1 /* SPDX-License-Identifier: GPL-2.0-or-later */ 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * Definitions for the TCP module. 8 * 9 * Version: @(#)tcp.h 1.0.5 05/23/93 10 * 11 * Authors: Ross Biro 12 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 13 */ 14 #ifndef _TCP_H 15 #define _TCP_H 16 17 #define FASTRETRANS_DEBUG 1 18 19 #include <linux/list.h> 20 #include <linux/tcp.h> 21 #include <linux/bug.h> 22 #include <linux/slab.h> 23 #include <linux/cache.h> 24 #include <linux/percpu.h> 25 #include <linux/skbuff.h> 26 #include <linux/kref.h> 27 #include <linux/ktime.h> 28 #include <linux/indirect_call_wrapper.h> 29 30 #include <net/inet_connection_sock.h> 31 #include <net/inet_timewait_sock.h> 32 #include <net/inet_hashtables.h> 33 #include <net/checksum.h> 34 #include <net/request_sock.h> 35 #include <net/sock_reuseport.h> 36 #include <net/sock.h> 37 #include <net/snmp.h> 38 #include <net/ip.h> 39 #include <net/tcp_states.h> 40 #include <net/tcp_ao.h> 41 #include <net/inet_ecn.h> 42 #include <net/dst.h> 43 #include <net/mptcp.h> 44 45 #include <linux/seq_file.h> 46 #include <linux/memcontrol.h> 47 #include <linux/bpf-cgroup.h> 48 #include <linux/siphash.h> 49 50 extern struct inet_hashinfo tcp_hashinfo; 51 52 DECLARE_PER_CPU(unsigned int, tcp_orphan_count); 53 int tcp_orphan_count_sum(void); 54 55 DECLARE_PER_CPU(u32, tcp_tw_isn); 56 57 void tcp_time_wait(struct sock *sk, int state, int timeo); 58 59 #define MAX_TCP_HEADER L1_CACHE_ALIGN(128 + MAX_HEADER) 60 #define MAX_TCP_OPTION_SPACE 40 61 #define TCP_MIN_SND_MSS 48 62 #define TCP_MIN_GSO_SIZE (TCP_MIN_SND_MSS - MAX_TCP_OPTION_SPACE) 63 64 /* 65 * Never offer a window over 32767 without using window scaling. Some 66 * poor stacks do signed 16bit maths! 67 */ 68 #define MAX_TCP_WINDOW 32767U 69 70 /* Minimal accepted MSS. It is (60+60+8) - (20+20). */ 71 #define TCP_MIN_MSS 88U 72 73 /* The initial MTU to use for probing */ 74 #define TCP_BASE_MSS 1024 75 76 /* probing interval, default to 10 minutes as per RFC4821 */ 77 #define TCP_PROBE_INTERVAL 600 78 79 /* Specify interval when tcp mtu probing will stop */ 80 #define TCP_PROBE_THRESHOLD 8 81 82 /* After receiving this amount of duplicate ACKs fast retransmit starts. */ 83 #define TCP_FASTRETRANS_THRESH 3 84 85 /* Maximal number of ACKs sent quickly to accelerate slow-start. */ 86 #define TCP_MAX_QUICKACKS 16U 87 88 /* Maximal number of window scale according to RFC1323 */ 89 #define TCP_MAX_WSCALE 14U 90 91 /* urg_data states */ 92 #define TCP_URG_VALID 0x0100 93 #define TCP_URG_NOTYET 0x0200 94 #define TCP_URG_READ 0x0400 95 96 #define TCP_RETR1 3 /* 97 * This is how many retries it does before it 98 * tries to figure out if the gateway is 99 * down. Minimal RFC value is 3; it corresponds 100 * to ~3sec-8min depending on RTO. 101 */ 102 103 #define TCP_RETR2 15 /* 104 * This should take at least 105 * 90 minutes to time out. 106 * RFC1122 says that the limit is 100 sec. 107 * 15 is ~13-30min depending on RTO. 108 */ 109 110 #define TCP_SYN_RETRIES 6 /* This is how many retries are done 111 * when active opening a connection. 112 * RFC1122 says the minimum retry MUST 113 * be at least 180secs. Nevertheless 114 * this value is corresponding to 115 * 63secs of retransmission with the 116 * current initial RTO. 117 */ 118 119 #define TCP_SYNACK_RETRIES 5 /* This is how may retries are done 120 * when passive opening a connection. 121 * This is corresponding to 31secs of 122 * retransmission with the current 123 * initial RTO. 124 */ 125 126 #define TCP_TIMEWAIT_LEN (60*HZ) /* how long to wait to destroy TIME-WAIT 127 * state, about 60 seconds */ 128 #define TCP_FIN_TIMEOUT TCP_TIMEWAIT_LEN 129 /* BSD style FIN_WAIT2 deadlock breaker. 130 * It used to be 3min, new value is 60sec, 131 * to combine FIN-WAIT-2 timeout with 132 * TIME-WAIT timer. 133 */ 134 #define TCP_FIN_TIMEOUT_MAX (120 * HZ) /* max TCP_LINGER2 value (two minutes) */ 135 136 #define TCP_DELACK_MAX ((unsigned)(HZ/5)) /* maximal time to delay before sending an ACK */ 137 static_assert((1 << ATO_BITS) > TCP_DELACK_MAX); 138 139 #if HZ >= 100 140 #define TCP_DELACK_MIN ((unsigned)(HZ/25)) /* minimal time to delay before sending an ACK */ 141 #define TCP_ATO_MIN ((unsigned)(HZ/25)) 142 #else 143 #define TCP_DELACK_MIN 4U 144 #define TCP_ATO_MIN 4U 145 #endif 146 #define TCP_RTO_MAX ((unsigned)(120*HZ)) 147 #define TCP_RTO_MIN ((unsigned)(HZ/5)) 148 #define TCP_TIMEOUT_MIN (2U) /* Min timeout for TCP timers in jiffies */ 149 150 #define TCP_TIMEOUT_MIN_US (2*USEC_PER_MSEC) /* Min TCP timeout in microsecs */ 151 152 #define TCP_TIMEOUT_INIT ((unsigned)(1*HZ)) /* RFC6298 2.1 initial RTO value */ 153 #define TCP_TIMEOUT_FALLBACK ((unsigned)(3*HZ)) /* RFC 1122 initial RTO value, now 154 * used as a fallback RTO for the 155 * initial data transmission if no 156 * valid RTT sample has been acquired, 157 * most likely due to retrans in 3WHS. 158 */ 159 160 #define TCP_RESOURCE_PROBE_INTERVAL ((unsigned)(HZ/2U)) /* Maximal interval between probes 161 * for local resources. 162 */ 163 #define TCP_KEEPALIVE_TIME (120*60*HZ) /* two hours */ 164 #define TCP_KEEPALIVE_PROBES 9 /* Max of 9 keepalive probes */ 165 #define TCP_KEEPALIVE_INTVL (75*HZ) 166 167 #define MAX_TCP_KEEPIDLE 32767 168 #define MAX_TCP_KEEPINTVL 32767 169 #define MAX_TCP_KEEPCNT 127 170 #define MAX_TCP_SYNCNT 127 171 172 /* Ensure that TCP PAWS checks are relaxed after ~2147 seconds 173 * to avoid overflows. This assumes a clock smaller than 1 Mhz. 174 * Default clock is 1 Khz, tcp_usec_ts uses 1 Mhz. 175 */ 176 #define TCP_PAWS_WRAP (INT_MAX / USEC_PER_SEC) 177 178 #define TCP_PAWS_MSL 60 /* Per-host timestamps are invalidated 179 * after this time. It should be equal 180 * (or greater than) TCP_TIMEWAIT_LEN 181 * to provide reliability equal to one 182 * provided by timewait state. 183 */ 184 #define TCP_PAWS_WINDOW 1 /* Replay window for per-host 185 * timestamps. It must be less than 186 * minimal timewait lifetime. 187 */ 188 /* 189 * TCP option 190 */ 191 192 #define TCPOPT_NOP 1 /* Padding */ 193 #define TCPOPT_EOL 0 /* End of options */ 194 #define TCPOPT_MSS 2 /* Segment size negotiating */ 195 #define TCPOPT_WINDOW 3 /* Window scaling */ 196 #define TCPOPT_SACK_PERM 4 /* SACK Permitted */ 197 #define TCPOPT_SACK 5 /* SACK Block */ 198 #define TCPOPT_TIMESTAMP 8 /* Better RTT estimations/PAWS */ 199 #define TCPOPT_MD5SIG 19 /* MD5 Signature (RFC2385) */ 200 #define TCPOPT_AO 29 /* Authentication Option (RFC5925) */ 201 #define TCPOPT_MPTCP 30 /* Multipath TCP (RFC6824) */ 202 #define TCPOPT_FASTOPEN 34 /* Fast open (RFC7413) */ 203 #define TCPOPT_EXP 254 /* Experimental */ 204 /* Magic number to be after the option value for sharing TCP 205 * experimental options. See draft-ietf-tcpm-experimental-options-00.txt 206 */ 207 #define TCPOPT_FASTOPEN_MAGIC 0xF989 208 #define TCPOPT_SMC_MAGIC 0xE2D4C3D9 209 210 /* 211 * TCP option lengths 212 */ 213 214 #define TCPOLEN_MSS 4 215 #define TCPOLEN_WINDOW 3 216 #define TCPOLEN_SACK_PERM 2 217 #define TCPOLEN_TIMESTAMP 10 218 #define TCPOLEN_MD5SIG 18 219 #define TCPOLEN_FASTOPEN_BASE 2 220 #define TCPOLEN_EXP_FASTOPEN_BASE 4 221 #define TCPOLEN_EXP_SMC_BASE 6 222 223 /* But this is what stacks really send out. */ 224 #define TCPOLEN_TSTAMP_ALIGNED 12 225 #define TCPOLEN_WSCALE_ALIGNED 4 226 #define TCPOLEN_SACKPERM_ALIGNED 4 227 #define TCPOLEN_SACK_BASE 2 228 #define TCPOLEN_SACK_BASE_ALIGNED 4 229 #define TCPOLEN_SACK_PERBLOCK 8 230 #define TCPOLEN_MD5SIG_ALIGNED 20 231 #define TCPOLEN_MSS_ALIGNED 4 232 #define TCPOLEN_EXP_SMC_BASE_ALIGNED 8 233 234 /* Flags in tp->nonagle */ 235 #define TCP_NAGLE_OFF 1 /* Nagle's algo is disabled */ 236 #define TCP_NAGLE_CORK 2 /* Socket is corked */ 237 #define TCP_NAGLE_PUSH 4 /* Cork is overridden for already queued data */ 238 239 /* TCP thin-stream limits */ 240 #define TCP_THIN_LINEAR_RETRIES 6 /* After 6 linear retries, do exp. backoff */ 241 242 /* TCP initial congestion window as per rfc6928 */ 243 #define TCP_INIT_CWND 10 244 245 /* Bit Flags for sysctl_tcp_fastopen */ 246 #define TFO_CLIENT_ENABLE 1 247 #define TFO_SERVER_ENABLE 2 248 #define TFO_CLIENT_NO_COOKIE 4 /* Data in SYN w/o cookie option */ 249 250 /* Accept SYN data w/o any cookie option */ 251 #define TFO_SERVER_COOKIE_NOT_REQD 0x200 252 253 /* Force enable TFO on all listeners, i.e., not requiring the 254 * TCP_FASTOPEN socket option. 255 */ 256 #define TFO_SERVER_WO_SOCKOPT1 0x400 257 258 259 /* sysctl variables for tcp */ 260 extern int sysctl_tcp_max_orphans; 261 extern long sysctl_tcp_mem[3]; 262 263 #define TCP_RACK_LOSS_DETECTION 0x1 /* Use RACK to detect losses */ 264 #define TCP_RACK_STATIC_REO_WND 0x2 /* Use static RACK reo wnd */ 265 #define TCP_RACK_NO_DUPTHRESH 0x4 /* Do not use DUPACK threshold in RACK */ 266 267 extern atomic_long_t tcp_memory_allocated; 268 DECLARE_PER_CPU(int, tcp_memory_per_cpu_fw_alloc); 269 270 extern struct percpu_counter tcp_sockets_allocated; 271 extern unsigned long tcp_memory_pressure; 272 273 /* optimized version of sk_under_memory_pressure() for TCP sockets */ 274 static inline bool tcp_under_memory_pressure(const struct sock *sk) 275 { 276 if (mem_cgroup_sockets_enabled && sk->sk_memcg && 277 mem_cgroup_under_socket_pressure(sk->sk_memcg)) 278 return true; 279 280 return READ_ONCE(tcp_memory_pressure); 281 } 282 /* 283 * The next routines deal with comparing 32 bit unsigned ints 284 * and worry about wraparound (automatic with unsigned arithmetic). 285 */ 286 287 static inline bool before(__u32 seq1, __u32 seq2) 288 { 289 return (__s32)(seq1-seq2) < 0; 290 } 291 #define after(seq2, seq1) before(seq1, seq2) 292 293 /* is s2<=s1<=s3 ? */ 294 static inline bool between(__u32 seq1, __u32 seq2, __u32 seq3) 295 { 296 return seq3 - seq2 >= seq1 - seq2; 297 } 298 299 static inline void tcp_wmem_free_skb(struct sock *sk, struct sk_buff *skb) 300 { 301 sk_wmem_queued_add(sk, -skb->truesize); 302 if (!skb_zcopy_pure(skb)) 303 sk_mem_uncharge(sk, skb->truesize); 304 else 305 sk_mem_uncharge(sk, SKB_TRUESIZE(skb_end_offset(skb))); 306 __kfree_skb(skb); 307 } 308 309 void sk_forced_mem_schedule(struct sock *sk, int size); 310 311 bool tcp_check_oom(const struct sock *sk, int shift); 312 313 314 extern struct proto tcp_prot; 315 316 #define TCP_INC_STATS(net, field) SNMP_INC_STATS((net)->mib.tcp_statistics, field) 317 #define __TCP_INC_STATS(net, field) __SNMP_INC_STATS((net)->mib.tcp_statistics, field) 318 #define TCP_DEC_STATS(net, field) SNMP_DEC_STATS((net)->mib.tcp_statistics, field) 319 #define TCP_ADD_STATS(net, field, val) SNMP_ADD_STATS((net)->mib.tcp_statistics, field, val) 320 321 void tcp_tasklet_init(void); 322 323 int tcp_v4_err(struct sk_buff *skb, u32); 324 325 void tcp_shutdown(struct sock *sk, int how); 326 327 int tcp_v4_early_demux(struct sk_buff *skb); 328 int tcp_v4_rcv(struct sk_buff *skb); 329 330 void tcp_remove_empty_skb(struct sock *sk); 331 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size); 332 int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size); 333 int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg, int *copied, 334 size_t size, struct ubuf_info *uarg); 335 void tcp_splice_eof(struct socket *sock); 336 int tcp_send_mss(struct sock *sk, int *size_goal, int flags); 337 int tcp_wmem_schedule(struct sock *sk, int copy); 338 void tcp_push(struct sock *sk, int flags, int mss_now, int nonagle, 339 int size_goal); 340 void tcp_release_cb(struct sock *sk); 341 void tcp_wfree(struct sk_buff *skb); 342 void tcp_write_timer_handler(struct sock *sk); 343 void tcp_delack_timer_handler(struct sock *sk); 344 int tcp_ioctl(struct sock *sk, int cmd, int *karg); 345 enum skb_drop_reason tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb); 346 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb); 347 void tcp_rcv_space_adjust(struct sock *sk); 348 int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp); 349 void tcp_twsk_destructor(struct sock *sk); 350 void tcp_twsk_purge(struct list_head *net_exit_list); 351 ssize_t tcp_splice_read(struct socket *sk, loff_t *ppos, 352 struct pipe_inode_info *pipe, size_t len, 353 unsigned int flags); 354 struct sk_buff *tcp_stream_alloc_skb(struct sock *sk, gfp_t gfp, 355 bool force_schedule); 356 357 static inline void tcp_dec_quickack_mode(struct sock *sk) 358 { 359 struct inet_connection_sock *icsk = inet_csk(sk); 360 361 if (icsk->icsk_ack.quick) { 362 /* How many ACKs S/ACKing new data have we sent? */ 363 const unsigned int pkts = inet_csk_ack_scheduled(sk) ? 1 : 0; 364 365 if (pkts >= icsk->icsk_ack.quick) { 366 icsk->icsk_ack.quick = 0; 367 /* Leaving quickack mode we deflate ATO. */ 368 icsk->icsk_ack.ato = TCP_ATO_MIN; 369 } else 370 icsk->icsk_ack.quick -= pkts; 371 } 372 } 373 374 #define TCP_ECN_OK 1 375 #define TCP_ECN_QUEUE_CWR 2 376 #define TCP_ECN_DEMAND_CWR 4 377 #define TCP_ECN_SEEN 8 378 379 enum tcp_tw_status { 380 TCP_TW_SUCCESS = 0, 381 TCP_TW_RST = 1, 382 TCP_TW_ACK = 2, 383 TCP_TW_SYN = 3 384 }; 385 386 387 enum tcp_tw_status tcp_timewait_state_process(struct inet_timewait_sock *tw, 388 struct sk_buff *skb, 389 const struct tcphdr *th, 390 u32 *tw_isn); 391 struct sock *tcp_check_req(struct sock *sk, struct sk_buff *skb, 392 struct request_sock *req, bool fastopen, 393 bool *lost_race); 394 enum skb_drop_reason tcp_child_process(struct sock *parent, struct sock *child, 395 struct sk_buff *skb); 396 void tcp_enter_loss(struct sock *sk); 397 void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int newly_lost, int flag); 398 void tcp_clear_retrans(struct tcp_sock *tp); 399 void tcp_update_metrics(struct sock *sk); 400 void tcp_init_metrics(struct sock *sk); 401 void tcp_metrics_init(void); 402 bool tcp_peer_is_proven(struct request_sock *req, struct dst_entry *dst); 403 void __tcp_close(struct sock *sk, long timeout); 404 void tcp_close(struct sock *sk, long timeout); 405 void tcp_init_sock(struct sock *sk); 406 void tcp_init_transfer(struct sock *sk, int bpf_op, struct sk_buff *skb); 407 __poll_t tcp_poll(struct file *file, struct socket *sock, 408 struct poll_table_struct *wait); 409 int do_tcp_getsockopt(struct sock *sk, int level, 410 int optname, sockptr_t optval, sockptr_t optlen); 411 int tcp_getsockopt(struct sock *sk, int level, int optname, 412 char __user *optval, int __user *optlen); 413 bool tcp_bpf_bypass_getsockopt(int level, int optname); 414 int do_tcp_setsockopt(struct sock *sk, int level, int optname, 415 sockptr_t optval, unsigned int optlen); 416 int tcp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval, 417 unsigned int optlen); 418 void tcp_set_keepalive(struct sock *sk, int val); 419 void tcp_syn_ack_timeout(const struct request_sock *req); 420 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, 421 int flags, int *addr_len); 422 int tcp_set_rcvlowat(struct sock *sk, int val); 423 int tcp_set_window_clamp(struct sock *sk, int val); 424 void tcp_update_recv_tstamps(struct sk_buff *skb, 425 struct scm_timestamping_internal *tss); 426 void tcp_recv_timestamp(struct msghdr *msg, const struct sock *sk, 427 struct scm_timestamping_internal *tss); 428 void tcp_data_ready(struct sock *sk); 429 #ifdef CONFIG_MMU 430 int tcp_mmap(struct file *file, struct socket *sock, 431 struct vm_area_struct *vma); 432 #endif 433 void tcp_parse_options(const struct net *net, const struct sk_buff *skb, 434 struct tcp_options_received *opt_rx, 435 int estab, struct tcp_fastopen_cookie *foc); 436 437 /* 438 * BPF SKB-less helpers 439 */ 440 u16 tcp_v4_get_syncookie(struct sock *sk, struct iphdr *iph, 441 struct tcphdr *th, u32 *cookie); 442 u16 tcp_v6_get_syncookie(struct sock *sk, struct ipv6hdr *iph, 443 struct tcphdr *th, u32 *cookie); 444 u16 tcp_parse_mss_option(const struct tcphdr *th, u16 user_mss); 445 u16 tcp_get_syncookie_mss(struct request_sock_ops *rsk_ops, 446 const struct tcp_request_sock_ops *af_ops, 447 struct sock *sk, struct tcphdr *th); 448 /* 449 * TCP v4 functions exported for the inet6 API 450 */ 451 452 void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb); 453 void tcp_v4_mtu_reduced(struct sock *sk); 454 void tcp_req_err(struct sock *sk, u32 seq, bool abort); 455 void tcp_ld_RTO_revert(struct sock *sk, u32 seq); 456 int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb); 457 struct sock *tcp_create_openreq_child(const struct sock *sk, 458 struct request_sock *req, 459 struct sk_buff *skb); 460 void tcp_ca_openreq_child(struct sock *sk, const struct dst_entry *dst); 461 struct sock *tcp_v4_syn_recv_sock(const struct sock *sk, struct sk_buff *skb, 462 struct request_sock *req, 463 struct dst_entry *dst, 464 struct request_sock *req_unhash, 465 bool *own_req); 466 int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb); 467 int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len); 468 int tcp_connect(struct sock *sk); 469 enum tcp_synack_type { 470 TCP_SYNACK_NORMAL, 471 TCP_SYNACK_FASTOPEN, 472 TCP_SYNACK_COOKIE, 473 }; 474 struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst, 475 struct request_sock *req, 476 struct tcp_fastopen_cookie *foc, 477 enum tcp_synack_type synack_type, 478 struct sk_buff *syn_skb); 479 int tcp_disconnect(struct sock *sk, int flags); 480 481 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb); 482 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size); 483 void inet_sk_rx_dst_set(struct sock *sk, const struct sk_buff *skb); 484 485 /* From syncookies.c */ 486 struct sock *tcp_get_cookie_sock(struct sock *sk, struct sk_buff *skb, 487 struct request_sock *req, 488 struct dst_entry *dst); 489 int __cookie_v4_check(const struct iphdr *iph, const struct tcphdr *th); 490 struct sock *cookie_v4_check(struct sock *sk, struct sk_buff *skb); 491 struct request_sock *cookie_tcp_reqsk_alloc(const struct request_sock_ops *ops, 492 struct sock *sk, struct sk_buff *skb, 493 struct tcp_options_received *tcp_opt, 494 int mss, u32 tsoff); 495 496 #if IS_ENABLED(CONFIG_BPF) 497 struct bpf_tcp_req_attrs { 498 u32 rcv_tsval; 499 u32 rcv_tsecr; 500 u16 mss; 501 u8 rcv_wscale; 502 u8 snd_wscale; 503 u8 ecn_ok; 504 u8 wscale_ok; 505 u8 sack_ok; 506 u8 tstamp_ok; 507 u8 usec_ts_ok; 508 u8 reserved[3]; 509 }; 510 #endif 511 512 #ifdef CONFIG_SYN_COOKIES 513 514 /* Syncookies use a monotonic timer which increments every 60 seconds. 515 * This counter is used both as a hash input and partially encoded into 516 * the cookie value. A cookie is only validated further if the delta 517 * between the current counter value and the encoded one is less than this, 518 * i.e. a sent cookie is valid only at most for 2*60 seconds (or less if 519 * the counter advances immediately after a cookie is generated). 520 */ 521 #define MAX_SYNCOOKIE_AGE 2 522 #define TCP_SYNCOOKIE_PERIOD (60 * HZ) 523 #define TCP_SYNCOOKIE_VALID (MAX_SYNCOOKIE_AGE * TCP_SYNCOOKIE_PERIOD) 524 525 /* syncookies: remember time of last synqueue overflow 526 * But do not dirty this field too often (once per second is enough) 527 * It is racy as we do not hold a lock, but race is very minor. 528 */ 529 static inline void tcp_synq_overflow(const struct sock *sk) 530 { 531 unsigned int last_overflow; 532 unsigned int now = jiffies; 533 534 if (sk->sk_reuseport) { 535 struct sock_reuseport *reuse; 536 537 reuse = rcu_dereference(sk->sk_reuseport_cb); 538 if (likely(reuse)) { 539 last_overflow = READ_ONCE(reuse->synq_overflow_ts); 540 if (!time_between32(now, last_overflow, 541 last_overflow + HZ)) 542 WRITE_ONCE(reuse->synq_overflow_ts, now); 543 return; 544 } 545 } 546 547 last_overflow = READ_ONCE(tcp_sk(sk)->rx_opt.ts_recent_stamp); 548 if (!time_between32(now, last_overflow, last_overflow + HZ)) 549 WRITE_ONCE(tcp_sk_rw(sk)->rx_opt.ts_recent_stamp, now); 550 } 551 552 /* syncookies: no recent synqueue overflow on this listening socket? */ 553 static inline bool tcp_synq_no_recent_overflow(const struct sock *sk) 554 { 555 unsigned int last_overflow; 556 unsigned int now = jiffies; 557 558 if (sk->sk_reuseport) { 559 struct sock_reuseport *reuse; 560 561 reuse = rcu_dereference(sk->sk_reuseport_cb); 562 if (likely(reuse)) { 563 last_overflow = READ_ONCE(reuse->synq_overflow_ts); 564 return !time_between32(now, last_overflow - HZ, 565 last_overflow + 566 TCP_SYNCOOKIE_VALID); 567 } 568 } 569 570 last_overflow = READ_ONCE(tcp_sk(sk)->rx_opt.ts_recent_stamp); 571 572 /* If last_overflow <= jiffies <= last_overflow + TCP_SYNCOOKIE_VALID, 573 * then we're under synflood. However, we have to use 574 * 'last_overflow - HZ' as lower bound. That's because a concurrent 575 * tcp_synq_overflow() could update .ts_recent_stamp after we read 576 * jiffies but before we store .ts_recent_stamp into last_overflow, 577 * which could lead to rejecting a valid syncookie. 578 */ 579 return !time_between32(now, last_overflow - HZ, 580 last_overflow + TCP_SYNCOOKIE_VALID); 581 } 582 583 static inline u32 tcp_cookie_time(void) 584 { 585 u64 val = get_jiffies_64(); 586 587 do_div(val, TCP_SYNCOOKIE_PERIOD); 588 return val; 589 } 590 591 /* Convert one nsec 64bit timestamp to ts (ms or usec resolution) */ 592 static inline u64 tcp_ns_to_ts(bool usec_ts, u64 val) 593 { 594 if (usec_ts) 595 return div_u64(val, NSEC_PER_USEC); 596 597 return div_u64(val, NSEC_PER_MSEC); 598 } 599 600 u32 __cookie_v4_init_sequence(const struct iphdr *iph, const struct tcphdr *th, 601 u16 *mssp); 602 __u32 cookie_v4_init_sequence(const struct sk_buff *skb, __u16 *mss); 603 u64 cookie_init_timestamp(struct request_sock *req, u64 now); 604 bool cookie_timestamp_decode(const struct net *net, 605 struct tcp_options_received *opt); 606 607 static inline bool cookie_ecn_ok(const struct net *net, const struct dst_entry *dst) 608 { 609 return READ_ONCE(net->ipv4.sysctl_tcp_ecn) || 610 dst_feature(dst, RTAX_FEATURE_ECN); 611 } 612 613 #if IS_ENABLED(CONFIG_BPF) 614 static inline bool cookie_bpf_ok(struct sk_buff *skb) 615 { 616 return skb->sk; 617 } 618 619 struct request_sock *cookie_bpf_check(struct sock *sk, struct sk_buff *skb); 620 #else 621 static inline bool cookie_bpf_ok(struct sk_buff *skb) 622 { 623 return false; 624 } 625 626 static inline struct request_sock *cookie_bpf_check(struct net *net, struct sock *sk, 627 struct sk_buff *skb) 628 { 629 return NULL; 630 } 631 #endif 632 633 /* From net/ipv6/syncookies.c */ 634 int __cookie_v6_check(const struct ipv6hdr *iph, const struct tcphdr *th); 635 struct sock *cookie_v6_check(struct sock *sk, struct sk_buff *skb); 636 637 u32 __cookie_v6_init_sequence(const struct ipv6hdr *iph, 638 const struct tcphdr *th, u16 *mssp); 639 __u32 cookie_v6_init_sequence(const struct sk_buff *skb, __u16 *mss); 640 #endif 641 /* tcp_output.c */ 642 643 void tcp_skb_entail(struct sock *sk, struct sk_buff *skb); 644 void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb); 645 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss, 646 int nonagle); 647 int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs); 648 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs); 649 void tcp_retransmit_timer(struct sock *sk); 650 void tcp_xmit_retransmit_queue(struct sock *); 651 void tcp_simple_retransmit(struct sock *); 652 void tcp_enter_recovery(struct sock *sk, bool ece_ack); 653 int tcp_trim_head(struct sock *, struct sk_buff *, u32); 654 enum tcp_queue { 655 TCP_FRAG_IN_WRITE_QUEUE, 656 TCP_FRAG_IN_RTX_QUEUE, 657 }; 658 int tcp_fragment(struct sock *sk, enum tcp_queue tcp_queue, 659 struct sk_buff *skb, u32 len, 660 unsigned int mss_now, gfp_t gfp); 661 662 void tcp_send_probe0(struct sock *); 663 int tcp_write_wakeup(struct sock *, int mib); 664 void tcp_send_fin(struct sock *sk); 665 void tcp_send_active_reset(struct sock *sk, gfp_t priority, 666 enum sk_rst_reason reason); 667 int tcp_send_synack(struct sock *); 668 void tcp_push_one(struct sock *, unsigned int mss_now); 669 void __tcp_send_ack(struct sock *sk, u32 rcv_nxt); 670 void tcp_send_ack(struct sock *sk); 671 void tcp_send_delayed_ack(struct sock *sk); 672 void tcp_send_loss_probe(struct sock *sk); 673 bool tcp_schedule_loss_probe(struct sock *sk, bool advancing_rto); 674 void tcp_skb_collapse_tstamp(struct sk_buff *skb, 675 const struct sk_buff *next_skb); 676 677 /* tcp_input.c */ 678 void tcp_rearm_rto(struct sock *sk); 679 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req); 680 void tcp_done_with_error(struct sock *sk, int err); 681 void tcp_reset(struct sock *sk, struct sk_buff *skb); 682 void tcp_fin(struct sock *sk); 683 void tcp_check_space(struct sock *sk); 684 void tcp_sack_compress_send_ack(struct sock *sk); 685 686 /* tcp_timer.c */ 687 void tcp_init_xmit_timers(struct sock *); 688 static inline void tcp_clear_xmit_timers(struct sock *sk) 689 { 690 if (hrtimer_try_to_cancel(&tcp_sk(sk)->pacing_timer) == 1) 691 __sock_put(sk); 692 693 if (hrtimer_try_to_cancel(&tcp_sk(sk)->compressed_ack_timer) == 1) 694 __sock_put(sk); 695 696 inet_csk_clear_xmit_timers(sk); 697 } 698 699 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu); 700 unsigned int tcp_current_mss(struct sock *sk); 701 u32 tcp_clamp_probe0_to_user_timeout(const struct sock *sk, u32 when); 702 703 /* Bound MSS / TSO packet size with the half of the window */ 704 static inline int tcp_bound_to_half_wnd(struct tcp_sock *tp, int pktsize) 705 { 706 int cutoff; 707 708 /* When peer uses tiny windows, there is no use in packetizing 709 * to sub-MSS pieces for the sake of SWS or making sure there 710 * are enough packets in the pipe for fast recovery. 711 * 712 * On the other hand, for extremely large MSS devices, handling 713 * smaller than MSS windows in this way does make sense. 714 */ 715 if (tp->max_window > TCP_MSS_DEFAULT) 716 cutoff = (tp->max_window >> 1); 717 else 718 cutoff = tp->max_window; 719 720 if (cutoff && pktsize > cutoff) 721 return max_t(int, cutoff, 68U - tp->tcp_header_len); 722 else 723 return pktsize; 724 } 725 726 /* tcp.c */ 727 void tcp_get_info(struct sock *, struct tcp_info *); 728 729 /* Read 'sendfile()'-style from a TCP socket */ 730 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc, 731 sk_read_actor_t recv_actor); 732 int tcp_read_skb(struct sock *sk, skb_read_actor_t recv_actor); 733 struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off); 734 void tcp_read_done(struct sock *sk, size_t len); 735 736 void tcp_initialize_rcv_mss(struct sock *sk); 737 738 int tcp_mtu_to_mss(struct sock *sk, int pmtu); 739 int tcp_mss_to_mtu(struct sock *sk, int mss); 740 void tcp_mtup_init(struct sock *sk); 741 742 static inline void tcp_bound_rto(struct sock *sk) 743 { 744 if (inet_csk(sk)->icsk_rto > TCP_RTO_MAX) 745 inet_csk(sk)->icsk_rto = TCP_RTO_MAX; 746 } 747 748 static inline u32 __tcp_set_rto(const struct tcp_sock *tp) 749 { 750 return usecs_to_jiffies((tp->srtt_us >> 3) + tp->rttvar_us); 751 } 752 753 static inline void __tcp_fast_path_on(struct tcp_sock *tp, u32 snd_wnd) 754 { 755 /* mptcp hooks are only on the slow path */ 756 if (sk_is_mptcp((struct sock *)tp)) 757 return; 758 759 tp->pred_flags = htonl((tp->tcp_header_len << 26) | 760 ntohl(TCP_FLAG_ACK) | 761 snd_wnd); 762 } 763 764 static inline void tcp_fast_path_on(struct tcp_sock *tp) 765 { 766 __tcp_fast_path_on(tp, tp->snd_wnd >> tp->rx_opt.snd_wscale); 767 } 768 769 static inline void tcp_fast_path_check(struct sock *sk) 770 { 771 struct tcp_sock *tp = tcp_sk(sk); 772 773 if (RB_EMPTY_ROOT(&tp->out_of_order_queue) && 774 tp->rcv_wnd && 775 atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf && 776 !tp->urg_data) 777 tcp_fast_path_on(tp); 778 } 779 780 u32 tcp_delack_max(const struct sock *sk); 781 782 /* Compute the actual rto_min value */ 783 static inline u32 tcp_rto_min(const struct sock *sk) 784 { 785 const struct dst_entry *dst = __sk_dst_get(sk); 786 u32 rto_min = inet_csk(sk)->icsk_rto_min; 787 788 if (dst && dst_metric_locked(dst, RTAX_RTO_MIN)) 789 rto_min = dst_metric_rtt(dst, RTAX_RTO_MIN); 790 return rto_min; 791 } 792 793 static inline u32 tcp_rto_min_us(const struct sock *sk) 794 { 795 return jiffies_to_usecs(tcp_rto_min(sk)); 796 } 797 798 static inline bool tcp_ca_dst_locked(const struct dst_entry *dst) 799 { 800 return dst_metric_locked(dst, RTAX_CC_ALGO); 801 } 802 803 /* Minimum RTT in usec. ~0 means not available. */ 804 static inline u32 tcp_min_rtt(const struct tcp_sock *tp) 805 { 806 return minmax_get(&tp->rtt_min); 807 } 808 809 /* Compute the actual receive window we are currently advertising. 810 * Rcv_nxt can be after the window if our peer push more data 811 * than the offered window. 812 */ 813 static inline u32 tcp_receive_window(const struct tcp_sock *tp) 814 { 815 s32 win = tp->rcv_wup + tp->rcv_wnd - tp->rcv_nxt; 816 817 if (win < 0) 818 win = 0; 819 return (u32) win; 820 } 821 822 /* Choose a new window, without checks for shrinking, and without 823 * scaling applied to the result. The caller does these things 824 * if necessary. This is a "raw" window selection. 825 */ 826 u32 __tcp_select_window(struct sock *sk); 827 828 void tcp_send_window_probe(struct sock *sk); 829 830 /* TCP uses 32bit jiffies to save some space. 831 * Note that this is different from tcp_time_stamp, which 832 * historically has been the same until linux-4.13. 833 */ 834 #define tcp_jiffies32 ((u32)jiffies) 835 836 /* 837 * Deliver a 32bit value for TCP timestamp option (RFC 7323) 838 * It is no longer tied to jiffies, but to 1 ms clock. 839 * Note: double check if you want to use tcp_jiffies32 instead of this. 840 */ 841 #define TCP_TS_HZ 1000 842 843 static inline u64 tcp_clock_ns(void) 844 { 845 return ktime_get_ns(); 846 } 847 848 static inline u64 tcp_clock_us(void) 849 { 850 return div_u64(tcp_clock_ns(), NSEC_PER_USEC); 851 } 852 853 static inline u64 tcp_clock_ms(void) 854 { 855 return div_u64(tcp_clock_ns(), NSEC_PER_MSEC); 856 } 857 858 /* TCP Timestamp included in TS option (RFC 1323) can either use ms 859 * or usec resolution. Each socket carries a flag to select one or other 860 * resolution, as the route attribute could change anytime. 861 * Each flow must stick to initial resolution. 862 */ 863 static inline u32 tcp_clock_ts(bool usec_ts) 864 { 865 return usec_ts ? tcp_clock_us() : tcp_clock_ms(); 866 } 867 868 static inline u32 tcp_time_stamp_ms(const struct tcp_sock *tp) 869 { 870 return div_u64(tp->tcp_mstamp, USEC_PER_MSEC); 871 } 872 873 static inline u32 tcp_time_stamp_ts(const struct tcp_sock *tp) 874 { 875 if (tp->tcp_usec_ts) 876 return tp->tcp_mstamp; 877 return tcp_time_stamp_ms(tp); 878 } 879 880 void tcp_mstamp_refresh(struct tcp_sock *tp); 881 882 static inline u32 tcp_stamp_us_delta(u64 t1, u64 t0) 883 { 884 return max_t(s64, t1 - t0, 0); 885 } 886 887 /* provide the departure time in us unit */ 888 static inline u64 tcp_skb_timestamp_us(const struct sk_buff *skb) 889 { 890 return div_u64(skb->skb_mstamp_ns, NSEC_PER_USEC); 891 } 892 893 /* Provide skb TSval in usec or ms unit */ 894 static inline u32 tcp_skb_timestamp_ts(bool usec_ts, const struct sk_buff *skb) 895 { 896 if (usec_ts) 897 return tcp_skb_timestamp_us(skb); 898 899 return div_u64(skb->skb_mstamp_ns, NSEC_PER_MSEC); 900 } 901 902 static inline u32 tcp_tw_tsval(const struct tcp_timewait_sock *tcptw) 903 { 904 return tcp_clock_ts(tcptw->tw_sk.tw_usec_ts) + tcptw->tw_ts_offset; 905 } 906 907 static inline u32 tcp_rsk_tsval(const struct tcp_request_sock *treq) 908 { 909 return tcp_clock_ts(treq->req_usec_ts) + treq->ts_off; 910 } 911 912 #define tcp_flag_byte(th) (((u_int8_t *)th)[13]) 913 914 #define TCPHDR_FIN 0x01 915 #define TCPHDR_SYN 0x02 916 #define TCPHDR_RST 0x04 917 #define TCPHDR_PSH 0x08 918 #define TCPHDR_ACK 0x10 919 #define TCPHDR_URG 0x20 920 #define TCPHDR_ECE 0x40 921 #define TCPHDR_CWR 0x80 922 923 #define TCPHDR_SYN_ECN (TCPHDR_SYN | TCPHDR_ECE | TCPHDR_CWR) 924 925 /* State flags for sacked in struct tcp_skb_cb */ 926 enum tcp_skb_cb_sacked_flags { 927 TCPCB_SACKED_ACKED = (1 << 0), /* SKB ACK'd by a SACK block */ 928 TCPCB_SACKED_RETRANS = (1 << 1), /* SKB retransmitted */ 929 TCPCB_LOST = (1 << 2), /* SKB is lost */ 930 TCPCB_TAGBITS = (TCPCB_SACKED_ACKED | TCPCB_SACKED_RETRANS | 931 TCPCB_LOST), /* All tag bits */ 932 TCPCB_REPAIRED = (1 << 4), /* SKB repaired (no skb_mstamp_ns) */ 933 TCPCB_EVER_RETRANS = (1 << 7), /* Ever retransmitted frame */ 934 TCPCB_RETRANS = (TCPCB_SACKED_RETRANS | TCPCB_EVER_RETRANS | 935 TCPCB_REPAIRED), 936 }; 937 938 /* This is what the send packet queuing engine uses to pass 939 * TCP per-packet control information to the transmission code. 940 * We also store the host-order sequence numbers in here too. 941 * This is 44 bytes if IPV6 is enabled. 942 * If this grows please adjust skbuff.h:skbuff->cb[xxx] size appropriately. 943 */ 944 struct tcp_skb_cb { 945 __u32 seq; /* Starting sequence number */ 946 __u32 end_seq; /* SEQ + FIN + SYN + datalen */ 947 union { 948 /* Note : 949 * tcp_gso_segs/size are used in write queue only, 950 * cf tcp_skb_pcount()/tcp_skb_mss() 951 */ 952 struct { 953 u16 tcp_gso_segs; 954 u16 tcp_gso_size; 955 }; 956 }; 957 __u8 tcp_flags; /* TCP header flags. (tcp[13]) */ 958 959 __u8 sacked; /* State flags for SACK. */ 960 __u8 ip_dsfield; /* IPv4 tos or IPv6 dsfield */ 961 __u8 txstamp_ack:1, /* Record TX timestamp for ack? */ 962 eor:1, /* Is skb MSG_EOR marked? */ 963 has_rxtstamp:1, /* SKB has a RX timestamp */ 964 unused:5; 965 __u32 ack_seq; /* Sequence number ACK'd */ 966 union { 967 struct { 968 #define TCPCB_DELIVERED_CE_MASK ((1U<<20) - 1) 969 /* There is space for up to 24 bytes */ 970 __u32 is_app_limited:1, /* cwnd not fully used? */ 971 delivered_ce:20, 972 unused:11; 973 /* pkts S/ACKed so far upon tx of skb, incl retrans: */ 974 __u32 delivered; 975 /* start of send pipeline phase */ 976 u64 first_tx_mstamp; 977 /* when we reached the "delivered" count */ 978 u64 delivered_mstamp; 979 } tx; /* only used for outgoing skbs */ 980 union { 981 struct inet_skb_parm h4; 982 #if IS_ENABLED(CONFIG_IPV6) 983 struct inet6_skb_parm h6; 984 #endif 985 } header; /* For incoming skbs */ 986 }; 987 }; 988 989 #define TCP_SKB_CB(__skb) ((struct tcp_skb_cb *)&((__skb)->cb[0])) 990 991 extern const struct inet_connection_sock_af_ops ipv4_specific; 992 993 #if IS_ENABLED(CONFIG_IPV6) 994 /* This is the variant of inet6_iif() that must be used by TCP, 995 * as TCP moves IP6CB into a different location in skb->cb[] 996 */ 997 static inline int tcp_v6_iif(const struct sk_buff *skb) 998 { 999 return TCP_SKB_CB(skb)->header.h6.iif; 1000 } 1001 1002 static inline int tcp_v6_iif_l3_slave(const struct sk_buff *skb) 1003 { 1004 bool l3_slave = ipv6_l3mdev_skb(TCP_SKB_CB(skb)->header.h6.flags); 1005 1006 return l3_slave ? skb->skb_iif : TCP_SKB_CB(skb)->header.h6.iif; 1007 } 1008 1009 /* TCP_SKB_CB reference means this can not be used from early demux */ 1010 static inline int tcp_v6_sdif(const struct sk_buff *skb) 1011 { 1012 #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV) 1013 if (skb && ipv6_l3mdev_skb(TCP_SKB_CB(skb)->header.h6.flags)) 1014 return TCP_SKB_CB(skb)->header.h6.iif; 1015 #endif 1016 return 0; 1017 } 1018 1019 extern const struct inet_connection_sock_af_ops ipv6_specific; 1020 1021 INDIRECT_CALLABLE_DECLARE(void tcp_v6_send_check(struct sock *sk, struct sk_buff *skb)); 1022 INDIRECT_CALLABLE_DECLARE(int tcp_v6_rcv(struct sk_buff *skb)); 1023 void tcp_v6_early_demux(struct sk_buff *skb); 1024 1025 #endif 1026 1027 /* TCP_SKB_CB reference means this can not be used from early demux */ 1028 static inline int tcp_v4_sdif(struct sk_buff *skb) 1029 { 1030 #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV) 1031 if (skb && ipv4_l3mdev_skb(TCP_SKB_CB(skb)->header.h4.flags)) 1032 return TCP_SKB_CB(skb)->header.h4.iif; 1033 #endif 1034 return 0; 1035 } 1036 1037 /* Due to TSO, an SKB can be composed of multiple actual 1038 * packets. To keep these tracked properly, we use this. 1039 */ 1040 static inline int tcp_skb_pcount(const struct sk_buff *skb) 1041 { 1042 return TCP_SKB_CB(skb)->tcp_gso_segs; 1043 } 1044 1045 static inline void tcp_skb_pcount_set(struct sk_buff *skb, int segs) 1046 { 1047 TCP_SKB_CB(skb)->tcp_gso_segs = segs; 1048 } 1049 1050 static inline void tcp_skb_pcount_add(struct sk_buff *skb, int segs) 1051 { 1052 TCP_SKB_CB(skb)->tcp_gso_segs += segs; 1053 } 1054 1055 /* This is valid iff skb is in write queue and tcp_skb_pcount() > 1. */ 1056 static inline int tcp_skb_mss(const struct sk_buff *skb) 1057 { 1058 return TCP_SKB_CB(skb)->tcp_gso_size; 1059 } 1060 1061 static inline bool tcp_skb_can_collapse_to(const struct sk_buff *skb) 1062 { 1063 return likely(!TCP_SKB_CB(skb)->eor); 1064 } 1065 1066 static inline bool tcp_skb_can_collapse(const struct sk_buff *to, 1067 const struct sk_buff *from) 1068 { 1069 /* skb_cmp_decrypted() not needed, use tcp_write_collapse_fence() */ 1070 return likely(tcp_skb_can_collapse_to(to) && 1071 mptcp_skb_can_collapse(to, from) && 1072 skb_pure_zcopy_same(to, from) && 1073 skb_frags_readable(to) == skb_frags_readable(from)); 1074 } 1075 1076 static inline bool tcp_skb_can_collapse_rx(const struct sk_buff *to, 1077 const struct sk_buff *from) 1078 { 1079 return likely(mptcp_skb_can_collapse(to, from) && 1080 !skb_cmp_decrypted(to, from)); 1081 } 1082 1083 /* Events passed to congestion control interface */ 1084 enum tcp_ca_event { 1085 CA_EVENT_TX_START, /* first transmit when no packets in flight */ 1086 CA_EVENT_CWND_RESTART, /* congestion window restart */ 1087 CA_EVENT_COMPLETE_CWR, /* end of congestion recovery */ 1088 CA_EVENT_LOSS, /* loss timeout */ 1089 CA_EVENT_ECN_NO_CE, /* ECT set, but not CE marked */ 1090 CA_EVENT_ECN_IS_CE, /* received CE marked IP packet */ 1091 }; 1092 1093 /* Information about inbound ACK, passed to cong_ops->in_ack_event() */ 1094 enum tcp_ca_ack_event_flags { 1095 CA_ACK_SLOWPATH = (1 << 0), /* In slow path processing */ 1096 CA_ACK_WIN_UPDATE = (1 << 1), /* ACK updated window */ 1097 CA_ACK_ECE = (1 << 2), /* ECE bit is set on ack */ 1098 }; 1099 1100 /* 1101 * Interface for adding new TCP congestion control handlers 1102 */ 1103 #define TCP_CA_NAME_MAX 16 1104 #define TCP_CA_MAX 128 1105 #define TCP_CA_BUF_MAX (TCP_CA_NAME_MAX*TCP_CA_MAX) 1106 1107 #define TCP_CA_UNSPEC 0 1108 1109 /* Algorithm can be set on socket without CAP_NET_ADMIN privileges */ 1110 #define TCP_CONG_NON_RESTRICTED 0x1 1111 /* Requires ECN/ECT set on all packets */ 1112 #define TCP_CONG_NEEDS_ECN 0x2 1113 #define TCP_CONG_MASK (TCP_CONG_NON_RESTRICTED | TCP_CONG_NEEDS_ECN) 1114 1115 union tcp_cc_info; 1116 1117 struct ack_sample { 1118 u32 pkts_acked; 1119 s32 rtt_us; 1120 u32 in_flight; 1121 }; 1122 1123 /* A rate sample measures the number of (original/retransmitted) data 1124 * packets delivered "delivered" over an interval of time "interval_us". 1125 * The tcp_rate.c code fills in the rate sample, and congestion 1126 * control modules that define a cong_control function to run at the end 1127 * of ACK processing can optionally chose to consult this sample when 1128 * setting cwnd and pacing rate. 1129 * A sample is invalid if "delivered" or "interval_us" is negative. 1130 */ 1131 struct rate_sample { 1132 u64 prior_mstamp; /* starting timestamp for interval */ 1133 u32 prior_delivered; /* tp->delivered at "prior_mstamp" */ 1134 u32 prior_delivered_ce;/* tp->delivered_ce at "prior_mstamp" */ 1135 s32 delivered; /* number of packets delivered over interval */ 1136 s32 delivered_ce; /* number of packets delivered w/ CE marks*/ 1137 long interval_us; /* time for tp->delivered to incr "delivered" */ 1138 u32 snd_interval_us; /* snd interval for delivered packets */ 1139 u32 rcv_interval_us; /* rcv interval for delivered packets */ 1140 long rtt_us; /* RTT of last (S)ACKed packet (or -1) */ 1141 int losses; /* number of packets marked lost upon ACK */ 1142 u32 acked_sacked; /* number of packets newly (S)ACKed upon ACK */ 1143 u32 prior_in_flight; /* in flight before this ACK */ 1144 u32 last_end_seq; /* end_seq of most recently ACKed packet */ 1145 bool is_app_limited; /* is sample from packet with bubble in pipe? */ 1146 bool is_retrans; /* is sample from retransmission? */ 1147 bool is_ack_delayed; /* is this (likely) a delayed ACK? */ 1148 }; 1149 1150 struct tcp_congestion_ops { 1151 /* fast path fields are put first to fill one cache line */ 1152 1153 /* return slow start threshold (required) */ 1154 u32 (*ssthresh)(struct sock *sk); 1155 1156 /* do new cwnd calculation (required) */ 1157 void (*cong_avoid)(struct sock *sk, u32 ack, u32 acked); 1158 1159 /* call before changing ca_state (optional) */ 1160 void (*set_state)(struct sock *sk, u8 new_state); 1161 1162 /* call when cwnd event occurs (optional) */ 1163 void (*cwnd_event)(struct sock *sk, enum tcp_ca_event ev); 1164 1165 /* call when ack arrives (optional) */ 1166 void (*in_ack_event)(struct sock *sk, u32 flags); 1167 1168 /* hook for packet ack accounting (optional) */ 1169 void (*pkts_acked)(struct sock *sk, const struct ack_sample *sample); 1170 1171 /* override sysctl_tcp_min_tso_segs */ 1172 u32 (*min_tso_segs)(struct sock *sk); 1173 1174 /* call when packets are delivered to update cwnd and pacing rate, 1175 * after all the ca_state processing. (optional) 1176 */ 1177 void (*cong_control)(struct sock *sk, u32 ack, int flag, const struct rate_sample *rs); 1178 1179 1180 /* new value of cwnd after loss (required) */ 1181 u32 (*undo_cwnd)(struct sock *sk); 1182 /* returns the multiplier used in tcp_sndbuf_expand (optional) */ 1183 u32 (*sndbuf_expand)(struct sock *sk); 1184 1185 /* control/slow paths put last */ 1186 /* get info for inet_diag (optional) */ 1187 size_t (*get_info)(struct sock *sk, u32 ext, int *attr, 1188 union tcp_cc_info *info); 1189 1190 char name[TCP_CA_NAME_MAX]; 1191 struct module *owner; 1192 struct list_head list; 1193 u32 key; 1194 u32 flags; 1195 1196 /* initialize private data (optional) */ 1197 void (*init)(struct sock *sk); 1198 /* cleanup private data (optional) */ 1199 void (*release)(struct sock *sk); 1200 } ____cacheline_aligned_in_smp; 1201 1202 int tcp_register_congestion_control(struct tcp_congestion_ops *type); 1203 void tcp_unregister_congestion_control(struct tcp_congestion_ops *type); 1204 int tcp_update_congestion_control(struct tcp_congestion_ops *type, 1205 struct tcp_congestion_ops *old_type); 1206 int tcp_validate_congestion_control(struct tcp_congestion_ops *ca); 1207 1208 void tcp_assign_congestion_control(struct sock *sk); 1209 void tcp_init_congestion_control(struct sock *sk); 1210 void tcp_cleanup_congestion_control(struct sock *sk); 1211 int tcp_set_default_congestion_control(struct net *net, const char *name); 1212 void tcp_get_default_congestion_control(struct net *net, char *name); 1213 void tcp_get_available_congestion_control(char *buf, size_t len); 1214 void tcp_get_allowed_congestion_control(char *buf, size_t len); 1215 int tcp_set_allowed_congestion_control(char *allowed); 1216 int tcp_set_congestion_control(struct sock *sk, const char *name, bool load, 1217 bool cap_net_admin); 1218 u32 tcp_slow_start(struct tcp_sock *tp, u32 acked); 1219 void tcp_cong_avoid_ai(struct tcp_sock *tp, u32 w, u32 acked); 1220 1221 u32 tcp_reno_ssthresh(struct sock *sk); 1222 u32 tcp_reno_undo_cwnd(struct sock *sk); 1223 void tcp_reno_cong_avoid(struct sock *sk, u32 ack, u32 acked); 1224 extern struct tcp_congestion_ops tcp_reno; 1225 1226 struct tcp_congestion_ops *tcp_ca_find(const char *name); 1227 struct tcp_congestion_ops *tcp_ca_find_key(u32 key); 1228 u32 tcp_ca_get_key_by_name(const char *name, bool *ecn_ca); 1229 #ifdef CONFIG_INET 1230 char *tcp_ca_get_name_by_key(u32 key, char *buffer); 1231 #else 1232 static inline char *tcp_ca_get_name_by_key(u32 key, char *buffer) 1233 { 1234 return NULL; 1235 } 1236 #endif 1237 1238 static inline bool tcp_ca_needs_ecn(const struct sock *sk) 1239 { 1240 const struct inet_connection_sock *icsk = inet_csk(sk); 1241 1242 return icsk->icsk_ca_ops->flags & TCP_CONG_NEEDS_ECN; 1243 } 1244 1245 static inline void tcp_ca_event(struct sock *sk, const enum tcp_ca_event event) 1246 { 1247 const struct inet_connection_sock *icsk = inet_csk(sk); 1248 1249 if (icsk->icsk_ca_ops->cwnd_event) 1250 icsk->icsk_ca_ops->cwnd_event(sk, event); 1251 } 1252 1253 /* From tcp_cong.c */ 1254 void tcp_set_ca_state(struct sock *sk, const u8 ca_state); 1255 1256 /* From tcp_rate.c */ 1257 void tcp_rate_skb_sent(struct sock *sk, struct sk_buff *skb); 1258 void tcp_rate_skb_delivered(struct sock *sk, struct sk_buff *skb, 1259 struct rate_sample *rs); 1260 void tcp_rate_gen(struct sock *sk, u32 delivered, u32 lost, 1261 bool is_sack_reneg, struct rate_sample *rs); 1262 void tcp_rate_check_app_limited(struct sock *sk); 1263 1264 static inline bool tcp_skb_sent_after(u64 t1, u64 t2, u32 seq1, u32 seq2) 1265 { 1266 return t1 > t2 || (t1 == t2 && after(seq1, seq2)); 1267 } 1268 1269 /* These functions determine how the current flow behaves in respect of SACK 1270 * handling. SACK is negotiated with the peer, and therefore it can vary 1271 * between different flows. 1272 * 1273 * tcp_is_sack - SACK enabled 1274 * tcp_is_reno - No SACK 1275 */ 1276 static inline int tcp_is_sack(const struct tcp_sock *tp) 1277 { 1278 return likely(tp->rx_opt.sack_ok); 1279 } 1280 1281 static inline bool tcp_is_reno(const struct tcp_sock *tp) 1282 { 1283 return !tcp_is_sack(tp); 1284 } 1285 1286 static inline unsigned int tcp_left_out(const struct tcp_sock *tp) 1287 { 1288 return tp->sacked_out + tp->lost_out; 1289 } 1290 1291 /* This determines how many packets are "in the network" to the best 1292 * of our knowledge. In many cases it is conservative, but where 1293 * detailed information is available from the receiver (via SACK 1294 * blocks etc.) we can make more aggressive calculations. 1295 * 1296 * Use this for decisions involving congestion control, use just 1297 * tp->packets_out to determine if the send queue is empty or not. 1298 * 1299 * Read this equation as: 1300 * 1301 * "Packets sent once on transmission queue" MINUS 1302 * "Packets left network, but not honestly ACKed yet" PLUS 1303 * "Packets fast retransmitted" 1304 */ 1305 static inline unsigned int tcp_packets_in_flight(const struct tcp_sock *tp) 1306 { 1307 return tp->packets_out - tcp_left_out(tp) + tp->retrans_out; 1308 } 1309 1310 #define TCP_INFINITE_SSTHRESH 0x7fffffff 1311 1312 static inline u32 tcp_snd_cwnd(const struct tcp_sock *tp) 1313 { 1314 return tp->snd_cwnd; 1315 } 1316 1317 static inline void tcp_snd_cwnd_set(struct tcp_sock *tp, u32 val) 1318 { 1319 WARN_ON_ONCE((int)val <= 0); 1320 tp->snd_cwnd = val; 1321 } 1322 1323 static inline bool tcp_in_slow_start(const struct tcp_sock *tp) 1324 { 1325 return tcp_snd_cwnd(tp) < tp->snd_ssthresh; 1326 } 1327 1328 static inline bool tcp_in_initial_slowstart(const struct tcp_sock *tp) 1329 { 1330 return tp->snd_ssthresh >= TCP_INFINITE_SSTHRESH; 1331 } 1332 1333 static inline bool tcp_in_cwnd_reduction(const struct sock *sk) 1334 { 1335 return (TCPF_CA_CWR | TCPF_CA_Recovery) & 1336 (1 << inet_csk(sk)->icsk_ca_state); 1337 } 1338 1339 /* If cwnd > ssthresh, we may raise ssthresh to be half-way to cwnd. 1340 * The exception is cwnd reduction phase, when cwnd is decreasing towards 1341 * ssthresh. 1342 */ 1343 static inline __u32 tcp_current_ssthresh(const struct sock *sk) 1344 { 1345 const struct tcp_sock *tp = tcp_sk(sk); 1346 1347 if (tcp_in_cwnd_reduction(sk)) 1348 return tp->snd_ssthresh; 1349 else 1350 return max(tp->snd_ssthresh, 1351 ((tcp_snd_cwnd(tp) >> 1) + 1352 (tcp_snd_cwnd(tp) >> 2))); 1353 } 1354 1355 /* Use define here intentionally to get WARN_ON location shown at the caller */ 1356 #define tcp_verify_left_out(tp) WARN_ON(tcp_left_out(tp) > tp->packets_out) 1357 1358 void tcp_enter_cwr(struct sock *sk); 1359 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst); 1360 1361 /* The maximum number of MSS of available cwnd for which TSO defers 1362 * sending if not using sysctl_tcp_tso_win_divisor. 1363 */ 1364 static inline __u32 tcp_max_tso_deferred_mss(const struct tcp_sock *tp) 1365 { 1366 return 3; 1367 } 1368 1369 /* Returns end sequence number of the receiver's advertised window */ 1370 static inline u32 tcp_wnd_end(const struct tcp_sock *tp) 1371 { 1372 return tp->snd_una + tp->snd_wnd; 1373 } 1374 1375 /* We follow the spirit of RFC2861 to validate cwnd but implement a more 1376 * flexible approach. The RFC suggests cwnd should not be raised unless 1377 * it was fully used previously. And that's exactly what we do in 1378 * congestion avoidance mode. But in slow start we allow cwnd to grow 1379 * as long as the application has used half the cwnd. 1380 * Example : 1381 * cwnd is 10 (IW10), but application sends 9 frames. 1382 * We allow cwnd to reach 18 when all frames are ACKed. 1383 * This check is safe because it's as aggressive as slow start which already 1384 * risks 100% overshoot. The advantage is that we discourage application to 1385 * either send more filler packets or data to artificially blow up the cwnd 1386 * usage, and allow application-limited process to probe bw more aggressively. 1387 */ 1388 static inline bool tcp_is_cwnd_limited(const struct sock *sk) 1389 { 1390 const struct tcp_sock *tp = tcp_sk(sk); 1391 1392 if (tp->is_cwnd_limited) 1393 return true; 1394 1395 /* If in slow start, ensure cwnd grows to twice what was ACKed. */ 1396 if (tcp_in_slow_start(tp)) 1397 return tcp_snd_cwnd(tp) < 2 * tp->max_packets_out; 1398 1399 return false; 1400 } 1401 1402 /* BBR congestion control needs pacing. 1403 * Same remark for SO_MAX_PACING_RATE. 1404 * sch_fq packet scheduler is efficiently handling pacing, 1405 * but is not always installed/used. 1406 * Return true if TCP stack should pace packets itself. 1407 */ 1408 static inline bool tcp_needs_internal_pacing(const struct sock *sk) 1409 { 1410 return smp_load_acquire(&sk->sk_pacing_status) == SK_PACING_NEEDED; 1411 } 1412 1413 /* Estimates in how many jiffies next packet for this flow can be sent. 1414 * Scheduling a retransmit timer too early would be silly. 1415 */ 1416 static inline unsigned long tcp_pacing_delay(const struct sock *sk) 1417 { 1418 s64 delay = tcp_sk(sk)->tcp_wstamp_ns - tcp_sk(sk)->tcp_clock_cache; 1419 1420 return delay > 0 ? nsecs_to_jiffies(delay) : 0; 1421 } 1422 1423 static inline void tcp_reset_xmit_timer(struct sock *sk, 1424 const int what, 1425 unsigned long when, 1426 const unsigned long max_when) 1427 { 1428 inet_csk_reset_xmit_timer(sk, what, when + tcp_pacing_delay(sk), 1429 max_when); 1430 } 1431 1432 /* Something is really bad, we could not queue an additional packet, 1433 * because qdisc is full or receiver sent a 0 window, or we are paced. 1434 * We do not want to add fuel to the fire, or abort too early, 1435 * so make sure the timer we arm now is at least 200ms in the future, 1436 * regardless of current icsk_rto value (as it could be ~2ms) 1437 */ 1438 static inline unsigned long tcp_probe0_base(const struct sock *sk) 1439 { 1440 return max_t(unsigned long, inet_csk(sk)->icsk_rto, TCP_RTO_MIN); 1441 } 1442 1443 /* Variant of inet_csk_rto_backoff() used for zero window probes */ 1444 static inline unsigned long tcp_probe0_when(const struct sock *sk, 1445 unsigned long max_when) 1446 { 1447 u8 backoff = min_t(u8, ilog2(TCP_RTO_MAX / TCP_RTO_MIN) + 1, 1448 inet_csk(sk)->icsk_backoff); 1449 u64 when = (u64)tcp_probe0_base(sk) << backoff; 1450 1451 return (unsigned long)min_t(u64, when, max_when); 1452 } 1453 1454 static inline void tcp_check_probe_timer(struct sock *sk) 1455 { 1456 if (!tcp_sk(sk)->packets_out && !inet_csk(sk)->icsk_pending) 1457 tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0, 1458 tcp_probe0_base(sk), TCP_RTO_MAX); 1459 } 1460 1461 static inline void tcp_init_wl(struct tcp_sock *tp, u32 seq) 1462 { 1463 tp->snd_wl1 = seq; 1464 } 1465 1466 static inline void tcp_update_wl(struct tcp_sock *tp, u32 seq) 1467 { 1468 tp->snd_wl1 = seq; 1469 } 1470 1471 /* 1472 * Calculate(/check) TCP checksum 1473 */ 1474 static inline __sum16 tcp_v4_check(int len, __be32 saddr, 1475 __be32 daddr, __wsum base) 1476 { 1477 return csum_tcpudp_magic(saddr, daddr, len, IPPROTO_TCP, base); 1478 } 1479 1480 static inline bool tcp_checksum_complete(struct sk_buff *skb) 1481 { 1482 return !skb_csum_unnecessary(skb) && 1483 __skb_checksum_complete(skb); 1484 } 1485 1486 bool tcp_add_backlog(struct sock *sk, struct sk_buff *skb, 1487 enum skb_drop_reason *reason); 1488 1489 1490 int tcp_filter(struct sock *sk, struct sk_buff *skb); 1491 void tcp_set_state(struct sock *sk, int state); 1492 void tcp_done(struct sock *sk); 1493 int tcp_abort(struct sock *sk, int err); 1494 1495 static inline void tcp_sack_reset(struct tcp_options_received *rx_opt) 1496 { 1497 rx_opt->dsack = 0; 1498 rx_opt->num_sacks = 0; 1499 } 1500 1501 void tcp_cwnd_restart(struct sock *sk, s32 delta); 1502 1503 static inline void tcp_slow_start_after_idle_check(struct sock *sk) 1504 { 1505 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops; 1506 struct tcp_sock *tp = tcp_sk(sk); 1507 s32 delta; 1508 1509 if (!READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_slow_start_after_idle) || 1510 tp->packets_out || ca_ops->cong_control) 1511 return; 1512 delta = tcp_jiffies32 - tp->lsndtime; 1513 if (delta > inet_csk(sk)->icsk_rto) 1514 tcp_cwnd_restart(sk, delta); 1515 } 1516 1517 /* Determine a window scaling and initial window to offer. */ 1518 void tcp_select_initial_window(const struct sock *sk, int __space, 1519 __u32 mss, __u32 *rcv_wnd, 1520 __u32 *window_clamp, int wscale_ok, 1521 __u8 *rcv_wscale, __u32 init_rcv_wnd); 1522 1523 static inline int __tcp_win_from_space(u8 scaling_ratio, int space) 1524 { 1525 s64 scaled_space = (s64)space * scaling_ratio; 1526 1527 return scaled_space >> TCP_RMEM_TO_WIN_SCALE; 1528 } 1529 1530 static inline int tcp_win_from_space(const struct sock *sk, int space) 1531 { 1532 return __tcp_win_from_space(tcp_sk(sk)->scaling_ratio, space); 1533 } 1534 1535 /* inverse of __tcp_win_from_space() */ 1536 static inline int __tcp_space_from_win(u8 scaling_ratio, int win) 1537 { 1538 u64 val = (u64)win << TCP_RMEM_TO_WIN_SCALE; 1539 1540 do_div(val, scaling_ratio); 1541 return val; 1542 } 1543 1544 static inline int tcp_space_from_win(const struct sock *sk, int win) 1545 { 1546 return __tcp_space_from_win(tcp_sk(sk)->scaling_ratio, win); 1547 } 1548 1549 /* Assume a 50% default for skb->len/skb->truesize ratio. 1550 * This may be adjusted later in tcp_measure_rcv_mss(). 1551 */ 1552 #define TCP_DEFAULT_SCALING_RATIO (1 << (TCP_RMEM_TO_WIN_SCALE - 1)) 1553 1554 static inline void tcp_scaling_ratio_init(struct sock *sk) 1555 { 1556 tcp_sk(sk)->scaling_ratio = TCP_DEFAULT_SCALING_RATIO; 1557 } 1558 1559 /* Note: caller must be prepared to deal with negative returns */ 1560 static inline int tcp_space(const struct sock *sk) 1561 { 1562 return tcp_win_from_space(sk, READ_ONCE(sk->sk_rcvbuf) - 1563 READ_ONCE(sk->sk_backlog.len) - 1564 atomic_read(&sk->sk_rmem_alloc)); 1565 } 1566 1567 static inline int tcp_full_space(const struct sock *sk) 1568 { 1569 return tcp_win_from_space(sk, READ_ONCE(sk->sk_rcvbuf)); 1570 } 1571 1572 static inline void __tcp_adjust_rcv_ssthresh(struct sock *sk, u32 new_ssthresh) 1573 { 1574 int unused_mem = sk_unused_reserved_mem(sk); 1575 struct tcp_sock *tp = tcp_sk(sk); 1576 1577 tp->rcv_ssthresh = min(tp->rcv_ssthresh, new_ssthresh); 1578 if (unused_mem) 1579 tp->rcv_ssthresh = max_t(u32, tp->rcv_ssthresh, 1580 tcp_win_from_space(sk, unused_mem)); 1581 } 1582 1583 static inline void tcp_adjust_rcv_ssthresh(struct sock *sk) 1584 { 1585 __tcp_adjust_rcv_ssthresh(sk, 4U * tcp_sk(sk)->advmss); 1586 } 1587 1588 void tcp_cleanup_rbuf(struct sock *sk, int copied); 1589 void __tcp_cleanup_rbuf(struct sock *sk, int copied); 1590 1591 1592 /* We provision sk_rcvbuf around 200% of sk_rcvlowat. 1593 * If 87.5 % (7/8) of the space has been consumed, we want to override 1594 * SO_RCVLOWAT constraint, since we are receiving skbs with too small 1595 * len/truesize ratio. 1596 */ 1597 static inline bool tcp_rmem_pressure(const struct sock *sk) 1598 { 1599 int rcvbuf, threshold; 1600 1601 if (tcp_under_memory_pressure(sk)) 1602 return true; 1603 1604 rcvbuf = READ_ONCE(sk->sk_rcvbuf); 1605 threshold = rcvbuf - (rcvbuf >> 3); 1606 1607 return atomic_read(&sk->sk_rmem_alloc) > threshold; 1608 } 1609 1610 static inline bool tcp_epollin_ready(const struct sock *sk, int target) 1611 { 1612 const struct tcp_sock *tp = tcp_sk(sk); 1613 int avail = READ_ONCE(tp->rcv_nxt) - READ_ONCE(tp->copied_seq); 1614 1615 if (avail <= 0) 1616 return false; 1617 1618 return (avail >= target) || tcp_rmem_pressure(sk) || 1619 (tcp_receive_window(tp) <= inet_csk(sk)->icsk_ack.rcv_mss); 1620 } 1621 1622 extern void tcp_openreq_init_rwin(struct request_sock *req, 1623 const struct sock *sk_listener, 1624 const struct dst_entry *dst); 1625 1626 void tcp_enter_memory_pressure(struct sock *sk); 1627 void tcp_leave_memory_pressure(struct sock *sk); 1628 1629 static inline int keepalive_intvl_when(const struct tcp_sock *tp) 1630 { 1631 struct net *net = sock_net((struct sock *)tp); 1632 int val; 1633 1634 /* Paired with WRITE_ONCE() in tcp_sock_set_keepintvl() 1635 * and do_tcp_setsockopt(). 1636 */ 1637 val = READ_ONCE(tp->keepalive_intvl); 1638 1639 return val ? : READ_ONCE(net->ipv4.sysctl_tcp_keepalive_intvl); 1640 } 1641 1642 static inline int keepalive_time_when(const struct tcp_sock *tp) 1643 { 1644 struct net *net = sock_net((struct sock *)tp); 1645 int val; 1646 1647 /* Paired with WRITE_ONCE() in tcp_sock_set_keepidle_locked() */ 1648 val = READ_ONCE(tp->keepalive_time); 1649 1650 return val ? : READ_ONCE(net->ipv4.sysctl_tcp_keepalive_time); 1651 } 1652 1653 static inline int keepalive_probes(const struct tcp_sock *tp) 1654 { 1655 struct net *net = sock_net((struct sock *)tp); 1656 int val; 1657 1658 /* Paired with WRITE_ONCE() in tcp_sock_set_keepcnt() 1659 * and do_tcp_setsockopt(). 1660 */ 1661 val = READ_ONCE(tp->keepalive_probes); 1662 1663 return val ? : READ_ONCE(net->ipv4.sysctl_tcp_keepalive_probes); 1664 } 1665 1666 static inline u32 keepalive_time_elapsed(const struct tcp_sock *tp) 1667 { 1668 const struct inet_connection_sock *icsk = &tp->inet_conn; 1669 1670 return min_t(u32, tcp_jiffies32 - icsk->icsk_ack.lrcvtime, 1671 tcp_jiffies32 - tp->rcv_tstamp); 1672 } 1673 1674 static inline int tcp_fin_time(const struct sock *sk) 1675 { 1676 int fin_timeout = tcp_sk(sk)->linger2 ? : 1677 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_fin_timeout); 1678 const int rto = inet_csk(sk)->icsk_rto; 1679 1680 if (fin_timeout < (rto << 2) - (rto >> 1)) 1681 fin_timeout = (rto << 2) - (rto >> 1); 1682 1683 return fin_timeout; 1684 } 1685 1686 static inline bool tcp_paws_check(const struct tcp_options_received *rx_opt, 1687 int paws_win) 1688 { 1689 if ((s32)(rx_opt->ts_recent - rx_opt->rcv_tsval) <= paws_win) 1690 return true; 1691 if (unlikely(!time_before32(ktime_get_seconds(), 1692 rx_opt->ts_recent_stamp + TCP_PAWS_WRAP))) 1693 return true; 1694 /* 1695 * Some OSes send SYN and SYNACK messages with tsval=0 tsecr=0, 1696 * then following tcp messages have valid values. Ignore 0 value, 1697 * or else 'negative' tsval might forbid us to accept their packets. 1698 */ 1699 if (!rx_opt->ts_recent) 1700 return true; 1701 return false; 1702 } 1703 1704 static inline bool tcp_paws_reject(const struct tcp_options_received *rx_opt, 1705 int rst) 1706 { 1707 if (tcp_paws_check(rx_opt, 0)) 1708 return false; 1709 1710 /* RST segments are not recommended to carry timestamp, 1711 and, if they do, it is recommended to ignore PAWS because 1712 "their cleanup function should take precedence over timestamps." 1713 Certainly, it is mistake. It is necessary to understand the reasons 1714 of this constraint to relax it: if peer reboots, clock may go 1715 out-of-sync and half-open connections will not be reset. 1716 Actually, the problem would be not existing if all 1717 the implementations followed draft about maintaining clock 1718 via reboots. Linux-2.2 DOES NOT! 1719 1720 However, we can relax time bounds for RST segments to MSL. 1721 */ 1722 if (rst && !time_before32(ktime_get_seconds(), 1723 rx_opt->ts_recent_stamp + TCP_PAWS_MSL)) 1724 return false; 1725 return true; 1726 } 1727 1728 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb, 1729 int mib_idx, u32 *last_oow_ack_time); 1730 1731 static inline void tcp_mib_init(struct net *net) 1732 { 1733 /* See RFC 2012 */ 1734 TCP_ADD_STATS(net, TCP_MIB_RTOALGORITHM, 1); 1735 TCP_ADD_STATS(net, TCP_MIB_RTOMIN, TCP_RTO_MIN*1000/HZ); 1736 TCP_ADD_STATS(net, TCP_MIB_RTOMAX, TCP_RTO_MAX*1000/HZ); 1737 TCP_ADD_STATS(net, TCP_MIB_MAXCONN, -1); 1738 } 1739 1740 /* from STCP */ 1741 static inline void tcp_clear_retrans_hints_partial(struct tcp_sock *tp) 1742 { 1743 tp->lost_skb_hint = NULL; 1744 } 1745 1746 static inline void tcp_clear_all_retrans_hints(struct tcp_sock *tp) 1747 { 1748 tcp_clear_retrans_hints_partial(tp); 1749 tp->retransmit_skb_hint = NULL; 1750 } 1751 1752 #define tcp_md5_addr tcp_ao_addr 1753 1754 /* - key database */ 1755 struct tcp_md5sig_key { 1756 struct hlist_node node; 1757 u8 keylen; 1758 u8 family; /* AF_INET or AF_INET6 */ 1759 u8 prefixlen; 1760 u8 flags; 1761 union tcp_md5_addr addr; 1762 int l3index; /* set if key added with L3 scope */ 1763 u8 key[TCP_MD5SIG_MAXKEYLEN]; 1764 struct rcu_head rcu; 1765 }; 1766 1767 /* - sock block */ 1768 struct tcp_md5sig_info { 1769 struct hlist_head head; 1770 struct rcu_head rcu; 1771 }; 1772 1773 /* - pseudo header */ 1774 struct tcp4_pseudohdr { 1775 __be32 saddr; 1776 __be32 daddr; 1777 __u8 pad; 1778 __u8 protocol; 1779 __be16 len; 1780 }; 1781 1782 struct tcp6_pseudohdr { 1783 struct in6_addr saddr; 1784 struct in6_addr daddr; 1785 __be32 len; 1786 __be32 protocol; /* including padding */ 1787 }; 1788 1789 union tcp_md5sum_block { 1790 struct tcp4_pseudohdr ip4; 1791 #if IS_ENABLED(CONFIG_IPV6) 1792 struct tcp6_pseudohdr ip6; 1793 #endif 1794 }; 1795 1796 /* 1797 * struct tcp_sigpool - per-CPU pool of ahash_requests 1798 * @scratch: per-CPU temporary area, that can be used between 1799 * tcp_sigpool_start() and tcp_sigpool_end() to perform 1800 * crypto request 1801 * @req: pre-allocated ahash request 1802 */ 1803 struct tcp_sigpool { 1804 void *scratch; 1805 struct ahash_request *req; 1806 }; 1807 1808 int tcp_sigpool_alloc_ahash(const char *alg, size_t scratch_size); 1809 void tcp_sigpool_get(unsigned int id); 1810 void tcp_sigpool_release(unsigned int id); 1811 int tcp_sigpool_hash_skb_data(struct tcp_sigpool *hp, 1812 const struct sk_buff *skb, 1813 unsigned int header_len); 1814 1815 /** 1816 * tcp_sigpool_start - disable bh and start using tcp_sigpool_ahash 1817 * @id: tcp_sigpool that was previously allocated by tcp_sigpool_alloc_ahash() 1818 * @c: returned tcp_sigpool for usage (uninitialized on failure) 1819 * 1820 * Returns 0 on success, error otherwise. 1821 */ 1822 int tcp_sigpool_start(unsigned int id, struct tcp_sigpool *c); 1823 /** 1824 * tcp_sigpool_end - enable bh and stop using tcp_sigpool 1825 * @c: tcp_sigpool context that was returned by tcp_sigpool_start() 1826 */ 1827 void tcp_sigpool_end(struct tcp_sigpool *c); 1828 size_t tcp_sigpool_algo(unsigned int id, char *buf, size_t buf_len); 1829 /* - functions */ 1830 int tcp_v4_md5_hash_skb(char *md5_hash, const struct tcp_md5sig_key *key, 1831 const struct sock *sk, const struct sk_buff *skb); 1832 int tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr, 1833 int family, u8 prefixlen, int l3index, u8 flags, 1834 const u8 *newkey, u8 newkeylen); 1835 int tcp_md5_key_copy(struct sock *sk, const union tcp_md5_addr *addr, 1836 int family, u8 prefixlen, int l3index, 1837 struct tcp_md5sig_key *key); 1838 1839 int tcp_md5_do_del(struct sock *sk, const union tcp_md5_addr *addr, 1840 int family, u8 prefixlen, int l3index, u8 flags); 1841 void tcp_clear_md5_list(struct sock *sk); 1842 struct tcp_md5sig_key *tcp_v4_md5_lookup(const struct sock *sk, 1843 const struct sock *addr_sk); 1844 1845 #ifdef CONFIG_TCP_MD5SIG 1846 struct tcp_md5sig_key *__tcp_md5_do_lookup(const struct sock *sk, int l3index, 1847 const union tcp_md5_addr *addr, 1848 int family, bool any_l3index); 1849 static inline struct tcp_md5sig_key * 1850 tcp_md5_do_lookup(const struct sock *sk, int l3index, 1851 const union tcp_md5_addr *addr, int family) 1852 { 1853 if (!static_branch_unlikely(&tcp_md5_needed.key)) 1854 return NULL; 1855 return __tcp_md5_do_lookup(sk, l3index, addr, family, false); 1856 } 1857 1858 static inline struct tcp_md5sig_key * 1859 tcp_md5_do_lookup_any_l3index(const struct sock *sk, 1860 const union tcp_md5_addr *addr, int family) 1861 { 1862 if (!static_branch_unlikely(&tcp_md5_needed.key)) 1863 return NULL; 1864 return __tcp_md5_do_lookup(sk, 0, addr, family, true); 1865 } 1866 1867 #define tcp_twsk_md5_key(twsk) ((twsk)->tw_md5_key) 1868 #else 1869 static inline struct tcp_md5sig_key * 1870 tcp_md5_do_lookup(const struct sock *sk, int l3index, 1871 const union tcp_md5_addr *addr, int family) 1872 { 1873 return NULL; 1874 } 1875 1876 static inline struct tcp_md5sig_key * 1877 tcp_md5_do_lookup_any_l3index(const struct sock *sk, 1878 const union tcp_md5_addr *addr, int family) 1879 { 1880 return NULL; 1881 } 1882 1883 #define tcp_twsk_md5_key(twsk) NULL 1884 #endif 1885 1886 int tcp_md5_alloc_sigpool(void); 1887 void tcp_md5_release_sigpool(void); 1888 void tcp_md5_add_sigpool(void); 1889 extern int tcp_md5_sigpool_id; 1890 1891 int tcp_md5_hash_key(struct tcp_sigpool *hp, 1892 const struct tcp_md5sig_key *key); 1893 1894 /* From tcp_fastopen.c */ 1895 void tcp_fastopen_cache_get(struct sock *sk, u16 *mss, 1896 struct tcp_fastopen_cookie *cookie); 1897 void tcp_fastopen_cache_set(struct sock *sk, u16 mss, 1898 struct tcp_fastopen_cookie *cookie, bool syn_lost, 1899 u16 try_exp); 1900 struct tcp_fastopen_request { 1901 /* Fast Open cookie. Size 0 means a cookie request */ 1902 struct tcp_fastopen_cookie cookie; 1903 struct msghdr *data; /* data in MSG_FASTOPEN */ 1904 size_t size; 1905 int copied; /* queued in tcp_connect() */ 1906 struct ubuf_info *uarg; 1907 }; 1908 void tcp_free_fastopen_req(struct tcp_sock *tp); 1909 void tcp_fastopen_destroy_cipher(struct sock *sk); 1910 void tcp_fastopen_ctx_destroy(struct net *net); 1911 int tcp_fastopen_reset_cipher(struct net *net, struct sock *sk, 1912 void *primary_key, void *backup_key); 1913 int tcp_fastopen_get_cipher(struct net *net, struct inet_connection_sock *icsk, 1914 u64 *key); 1915 void tcp_fastopen_add_skb(struct sock *sk, struct sk_buff *skb); 1916 struct sock *tcp_try_fastopen(struct sock *sk, struct sk_buff *skb, 1917 struct request_sock *req, 1918 struct tcp_fastopen_cookie *foc, 1919 const struct dst_entry *dst); 1920 void tcp_fastopen_init_key_once(struct net *net); 1921 bool tcp_fastopen_cookie_check(struct sock *sk, u16 *mss, 1922 struct tcp_fastopen_cookie *cookie); 1923 bool tcp_fastopen_defer_connect(struct sock *sk, int *err); 1924 #define TCP_FASTOPEN_KEY_LENGTH sizeof(siphash_key_t) 1925 #define TCP_FASTOPEN_KEY_MAX 2 1926 #define TCP_FASTOPEN_KEY_BUF_LENGTH \ 1927 (TCP_FASTOPEN_KEY_LENGTH * TCP_FASTOPEN_KEY_MAX) 1928 1929 /* Fastopen key context */ 1930 struct tcp_fastopen_context { 1931 siphash_key_t key[TCP_FASTOPEN_KEY_MAX]; 1932 int num; 1933 struct rcu_head rcu; 1934 }; 1935 1936 void tcp_fastopen_active_disable(struct sock *sk); 1937 bool tcp_fastopen_active_should_disable(struct sock *sk); 1938 void tcp_fastopen_active_disable_ofo_check(struct sock *sk); 1939 void tcp_fastopen_active_detect_blackhole(struct sock *sk, bool expired); 1940 1941 /* Caller needs to wrap with rcu_read_(un)lock() */ 1942 static inline 1943 struct tcp_fastopen_context *tcp_fastopen_get_ctx(const struct sock *sk) 1944 { 1945 struct tcp_fastopen_context *ctx; 1946 1947 ctx = rcu_dereference(inet_csk(sk)->icsk_accept_queue.fastopenq.ctx); 1948 if (!ctx) 1949 ctx = rcu_dereference(sock_net(sk)->ipv4.tcp_fastopen_ctx); 1950 return ctx; 1951 } 1952 1953 static inline 1954 bool tcp_fastopen_cookie_match(const struct tcp_fastopen_cookie *foc, 1955 const struct tcp_fastopen_cookie *orig) 1956 { 1957 if (orig->len == TCP_FASTOPEN_COOKIE_SIZE && 1958 orig->len == foc->len && 1959 !memcmp(orig->val, foc->val, foc->len)) 1960 return true; 1961 return false; 1962 } 1963 1964 static inline 1965 int tcp_fastopen_context_len(const struct tcp_fastopen_context *ctx) 1966 { 1967 return ctx->num; 1968 } 1969 1970 /* Latencies incurred by various limits for a sender. They are 1971 * chronograph-like stats that are mutually exclusive. 1972 */ 1973 enum tcp_chrono { 1974 TCP_CHRONO_UNSPEC, 1975 TCP_CHRONO_BUSY, /* Actively sending data (non-empty write queue) */ 1976 TCP_CHRONO_RWND_LIMITED, /* Stalled by insufficient receive window */ 1977 TCP_CHRONO_SNDBUF_LIMITED, /* Stalled by insufficient send buffer */ 1978 __TCP_CHRONO_MAX, 1979 }; 1980 1981 void tcp_chrono_start(struct sock *sk, const enum tcp_chrono type); 1982 void tcp_chrono_stop(struct sock *sk, const enum tcp_chrono type); 1983 1984 /* This helper is needed, because skb->tcp_tsorted_anchor uses 1985 * the same memory storage than skb->destructor/_skb_refdst 1986 */ 1987 static inline void tcp_skb_tsorted_anchor_cleanup(struct sk_buff *skb) 1988 { 1989 skb->destructor = NULL; 1990 skb->_skb_refdst = 0UL; 1991 } 1992 1993 #define tcp_skb_tsorted_save(skb) { \ 1994 unsigned long _save = skb->_skb_refdst; \ 1995 skb->_skb_refdst = 0UL; 1996 1997 #define tcp_skb_tsorted_restore(skb) \ 1998 skb->_skb_refdst = _save; \ 1999 } 2000 2001 void tcp_write_queue_purge(struct sock *sk); 2002 2003 static inline struct sk_buff *tcp_rtx_queue_head(const struct sock *sk) 2004 { 2005 return skb_rb_first(&sk->tcp_rtx_queue); 2006 } 2007 2008 static inline struct sk_buff *tcp_rtx_queue_tail(const struct sock *sk) 2009 { 2010 return skb_rb_last(&sk->tcp_rtx_queue); 2011 } 2012 2013 static inline struct sk_buff *tcp_write_queue_tail(const struct sock *sk) 2014 { 2015 return skb_peek_tail(&sk->sk_write_queue); 2016 } 2017 2018 #define tcp_for_write_queue_from_safe(skb, tmp, sk) \ 2019 skb_queue_walk_from_safe(&(sk)->sk_write_queue, skb, tmp) 2020 2021 static inline struct sk_buff *tcp_send_head(const struct sock *sk) 2022 { 2023 return skb_peek(&sk->sk_write_queue); 2024 } 2025 2026 static inline bool tcp_skb_is_last(const struct sock *sk, 2027 const struct sk_buff *skb) 2028 { 2029 return skb_queue_is_last(&sk->sk_write_queue, skb); 2030 } 2031 2032 /** 2033 * tcp_write_queue_empty - test if any payload (or FIN) is available in write queue 2034 * @sk: socket 2035 * 2036 * Since the write queue can have a temporary empty skb in it, 2037 * we must not use "return skb_queue_empty(&sk->sk_write_queue)" 2038 */ 2039 static inline bool tcp_write_queue_empty(const struct sock *sk) 2040 { 2041 const struct tcp_sock *tp = tcp_sk(sk); 2042 2043 return tp->write_seq == tp->snd_nxt; 2044 } 2045 2046 static inline bool tcp_rtx_queue_empty(const struct sock *sk) 2047 { 2048 return RB_EMPTY_ROOT(&sk->tcp_rtx_queue); 2049 } 2050 2051 static inline bool tcp_rtx_and_write_queues_empty(const struct sock *sk) 2052 { 2053 return tcp_rtx_queue_empty(sk) && tcp_write_queue_empty(sk); 2054 } 2055 2056 static inline void tcp_add_write_queue_tail(struct sock *sk, struct sk_buff *skb) 2057 { 2058 __skb_queue_tail(&sk->sk_write_queue, skb); 2059 2060 /* Queue it, remembering where we must start sending. */ 2061 if (sk->sk_write_queue.next == skb) 2062 tcp_chrono_start(sk, TCP_CHRONO_BUSY); 2063 } 2064 2065 /* Insert new before skb on the write queue of sk. */ 2066 static inline void tcp_insert_write_queue_before(struct sk_buff *new, 2067 struct sk_buff *skb, 2068 struct sock *sk) 2069 { 2070 __skb_queue_before(&sk->sk_write_queue, skb, new); 2071 } 2072 2073 static inline void tcp_unlink_write_queue(struct sk_buff *skb, struct sock *sk) 2074 { 2075 tcp_skb_tsorted_anchor_cleanup(skb); 2076 __skb_unlink(skb, &sk->sk_write_queue); 2077 } 2078 2079 void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb); 2080 2081 static inline void tcp_rtx_queue_unlink(struct sk_buff *skb, struct sock *sk) 2082 { 2083 tcp_skb_tsorted_anchor_cleanup(skb); 2084 rb_erase(&skb->rbnode, &sk->tcp_rtx_queue); 2085 } 2086 2087 static inline void tcp_rtx_queue_unlink_and_free(struct sk_buff *skb, struct sock *sk) 2088 { 2089 list_del(&skb->tcp_tsorted_anchor); 2090 tcp_rtx_queue_unlink(skb, sk); 2091 tcp_wmem_free_skb(sk, skb); 2092 } 2093 2094 static inline void tcp_write_collapse_fence(struct sock *sk) 2095 { 2096 struct sk_buff *skb = tcp_write_queue_tail(sk); 2097 2098 if (skb) 2099 TCP_SKB_CB(skb)->eor = 1; 2100 } 2101 2102 static inline void tcp_push_pending_frames(struct sock *sk) 2103 { 2104 if (tcp_send_head(sk)) { 2105 struct tcp_sock *tp = tcp_sk(sk); 2106 2107 __tcp_push_pending_frames(sk, tcp_current_mss(sk), tp->nonagle); 2108 } 2109 } 2110 2111 /* Start sequence of the skb just after the highest skb with SACKed 2112 * bit, valid only if sacked_out > 0 or when the caller has ensured 2113 * validity by itself. 2114 */ 2115 static inline u32 tcp_highest_sack_seq(struct tcp_sock *tp) 2116 { 2117 if (!tp->sacked_out) 2118 return tp->snd_una; 2119 2120 if (tp->highest_sack == NULL) 2121 return tp->snd_nxt; 2122 2123 return TCP_SKB_CB(tp->highest_sack)->seq; 2124 } 2125 2126 static inline void tcp_advance_highest_sack(struct sock *sk, struct sk_buff *skb) 2127 { 2128 tcp_sk(sk)->highest_sack = skb_rb_next(skb); 2129 } 2130 2131 static inline struct sk_buff *tcp_highest_sack(struct sock *sk) 2132 { 2133 return tcp_sk(sk)->highest_sack; 2134 } 2135 2136 static inline void tcp_highest_sack_reset(struct sock *sk) 2137 { 2138 tcp_sk(sk)->highest_sack = tcp_rtx_queue_head(sk); 2139 } 2140 2141 /* Called when old skb is about to be deleted and replaced by new skb */ 2142 static inline void tcp_highest_sack_replace(struct sock *sk, 2143 struct sk_buff *old, 2144 struct sk_buff *new) 2145 { 2146 if (old == tcp_highest_sack(sk)) 2147 tcp_sk(sk)->highest_sack = new; 2148 } 2149 2150 /* This helper checks if socket has IP_TRANSPARENT set */ 2151 static inline bool inet_sk_transparent(const struct sock *sk) 2152 { 2153 switch (sk->sk_state) { 2154 case TCP_TIME_WAIT: 2155 return inet_twsk(sk)->tw_transparent; 2156 case TCP_NEW_SYN_RECV: 2157 return inet_rsk(inet_reqsk(sk))->no_srccheck; 2158 } 2159 return inet_test_bit(TRANSPARENT, sk); 2160 } 2161 2162 /* Determines whether this is a thin stream (which may suffer from 2163 * increased latency). Used to trigger latency-reducing mechanisms. 2164 */ 2165 static inline bool tcp_stream_is_thin(struct tcp_sock *tp) 2166 { 2167 return tp->packets_out < 4 && !tcp_in_initial_slowstart(tp); 2168 } 2169 2170 /* /proc */ 2171 enum tcp_seq_states { 2172 TCP_SEQ_STATE_LISTENING, 2173 TCP_SEQ_STATE_ESTABLISHED, 2174 }; 2175 2176 void *tcp_seq_start(struct seq_file *seq, loff_t *pos); 2177 void *tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos); 2178 void tcp_seq_stop(struct seq_file *seq, void *v); 2179 2180 struct tcp_seq_afinfo { 2181 sa_family_t family; 2182 }; 2183 2184 struct tcp_iter_state { 2185 struct seq_net_private p; 2186 enum tcp_seq_states state; 2187 struct sock *syn_wait_sk; 2188 int bucket, offset, sbucket, num; 2189 loff_t last_pos; 2190 }; 2191 2192 extern struct request_sock_ops tcp_request_sock_ops; 2193 extern struct request_sock_ops tcp6_request_sock_ops; 2194 2195 void tcp_v4_destroy_sock(struct sock *sk); 2196 2197 struct sk_buff *tcp_gso_segment(struct sk_buff *skb, 2198 netdev_features_t features); 2199 struct tcphdr *tcp_gro_pull_header(struct sk_buff *skb); 2200 struct sk_buff *tcp_gro_lookup(struct list_head *head, struct tcphdr *th); 2201 struct sk_buff *tcp_gro_receive(struct list_head *head, struct sk_buff *skb, 2202 struct tcphdr *th); 2203 INDIRECT_CALLABLE_DECLARE(int tcp4_gro_complete(struct sk_buff *skb, int thoff)); 2204 INDIRECT_CALLABLE_DECLARE(struct sk_buff *tcp4_gro_receive(struct list_head *head, struct sk_buff *skb)); 2205 INDIRECT_CALLABLE_DECLARE(int tcp6_gro_complete(struct sk_buff *skb, int thoff)); 2206 INDIRECT_CALLABLE_DECLARE(struct sk_buff *tcp6_gro_receive(struct list_head *head, struct sk_buff *skb)); 2207 #ifdef CONFIG_INET 2208 void tcp_gro_complete(struct sk_buff *skb); 2209 #else 2210 static inline void tcp_gro_complete(struct sk_buff *skb) { } 2211 #endif 2212 2213 void __tcp_v4_send_check(struct sk_buff *skb, __be32 saddr, __be32 daddr); 2214 2215 static inline u32 tcp_notsent_lowat(const struct tcp_sock *tp) 2216 { 2217 struct net *net = sock_net((struct sock *)tp); 2218 u32 val; 2219 2220 val = READ_ONCE(tp->notsent_lowat); 2221 2222 return val ?: READ_ONCE(net->ipv4.sysctl_tcp_notsent_lowat); 2223 } 2224 2225 bool tcp_stream_memory_free(const struct sock *sk, int wake); 2226 2227 #ifdef CONFIG_PROC_FS 2228 int tcp4_proc_init(void); 2229 void tcp4_proc_exit(void); 2230 #endif 2231 2232 int tcp_rtx_synack(const struct sock *sk, struct request_sock *req); 2233 int tcp_conn_request(struct request_sock_ops *rsk_ops, 2234 const struct tcp_request_sock_ops *af_ops, 2235 struct sock *sk, struct sk_buff *skb); 2236 2237 /* TCP af-specific functions */ 2238 struct tcp_sock_af_ops { 2239 #ifdef CONFIG_TCP_MD5SIG 2240 struct tcp_md5sig_key *(*md5_lookup) (const struct sock *sk, 2241 const struct sock *addr_sk); 2242 int (*calc_md5_hash)(char *location, 2243 const struct tcp_md5sig_key *md5, 2244 const struct sock *sk, 2245 const struct sk_buff *skb); 2246 int (*md5_parse)(struct sock *sk, 2247 int optname, 2248 sockptr_t optval, 2249 int optlen); 2250 #endif 2251 #ifdef CONFIG_TCP_AO 2252 int (*ao_parse)(struct sock *sk, int optname, sockptr_t optval, int optlen); 2253 struct tcp_ao_key *(*ao_lookup)(const struct sock *sk, 2254 struct sock *addr_sk, 2255 int sndid, int rcvid); 2256 int (*ao_calc_key_sk)(struct tcp_ao_key *mkt, u8 *key, 2257 const struct sock *sk, 2258 __be32 sisn, __be32 disn, bool send); 2259 int (*calc_ao_hash)(char *location, struct tcp_ao_key *ao, 2260 const struct sock *sk, const struct sk_buff *skb, 2261 const u8 *tkey, int hash_offset, u32 sne); 2262 #endif 2263 }; 2264 2265 struct tcp_request_sock_ops { 2266 u16 mss_clamp; 2267 #ifdef CONFIG_TCP_MD5SIG 2268 struct tcp_md5sig_key *(*req_md5_lookup)(const struct sock *sk, 2269 const struct sock *addr_sk); 2270 int (*calc_md5_hash) (char *location, 2271 const struct tcp_md5sig_key *md5, 2272 const struct sock *sk, 2273 const struct sk_buff *skb); 2274 #endif 2275 #ifdef CONFIG_TCP_AO 2276 struct tcp_ao_key *(*ao_lookup)(const struct sock *sk, 2277 struct request_sock *req, 2278 int sndid, int rcvid); 2279 int (*ao_calc_key)(struct tcp_ao_key *mkt, u8 *key, struct request_sock *sk); 2280 int (*ao_synack_hash)(char *ao_hash, struct tcp_ao_key *mkt, 2281 struct request_sock *req, const struct sk_buff *skb, 2282 int hash_offset, u32 sne); 2283 #endif 2284 #ifdef CONFIG_SYN_COOKIES 2285 __u32 (*cookie_init_seq)(const struct sk_buff *skb, 2286 __u16 *mss); 2287 #endif 2288 struct dst_entry *(*route_req)(const struct sock *sk, 2289 struct sk_buff *skb, 2290 struct flowi *fl, 2291 struct request_sock *req, 2292 u32 tw_isn); 2293 u32 (*init_seq)(const struct sk_buff *skb); 2294 u32 (*init_ts_off)(const struct net *net, const struct sk_buff *skb); 2295 int (*send_synack)(const struct sock *sk, struct dst_entry *dst, 2296 struct flowi *fl, struct request_sock *req, 2297 struct tcp_fastopen_cookie *foc, 2298 enum tcp_synack_type synack_type, 2299 struct sk_buff *syn_skb); 2300 }; 2301 2302 extern const struct tcp_request_sock_ops tcp_request_sock_ipv4_ops; 2303 #if IS_ENABLED(CONFIG_IPV6) 2304 extern const struct tcp_request_sock_ops tcp_request_sock_ipv6_ops; 2305 #endif 2306 2307 #ifdef CONFIG_SYN_COOKIES 2308 static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops, 2309 const struct sock *sk, struct sk_buff *skb, 2310 __u16 *mss) 2311 { 2312 tcp_synq_overflow(sk); 2313 __NET_INC_STATS(sock_net(sk), LINUX_MIB_SYNCOOKIESSENT); 2314 return ops->cookie_init_seq(skb, mss); 2315 } 2316 #else 2317 static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops, 2318 const struct sock *sk, struct sk_buff *skb, 2319 __u16 *mss) 2320 { 2321 return 0; 2322 } 2323 #endif 2324 2325 struct tcp_key { 2326 union { 2327 struct { 2328 struct tcp_ao_key *ao_key; 2329 char *traffic_key; 2330 u32 sne; 2331 u8 rcv_next; 2332 }; 2333 struct tcp_md5sig_key *md5_key; 2334 }; 2335 enum { 2336 TCP_KEY_NONE = 0, 2337 TCP_KEY_MD5, 2338 TCP_KEY_AO, 2339 } type; 2340 }; 2341 2342 static inline void tcp_get_current_key(const struct sock *sk, 2343 struct tcp_key *out) 2344 { 2345 #if defined(CONFIG_TCP_AO) || defined(CONFIG_TCP_MD5SIG) 2346 const struct tcp_sock *tp = tcp_sk(sk); 2347 #endif 2348 2349 #ifdef CONFIG_TCP_AO 2350 if (static_branch_unlikely(&tcp_ao_needed.key)) { 2351 struct tcp_ao_info *ao; 2352 2353 ao = rcu_dereference_protected(tp->ao_info, 2354 lockdep_sock_is_held(sk)); 2355 if (ao) { 2356 out->ao_key = READ_ONCE(ao->current_key); 2357 out->type = TCP_KEY_AO; 2358 return; 2359 } 2360 } 2361 #endif 2362 #ifdef CONFIG_TCP_MD5SIG 2363 if (static_branch_unlikely(&tcp_md5_needed.key) && 2364 rcu_access_pointer(tp->md5sig_info)) { 2365 out->md5_key = tp->af_specific->md5_lookup(sk, sk); 2366 if (out->md5_key) { 2367 out->type = TCP_KEY_MD5; 2368 return; 2369 } 2370 } 2371 #endif 2372 out->type = TCP_KEY_NONE; 2373 } 2374 2375 static inline bool tcp_key_is_md5(const struct tcp_key *key) 2376 { 2377 if (static_branch_tcp_md5()) 2378 return key->type == TCP_KEY_MD5; 2379 return false; 2380 } 2381 2382 static inline bool tcp_key_is_ao(const struct tcp_key *key) 2383 { 2384 if (static_branch_tcp_ao()) 2385 return key->type == TCP_KEY_AO; 2386 return false; 2387 } 2388 2389 int tcpv4_offload_init(void); 2390 2391 void tcp_v4_init(void); 2392 void tcp_init(void); 2393 2394 /* tcp_recovery.c */ 2395 void tcp_mark_skb_lost(struct sock *sk, struct sk_buff *skb); 2396 void tcp_newreno_mark_lost(struct sock *sk, bool snd_una_advanced); 2397 extern s32 tcp_rack_skb_timeout(struct tcp_sock *tp, struct sk_buff *skb, 2398 u32 reo_wnd); 2399 extern bool tcp_rack_mark_lost(struct sock *sk); 2400 extern void tcp_rack_advance(struct tcp_sock *tp, u8 sacked, u32 end_seq, 2401 u64 xmit_time); 2402 extern void tcp_rack_reo_timeout(struct sock *sk); 2403 extern void tcp_rack_update_reo_wnd(struct sock *sk, struct rate_sample *rs); 2404 2405 /* tcp_plb.c */ 2406 2407 /* 2408 * Scaling factor for fractions in PLB. For example, tcp_plb_update_state 2409 * expects cong_ratio which represents fraction of traffic that experienced 2410 * congestion over a single RTT. In order to avoid floating point operations, 2411 * this fraction should be mapped to (1 << TCP_PLB_SCALE) and passed in. 2412 */ 2413 #define TCP_PLB_SCALE 8 2414 2415 /* State for PLB (Protective Load Balancing) for a single TCP connection. */ 2416 struct tcp_plb_state { 2417 u8 consec_cong_rounds:5, /* consecutive congested rounds */ 2418 unused:3; 2419 u32 pause_until; /* jiffies32 when PLB can resume rerouting */ 2420 }; 2421 2422 static inline void tcp_plb_init(const struct sock *sk, 2423 struct tcp_plb_state *plb) 2424 { 2425 plb->consec_cong_rounds = 0; 2426 plb->pause_until = 0; 2427 } 2428 void tcp_plb_update_state(const struct sock *sk, struct tcp_plb_state *plb, 2429 const int cong_ratio); 2430 void tcp_plb_check_rehash(struct sock *sk, struct tcp_plb_state *plb); 2431 void tcp_plb_update_state_upon_rto(struct sock *sk, struct tcp_plb_state *plb); 2432 2433 /* At how many usecs into the future should the RTO fire? */ 2434 static inline s64 tcp_rto_delta_us(const struct sock *sk) 2435 { 2436 const struct sk_buff *skb = tcp_rtx_queue_head(sk); 2437 u32 rto = inet_csk(sk)->icsk_rto; 2438 2439 if (likely(skb)) { 2440 u64 rto_time_stamp_us = tcp_skb_timestamp_us(skb) + jiffies_to_usecs(rto); 2441 2442 return rto_time_stamp_us - tcp_sk(sk)->tcp_mstamp; 2443 } else { 2444 WARN_ONCE(1, 2445 "rtx queue emtpy: " 2446 "out:%u sacked:%u lost:%u retrans:%u " 2447 "tlp_high_seq:%u sk_state:%u ca_state:%u " 2448 "advmss:%u mss_cache:%u pmtu:%u\n", 2449 tcp_sk(sk)->packets_out, tcp_sk(sk)->sacked_out, 2450 tcp_sk(sk)->lost_out, tcp_sk(sk)->retrans_out, 2451 tcp_sk(sk)->tlp_high_seq, sk->sk_state, 2452 inet_csk(sk)->icsk_ca_state, 2453 tcp_sk(sk)->advmss, tcp_sk(sk)->mss_cache, 2454 inet_csk(sk)->icsk_pmtu_cookie); 2455 return jiffies_to_usecs(rto); 2456 } 2457 2458 } 2459 2460 /* 2461 * Save and compile IPv4 options, return a pointer to it 2462 */ 2463 static inline struct ip_options_rcu *tcp_v4_save_options(struct net *net, 2464 struct sk_buff *skb) 2465 { 2466 const struct ip_options *opt = &TCP_SKB_CB(skb)->header.h4.opt; 2467 struct ip_options_rcu *dopt = NULL; 2468 2469 if (opt->optlen) { 2470 int opt_size = sizeof(*dopt) + opt->optlen; 2471 2472 dopt = kmalloc(opt_size, GFP_ATOMIC); 2473 if (dopt && __ip_options_echo(net, &dopt->opt, skb, opt)) { 2474 kfree(dopt); 2475 dopt = NULL; 2476 } 2477 } 2478 return dopt; 2479 } 2480 2481 /* locally generated TCP pure ACKs have skb->truesize == 2 2482 * (check tcp_send_ack() in net/ipv4/tcp_output.c ) 2483 * This is much faster than dissecting the packet to find out. 2484 * (Think of GRE encapsulations, IPv4, IPv6, ...) 2485 */ 2486 static inline bool skb_is_tcp_pure_ack(const struct sk_buff *skb) 2487 { 2488 return skb->truesize == 2; 2489 } 2490 2491 static inline void skb_set_tcp_pure_ack(struct sk_buff *skb) 2492 { 2493 skb->truesize = 2; 2494 } 2495 2496 static inline int tcp_inq(struct sock *sk) 2497 { 2498 struct tcp_sock *tp = tcp_sk(sk); 2499 int answ; 2500 2501 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) { 2502 answ = 0; 2503 } else if (sock_flag(sk, SOCK_URGINLINE) || 2504 !tp->urg_data || 2505 before(tp->urg_seq, tp->copied_seq) || 2506 !before(tp->urg_seq, tp->rcv_nxt)) { 2507 2508 answ = tp->rcv_nxt - tp->copied_seq; 2509 2510 /* Subtract 1, if FIN was received */ 2511 if (answ && sock_flag(sk, SOCK_DONE)) 2512 answ--; 2513 } else { 2514 answ = tp->urg_seq - tp->copied_seq; 2515 } 2516 2517 return answ; 2518 } 2519 2520 int tcp_peek_len(struct socket *sock); 2521 2522 static inline void tcp_segs_in(struct tcp_sock *tp, const struct sk_buff *skb) 2523 { 2524 u16 segs_in; 2525 2526 segs_in = max_t(u16, 1, skb_shinfo(skb)->gso_segs); 2527 2528 /* We update these fields while other threads might 2529 * read them from tcp_get_info() 2530 */ 2531 WRITE_ONCE(tp->segs_in, tp->segs_in + segs_in); 2532 if (skb->len > tcp_hdrlen(skb)) 2533 WRITE_ONCE(tp->data_segs_in, tp->data_segs_in + segs_in); 2534 } 2535 2536 /* 2537 * TCP listen path runs lockless. 2538 * We forced "struct sock" to be const qualified to make sure 2539 * we don't modify one of its field by mistake. 2540 * Here, we increment sk_drops which is an atomic_t, so we can safely 2541 * make sock writable again. 2542 */ 2543 static inline void tcp_listendrop(const struct sock *sk) 2544 { 2545 atomic_inc(&((struct sock *)sk)->sk_drops); 2546 __NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENDROPS); 2547 } 2548 2549 enum hrtimer_restart tcp_pace_kick(struct hrtimer *timer); 2550 2551 /* 2552 * Interface for adding Upper Level Protocols over TCP 2553 */ 2554 2555 #define TCP_ULP_NAME_MAX 16 2556 #define TCP_ULP_MAX 128 2557 #define TCP_ULP_BUF_MAX (TCP_ULP_NAME_MAX*TCP_ULP_MAX) 2558 2559 struct tcp_ulp_ops { 2560 struct list_head list; 2561 2562 /* initialize ulp */ 2563 int (*init)(struct sock *sk); 2564 /* update ulp */ 2565 void (*update)(struct sock *sk, struct proto *p, 2566 void (*write_space)(struct sock *sk)); 2567 /* cleanup ulp */ 2568 void (*release)(struct sock *sk); 2569 /* diagnostic */ 2570 int (*get_info)(struct sock *sk, struct sk_buff *skb); 2571 size_t (*get_info_size)(const struct sock *sk); 2572 /* clone ulp */ 2573 void (*clone)(const struct request_sock *req, struct sock *newsk, 2574 const gfp_t priority); 2575 2576 char name[TCP_ULP_NAME_MAX]; 2577 struct module *owner; 2578 }; 2579 int tcp_register_ulp(struct tcp_ulp_ops *type); 2580 void tcp_unregister_ulp(struct tcp_ulp_ops *type); 2581 int tcp_set_ulp(struct sock *sk, const char *name); 2582 void tcp_get_available_ulp(char *buf, size_t len); 2583 void tcp_cleanup_ulp(struct sock *sk); 2584 void tcp_update_ulp(struct sock *sk, struct proto *p, 2585 void (*write_space)(struct sock *sk)); 2586 2587 #define MODULE_ALIAS_TCP_ULP(name) \ 2588 __MODULE_INFO(alias, alias_userspace, name); \ 2589 __MODULE_INFO(alias, alias_tcp_ulp, "tcp-ulp-" name) 2590 2591 #ifdef CONFIG_NET_SOCK_MSG 2592 struct sk_msg; 2593 struct sk_psock; 2594 2595 #ifdef CONFIG_BPF_SYSCALL 2596 int tcp_bpf_update_proto(struct sock *sk, struct sk_psock *psock, bool restore); 2597 void tcp_bpf_clone(const struct sock *sk, struct sock *newsk); 2598 #endif /* CONFIG_BPF_SYSCALL */ 2599 2600 #ifdef CONFIG_INET 2601 void tcp_eat_skb(struct sock *sk, struct sk_buff *skb); 2602 #else 2603 static inline void tcp_eat_skb(struct sock *sk, struct sk_buff *skb) 2604 { 2605 } 2606 #endif 2607 2608 int tcp_bpf_sendmsg_redir(struct sock *sk, bool ingress, 2609 struct sk_msg *msg, u32 bytes, int flags); 2610 #endif /* CONFIG_NET_SOCK_MSG */ 2611 2612 #if !defined(CONFIG_BPF_SYSCALL) || !defined(CONFIG_NET_SOCK_MSG) 2613 static inline void tcp_bpf_clone(const struct sock *sk, struct sock *newsk) 2614 { 2615 } 2616 #endif 2617 2618 #ifdef CONFIG_CGROUP_BPF 2619 static inline void bpf_skops_init_skb(struct bpf_sock_ops_kern *skops, 2620 struct sk_buff *skb, 2621 unsigned int end_offset) 2622 { 2623 skops->skb = skb; 2624 skops->skb_data_end = skb->data + end_offset; 2625 } 2626 #else 2627 static inline void bpf_skops_init_skb(struct bpf_sock_ops_kern *skops, 2628 struct sk_buff *skb, 2629 unsigned int end_offset) 2630 { 2631 } 2632 #endif 2633 2634 /* Call BPF_SOCK_OPS program that returns an int. If the return value 2635 * is < 0, then the BPF op failed (for example if the loaded BPF 2636 * program does not support the chosen operation or there is no BPF 2637 * program loaded). 2638 */ 2639 #ifdef CONFIG_BPF 2640 static inline int tcp_call_bpf(struct sock *sk, int op, u32 nargs, u32 *args) 2641 { 2642 struct bpf_sock_ops_kern sock_ops; 2643 int ret; 2644 2645 memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp)); 2646 if (sk_fullsock(sk)) { 2647 sock_ops.is_fullsock = 1; 2648 sock_owned_by_me(sk); 2649 } 2650 2651 sock_ops.sk = sk; 2652 sock_ops.op = op; 2653 if (nargs > 0) 2654 memcpy(sock_ops.args, args, nargs * sizeof(*args)); 2655 2656 ret = BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops); 2657 if (ret == 0) 2658 ret = sock_ops.reply; 2659 else 2660 ret = -1; 2661 return ret; 2662 } 2663 2664 static inline int tcp_call_bpf_2arg(struct sock *sk, int op, u32 arg1, u32 arg2) 2665 { 2666 u32 args[2] = {arg1, arg2}; 2667 2668 return tcp_call_bpf(sk, op, 2, args); 2669 } 2670 2671 static inline int tcp_call_bpf_3arg(struct sock *sk, int op, u32 arg1, u32 arg2, 2672 u32 arg3) 2673 { 2674 u32 args[3] = {arg1, arg2, arg3}; 2675 2676 return tcp_call_bpf(sk, op, 3, args); 2677 } 2678 2679 #else 2680 static inline int tcp_call_bpf(struct sock *sk, int op, u32 nargs, u32 *args) 2681 { 2682 return -EPERM; 2683 } 2684 2685 static inline int tcp_call_bpf_2arg(struct sock *sk, int op, u32 arg1, u32 arg2) 2686 { 2687 return -EPERM; 2688 } 2689 2690 static inline int tcp_call_bpf_3arg(struct sock *sk, int op, u32 arg1, u32 arg2, 2691 u32 arg3) 2692 { 2693 return -EPERM; 2694 } 2695 2696 #endif 2697 2698 static inline u32 tcp_timeout_init(struct sock *sk) 2699 { 2700 int timeout; 2701 2702 timeout = tcp_call_bpf(sk, BPF_SOCK_OPS_TIMEOUT_INIT, 0, NULL); 2703 2704 if (timeout <= 0) 2705 timeout = TCP_TIMEOUT_INIT; 2706 return min_t(int, timeout, TCP_RTO_MAX); 2707 } 2708 2709 static inline u32 tcp_rwnd_init_bpf(struct sock *sk) 2710 { 2711 int rwnd; 2712 2713 rwnd = tcp_call_bpf(sk, BPF_SOCK_OPS_RWND_INIT, 0, NULL); 2714 2715 if (rwnd < 0) 2716 rwnd = 0; 2717 return rwnd; 2718 } 2719 2720 static inline bool tcp_bpf_ca_needs_ecn(struct sock *sk) 2721 { 2722 return (tcp_call_bpf(sk, BPF_SOCK_OPS_NEEDS_ECN, 0, NULL) == 1); 2723 } 2724 2725 static inline void tcp_bpf_rtt(struct sock *sk, long mrtt, u32 srtt) 2726 { 2727 if (BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), BPF_SOCK_OPS_RTT_CB_FLAG)) 2728 tcp_call_bpf_2arg(sk, BPF_SOCK_OPS_RTT_CB, mrtt, srtt); 2729 } 2730 2731 #if IS_ENABLED(CONFIG_SMC) 2732 extern struct static_key_false tcp_have_smc; 2733 #endif 2734 2735 #if IS_ENABLED(CONFIG_TLS_DEVICE) 2736 void clean_acked_data_enable(struct inet_connection_sock *icsk, 2737 void (*cad)(struct sock *sk, u32 ack_seq)); 2738 void clean_acked_data_disable(struct inet_connection_sock *icsk); 2739 void clean_acked_data_flush(void); 2740 #endif 2741 2742 DECLARE_STATIC_KEY_FALSE(tcp_tx_delay_enabled); 2743 static inline void tcp_add_tx_delay(struct sk_buff *skb, 2744 const struct tcp_sock *tp) 2745 { 2746 if (static_branch_unlikely(&tcp_tx_delay_enabled)) 2747 skb->skb_mstamp_ns += (u64)tp->tcp_tx_delay * NSEC_PER_USEC; 2748 } 2749 2750 /* Compute Earliest Departure Time for some control packets 2751 * like ACK or RST for TIME_WAIT or non ESTABLISHED sockets. 2752 */ 2753 static inline u64 tcp_transmit_time(const struct sock *sk) 2754 { 2755 if (static_branch_unlikely(&tcp_tx_delay_enabled)) { 2756 u32 delay = (sk->sk_state == TCP_TIME_WAIT) ? 2757 tcp_twsk(sk)->tw_tx_delay : tcp_sk(sk)->tcp_tx_delay; 2758 2759 return tcp_clock_ns() + (u64)delay * NSEC_PER_USEC; 2760 } 2761 return 0; 2762 } 2763 2764 static inline int tcp_parse_auth_options(const struct tcphdr *th, 2765 const u8 **md5_hash, const struct tcp_ao_hdr **aoh) 2766 { 2767 const u8 *md5_tmp, *ao_tmp; 2768 int ret; 2769 2770 ret = tcp_do_parse_auth_options(th, &md5_tmp, &ao_tmp); 2771 if (ret) 2772 return ret; 2773 2774 if (md5_hash) 2775 *md5_hash = md5_tmp; 2776 2777 if (aoh) { 2778 if (!ao_tmp) 2779 *aoh = NULL; 2780 else 2781 *aoh = (struct tcp_ao_hdr *)(ao_tmp - 2); 2782 } 2783 2784 return 0; 2785 } 2786 2787 static inline bool tcp_ao_required(struct sock *sk, const void *saddr, 2788 int family, int l3index, bool stat_inc) 2789 { 2790 #ifdef CONFIG_TCP_AO 2791 struct tcp_ao_info *ao_info; 2792 struct tcp_ao_key *ao_key; 2793 2794 if (!static_branch_unlikely(&tcp_ao_needed.key)) 2795 return false; 2796 2797 ao_info = rcu_dereference_check(tcp_sk(sk)->ao_info, 2798 lockdep_sock_is_held(sk)); 2799 if (!ao_info) 2800 return false; 2801 2802 ao_key = tcp_ao_do_lookup(sk, l3index, saddr, family, -1, -1); 2803 if (ao_info->ao_required || ao_key) { 2804 if (stat_inc) { 2805 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAOREQUIRED); 2806 atomic64_inc(&ao_info->counters.ao_required); 2807 } 2808 return true; 2809 } 2810 #endif 2811 return false; 2812 } 2813 2814 enum skb_drop_reason tcp_inbound_hash(struct sock *sk, 2815 const struct request_sock *req, const struct sk_buff *skb, 2816 const void *saddr, const void *daddr, 2817 int family, int dif, int sdif); 2818 2819 #endif /* _TCP_H */ 2820