
2005 #define TCP_FASTOPEN_KEY_MAX 2
2006 #define TCP_FASTOPEN_KEY_BUF_LENGTH \
2007 	(TCP_FASTOPEN_KEY_LENGTH * TCP_FASTOPEN_KEY_MAX)
2008 
2009 /* Fastopen key context */
2010 struct tcp_fastopen_context {
2011 	siphash_key_t	key[TCP_FASTOPEN_KEY_MAX];
2012 	int		num;
2013 	struct rcu_head	rcu;
2014 };
2015 
2016 void tcp_fastopen_active_disable(struct sock *sk);
2017 bool tcp_fastopen_active_should_disable(struct sock *sk);
2018 void tcp_fastopen_active_disable_ofo_check(struct sock *sk);
2019 void tcp_fastopen_active_detect_blackhole(struct sock *sk, bool expired);
2020 
2021 /* Caller needs to wrap with rcu_read_(un)lock() */
2022 static inline
2023 struct tcp_fastopen_context *tcp_fastopen_get_ctx(const struct sock *sk)
2024 {
2025 	struct tcp_fastopen_context *ctx;
2026 
2027 	ctx = rcu_dereference(inet_csk(sk)->icsk_accept_queue.fastopenq.ctx);
2028 	if (!ctx)
2029 		ctx = rcu_dereference(sock_net(sk)->ipv4.tcp_fastopen_ctx);
2030 	return ctx;
2031 }
2032 
2033 static inline
2034 bool tcp_fastopen_cookie_match(const struct tcp_fastopen_cookie *foc,
2035 			       const struct tcp_fastopen_cookie *orig)
2036 {
2037 	if (orig->len == TCP_FASTOPEN_COOKIE_SIZE &&
2038 	    orig->len == foc->len &&
2039 	    !memcmp(orig->val, foc->val, foc->len))
2040 		return true;
2041 	return false;
2042 }
2043 
2044 static inline
2045 int tcp_fastopen_context_len(const struct tcp_fastopen_context *ctx)
2046 {
2047 	return ctx->num;
2048 }
2049 
2050 /* Latencies incurred by various limits for a sender. They are
2051  * chronograph-like stats that are mutually exclusive.
2052  */
2053 enum tcp_chrono {
2054 	TCP_CHRONO_UNSPEC,
2055 	TCP_CHRONO_BUSY, /* Actively sending data (non-empty write queue) */
2056 	TCP_CHRONO_RWND_LIMITED, /* Stalled by insufficient receive window */
2057 	TCP_CHRONO_SNDBUF_LIMITED, /* Stalled by insufficient send buffer */
2058 	__TCP_CHRONO_MAX,
2059 };
2060 
2061 void tcp_chrono_start(struct sock *sk, const enum tcp_chrono type);
2062 void tcp_chrono_stop(struct sock *sk, const enum tcp_chrono type);
2063 
2064 /* This helper is needed, because skb->tcp_tsorted_anchor uses
2065  * the same memory storage than skb->destructor/_skb_refdst
2066  */
2067 static inline void tcp_skb_tsorted_anchor_cleanup(struct sk_buff *skb)
2068 {
2069 	skb->destructor = NULL;
2070 	skb->_skb_refdst = 0UL;
2071 }
2072 
2073 #define tcp_skb_tsorted_save(skb) {		\
2074 	unsigned long _save = skb->_skb_refdst;	\
2075 	skb->_skb_refdst = 0UL;
2076 
2077 #define tcp_skb_tsorted_restore(skb)		\
2078 	skb->_skb_refdst = _save;		\
2079 }
2080 
2081 void tcp_write_queue_purge(struct sock *sk);
2082 
2083 static inline struct sk_buff *tcp_rtx_queue_head(const struct sock *sk)
2084 {
2085 	return skb_rb_first(&sk->tcp_rtx_queue);
2086 }
2087 
2088 static inline struct sk_buff *tcp_rtx_queue_tail(const struct sock *sk)
2089 {
2090 	return skb_rb_last(&sk->tcp_rtx_queue);
2091 }
2092 
2093 static inline struct sk_buff *tcp_write_queue_tail(const struct sock *sk)
2094 {
2095 	return skb_peek_tail(&sk->sk_write_queue);
2096 }
2097 
2098 #define tcp_for_write_queue_from_safe(skb, tmp, sk)			\
2099 	skb_queue_walk_from_safe(&(sk)->sk_write_queue, skb, tmp)
2100 
2101 static inline struct sk_buff *tcp_send_head(const struct sock *sk)
2102 {
2103 	return skb_peek(&sk->sk_write_queue);
2104 }
2105 
2106 static inline bool tcp_skb_is_last(const struct sock *sk,
2107 				   const struct sk_buff *skb)
2108 {
2109 	return skb_queue_is_last(&sk->sk_write_queue, skb);
2110 }
2111 
2112 /**
2113  * tcp_write_queue_empty - test if any payload (or FIN) is available in write queue
2114  * @sk: socket
2115  *
2116  * Since the write queue can have a temporary empty skb in it,
2117  * we must not use "return skb_queue_empty(&sk->sk_write_queue)"
2118  */
2119 static inline bool tcp_write_queue_empty(const struct sock *sk)
2120 {
2121 	const struct tcp_sock *tp = tcp_sk(sk);
2122 
2123 	return tp->write_seq == tp->snd_nxt;
2124 }
2125 
2126 static inline bool tcp_rtx_queue_empty(const struct sock *sk)
2127 {
2128 	return RB_EMPTY_ROOT(&sk->tcp_rtx_queue);
2129 }
2130 
2131 static inline bool tcp_rtx_and_write_queues_empty(const struct sock *sk)
2132 {
2133 	return tcp_rtx_queue_empty(sk) && tcp_write_queue_empty(sk);
2134 }
2135 
2136 static inline void tcp_add_write_queue_tail(struct sock *sk, struct sk_buff *skb)
2137 {
2138 	__skb_queue_tail(&sk->sk_write_queue, skb);
2139 
2140 	/* Queue it, remembering where we must start sending. */
2141 	if (sk->sk_write_queue.next == skb)
2142 		tcp_chrono_start(sk, TCP_CHRONO_BUSY);
2143 }
2144 
2145 /* Insert new before skb on the write queue of sk.  */
2146 static inline void tcp_insert_write_queue_before(struct sk_buff *new,
2147 						  struct sk_buff *skb,
2148 						  struct sock *sk)
2149 {
2150 	__skb_queue_before(&sk->sk_write_queue, skb, new);
2151 }
2152 
2153 static inline void tcp_unlink_write_queue(struct sk_buff *skb, struct sock *sk)
2154 {
2155 	tcp_skb_tsorted_anchor_cleanup(skb);
2156 	__skb_unlink(skb, &sk->sk_write_queue);
2157 }
2158 
2159 void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb);
2160 
2161 static inline void tcp_rtx_queue_unlink(struct sk_buff *skb, struct sock *sk)
2162 {
2163 	tcp_skb_tsorted_anchor_cleanup(skb);
2164 	rb_erase(&skb->rbnode, &sk->tcp_rtx_queue);
2165 }
2166 
2167 static inline void tcp_rtx_queue_unlink_and_free(struct sk_buff *skb, struct sock *sk)
2168 {
2169 	list_del(&skb->tcp_tsorted_anchor);
2170 	tcp_rtx_queue_unlink(skb, sk);
2171 	tcp_wmem_free_skb(sk, skb);
2172 }
2173 
2174 static inline void tcp_write_collapse_fence(struct sock *sk)
2175 {
2176 	struct sk_buff *skb = tcp_write_queue_tail(sk);
2177 
2178 	if (skb)
2179 		TCP_SKB_CB(skb)->eor = 1;
2180 }
2181 
2182 static inline void tcp_push_pending_frames(struct sock *sk)
2183 {
2184 	if (tcp_send_head(sk)) {
2185 		struct tcp_sock *tp = tcp_sk(sk);
2186 
2187 		__tcp_push_pending_frames(sk, tcp_current_mss(sk), tp->nonagle);
2188 	}
2189 }
2190 
2191 /* Start sequence of the skb just after the highest skb with SACKed
2192  * bit, valid only if sacked_out > 0 or when the caller has ensured
2193  * validity by itself.
2194  */
2195 static inline u32 tcp_highest_sack_seq(struct tcp_sock *tp)
2196 {
2197 	if (!tp->sacked_out)
2198 		return tp->snd_una;
2199 
2200 	if (tp->highest_sack == NULL)
2201 		return tp->snd_nxt;
2202 
2203 	return TCP_SKB_CB(tp->highest_sack)->seq;
2204 }
2205 
2206 static inline void tcp_advance_highest_sack(struct sock *sk, struct sk_buff *skb)
2207 {
2208 	tcp_sk(sk)->highest_sack = skb_rb_next(skb);
2209 }
2210 
2211 static inline struct sk_buff *tcp_highest_sack(struct sock *sk)
2212 {
2213 	return tcp_sk(sk)->highest_sack;
2214 }
2215 
2216 static inline void tcp_highest_sack_reset(struct sock *sk)
2217 {
2218 	tcp_sk(sk)->highest_sack = tcp_rtx_queue_head(sk);
2219 }
2220 
2221 /* Called when old skb is about to be deleted and replaced by new skb */
2222 static inline void tcp_highest_sack_replace(struct sock *sk,
2223 					    struct sk_buff *old,
2224 					    struct sk_buff *new)
2225 {
2226 	if (old == tcp_highest_sack(sk))
2227 		tcp_sk(sk)->highest_sack = new;
2228 }
2229 
2230 /* This helper checks if socket has IP_TRANSPARENT set */
2231 static inline bool inet_sk_transparent(const struct sock *sk)
2232 {
2233 	switch (sk->sk_state) {
2234 	case TCP_TIME_WAIT:
2235 		return inet_twsk(sk)->tw_transparent;
2236 	case TCP_NEW_SYN_RECV:
2237 		return inet_rsk(inet_reqsk(sk))->no_srccheck;
2238 	}
2239 	return inet_test_bit(TRANSPARENT, sk);
2240 }
2241 
2242 /* Determines whether this is a thin stream (which may suffer from
2243  * increased latency). Used to trigger latency-reducing mechanisms.
2244  */
2245 static inline bool tcp_stream_is_thin(struct tcp_sock *tp)
2246 {
2247 	return tp->packets_out < 4 && !tcp_in_initial_slowstart(tp);
2248 }
2249 
2250 /* /proc */
2251 enum tcp_seq_states {
2252 	TCP_SEQ_STATE_LISTENING,
2253 	TCP_SEQ_STATE_ESTABLISHED,
2254 };
2255 
2256 void *tcp_seq_start(struct seq_file *seq, loff_t *pos);
2257 void *tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos);
2258 void tcp_seq_stop(struct seq_file *seq, void *v);
2259 
2260 struct tcp_seq_afinfo {
2261 	sa_family_t			family;
2262 };
2263 
2264 struct tcp_iter_state {
2265 	struct seq_net_private	p;
2266 	enum tcp_seq_states	state;
2267 	struct sock		*syn_wait_sk;
2268 	int			bucket, offset, sbucket, num;
2269 	loff_t			last_pos;
2270 };
2271 
2272 extern struct request_sock_ops tcp_request_sock_ops;
2273 extern struct request_sock_ops tcp6_request_sock_ops;
2274 
2275 void tcp_v4_destroy_sock(struct sock *sk);
2276 
2277 struct sk_buff *tcp_gso_segment(struct sk_buff *skb,
2278 				netdev_features_t features);
2279 struct tcphdr *tcp_gro_pull_header(struct sk_buff *skb);
2280 struct sk_buff *tcp_gro_lookup(struct list_head *head, struct tcphdr *th);
2281 struct sk_buff *tcp_gro_receive(struct list_head *head, struct sk_buff *skb,
2282 				struct tcphdr *th);
2283 INDIRECT_CALLABLE_DECLARE(int tcp4_gro_complete(struct sk_buff *skb, int thoff));
2284 INDIRECT_CALLABLE_DECLARE(struct sk_buff *tcp4_gro_receive(struct list_head *head, struct sk_buff *skb));
2285 INDIRECT_CALLABLE_DECLARE(int tcp6_gro_complete(struct sk_buff *skb, int thoff));
2286 INDIRECT_CALLABLE_DECLARE(struct sk_buff *tcp6_gro_receive(struct list_head *head, struct sk_buff *skb));
2287 #ifdef CONFIG_INET
2288 void tcp_gro_complete(struct sk_buff *skb);
2289 #else
2290 static inline void tcp_gro_complete(struct sk_buff *skb) { }
2291 #endif
2292 
2293 void __tcp_v4_send_check(struct sk_buff *skb, __be32 saddr, __be32 daddr);
2294 
2295 static inline u32 tcp_notsent_lowat(const struct tcp_sock *tp)
2296 {
2297 	struct net *net = sock_net((struct sock *)tp);
2298 	u32 val;
2299 
2300 	val = READ_ONCE(tp->notsent_lowat);
2301 
2302 	return val ?: READ_ONCE(net->ipv4.sysctl_tcp_notsent_lowat);
2303 }
2304 
2305 bool tcp_stream_memory_free(const struct sock *sk, int wake);
2306 
2307 #ifdef CONFIG_PROC_FS
2308 int tcp4_proc_init(void);
2309 void tcp4_proc_exit(void);
2310 #endif
2311 
2312 int tcp_rtx_synack(const struct sock *sk, struct request_sock *req);
2313 int tcp_conn_request(struct request_sock_ops *rsk_ops,
2314 		     const struct tcp_request_sock_ops *af_ops,
2315 		     struct sock *sk, struct sk_buff *skb);
2316 
2317 /* TCP af-specific functions */
2318 struct tcp_sock_af_ops {
2319 #ifdef CONFIG_TCP_MD5SIG
2320 	struct tcp_md5sig_key	*(*md5_lookup) (const struct sock *sk,
2321 						const struct sock *addr_sk);
2322 	int		(*calc_md5_hash)(char *location,
2323 					 const struct tcp_md5sig_key *md5,
2324 					 const struct sock *sk,
2325 					 const struct sk_buff *skb);
2326 	int		(*md5_parse)(struct sock *sk,
2327 				     int optname,
2328 				     sockptr_t optval,
2329 				     int optlen);
2330 #endif
2331 #ifdef CONFIG_TCP_AO
2332 	int (*ao_parse)(struct sock *sk, int optname, sockptr_t optval, int optlen);
2333 	struct tcp_ao_key *(*ao_lookup)(const struct sock *sk,
2334 					struct sock *addr_sk,
2335 					int sndid, int rcvid);
2336 	int (*ao_calc_key_sk)(struct tcp_ao_key *mkt, u8 *key,
2337 			      const struct sock *sk,
2338 			      __be32 sisn, __be32 disn, bool send);
2339 	int (*calc_ao_hash)(char *location, struct tcp_ao_key *ao,
2340 			    const struct sock *sk, const struct sk_buff *skb,
2341 			    const u8 *tkey, int hash_offset, u32 sne);
2342 #endif
2343 };
2344 
2345 struct tcp_request_sock_ops {
2346 	u16 mss_clamp;
2347 #ifdef CONFIG_TCP_MD5SIG
2348 	struct tcp_md5sig_key *(*req_md5_lookup)(const struct sock *sk,
2349 						 const struct sock *addr_sk);
2350 	int		(*calc_md5_hash) (char *location,
2351 					  const struct tcp_md5sig_key *md5,
2352 					  const struct sock *sk,
2353 					  const struct sk_buff *skb);
2354 #endif
2355 #ifdef CONFIG_TCP_AO
2356 	struct tcp_ao_key *(*ao_lookup)(const struct sock *sk,
2357 					struct request_sock *req,
2358 					int sndid, int rcvid);
2359 	int (*ao_calc_key)(struct tcp_ao_key *mkt, u8 *key, struct request_sock *sk);
2360 	int (*ao_synack_hash)(char *ao_hash, struct tcp_ao_key *mkt,
2361 			      struct request_sock *req, const struct sk_buff *skb,
2362 			      int hash_offset, u32 sne);
2363 #endif
2364 #ifdef CONFIG_SYN_COOKIES
2365 	__u32 (*cookie_init_seq)(const struct sk_buff *skb,
2366 				 __u16 *mss);
2367 #endif
2368 	struct dst_entry *(*route_req)(const struct sock *sk,
2369 				       struct sk_buff *skb,
2370 				       struct flowi *fl,
2371 				       struct request_sock *req,
2372 				       u32 tw_isn);
2373 	u32 (*init_seq)(const struct sk_buff *skb);
2374 	u32 (*init_ts_off)(const struct net *net, const struct sk_buff *skb);
2375 	int (*send_synack)(const struct sock *sk, struct dst_entry *dst,
2376 			   struct flowi *fl, struct request_sock *req,
2377 			   struct tcp_fastopen_cookie *foc,
2378 			   enum tcp_synack_type synack_type,
2379 			   struct sk_buff *syn_skb);
2380 };
2381 
2382 extern const struct tcp_request_sock_ops tcp_request_sock_ipv4_ops;
2383 #if IS_ENABLED(CONFIG_IPV6)
2384 extern const struct tcp_request_sock_ops tcp_request_sock_ipv6_ops;
2385 #endif
2386 
2387 #ifdef CONFIG_SYN_COOKIES
2388 static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops,
2389 					 const struct sock *sk, struct sk_buff *skb,
2390 					 __u16 *mss)
2391 {
2392 	tcp_synq_overflow(sk);
2393 	__NET_INC_STATS(sock_net(sk), LINUX_MIB_SYNCOOKIESSENT);
2394 	return ops->cookie_init_seq(skb, mss);
2395 }
2396 #else
2397 static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops,
2398 					 const struct sock *sk, struct sk_buff *skb,
2399 					 __u16 *mss)
2400 {
2401 	return 0;
2402 }
2403 #endif
2404 
2405 struct tcp_key {
2406 	union {
2407 		struct {
2408 			struct tcp_ao_key *ao_key;
2409 			char *traffic_key;
2410 			u32 sne;
2411 			u8 rcv_next;
2412 		};
2413 		struct tcp_md5sig_key *md5_key;
2414 	};
2415 	enum {
2416 		TCP_KEY_NONE = 0,
2417 		TCP_KEY_MD5,
2418 		TCP_KEY_AO,
2419 	} type;
2420 };
2421 
2422 static inline void tcp_get_current_key(const struct sock *sk,
2423 				       struct tcp_key *out)
2424 {
2425 #if defined(CONFIG_TCP_AO) || defined(CONFIG_TCP_MD5SIG)
2426 	const struct tcp_sock *tp = tcp_sk(sk);
2427 #endif
2428 
2429 #ifdef CONFIG_TCP_AO
2430 	if (static_branch_unlikely(&tcp_ao_needed.key)) {
2431 		struct tcp_ao_info *ao;
2432 
2433 		ao = rcu_dereference_protected(tp->ao_info,
2434 					       lockdep_sock_is_held(sk));
2435 		if (ao) {
2436 			out->ao_key = READ_ONCE(ao->current_key);
2437 			out->type = TCP_KEY_AO;
2438 			return;
2439 		}
2440 	}
2441 #endif
2442 #ifdef CONFIG_TCP_MD5SIG
2443 	if (static_branch_unlikely(&tcp_md5_needed.key) &&
2444 	    rcu_access_pointer(tp->md5sig_info)) {
2445 		out->md5_key = tp->af_specific->md5_lookup(sk, sk);
2446 		if (out->md5_key) {
2447 			out->type = TCP_KEY_MD5;
2448 			return;
2449 		}
2450 	}
2451 #endif
2452 	out->type = TCP_KEY_NONE;
2453 }
2454 
2455 static inline bool tcp_key_is_md5(const struct tcp_key *key)
2456 {
2457 	if (static_branch_tcp_md5())
2458 		return key->type == TCP_KEY_MD5;
2459 	return false;
2460 }
2461 
2462 static inline bool tcp_key_is_ao(const struct tcp_key *key)
2463 {
2464 	if (static_branch_tcp_ao())
2465 		return key->type == TCP_KEY_AO;
2466 	return false;
2467 }
2468 
2469 int tcpv4_offload_init(void);
2470 
2471 void tcp_v4_init(void);
2472 void tcp_init(void);
2473 
2474 /* tcp_recovery.c */
2475 void tcp_mark_skb_lost(struct sock *sk, struct sk_buff *skb);
2476 void tcp_newreno_mark_lost(struct sock *sk, bool snd_una_advanced);
2477 extern s32 tcp_rack_skb_timeout(struct tcp_sock *tp, struct sk_buff *skb,
2478 				u32 reo_wnd);
2479 extern bool tcp_rack_mark_lost(struct sock *sk);
2480 extern void tcp_rack_advance(struct tcp_sock *tp, u8 sacked, u32 end_seq,
2481 			     u64 xmit_time);
2482 extern void tcp_rack_reo_timeout(struct sock *sk);
2483 extern void tcp_rack_update_reo_wnd(struct sock *sk, struct rate_sample *rs);
2484 
2485 /* tcp_plb.c */
2486 
2487 /*
2488  * Scaling factor for fractions in PLB. For example, tcp_plb_update_state
2489  * expects cong_ratio which represents fraction of traffic that experienced
2490  * congestion over a single RTT. In order to avoid floating point operations,
2491  * this fraction should be mapped to (1 << TCP_PLB_SCALE) and passed in.
2492  */
2493 #define TCP_PLB_SCALE 8
2494 
2495 /* State for PLB (Protective Load Balancing) for a single TCP connection. */
2496 struct tcp_plb_state {
2497 	u8	consec_cong_rounds:5, /* consecutive congested rounds */
2498 		unused:3;
2499 	u32	pause_until; /* jiffies32 when PLB can resume rerouting */
2500 };
2501 
2502 static inline void tcp_plb_init(const struct sock *sk,
2503 				struct tcp_plb_state *plb)
2504 {
2505 	plb->consec_cong_rounds = 0;
2506 	plb->pause_until = 0;
2507 }
2508 void tcp_plb_update_state(const struct sock *sk, struct tcp_plb_state *plb,
2509 			  const int cong_ratio);
2510 void tcp_plb_check_rehash(struct sock *sk, struct tcp_plb_state *plb);
2511 void tcp_plb_update_state_upon_rto(struct sock *sk, struct tcp_plb_state *plb);
2512 
2513 static inline void tcp_warn_once(const struct sock *sk, bool cond, const char *str)
2514 {
2515 	WARN_ONCE(cond,
2516 		  "%scwn:%u out:%u sacked:%u lost:%u retrans:%u tlp_high_seq:%u sk_state:%u ca_state:%u advmss:%u mss_cache:%u pmtu:%u\n",
2517 		  str,
2518 		  tcp_snd_cwnd(tcp_sk(sk)),
2519 		  tcp_sk(sk)->packets_out, tcp_sk(sk)->sacked_out,
2520 		  tcp_sk(sk)->lost_out, tcp_sk(sk)->retrans_out,
2521 		  tcp_sk(sk)->tlp_high_seq, sk->sk_state,
2522 		  inet_csk(sk)->icsk_ca_state,
2523 		  tcp_sk(sk)->advmss, tcp_sk(sk)->mss_cache,
2524 		  inet_csk(sk)->icsk_pmtu_cookie);
2525 }
2526 
2527 /* At how many usecs into the future should the RTO fire? */
2528 static inline s64 tcp_rto_delta_us(const struct sock *sk)
2529 {
2530 	const struct sk_buff *skb = tcp_rtx_queue_head(sk);
2531 	u32 rto = inet_csk(sk)->icsk_rto;
2532 
2533 	if (likely(skb)) {
2534 		u64 rto_time_stamp_us = tcp_skb_timestamp_us(skb) + jiffies_to_usecs(rto);
2535 
2536 		return rto_time_stamp_us - tcp_sk(sk)->tcp_mstamp;
2537 	} else {
2538 		tcp_warn_once(sk, 1, "rtx queue empty: ");
2539 		return jiffies_to_usecs(rto);
2540 	}
2541 
2542 }
2543 
2544 /*
2545  * Save and compile IPv4 options, return a pointer to it
2546  */
2547 static inline struct ip_options_rcu *tcp_v4_save_options(struct net *net,
2548 							 struct sk_buff *skb)
2549 {
2550 	const struct ip_options *opt = &TCP_SKB_CB(skb)->header.h4.opt;
2551 	struct ip_options_rcu *dopt = NULL;
2552 
2553 	if (opt->optlen) {
2554 		int opt_size = sizeof(*dopt) + opt->optlen;
2555 
2556 		dopt = kmalloc(opt_size, GFP_ATOMIC);
2557 		if (dopt && __ip_options_echo(net, &dopt->opt, skb, opt)) {
2558 			kfree(dopt);
2559 			dopt = NULL;
2560 		}
2561 	}
2562 	return dopt;
2563 }
2564 
2565 /* locally generated TCP pure ACKs have skb->truesize == 2
2566  * (check tcp_send_ack() in net/ipv4/tcp_output.c )
2567  * This is much faster than dissecting the packet to find out.
2568  * (Think of GRE encapsulations, IPv4, IPv6, ...)
2569  */
2570 static inline bool skb_is_tcp_pure_ack(const struct sk_buff *skb)
2571 {
2572 	return skb->truesize == 2;
2573 }
2574 
2575 static inline void skb_set_tcp_pure_ack(struct sk_buff *skb)
2576 {
2577 	skb->truesize = 2;
2578 }
2579 
2580 static inline int tcp_inq(struct sock *sk)
2581 {
2582 	struct tcp_sock *tp = tcp_sk(sk);
2583 	int answ;
2584 
2585 	if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) {
2586 		answ = 0;
2587 	} else if (sock_flag(sk, SOCK_URGINLINE) ||
2588 		   !tp->urg_data ||
2589 		   before(tp->urg_seq, tp->copied_seq) ||
2590 		   !before(tp->urg_seq, tp->rcv_nxt)) {
2591 
2592 		answ = tp->rcv_nxt - tp->copied_seq;
2593 
2594 		/* Subtract 1, if FIN was received */
2595 		if (answ && sock_flag(sk, SOCK_DONE))
2596 			answ--;
2597 	} else {
2598 		answ = tp->urg_seq - tp->copied_seq;
2599 	}
2600 
2601 	return answ;
2602 }
2603 
2604 int tcp_peek_len(struct socket *sock);
2605 
2606 static inline void tcp_segs_in(struct tcp_sock *tp, const struct sk_buff *skb)
2607 {
2608 	u16 segs_in;
2609 
2610 	segs_in = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
2611 
2612 	/* We update these fields while other threads might
2613 	 * read them from tcp_get_info()
2614 	 */
2615 	WRITE_ONCE(tp->segs_in, tp->segs_in + segs_in);
2616 	if (skb->len > tcp_hdrlen(skb))
2617 		WRITE_ONCE(tp->data_segs_in, tp->data_segs_in + segs_in);
2618 }
2619 
2620 /*
2621  * TCP listen path runs lockless.
2622  * We forced "struct sock" to be const qualified to make sure
2623  * we don't modify one of its field by mistake.
2624  * Here, we increment sk_drops which is an atomic_t, so we can safely
2625  * make sock writable again.
2626  */
2627 static inline void tcp_listendrop(const struct sock *sk)
2628 {
2629 	sk_drops_inc((struct sock *)sk);
2630 	__NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENDROPS);
2631 }
2632 
2633 enum hrtimer_restart tcp_pace_kick(struct hrtimer *timer);
2634 
2635 /*
2636  * Interface for adding Upper Level Protocols over TCP
2637  */
2638 
2639 #define TCP_ULP_NAME_MAX	16
2640 #define TCP_ULP_MAX		128
2641 #define TCP_ULP_BUF_MAX		(TCP_ULP_NAME_MAX*TCP_ULP_MAX)
2642 
2643 struct tcp_ulp_ops {
2644 	struct list_head	list;
2645 
2646 	/* initialize ulp */
2647 	int (*init)(struct sock *sk);
2648 	/* update ulp */
2649 	void (*update)(struct sock *sk, struct proto *p,
2650 		       void (*write_space)(struct sock *sk));
2651 	/* cleanup ulp */
2652 	void (*release)(struct sock *sk);
2653 	/* diagnostic */
2654 	int (*get_info)(struct sock *sk, struct sk_buff *skb, bool net_admin);
2655 	size_t (*get_info_size)(const struct sock *sk, bool net_admin);
2656 	/* clone ulp */
2657 	void (*clone)(const struct request_sock *req, struct sock *newsk,
2658 		      const gfp_t priority);
2659 
2660 	char		name[TCP_ULP_NAME_MAX];
2661 	struct module	*owner;
2662 };
2663 int tcp_register_ulp(struct tcp_ulp_ops *type);
2664 void tcp_unregister_ulp(struct tcp_ulp_ops *type);
2665 int tcp_set_ulp(struct sock *sk, const char *name);
2666 void tcp_get_available_ulp(char *buf, size_t len);
2667 void tcp_cleanup_ulp(struct sock *sk);
2668 void tcp_update_ulp(struct sock *sk, struct proto *p,
2669 		    void (*write_space)(struct sock *sk));
2670 
2671 #define MODULE_ALIAS_TCP_ULP(name)				\
2672 	MODULE_INFO(alias, name);		\
2673 	MODULE_INFO(alias, "tcp-ulp-" name)
2674 
2675 #ifdef CONFIG_NET_SOCK_MSG
2676 struct sk_msg;
2677 struct sk_psock;
2678 
2679 #ifdef CONFIG_BPF_SYSCALL
2680 int tcp_bpf_update_proto(struct sock *sk, struct sk_psock *psock, bool restore);
2681 void tcp_bpf_clone(const struct sock *sk, struct sock *newsk);
2682 #ifdef CONFIG_BPF_STREAM_PARSER
2683 struct strparser;
2684 int tcp_bpf_strp_read_sock(struct strparser *strp, read_descriptor_t *desc,
2685 			   sk_read_actor_t recv_actor);
2686 #endif /* CONFIG_BPF_STREAM_PARSER */
2687 #endif /* CONFIG_BPF_SYSCALL */
2688 
2689 #ifdef CONFIG_INET
2690 void tcp_eat_skb(struct sock *sk, struct sk_buff *skb);
2691 #else
2692 static inline void tcp_eat_skb(struct sock *sk, struct sk_buff *skb)
2693 {
2694 }
2695 #endif
2696 
2697 int tcp_bpf_sendmsg_redir(struct sock *sk, bool ingress,
2698 			  struct sk_msg *msg, u32 bytes, int flags);
2699 #endif /* CONFIG_NET_SOCK_MSG */
2700 
2701 #if !defined(CONFIG_BPF_SYSCALL) || !defined(CONFIG_NET_SOCK_MSG)
2702 static inline void tcp_bpf_clone(const struct sock *sk, struct sock *newsk)
2703 {
2704 }
2705 #endif
2706 
2707 #ifdef CONFIG_CGROUP_BPF
2708 static inline void bpf_skops_init_skb(struct bpf_sock_ops_kern *skops,
2709 				      struct sk_buff *skb,
2710 				      unsigned int end_offset)
2711 {
2712 	skops->skb = skb;
2713 	skops->skb_data_end = skb->data + end_offset;
2714 }
2715 #else
2716 static inline void bpf_skops_init_skb(struct bpf_sock_ops_kern *skops,
2717 				      struct sk_buff *skb,
2718 				      unsigned int end_offset)
2719 {
2720 }
2721 #endif
2722 
2723 /* Call BPF_SOCK_OPS program that returns an int. If the return value
2724  * is < 0, then the BPF op failed (for example if the loaded BPF
2725  * program does not support the chosen operation or there is no BPF
2726  * program loaded).
2727  */
2728 #ifdef CONFIG_BPF
2729 static inline int tcp_call_bpf(struct sock *sk, int op, u32 nargs, u32 *args)
2730 {
2731 	struct bpf_sock_ops_kern sock_ops;
2732 	int ret;
2733 
2734 	memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
2735 	if (sk_fullsock(sk)) {
2736 		sock_ops.is_fullsock = 1;
2737 		sock_ops.is_locked_tcp_sock = 1;
2738 		sock_owned_by_me(sk);
2739 	}
2740 
2741 	sock_ops.sk = sk;
2742 	sock_ops.op = op;
2743 	if (nargs > 0)
2744 		memcpy(sock_ops.args, args, nargs * sizeof(*args));
2745 
2746 	ret = BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops);
2747 	if (ret == 0)
2748 		ret = sock_ops.reply;
2749 	else
2750 		ret = -1;
2751 	return ret;
2752 }
2753 
2754 static inline int tcp_call_bpf_2arg(struct sock *sk, int op, u32 arg1, u32 arg2)
2755 {
2756 	u32 args[2] = {arg1, arg2};
2757 
2758 	return tcp_call_bpf(sk, op, 2, args);
2759 }
2760 
2761 static inline int tcp_call_bpf_3arg(struct sock *sk, int op, u32 arg1, u32 arg2,
2762 				    u32 arg3)
2763 {
2764 	u32 args[3] = {arg1, arg2, arg3};
2765 
2766 	return tcp_call_bpf(sk, op, 3, args);
2767 }
2768 
2769 #else
2770 static inline int tcp_call_bpf(struct sock *sk, int op, u32 nargs, u32 *args)
2771 {
2772 	return -EPERM;
2773 }
2774 
2775 static inline int tcp_call_bpf_2arg(struct sock *sk, int op, u32 arg1, u32 arg2)
2776 {
2777 	return -EPERM;
2778 }
2779 
2780 static inline int tcp_call_bpf_3arg(struct sock *sk, int op, u32 arg1, u32 arg2,
2781 				    u32 arg3)
2782 {
2783 	return -EPERM;
2784 }
2785 
2786 #endif
2787 
2788 static inline u32 tcp_timeout_init(struct sock *sk)
2789 {
2790 	int timeout;
2791 
2792 	timeout = tcp_call_bpf(sk, BPF_SOCK_OPS_TIMEOUT_INIT, 0, NULL);
2793 
2794 	if (timeout <= 0)
2795 		timeout = TCP_TIMEOUT_INIT;
2796 	return min_t(int, timeout, TCP_RTO_MAX);
2797 }
2798 
2799 static inline u32 tcp_rwnd_init_bpf(struct sock *sk)
2800 {
2801 	int rwnd;
2802 
2803 	rwnd = tcp_call_bpf(sk, BPF_SOCK_OPS_RWND_INIT, 0, NULL);
2804 
2805 	if (rwnd < 0)
2806 		rwnd = 0;
2807 	return rwnd;
2808 }
2809 
2810 static inline bool tcp_bpf_ca_needs_ecn(struct sock *sk)
2811 {
2812 	return (tcp_call_bpf(sk, BPF_SOCK_OPS_NEEDS_ECN, 0, NULL) == 1);
2813 }
2814 
2815 static inline void tcp_bpf_rtt(struct sock *sk, long mrtt, u32 srtt)
2816 {
2817 	if (BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), BPF_SOCK_OPS_RTT_CB_FLAG))
2818 		tcp_call_bpf_2arg(sk, BPF_SOCK_OPS_RTT_CB, mrtt, srtt);
2819 }
2820 
2821 #if IS_ENABLED(CONFIG_SMC)
2822 extern struct static_key_false tcp_have_smc;
2823 #endif
2824 
2825 #if IS_ENABLED(CONFIG_TLS_DEVICE)
2826 void clean_acked_data_enable(struct tcp_sock *tp,
2827 			     void (*cad)(struct sock *sk, u32 ack_seq));
2828 void clean_acked_data_disable(struct tcp_sock *tp);
2829 void clean_acked_data_flush(void);
2830 #endif
2831 
2832 DECLARE_STATIC_KEY_FALSE(tcp_tx_delay_enabled);
2833 static inline void tcp_add_tx_delay(struct sk_buff *skb,
2834 				    const struct tcp_sock *tp)
2835 {
2836 	if (static_branch_unlikely(&tcp_tx_delay_enabled))
2837 		skb->skb_mstamp_ns += (u64)tp->tcp_tx_delay * NSEC_PER_USEC;
2838 }
2839 
2840 /* Compute Earliest Departure Time for some control packets
2841  * like ACK or RST for TIME_WAIT or non ESTABLISHED sockets.
2842  */
2843 static inline u64 tcp_transmit_time(const struct sock *sk)
2844 {
2845 	if (static_branch_unlikely(&tcp_tx_delay_enabled)) {
2846 		u32 delay = (sk->sk_state == TCP_TIME_WAIT) ?
2847 			tcp_twsk(sk)->tw_tx_delay : tcp_sk(sk)->tcp_tx_delay;
2848 
2849 		return tcp_clock_ns() + (u64)delay * NSEC_PER_USEC;
2850 	}
2851 	return 0;
2852 }
2853 
2854 static inline int tcp_parse_auth_options(const struct tcphdr *th,
2855 		const u8 **md5_hash, const struct tcp_ao_hdr **aoh)
2856 {
2857 	const u8 *md5_tmp, *ao_tmp;
2858 	int ret;
2859 
2860 	ret = tcp_do_parse_auth_options(th, &md5_tmp, &ao_tmp);
2861 	if (ret)
2862 		return ret;
2863 
2864 	if (md5_hash)
2865 		*md5_hash = md5_tmp;
2866 
2867 	if (aoh) {
2868 		if (!ao_tmp)
2869 			*aoh = NULL;
2870 		else
2871 			*aoh = (struct tcp_ao_hdr *)(ao_tmp - 2);
2872 	}
2873 
2874 	return 0;
2875 }
2876 
2877 static inline bool tcp_ao_required(struct sock *sk, const void *saddr,
2878 				   int family, int l3index, bool stat_inc)
2879 {
2880 #ifdef CONFIG_TCP_AO
2881 	struct tcp_ao_info *ao_info;
2882 	struct tcp_ao_key *ao_key;
2883 
2884 	if (!static_branch_unlikely(&tcp_ao_needed.key))
2885 		return false;
2886 
2887 	ao_info = rcu_dereference_check(tcp_sk(sk)->ao_info,
2888 					lockdep_sock_is_held(sk));
2889 	if (!ao_info)
2890 		return false;
2891 
2892 	ao_key = tcp_ao_do_lookup(sk, l3index, saddr, family, -1, -1);
2893 	if (ao_info->ao_required || ao_key) {
2894 		if (stat_inc) {
2895 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAOREQUIRED);
2896 			atomic64_inc(&ao_info->counters.ao_required);
2897 		}
2898 		return true;
2899 	}
2900 #endif
2901 	return false;
2902 }
2903 
2904 enum skb_drop_reason tcp_inbound_hash(struct sock *sk,
2905 		const struct request_sock *req, const struct sk_buff *skb,
2906 		const void *saddr, const void *daddr,
2907 		int family, int dif, int sdif);
2908 
2909 #endif	/* _TCP_H */
2910