xref: /linux/include/net/tcp.h (revision 409c188c57cdb5cb1dfcac79e72b5169f0463fe4)
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Definitions for the TCP module.
8  *
9  * Version:	@(#)tcp.h	1.0.5	05/23/93
10  *
11  * Authors:	Ross Biro
12  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
13  */
14 #ifndef _TCP_H
15 #define _TCP_H
16 
17 #define FASTRETRANS_DEBUG 1
18 
19 #include <linux/list.h>
20 #include <linux/tcp.h>
21 #include <linux/bug.h>
22 #include <linux/slab.h>
23 #include <linux/cache.h>
24 #include <linux/percpu.h>
25 #include <linux/skbuff.h>
26 #include <linux/kref.h>
27 #include <linux/ktime.h>
28 #include <linux/indirect_call_wrapper.h>
29 
30 #include <net/inet_connection_sock.h>
31 #include <net/inet_timewait_sock.h>
32 #include <net/inet_hashtables.h>
33 #include <net/checksum.h>
34 #include <net/request_sock.h>
35 #include <net/sock_reuseport.h>
36 #include <net/sock.h>
37 #include <net/snmp.h>
38 #include <net/ip.h>
39 #include <net/tcp_states.h>
40 #include <net/inet_ecn.h>
41 #include <net/dst.h>
42 #include <net/mptcp.h>
43 
44 #include <linux/seq_file.h>
45 #include <linux/memcontrol.h>
46 #include <linux/bpf-cgroup.h>
47 #include <linux/siphash.h>
48 
49 extern struct inet_hashinfo tcp_hashinfo;
50 
51 DECLARE_PER_CPU(unsigned int, tcp_orphan_count);
52 int tcp_orphan_count_sum(void);
53 
54 void tcp_time_wait(struct sock *sk, int state, int timeo);
55 
56 #define MAX_TCP_HEADER	L1_CACHE_ALIGN(128 + MAX_HEADER)
57 #define MAX_TCP_OPTION_SPACE 40
58 #define TCP_MIN_SND_MSS		48
59 #define TCP_MIN_GSO_SIZE	(TCP_MIN_SND_MSS - MAX_TCP_OPTION_SPACE)
60 
61 /*
62  * Never offer a window over 32767 without using window scaling. Some
63  * poor stacks do signed 16bit maths!
64  */
65 #define MAX_TCP_WINDOW		32767U
66 
67 /* Minimal accepted MSS. It is (60+60+8) - (20+20). */
68 #define TCP_MIN_MSS		88U
69 
70 /* The initial MTU to use for probing */
71 #define TCP_BASE_MSS		1024
72 
73 /* probing interval, default to 10 minutes as per RFC4821 */
74 #define TCP_PROBE_INTERVAL	600
75 
76 /* Specify interval when tcp mtu probing will stop */
77 #define TCP_PROBE_THRESHOLD	8
78 
79 /* After receiving this amount of duplicate ACKs fast retransmit starts. */
80 #define TCP_FASTRETRANS_THRESH 3
81 
82 /* Maximal number of ACKs sent quickly to accelerate slow-start. */
83 #define TCP_MAX_QUICKACKS	16U
84 
85 /* Maximal number of window scale according to RFC1323 */
86 #define TCP_MAX_WSCALE		14U
87 
88 /* urg_data states */
89 #define TCP_URG_VALID	0x0100
90 #define TCP_URG_NOTYET	0x0200
91 #define TCP_URG_READ	0x0400
92 
93 #define TCP_RETR1	3	/*
94 				 * This is how many retries it does before it
95 				 * tries to figure out if the gateway is
96 				 * down. Minimal RFC value is 3; it corresponds
97 				 * to ~3sec-8min depending on RTO.
98 				 */
99 
100 #define TCP_RETR2	15	/*
101 				 * This should take at least
102 				 * 90 minutes to time out.
103 				 * RFC1122 says that the limit is 100 sec.
104 				 * 15 is ~13-30min depending on RTO.
105 				 */
106 
107 #define TCP_SYN_RETRIES	 6	/* This is how many retries are done
108 				 * when active opening a connection.
109 				 * RFC1122 says the minimum retry MUST
110 				 * be at least 180secs.  Nevertheless
111 				 * this value is corresponding to
112 				 * 63secs of retransmission with the
113 				 * current initial RTO.
114 				 */
115 
116 #define TCP_SYNACK_RETRIES 5	/* This is how may retries are done
117 				 * when passive opening a connection.
118 				 * This is corresponding to 31secs of
119 				 * retransmission with the current
120 				 * initial RTO.
121 				 */
122 
123 #define TCP_TIMEWAIT_LEN (60*HZ) /* how long to wait to destroy TIME-WAIT
124 				  * state, about 60 seconds	*/
125 #define TCP_FIN_TIMEOUT	TCP_TIMEWAIT_LEN
126                                  /* BSD style FIN_WAIT2 deadlock breaker.
127 				  * It used to be 3min, new value is 60sec,
128 				  * to combine FIN-WAIT-2 timeout with
129 				  * TIME-WAIT timer.
130 				  */
131 #define TCP_FIN_TIMEOUT_MAX (120 * HZ) /* max TCP_LINGER2 value (two minutes) */
132 
133 #define TCP_DELACK_MAX	((unsigned)(HZ/5))	/* maximal time to delay before sending an ACK */
134 #if HZ >= 100
135 #define TCP_DELACK_MIN	((unsigned)(HZ/25))	/* minimal time to delay before sending an ACK */
136 #define TCP_ATO_MIN	((unsigned)(HZ/25))
137 #else
138 #define TCP_DELACK_MIN	4U
139 #define TCP_ATO_MIN	4U
140 #endif
141 #define TCP_RTO_MAX	((unsigned)(120*HZ))
142 #define TCP_RTO_MIN	((unsigned)(HZ/5))
143 #define TCP_TIMEOUT_MIN	(2U) /* Min timeout for TCP timers in jiffies */
144 #define TCP_TIMEOUT_INIT ((unsigned)(1*HZ))	/* RFC6298 2.1 initial RTO value	*/
145 #define TCP_TIMEOUT_FALLBACK ((unsigned)(3*HZ))	/* RFC 1122 initial RTO value, now
146 						 * used as a fallback RTO for the
147 						 * initial data transmission if no
148 						 * valid RTT sample has been acquired,
149 						 * most likely due to retrans in 3WHS.
150 						 */
151 
152 #define TCP_RESOURCE_PROBE_INTERVAL ((unsigned)(HZ/2U)) /* Maximal interval between probes
153 					                 * for local resources.
154 					                 */
155 #define TCP_KEEPALIVE_TIME	(120*60*HZ)	/* two hours */
156 #define TCP_KEEPALIVE_PROBES	9		/* Max of 9 keepalive probes	*/
157 #define TCP_KEEPALIVE_INTVL	(75*HZ)
158 
159 #define MAX_TCP_KEEPIDLE	32767
160 #define MAX_TCP_KEEPINTVL	32767
161 #define MAX_TCP_KEEPCNT		127
162 #define MAX_TCP_SYNCNT		127
163 
164 #define TCP_SYNQ_INTERVAL	(HZ/5)	/* Period of SYNACK timer */
165 
166 #define TCP_PAWS_24DAYS	(60 * 60 * 24 * 24)
167 #define TCP_PAWS_MSL	60		/* Per-host timestamps are invalidated
168 					 * after this time. It should be equal
169 					 * (or greater than) TCP_TIMEWAIT_LEN
170 					 * to provide reliability equal to one
171 					 * provided by timewait state.
172 					 */
173 #define TCP_PAWS_WINDOW	1		/* Replay window for per-host
174 					 * timestamps. It must be less than
175 					 * minimal timewait lifetime.
176 					 */
177 /*
178  *	TCP option
179  */
180 
181 #define TCPOPT_NOP		1	/* Padding */
182 #define TCPOPT_EOL		0	/* End of options */
183 #define TCPOPT_MSS		2	/* Segment size negotiating */
184 #define TCPOPT_WINDOW		3	/* Window scaling */
185 #define TCPOPT_SACK_PERM        4       /* SACK Permitted */
186 #define TCPOPT_SACK             5       /* SACK Block */
187 #define TCPOPT_TIMESTAMP	8	/* Better RTT estimations/PAWS */
188 #define TCPOPT_MD5SIG		19	/* MD5 Signature (RFC2385) */
189 #define TCPOPT_MPTCP		30	/* Multipath TCP (RFC6824) */
190 #define TCPOPT_FASTOPEN		34	/* Fast open (RFC7413) */
191 #define TCPOPT_EXP		254	/* Experimental */
192 /* Magic number to be after the option value for sharing TCP
193  * experimental options. See draft-ietf-tcpm-experimental-options-00.txt
194  */
195 #define TCPOPT_FASTOPEN_MAGIC	0xF989
196 #define TCPOPT_SMC_MAGIC	0xE2D4C3D9
197 
198 /*
199  *     TCP option lengths
200  */
201 
202 #define TCPOLEN_MSS            4
203 #define TCPOLEN_WINDOW         3
204 #define TCPOLEN_SACK_PERM      2
205 #define TCPOLEN_TIMESTAMP      10
206 #define TCPOLEN_MD5SIG         18
207 #define TCPOLEN_FASTOPEN_BASE  2
208 #define TCPOLEN_EXP_FASTOPEN_BASE  4
209 #define TCPOLEN_EXP_SMC_BASE   6
210 
211 /* But this is what stacks really send out. */
212 #define TCPOLEN_TSTAMP_ALIGNED		12
213 #define TCPOLEN_WSCALE_ALIGNED		4
214 #define TCPOLEN_SACKPERM_ALIGNED	4
215 #define TCPOLEN_SACK_BASE		2
216 #define TCPOLEN_SACK_BASE_ALIGNED	4
217 #define TCPOLEN_SACK_PERBLOCK		8
218 #define TCPOLEN_MD5SIG_ALIGNED		20
219 #define TCPOLEN_MSS_ALIGNED		4
220 #define TCPOLEN_EXP_SMC_BASE_ALIGNED	8
221 
222 /* Flags in tp->nonagle */
223 #define TCP_NAGLE_OFF		1	/* Nagle's algo is disabled */
224 #define TCP_NAGLE_CORK		2	/* Socket is corked	    */
225 #define TCP_NAGLE_PUSH		4	/* Cork is overridden for already queued data */
226 
227 /* TCP thin-stream limits */
228 #define TCP_THIN_LINEAR_RETRIES 6       /* After 6 linear retries, do exp. backoff */
229 
230 /* TCP initial congestion window as per rfc6928 */
231 #define TCP_INIT_CWND		10
232 
233 /* Bit Flags for sysctl_tcp_fastopen */
234 #define	TFO_CLIENT_ENABLE	1
235 #define	TFO_SERVER_ENABLE	2
236 #define	TFO_CLIENT_NO_COOKIE	4	/* Data in SYN w/o cookie option */
237 
238 /* Accept SYN data w/o any cookie option */
239 #define	TFO_SERVER_COOKIE_NOT_REQD	0x200
240 
241 /* Force enable TFO on all listeners, i.e., not requiring the
242  * TCP_FASTOPEN socket option.
243  */
244 #define	TFO_SERVER_WO_SOCKOPT1	0x400
245 
246 
247 /* sysctl variables for tcp */
248 extern int sysctl_tcp_max_orphans;
249 extern long sysctl_tcp_mem[3];
250 
251 #define TCP_RACK_LOSS_DETECTION  0x1 /* Use RACK to detect losses */
252 #define TCP_RACK_STATIC_REO_WND  0x2 /* Use static RACK reo wnd */
253 #define TCP_RACK_NO_DUPTHRESH    0x4 /* Do not use DUPACK threshold in RACK */
254 
255 extern atomic_long_t tcp_memory_allocated;
256 DECLARE_PER_CPU(int, tcp_memory_per_cpu_fw_alloc);
257 
258 extern struct percpu_counter tcp_sockets_allocated;
259 extern unsigned long tcp_memory_pressure;
260 
261 /* optimized version of sk_under_memory_pressure() for TCP sockets */
262 static inline bool tcp_under_memory_pressure(const struct sock *sk)
263 {
264 	if (mem_cgroup_sockets_enabled && sk->sk_memcg &&
265 	    mem_cgroup_under_socket_pressure(sk->sk_memcg))
266 		return true;
267 
268 	return READ_ONCE(tcp_memory_pressure);
269 }
270 /*
271  * The next routines deal with comparing 32 bit unsigned ints
272  * and worry about wraparound (automatic with unsigned arithmetic).
273  */
274 
275 static inline bool before(__u32 seq1, __u32 seq2)
276 {
277         return (__s32)(seq1-seq2) < 0;
278 }
279 #define after(seq2, seq1) 	before(seq1, seq2)
280 
281 /* is s2<=s1<=s3 ? */
282 static inline bool between(__u32 seq1, __u32 seq2, __u32 seq3)
283 {
284 	return seq3 - seq2 >= seq1 - seq2;
285 }
286 
287 static inline bool tcp_out_of_memory(struct sock *sk)
288 {
289 	if (sk->sk_wmem_queued > SOCK_MIN_SNDBUF &&
290 	    sk_memory_allocated(sk) > sk_prot_mem_limits(sk, 2))
291 		return true;
292 	return false;
293 }
294 
295 static inline void tcp_wmem_free_skb(struct sock *sk, struct sk_buff *skb)
296 {
297 	sk_wmem_queued_add(sk, -skb->truesize);
298 	if (!skb_zcopy_pure(skb))
299 		sk_mem_uncharge(sk, skb->truesize);
300 	else
301 		sk_mem_uncharge(sk, SKB_TRUESIZE(skb_end_offset(skb)));
302 	__kfree_skb(skb);
303 }
304 
305 void sk_forced_mem_schedule(struct sock *sk, int size);
306 
307 bool tcp_check_oom(struct sock *sk, int shift);
308 
309 
310 extern struct proto tcp_prot;
311 
312 #define TCP_INC_STATS(net, field)	SNMP_INC_STATS((net)->mib.tcp_statistics, field)
313 #define __TCP_INC_STATS(net, field)	__SNMP_INC_STATS((net)->mib.tcp_statistics, field)
314 #define TCP_DEC_STATS(net, field)	SNMP_DEC_STATS((net)->mib.tcp_statistics, field)
315 #define TCP_ADD_STATS(net, field, val)	SNMP_ADD_STATS((net)->mib.tcp_statistics, field, val)
316 
317 void tcp_tasklet_init(void);
318 
319 int tcp_v4_err(struct sk_buff *skb, u32);
320 
321 void tcp_shutdown(struct sock *sk, int how);
322 
323 int tcp_v4_early_demux(struct sk_buff *skb);
324 int tcp_v4_rcv(struct sk_buff *skb);
325 
326 void tcp_remove_empty_skb(struct sock *sk);
327 int tcp_v4_tw_remember_stamp(struct inet_timewait_sock *tw);
328 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size);
329 int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size);
330 int tcp_sendpage(struct sock *sk, struct page *page, int offset, size_t size,
331 		 int flags);
332 int tcp_sendpage_locked(struct sock *sk, struct page *page, int offset,
333 			size_t size, int flags);
334 ssize_t do_tcp_sendpages(struct sock *sk, struct page *page, int offset,
335 		 size_t size, int flags);
336 int tcp_send_mss(struct sock *sk, int *size_goal, int flags);
337 void tcp_push(struct sock *sk, int flags, int mss_now, int nonagle,
338 	      int size_goal);
339 void tcp_release_cb(struct sock *sk);
340 void tcp_wfree(struct sk_buff *skb);
341 void tcp_write_timer_handler(struct sock *sk);
342 void tcp_delack_timer_handler(struct sock *sk);
343 int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg);
344 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb);
345 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb);
346 void tcp_rcv_space_adjust(struct sock *sk);
347 int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp);
348 void tcp_twsk_destructor(struct sock *sk);
349 ssize_t tcp_splice_read(struct socket *sk, loff_t *ppos,
350 			struct pipe_inode_info *pipe, size_t len,
351 			unsigned int flags);
352 struct sk_buff *tcp_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp,
353 				     bool force_schedule);
354 
355 void tcp_enter_quickack_mode(struct sock *sk, unsigned int max_quickacks);
356 static inline void tcp_dec_quickack_mode(struct sock *sk,
357 					 const unsigned int pkts)
358 {
359 	struct inet_connection_sock *icsk = inet_csk(sk);
360 
361 	if (icsk->icsk_ack.quick) {
362 		if (pkts >= icsk->icsk_ack.quick) {
363 			icsk->icsk_ack.quick = 0;
364 			/* Leaving quickack mode we deflate ATO. */
365 			icsk->icsk_ack.ato   = TCP_ATO_MIN;
366 		} else
367 			icsk->icsk_ack.quick -= pkts;
368 	}
369 }
370 
371 #define	TCP_ECN_OK		1
372 #define	TCP_ECN_QUEUE_CWR	2
373 #define	TCP_ECN_DEMAND_CWR	4
374 #define	TCP_ECN_SEEN		8
375 
376 enum tcp_tw_status {
377 	TCP_TW_SUCCESS = 0,
378 	TCP_TW_RST = 1,
379 	TCP_TW_ACK = 2,
380 	TCP_TW_SYN = 3
381 };
382 
383 
384 enum tcp_tw_status tcp_timewait_state_process(struct inet_timewait_sock *tw,
385 					      struct sk_buff *skb,
386 					      const struct tcphdr *th);
387 struct sock *tcp_check_req(struct sock *sk, struct sk_buff *skb,
388 			   struct request_sock *req, bool fastopen,
389 			   bool *lost_race);
390 int tcp_child_process(struct sock *parent, struct sock *child,
391 		      struct sk_buff *skb);
392 void tcp_enter_loss(struct sock *sk);
393 void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int newly_lost, int flag);
394 void tcp_clear_retrans(struct tcp_sock *tp);
395 void tcp_update_metrics(struct sock *sk);
396 void tcp_init_metrics(struct sock *sk);
397 void tcp_metrics_init(void);
398 bool tcp_peer_is_proven(struct request_sock *req, struct dst_entry *dst);
399 void __tcp_close(struct sock *sk, long timeout);
400 void tcp_close(struct sock *sk, long timeout);
401 void tcp_init_sock(struct sock *sk);
402 void tcp_init_transfer(struct sock *sk, int bpf_op, struct sk_buff *skb);
403 __poll_t tcp_poll(struct file *file, struct socket *sock,
404 		      struct poll_table_struct *wait);
405 int tcp_getsockopt(struct sock *sk, int level, int optname,
406 		   char __user *optval, int __user *optlen);
407 bool tcp_bpf_bypass_getsockopt(int level, int optname);
408 int tcp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval,
409 		   unsigned int optlen);
410 void tcp_set_keepalive(struct sock *sk, int val);
411 void tcp_syn_ack_timeout(const struct request_sock *req);
412 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len,
413 		int flags, int *addr_len);
414 int tcp_set_rcvlowat(struct sock *sk, int val);
415 int tcp_set_window_clamp(struct sock *sk, int val);
416 void tcp_update_recv_tstamps(struct sk_buff *skb,
417 			     struct scm_timestamping_internal *tss);
418 void tcp_recv_timestamp(struct msghdr *msg, const struct sock *sk,
419 			struct scm_timestamping_internal *tss);
420 void tcp_data_ready(struct sock *sk);
421 #ifdef CONFIG_MMU
422 int tcp_mmap(struct file *file, struct socket *sock,
423 	     struct vm_area_struct *vma);
424 #endif
425 void tcp_parse_options(const struct net *net, const struct sk_buff *skb,
426 		       struct tcp_options_received *opt_rx,
427 		       int estab, struct tcp_fastopen_cookie *foc);
428 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th);
429 
430 /*
431  *	BPF SKB-less helpers
432  */
433 u16 tcp_v4_get_syncookie(struct sock *sk, struct iphdr *iph,
434 			 struct tcphdr *th, u32 *cookie);
435 u16 tcp_v6_get_syncookie(struct sock *sk, struct ipv6hdr *iph,
436 			 struct tcphdr *th, u32 *cookie);
437 u16 tcp_parse_mss_option(const struct tcphdr *th, u16 user_mss);
438 u16 tcp_get_syncookie_mss(struct request_sock_ops *rsk_ops,
439 			  const struct tcp_request_sock_ops *af_ops,
440 			  struct sock *sk, struct tcphdr *th);
441 /*
442  *	TCP v4 functions exported for the inet6 API
443  */
444 
445 void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb);
446 void tcp_v4_mtu_reduced(struct sock *sk);
447 void tcp_req_err(struct sock *sk, u32 seq, bool abort);
448 void tcp_ld_RTO_revert(struct sock *sk, u32 seq);
449 int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb);
450 struct sock *tcp_create_openreq_child(const struct sock *sk,
451 				      struct request_sock *req,
452 				      struct sk_buff *skb);
453 void tcp_ca_openreq_child(struct sock *sk, const struct dst_entry *dst);
454 struct sock *tcp_v4_syn_recv_sock(const struct sock *sk, struct sk_buff *skb,
455 				  struct request_sock *req,
456 				  struct dst_entry *dst,
457 				  struct request_sock *req_unhash,
458 				  bool *own_req);
459 int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb);
460 int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len);
461 int tcp_connect(struct sock *sk);
462 enum tcp_synack_type {
463 	TCP_SYNACK_NORMAL,
464 	TCP_SYNACK_FASTOPEN,
465 	TCP_SYNACK_COOKIE,
466 };
467 struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst,
468 				struct request_sock *req,
469 				struct tcp_fastopen_cookie *foc,
470 				enum tcp_synack_type synack_type,
471 				struct sk_buff *syn_skb);
472 int tcp_disconnect(struct sock *sk, int flags);
473 
474 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb);
475 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size);
476 void inet_sk_rx_dst_set(struct sock *sk, const struct sk_buff *skb);
477 
478 /* From syncookies.c */
479 struct sock *tcp_get_cookie_sock(struct sock *sk, struct sk_buff *skb,
480 				 struct request_sock *req,
481 				 struct dst_entry *dst, u32 tsoff);
482 int __cookie_v4_check(const struct iphdr *iph, const struct tcphdr *th,
483 		      u32 cookie);
484 struct sock *cookie_v4_check(struct sock *sk, struct sk_buff *skb);
485 struct request_sock *cookie_tcp_reqsk_alloc(const struct request_sock_ops *ops,
486 					    const struct tcp_request_sock_ops *af_ops,
487 					    struct sock *sk, struct sk_buff *skb);
488 #ifdef CONFIG_SYN_COOKIES
489 
490 /* Syncookies use a monotonic timer which increments every 60 seconds.
491  * This counter is used both as a hash input and partially encoded into
492  * the cookie value.  A cookie is only validated further if the delta
493  * between the current counter value and the encoded one is less than this,
494  * i.e. a sent cookie is valid only at most for 2*60 seconds (or less if
495  * the counter advances immediately after a cookie is generated).
496  */
497 #define MAX_SYNCOOKIE_AGE	2
498 #define TCP_SYNCOOKIE_PERIOD	(60 * HZ)
499 #define TCP_SYNCOOKIE_VALID	(MAX_SYNCOOKIE_AGE * TCP_SYNCOOKIE_PERIOD)
500 
501 /* syncookies: remember time of last synqueue overflow
502  * But do not dirty this field too often (once per second is enough)
503  * It is racy as we do not hold a lock, but race is very minor.
504  */
505 static inline void tcp_synq_overflow(const struct sock *sk)
506 {
507 	unsigned int last_overflow;
508 	unsigned int now = jiffies;
509 
510 	if (sk->sk_reuseport) {
511 		struct sock_reuseport *reuse;
512 
513 		reuse = rcu_dereference(sk->sk_reuseport_cb);
514 		if (likely(reuse)) {
515 			last_overflow = READ_ONCE(reuse->synq_overflow_ts);
516 			if (!time_between32(now, last_overflow,
517 					    last_overflow + HZ))
518 				WRITE_ONCE(reuse->synq_overflow_ts, now);
519 			return;
520 		}
521 	}
522 
523 	last_overflow = READ_ONCE(tcp_sk(sk)->rx_opt.ts_recent_stamp);
524 	if (!time_between32(now, last_overflow, last_overflow + HZ))
525 		WRITE_ONCE(tcp_sk(sk)->rx_opt.ts_recent_stamp, now);
526 }
527 
528 /* syncookies: no recent synqueue overflow on this listening socket? */
529 static inline bool tcp_synq_no_recent_overflow(const struct sock *sk)
530 {
531 	unsigned int last_overflow;
532 	unsigned int now = jiffies;
533 
534 	if (sk->sk_reuseport) {
535 		struct sock_reuseport *reuse;
536 
537 		reuse = rcu_dereference(sk->sk_reuseport_cb);
538 		if (likely(reuse)) {
539 			last_overflow = READ_ONCE(reuse->synq_overflow_ts);
540 			return !time_between32(now, last_overflow - HZ,
541 					       last_overflow +
542 					       TCP_SYNCOOKIE_VALID);
543 		}
544 	}
545 
546 	last_overflow = READ_ONCE(tcp_sk(sk)->rx_opt.ts_recent_stamp);
547 
548 	/* If last_overflow <= jiffies <= last_overflow + TCP_SYNCOOKIE_VALID,
549 	 * then we're under synflood. However, we have to use
550 	 * 'last_overflow - HZ' as lower bound. That's because a concurrent
551 	 * tcp_synq_overflow() could update .ts_recent_stamp after we read
552 	 * jiffies but before we store .ts_recent_stamp into last_overflow,
553 	 * which could lead to rejecting a valid syncookie.
554 	 */
555 	return !time_between32(now, last_overflow - HZ,
556 			       last_overflow + TCP_SYNCOOKIE_VALID);
557 }
558 
559 static inline u32 tcp_cookie_time(void)
560 {
561 	u64 val = get_jiffies_64();
562 
563 	do_div(val, TCP_SYNCOOKIE_PERIOD);
564 	return val;
565 }
566 
567 u32 __cookie_v4_init_sequence(const struct iphdr *iph, const struct tcphdr *th,
568 			      u16 *mssp);
569 __u32 cookie_v4_init_sequence(const struct sk_buff *skb, __u16 *mss);
570 u64 cookie_init_timestamp(struct request_sock *req, u64 now);
571 bool cookie_timestamp_decode(const struct net *net,
572 			     struct tcp_options_received *opt);
573 bool cookie_ecn_ok(const struct tcp_options_received *opt,
574 		   const struct net *net, const struct dst_entry *dst);
575 
576 /* From net/ipv6/syncookies.c */
577 int __cookie_v6_check(const struct ipv6hdr *iph, const struct tcphdr *th,
578 		      u32 cookie);
579 struct sock *cookie_v6_check(struct sock *sk, struct sk_buff *skb);
580 
581 u32 __cookie_v6_init_sequence(const struct ipv6hdr *iph,
582 			      const struct tcphdr *th, u16 *mssp);
583 __u32 cookie_v6_init_sequence(const struct sk_buff *skb, __u16 *mss);
584 #endif
585 /* tcp_output.c */
586 
587 void tcp_skb_entail(struct sock *sk, struct sk_buff *skb);
588 void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb);
589 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
590 			       int nonagle);
591 int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs);
592 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs);
593 void tcp_retransmit_timer(struct sock *sk);
594 void tcp_xmit_retransmit_queue(struct sock *);
595 void tcp_simple_retransmit(struct sock *);
596 void tcp_enter_recovery(struct sock *sk, bool ece_ack);
597 int tcp_trim_head(struct sock *, struct sk_buff *, u32);
598 enum tcp_queue {
599 	TCP_FRAG_IN_WRITE_QUEUE,
600 	TCP_FRAG_IN_RTX_QUEUE,
601 };
602 int tcp_fragment(struct sock *sk, enum tcp_queue tcp_queue,
603 		 struct sk_buff *skb, u32 len,
604 		 unsigned int mss_now, gfp_t gfp);
605 
606 void tcp_send_probe0(struct sock *);
607 void tcp_send_partial(struct sock *);
608 int tcp_write_wakeup(struct sock *, int mib);
609 void tcp_send_fin(struct sock *sk);
610 void tcp_send_active_reset(struct sock *sk, gfp_t priority);
611 int tcp_send_synack(struct sock *);
612 void tcp_push_one(struct sock *, unsigned int mss_now);
613 void __tcp_send_ack(struct sock *sk, u32 rcv_nxt);
614 void tcp_send_ack(struct sock *sk);
615 void tcp_send_delayed_ack(struct sock *sk);
616 void tcp_send_loss_probe(struct sock *sk);
617 bool tcp_schedule_loss_probe(struct sock *sk, bool advancing_rto);
618 void tcp_skb_collapse_tstamp(struct sk_buff *skb,
619 			     const struct sk_buff *next_skb);
620 
621 /* tcp_input.c */
622 void tcp_rearm_rto(struct sock *sk);
623 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req);
624 void tcp_reset(struct sock *sk, struct sk_buff *skb);
625 void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp, struct sk_buff *skb);
626 void tcp_fin(struct sock *sk);
627 void tcp_check_space(struct sock *sk);
628 
629 /* tcp_timer.c */
630 void tcp_init_xmit_timers(struct sock *);
631 static inline void tcp_clear_xmit_timers(struct sock *sk)
632 {
633 	if (hrtimer_try_to_cancel(&tcp_sk(sk)->pacing_timer) == 1)
634 		__sock_put(sk);
635 
636 	if (hrtimer_try_to_cancel(&tcp_sk(sk)->compressed_ack_timer) == 1)
637 		__sock_put(sk);
638 
639 	inet_csk_clear_xmit_timers(sk);
640 }
641 
642 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu);
643 unsigned int tcp_current_mss(struct sock *sk);
644 u32 tcp_clamp_probe0_to_user_timeout(const struct sock *sk, u32 when);
645 
646 /* Bound MSS / TSO packet size with the half of the window */
647 static inline int tcp_bound_to_half_wnd(struct tcp_sock *tp, int pktsize)
648 {
649 	int cutoff;
650 
651 	/* When peer uses tiny windows, there is no use in packetizing
652 	 * to sub-MSS pieces for the sake of SWS or making sure there
653 	 * are enough packets in the pipe for fast recovery.
654 	 *
655 	 * On the other hand, for extremely large MSS devices, handling
656 	 * smaller than MSS windows in this way does make sense.
657 	 */
658 	if (tp->max_window > TCP_MSS_DEFAULT)
659 		cutoff = (tp->max_window >> 1);
660 	else
661 		cutoff = tp->max_window;
662 
663 	if (cutoff && pktsize > cutoff)
664 		return max_t(int, cutoff, 68U - tp->tcp_header_len);
665 	else
666 		return pktsize;
667 }
668 
669 /* tcp.c */
670 void tcp_get_info(struct sock *, struct tcp_info *);
671 
672 /* Read 'sendfile()'-style from a TCP socket */
673 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
674 		  sk_read_actor_t recv_actor);
675 int tcp_read_skb(struct sock *sk, skb_read_actor_t recv_actor);
676 
677 void tcp_initialize_rcv_mss(struct sock *sk);
678 
679 int tcp_mtu_to_mss(struct sock *sk, int pmtu);
680 int tcp_mss_to_mtu(struct sock *sk, int mss);
681 void tcp_mtup_init(struct sock *sk);
682 
683 static inline void tcp_bound_rto(const struct sock *sk)
684 {
685 	if (inet_csk(sk)->icsk_rto > TCP_RTO_MAX)
686 		inet_csk(sk)->icsk_rto = TCP_RTO_MAX;
687 }
688 
689 static inline u32 __tcp_set_rto(const struct tcp_sock *tp)
690 {
691 	return usecs_to_jiffies((tp->srtt_us >> 3) + tp->rttvar_us);
692 }
693 
694 static inline void __tcp_fast_path_on(struct tcp_sock *tp, u32 snd_wnd)
695 {
696 	/* mptcp hooks are only on the slow path */
697 	if (sk_is_mptcp((struct sock *)tp))
698 		return;
699 
700 	tp->pred_flags = htonl((tp->tcp_header_len << 26) |
701 			       ntohl(TCP_FLAG_ACK) |
702 			       snd_wnd);
703 }
704 
705 static inline void tcp_fast_path_on(struct tcp_sock *tp)
706 {
707 	__tcp_fast_path_on(tp, tp->snd_wnd >> tp->rx_opt.snd_wscale);
708 }
709 
710 static inline void tcp_fast_path_check(struct sock *sk)
711 {
712 	struct tcp_sock *tp = tcp_sk(sk);
713 
714 	if (RB_EMPTY_ROOT(&tp->out_of_order_queue) &&
715 	    tp->rcv_wnd &&
716 	    atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf &&
717 	    !tp->urg_data)
718 		tcp_fast_path_on(tp);
719 }
720 
721 /* Compute the actual rto_min value */
722 static inline u32 tcp_rto_min(struct sock *sk)
723 {
724 	const struct dst_entry *dst = __sk_dst_get(sk);
725 	u32 rto_min = inet_csk(sk)->icsk_rto_min;
726 
727 	if (dst && dst_metric_locked(dst, RTAX_RTO_MIN))
728 		rto_min = dst_metric_rtt(dst, RTAX_RTO_MIN);
729 	return rto_min;
730 }
731 
732 static inline u32 tcp_rto_min_us(struct sock *sk)
733 {
734 	return jiffies_to_usecs(tcp_rto_min(sk));
735 }
736 
737 static inline bool tcp_ca_dst_locked(const struct dst_entry *dst)
738 {
739 	return dst_metric_locked(dst, RTAX_CC_ALGO);
740 }
741 
742 /* Minimum RTT in usec. ~0 means not available. */
743 static inline u32 tcp_min_rtt(const struct tcp_sock *tp)
744 {
745 	return minmax_get(&tp->rtt_min);
746 }
747 
748 /* Compute the actual receive window we are currently advertising.
749  * Rcv_nxt can be after the window if our peer push more data
750  * than the offered window.
751  */
752 static inline u32 tcp_receive_window(const struct tcp_sock *tp)
753 {
754 	s32 win = tp->rcv_wup + tp->rcv_wnd - tp->rcv_nxt;
755 
756 	if (win < 0)
757 		win = 0;
758 	return (u32) win;
759 }
760 
761 /* Choose a new window, without checks for shrinking, and without
762  * scaling applied to the result.  The caller does these things
763  * if necessary.  This is a "raw" window selection.
764  */
765 u32 __tcp_select_window(struct sock *sk);
766 
767 void tcp_send_window_probe(struct sock *sk);
768 
769 /* TCP uses 32bit jiffies to save some space.
770  * Note that this is different from tcp_time_stamp, which
771  * historically has been the same until linux-4.13.
772  */
773 #define tcp_jiffies32 ((u32)jiffies)
774 
775 /*
776  * Deliver a 32bit value for TCP timestamp option (RFC 7323)
777  * It is no longer tied to jiffies, but to 1 ms clock.
778  * Note: double check if you want to use tcp_jiffies32 instead of this.
779  */
780 #define TCP_TS_HZ	1000
781 
782 static inline u64 tcp_clock_ns(void)
783 {
784 	return ktime_get_ns();
785 }
786 
787 static inline u64 tcp_clock_us(void)
788 {
789 	return div_u64(tcp_clock_ns(), NSEC_PER_USEC);
790 }
791 
792 /* This should only be used in contexts where tp->tcp_mstamp is up to date */
793 static inline u32 tcp_time_stamp(const struct tcp_sock *tp)
794 {
795 	return div_u64(tp->tcp_mstamp, USEC_PER_SEC / TCP_TS_HZ);
796 }
797 
798 /* Convert a nsec timestamp into TCP TSval timestamp (ms based currently) */
799 static inline u32 tcp_ns_to_ts(u64 ns)
800 {
801 	return div_u64(ns, NSEC_PER_SEC / TCP_TS_HZ);
802 }
803 
804 /* Could use tcp_clock_us() / 1000, but this version uses a single divide */
805 static inline u32 tcp_time_stamp_raw(void)
806 {
807 	return tcp_ns_to_ts(tcp_clock_ns());
808 }
809 
810 void tcp_mstamp_refresh(struct tcp_sock *tp);
811 
812 static inline u32 tcp_stamp_us_delta(u64 t1, u64 t0)
813 {
814 	return max_t(s64, t1 - t0, 0);
815 }
816 
817 static inline u32 tcp_skb_timestamp(const struct sk_buff *skb)
818 {
819 	return tcp_ns_to_ts(skb->skb_mstamp_ns);
820 }
821 
822 /* provide the departure time in us unit */
823 static inline u64 tcp_skb_timestamp_us(const struct sk_buff *skb)
824 {
825 	return div_u64(skb->skb_mstamp_ns, NSEC_PER_USEC);
826 }
827 
828 
829 #define tcp_flag_byte(th) (((u_int8_t *)th)[13])
830 
831 #define TCPHDR_FIN 0x01
832 #define TCPHDR_SYN 0x02
833 #define TCPHDR_RST 0x04
834 #define TCPHDR_PSH 0x08
835 #define TCPHDR_ACK 0x10
836 #define TCPHDR_URG 0x20
837 #define TCPHDR_ECE 0x40
838 #define TCPHDR_CWR 0x80
839 
840 #define TCPHDR_SYN_ECN	(TCPHDR_SYN | TCPHDR_ECE | TCPHDR_CWR)
841 
842 /* This is what the send packet queuing engine uses to pass
843  * TCP per-packet control information to the transmission code.
844  * We also store the host-order sequence numbers in here too.
845  * This is 44 bytes if IPV6 is enabled.
846  * If this grows please adjust skbuff.h:skbuff->cb[xxx] size appropriately.
847  */
848 struct tcp_skb_cb {
849 	__u32		seq;		/* Starting sequence number	*/
850 	__u32		end_seq;	/* SEQ + FIN + SYN + datalen	*/
851 	union {
852 		/* Note : tcp_tw_isn is used in input path only
853 		 *	  (isn chosen by tcp_timewait_state_process())
854 		 *
855 		 * 	  tcp_gso_segs/size are used in write queue only,
856 		 *	  cf tcp_skb_pcount()/tcp_skb_mss()
857 		 */
858 		__u32		tcp_tw_isn;
859 		struct {
860 			u16	tcp_gso_segs;
861 			u16	tcp_gso_size;
862 		};
863 	};
864 	__u8		tcp_flags;	/* TCP header flags. (tcp[13])	*/
865 
866 	__u8		sacked;		/* State flags for SACK.	*/
867 #define TCPCB_SACKED_ACKED	0x01	/* SKB ACK'd by a SACK block	*/
868 #define TCPCB_SACKED_RETRANS	0x02	/* SKB retransmitted		*/
869 #define TCPCB_LOST		0x04	/* SKB is lost			*/
870 #define TCPCB_TAGBITS		0x07	/* All tag bits			*/
871 #define TCPCB_REPAIRED		0x10	/* SKB repaired (no skb_mstamp_ns)	*/
872 #define TCPCB_EVER_RETRANS	0x80	/* Ever retransmitted frame	*/
873 #define TCPCB_RETRANS		(TCPCB_SACKED_RETRANS|TCPCB_EVER_RETRANS| \
874 				TCPCB_REPAIRED)
875 
876 	__u8		ip_dsfield;	/* IPv4 tos or IPv6 dsfield	*/
877 	__u8		txstamp_ack:1,	/* Record TX timestamp for ack? */
878 			eor:1,		/* Is skb MSG_EOR marked? */
879 			has_rxtstamp:1,	/* SKB has a RX timestamp	*/
880 			unused:5;
881 	__u32		ack_seq;	/* Sequence number ACK'd	*/
882 	union {
883 		struct {
884 #define TCPCB_DELIVERED_CE_MASK ((1U<<20) - 1)
885 			/* There is space for up to 24 bytes */
886 			__u32 is_app_limited:1, /* cwnd not fully used? */
887 			      delivered_ce:20,
888 			      unused:11;
889 			/* pkts S/ACKed so far upon tx of skb, incl retrans: */
890 			__u32 delivered;
891 			/* start of send pipeline phase */
892 			u64 first_tx_mstamp;
893 			/* when we reached the "delivered" count */
894 			u64 delivered_mstamp;
895 		} tx;   /* only used for outgoing skbs */
896 		union {
897 			struct inet_skb_parm	h4;
898 #if IS_ENABLED(CONFIG_IPV6)
899 			struct inet6_skb_parm	h6;
900 #endif
901 		} header;	/* For incoming skbs */
902 	};
903 };
904 
905 #define TCP_SKB_CB(__skb)	((struct tcp_skb_cb *)&((__skb)->cb[0]))
906 
907 extern const struct inet_connection_sock_af_ops ipv4_specific;
908 
909 #if IS_ENABLED(CONFIG_IPV6)
910 /* This is the variant of inet6_iif() that must be used by TCP,
911  * as TCP moves IP6CB into a different location in skb->cb[]
912  */
913 static inline int tcp_v6_iif(const struct sk_buff *skb)
914 {
915 	return TCP_SKB_CB(skb)->header.h6.iif;
916 }
917 
918 static inline int tcp_v6_iif_l3_slave(const struct sk_buff *skb)
919 {
920 	bool l3_slave = ipv6_l3mdev_skb(TCP_SKB_CB(skb)->header.h6.flags);
921 
922 	return l3_slave ? skb->skb_iif : TCP_SKB_CB(skb)->header.h6.iif;
923 }
924 
925 /* TCP_SKB_CB reference means this can not be used from early demux */
926 static inline int tcp_v6_sdif(const struct sk_buff *skb)
927 {
928 #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
929 	if (skb && ipv6_l3mdev_skb(TCP_SKB_CB(skb)->header.h6.flags))
930 		return TCP_SKB_CB(skb)->header.h6.iif;
931 #endif
932 	return 0;
933 }
934 
935 extern const struct inet_connection_sock_af_ops ipv6_specific;
936 
937 INDIRECT_CALLABLE_DECLARE(void tcp_v6_send_check(struct sock *sk, struct sk_buff *skb));
938 INDIRECT_CALLABLE_DECLARE(int tcp_v6_rcv(struct sk_buff *skb));
939 void tcp_v6_early_demux(struct sk_buff *skb);
940 
941 #endif
942 
943 /* TCP_SKB_CB reference means this can not be used from early demux */
944 static inline int tcp_v4_sdif(struct sk_buff *skb)
945 {
946 #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
947 	if (skb && ipv4_l3mdev_skb(TCP_SKB_CB(skb)->header.h4.flags))
948 		return TCP_SKB_CB(skb)->header.h4.iif;
949 #endif
950 	return 0;
951 }
952 
953 /* Due to TSO, an SKB can be composed of multiple actual
954  * packets.  To keep these tracked properly, we use this.
955  */
956 static inline int tcp_skb_pcount(const struct sk_buff *skb)
957 {
958 	return TCP_SKB_CB(skb)->tcp_gso_segs;
959 }
960 
961 static inline void tcp_skb_pcount_set(struct sk_buff *skb, int segs)
962 {
963 	TCP_SKB_CB(skb)->tcp_gso_segs = segs;
964 }
965 
966 static inline void tcp_skb_pcount_add(struct sk_buff *skb, int segs)
967 {
968 	TCP_SKB_CB(skb)->tcp_gso_segs += segs;
969 }
970 
971 /* This is valid iff skb is in write queue and tcp_skb_pcount() > 1. */
972 static inline int tcp_skb_mss(const struct sk_buff *skb)
973 {
974 	return TCP_SKB_CB(skb)->tcp_gso_size;
975 }
976 
977 static inline bool tcp_skb_can_collapse_to(const struct sk_buff *skb)
978 {
979 	return likely(!TCP_SKB_CB(skb)->eor);
980 }
981 
982 static inline bool tcp_skb_can_collapse(const struct sk_buff *to,
983 					const struct sk_buff *from)
984 {
985 	return likely(tcp_skb_can_collapse_to(to) &&
986 		      mptcp_skb_can_collapse(to, from) &&
987 		      skb_pure_zcopy_same(to, from));
988 }
989 
990 /* Events passed to congestion control interface */
991 enum tcp_ca_event {
992 	CA_EVENT_TX_START,	/* first transmit when no packets in flight */
993 	CA_EVENT_CWND_RESTART,	/* congestion window restart */
994 	CA_EVENT_COMPLETE_CWR,	/* end of congestion recovery */
995 	CA_EVENT_LOSS,		/* loss timeout */
996 	CA_EVENT_ECN_NO_CE,	/* ECT set, but not CE marked */
997 	CA_EVENT_ECN_IS_CE,	/* received CE marked IP packet */
998 };
999 
1000 /* Information about inbound ACK, passed to cong_ops->in_ack_event() */
1001 enum tcp_ca_ack_event_flags {
1002 	CA_ACK_SLOWPATH		= (1 << 0),	/* In slow path processing */
1003 	CA_ACK_WIN_UPDATE	= (1 << 1),	/* ACK updated window */
1004 	CA_ACK_ECE		= (1 << 2),	/* ECE bit is set on ack */
1005 };
1006 
1007 /*
1008  * Interface for adding new TCP congestion control handlers
1009  */
1010 #define TCP_CA_NAME_MAX	16
1011 #define TCP_CA_MAX	128
1012 #define TCP_CA_BUF_MAX	(TCP_CA_NAME_MAX*TCP_CA_MAX)
1013 
1014 #define TCP_CA_UNSPEC	0
1015 
1016 /* Algorithm can be set on socket without CAP_NET_ADMIN privileges */
1017 #define TCP_CONG_NON_RESTRICTED 0x1
1018 /* Requires ECN/ECT set on all packets */
1019 #define TCP_CONG_NEEDS_ECN	0x2
1020 #define TCP_CONG_MASK	(TCP_CONG_NON_RESTRICTED | TCP_CONG_NEEDS_ECN)
1021 
1022 union tcp_cc_info;
1023 
1024 struct ack_sample {
1025 	u32 pkts_acked;
1026 	s32 rtt_us;
1027 	u32 in_flight;
1028 };
1029 
1030 /* A rate sample measures the number of (original/retransmitted) data
1031  * packets delivered "delivered" over an interval of time "interval_us".
1032  * The tcp_rate.c code fills in the rate sample, and congestion
1033  * control modules that define a cong_control function to run at the end
1034  * of ACK processing can optionally chose to consult this sample when
1035  * setting cwnd and pacing rate.
1036  * A sample is invalid if "delivered" or "interval_us" is negative.
1037  */
1038 struct rate_sample {
1039 	u64  prior_mstamp; /* starting timestamp for interval */
1040 	u32  prior_delivered;	/* tp->delivered at "prior_mstamp" */
1041 	u32  prior_delivered_ce;/* tp->delivered_ce at "prior_mstamp" */
1042 	s32  delivered;		/* number of packets delivered over interval */
1043 	s32  delivered_ce;	/* number of packets delivered w/ CE marks*/
1044 	long interval_us;	/* time for tp->delivered to incr "delivered" */
1045 	u32 snd_interval_us;	/* snd interval for delivered packets */
1046 	u32 rcv_interval_us;	/* rcv interval for delivered packets */
1047 	long rtt_us;		/* RTT of last (S)ACKed packet (or -1) */
1048 	int  losses;		/* number of packets marked lost upon ACK */
1049 	u32  acked_sacked;	/* number of packets newly (S)ACKed upon ACK */
1050 	u32  prior_in_flight;	/* in flight before this ACK */
1051 	u32  last_end_seq;	/* end_seq of most recently ACKed packet */
1052 	bool is_app_limited;	/* is sample from packet with bubble in pipe? */
1053 	bool is_retrans;	/* is sample from retransmission? */
1054 	bool is_ack_delayed;	/* is this (likely) a delayed ACK? */
1055 };
1056 
1057 struct tcp_congestion_ops {
1058 /* fast path fields are put first to fill one cache line */
1059 
1060 	/* return slow start threshold (required) */
1061 	u32 (*ssthresh)(struct sock *sk);
1062 
1063 	/* do new cwnd calculation (required) */
1064 	void (*cong_avoid)(struct sock *sk, u32 ack, u32 acked);
1065 
1066 	/* call before changing ca_state (optional) */
1067 	void (*set_state)(struct sock *sk, u8 new_state);
1068 
1069 	/* call when cwnd event occurs (optional) */
1070 	void (*cwnd_event)(struct sock *sk, enum tcp_ca_event ev);
1071 
1072 	/* call when ack arrives (optional) */
1073 	void (*in_ack_event)(struct sock *sk, u32 flags);
1074 
1075 	/* hook for packet ack accounting (optional) */
1076 	void (*pkts_acked)(struct sock *sk, const struct ack_sample *sample);
1077 
1078 	/* override sysctl_tcp_min_tso_segs */
1079 	u32 (*min_tso_segs)(struct sock *sk);
1080 
1081 	/* call when packets are delivered to update cwnd and pacing rate,
1082 	 * after all the ca_state processing. (optional)
1083 	 */
1084 	void (*cong_control)(struct sock *sk, const struct rate_sample *rs);
1085 
1086 
1087 	/* new value of cwnd after loss (required) */
1088 	u32  (*undo_cwnd)(struct sock *sk);
1089 	/* returns the multiplier used in tcp_sndbuf_expand (optional) */
1090 	u32 (*sndbuf_expand)(struct sock *sk);
1091 
1092 /* control/slow paths put last */
1093 	/* get info for inet_diag (optional) */
1094 	size_t (*get_info)(struct sock *sk, u32 ext, int *attr,
1095 			   union tcp_cc_info *info);
1096 
1097 	char 			name[TCP_CA_NAME_MAX];
1098 	struct module		*owner;
1099 	struct list_head	list;
1100 	u32			key;
1101 	u32			flags;
1102 
1103 	/* initialize private data (optional) */
1104 	void (*init)(struct sock *sk);
1105 	/* cleanup private data  (optional) */
1106 	void (*release)(struct sock *sk);
1107 } ____cacheline_aligned_in_smp;
1108 
1109 int tcp_register_congestion_control(struct tcp_congestion_ops *type);
1110 void tcp_unregister_congestion_control(struct tcp_congestion_ops *type);
1111 
1112 void tcp_assign_congestion_control(struct sock *sk);
1113 void tcp_init_congestion_control(struct sock *sk);
1114 void tcp_cleanup_congestion_control(struct sock *sk);
1115 int tcp_set_default_congestion_control(struct net *net, const char *name);
1116 void tcp_get_default_congestion_control(struct net *net, char *name);
1117 void tcp_get_available_congestion_control(char *buf, size_t len);
1118 void tcp_get_allowed_congestion_control(char *buf, size_t len);
1119 int tcp_set_allowed_congestion_control(char *allowed);
1120 int tcp_set_congestion_control(struct sock *sk, const char *name, bool load,
1121 			       bool cap_net_admin);
1122 u32 tcp_slow_start(struct tcp_sock *tp, u32 acked);
1123 void tcp_cong_avoid_ai(struct tcp_sock *tp, u32 w, u32 acked);
1124 
1125 u32 tcp_reno_ssthresh(struct sock *sk);
1126 u32 tcp_reno_undo_cwnd(struct sock *sk);
1127 void tcp_reno_cong_avoid(struct sock *sk, u32 ack, u32 acked);
1128 extern struct tcp_congestion_ops tcp_reno;
1129 
1130 struct tcp_congestion_ops *tcp_ca_find(const char *name);
1131 struct tcp_congestion_ops *tcp_ca_find_key(u32 key);
1132 u32 tcp_ca_get_key_by_name(struct net *net, const char *name, bool *ecn_ca);
1133 #ifdef CONFIG_INET
1134 char *tcp_ca_get_name_by_key(u32 key, char *buffer);
1135 #else
1136 static inline char *tcp_ca_get_name_by_key(u32 key, char *buffer)
1137 {
1138 	return NULL;
1139 }
1140 #endif
1141 
1142 static inline bool tcp_ca_needs_ecn(const struct sock *sk)
1143 {
1144 	const struct inet_connection_sock *icsk = inet_csk(sk);
1145 
1146 	return icsk->icsk_ca_ops->flags & TCP_CONG_NEEDS_ECN;
1147 }
1148 
1149 static inline void tcp_ca_event(struct sock *sk, const enum tcp_ca_event event)
1150 {
1151 	const struct inet_connection_sock *icsk = inet_csk(sk);
1152 
1153 	if (icsk->icsk_ca_ops->cwnd_event)
1154 		icsk->icsk_ca_ops->cwnd_event(sk, event);
1155 }
1156 
1157 /* From tcp_cong.c */
1158 void tcp_set_ca_state(struct sock *sk, const u8 ca_state);
1159 
1160 /* From tcp_rate.c */
1161 void tcp_rate_skb_sent(struct sock *sk, struct sk_buff *skb);
1162 void tcp_rate_skb_delivered(struct sock *sk, struct sk_buff *skb,
1163 			    struct rate_sample *rs);
1164 void tcp_rate_gen(struct sock *sk, u32 delivered, u32 lost,
1165 		  bool is_sack_reneg, struct rate_sample *rs);
1166 void tcp_rate_check_app_limited(struct sock *sk);
1167 
1168 static inline bool tcp_skb_sent_after(u64 t1, u64 t2, u32 seq1, u32 seq2)
1169 {
1170 	return t1 > t2 || (t1 == t2 && after(seq1, seq2));
1171 }
1172 
1173 /* These functions determine how the current flow behaves in respect of SACK
1174  * handling. SACK is negotiated with the peer, and therefore it can vary
1175  * between different flows.
1176  *
1177  * tcp_is_sack - SACK enabled
1178  * tcp_is_reno - No SACK
1179  */
1180 static inline int tcp_is_sack(const struct tcp_sock *tp)
1181 {
1182 	return likely(tp->rx_opt.sack_ok);
1183 }
1184 
1185 static inline bool tcp_is_reno(const struct tcp_sock *tp)
1186 {
1187 	return !tcp_is_sack(tp);
1188 }
1189 
1190 static inline unsigned int tcp_left_out(const struct tcp_sock *tp)
1191 {
1192 	return tp->sacked_out + tp->lost_out;
1193 }
1194 
1195 /* This determines how many packets are "in the network" to the best
1196  * of our knowledge.  In many cases it is conservative, but where
1197  * detailed information is available from the receiver (via SACK
1198  * blocks etc.) we can make more aggressive calculations.
1199  *
1200  * Use this for decisions involving congestion control, use just
1201  * tp->packets_out to determine if the send queue is empty or not.
1202  *
1203  * Read this equation as:
1204  *
1205  *	"Packets sent once on transmission queue" MINUS
1206  *	"Packets left network, but not honestly ACKed yet" PLUS
1207  *	"Packets fast retransmitted"
1208  */
1209 static inline unsigned int tcp_packets_in_flight(const struct tcp_sock *tp)
1210 {
1211 	return tp->packets_out - tcp_left_out(tp) + tp->retrans_out;
1212 }
1213 
1214 #define TCP_INFINITE_SSTHRESH	0x7fffffff
1215 
1216 static inline u32 tcp_snd_cwnd(const struct tcp_sock *tp)
1217 {
1218 	return tp->snd_cwnd;
1219 }
1220 
1221 static inline void tcp_snd_cwnd_set(struct tcp_sock *tp, u32 val)
1222 {
1223 	WARN_ON_ONCE((int)val <= 0);
1224 	tp->snd_cwnd = val;
1225 }
1226 
1227 static inline bool tcp_in_slow_start(const struct tcp_sock *tp)
1228 {
1229 	return tcp_snd_cwnd(tp) < tp->snd_ssthresh;
1230 }
1231 
1232 static inline bool tcp_in_initial_slowstart(const struct tcp_sock *tp)
1233 {
1234 	return tp->snd_ssthresh >= TCP_INFINITE_SSTHRESH;
1235 }
1236 
1237 static inline bool tcp_in_cwnd_reduction(const struct sock *sk)
1238 {
1239 	return (TCPF_CA_CWR | TCPF_CA_Recovery) &
1240 	       (1 << inet_csk(sk)->icsk_ca_state);
1241 }
1242 
1243 /* If cwnd > ssthresh, we may raise ssthresh to be half-way to cwnd.
1244  * The exception is cwnd reduction phase, when cwnd is decreasing towards
1245  * ssthresh.
1246  */
1247 static inline __u32 tcp_current_ssthresh(const struct sock *sk)
1248 {
1249 	const struct tcp_sock *tp = tcp_sk(sk);
1250 
1251 	if (tcp_in_cwnd_reduction(sk))
1252 		return tp->snd_ssthresh;
1253 	else
1254 		return max(tp->snd_ssthresh,
1255 			   ((tcp_snd_cwnd(tp) >> 1) +
1256 			    (tcp_snd_cwnd(tp) >> 2)));
1257 }
1258 
1259 /* Use define here intentionally to get WARN_ON location shown at the caller */
1260 #define tcp_verify_left_out(tp)	WARN_ON(tcp_left_out(tp) > tp->packets_out)
1261 
1262 void tcp_enter_cwr(struct sock *sk);
1263 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst);
1264 
1265 /* The maximum number of MSS of available cwnd for which TSO defers
1266  * sending if not using sysctl_tcp_tso_win_divisor.
1267  */
1268 static inline __u32 tcp_max_tso_deferred_mss(const struct tcp_sock *tp)
1269 {
1270 	return 3;
1271 }
1272 
1273 /* Returns end sequence number of the receiver's advertised window */
1274 static inline u32 tcp_wnd_end(const struct tcp_sock *tp)
1275 {
1276 	return tp->snd_una + tp->snd_wnd;
1277 }
1278 
1279 /* We follow the spirit of RFC2861 to validate cwnd but implement a more
1280  * flexible approach. The RFC suggests cwnd should not be raised unless
1281  * it was fully used previously. And that's exactly what we do in
1282  * congestion avoidance mode. But in slow start we allow cwnd to grow
1283  * as long as the application has used half the cwnd.
1284  * Example :
1285  *    cwnd is 10 (IW10), but application sends 9 frames.
1286  *    We allow cwnd to reach 18 when all frames are ACKed.
1287  * This check is safe because it's as aggressive as slow start which already
1288  * risks 100% overshoot. The advantage is that we discourage application to
1289  * either send more filler packets or data to artificially blow up the cwnd
1290  * usage, and allow application-limited process to probe bw more aggressively.
1291  */
1292 static inline bool tcp_is_cwnd_limited(const struct sock *sk)
1293 {
1294 	const struct tcp_sock *tp = tcp_sk(sk);
1295 
1296 	/* If in slow start, ensure cwnd grows to twice what was ACKed. */
1297 	if (tcp_in_slow_start(tp))
1298 		return tcp_snd_cwnd(tp) < 2 * tp->max_packets_out;
1299 
1300 	return tp->is_cwnd_limited;
1301 }
1302 
1303 /* BBR congestion control needs pacing.
1304  * Same remark for SO_MAX_PACING_RATE.
1305  * sch_fq packet scheduler is efficiently handling pacing,
1306  * but is not always installed/used.
1307  * Return true if TCP stack should pace packets itself.
1308  */
1309 static inline bool tcp_needs_internal_pacing(const struct sock *sk)
1310 {
1311 	return smp_load_acquire(&sk->sk_pacing_status) == SK_PACING_NEEDED;
1312 }
1313 
1314 /* Estimates in how many jiffies next packet for this flow can be sent.
1315  * Scheduling a retransmit timer too early would be silly.
1316  */
1317 static inline unsigned long tcp_pacing_delay(const struct sock *sk)
1318 {
1319 	s64 delay = tcp_sk(sk)->tcp_wstamp_ns - tcp_sk(sk)->tcp_clock_cache;
1320 
1321 	return delay > 0 ? nsecs_to_jiffies(delay) : 0;
1322 }
1323 
1324 static inline void tcp_reset_xmit_timer(struct sock *sk,
1325 					const int what,
1326 					unsigned long when,
1327 					const unsigned long max_when)
1328 {
1329 	inet_csk_reset_xmit_timer(sk, what, when + tcp_pacing_delay(sk),
1330 				  max_when);
1331 }
1332 
1333 /* Something is really bad, we could not queue an additional packet,
1334  * because qdisc is full or receiver sent a 0 window, or we are paced.
1335  * We do not want to add fuel to the fire, or abort too early,
1336  * so make sure the timer we arm now is at least 200ms in the future,
1337  * regardless of current icsk_rto value (as it could be ~2ms)
1338  */
1339 static inline unsigned long tcp_probe0_base(const struct sock *sk)
1340 {
1341 	return max_t(unsigned long, inet_csk(sk)->icsk_rto, TCP_RTO_MIN);
1342 }
1343 
1344 /* Variant of inet_csk_rto_backoff() used for zero window probes */
1345 static inline unsigned long tcp_probe0_when(const struct sock *sk,
1346 					    unsigned long max_when)
1347 {
1348 	u8 backoff = min_t(u8, ilog2(TCP_RTO_MAX / TCP_RTO_MIN) + 1,
1349 			   inet_csk(sk)->icsk_backoff);
1350 	u64 when = (u64)tcp_probe0_base(sk) << backoff;
1351 
1352 	return (unsigned long)min_t(u64, when, max_when);
1353 }
1354 
1355 static inline void tcp_check_probe_timer(struct sock *sk)
1356 {
1357 	if (!tcp_sk(sk)->packets_out && !inet_csk(sk)->icsk_pending)
1358 		tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
1359 				     tcp_probe0_base(sk), TCP_RTO_MAX);
1360 }
1361 
1362 static inline void tcp_init_wl(struct tcp_sock *tp, u32 seq)
1363 {
1364 	tp->snd_wl1 = seq;
1365 }
1366 
1367 static inline void tcp_update_wl(struct tcp_sock *tp, u32 seq)
1368 {
1369 	tp->snd_wl1 = seq;
1370 }
1371 
1372 /*
1373  * Calculate(/check) TCP checksum
1374  */
1375 static inline __sum16 tcp_v4_check(int len, __be32 saddr,
1376 				   __be32 daddr, __wsum base)
1377 {
1378 	return csum_tcpudp_magic(saddr, daddr, len, IPPROTO_TCP, base);
1379 }
1380 
1381 static inline bool tcp_checksum_complete(struct sk_buff *skb)
1382 {
1383 	return !skb_csum_unnecessary(skb) &&
1384 		__skb_checksum_complete(skb);
1385 }
1386 
1387 bool tcp_add_backlog(struct sock *sk, struct sk_buff *skb,
1388 		     enum skb_drop_reason *reason);
1389 
1390 
1391 int tcp_filter(struct sock *sk, struct sk_buff *skb);
1392 void tcp_set_state(struct sock *sk, int state);
1393 void tcp_done(struct sock *sk);
1394 int tcp_abort(struct sock *sk, int err);
1395 
1396 static inline void tcp_sack_reset(struct tcp_options_received *rx_opt)
1397 {
1398 	rx_opt->dsack = 0;
1399 	rx_opt->num_sacks = 0;
1400 }
1401 
1402 void tcp_cwnd_restart(struct sock *sk, s32 delta);
1403 
1404 static inline void tcp_slow_start_after_idle_check(struct sock *sk)
1405 {
1406 	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1407 	struct tcp_sock *tp = tcp_sk(sk);
1408 	s32 delta;
1409 
1410 	if (!READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_slow_start_after_idle) ||
1411 	    tp->packets_out || ca_ops->cong_control)
1412 		return;
1413 	delta = tcp_jiffies32 - tp->lsndtime;
1414 	if (delta > inet_csk(sk)->icsk_rto)
1415 		tcp_cwnd_restart(sk, delta);
1416 }
1417 
1418 /* Determine a window scaling and initial window to offer. */
1419 void tcp_select_initial_window(const struct sock *sk, int __space,
1420 			       __u32 mss, __u32 *rcv_wnd,
1421 			       __u32 *window_clamp, int wscale_ok,
1422 			       __u8 *rcv_wscale, __u32 init_rcv_wnd);
1423 
1424 static inline int tcp_win_from_space(const struct sock *sk, int space)
1425 {
1426 	int tcp_adv_win_scale = sock_net(sk)->ipv4.sysctl_tcp_adv_win_scale;
1427 
1428 	return tcp_adv_win_scale <= 0 ?
1429 		(space>>(-tcp_adv_win_scale)) :
1430 		space - (space>>tcp_adv_win_scale);
1431 }
1432 
1433 /* Note: caller must be prepared to deal with negative returns */
1434 static inline int tcp_space(const struct sock *sk)
1435 {
1436 	return tcp_win_from_space(sk, READ_ONCE(sk->sk_rcvbuf) -
1437 				  READ_ONCE(sk->sk_backlog.len) -
1438 				  atomic_read(&sk->sk_rmem_alloc));
1439 }
1440 
1441 static inline int tcp_full_space(const struct sock *sk)
1442 {
1443 	return tcp_win_from_space(sk, READ_ONCE(sk->sk_rcvbuf));
1444 }
1445 
1446 static inline void tcp_adjust_rcv_ssthresh(struct sock *sk)
1447 {
1448 	int unused_mem = sk_unused_reserved_mem(sk);
1449 	struct tcp_sock *tp = tcp_sk(sk);
1450 
1451 	tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
1452 	if (unused_mem)
1453 		tp->rcv_ssthresh = max_t(u32, tp->rcv_ssthresh,
1454 					 tcp_win_from_space(sk, unused_mem));
1455 }
1456 
1457 void tcp_cleanup_rbuf(struct sock *sk, int copied);
1458 
1459 /* We provision sk_rcvbuf around 200% of sk_rcvlowat.
1460  * If 87.5 % (7/8) of the space has been consumed, we want to override
1461  * SO_RCVLOWAT constraint, since we are receiving skbs with too small
1462  * len/truesize ratio.
1463  */
1464 static inline bool tcp_rmem_pressure(const struct sock *sk)
1465 {
1466 	int rcvbuf, threshold;
1467 
1468 	if (tcp_under_memory_pressure(sk))
1469 		return true;
1470 
1471 	rcvbuf = READ_ONCE(sk->sk_rcvbuf);
1472 	threshold = rcvbuf - (rcvbuf >> 3);
1473 
1474 	return atomic_read(&sk->sk_rmem_alloc) > threshold;
1475 }
1476 
1477 static inline bool tcp_epollin_ready(const struct sock *sk, int target)
1478 {
1479 	const struct tcp_sock *tp = tcp_sk(sk);
1480 	int avail = READ_ONCE(tp->rcv_nxt) - READ_ONCE(tp->copied_seq);
1481 
1482 	if (avail <= 0)
1483 		return false;
1484 
1485 	return (avail >= target) || tcp_rmem_pressure(sk) ||
1486 	       (tcp_receive_window(tp) <= inet_csk(sk)->icsk_ack.rcv_mss);
1487 }
1488 
1489 extern void tcp_openreq_init_rwin(struct request_sock *req,
1490 				  const struct sock *sk_listener,
1491 				  const struct dst_entry *dst);
1492 
1493 void tcp_enter_memory_pressure(struct sock *sk);
1494 void tcp_leave_memory_pressure(struct sock *sk);
1495 
1496 static inline int keepalive_intvl_when(const struct tcp_sock *tp)
1497 {
1498 	struct net *net = sock_net((struct sock *)tp);
1499 
1500 	return tp->keepalive_intvl ? :
1501 		READ_ONCE(net->ipv4.sysctl_tcp_keepalive_intvl);
1502 }
1503 
1504 static inline int keepalive_time_when(const struct tcp_sock *tp)
1505 {
1506 	struct net *net = sock_net((struct sock *)tp);
1507 
1508 	return tp->keepalive_time ? :
1509 		READ_ONCE(net->ipv4.sysctl_tcp_keepalive_time);
1510 }
1511 
1512 static inline int keepalive_probes(const struct tcp_sock *tp)
1513 {
1514 	struct net *net = sock_net((struct sock *)tp);
1515 
1516 	return tp->keepalive_probes ? :
1517 		READ_ONCE(net->ipv4.sysctl_tcp_keepalive_probes);
1518 }
1519 
1520 static inline u32 keepalive_time_elapsed(const struct tcp_sock *tp)
1521 {
1522 	const struct inet_connection_sock *icsk = &tp->inet_conn;
1523 
1524 	return min_t(u32, tcp_jiffies32 - icsk->icsk_ack.lrcvtime,
1525 			  tcp_jiffies32 - tp->rcv_tstamp);
1526 }
1527 
1528 static inline int tcp_fin_time(const struct sock *sk)
1529 {
1530 	int fin_timeout = tcp_sk(sk)->linger2 ? :
1531 		READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_fin_timeout);
1532 	const int rto = inet_csk(sk)->icsk_rto;
1533 
1534 	if (fin_timeout < (rto << 2) - (rto >> 1))
1535 		fin_timeout = (rto << 2) - (rto >> 1);
1536 
1537 	return fin_timeout;
1538 }
1539 
1540 static inline bool tcp_paws_check(const struct tcp_options_received *rx_opt,
1541 				  int paws_win)
1542 {
1543 	if ((s32)(rx_opt->ts_recent - rx_opt->rcv_tsval) <= paws_win)
1544 		return true;
1545 	if (unlikely(!time_before32(ktime_get_seconds(),
1546 				    rx_opt->ts_recent_stamp + TCP_PAWS_24DAYS)))
1547 		return true;
1548 	/*
1549 	 * Some OSes send SYN and SYNACK messages with tsval=0 tsecr=0,
1550 	 * then following tcp messages have valid values. Ignore 0 value,
1551 	 * or else 'negative' tsval might forbid us to accept their packets.
1552 	 */
1553 	if (!rx_opt->ts_recent)
1554 		return true;
1555 	return false;
1556 }
1557 
1558 static inline bool tcp_paws_reject(const struct tcp_options_received *rx_opt,
1559 				   int rst)
1560 {
1561 	if (tcp_paws_check(rx_opt, 0))
1562 		return false;
1563 
1564 	/* RST segments are not recommended to carry timestamp,
1565 	   and, if they do, it is recommended to ignore PAWS because
1566 	   "their cleanup function should take precedence over timestamps."
1567 	   Certainly, it is mistake. It is necessary to understand the reasons
1568 	   of this constraint to relax it: if peer reboots, clock may go
1569 	   out-of-sync and half-open connections will not be reset.
1570 	   Actually, the problem would be not existing if all
1571 	   the implementations followed draft about maintaining clock
1572 	   via reboots. Linux-2.2 DOES NOT!
1573 
1574 	   However, we can relax time bounds for RST segments to MSL.
1575 	 */
1576 	if (rst && !time_before32(ktime_get_seconds(),
1577 				  rx_opt->ts_recent_stamp + TCP_PAWS_MSL))
1578 		return false;
1579 	return true;
1580 }
1581 
1582 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
1583 			  int mib_idx, u32 *last_oow_ack_time);
1584 
1585 static inline void tcp_mib_init(struct net *net)
1586 {
1587 	/* See RFC 2012 */
1588 	TCP_ADD_STATS(net, TCP_MIB_RTOALGORITHM, 1);
1589 	TCP_ADD_STATS(net, TCP_MIB_RTOMIN, TCP_RTO_MIN*1000/HZ);
1590 	TCP_ADD_STATS(net, TCP_MIB_RTOMAX, TCP_RTO_MAX*1000/HZ);
1591 	TCP_ADD_STATS(net, TCP_MIB_MAXCONN, -1);
1592 }
1593 
1594 /* from STCP */
1595 static inline void tcp_clear_retrans_hints_partial(struct tcp_sock *tp)
1596 {
1597 	tp->lost_skb_hint = NULL;
1598 }
1599 
1600 static inline void tcp_clear_all_retrans_hints(struct tcp_sock *tp)
1601 {
1602 	tcp_clear_retrans_hints_partial(tp);
1603 	tp->retransmit_skb_hint = NULL;
1604 }
1605 
1606 union tcp_md5_addr {
1607 	struct in_addr  a4;
1608 #if IS_ENABLED(CONFIG_IPV6)
1609 	struct in6_addr	a6;
1610 #endif
1611 };
1612 
1613 /* - key database */
1614 struct tcp_md5sig_key {
1615 	struct hlist_node	node;
1616 	u8			keylen;
1617 	u8			family; /* AF_INET or AF_INET6 */
1618 	u8			prefixlen;
1619 	u8			flags;
1620 	union tcp_md5_addr	addr;
1621 	int			l3index; /* set if key added with L3 scope */
1622 	u8			key[TCP_MD5SIG_MAXKEYLEN];
1623 	struct rcu_head		rcu;
1624 };
1625 
1626 /* - sock block */
1627 struct tcp_md5sig_info {
1628 	struct hlist_head	head;
1629 	struct rcu_head		rcu;
1630 };
1631 
1632 /* - pseudo header */
1633 struct tcp4_pseudohdr {
1634 	__be32		saddr;
1635 	__be32		daddr;
1636 	__u8		pad;
1637 	__u8		protocol;
1638 	__be16		len;
1639 };
1640 
1641 struct tcp6_pseudohdr {
1642 	struct in6_addr	saddr;
1643 	struct in6_addr daddr;
1644 	__be32		len;
1645 	__be32		protocol;	/* including padding */
1646 };
1647 
1648 union tcp_md5sum_block {
1649 	struct tcp4_pseudohdr ip4;
1650 #if IS_ENABLED(CONFIG_IPV6)
1651 	struct tcp6_pseudohdr ip6;
1652 #endif
1653 };
1654 
1655 /* - pool: digest algorithm, hash description and scratch buffer */
1656 struct tcp_md5sig_pool {
1657 	struct ahash_request	*md5_req;
1658 	void			*scratch;
1659 };
1660 
1661 /* - functions */
1662 int tcp_v4_md5_hash_skb(char *md5_hash, const struct tcp_md5sig_key *key,
1663 			const struct sock *sk, const struct sk_buff *skb);
1664 int tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr,
1665 		   int family, u8 prefixlen, int l3index, u8 flags,
1666 		   const u8 *newkey, u8 newkeylen, gfp_t gfp);
1667 int tcp_md5_do_del(struct sock *sk, const union tcp_md5_addr *addr,
1668 		   int family, u8 prefixlen, int l3index, u8 flags);
1669 struct tcp_md5sig_key *tcp_v4_md5_lookup(const struct sock *sk,
1670 					 const struct sock *addr_sk);
1671 
1672 #ifdef CONFIG_TCP_MD5SIG
1673 #include <linux/jump_label.h>
1674 extern struct static_key_false tcp_md5_needed;
1675 struct tcp_md5sig_key *__tcp_md5_do_lookup(const struct sock *sk, int l3index,
1676 					   const union tcp_md5_addr *addr,
1677 					   int family);
1678 static inline struct tcp_md5sig_key *
1679 tcp_md5_do_lookup(const struct sock *sk, int l3index,
1680 		  const union tcp_md5_addr *addr, int family)
1681 {
1682 	if (!static_branch_unlikely(&tcp_md5_needed))
1683 		return NULL;
1684 	return __tcp_md5_do_lookup(sk, l3index, addr, family);
1685 }
1686 
1687 enum skb_drop_reason
1688 tcp_inbound_md5_hash(const struct sock *sk, const struct sk_buff *skb,
1689 		     const void *saddr, const void *daddr,
1690 		     int family, int dif, int sdif);
1691 
1692 
1693 #define tcp_twsk_md5_key(twsk)	((twsk)->tw_md5_key)
1694 #else
1695 static inline struct tcp_md5sig_key *
1696 tcp_md5_do_lookup(const struct sock *sk, int l3index,
1697 		  const union tcp_md5_addr *addr, int family)
1698 {
1699 	return NULL;
1700 }
1701 
1702 static inline enum skb_drop_reason
1703 tcp_inbound_md5_hash(const struct sock *sk, const struct sk_buff *skb,
1704 		     const void *saddr, const void *daddr,
1705 		     int family, int dif, int sdif)
1706 {
1707 	return SKB_NOT_DROPPED_YET;
1708 }
1709 #define tcp_twsk_md5_key(twsk)	NULL
1710 #endif
1711 
1712 bool tcp_alloc_md5sig_pool(void);
1713 
1714 struct tcp_md5sig_pool *tcp_get_md5sig_pool(void);
1715 static inline void tcp_put_md5sig_pool(void)
1716 {
1717 	local_bh_enable();
1718 }
1719 
1720 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *, const struct sk_buff *,
1721 			  unsigned int header_len);
1722 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp,
1723 		     const struct tcp_md5sig_key *key);
1724 
1725 /* From tcp_fastopen.c */
1726 void tcp_fastopen_cache_get(struct sock *sk, u16 *mss,
1727 			    struct tcp_fastopen_cookie *cookie);
1728 void tcp_fastopen_cache_set(struct sock *sk, u16 mss,
1729 			    struct tcp_fastopen_cookie *cookie, bool syn_lost,
1730 			    u16 try_exp);
1731 struct tcp_fastopen_request {
1732 	/* Fast Open cookie. Size 0 means a cookie request */
1733 	struct tcp_fastopen_cookie	cookie;
1734 	struct msghdr			*data;  /* data in MSG_FASTOPEN */
1735 	size_t				size;
1736 	int				copied;	/* queued in tcp_connect() */
1737 	struct ubuf_info		*uarg;
1738 };
1739 void tcp_free_fastopen_req(struct tcp_sock *tp);
1740 void tcp_fastopen_destroy_cipher(struct sock *sk);
1741 void tcp_fastopen_ctx_destroy(struct net *net);
1742 int tcp_fastopen_reset_cipher(struct net *net, struct sock *sk,
1743 			      void *primary_key, void *backup_key);
1744 int tcp_fastopen_get_cipher(struct net *net, struct inet_connection_sock *icsk,
1745 			    u64 *key);
1746 void tcp_fastopen_add_skb(struct sock *sk, struct sk_buff *skb);
1747 struct sock *tcp_try_fastopen(struct sock *sk, struct sk_buff *skb,
1748 			      struct request_sock *req,
1749 			      struct tcp_fastopen_cookie *foc,
1750 			      const struct dst_entry *dst);
1751 void tcp_fastopen_init_key_once(struct net *net);
1752 bool tcp_fastopen_cookie_check(struct sock *sk, u16 *mss,
1753 			     struct tcp_fastopen_cookie *cookie);
1754 bool tcp_fastopen_defer_connect(struct sock *sk, int *err);
1755 #define TCP_FASTOPEN_KEY_LENGTH sizeof(siphash_key_t)
1756 #define TCP_FASTOPEN_KEY_MAX 2
1757 #define TCP_FASTOPEN_KEY_BUF_LENGTH \
1758 	(TCP_FASTOPEN_KEY_LENGTH * TCP_FASTOPEN_KEY_MAX)
1759 
1760 /* Fastopen key context */
1761 struct tcp_fastopen_context {
1762 	siphash_key_t	key[TCP_FASTOPEN_KEY_MAX];
1763 	int		num;
1764 	struct rcu_head	rcu;
1765 };
1766 
1767 void tcp_fastopen_active_disable(struct sock *sk);
1768 bool tcp_fastopen_active_should_disable(struct sock *sk);
1769 void tcp_fastopen_active_disable_ofo_check(struct sock *sk);
1770 void tcp_fastopen_active_detect_blackhole(struct sock *sk, bool expired);
1771 
1772 /* Caller needs to wrap with rcu_read_(un)lock() */
1773 static inline
1774 struct tcp_fastopen_context *tcp_fastopen_get_ctx(const struct sock *sk)
1775 {
1776 	struct tcp_fastopen_context *ctx;
1777 
1778 	ctx = rcu_dereference(inet_csk(sk)->icsk_accept_queue.fastopenq.ctx);
1779 	if (!ctx)
1780 		ctx = rcu_dereference(sock_net(sk)->ipv4.tcp_fastopen_ctx);
1781 	return ctx;
1782 }
1783 
1784 static inline
1785 bool tcp_fastopen_cookie_match(const struct tcp_fastopen_cookie *foc,
1786 			       const struct tcp_fastopen_cookie *orig)
1787 {
1788 	if (orig->len == TCP_FASTOPEN_COOKIE_SIZE &&
1789 	    orig->len == foc->len &&
1790 	    !memcmp(orig->val, foc->val, foc->len))
1791 		return true;
1792 	return false;
1793 }
1794 
1795 static inline
1796 int tcp_fastopen_context_len(const struct tcp_fastopen_context *ctx)
1797 {
1798 	return ctx->num;
1799 }
1800 
1801 /* Latencies incurred by various limits for a sender. They are
1802  * chronograph-like stats that are mutually exclusive.
1803  */
1804 enum tcp_chrono {
1805 	TCP_CHRONO_UNSPEC,
1806 	TCP_CHRONO_BUSY, /* Actively sending data (non-empty write queue) */
1807 	TCP_CHRONO_RWND_LIMITED, /* Stalled by insufficient receive window */
1808 	TCP_CHRONO_SNDBUF_LIMITED, /* Stalled by insufficient send buffer */
1809 	__TCP_CHRONO_MAX,
1810 };
1811 
1812 void tcp_chrono_start(struct sock *sk, const enum tcp_chrono type);
1813 void tcp_chrono_stop(struct sock *sk, const enum tcp_chrono type);
1814 
1815 /* This helper is needed, because skb->tcp_tsorted_anchor uses
1816  * the same memory storage than skb->destructor/_skb_refdst
1817  */
1818 static inline void tcp_skb_tsorted_anchor_cleanup(struct sk_buff *skb)
1819 {
1820 	skb->destructor = NULL;
1821 	skb->_skb_refdst = 0UL;
1822 }
1823 
1824 #define tcp_skb_tsorted_save(skb) {		\
1825 	unsigned long _save = skb->_skb_refdst;	\
1826 	skb->_skb_refdst = 0UL;
1827 
1828 #define tcp_skb_tsorted_restore(skb)		\
1829 	skb->_skb_refdst = _save;		\
1830 }
1831 
1832 void tcp_write_queue_purge(struct sock *sk);
1833 
1834 static inline struct sk_buff *tcp_rtx_queue_head(const struct sock *sk)
1835 {
1836 	return skb_rb_first(&sk->tcp_rtx_queue);
1837 }
1838 
1839 static inline struct sk_buff *tcp_rtx_queue_tail(const struct sock *sk)
1840 {
1841 	return skb_rb_last(&sk->tcp_rtx_queue);
1842 }
1843 
1844 static inline struct sk_buff *tcp_write_queue_tail(const struct sock *sk)
1845 {
1846 	return skb_peek_tail(&sk->sk_write_queue);
1847 }
1848 
1849 #define tcp_for_write_queue_from_safe(skb, tmp, sk)			\
1850 	skb_queue_walk_from_safe(&(sk)->sk_write_queue, skb, tmp)
1851 
1852 static inline struct sk_buff *tcp_send_head(const struct sock *sk)
1853 {
1854 	return skb_peek(&sk->sk_write_queue);
1855 }
1856 
1857 static inline bool tcp_skb_is_last(const struct sock *sk,
1858 				   const struct sk_buff *skb)
1859 {
1860 	return skb_queue_is_last(&sk->sk_write_queue, skb);
1861 }
1862 
1863 /**
1864  * tcp_write_queue_empty - test if any payload (or FIN) is available in write queue
1865  * @sk: socket
1866  *
1867  * Since the write queue can have a temporary empty skb in it,
1868  * we must not use "return skb_queue_empty(&sk->sk_write_queue)"
1869  */
1870 static inline bool tcp_write_queue_empty(const struct sock *sk)
1871 {
1872 	const struct tcp_sock *tp = tcp_sk(sk);
1873 
1874 	return tp->write_seq == tp->snd_nxt;
1875 }
1876 
1877 static inline bool tcp_rtx_queue_empty(const struct sock *sk)
1878 {
1879 	return RB_EMPTY_ROOT(&sk->tcp_rtx_queue);
1880 }
1881 
1882 static inline bool tcp_rtx_and_write_queues_empty(const struct sock *sk)
1883 {
1884 	return tcp_rtx_queue_empty(sk) && tcp_write_queue_empty(sk);
1885 }
1886 
1887 static inline void tcp_add_write_queue_tail(struct sock *sk, struct sk_buff *skb)
1888 {
1889 	__skb_queue_tail(&sk->sk_write_queue, skb);
1890 
1891 	/* Queue it, remembering where we must start sending. */
1892 	if (sk->sk_write_queue.next == skb)
1893 		tcp_chrono_start(sk, TCP_CHRONO_BUSY);
1894 }
1895 
1896 /* Insert new before skb on the write queue of sk.  */
1897 static inline void tcp_insert_write_queue_before(struct sk_buff *new,
1898 						  struct sk_buff *skb,
1899 						  struct sock *sk)
1900 {
1901 	__skb_queue_before(&sk->sk_write_queue, skb, new);
1902 }
1903 
1904 static inline void tcp_unlink_write_queue(struct sk_buff *skb, struct sock *sk)
1905 {
1906 	tcp_skb_tsorted_anchor_cleanup(skb);
1907 	__skb_unlink(skb, &sk->sk_write_queue);
1908 }
1909 
1910 void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb);
1911 
1912 static inline void tcp_rtx_queue_unlink(struct sk_buff *skb, struct sock *sk)
1913 {
1914 	tcp_skb_tsorted_anchor_cleanup(skb);
1915 	rb_erase(&skb->rbnode, &sk->tcp_rtx_queue);
1916 }
1917 
1918 static inline void tcp_rtx_queue_unlink_and_free(struct sk_buff *skb, struct sock *sk)
1919 {
1920 	list_del(&skb->tcp_tsorted_anchor);
1921 	tcp_rtx_queue_unlink(skb, sk);
1922 	tcp_wmem_free_skb(sk, skb);
1923 }
1924 
1925 static inline void tcp_push_pending_frames(struct sock *sk)
1926 {
1927 	if (tcp_send_head(sk)) {
1928 		struct tcp_sock *tp = tcp_sk(sk);
1929 
1930 		__tcp_push_pending_frames(sk, tcp_current_mss(sk), tp->nonagle);
1931 	}
1932 }
1933 
1934 /* Start sequence of the skb just after the highest skb with SACKed
1935  * bit, valid only if sacked_out > 0 or when the caller has ensured
1936  * validity by itself.
1937  */
1938 static inline u32 tcp_highest_sack_seq(struct tcp_sock *tp)
1939 {
1940 	if (!tp->sacked_out)
1941 		return tp->snd_una;
1942 
1943 	if (tp->highest_sack == NULL)
1944 		return tp->snd_nxt;
1945 
1946 	return TCP_SKB_CB(tp->highest_sack)->seq;
1947 }
1948 
1949 static inline void tcp_advance_highest_sack(struct sock *sk, struct sk_buff *skb)
1950 {
1951 	tcp_sk(sk)->highest_sack = skb_rb_next(skb);
1952 }
1953 
1954 static inline struct sk_buff *tcp_highest_sack(struct sock *sk)
1955 {
1956 	return tcp_sk(sk)->highest_sack;
1957 }
1958 
1959 static inline void tcp_highest_sack_reset(struct sock *sk)
1960 {
1961 	tcp_sk(sk)->highest_sack = tcp_rtx_queue_head(sk);
1962 }
1963 
1964 /* Called when old skb is about to be deleted and replaced by new skb */
1965 static inline void tcp_highest_sack_replace(struct sock *sk,
1966 					    struct sk_buff *old,
1967 					    struct sk_buff *new)
1968 {
1969 	if (old == tcp_highest_sack(sk))
1970 		tcp_sk(sk)->highest_sack = new;
1971 }
1972 
1973 /* This helper checks if socket has IP_TRANSPARENT set */
1974 static inline bool inet_sk_transparent(const struct sock *sk)
1975 {
1976 	switch (sk->sk_state) {
1977 	case TCP_TIME_WAIT:
1978 		return inet_twsk(sk)->tw_transparent;
1979 	case TCP_NEW_SYN_RECV:
1980 		return inet_rsk(inet_reqsk(sk))->no_srccheck;
1981 	}
1982 	return inet_sk(sk)->transparent;
1983 }
1984 
1985 /* Determines whether this is a thin stream (which may suffer from
1986  * increased latency). Used to trigger latency-reducing mechanisms.
1987  */
1988 static inline bool tcp_stream_is_thin(struct tcp_sock *tp)
1989 {
1990 	return tp->packets_out < 4 && !tcp_in_initial_slowstart(tp);
1991 }
1992 
1993 /* /proc */
1994 enum tcp_seq_states {
1995 	TCP_SEQ_STATE_LISTENING,
1996 	TCP_SEQ_STATE_ESTABLISHED,
1997 };
1998 
1999 void *tcp_seq_start(struct seq_file *seq, loff_t *pos);
2000 void *tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos);
2001 void tcp_seq_stop(struct seq_file *seq, void *v);
2002 
2003 struct tcp_seq_afinfo {
2004 	sa_family_t			family;
2005 };
2006 
2007 struct tcp_iter_state {
2008 	struct seq_net_private	p;
2009 	enum tcp_seq_states	state;
2010 	struct sock		*syn_wait_sk;
2011 	int			bucket, offset, sbucket, num;
2012 	loff_t			last_pos;
2013 };
2014 
2015 extern struct request_sock_ops tcp_request_sock_ops;
2016 extern struct request_sock_ops tcp6_request_sock_ops;
2017 
2018 void tcp_v4_destroy_sock(struct sock *sk);
2019 
2020 struct sk_buff *tcp_gso_segment(struct sk_buff *skb,
2021 				netdev_features_t features);
2022 struct sk_buff *tcp_gro_receive(struct list_head *head, struct sk_buff *skb);
2023 INDIRECT_CALLABLE_DECLARE(int tcp4_gro_complete(struct sk_buff *skb, int thoff));
2024 INDIRECT_CALLABLE_DECLARE(struct sk_buff *tcp4_gro_receive(struct list_head *head, struct sk_buff *skb));
2025 INDIRECT_CALLABLE_DECLARE(int tcp6_gro_complete(struct sk_buff *skb, int thoff));
2026 INDIRECT_CALLABLE_DECLARE(struct sk_buff *tcp6_gro_receive(struct list_head *head, struct sk_buff *skb));
2027 int tcp_gro_complete(struct sk_buff *skb);
2028 
2029 void __tcp_v4_send_check(struct sk_buff *skb, __be32 saddr, __be32 daddr);
2030 
2031 static inline u32 tcp_notsent_lowat(const struct tcp_sock *tp)
2032 {
2033 	struct net *net = sock_net((struct sock *)tp);
2034 	return tp->notsent_lowat ?: READ_ONCE(net->ipv4.sysctl_tcp_notsent_lowat);
2035 }
2036 
2037 bool tcp_stream_memory_free(const struct sock *sk, int wake);
2038 
2039 #ifdef CONFIG_PROC_FS
2040 int tcp4_proc_init(void);
2041 void tcp4_proc_exit(void);
2042 #endif
2043 
2044 int tcp_rtx_synack(const struct sock *sk, struct request_sock *req);
2045 int tcp_conn_request(struct request_sock_ops *rsk_ops,
2046 		     const struct tcp_request_sock_ops *af_ops,
2047 		     struct sock *sk, struct sk_buff *skb);
2048 
2049 /* TCP af-specific functions */
2050 struct tcp_sock_af_ops {
2051 #ifdef CONFIG_TCP_MD5SIG
2052 	struct tcp_md5sig_key	*(*md5_lookup) (const struct sock *sk,
2053 						const struct sock *addr_sk);
2054 	int		(*calc_md5_hash)(char *location,
2055 					 const struct tcp_md5sig_key *md5,
2056 					 const struct sock *sk,
2057 					 const struct sk_buff *skb);
2058 	int		(*md5_parse)(struct sock *sk,
2059 				     int optname,
2060 				     sockptr_t optval,
2061 				     int optlen);
2062 #endif
2063 };
2064 
2065 struct tcp_request_sock_ops {
2066 	u16 mss_clamp;
2067 #ifdef CONFIG_TCP_MD5SIG
2068 	struct tcp_md5sig_key *(*req_md5_lookup)(const struct sock *sk,
2069 						 const struct sock *addr_sk);
2070 	int		(*calc_md5_hash) (char *location,
2071 					  const struct tcp_md5sig_key *md5,
2072 					  const struct sock *sk,
2073 					  const struct sk_buff *skb);
2074 #endif
2075 #ifdef CONFIG_SYN_COOKIES
2076 	__u32 (*cookie_init_seq)(const struct sk_buff *skb,
2077 				 __u16 *mss);
2078 #endif
2079 	struct dst_entry *(*route_req)(const struct sock *sk,
2080 				       struct sk_buff *skb,
2081 				       struct flowi *fl,
2082 				       struct request_sock *req);
2083 	u32 (*init_seq)(const struct sk_buff *skb);
2084 	u32 (*init_ts_off)(const struct net *net, const struct sk_buff *skb);
2085 	int (*send_synack)(const struct sock *sk, struct dst_entry *dst,
2086 			   struct flowi *fl, struct request_sock *req,
2087 			   struct tcp_fastopen_cookie *foc,
2088 			   enum tcp_synack_type synack_type,
2089 			   struct sk_buff *syn_skb);
2090 };
2091 
2092 extern const struct tcp_request_sock_ops tcp_request_sock_ipv4_ops;
2093 #if IS_ENABLED(CONFIG_IPV6)
2094 extern const struct tcp_request_sock_ops tcp_request_sock_ipv6_ops;
2095 #endif
2096 
2097 #ifdef CONFIG_SYN_COOKIES
2098 static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops,
2099 					 const struct sock *sk, struct sk_buff *skb,
2100 					 __u16 *mss)
2101 {
2102 	tcp_synq_overflow(sk);
2103 	__NET_INC_STATS(sock_net(sk), LINUX_MIB_SYNCOOKIESSENT);
2104 	return ops->cookie_init_seq(skb, mss);
2105 }
2106 #else
2107 static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops,
2108 					 const struct sock *sk, struct sk_buff *skb,
2109 					 __u16 *mss)
2110 {
2111 	return 0;
2112 }
2113 #endif
2114 
2115 int tcpv4_offload_init(void);
2116 
2117 void tcp_v4_init(void);
2118 void tcp_init(void);
2119 
2120 /* tcp_recovery.c */
2121 void tcp_mark_skb_lost(struct sock *sk, struct sk_buff *skb);
2122 void tcp_newreno_mark_lost(struct sock *sk, bool snd_una_advanced);
2123 extern s32 tcp_rack_skb_timeout(struct tcp_sock *tp, struct sk_buff *skb,
2124 				u32 reo_wnd);
2125 extern bool tcp_rack_mark_lost(struct sock *sk);
2126 extern void tcp_rack_advance(struct tcp_sock *tp, u8 sacked, u32 end_seq,
2127 			     u64 xmit_time);
2128 extern void tcp_rack_reo_timeout(struct sock *sk);
2129 extern void tcp_rack_update_reo_wnd(struct sock *sk, struct rate_sample *rs);
2130 
2131 /* At how many usecs into the future should the RTO fire? */
2132 static inline s64 tcp_rto_delta_us(const struct sock *sk)
2133 {
2134 	const struct sk_buff *skb = tcp_rtx_queue_head(sk);
2135 	u32 rto = inet_csk(sk)->icsk_rto;
2136 	u64 rto_time_stamp_us = tcp_skb_timestamp_us(skb) + jiffies_to_usecs(rto);
2137 
2138 	return rto_time_stamp_us - tcp_sk(sk)->tcp_mstamp;
2139 }
2140 
2141 /*
2142  * Save and compile IPv4 options, return a pointer to it
2143  */
2144 static inline struct ip_options_rcu *tcp_v4_save_options(struct net *net,
2145 							 struct sk_buff *skb)
2146 {
2147 	const struct ip_options *opt = &TCP_SKB_CB(skb)->header.h4.opt;
2148 	struct ip_options_rcu *dopt = NULL;
2149 
2150 	if (opt->optlen) {
2151 		int opt_size = sizeof(*dopt) + opt->optlen;
2152 
2153 		dopt = kmalloc(opt_size, GFP_ATOMIC);
2154 		if (dopt && __ip_options_echo(net, &dopt->opt, skb, opt)) {
2155 			kfree(dopt);
2156 			dopt = NULL;
2157 		}
2158 	}
2159 	return dopt;
2160 }
2161 
2162 /* locally generated TCP pure ACKs have skb->truesize == 2
2163  * (check tcp_send_ack() in net/ipv4/tcp_output.c )
2164  * This is much faster than dissecting the packet to find out.
2165  * (Think of GRE encapsulations, IPv4, IPv6, ...)
2166  */
2167 static inline bool skb_is_tcp_pure_ack(const struct sk_buff *skb)
2168 {
2169 	return skb->truesize == 2;
2170 }
2171 
2172 static inline void skb_set_tcp_pure_ack(struct sk_buff *skb)
2173 {
2174 	skb->truesize = 2;
2175 }
2176 
2177 static inline int tcp_inq(struct sock *sk)
2178 {
2179 	struct tcp_sock *tp = tcp_sk(sk);
2180 	int answ;
2181 
2182 	if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) {
2183 		answ = 0;
2184 	} else if (sock_flag(sk, SOCK_URGINLINE) ||
2185 		   !tp->urg_data ||
2186 		   before(tp->urg_seq, tp->copied_seq) ||
2187 		   !before(tp->urg_seq, tp->rcv_nxt)) {
2188 
2189 		answ = tp->rcv_nxt - tp->copied_seq;
2190 
2191 		/* Subtract 1, if FIN was received */
2192 		if (answ && sock_flag(sk, SOCK_DONE))
2193 			answ--;
2194 	} else {
2195 		answ = tp->urg_seq - tp->copied_seq;
2196 	}
2197 
2198 	return answ;
2199 }
2200 
2201 int tcp_peek_len(struct socket *sock);
2202 
2203 static inline void tcp_segs_in(struct tcp_sock *tp, const struct sk_buff *skb)
2204 {
2205 	u16 segs_in;
2206 
2207 	segs_in = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
2208 
2209 	/* We update these fields while other threads might
2210 	 * read them from tcp_get_info()
2211 	 */
2212 	WRITE_ONCE(tp->segs_in, tp->segs_in + segs_in);
2213 	if (skb->len > tcp_hdrlen(skb))
2214 		WRITE_ONCE(tp->data_segs_in, tp->data_segs_in + segs_in);
2215 }
2216 
2217 /*
2218  * TCP listen path runs lockless.
2219  * We forced "struct sock" to be const qualified to make sure
2220  * we don't modify one of its field by mistake.
2221  * Here, we increment sk_drops which is an atomic_t, so we can safely
2222  * make sock writable again.
2223  */
2224 static inline void tcp_listendrop(const struct sock *sk)
2225 {
2226 	atomic_inc(&((struct sock *)sk)->sk_drops);
2227 	__NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENDROPS);
2228 }
2229 
2230 enum hrtimer_restart tcp_pace_kick(struct hrtimer *timer);
2231 
2232 /*
2233  * Interface for adding Upper Level Protocols over TCP
2234  */
2235 
2236 #define TCP_ULP_NAME_MAX	16
2237 #define TCP_ULP_MAX		128
2238 #define TCP_ULP_BUF_MAX		(TCP_ULP_NAME_MAX*TCP_ULP_MAX)
2239 
2240 struct tcp_ulp_ops {
2241 	struct list_head	list;
2242 
2243 	/* initialize ulp */
2244 	int (*init)(struct sock *sk);
2245 	/* update ulp */
2246 	void (*update)(struct sock *sk, struct proto *p,
2247 		       void (*write_space)(struct sock *sk));
2248 	/* cleanup ulp */
2249 	void (*release)(struct sock *sk);
2250 	/* diagnostic */
2251 	int (*get_info)(const struct sock *sk, struct sk_buff *skb);
2252 	size_t (*get_info_size)(const struct sock *sk);
2253 	/* clone ulp */
2254 	void (*clone)(const struct request_sock *req, struct sock *newsk,
2255 		      const gfp_t priority);
2256 
2257 	char		name[TCP_ULP_NAME_MAX];
2258 	struct module	*owner;
2259 };
2260 int tcp_register_ulp(struct tcp_ulp_ops *type);
2261 void tcp_unregister_ulp(struct tcp_ulp_ops *type);
2262 int tcp_set_ulp(struct sock *sk, const char *name);
2263 void tcp_get_available_ulp(char *buf, size_t len);
2264 void tcp_cleanup_ulp(struct sock *sk);
2265 void tcp_update_ulp(struct sock *sk, struct proto *p,
2266 		    void (*write_space)(struct sock *sk));
2267 
2268 #define MODULE_ALIAS_TCP_ULP(name)				\
2269 	__MODULE_INFO(alias, alias_userspace, name);		\
2270 	__MODULE_INFO(alias, alias_tcp_ulp, "tcp-ulp-" name)
2271 
2272 #ifdef CONFIG_NET_SOCK_MSG
2273 struct sk_msg;
2274 struct sk_psock;
2275 
2276 #ifdef CONFIG_BPF_SYSCALL
2277 struct proto *tcp_bpf_get_proto(struct sock *sk, struct sk_psock *psock);
2278 int tcp_bpf_update_proto(struct sock *sk, struct sk_psock *psock, bool restore);
2279 void tcp_bpf_clone(const struct sock *sk, struct sock *newsk);
2280 #endif /* CONFIG_BPF_SYSCALL */
2281 
2282 int tcp_bpf_sendmsg_redir(struct sock *sk, struct sk_msg *msg, u32 bytes,
2283 			  int flags);
2284 #endif /* CONFIG_NET_SOCK_MSG */
2285 
2286 #if !defined(CONFIG_BPF_SYSCALL) || !defined(CONFIG_NET_SOCK_MSG)
2287 static inline void tcp_bpf_clone(const struct sock *sk, struct sock *newsk)
2288 {
2289 }
2290 #endif
2291 
2292 #ifdef CONFIG_CGROUP_BPF
2293 static inline void bpf_skops_init_skb(struct bpf_sock_ops_kern *skops,
2294 				      struct sk_buff *skb,
2295 				      unsigned int end_offset)
2296 {
2297 	skops->skb = skb;
2298 	skops->skb_data_end = skb->data + end_offset;
2299 }
2300 #else
2301 static inline void bpf_skops_init_skb(struct bpf_sock_ops_kern *skops,
2302 				      struct sk_buff *skb,
2303 				      unsigned int end_offset)
2304 {
2305 }
2306 #endif
2307 
2308 /* Call BPF_SOCK_OPS program that returns an int. If the return value
2309  * is < 0, then the BPF op failed (for example if the loaded BPF
2310  * program does not support the chosen operation or there is no BPF
2311  * program loaded).
2312  */
2313 #ifdef CONFIG_BPF
2314 static inline int tcp_call_bpf(struct sock *sk, int op, u32 nargs, u32 *args)
2315 {
2316 	struct bpf_sock_ops_kern sock_ops;
2317 	int ret;
2318 
2319 	memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
2320 	if (sk_fullsock(sk)) {
2321 		sock_ops.is_fullsock = 1;
2322 		sock_owned_by_me(sk);
2323 	}
2324 
2325 	sock_ops.sk = sk;
2326 	sock_ops.op = op;
2327 	if (nargs > 0)
2328 		memcpy(sock_ops.args, args, nargs * sizeof(*args));
2329 
2330 	ret = BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops);
2331 	if (ret == 0)
2332 		ret = sock_ops.reply;
2333 	else
2334 		ret = -1;
2335 	return ret;
2336 }
2337 
2338 static inline int tcp_call_bpf_2arg(struct sock *sk, int op, u32 arg1, u32 arg2)
2339 {
2340 	u32 args[2] = {arg1, arg2};
2341 
2342 	return tcp_call_bpf(sk, op, 2, args);
2343 }
2344 
2345 static inline int tcp_call_bpf_3arg(struct sock *sk, int op, u32 arg1, u32 arg2,
2346 				    u32 arg3)
2347 {
2348 	u32 args[3] = {arg1, arg2, arg3};
2349 
2350 	return tcp_call_bpf(sk, op, 3, args);
2351 }
2352 
2353 #else
2354 static inline int tcp_call_bpf(struct sock *sk, int op, u32 nargs, u32 *args)
2355 {
2356 	return -EPERM;
2357 }
2358 
2359 static inline int tcp_call_bpf_2arg(struct sock *sk, int op, u32 arg1, u32 arg2)
2360 {
2361 	return -EPERM;
2362 }
2363 
2364 static inline int tcp_call_bpf_3arg(struct sock *sk, int op, u32 arg1, u32 arg2,
2365 				    u32 arg3)
2366 {
2367 	return -EPERM;
2368 }
2369 
2370 #endif
2371 
2372 static inline u32 tcp_timeout_init(struct sock *sk)
2373 {
2374 	int timeout;
2375 
2376 	timeout = tcp_call_bpf(sk, BPF_SOCK_OPS_TIMEOUT_INIT, 0, NULL);
2377 
2378 	if (timeout <= 0)
2379 		timeout = TCP_TIMEOUT_INIT;
2380 	return min_t(int, timeout, TCP_RTO_MAX);
2381 }
2382 
2383 static inline u32 tcp_rwnd_init_bpf(struct sock *sk)
2384 {
2385 	int rwnd;
2386 
2387 	rwnd = tcp_call_bpf(sk, BPF_SOCK_OPS_RWND_INIT, 0, NULL);
2388 
2389 	if (rwnd < 0)
2390 		rwnd = 0;
2391 	return rwnd;
2392 }
2393 
2394 static inline bool tcp_bpf_ca_needs_ecn(struct sock *sk)
2395 {
2396 	return (tcp_call_bpf(sk, BPF_SOCK_OPS_NEEDS_ECN, 0, NULL) == 1);
2397 }
2398 
2399 static inline void tcp_bpf_rtt(struct sock *sk)
2400 {
2401 	if (BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), BPF_SOCK_OPS_RTT_CB_FLAG))
2402 		tcp_call_bpf(sk, BPF_SOCK_OPS_RTT_CB, 0, NULL);
2403 }
2404 
2405 #if IS_ENABLED(CONFIG_SMC)
2406 extern struct static_key_false tcp_have_smc;
2407 #endif
2408 
2409 #if IS_ENABLED(CONFIG_TLS_DEVICE)
2410 void clean_acked_data_enable(struct inet_connection_sock *icsk,
2411 			     void (*cad)(struct sock *sk, u32 ack_seq));
2412 void clean_acked_data_disable(struct inet_connection_sock *icsk);
2413 void clean_acked_data_flush(void);
2414 #endif
2415 
2416 DECLARE_STATIC_KEY_FALSE(tcp_tx_delay_enabled);
2417 static inline void tcp_add_tx_delay(struct sk_buff *skb,
2418 				    const struct tcp_sock *tp)
2419 {
2420 	if (static_branch_unlikely(&tcp_tx_delay_enabled))
2421 		skb->skb_mstamp_ns += (u64)tp->tcp_tx_delay * NSEC_PER_USEC;
2422 }
2423 
2424 /* Compute Earliest Departure Time for some control packets
2425  * like ACK or RST for TIME_WAIT or non ESTABLISHED sockets.
2426  */
2427 static inline u64 tcp_transmit_time(const struct sock *sk)
2428 {
2429 	if (static_branch_unlikely(&tcp_tx_delay_enabled)) {
2430 		u32 delay = (sk->sk_state == TCP_TIME_WAIT) ?
2431 			tcp_twsk(sk)->tw_tx_delay : tcp_sk(sk)->tcp_tx_delay;
2432 
2433 		return tcp_clock_ns() + (u64)delay * NSEC_PER_USEC;
2434 	}
2435 	return 0;
2436 }
2437 
2438 #endif	/* _TCP_H */
2439