xref: /linux/include/net/tcp.h (revision 3fde60afe1f84746c1177861bd27b3ebb00cb8f5)
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Definitions for the TCP module.
8  *
9  * Version:	@(#)tcp.h	1.0.5	05/23/93
10  *
11  * Authors:	Ross Biro
12  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
13  */
14 #ifndef _TCP_H
15 #define _TCP_H
16 
17 #define FASTRETRANS_DEBUG 1
18 
19 #include <linux/list.h>
20 #include <linux/tcp.h>
21 #include <linux/bug.h>
22 #include <linux/slab.h>
23 #include <linux/cache.h>
24 #include <linux/percpu.h>
25 #include <linux/skbuff.h>
26 #include <linux/kref.h>
27 #include <linux/ktime.h>
28 #include <linux/indirect_call_wrapper.h>
29 
30 #include <net/inet_connection_sock.h>
31 #include <net/inet_timewait_sock.h>
32 #include <net/inet_hashtables.h>
33 #include <net/checksum.h>
34 #include <net/request_sock.h>
35 #include <net/sock_reuseport.h>
36 #include <net/sock.h>
37 #include <net/snmp.h>
38 #include <net/ip.h>
39 #include <net/tcp_states.h>
40 #include <net/tcp_ao.h>
41 #include <net/inet_ecn.h>
42 #include <net/dst.h>
43 #include <net/mptcp.h>
44 
45 #include <linux/seq_file.h>
46 #include <linux/memcontrol.h>
47 #include <linux/bpf-cgroup.h>
48 #include <linux/siphash.h>
49 
50 extern struct inet_hashinfo tcp_hashinfo;
51 
52 DECLARE_PER_CPU(unsigned int, tcp_orphan_count);
53 int tcp_orphan_count_sum(void);
54 
55 DECLARE_PER_CPU(u32, tcp_tw_isn);
56 
57 void tcp_time_wait(struct sock *sk, int state, int timeo);
58 
59 #define MAX_TCP_HEADER	L1_CACHE_ALIGN(128 + MAX_HEADER)
60 #define MAX_TCP_OPTION_SPACE 40
61 #define TCP_MIN_SND_MSS		48
62 #define TCP_MIN_GSO_SIZE	(TCP_MIN_SND_MSS - MAX_TCP_OPTION_SPACE)
63 
64 /*
65  * Never offer a window over 32767 without using window scaling. Some
66  * poor stacks do signed 16bit maths!
67  */
68 #define MAX_TCP_WINDOW		32767U
69 
70 /* Minimal accepted MSS. It is (60+60+8) - (20+20). */
71 #define TCP_MIN_MSS		88U
72 
73 /* The initial MTU to use for probing */
74 #define TCP_BASE_MSS		1024
75 
76 /* probing interval, default to 10 minutes as per RFC4821 */
77 #define TCP_PROBE_INTERVAL	600
78 
79 /* Specify interval when tcp mtu probing will stop */
80 #define TCP_PROBE_THRESHOLD	8
81 
82 /* After receiving this amount of duplicate ACKs fast retransmit starts. */
83 #define TCP_FASTRETRANS_THRESH 3
84 
85 /* Maximal number of ACKs sent quickly to accelerate slow-start. */
86 #define TCP_MAX_QUICKACKS	16U
87 
88 /* Maximal number of window scale according to RFC1323 */
89 #define TCP_MAX_WSCALE		14U
90 
91 /* urg_data states */
92 #define TCP_URG_VALID	0x0100
93 #define TCP_URG_NOTYET	0x0200
94 #define TCP_URG_READ	0x0400
95 
96 #define TCP_RETR1	3	/*
97 				 * This is how many retries it does before it
98 				 * tries to figure out if the gateway is
99 				 * down. Minimal RFC value is 3; it corresponds
100 				 * to ~3sec-8min depending on RTO.
101 				 */
102 
103 #define TCP_RETR2	15	/*
104 				 * This should take at least
105 				 * 90 minutes to time out.
106 				 * RFC1122 says that the limit is 100 sec.
107 				 * 15 is ~13-30min depending on RTO.
108 				 */
109 
110 #define TCP_SYN_RETRIES	 6	/* This is how many retries are done
111 				 * when active opening a connection.
112 				 * RFC1122 says the minimum retry MUST
113 				 * be at least 180secs.  Nevertheless
114 				 * this value is corresponding to
115 				 * 63secs of retransmission with the
116 				 * current initial RTO.
117 				 */
118 
119 #define TCP_SYNACK_RETRIES 5	/* This is how may retries are done
120 				 * when passive opening a connection.
121 				 * This is corresponding to 31secs of
122 				 * retransmission with the current
123 				 * initial RTO.
124 				 */
125 
126 #define TCP_TIMEWAIT_LEN (60*HZ) /* how long to wait to destroy TIME-WAIT
127 				  * state, about 60 seconds	*/
128 #define TCP_FIN_TIMEOUT	TCP_TIMEWAIT_LEN
129                                  /* BSD style FIN_WAIT2 deadlock breaker.
130 				  * It used to be 3min, new value is 60sec,
131 				  * to combine FIN-WAIT-2 timeout with
132 				  * TIME-WAIT timer.
133 				  */
134 #define TCP_FIN_TIMEOUT_MAX (120 * HZ) /* max TCP_LINGER2 value (two minutes) */
135 
136 #define TCP_DELACK_MAX	((unsigned)(HZ/5))	/* maximal time to delay before sending an ACK */
137 static_assert((1 << ATO_BITS) > TCP_DELACK_MAX);
138 
139 #if HZ >= 100
140 #define TCP_DELACK_MIN	((unsigned)(HZ/25))	/* minimal time to delay before sending an ACK */
141 #define TCP_ATO_MIN	((unsigned)(HZ/25))
142 #else
143 #define TCP_DELACK_MIN	4U
144 #define TCP_ATO_MIN	4U
145 #endif
146 #define TCP_RTO_MAX	((unsigned)(120*HZ))
147 #define TCP_RTO_MIN	((unsigned)(HZ/5))
148 #define TCP_TIMEOUT_MIN	(2U) /* Min timeout for TCP timers in jiffies */
149 
150 #define TCP_TIMEOUT_MIN_US (2*USEC_PER_MSEC) /* Min TCP timeout in microsecs */
151 
152 #define TCP_TIMEOUT_INIT ((unsigned)(1*HZ))	/* RFC6298 2.1 initial RTO value	*/
153 #define TCP_TIMEOUT_FALLBACK ((unsigned)(3*HZ))	/* RFC 1122 initial RTO value, now
154 						 * used as a fallback RTO for the
155 						 * initial data transmission if no
156 						 * valid RTT sample has been acquired,
157 						 * most likely due to retrans in 3WHS.
158 						 */
159 
160 #define TCP_RESOURCE_PROBE_INTERVAL ((unsigned)(HZ/2U)) /* Maximal interval between probes
161 					                 * for local resources.
162 					                 */
163 #define TCP_KEEPALIVE_TIME	(120*60*HZ)	/* two hours */
164 #define TCP_KEEPALIVE_PROBES	9		/* Max of 9 keepalive probes	*/
165 #define TCP_KEEPALIVE_INTVL	(75*HZ)
166 
167 #define MAX_TCP_KEEPIDLE	32767
168 #define MAX_TCP_KEEPINTVL	32767
169 #define MAX_TCP_KEEPCNT		127
170 #define MAX_TCP_SYNCNT		127
171 
172 /* Ensure that TCP PAWS checks are relaxed after ~2147 seconds
173  * to avoid overflows. This assumes a clock smaller than 1 Mhz.
174  * Default clock is 1 Khz, tcp_usec_ts uses 1 Mhz.
175  */
176 #define TCP_PAWS_WRAP (INT_MAX / USEC_PER_SEC)
177 
178 #define TCP_PAWS_MSL	60		/* Per-host timestamps are invalidated
179 					 * after this time. It should be equal
180 					 * (or greater than) TCP_TIMEWAIT_LEN
181 					 * to provide reliability equal to one
182 					 * provided by timewait state.
183 					 */
184 #define TCP_PAWS_WINDOW	1		/* Replay window for per-host
185 					 * timestamps. It must be less than
186 					 * minimal timewait lifetime.
187 					 */
188 /*
189  *	TCP option
190  */
191 
192 #define TCPOPT_NOP		1	/* Padding */
193 #define TCPOPT_EOL		0	/* End of options */
194 #define TCPOPT_MSS		2	/* Segment size negotiating */
195 #define TCPOPT_WINDOW		3	/* Window scaling */
196 #define TCPOPT_SACK_PERM        4       /* SACK Permitted */
197 #define TCPOPT_SACK             5       /* SACK Block */
198 #define TCPOPT_TIMESTAMP	8	/* Better RTT estimations/PAWS */
199 #define TCPOPT_MD5SIG		19	/* MD5 Signature (RFC2385) */
200 #define TCPOPT_AO		29	/* Authentication Option (RFC5925) */
201 #define TCPOPT_MPTCP		30	/* Multipath TCP (RFC6824) */
202 #define TCPOPT_FASTOPEN		34	/* Fast open (RFC7413) */
203 #define TCPOPT_EXP		254	/* Experimental */
204 /* Magic number to be after the option value for sharing TCP
205  * experimental options. See draft-ietf-tcpm-experimental-options-00.txt
206  */
207 #define TCPOPT_FASTOPEN_MAGIC	0xF989
208 #define TCPOPT_SMC_MAGIC	0xE2D4C3D9
209 
210 /*
211  *     TCP option lengths
212  */
213 
214 #define TCPOLEN_MSS            4
215 #define TCPOLEN_WINDOW         3
216 #define TCPOLEN_SACK_PERM      2
217 #define TCPOLEN_TIMESTAMP      10
218 #define TCPOLEN_MD5SIG         18
219 #define TCPOLEN_FASTOPEN_BASE  2
220 #define TCPOLEN_EXP_FASTOPEN_BASE  4
221 #define TCPOLEN_EXP_SMC_BASE   6
222 
223 /* But this is what stacks really send out. */
224 #define TCPOLEN_TSTAMP_ALIGNED		12
225 #define TCPOLEN_WSCALE_ALIGNED		4
226 #define TCPOLEN_SACKPERM_ALIGNED	4
227 #define TCPOLEN_SACK_BASE		2
228 #define TCPOLEN_SACK_BASE_ALIGNED	4
229 #define TCPOLEN_SACK_PERBLOCK		8
230 #define TCPOLEN_MD5SIG_ALIGNED		20
231 #define TCPOLEN_MSS_ALIGNED		4
232 #define TCPOLEN_EXP_SMC_BASE_ALIGNED	8
233 
234 /* Flags in tp->nonagle */
235 #define TCP_NAGLE_OFF		1	/* Nagle's algo is disabled */
236 #define TCP_NAGLE_CORK		2	/* Socket is corked	    */
237 #define TCP_NAGLE_PUSH		4	/* Cork is overridden for already queued data */
238 
239 /* TCP thin-stream limits */
240 #define TCP_THIN_LINEAR_RETRIES 6       /* After 6 linear retries, do exp. backoff */
241 
242 /* TCP initial congestion window as per rfc6928 */
243 #define TCP_INIT_CWND		10
244 
245 /* Bit Flags for sysctl_tcp_fastopen */
246 #define	TFO_CLIENT_ENABLE	1
247 #define	TFO_SERVER_ENABLE	2
248 #define	TFO_CLIENT_NO_COOKIE	4	/* Data in SYN w/o cookie option */
249 
250 /* Accept SYN data w/o any cookie option */
251 #define	TFO_SERVER_COOKIE_NOT_REQD	0x200
252 
253 /* Force enable TFO on all listeners, i.e., not requiring the
254  * TCP_FASTOPEN socket option.
255  */
256 #define	TFO_SERVER_WO_SOCKOPT1	0x400
257 
258 
259 /* sysctl variables for tcp */
260 extern int sysctl_tcp_max_orphans;
261 extern long sysctl_tcp_mem[3];
262 
263 #define TCP_RACK_LOSS_DETECTION  0x1 /* Use RACK to detect losses */
264 #define TCP_RACK_STATIC_REO_WND  0x2 /* Use static RACK reo wnd */
265 #define TCP_RACK_NO_DUPTHRESH    0x4 /* Do not use DUPACK threshold in RACK */
266 
267 extern atomic_long_t tcp_memory_allocated;
268 DECLARE_PER_CPU(int, tcp_memory_per_cpu_fw_alloc);
269 
270 extern struct percpu_counter tcp_sockets_allocated;
271 extern unsigned long tcp_memory_pressure;
272 
273 /* optimized version of sk_under_memory_pressure() for TCP sockets */
274 static inline bool tcp_under_memory_pressure(const struct sock *sk)
275 {
276 	if (mem_cgroup_sockets_enabled && sk->sk_memcg &&
277 	    mem_cgroup_under_socket_pressure(sk->sk_memcg))
278 		return true;
279 
280 	return READ_ONCE(tcp_memory_pressure);
281 }
282 /*
283  * The next routines deal with comparing 32 bit unsigned ints
284  * and worry about wraparound (automatic with unsigned arithmetic).
285  */
286 
287 static inline bool before(__u32 seq1, __u32 seq2)
288 {
289         return (__s32)(seq1-seq2) < 0;
290 }
291 #define after(seq2, seq1) 	before(seq1, seq2)
292 
293 /* is s2<=s1<=s3 ? */
294 static inline bool between(__u32 seq1, __u32 seq2, __u32 seq3)
295 {
296 	return seq3 - seq2 >= seq1 - seq2;
297 }
298 
299 static inline bool tcp_out_of_memory(struct sock *sk)
300 {
301 	if (sk->sk_wmem_queued > SOCK_MIN_SNDBUF &&
302 	    sk_memory_allocated(sk) > sk_prot_mem_limits(sk, 2))
303 		return true;
304 	return false;
305 }
306 
307 static inline void tcp_wmem_free_skb(struct sock *sk, struct sk_buff *skb)
308 {
309 	sk_wmem_queued_add(sk, -skb->truesize);
310 	if (!skb_zcopy_pure(skb))
311 		sk_mem_uncharge(sk, skb->truesize);
312 	else
313 		sk_mem_uncharge(sk, SKB_TRUESIZE(skb_end_offset(skb)));
314 	__kfree_skb(skb);
315 }
316 
317 void sk_forced_mem_schedule(struct sock *sk, int size);
318 
319 bool tcp_check_oom(struct sock *sk, int shift);
320 
321 
322 extern struct proto tcp_prot;
323 
324 #define TCP_INC_STATS(net, field)	SNMP_INC_STATS((net)->mib.tcp_statistics, field)
325 #define __TCP_INC_STATS(net, field)	__SNMP_INC_STATS((net)->mib.tcp_statistics, field)
326 #define TCP_DEC_STATS(net, field)	SNMP_DEC_STATS((net)->mib.tcp_statistics, field)
327 #define TCP_ADD_STATS(net, field, val)	SNMP_ADD_STATS((net)->mib.tcp_statistics, field, val)
328 
329 void tcp_tasklet_init(void);
330 
331 int tcp_v4_err(struct sk_buff *skb, u32);
332 
333 void tcp_shutdown(struct sock *sk, int how);
334 
335 int tcp_v4_early_demux(struct sk_buff *skb);
336 int tcp_v4_rcv(struct sk_buff *skb);
337 
338 void tcp_remove_empty_skb(struct sock *sk);
339 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size);
340 int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size);
341 int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg, int *copied,
342 			 size_t size, struct ubuf_info *uarg);
343 void tcp_splice_eof(struct socket *sock);
344 int tcp_send_mss(struct sock *sk, int *size_goal, int flags);
345 int tcp_wmem_schedule(struct sock *sk, int copy);
346 void tcp_push(struct sock *sk, int flags, int mss_now, int nonagle,
347 	      int size_goal);
348 void tcp_release_cb(struct sock *sk);
349 void tcp_wfree(struct sk_buff *skb);
350 void tcp_write_timer_handler(struct sock *sk);
351 void tcp_delack_timer_handler(struct sock *sk);
352 int tcp_ioctl(struct sock *sk, int cmd, int *karg);
353 enum skb_drop_reason tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb);
354 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb);
355 void tcp_rcv_space_adjust(struct sock *sk);
356 int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp);
357 void tcp_twsk_destructor(struct sock *sk);
358 void tcp_twsk_purge(struct list_head *net_exit_list);
359 ssize_t tcp_splice_read(struct socket *sk, loff_t *ppos,
360 			struct pipe_inode_info *pipe, size_t len,
361 			unsigned int flags);
362 struct sk_buff *tcp_stream_alloc_skb(struct sock *sk, gfp_t gfp,
363 				     bool force_schedule);
364 
365 static inline void tcp_dec_quickack_mode(struct sock *sk)
366 {
367 	struct inet_connection_sock *icsk = inet_csk(sk);
368 
369 	if (icsk->icsk_ack.quick) {
370 		/* How many ACKs S/ACKing new data have we sent? */
371 		const unsigned int pkts = inet_csk_ack_scheduled(sk) ? 1 : 0;
372 
373 		if (pkts >= icsk->icsk_ack.quick) {
374 			icsk->icsk_ack.quick = 0;
375 			/* Leaving quickack mode we deflate ATO. */
376 			icsk->icsk_ack.ato   = TCP_ATO_MIN;
377 		} else
378 			icsk->icsk_ack.quick -= pkts;
379 	}
380 }
381 
382 #define	TCP_ECN_OK		1
383 #define	TCP_ECN_QUEUE_CWR	2
384 #define	TCP_ECN_DEMAND_CWR	4
385 #define	TCP_ECN_SEEN		8
386 
387 enum tcp_tw_status {
388 	TCP_TW_SUCCESS = 0,
389 	TCP_TW_RST = 1,
390 	TCP_TW_ACK = 2,
391 	TCP_TW_SYN = 3
392 };
393 
394 
395 enum tcp_tw_status tcp_timewait_state_process(struct inet_timewait_sock *tw,
396 					      struct sk_buff *skb,
397 					      const struct tcphdr *th,
398 					      u32 *tw_isn);
399 struct sock *tcp_check_req(struct sock *sk, struct sk_buff *skb,
400 			   struct request_sock *req, bool fastopen,
401 			   bool *lost_race);
402 enum skb_drop_reason tcp_child_process(struct sock *parent, struct sock *child,
403 				       struct sk_buff *skb);
404 void tcp_enter_loss(struct sock *sk);
405 void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int newly_lost, int flag);
406 void tcp_clear_retrans(struct tcp_sock *tp);
407 void tcp_update_metrics(struct sock *sk);
408 void tcp_init_metrics(struct sock *sk);
409 void tcp_metrics_init(void);
410 bool tcp_peer_is_proven(struct request_sock *req, struct dst_entry *dst);
411 void __tcp_close(struct sock *sk, long timeout);
412 void tcp_close(struct sock *sk, long timeout);
413 void tcp_init_sock(struct sock *sk);
414 void tcp_init_transfer(struct sock *sk, int bpf_op, struct sk_buff *skb);
415 __poll_t tcp_poll(struct file *file, struct socket *sock,
416 		      struct poll_table_struct *wait);
417 int do_tcp_getsockopt(struct sock *sk, int level,
418 		      int optname, sockptr_t optval, sockptr_t optlen);
419 int tcp_getsockopt(struct sock *sk, int level, int optname,
420 		   char __user *optval, int __user *optlen);
421 bool tcp_bpf_bypass_getsockopt(int level, int optname);
422 int do_tcp_setsockopt(struct sock *sk, int level, int optname,
423 		      sockptr_t optval, unsigned int optlen);
424 int tcp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval,
425 		   unsigned int optlen);
426 void tcp_set_keepalive(struct sock *sk, int val);
427 void tcp_syn_ack_timeout(const struct request_sock *req);
428 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len,
429 		int flags, int *addr_len);
430 int tcp_set_rcvlowat(struct sock *sk, int val);
431 int tcp_set_window_clamp(struct sock *sk, int val);
432 void tcp_update_recv_tstamps(struct sk_buff *skb,
433 			     struct scm_timestamping_internal *tss);
434 void tcp_recv_timestamp(struct msghdr *msg, const struct sock *sk,
435 			struct scm_timestamping_internal *tss);
436 void tcp_data_ready(struct sock *sk);
437 #ifdef CONFIG_MMU
438 int tcp_mmap(struct file *file, struct socket *sock,
439 	     struct vm_area_struct *vma);
440 #endif
441 void tcp_parse_options(const struct net *net, const struct sk_buff *skb,
442 		       struct tcp_options_received *opt_rx,
443 		       int estab, struct tcp_fastopen_cookie *foc);
444 
445 /*
446  *	BPF SKB-less helpers
447  */
448 u16 tcp_v4_get_syncookie(struct sock *sk, struct iphdr *iph,
449 			 struct tcphdr *th, u32 *cookie);
450 u16 tcp_v6_get_syncookie(struct sock *sk, struct ipv6hdr *iph,
451 			 struct tcphdr *th, u32 *cookie);
452 u16 tcp_parse_mss_option(const struct tcphdr *th, u16 user_mss);
453 u16 tcp_get_syncookie_mss(struct request_sock_ops *rsk_ops,
454 			  const struct tcp_request_sock_ops *af_ops,
455 			  struct sock *sk, struct tcphdr *th);
456 /*
457  *	TCP v4 functions exported for the inet6 API
458  */
459 
460 void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb);
461 void tcp_v4_mtu_reduced(struct sock *sk);
462 void tcp_req_err(struct sock *sk, u32 seq, bool abort);
463 void tcp_ld_RTO_revert(struct sock *sk, u32 seq);
464 int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb);
465 struct sock *tcp_create_openreq_child(const struct sock *sk,
466 				      struct request_sock *req,
467 				      struct sk_buff *skb);
468 void tcp_ca_openreq_child(struct sock *sk, const struct dst_entry *dst);
469 struct sock *tcp_v4_syn_recv_sock(const struct sock *sk, struct sk_buff *skb,
470 				  struct request_sock *req,
471 				  struct dst_entry *dst,
472 				  struct request_sock *req_unhash,
473 				  bool *own_req);
474 int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb);
475 int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len);
476 int tcp_connect(struct sock *sk);
477 enum tcp_synack_type {
478 	TCP_SYNACK_NORMAL,
479 	TCP_SYNACK_FASTOPEN,
480 	TCP_SYNACK_COOKIE,
481 };
482 struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst,
483 				struct request_sock *req,
484 				struct tcp_fastopen_cookie *foc,
485 				enum tcp_synack_type synack_type,
486 				struct sk_buff *syn_skb);
487 int tcp_disconnect(struct sock *sk, int flags);
488 
489 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb);
490 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size);
491 void inet_sk_rx_dst_set(struct sock *sk, const struct sk_buff *skb);
492 
493 /* From syncookies.c */
494 struct sock *tcp_get_cookie_sock(struct sock *sk, struct sk_buff *skb,
495 				 struct request_sock *req,
496 				 struct dst_entry *dst);
497 int __cookie_v4_check(const struct iphdr *iph, const struct tcphdr *th);
498 struct sock *cookie_v4_check(struct sock *sk, struct sk_buff *skb);
499 struct request_sock *cookie_tcp_reqsk_alloc(const struct request_sock_ops *ops,
500 					    struct sock *sk, struct sk_buff *skb,
501 					    struct tcp_options_received *tcp_opt,
502 					    int mss, u32 tsoff);
503 
504 #if IS_ENABLED(CONFIG_BPF)
505 struct bpf_tcp_req_attrs {
506 	u32 rcv_tsval;
507 	u32 rcv_tsecr;
508 	u16 mss;
509 	u8 rcv_wscale;
510 	u8 snd_wscale;
511 	u8 ecn_ok;
512 	u8 wscale_ok;
513 	u8 sack_ok;
514 	u8 tstamp_ok;
515 	u8 usec_ts_ok;
516 	u8 reserved[3];
517 };
518 #endif
519 
520 #ifdef CONFIG_SYN_COOKIES
521 
522 /* Syncookies use a monotonic timer which increments every 60 seconds.
523  * This counter is used both as a hash input and partially encoded into
524  * the cookie value.  A cookie is only validated further if the delta
525  * between the current counter value and the encoded one is less than this,
526  * i.e. a sent cookie is valid only at most for 2*60 seconds (or less if
527  * the counter advances immediately after a cookie is generated).
528  */
529 #define MAX_SYNCOOKIE_AGE	2
530 #define TCP_SYNCOOKIE_PERIOD	(60 * HZ)
531 #define TCP_SYNCOOKIE_VALID	(MAX_SYNCOOKIE_AGE * TCP_SYNCOOKIE_PERIOD)
532 
533 /* syncookies: remember time of last synqueue overflow
534  * But do not dirty this field too often (once per second is enough)
535  * It is racy as we do not hold a lock, but race is very minor.
536  */
537 static inline void tcp_synq_overflow(const struct sock *sk)
538 {
539 	unsigned int last_overflow;
540 	unsigned int now = jiffies;
541 
542 	if (sk->sk_reuseport) {
543 		struct sock_reuseport *reuse;
544 
545 		reuse = rcu_dereference(sk->sk_reuseport_cb);
546 		if (likely(reuse)) {
547 			last_overflow = READ_ONCE(reuse->synq_overflow_ts);
548 			if (!time_between32(now, last_overflow,
549 					    last_overflow + HZ))
550 				WRITE_ONCE(reuse->synq_overflow_ts, now);
551 			return;
552 		}
553 	}
554 
555 	last_overflow = READ_ONCE(tcp_sk(sk)->rx_opt.ts_recent_stamp);
556 	if (!time_between32(now, last_overflow, last_overflow + HZ))
557 		WRITE_ONCE(tcp_sk_rw(sk)->rx_opt.ts_recent_stamp, now);
558 }
559 
560 /* syncookies: no recent synqueue overflow on this listening socket? */
561 static inline bool tcp_synq_no_recent_overflow(const struct sock *sk)
562 {
563 	unsigned int last_overflow;
564 	unsigned int now = jiffies;
565 
566 	if (sk->sk_reuseport) {
567 		struct sock_reuseport *reuse;
568 
569 		reuse = rcu_dereference(sk->sk_reuseport_cb);
570 		if (likely(reuse)) {
571 			last_overflow = READ_ONCE(reuse->synq_overflow_ts);
572 			return !time_between32(now, last_overflow - HZ,
573 					       last_overflow +
574 					       TCP_SYNCOOKIE_VALID);
575 		}
576 	}
577 
578 	last_overflow = READ_ONCE(tcp_sk(sk)->rx_opt.ts_recent_stamp);
579 
580 	/* If last_overflow <= jiffies <= last_overflow + TCP_SYNCOOKIE_VALID,
581 	 * then we're under synflood. However, we have to use
582 	 * 'last_overflow - HZ' as lower bound. That's because a concurrent
583 	 * tcp_synq_overflow() could update .ts_recent_stamp after we read
584 	 * jiffies but before we store .ts_recent_stamp into last_overflow,
585 	 * which could lead to rejecting a valid syncookie.
586 	 */
587 	return !time_between32(now, last_overflow - HZ,
588 			       last_overflow + TCP_SYNCOOKIE_VALID);
589 }
590 
591 static inline u32 tcp_cookie_time(void)
592 {
593 	u64 val = get_jiffies_64();
594 
595 	do_div(val, TCP_SYNCOOKIE_PERIOD);
596 	return val;
597 }
598 
599 /* Convert one nsec 64bit timestamp to ts (ms or usec resolution) */
600 static inline u64 tcp_ns_to_ts(bool usec_ts, u64 val)
601 {
602 	if (usec_ts)
603 		return div_u64(val, NSEC_PER_USEC);
604 
605 	return div_u64(val, NSEC_PER_MSEC);
606 }
607 
608 u32 __cookie_v4_init_sequence(const struct iphdr *iph, const struct tcphdr *th,
609 			      u16 *mssp);
610 __u32 cookie_v4_init_sequence(const struct sk_buff *skb, __u16 *mss);
611 u64 cookie_init_timestamp(struct request_sock *req, u64 now);
612 bool cookie_timestamp_decode(const struct net *net,
613 			     struct tcp_options_received *opt);
614 
615 static inline bool cookie_ecn_ok(const struct net *net, const struct dst_entry *dst)
616 {
617 	return READ_ONCE(net->ipv4.sysctl_tcp_ecn) ||
618 		dst_feature(dst, RTAX_FEATURE_ECN);
619 }
620 
621 #if IS_ENABLED(CONFIG_BPF)
622 static inline bool cookie_bpf_ok(struct sk_buff *skb)
623 {
624 	return skb->sk;
625 }
626 
627 struct request_sock *cookie_bpf_check(struct sock *sk, struct sk_buff *skb);
628 #else
629 static inline bool cookie_bpf_ok(struct sk_buff *skb)
630 {
631 	return false;
632 }
633 
634 static inline struct request_sock *cookie_bpf_check(struct net *net, struct sock *sk,
635 						    struct sk_buff *skb)
636 {
637 	return NULL;
638 }
639 #endif
640 
641 /* From net/ipv6/syncookies.c */
642 int __cookie_v6_check(const struct ipv6hdr *iph, const struct tcphdr *th);
643 struct sock *cookie_v6_check(struct sock *sk, struct sk_buff *skb);
644 
645 u32 __cookie_v6_init_sequence(const struct ipv6hdr *iph,
646 			      const struct tcphdr *th, u16 *mssp);
647 __u32 cookie_v6_init_sequence(const struct sk_buff *skb, __u16 *mss);
648 #endif
649 /* tcp_output.c */
650 
651 void tcp_skb_entail(struct sock *sk, struct sk_buff *skb);
652 void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb);
653 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
654 			       int nonagle);
655 int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs);
656 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs);
657 void tcp_retransmit_timer(struct sock *sk);
658 void tcp_xmit_retransmit_queue(struct sock *);
659 void tcp_simple_retransmit(struct sock *);
660 void tcp_enter_recovery(struct sock *sk, bool ece_ack);
661 int tcp_trim_head(struct sock *, struct sk_buff *, u32);
662 enum tcp_queue {
663 	TCP_FRAG_IN_WRITE_QUEUE,
664 	TCP_FRAG_IN_RTX_QUEUE,
665 };
666 int tcp_fragment(struct sock *sk, enum tcp_queue tcp_queue,
667 		 struct sk_buff *skb, u32 len,
668 		 unsigned int mss_now, gfp_t gfp);
669 
670 void tcp_send_probe0(struct sock *);
671 int tcp_write_wakeup(struct sock *, int mib);
672 void tcp_send_fin(struct sock *sk);
673 void tcp_send_active_reset(struct sock *sk, gfp_t priority);
674 int tcp_send_synack(struct sock *);
675 void tcp_push_one(struct sock *, unsigned int mss_now);
676 void __tcp_send_ack(struct sock *sk, u32 rcv_nxt);
677 void tcp_send_ack(struct sock *sk);
678 void tcp_send_delayed_ack(struct sock *sk);
679 void tcp_send_loss_probe(struct sock *sk);
680 bool tcp_schedule_loss_probe(struct sock *sk, bool advancing_rto);
681 void tcp_skb_collapse_tstamp(struct sk_buff *skb,
682 			     const struct sk_buff *next_skb);
683 
684 /* tcp_input.c */
685 void tcp_rearm_rto(struct sock *sk);
686 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req);
687 void tcp_reset(struct sock *sk, struct sk_buff *skb);
688 void tcp_fin(struct sock *sk);
689 void tcp_check_space(struct sock *sk);
690 void tcp_sack_compress_send_ack(struct sock *sk);
691 
692 /* tcp_timer.c */
693 void tcp_init_xmit_timers(struct sock *);
694 static inline void tcp_clear_xmit_timers(struct sock *sk)
695 {
696 	if (hrtimer_try_to_cancel(&tcp_sk(sk)->pacing_timer) == 1)
697 		__sock_put(sk);
698 
699 	if (hrtimer_try_to_cancel(&tcp_sk(sk)->compressed_ack_timer) == 1)
700 		__sock_put(sk);
701 
702 	inet_csk_clear_xmit_timers(sk);
703 }
704 
705 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu);
706 unsigned int tcp_current_mss(struct sock *sk);
707 u32 tcp_clamp_probe0_to_user_timeout(const struct sock *sk, u32 when);
708 
709 /* Bound MSS / TSO packet size with the half of the window */
710 static inline int tcp_bound_to_half_wnd(struct tcp_sock *tp, int pktsize)
711 {
712 	int cutoff;
713 
714 	/* When peer uses tiny windows, there is no use in packetizing
715 	 * to sub-MSS pieces for the sake of SWS or making sure there
716 	 * are enough packets in the pipe for fast recovery.
717 	 *
718 	 * On the other hand, for extremely large MSS devices, handling
719 	 * smaller than MSS windows in this way does make sense.
720 	 */
721 	if (tp->max_window > TCP_MSS_DEFAULT)
722 		cutoff = (tp->max_window >> 1);
723 	else
724 		cutoff = tp->max_window;
725 
726 	if (cutoff && pktsize > cutoff)
727 		return max_t(int, cutoff, 68U - tp->tcp_header_len);
728 	else
729 		return pktsize;
730 }
731 
732 /* tcp.c */
733 void tcp_get_info(struct sock *, struct tcp_info *);
734 
735 /* Read 'sendfile()'-style from a TCP socket */
736 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
737 		  sk_read_actor_t recv_actor);
738 int tcp_read_skb(struct sock *sk, skb_read_actor_t recv_actor);
739 struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off);
740 void tcp_read_done(struct sock *sk, size_t len);
741 
742 void tcp_initialize_rcv_mss(struct sock *sk);
743 
744 int tcp_mtu_to_mss(struct sock *sk, int pmtu);
745 int tcp_mss_to_mtu(struct sock *sk, int mss);
746 void tcp_mtup_init(struct sock *sk);
747 
748 static inline void tcp_bound_rto(struct sock *sk)
749 {
750 	if (inet_csk(sk)->icsk_rto > TCP_RTO_MAX)
751 		inet_csk(sk)->icsk_rto = TCP_RTO_MAX;
752 }
753 
754 static inline u32 __tcp_set_rto(const struct tcp_sock *tp)
755 {
756 	return usecs_to_jiffies((tp->srtt_us >> 3) + tp->rttvar_us);
757 }
758 
759 static inline void __tcp_fast_path_on(struct tcp_sock *tp, u32 snd_wnd)
760 {
761 	/* mptcp hooks are only on the slow path */
762 	if (sk_is_mptcp((struct sock *)tp))
763 		return;
764 
765 	tp->pred_flags = htonl((tp->tcp_header_len << 26) |
766 			       ntohl(TCP_FLAG_ACK) |
767 			       snd_wnd);
768 }
769 
770 static inline void tcp_fast_path_on(struct tcp_sock *tp)
771 {
772 	__tcp_fast_path_on(tp, tp->snd_wnd >> tp->rx_opt.snd_wscale);
773 }
774 
775 static inline void tcp_fast_path_check(struct sock *sk)
776 {
777 	struct tcp_sock *tp = tcp_sk(sk);
778 
779 	if (RB_EMPTY_ROOT(&tp->out_of_order_queue) &&
780 	    tp->rcv_wnd &&
781 	    atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf &&
782 	    !tp->urg_data)
783 		tcp_fast_path_on(tp);
784 }
785 
786 u32 tcp_delack_max(const struct sock *sk);
787 
788 /* Compute the actual rto_min value */
789 static inline u32 tcp_rto_min(const struct sock *sk)
790 {
791 	const struct dst_entry *dst = __sk_dst_get(sk);
792 	u32 rto_min = inet_csk(sk)->icsk_rto_min;
793 
794 	if (dst && dst_metric_locked(dst, RTAX_RTO_MIN))
795 		rto_min = dst_metric_rtt(dst, RTAX_RTO_MIN);
796 	return rto_min;
797 }
798 
799 static inline u32 tcp_rto_min_us(const struct sock *sk)
800 {
801 	return jiffies_to_usecs(tcp_rto_min(sk));
802 }
803 
804 static inline bool tcp_ca_dst_locked(const struct dst_entry *dst)
805 {
806 	return dst_metric_locked(dst, RTAX_CC_ALGO);
807 }
808 
809 /* Minimum RTT in usec. ~0 means not available. */
810 static inline u32 tcp_min_rtt(const struct tcp_sock *tp)
811 {
812 	return minmax_get(&tp->rtt_min);
813 }
814 
815 /* Compute the actual receive window we are currently advertising.
816  * Rcv_nxt can be after the window if our peer push more data
817  * than the offered window.
818  */
819 static inline u32 tcp_receive_window(const struct tcp_sock *tp)
820 {
821 	s32 win = tp->rcv_wup + tp->rcv_wnd - tp->rcv_nxt;
822 
823 	if (win < 0)
824 		win = 0;
825 	return (u32) win;
826 }
827 
828 /* Choose a new window, without checks for shrinking, and without
829  * scaling applied to the result.  The caller does these things
830  * if necessary.  This is a "raw" window selection.
831  */
832 u32 __tcp_select_window(struct sock *sk);
833 
834 void tcp_send_window_probe(struct sock *sk);
835 
836 /* TCP uses 32bit jiffies to save some space.
837  * Note that this is different from tcp_time_stamp, which
838  * historically has been the same until linux-4.13.
839  */
840 #define tcp_jiffies32 ((u32)jiffies)
841 
842 /*
843  * Deliver a 32bit value for TCP timestamp option (RFC 7323)
844  * It is no longer tied to jiffies, but to 1 ms clock.
845  * Note: double check if you want to use tcp_jiffies32 instead of this.
846  */
847 #define TCP_TS_HZ	1000
848 
849 static inline u64 tcp_clock_ns(void)
850 {
851 	return ktime_get_ns();
852 }
853 
854 static inline u64 tcp_clock_us(void)
855 {
856 	return div_u64(tcp_clock_ns(), NSEC_PER_USEC);
857 }
858 
859 static inline u64 tcp_clock_ms(void)
860 {
861 	return div_u64(tcp_clock_ns(), NSEC_PER_MSEC);
862 }
863 
864 /* TCP Timestamp included in TS option (RFC 1323) can either use ms
865  * or usec resolution. Each socket carries a flag to select one or other
866  * resolution, as the route attribute could change anytime.
867  * Each flow must stick to initial resolution.
868  */
869 static inline u32 tcp_clock_ts(bool usec_ts)
870 {
871 	return usec_ts ? tcp_clock_us() : tcp_clock_ms();
872 }
873 
874 static inline u32 tcp_time_stamp_ms(const struct tcp_sock *tp)
875 {
876 	return div_u64(tp->tcp_mstamp, USEC_PER_MSEC);
877 }
878 
879 static inline u32 tcp_time_stamp_ts(const struct tcp_sock *tp)
880 {
881 	if (tp->tcp_usec_ts)
882 		return tp->tcp_mstamp;
883 	return tcp_time_stamp_ms(tp);
884 }
885 
886 void tcp_mstamp_refresh(struct tcp_sock *tp);
887 
888 static inline u32 tcp_stamp_us_delta(u64 t1, u64 t0)
889 {
890 	return max_t(s64, t1 - t0, 0);
891 }
892 
893 /* provide the departure time in us unit */
894 static inline u64 tcp_skb_timestamp_us(const struct sk_buff *skb)
895 {
896 	return div_u64(skb->skb_mstamp_ns, NSEC_PER_USEC);
897 }
898 
899 /* Provide skb TSval in usec or ms unit */
900 static inline u32 tcp_skb_timestamp_ts(bool usec_ts, const struct sk_buff *skb)
901 {
902 	if (usec_ts)
903 		return tcp_skb_timestamp_us(skb);
904 
905 	return div_u64(skb->skb_mstamp_ns, NSEC_PER_MSEC);
906 }
907 
908 static inline u32 tcp_tw_tsval(const struct tcp_timewait_sock *tcptw)
909 {
910 	return tcp_clock_ts(tcptw->tw_sk.tw_usec_ts) + tcptw->tw_ts_offset;
911 }
912 
913 static inline u32 tcp_rsk_tsval(const struct tcp_request_sock *treq)
914 {
915 	return tcp_clock_ts(treq->req_usec_ts) + treq->ts_off;
916 }
917 
918 #define tcp_flag_byte(th) (((u_int8_t *)th)[13])
919 
920 #define TCPHDR_FIN 0x01
921 #define TCPHDR_SYN 0x02
922 #define TCPHDR_RST 0x04
923 #define TCPHDR_PSH 0x08
924 #define TCPHDR_ACK 0x10
925 #define TCPHDR_URG 0x20
926 #define TCPHDR_ECE 0x40
927 #define TCPHDR_CWR 0x80
928 
929 #define TCPHDR_SYN_ECN	(TCPHDR_SYN | TCPHDR_ECE | TCPHDR_CWR)
930 
931 /* This is what the send packet queuing engine uses to pass
932  * TCP per-packet control information to the transmission code.
933  * We also store the host-order sequence numbers in here too.
934  * This is 44 bytes if IPV6 is enabled.
935  * If this grows please adjust skbuff.h:skbuff->cb[xxx] size appropriately.
936  */
937 struct tcp_skb_cb {
938 	__u32		seq;		/* Starting sequence number	*/
939 	__u32		end_seq;	/* SEQ + FIN + SYN + datalen	*/
940 	union {
941 		/* Note :
942 		 * 	  tcp_gso_segs/size are used in write queue only,
943 		 *	  cf tcp_skb_pcount()/tcp_skb_mss()
944 		 */
945 		struct {
946 			u16	tcp_gso_segs;
947 			u16	tcp_gso_size;
948 		};
949 	};
950 	__u8		tcp_flags;	/* TCP header flags. (tcp[13])	*/
951 
952 	__u8		sacked;		/* State flags for SACK.	*/
953 #define TCPCB_SACKED_ACKED	0x01	/* SKB ACK'd by a SACK block	*/
954 #define TCPCB_SACKED_RETRANS	0x02	/* SKB retransmitted		*/
955 #define TCPCB_LOST		0x04	/* SKB is lost			*/
956 #define TCPCB_TAGBITS		0x07	/* All tag bits			*/
957 #define TCPCB_REPAIRED		0x10	/* SKB repaired (no skb_mstamp_ns)	*/
958 #define TCPCB_EVER_RETRANS	0x80	/* Ever retransmitted frame	*/
959 #define TCPCB_RETRANS		(TCPCB_SACKED_RETRANS|TCPCB_EVER_RETRANS| \
960 				TCPCB_REPAIRED)
961 
962 	__u8		ip_dsfield;	/* IPv4 tos or IPv6 dsfield	*/
963 	__u8		txstamp_ack:1,	/* Record TX timestamp for ack? */
964 			eor:1,		/* Is skb MSG_EOR marked? */
965 			has_rxtstamp:1,	/* SKB has a RX timestamp	*/
966 			unused:5;
967 	__u32		ack_seq;	/* Sequence number ACK'd	*/
968 	union {
969 		struct {
970 #define TCPCB_DELIVERED_CE_MASK ((1U<<20) - 1)
971 			/* There is space for up to 24 bytes */
972 			__u32 is_app_limited:1, /* cwnd not fully used? */
973 			      delivered_ce:20,
974 			      unused:11;
975 			/* pkts S/ACKed so far upon tx of skb, incl retrans: */
976 			__u32 delivered;
977 			/* start of send pipeline phase */
978 			u64 first_tx_mstamp;
979 			/* when we reached the "delivered" count */
980 			u64 delivered_mstamp;
981 		} tx;   /* only used for outgoing skbs */
982 		union {
983 			struct inet_skb_parm	h4;
984 #if IS_ENABLED(CONFIG_IPV6)
985 			struct inet6_skb_parm	h6;
986 #endif
987 		} header;	/* For incoming skbs */
988 	};
989 };
990 
991 #define TCP_SKB_CB(__skb)	((struct tcp_skb_cb *)&((__skb)->cb[0]))
992 
993 extern const struct inet_connection_sock_af_ops ipv4_specific;
994 
995 #if IS_ENABLED(CONFIG_IPV6)
996 /* This is the variant of inet6_iif() that must be used by TCP,
997  * as TCP moves IP6CB into a different location in skb->cb[]
998  */
999 static inline int tcp_v6_iif(const struct sk_buff *skb)
1000 {
1001 	return TCP_SKB_CB(skb)->header.h6.iif;
1002 }
1003 
1004 static inline int tcp_v6_iif_l3_slave(const struct sk_buff *skb)
1005 {
1006 	bool l3_slave = ipv6_l3mdev_skb(TCP_SKB_CB(skb)->header.h6.flags);
1007 
1008 	return l3_slave ? skb->skb_iif : TCP_SKB_CB(skb)->header.h6.iif;
1009 }
1010 
1011 /* TCP_SKB_CB reference means this can not be used from early demux */
1012 static inline int tcp_v6_sdif(const struct sk_buff *skb)
1013 {
1014 #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
1015 	if (skb && ipv6_l3mdev_skb(TCP_SKB_CB(skb)->header.h6.flags))
1016 		return TCP_SKB_CB(skb)->header.h6.iif;
1017 #endif
1018 	return 0;
1019 }
1020 
1021 extern const struct inet_connection_sock_af_ops ipv6_specific;
1022 
1023 INDIRECT_CALLABLE_DECLARE(void tcp_v6_send_check(struct sock *sk, struct sk_buff *skb));
1024 INDIRECT_CALLABLE_DECLARE(int tcp_v6_rcv(struct sk_buff *skb));
1025 void tcp_v6_early_demux(struct sk_buff *skb);
1026 
1027 #endif
1028 
1029 /* TCP_SKB_CB reference means this can not be used from early demux */
1030 static inline int tcp_v4_sdif(struct sk_buff *skb)
1031 {
1032 #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
1033 	if (skb && ipv4_l3mdev_skb(TCP_SKB_CB(skb)->header.h4.flags))
1034 		return TCP_SKB_CB(skb)->header.h4.iif;
1035 #endif
1036 	return 0;
1037 }
1038 
1039 /* Due to TSO, an SKB can be composed of multiple actual
1040  * packets.  To keep these tracked properly, we use this.
1041  */
1042 static inline int tcp_skb_pcount(const struct sk_buff *skb)
1043 {
1044 	return TCP_SKB_CB(skb)->tcp_gso_segs;
1045 }
1046 
1047 static inline void tcp_skb_pcount_set(struct sk_buff *skb, int segs)
1048 {
1049 	TCP_SKB_CB(skb)->tcp_gso_segs = segs;
1050 }
1051 
1052 static inline void tcp_skb_pcount_add(struct sk_buff *skb, int segs)
1053 {
1054 	TCP_SKB_CB(skb)->tcp_gso_segs += segs;
1055 }
1056 
1057 /* This is valid iff skb is in write queue and tcp_skb_pcount() > 1. */
1058 static inline int tcp_skb_mss(const struct sk_buff *skb)
1059 {
1060 	return TCP_SKB_CB(skb)->tcp_gso_size;
1061 }
1062 
1063 static inline bool tcp_skb_can_collapse_to(const struct sk_buff *skb)
1064 {
1065 	return likely(!TCP_SKB_CB(skb)->eor);
1066 }
1067 
1068 static inline bool tcp_skb_can_collapse(const struct sk_buff *to,
1069 					const struct sk_buff *from)
1070 {
1071 	return likely(tcp_skb_can_collapse_to(to) &&
1072 		      mptcp_skb_can_collapse(to, from) &&
1073 		      skb_pure_zcopy_same(to, from));
1074 }
1075 
1076 /* Events passed to congestion control interface */
1077 enum tcp_ca_event {
1078 	CA_EVENT_TX_START,	/* first transmit when no packets in flight */
1079 	CA_EVENT_CWND_RESTART,	/* congestion window restart */
1080 	CA_EVENT_COMPLETE_CWR,	/* end of congestion recovery */
1081 	CA_EVENT_LOSS,		/* loss timeout */
1082 	CA_EVENT_ECN_NO_CE,	/* ECT set, but not CE marked */
1083 	CA_EVENT_ECN_IS_CE,	/* received CE marked IP packet */
1084 };
1085 
1086 /* Information about inbound ACK, passed to cong_ops->in_ack_event() */
1087 enum tcp_ca_ack_event_flags {
1088 	CA_ACK_SLOWPATH		= (1 << 0),	/* In slow path processing */
1089 	CA_ACK_WIN_UPDATE	= (1 << 1),	/* ACK updated window */
1090 	CA_ACK_ECE		= (1 << 2),	/* ECE bit is set on ack */
1091 };
1092 
1093 /*
1094  * Interface for adding new TCP congestion control handlers
1095  */
1096 #define TCP_CA_NAME_MAX	16
1097 #define TCP_CA_MAX	128
1098 #define TCP_CA_BUF_MAX	(TCP_CA_NAME_MAX*TCP_CA_MAX)
1099 
1100 #define TCP_CA_UNSPEC	0
1101 
1102 /* Algorithm can be set on socket without CAP_NET_ADMIN privileges */
1103 #define TCP_CONG_NON_RESTRICTED 0x1
1104 /* Requires ECN/ECT set on all packets */
1105 #define TCP_CONG_NEEDS_ECN	0x2
1106 #define TCP_CONG_MASK	(TCP_CONG_NON_RESTRICTED | TCP_CONG_NEEDS_ECN)
1107 
1108 union tcp_cc_info;
1109 
1110 struct ack_sample {
1111 	u32 pkts_acked;
1112 	s32 rtt_us;
1113 	u32 in_flight;
1114 };
1115 
1116 /* A rate sample measures the number of (original/retransmitted) data
1117  * packets delivered "delivered" over an interval of time "interval_us".
1118  * The tcp_rate.c code fills in the rate sample, and congestion
1119  * control modules that define a cong_control function to run at the end
1120  * of ACK processing can optionally chose to consult this sample when
1121  * setting cwnd and pacing rate.
1122  * A sample is invalid if "delivered" or "interval_us" is negative.
1123  */
1124 struct rate_sample {
1125 	u64  prior_mstamp; /* starting timestamp for interval */
1126 	u32  prior_delivered;	/* tp->delivered at "prior_mstamp" */
1127 	u32  prior_delivered_ce;/* tp->delivered_ce at "prior_mstamp" */
1128 	s32  delivered;		/* number of packets delivered over interval */
1129 	s32  delivered_ce;	/* number of packets delivered w/ CE marks*/
1130 	long interval_us;	/* time for tp->delivered to incr "delivered" */
1131 	u32 snd_interval_us;	/* snd interval for delivered packets */
1132 	u32 rcv_interval_us;	/* rcv interval for delivered packets */
1133 	long rtt_us;		/* RTT of last (S)ACKed packet (or -1) */
1134 	int  losses;		/* number of packets marked lost upon ACK */
1135 	u32  acked_sacked;	/* number of packets newly (S)ACKed upon ACK */
1136 	u32  prior_in_flight;	/* in flight before this ACK */
1137 	u32  last_end_seq;	/* end_seq of most recently ACKed packet */
1138 	bool is_app_limited;	/* is sample from packet with bubble in pipe? */
1139 	bool is_retrans;	/* is sample from retransmission? */
1140 	bool is_ack_delayed;	/* is this (likely) a delayed ACK? */
1141 };
1142 
1143 struct tcp_congestion_ops {
1144 /* fast path fields are put first to fill one cache line */
1145 
1146 	/* return slow start threshold (required) */
1147 	u32 (*ssthresh)(struct sock *sk);
1148 
1149 	/* do new cwnd calculation (required) */
1150 	void (*cong_avoid)(struct sock *sk, u32 ack, u32 acked);
1151 
1152 	/* call before changing ca_state (optional) */
1153 	void (*set_state)(struct sock *sk, u8 new_state);
1154 
1155 	/* call when cwnd event occurs (optional) */
1156 	void (*cwnd_event)(struct sock *sk, enum tcp_ca_event ev);
1157 
1158 	/* call when ack arrives (optional) */
1159 	void (*in_ack_event)(struct sock *sk, u32 flags);
1160 
1161 	/* hook for packet ack accounting (optional) */
1162 	void (*pkts_acked)(struct sock *sk, const struct ack_sample *sample);
1163 
1164 	/* override sysctl_tcp_min_tso_segs */
1165 	u32 (*min_tso_segs)(struct sock *sk);
1166 
1167 	/* call when packets are delivered to update cwnd and pacing rate,
1168 	 * after all the ca_state processing. (optional)
1169 	 */
1170 	void (*cong_control)(struct sock *sk, const struct rate_sample *rs);
1171 
1172 
1173 	/* new value of cwnd after loss (required) */
1174 	u32  (*undo_cwnd)(struct sock *sk);
1175 	/* returns the multiplier used in tcp_sndbuf_expand (optional) */
1176 	u32 (*sndbuf_expand)(struct sock *sk);
1177 
1178 /* control/slow paths put last */
1179 	/* get info for inet_diag (optional) */
1180 	size_t (*get_info)(struct sock *sk, u32 ext, int *attr,
1181 			   union tcp_cc_info *info);
1182 
1183 	char 			name[TCP_CA_NAME_MAX];
1184 	struct module		*owner;
1185 	struct list_head	list;
1186 	u32			key;
1187 	u32			flags;
1188 
1189 	/* initialize private data (optional) */
1190 	void (*init)(struct sock *sk);
1191 	/* cleanup private data  (optional) */
1192 	void (*release)(struct sock *sk);
1193 } ____cacheline_aligned_in_smp;
1194 
1195 int tcp_register_congestion_control(struct tcp_congestion_ops *type);
1196 void tcp_unregister_congestion_control(struct tcp_congestion_ops *type);
1197 int tcp_update_congestion_control(struct tcp_congestion_ops *type,
1198 				  struct tcp_congestion_ops *old_type);
1199 int tcp_validate_congestion_control(struct tcp_congestion_ops *ca);
1200 
1201 void tcp_assign_congestion_control(struct sock *sk);
1202 void tcp_init_congestion_control(struct sock *sk);
1203 void tcp_cleanup_congestion_control(struct sock *sk);
1204 int tcp_set_default_congestion_control(struct net *net, const char *name);
1205 void tcp_get_default_congestion_control(struct net *net, char *name);
1206 void tcp_get_available_congestion_control(char *buf, size_t len);
1207 void tcp_get_allowed_congestion_control(char *buf, size_t len);
1208 int tcp_set_allowed_congestion_control(char *allowed);
1209 int tcp_set_congestion_control(struct sock *sk, const char *name, bool load,
1210 			       bool cap_net_admin);
1211 u32 tcp_slow_start(struct tcp_sock *tp, u32 acked);
1212 void tcp_cong_avoid_ai(struct tcp_sock *tp, u32 w, u32 acked);
1213 
1214 u32 tcp_reno_ssthresh(struct sock *sk);
1215 u32 tcp_reno_undo_cwnd(struct sock *sk);
1216 void tcp_reno_cong_avoid(struct sock *sk, u32 ack, u32 acked);
1217 extern struct tcp_congestion_ops tcp_reno;
1218 
1219 struct tcp_congestion_ops *tcp_ca_find(const char *name);
1220 struct tcp_congestion_ops *tcp_ca_find_key(u32 key);
1221 u32 tcp_ca_get_key_by_name(struct net *net, const char *name, bool *ecn_ca);
1222 #ifdef CONFIG_INET
1223 char *tcp_ca_get_name_by_key(u32 key, char *buffer);
1224 #else
1225 static inline char *tcp_ca_get_name_by_key(u32 key, char *buffer)
1226 {
1227 	return NULL;
1228 }
1229 #endif
1230 
1231 static inline bool tcp_ca_needs_ecn(const struct sock *sk)
1232 {
1233 	const struct inet_connection_sock *icsk = inet_csk(sk);
1234 
1235 	return icsk->icsk_ca_ops->flags & TCP_CONG_NEEDS_ECN;
1236 }
1237 
1238 static inline void tcp_ca_event(struct sock *sk, const enum tcp_ca_event event)
1239 {
1240 	const struct inet_connection_sock *icsk = inet_csk(sk);
1241 
1242 	if (icsk->icsk_ca_ops->cwnd_event)
1243 		icsk->icsk_ca_ops->cwnd_event(sk, event);
1244 }
1245 
1246 /* From tcp_cong.c */
1247 void tcp_set_ca_state(struct sock *sk, const u8 ca_state);
1248 
1249 /* From tcp_rate.c */
1250 void tcp_rate_skb_sent(struct sock *sk, struct sk_buff *skb);
1251 void tcp_rate_skb_delivered(struct sock *sk, struct sk_buff *skb,
1252 			    struct rate_sample *rs);
1253 void tcp_rate_gen(struct sock *sk, u32 delivered, u32 lost,
1254 		  bool is_sack_reneg, struct rate_sample *rs);
1255 void tcp_rate_check_app_limited(struct sock *sk);
1256 
1257 static inline bool tcp_skb_sent_after(u64 t1, u64 t2, u32 seq1, u32 seq2)
1258 {
1259 	return t1 > t2 || (t1 == t2 && after(seq1, seq2));
1260 }
1261 
1262 /* These functions determine how the current flow behaves in respect of SACK
1263  * handling. SACK is negotiated with the peer, and therefore it can vary
1264  * between different flows.
1265  *
1266  * tcp_is_sack - SACK enabled
1267  * tcp_is_reno - No SACK
1268  */
1269 static inline int tcp_is_sack(const struct tcp_sock *tp)
1270 {
1271 	return likely(tp->rx_opt.sack_ok);
1272 }
1273 
1274 static inline bool tcp_is_reno(const struct tcp_sock *tp)
1275 {
1276 	return !tcp_is_sack(tp);
1277 }
1278 
1279 static inline unsigned int tcp_left_out(const struct tcp_sock *tp)
1280 {
1281 	return tp->sacked_out + tp->lost_out;
1282 }
1283 
1284 /* This determines how many packets are "in the network" to the best
1285  * of our knowledge.  In many cases it is conservative, but where
1286  * detailed information is available from the receiver (via SACK
1287  * blocks etc.) we can make more aggressive calculations.
1288  *
1289  * Use this for decisions involving congestion control, use just
1290  * tp->packets_out to determine if the send queue is empty or not.
1291  *
1292  * Read this equation as:
1293  *
1294  *	"Packets sent once on transmission queue" MINUS
1295  *	"Packets left network, but not honestly ACKed yet" PLUS
1296  *	"Packets fast retransmitted"
1297  */
1298 static inline unsigned int tcp_packets_in_flight(const struct tcp_sock *tp)
1299 {
1300 	return tp->packets_out - tcp_left_out(tp) + tp->retrans_out;
1301 }
1302 
1303 #define TCP_INFINITE_SSTHRESH	0x7fffffff
1304 
1305 static inline u32 tcp_snd_cwnd(const struct tcp_sock *tp)
1306 {
1307 	return tp->snd_cwnd;
1308 }
1309 
1310 static inline void tcp_snd_cwnd_set(struct tcp_sock *tp, u32 val)
1311 {
1312 	WARN_ON_ONCE((int)val <= 0);
1313 	tp->snd_cwnd = val;
1314 }
1315 
1316 static inline bool tcp_in_slow_start(const struct tcp_sock *tp)
1317 {
1318 	return tcp_snd_cwnd(tp) < tp->snd_ssthresh;
1319 }
1320 
1321 static inline bool tcp_in_initial_slowstart(const struct tcp_sock *tp)
1322 {
1323 	return tp->snd_ssthresh >= TCP_INFINITE_SSTHRESH;
1324 }
1325 
1326 static inline bool tcp_in_cwnd_reduction(const struct sock *sk)
1327 {
1328 	return (TCPF_CA_CWR | TCPF_CA_Recovery) &
1329 	       (1 << inet_csk(sk)->icsk_ca_state);
1330 }
1331 
1332 /* If cwnd > ssthresh, we may raise ssthresh to be half-way to cwnd.
1333  * The exception is cwnd reduction phase, when cwnd is decreasing towards
1334  * ssthresh.
1335  */
1336 static inline __u32 tcp_current_ssthresh(const struct sock *sk)
1337 {
1338 	const struct tcp_sock *tp = tcp_sk(sk);
1339 
1340 	if (tcp_in_cwnd_reduction(sk))
1341 		return tp->snd_ssthresh;
1342 	else
1343 		return max(tp->snd_ssthresh,
1344 			   ((tcp_snd_cwnd(tp) >> 1) +
1345 			    (tcp_snd_cwnd(tp) >> 2)));
1346 }
1347 
1348 /* Use define here intentionally to get WARN_ON location shown at the caller */
1349 #define tcp_verify_left_out(tp)	WARN_ON(tcp_left_out(tp) > tp->packets_out)
1350 
1351 void tcp_enter_cwr(struct sock *sk);
1352 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst);
1353 
1354 /* The maximum number of MSS of available cwnd for which TSO defers
1355  * sending if not using sysctl_tcp_tso_win_divisor.
1356  */
1357 static inline __u32 tcp_max_tso_deferred_mss(const struct tcp_sock *tp)
1358 {
1359 	return 3;
1360 }
1361 
1362 /* Returns end sequence number of the receiver's advertised window */
1363 static inline u32 tcp_wnd_end(const struct tcp_sock *tp)
1364 {
1365 	return tp->snd_una + tp->snd_wnd;
1366 }
1367 
1368 /* We follow the spirit of RFC2861 to validate cwnd but implement a more
1369  * flexible approach. The RFC suggests cwnd should not be raised unless
1370  * it was fully used previously. And that's exactly what we do in
1371  * congestion avoidance mode. But in slow start we allow cwnd to grow
1372  * as long as the application has used half the cwnd.
1373  * Example :
1374  *    cwnd is 10 (IW10), but application sends 9 frames.
1375  *    We allow cwnd to reach 18 when all frames are ACKed.
1376  * This check is safe because it's as aggressive as slow start which already
1377  * risks 100% overshoot. The advantage is that we discourage application to
1378  * either send more filler packets or data to artificially blow up the cwnd
1379  * usage, and allow application-limited process to probe bw more aggressively.
1380  */
1381 static inline bool tcp_is_cwnd_limited(const struct sock *sk)
1382 {
1383 	const struct tcp_sock *tp = tcp_sk(sk);
1384 
1385 	if (tp->is_cwnd_limited)
1386 		return true;
1387 
1388 	/* If in slow start, ensure cwnd grows to twice what was ACKed. */
1389 	if (tcp_in_slow_start(tp))
1390 		return tcp_snd_cwnd(tp) < 2 * tp->max_packets_out;
1391 
1392 	return false;
1393 }
1394 
1395 /* BBR congestion control needs pacing.
1396  * Same remark for SO_MAX_PACING_RATE.
1397  * sch_fq packet scheduler is efficiently handling pacing,
1398  * but is not always installed/used.
1399  * Return true if TCP stack should pace packets itself.
1400  */
1401 static inline bool tcp_needs_internal_pacing(const struct sock *sk)
1402 {
1403 	return smp_load_acquire(&sk->sk_pacing_status) == SK_PACING_NEEDED;
1404 }
1405 
1406 /* Estimates in how many jiffies next packet for this flow can be sent.
1407  * Scheduling a retransmit timer too early would be silly.
1408  */
1409 static inline unsigned long tcp_pacing_delay(const struct sock *sk)
1410 {
1411 	s64 delay = tcp_sk(sk)->tcp_wstamp_ns - tcp_sk(sk)->tcp_clock_cache;
1412 
1413 	return delay > 0 ? nsecs_to_jiffies(delay) : 0;
1414 }
1415 
1416 static inline void tcp_reset_xmit_timer(struct sock *sk,
1417 					const int what,
1418 					unsigned long when,
1419 					const unsigned long max_when)
1420 {
1421 	inet_csk_reset_xmit_timer(sk, what, when + tcp_pacing_delay(sk),
1422 				  max_when);
1423 }
1424 
1425 /* Something is really bad, we could not queue an additional packet,
1426  * because qdisc is full or receiver sent a 0 window, or we are paced.
1427  * We do not want to add fuel to the fire, or abort too early,
1428  * so make sure the timer we arm now is at least 200ms in the future,
1429  * regardless of current icsk_rto value (as it could be ~2ms)
1430  */
1431 static inline unsigned long tcp_probe0_base(const struct sock *sk)
1432 {
1433 	return max_t(unsigned long, inet_csk(sk)->icsk_rto, TCP_RTO_MIN);
1434 }
1435 
1436 /* Variant of inet_csk_rto_backoff() used for zero window probes */
1437 static inline unsigned long tcp_probe0_when(const struct sock *sk,
1438 					    unsigned long max_when)
1439 {
1440 	u8 backoff = min_t(u8, ilog2(TCP_RTO_MAX / TCP_RTO_MIN) + 1,
1441 			   inet_csk(sk)->icsk_backoff);
1442 	u64 when = (u64)tcp_probe0_base(sk) << backoff;
1443 
1444 	return (unsigned long)min_t(u64, when, max_when);
1445 }
1446 
1447 static inline void tcp_check_probe_timer(struct sock *sk)
1448 {
1449 	if (!tcp_sk(sk)->packets_out && !inet_csk(sk)->icsk_pending)
1450 		tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
1451 				     tcp_probe0_base(sk), TCP_RTO_MAX);
1452 }
1453 
1454 static inline void tcp_init_wl(struct tcp_sock *tp, u32 seq)
1455 {
1456 	tp->snd_wl1 = seq;
1457 }
1458 
1459 static inline void tcp_update_wl(struct tcp_sock *tp, u32 seq)
1460 {
1461 	tp->snd_wl1 = seq;
1462 }
1463 
1464 /*
1465  * Calculate(/check) TCP checksum
1466  */
1467 static inline __sum16 tcp_v4_check(int len, __be32 saddr,
1468 				   __be32 daddr, __wsum base)
1469 {
1470 	return csum_tcpudp_magic(saddr, daddr, len, IPPROTO_TCP, base);
1471 }
1472 
1473 static inline bool tcp_checksum_complete(struct sk_buff *skb)
1474 {
1475 	return !skb_csum_unnecessary(skb) &&
1476 		__skb_checksum_complete(skb);
1477 }
1478 
1479 bool tcp_add_backlog(struct sock *sk, struct sk_buff *skb,
1480 		     enum skb_drop_reason *reason);
1481 
1482 
1483 int tcp_filter(struct sock *sk, struct sk_buff *skb);
1484 void tcp_set_state(struct sock *sk, int state);
1485 void tcp_done(struct sock *sk);
1486 int tcp_abort(struct sock *sk, int err);
1487 
1488 static inline void tcp_sack_reset(struct tcp_options_received *rx_opt)
1489 {
1490 	rx_opt->dsack = 0;
1491 	rx_opt->num_sacks = 0;
1492 }
1493 
1494 void tcp_cwnd_restart(struct sock *sk, s32 delta);
1495 
1496 static inline void tcp_slow_start_after_idle_check(struct sock *sk)
1497 {
1498 	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1499 	struct tcp_sock *tp = tcp_sk(sk);
1500 	s32 delta;
1501 
1502 	if (!READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_slow_start_after_idle) ||
1503 	    tp->packets_out || ca_ops->cong_control)
1504 		return;
1505 	delta = tcp_jiffies32 - tp->lsndtime;
1506 	if (delta > inet_csk(sk)->icsk_rto)
1507 		tcp_cwnd_restart(sk, delta);
1508 }
1509 
1510 /* Determine a window scaling and initial window to offer. */
1511 void tcp_select_initial_window(const struct sock *sk, int __space,
1512 			       __u32 mss, __u32 *rcv_wnd,
1513 			       __u32 *window_clamp, int wscale_ok,
1514 			       __u8 *rcv_wscale, __u32 init_rcv_wnd);
1515 
1516 static inline int __tcp_win_from_space(u8 scaling_ratio, int space)
1517 {
1518 	s64 scaled_space = (s64)space * scaling_ratio;
1519 
1520 	return scaled_space >> TCP_RMEM_TO_WIN_SCALE;
1521 }
1522 
1523 static inline int tcp_win_from_space(const struct sock *sk, int space)
1524 {
1525 	return __tcp_win_from_space(tcp_sk(sk)->scaling_ratio, space);
1526 }
1527 
1528 /* inverse of __tcp_win_from_space() */
1529 static inline int __tcp_space_from_win(u8 scaling_ratio, int win)
1530 {
1531 	u64 val = (u64)win << TCP_RMEM_TO_WIN_SCALE;
1532 
1533 	do_div(val, scaling_ratio);
1534 	return val;
1535 }
1536 
1537 static inline int tcp_space_from_win(const struct sock *sk, int win)
1538 {
1539 	return __tcp_space_from_win(tcp_sk(sk)->scaling_ratio, win);
1540 }
1541 
1542 /* Assume a 50% default for skb->len/skb->truesize ratio.
1543  * This may be adjusted later in tcp_measure_rcv_mss().
1544  */
1545 #define TCP_DEFAULT_SCALING_RATIO (1 << (TCP_RMEM_TO_WIN_SCALE - 1))
1546 
1547 static inline void tcp_scaling_ratio_init(struct sock *sk)
1548 {
1549 	tcp_sk(sk)->scaling_ratio = TCP_DEFAULT_SCALING_RATIO;
1550 }
1551 
1552 /* Note: caller must be prepared to deal with negative returns */
1553 static inline int tcp_space(const struct sock *sk)
1554 {
1555 	return tcp_win_from_space(sk, READ_ONCE(sk->sk_rcvbuf) -
1556 				  READ_ONCE(sk->sk_backlog.len) -
1557 				  atomic_read(&sk->sk_rmem_alloc));
1558 }
1559 
1560 static inline int tcp_full_space(const struct sock *sk)
1561 {
1562 	return tcp_win_from_space(sk, READ_ONCE(sk->sk_rcvbuf));
1563 }
1564 
1565 static inline void __tcp_adjust_rcv_ssthresh(struct sock *sk, u32 new_ssthresh)
1566 {
1567 	int unused_mem = sk_unused_reserved_mem(sk);
1568 	struct tcp_sock *tp = tcp_sk(sk);
1569 
1570 	tp->rcv_ssthresh = min(tp->rcv_ssthresh, new_ssthresh);
1571 	if (unused_mem)
1572 		tp->rcv_ssthresh = max_t(u32, tp->rcv_ssthresh,
1573 					 tcp_win_from_space(sk, unused_mem));
1574 }
1575 
1576 static inline void tcp_adjust_rcv_ssthresh(struct sock *sk)
1577 {
1578 	__tcp_adjust_rcv_ssthresh(sk, 4U * tcp_sk(sk)->advmss);
1579 }
1580 
1581 void tcp_cleanup_rbuf(struct sock *sk, int copied);
1582 void __tcp_cleanup_rbuf(struct sock *sk, int copied);
1583 
1584 
1585 /* We provision sk_rcvbuf around 200% of sk_rcvlowat.
1586  * If 87.5 % (7/8) of the space has been consumed, we want to override
1587  * SO_RCVLOWAT constraint, since we are receiving skbs with too small
1588  * len/truesize ratio.
1589  */
1590 static inline bool tcp_rmem_pressure(const struct sock *sk)
1591 {
1592 	int rcvbuf, threshold;
1593 
1594 	if (tcp_under_memory_pressure(sk))
1595 		return true;
1596 
1597 	rcvbuf = READ_ONCE(sk->sk_rcvbuf);
1598 	threshold = rcvbuf - (rcvbuf >> 3);
1599 
1600 	return atomic_read(&sk->sk_rmem_alloc) > threshold;
1601 }
1602 
1603 static inline bool tcp_epollin_ready(const struct sock *sk, int target)
1604 {
1605 	const struct tcp_sock *tp = tcp_sk(sk);
1606 	int avail = READ_ONCE(tp->rcv_nxt) - READ_ONCE(tp->copied_seq);
1607 
1608 	if (avail <= 0)
1609 		return false;
1610 
1611 	return (avail >= target) || tcp_rmem_pressure(sk) ||
1612 	       (tcp_receive_window(tp) <= inet_csk(sk)->icsk_ack.rcv_mss);
1613 }
1614 
1615 extern void tcp_openreq_init_rwin(struct request_sock *req,
1616 				  const struct sock *sk_listener,
1617 				  const struct dst_entry *dst);
1618 
1619 void tcp_enter_memory_pressure(struct sock *sk);
1620 void tcp_leave_memory_pressure(struct sock *sk);
1621 
1622 static inline int keepalive_intvl_when(const struct tcp_sock *tp)
1623 {
1624 	struct net *net = sock_net((struct sock *)tp);
1625 	int val;
1626 
1627 	/* Paired with WRITE_ONCE() in tcp_sock_set_keepintvl()
1628 	 * and do_tcp_setsockopt().
1629 	 */
1630 	val = READ_ONCE(tp->keepalive_intvl);
1631 
1632 	return val ? : READ_ONCE(net->ipv4.sysctl_tcp_keepalive_intvl);
1633 }
1634 
1635 static inline int keepalive_time_when(const struct tcp_sock *tp)
1636 {
1637 	struct net *net = sock_net((struct sock *)tp);
1638 	int val;
1639 
1640 	/* Paired with WRITE_ONCE() in tcp_sock_set_keepidle_locked() */
1641 	val = READ_ONCE(tp->keepalive_time);
1642 
1643 	return val ? : READ_ONCE(net->ipv4.sysctl_tcp_keepalive_time);
1644 }
1645 
1646 static inline int keepalive_probes(const struct tcp_sock *tp)
1647 {
1648 	struct net *net = sock_net((struct sock *)tp);
1649 	int val;
1650 
1651 	/* Paired with WRITE_ONCE() in tcp_sock_set_keepcnt()
1652 	 * and do_tcp_setsockopt().
1653 	 */
1654 	val = READ_ONCE(tp->keepalive_probes);
1655 
1656 	return val ? : READ_ONCE(net->ipv4.sysctl_tcp_keepalive_probes);
1657 }
1658 
1659 static inline u32 keepalive_time_elapsed(const struct tcp_sock *tp)
1660 {
1661 	const struct inet_connection_sock *icsk = &tp->inet_conn;
1662 
1663 	return min_t(u32, tcp_jiffies32 - icsk->icsk_ack.lrcvtime,
1664 			  tcp_jiffies32 - tp->rcv_tstamp);
1665 }
1666 
1667 static inline int tcp_fin_time(const struct sock *sk)
1668 {
1669 	int fin_timeout = tcp_sk(sk)->linger2 ? :
1670 		READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_fin_timeout);
1671 	const int rto = inet_csk(sk)->icsk_rto;
1672 
1673 	if (fin_timeout < (rto << 2) - (rto >> 1))
1674 		fin_timeout = (rto << 2) - (rto >> 1);
1675 
1676 	return fin_timeout;
1677 }
1678 
1679 static inline bool tcp_paws_check(const struct tcp_options_received *rx_opt,
1680 				  int paws_win)
1681 {
1682 	if ((s32)(rx_opt->ts_recent - rx_opt->rcv_tsval) <= paws_win)
1683 		return true;
1684 	if (unlikely(!time_before32(ktime_get_seconds(),
1685 				    rx_opt->ts_recent_stamp + TCP_PAWS_WRAP)))
1686 		return true;
1687 	/*
1688 	 * Some OSes send SYN and SYNACK messages with tsval=0 tsecr=0,
1689 	 * then following tcp messages have valid values. Ignore 0 value,
1690 	 * or else 'negative' tsval might forbid us to accept their packets.
1691 	 */
1692 	if (!rx_opt->ts_recent)
1693 		return true;
1694 	return false;
1695 }
1696 
1697 static inline bool tcp_paws_reject(const struct tcp_options_received *rx_opt,
1698 				   int rst)
1699 {
1700 	if (tcp_paws_check(rx_opt, 0))
1701 		return false;
1702 
1703 	/* RST segments are not recommended to carry timestamp,
1704 	   and, if they do, it is recommended to ignore PAWS because
1705 	   "their cleanup function should take precedence over timestamps."
1706 	   Certainly, it is mistake. It is necessary to understand the reasons
1707 	   of this constraint to relax it: if peer reboots, clock may go
1708 	   out-of-sync and half-open connections will not be reset.
1709 	   Actually, the problem would be not existing if all
1710 	   the implementations followed draft about maintaining clock
1711 	   via reboots. Linux-2.2 DOES NOT!
1712 
1713 	   However, we can relax time bounds for RST segments to MSL.
1714 	 */
1715 	if (rst && !time_before32(ktime_get_seconds(),
1716 				  rx_opt->ts_recent_stamp + TCP_PAWS_MSL))
1717 		return false;
1718 	return true;
1719 }
1720 
1721 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
1722 			  int mib_idx, u32 *last_oow_ack_time);
1723 
1724 static inline void tcp_mib_init(struct net *net)
1725 {
1726 	/* See RFC 2012 */
1727 	TCP_ADD_STATS(net, TCP_MIB_RTOALGORITHM, 1);
1728 	TCP_ADD_STATS(net, TCP_MIB_RTOMIN, TCP_RTO_MIN*1000/HZ);
1729 	TCP_ADD_STATS(net, TCP_MIB_RTOMAX, TCP_RTO_MAX*1000/HZ);
1730 	TCP_ADD_STATS(net, TCP_MIB_MAXCONN, -1);
1731 }
1732 
1733 /* from STCP */
1734 static inline void tcp_clear_retrans_hints_partial(struct tcp_sock *tp)
1735 {
1736 	tp->lost_skb_hint = NULL;
1737 }
1738 
1739 static inline void tcp_clear_all_retrans_hints(struct tcp_sock *tp)
1740 {
1741 	tcp_clear_retrans_hints_partial(tp);
1742 	tp->retransmit_skb_hint = NULL;
1743 }
1744 
1745 #define tcp_md5_addr tcp_ao_addr
1746 
1747 /* - key database */
1748 struct tcp_md5sig_key {
1749 	struct hlist_node	node;
1750 	u8			keylen;
1751 	u8			family; /* AF_INET or AF_INET6 */
1752 	u8			prefixlen;
1753 	u8			flags;
1754 	union tcp_md5_addr	addr;
1755 	int			l3index; /* set if key added with L3 scope */
1756 	u8			key[TCP_MD5SIG_MAXKEYLEN];
1757 	struct rcu_head		rcu;
1758 };
1759 
1760 /* - sock block */
1761 struct tcp_md5sig_info {
1762 	struct hlist_head	head;
1763 	struct rcu_head		rcu;
1764 };
1765 
1766 /* - pseudo header */
1767 struct tcp4_pseudohdr {
1768 	__be32		saddr;
1769 	__be32		daddr;
1770 	__u8		pad;
1771 	__u8		protocol;
1772 	__be16		len;
1773 };
1774 
1775 struct tcp6_pseudohdr {
1776 	struct in6_addr	saddr;
1777 	struct in6_addr daddr;
1778 	__be32		len;
1779 	__be32		protocol;	/* including padding */
1780 };
1781 
1782 union tcp_md5sum_block {
1783 	struct tcp4_pseudohdr ip4;
1784 #if IS_ENABLED(CONFIG_IPV6)
1785 	struct tcp6_pseudohdr ip6;
1786 #endif
1787 };
1788 
1789 /*
1790  * struct tcp_sigpool - per-CPU pool of ahash_requests
1791  * @scratch: per-CPU temporary area, that can be used between
1792  *	     tcp_sigpool_start() and tcp_sigpool_end() to perform
1793  *	     crypto request
1794  * @req: pre-allocated ahash request
1795  */
1796 struct tcp_sigpool {
1797 	void *scratch;
1798 	struct ahash_request *req;
1799 };
1800 
1801 int tcp_sigpool_alloc_ahash(const char *alg, size_t scratch_size);
1802 void tcp_sigpool_get(unsigned int id);
1803 void tcp_sigpool_release(unsigned int id);
1804 int tcp_sigpool_hash_skb_data(struct tcp_sigpool *hp,
1805 			      const struct sk_buff *skb,
1806 			      unsigned int header_len);
1807 
1808 /**
1809  * tcp_sigpool_start - disable bh and start using tcp_sigpool_ahash
1810  * @id: tcp_sigpool that was previously allocated by tcp_sigpool_alloc_ahash()
1811  * @c: returned tcp_sigpool for usage (uninitialized on failure)
1812  *
1813  * Returns 0 on success, error otherwise.
1814  */
1815 int tcp_sigpool_start(unsigned int id, struct tcp_sigpool *c);
1816 /**
1817  * tcp_sigpool_end - enable bh and stop using tcp_sigpool
1818  * @c: tcp_sigpool context that was returned by tcp_sigpool_start()
1819  */
1820 void tcp_sigpool_end(struct tcp_sigpool *c);
1821 size_t tcp_sigpool_algo(unsigned int id, char *buf, size_t buf_len);
1822 /* - functions */
1823 int tcp_v4_md5_hash_skb(char *md5_hash, const struct tcp_md5sig_key *key,
1824 			const struct sock *sk, const struct sk_buff *skb);
1825 int tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr,
1826 		   int family, u8 prefixlen, int l3index, u8 flags,
1827 		   const u8 *newkey, u8 newkeylen);
1828 int tcp_md5_key_copy(struct sock *sk, const union tcp_md5_addr *addr,
1829 		     int family, u8 prefixlen, int l3index,
1830 		     struct tcp_md5sig_key *key);
1831 
1832 int tcp_md5_do_del(struct sock *sk, const union tcp_md5_addr *addr,
1833 		   int family, u8 prefixlen, int l3index, u8 flags);
1834 void tcp_clear_md5_list(struct sock *sk);
1835 struct tcp_md5sig_key *tcp_v4_md5_lookup(const struct sock *sk,
1836 					 const struct sock *addr_sk);
1837 
1838 #ifdef CONFIG_TCP_MD5SIG
1839 struct tcp_md5sig_key *__tcp_md5_do_lookup(const struct sock *sk, int l3index,
1840 					   const union tcp_md5_addr *addr,
1841 					   int family, bool any_l3index);
1842 static inline struct tcp_md5sig_key *
1843 tcp_md5_do_lookup(const struct sock *sk, int l3index,
1844 		  const union tcp_md5_addr *addr, int family)
1845 {
1846 	if (!static_branch_unlikely(&tcp_md5_needed.key))
1847 		return NULL;
1848 	return __tcp_md5_do_lookup(sk, l3index, addr, family, false);
1849 }
1850 
1851 static inline struct tcp_md5sig_key *
1852 tcp_md5_do_lookup_any_l3index(const struct sock *sk,
1853 			      const union tcp_md5_addr *addr, int family)
1854 {
1855 	if (!static_branch_unlikely(&tcp_md5_needed.key))
1856 		return NULL;
1857 	return __tcp_md5_do_lookup(sk, 0, addr, family, true);
1858 }
1859 
1860 enum skb_drop_reason
1861 tcp_inbound_md5_hash(const struct sock *sk, const struct sk_buff *skb,
1862 		     const void *saddr, const void *daddr,
1863 		     int family, int l3index, const __u8 *hash_location);
1864 
1865 
1866 #define tcp_twsk_md5_key(twsk)	((twsk)->tw_md5_key)
1867 #else
1868 static inline struct tcp_md5sig_key *
1869 tcp_md5_do_lookup(const struct sock *sk, int l3index,
1870 		  const union tcp_md5_addr *addr, int family)
1871 {
1872 	return NULL;
1873 }
1874 
1875 static inline struct tcp_md5sig_key *
1876 tcp_md5_do_lookup_any_l3index(const struct sock *sk,
1877 			      const union tcp_md5_addr *addr, int family)
1878 {
1879 	return NULL;
1880 }
1881 
1882 static inline enum skb_drop_reason
1883 tcp_inbound_md5_hash(const struct sock *sk, const struct sk_buff *skb,
1884 		     const void *saddr, const void *daddr,
1885 		     int family, int l3index, const __u8 *hash_location)
1886 {
1887 	return SKB_NOT_DROPPED_YET;
1888 }
1889 #define tcp_twsk_md5_key(twsk)	NULL
1890 #endif
1891 
1892 int tcp_md5_alloc_sigpool(void);
1893 void tcp_md5_release_sigpool(void);
1894 void tcp_md5_add_sigpool(void);
1895 extern int tcp_md5_sigpool_id;
1896 
1897 int tcp_md5_hash_key(struct tcp_sigpool *hp,
1898 		     const struct tcp_md5sig_key *key);
1899 
1900 /* From tcp_fastopen.c */
1901 void tcp_fastopen_cache_get(struct sock *sk, u16 *mss,
1902 			    struct tcp_fastopen_cookie *cookie);
1903 void tcp_fastopen_cache_set(struct sock *sk, u16 mss,
1904 			    struct tcp_fastopen_cookie *cookie, bool syn_lost,
1905 			    u16 try_exp);
1906 struct tcp_fastopen_request {
1907 	/* Fast Open cookie. Size 0 means a cookie request */
1908 	struct tcp_fastopen_cookie	cookie;
1909 	struct msghdr			*data;  /* data in MSG_FASTOPEN */
1910 	size_t				size;
1911 	int				copied;	/* queued in tcp_connect() */
1912 	struct ubuf_info		*uarg;
1913 };
1914 void tcp_free_fastopen_req(struct tcp_sock *tp);
1915 void tcp_fastopen_destroy_cipher(struct sock *sk);
1916 void tcp_fastopen_ctx_destroy(struct net *net);
1917 int tcp_fastopen_reset_cipher(struct net *net, struct sock *sk,
1918 			      void *primary_key, void *backup_key);
1919 int tcp_fastopen_get_cipher(struct net *net, struct inet_connection_sock *icsk,
1920 			    u64 *key);
1921 void tcp_fastopen_add_skb(struct sock *sk, struct sk_buff *skb);
1922 struct sock *tcp_try_fastopen(struct sock *sk, struct sk_buff *skb,
1923 			      struct request_sock *req,
1924 			      struct tcp_fastopen_cookie *foc,
1925 			      const struct dst_entry *dst);
1926 void tcp_fastopen_init_key_once(struct net *net);
1927 bool tcp_fastopen_cookie_check(struct sock *sk, u16 *mss,
1928 			     struct tcp_fastopen_cookie *cookie);
1929 bool tcp_fastopen_defer_connect(struct sock *sk, int *err);
1930 #define TCP_FASTOPEN_KEY_LENGTH sizeof(siphash_key_t)
1931 #define TCP_FASTOPEN_KEY_MAX 2
1932 #define TCP_FASTOPEN_KEY_BUF_LENGTH \
1933 	(TCP_FASTOPEN_KEY_LENGTH * TCP_FASTOPEN_KEY_MAX)
1934 
1935 /* Fastopen key context */
1936 struct tcp_fastopen_context {
1937 	siphash_key_t	key[TCP_FASTOPEN_KEY_MAX];
1938 	int		num;
1939 	struct rcu_head	rcu;
1940 };
1941 
1942 void tcp_fastopen_active_disable(struct sock *sk);
1943 bool tcp_fastopen_active_should_disable(struct sock *sk);
1944 void tcp_fastopen_active_disable_ofo_check(struct sock *sk);
1945 void tcp_fastopen_active_detect_blackhole(struct sock *sk, bool expired);
1946 
1947 /* Caller needs to wrap with rcu_read_(un)lock() */
1948 static inline
1949 struct tcp_fastopen_context *tcp_fastopen_get_ctx(const struct sock *sk)
1950 {
1951 	struct tcp_fastopen_context *ctx;
1952 
1953 	ctx = rcu_dereference(inet_csk(sk)->icsk_accept_queue.fastopenq.ctx);
1954 	if (!ctx)
1955 		ctx = rcu_dereference(sock_net(sk)->ipv4.tcp_fastopen_ctx);
1956 	return ctx;
1957 }
1958 
1959 static inline
1960 bool tcp_fastopen_cookie_match(const struct tcp_fastopen_cookie *foc,
1961 			       const struct tcp_fastopen_cookie *orig)
1962 {
1963 	if (orig->len == TCP_FASTOPEN_COOKIE_SIZE &&
1964 	    orig->len == foc->len &&
1965 	    !memcmp(orig->val, foc->val, foc->len))
1966 		return true;
1967 	return false;
1968 }
1969 
1970 static inline
1971 int tcp_fastopen_context_len(const struct tcp_fastopen_context *ctx)
1972 {
1973 	return ctx->num;
1974 }
1975 
1976 /* Latencies incurred by various limits for a sender. They are
1977  * chronograph-like stats that are mutually exclusive.
1978  */
1979 enum tcp_chrono {
1980 	TCP_CHRONO_UNSPEC,
1981 	TCP_CHRONO_BUSY, /* Actively sending data (non-empty write queue) */
1982 	TCP_CHRONO_RWND_LIMITED, /* Stalled by insufficient receive window */
1983 	TCP_CHRONO_SNDBUF_LIMITED, /* Stalled by insufficient send buffer */
1984 	__TCP_CHRONO_MAX,
1985 };
1986 
1987 void tcp_chrono_start(struct sock *sk, const enum tcp_chrono type);
1988 void tcp_chrono_stop(struct sock *sk, const enum tcp_chrono type);
1989 
1990 /* This helper is needed, because skb->tcp_tsorted_anchor uses
1991  * the same memory storage than skb->destructor/_skb_refdst
1992  */
1993 static inline void tcp_skb_tsorted_anchor_cleanup(struct sk_buff *skb)
1994 {
1995 	skb->destructor = NULL;
1996 	skb->_skb_refdst = 0UL;
1997 }
1998 
1999 #define tcp_skb_tsorted_save(skb) {		\
2000 	unsigned long _save = skb->_skb_refdst;	\
2001 	skb->_skb_refdst = 0UL;
2002 
2003 #define tcp_skb_tsorted_restore(skb)		\
2004 	skb->_skb_refdst = _save;		\
2005 }
2006 
2007 void tcp_write_queue_purge(struct sock *sk);
2008 
2009 static inline struct sk_buff *tcp_rtx_queue_head(const struct sock *sk)
2010 {
2011 	return skb_rb_first(&sk->tcp_rtx_queue);
2012 }
2013 
2014 static inline struct sk_buff *tcp_rtx_queue_tail(const struct sock *sk)
2015 {
2016 	return skb_rb_last(&sk->tcp_rtx_queue);
2017 }
2018 
2019 static inline struct sk_buff *tcp_write_queue_tail(const struct sock *sk)
2020 {
2021 	return skb_peek_tail(&sk->sk_write_queue);
2022 }
2023 
2024 #define tcp_for_write_queue_from_safe(skb, tmp, sk)			\
2025 	skb_queue_walk_from_safe(&(sk)->sk_write_queue, skb, tmp)
2026 
2027 static inline struct sk_buff *tcp_send_head(const struct sock *sk)
2028 {
2029 	return skb_peek(&sk->sk_write_queue);
2030 }
2031 
2032 static inline bool tcp_skb_is_last(const struct sock *sk,
2033 				   const struct sk_buff *skb)
2034 {
2035 	return skb_queue_is_last(&sk->sk_write_queue, skb);
2036 }
2037 
2038 /**
2039  * tcp_write_queue_empty - test if any payload (or FIN) is available in write queue
2040  * @sk: socket
2041  *
2042  * Since the write queue can have a temporary empty skb in it,
2043  * we must not use "return skb_queue_empty(&sk->sk_write_queue)"
2044  */
2045 static inline bool tcp_write_queue_empty(const struct sock *sk)
2046 {
2047 	const struct tcp_sock *tp = tcp_sk(sk);
2048 
2049 	return tp->write_seq == tp->snd_nxt;
2050 }
2051 
2052 static inline bool tcp_rtx_queue_empty(const struct sock *sk)
2053 {
2054 	return RB_EMPTY_ROOT(&sk->tcp_rtx_queue);
2055 }
2056 
2057 static inline bool tcp_rtx_and_write_queues_empty(const struct sock *sk)
2058 {
2059 	return tcp_rtx_queue_empty(sk) && tcp_write_queue_empty(sk);
2060 }
2061 
2062 static inline void tcp_add_write_queue_tail(struct sock *sk, struct sk_buff *skb)
2063 {
2064 	__skb_queue_tail(&sk->sk_write_queue, skb);
2065 
2066 	/* Queue it, remembering where we must start sending. */
2067 	if (sk->sk_write_queue.next == skb)
2068 		tcp_chrono_start(sk, TCP_CHRONO_BUSY);
2069 }
2070 
2071 /* Insert new before skb on the write queue of sk.  */
2072 static inline void tcp_insert_write_queue_before(struct sk_buff *new,
2073 						  struct sk_buff *skb,
2074 						  struct sock *sk)
2075 {
2076 	__skb_queue_before(&sk->sk_write_queue, skb, new);
2077 }
2078 
2079 static inline void tcp_unlink_write_queue(struct sk_buff *skb, struct sock *sk)
2080 {
2081 	tcp_skb_tsorted_anchor_cleanup(skb);
2082 	__skb_unlink(skb, &sk->sk_write_queue);
2083 }
2084 
2085 void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb);
2086 
2087 static inline void tcp_rtx_queue_unlink(struct sk_buff *skb, struct sock *sk)
2088 {
2089 	tcp_skb_tsorted_anchor_cleanup(skb);
2090 	rb_erase(&skb->rbnode, &sk->tcp_rtx_queue);
2091 }
2092 
2093 static inline void tcp_rtx_queue_unlink_and_free(struct sk_buff *skb, struct sock *sk)
2094 {
2095 	list_del(&skb->tcp_tsorted_anchor);
2096 	tcp_rtx_queue_unlink(skb, sk);
2097 	tcp_wmem_free_skb(sk, skb);
2098 }
2099 
2100 static inline void tcp_push_pending_frames(struct sock *sk)
2101 {
2102 	if (tcp_send_head(sk)) {
2103 		struct tcp_sock *tp = tcp_sk(sk);
2104 
2105 		__tcp_push_pending_frames(sk, tcp_current_mss(sk), tp->nonagle);
2106 	}
2107 }
2108 
2109 /* Start sequence of the skb just after the highest skb with SACKed
2110  * bit, valid only if sacked_out > 0 or when the caller has ensured
2111  * validity by itself.
2112  */
2113 static inline u32 tcp_highest_sack_seq(struct tcp_sock *tp)
2114 {
2115 	if (!tp->sacked_out)
2116 		return tp->snd_una;
2117 
2118 	if (tp->highest_sack == NULL)
2119 		return tp->snd_nxt;
2120 
2121 	return TCP_SKB_CB(tp->highest_sack)->seq;
2122 }
2123 
2124 static inline void tcp_advance_highest_sack(struct sock *sk, struct sk_buff *skb)
2125 {
2126 	tcp_sk(sk)->highest_sack = skb_rb_next(skb);
2127 }
2128 
2129 static inline struct sk_buff *tcp_highest_sack(struct sock *sk)
2130 {
2131 	return tcp_sk(sk)->highest_sack;
2132 }
2133 
2134 static inline void tcp_highest_sack_reset(struct sock *sk)
2135 {
2136 	tcp_sk(sk)->highest_sack = tcp_rtx_queue_head(sk);
2137 }
2138 
2139 /* Called when old skb is about to be deleted and replaced by new skb */
2140 static inline void tcp_highest_sack_replace(struct sock *sk,
2141 					    struct sk_buff *old,
2142 					    struct sk_buff *new)
2143 {
2144 	if (old == tcp_highest_sack(sk))
2145 		tcp_sk(sk)->highest_sack = new;
2146 }
2147 
2148 /* This helper checks if socket has IP_TRANSPARENT set */
2149 static inline bool inet_sk_transparent(const struct sock *sk)
2150 {
2151 	switch (sk->sk_state) {
2152 	case TCP_TIME_WAIT:
2153 		return inet_twsk(sk)->tw_transparent;
2154 	case TCP_NEW_SYN_RECV:
2155 		return inet_rsk(inet_reqsk(sk))->no_srccheck;
2156 	}
2157 	return inet_test_bit(TRANSPARENT, sk);
2158 }
2159 
2160 /* Determines whether this is a thin stream (which may suffer from
2161  * increased latency). Used to trigger latency-reducing mechanisms.
2162  */
2163 static inline bool tcp_stream_is_thin(struct tcp_sock *tp)
2164 {
2165 	return tp->packets_out < 4 && !tcp_in_initial_slowstart(tp);
2166 }
2167 
2168 /* /proc */
2169 enum tcp_seq_states {
2170 	TCP_SEQ_STATE_LISTENING,
2171 	TCP_SEQ_STATE_ESTABLISHED,
2172 };
2173 
2174 void *tcp_seq_start(struct seq_file *seq, loff_t *pos);
2175 void *tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos);
2176 void tcp_seq_stop(struct seq_file *seq, void *v);
2177 
2178 struct tcp_seq_afinfo {
2179 	sa_family_t			family;
2180 };
2181 
2182 struct tcp_iter_state {
2183 	struct seq_net_private	p;
2184 	enum tcp_seq_states	state;
2185 	struct sock		*syn_wait_sk;
2186 	int			bucket, offset, sbucket, num;
2187 	loff_t			last_pos;
2188 };
2189 
2190 extern struct request_sock_ops tcp_request_sock_ops;
2191 extern struct request_sock_ops tcp6_request_sock_ops;
2192 
2193 void tcp_v4_destroy_sock(struct sock *sk);
2194 
2195 struct sk_buff *tcp_gso_segment(struct sk_buff *skb,
2196 				netdev_features_t features);
2197 struct sk_buff *tcp_gro_receive(struct list_head *head, struct sk_buff *skb);
2198 INDIRECT_CALLABLE_DECLARE(int tcp4_gro_complete(struct sk_buff *skb, int thoff));
2199 INDIRECT_CALLABLE_DECLARE(struct sk_buff *tcp4_gro_receive(struct list_head *head, struct sk_buff *skb));
2200 INDIRECT_CALLABLE_DECLARE(int tcp6_gro_complete(struct sk_buff *skb, int thoff));
2201 INDIRECT_CALLABLE_DECLARE(struct sk_buff *tcp6_gro_receive(struct list_head *head, struct sk_buff *skb));
2202 #ifdef CONFIG_INET
2203 void tcp_gro_complete(struct sk_buff *skb);
2204 #else
2205 static inline void tcp_gro_complete(struct sk_buff *skb) { }
2206 #endif
2207 
2208 void __tcp_v4_send_check(struct sk_buff *skb, __be32 saddr, __be32 daddr);
2209 
2210 static inline u32 tcp_notsent_lowat(const struct tcp_sock *tp)
2211 {
2212 	struct net *net = sock_net((struct sock *)tp);
2213 	u32 val;
2214 
2215 	val = READ_ONCE(tp->notsent_lowat);
2216 
2217 	return val ?: READ_ONCE(net->ipv4.sysctl_tcp_notsent_lowat);
2218 }
2219 
2220 bool tcp_stream_memory_free(const struct sock *sk, int wake);
2221 
2222 #ifdef CONFIG_PROC_FS
2223 int tcp4_proc_init(void);
2224 void tcp4_proc_exit(void);
2225 #endif
2226 
2227 int tcp_rtx_synack(const struct sock *sk, struct request_sock *req);
2228 int tcp_conn_request(struct request_sock_ops *rsk_ops,
2229 		     const struct tcp_request_sock_ops *af_ops,
2230 		     struct sock *sk, struct sk_buff *skb);
2231 
2232 /* TCP af-specific functions */
2233 struct tcp_sock_af_ops {
2234 #ifdef CONFIG_TCP_MD5SIG
2235 	struct tcp_md5sig_key	*(*md5_lookup) (const struct sock *sk,
2236 						const struct sock *addr_sk);
2237 	int		(*calc_md5_hash)(char *location,
2238 					 const struct tcp_md5sig_key *md5,
2239 					 const struct sock *sk,
2240 					 const struct sk_buff *skb);
2241 	int		(*md5_parse)(struct sock *sk,
2242 				     int optname,
2243 				     sockptr_t optval,
2244 				     int optlen);
2245 #endif
2246 #ifdef CONFIG_TCP_AO
2247 	int (*ao_parse)(struct sock *sk, int optname, sockptr_t optval, int optlen);
2248 	struct tcp_ao_key *(*ao_lookup)(const struct sock *sk,
2249 					struct sock *addr_sk,
2250 					int sndid, int rcvid);
2251 	int (*ao_calc_key_sk)(struct tcp_ao_key *mkt, u8 *key,
2252 			      const struct sock *sk,
2253 			      __be32 sisn, __be32 disn, bool send);
2254 	int (*calc_ao_hash)(char *location, struct tcp_ao_key *ao,
2255 			    const struct sock *sk, const struct sk_buff *skb,
2256 			    const u8 *tkey, int hash_offset, u32 sne);
2257 #endif
2258 };
2259 
2260 struct tcp_request_sock_ops {
2261 	u16 mss_clamp;
2262 #ifdef CONFIG_TCP_MD5SIG
2263 	struct tcp_md5sig_key *(*req_md5_lookup)(const struct sock *sk,
2264 						 const struct sock *addr_sk);
2265 	int		(*calc_md5_hash) (char *location,
2266 					  const struct tcp_md5sig_key *md5,
2267 					  const struct sock *sk,
2268 					  const struct sk_buff *skb);
2269 #endif
2270 #ifdef CONFIG_TCP_AO
2271 	struct tcp_ao_key *(*ao_lookup)(const struct sock *sk,
2272 					struct request_sock *req,
2273 					int sndid, int rcvid);
2274 	int (*ao_calc_key)(struct tcp_ao_key *mkt, u8 *key, struct request_sock *sk);
2275 	int (*ao_synack_hash)(char *ao_hash, struct tcp_ao_key *mkt,
2276 			      struct request_sock *req, const struct sk_buff *skb,
2277 			      int hash_offset, u32 sne);
2278 #endif
2279 #ifdef CONFIG_SYN_COOKIES
2280 	__u32 (*cookie_init_seq)(const struct sk_buff *skb,
2281 				 __u16 *mss);
2282 #endif
2283 	struct dst_entry *(*route_req)(const struct sock *sk,
2284 				       struct sk_buff *skb,
2285 				       struct flowi *fl,
2286 				       struct request_sock *req,
2287 				       u32 tw_isn);
2288 	u32 (*init_seq)(const struct sk_buff *skb);
2289 	u32 (*init_ts_off)(const struct net *net, const struct sk_buff *skb);
2290 	int (*send_synack)(const struct sock *sk, struct dst_entry *dst,
2291 			   struct flowi *fl, struct request_sock *req,
2292 			   struct tcp_fastopen_cookie *foc,
2293 			   enum tcp_synack_type synack_type,
2294 			   struct sk_buff *syn_skb);
2295 };
2296 
2297 extern const struct tcp_request_sock_ops tcp_request_sock_ipv4_ops;
2298 #if IS_ENABLED(CONFIG_IPV6)
2299 extern const struct tcp_request_sock_ops tcp_request_sock_ipv6_ops;
2300 #endif
2301 
2302 #ifdef CONFIG_SYN_COOKIES
2303 static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops,
2304 					 const struct sock *sk, struct sk_buff *skb,
2305 					 __u16 *mss)
2306 {
2307 	tcp_synq_overflow(sk);
2308 	__NET_INC_STATS(sock_net(sk), LINUX_MIB_SYNCOOKIESSENT);
2309 	return ops->cookie_init_seq(skb, mss);
2310 }
2311 #else
2312 static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops,
2313 					 const struct sock *sk, struct sk_buff *skb,
2314 					 __u16 *mss)
2315 {
2316 	return 0;
2317 }
2318 #endif
2319 
2320 struct tcp_key {
2321 	union {
2322 		struct {
2323 			struct tcp_ao_key *ao_key;
2324 			char *traffic_key;
2325 			u32 sne;
2326 			u8 rcv_next;
2327 		};
2328 		struct tcp_md5sig_key *md5_key;
2329 	};
2330 	enum {
2331 		TCP_KEY_NONE = 0,
2332 		TCP_KEY_MD5,
2333 		TCP_KEY_AO,
2334 	} type;
2335 };
2336 
2337 static inline void tcp_get_current_key(const struct sock *sk,
2338 				       struct tcp_key *out)
2339 {
2340 #if defined(CONFIG_TCP_AO) || defined(CONFIG_TCP_MD5SIG)
2341 	const struct tcp_sock *tp = tcp_sk(sk);
2342 #endif
2343 
2344 #ifdef CONFIG_TCP_AO
2345 	if (static_branch_unlikely(&tcp_ao_needed.key)) {
2346 		struct tcp_ao_info *ao;
2347 
2348 		ao = rcu_dereference_protected(tp->ao_info,
2349 					       lockdep_sock_is_held(sk));
2350 		if (ao) {
2351 			out->ao_key = READ_ONCE(ao->current_key);
2352 			out->type = TCP_KEY_AO;
2353 			return;
2354 		}
2355 	}
2356 #endif
2357 #ifdef CONFIG_TCP_MD5SIG
2358 	if (static_branch_unlikely(&tcp_md5_needed.key) &&
2359 	    rcu_access_pointer(tp->md5sig_info)) {
2360 		out->md5_key = tp->af_specific->md5_lookup(sk, sk);
2361 		if (out->md5_key) {
2362 			out->type = TCP_KEY_MD5;
2363 			return;
2364 		}
2365 	}
2366 #endif
2367 	out->type = TCP_KEY_NONE;
2368 }
2369 
2370 static inline bool tcp_key_is_md5(const struct tcp_key *key)
2371 {
2372 #ifdef CONFIG_TCP_MD5SIG
2373 	if (static_branch_unlikely(&tcp_md5_needed.key) &&
2374 	    key->type == TCP_KEY_MD5)
2375 		return true;
2376 #endif
2377 	return false;
2378 }
2379 
2380 static inline bool tcp_key_is_ao(const struct tcp_key *key)
2381 {
2382 #ifdef CONFIG_TCP_AO
2383 	if (static_branch_unlikely(&tcp_ao_needed.key) &&
2384 	    key->type == TCP_KEY_AO)
2385 		return true;
2386 #endif
2387 	return false;
2388 }
2389 
2390 int tcpv4_offload_init(void);
2391 
2392 void tcp_v4_init(void);
2393 void tcp_init(void);
2394 
2395 /* tcp_recovery.c */
2396 void tcp_mark_skb_lost(struct sock *sk, struct sk_buff *skb);
2397 void tcp_newreno_mark_lost(struct sock *sk, bool snd_una_advanced);
2398 extern s32 tcp_rack_skb_timeout(struct tcp_sock *tp, struct sk_buff *skb,
2399 				u32 reo_wnd);
2400 extern bool tcp_rack_mark_lost(struct sock *sk);
2401 extern void tcp_rack_advance(struct tcp_sock *tp, u8 sacked, u32 end_seq,
2402 			     u64 xmit_time);
2403 extern void tcp_rack_reo_timeout(struct sock *sk);
2404 extern void tcp_rack_update_reo_wnd(struct sock *sk, struct rate_sample *rs);
2405 
2406 /* tcp_plb.c */
2407 
2408 /*
2409  * Scaling factor for fractions in PLB. For example, tcp_plb_update_state
2410  * expects cong_ratio which represents fraction of traffic that experienced
2411  * congestion over a single RTT. In order to avoid floating point operations,
2412  * this fraction should be mapped to (1 << TCP_PLB_SCALE) and passed in.
2413  */
2414 #define TCP_PLB_SCALE 8
2415 
2416 /* State for PLB (Protective Load Balancing) for a single TCP connection. */
2417 struct tcp_plb_state {
2418 	u8	consec_cong_rounds:5, /* consecutive congested rounds */
2419 		unused:3;
2420 	u32	pause_until; /* jiffies32 when PLB can resume rerouting */
2421 };
2422 
2423 static inline void tcp_plb_init(const struct sock *sk,
2424 				struct tcp_plb_state *plb)
2425 {
2426 	plb->consec_cong_rounds = 0;
2427 	plb->pause_until = 0;
2428 }
2429 void tcp_plb_update_state(const struct sock *sk, struct tcp_plb_state *plb,
2430 			  const int cong_ratio);
2431 void tcp_plb_check_rehash(struct sock *sk, struct tcp_plb_state *plb);
2432 void tcp_plb_update_state_upon_rto(struct sock *sk, struct tcp_plb_state *plb);
2433 
2434 /* At how many usecs into the future should the RTO fire? */
2435 static inline s64 tcp_rto_delta_us(const struct sock *sk)
2436 {
2437 	const struct sk_buff *skb = tcp_rtx_queue_head(sk);
2438 	u32 rto = inet_csk(sk)->icsk_rto;
2439 	u64 rto_time_stamp_us = tcp_skb_timestamp_us(skb) + jiffies_to_usecs(rto);
2440 
2441 	return rto_time_stamp_us - tcp_sk(sk)->tcp_mstamp;
2442 }
2443 
2444 /*
2445  * Save and compile IPv4 options, return a pointer to it
2446  */
2447 static inline struct ip_options_rcu *tcp_v4_save_options(struct net *net,
2448 							 struct sk_buff *skb)
2449 {
2450 	const struct ip_options *opt = &TCP_SKB_CB(skb)->header.h4.opt;
2451 	struct ip_options_rcu *dopt = NULL;
2452 
2453 	if (opt->optlen) {
2454 		int opt_size = sizeof(*dopt) + opt->optlen;
2455 
2456 		dopt = kmalloc(opt_size, GFP_ATOMIC);
2457 		if (dopt && __ip_options_echo(net, &dopt->opt, skb, opt)) {
2458 			kfree(dopt);
2459 			dopt = NULL;
2460 		}
2461 	}
2462 	return dopt;
2463 }
2464 
2465 /* locally generated TCP pure ACKs have skb->truesize == 2
2466  * (check tcp_send_ack() in net/ipv4/tcp_output.c )
2467  * This is much faster than dissecting the packet to find out.
2468  * (Think of GRE encapsulations, IPv4, IPv6, ...)
2469  */
2470 static inline bool skb_is_tcp_pure_ack(const struct sk_buff *skb)
2471 {
2472 	return skb->truesize == 2;
2473 }
2474 
2475 static inline void skb_set_tcp_pure_ack(struct sk_buff *skb)
2476 {
2477 	skb->truesize = 2;
2478 }
2479 
2480 static inline int tcp_inq(struct sock *sk)
2481 {
2482 	struct tcp_sock *tp = tcp_sk(sk);
2483 	int answ;
2484 
2485 	if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) {
2486 		answ = 0;
2487 	} else if (sock_flag(sk, SOCK_URGINLINE) ||
2488 		   !tp->urg_data ||
2489 		   before(tp->urg_seq, tp->copied_seq) ||
2490 		   !before(tp->urg_seq, tp->rcv_nxt)) {
2491 
2492 		answ = tp->rcv_nxt - tp->copied_seq;
2493 
2494 		/* Subtract 1, if FIN was received */
2495 		if (answ && sock_flag(sk, SOCK_DONE))
2496 			answ--;
2497 	} else {
2498 		answ = tp->urg_seq - tp->copied_seq;
2499 	}
2500 
2501 	return answ;
2502 }
2503 
2504 int tcp_peek_len(struct socket *sock);
2505 
2506 static inline void tcp_segs_in(struct tcp_sock *tp, const struct sk_buff *skb)
2507 {
2508 	u16 segs_in;
2509 
2510 	segs_in = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
2511 
2512 	/* We update these fields while other threads might
2513 	 * read them from tcp_get_info()
2514 	 */
2515 	WRITE_ONCE(tp->segs_in, tp->segs_in + segs_in);
2516 	if (skb->len > tcp_hdrlen(skb))
2517 		WRITE_ONCE(tp->data_segs_in, tp->data_segs_in + segs_in);
2518 }
2519 
2520 /*
2521  * TCP listen path runs lockless.
2522  * We forced "struct sock" to be const qualified to make sure
2523  * we don't modify one of its field by mistake.
2524  * Here, we increment sk_drops which is an atomic_t, so we can safely
2525  * make sock writable again.
2526  */
2527 static inline void tcp_listendrop(const struct sock *sk)
2528 {
2529 	atomic_inc(&((struct sock *)sk)->sk_drops);
2530 	__NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENDROPS);
2531 }
2532 
2533 enum hrtimer_restart tcp_pace_kick(struct hrtimer *timer);
2534 
2535 /*
2536  * Interface for adding Upper Level Protocols over TCP
2537  */
2538 
2539 #define TCP_ULP_NAME_MAX	16
2540 #define TCP_ULP_MAX		128
2541 #define TCP_ULP_BUF_MAX		(TCP_ULP_NAME_MAX*TCP_ULP_MAX)
2542 
2543 struct tcp_ulp_ops {
2544 	struct list_head	list;
2545 
2546 	/* initialize ulp */
2547 	int (*init)(struct sock *sk);
2548 	/* update ulp */
2549 	void (*update)(struct sock *sk, struct proto *p,
2550 		       void (*write_space)(struct sock *sk));
2551 	/* cleanup ulp */
2552 	void (*release)(struct sock *sk);
2553 	/* diagnostic */
2554 	int (*get_info)(struct sock *sk, struct sk_buff *skb);
2555 	size_t (*get_info_size)(const struct sock *sk);
2556 	/* clone ulp */
2557 	void (*clone)(const struct request_sock *req, struct sock *newsk,
2558 		      const gfp_t priority);
2559 
2560 	char		name[TCP_ULP_NAME_MAX];
2561 	struct module	*owner;
2562 };
2563 int tcp_register_ulp(struct tcp_ulp_ops *type);
2564 void tcp_unregister_ulp(struct tcp_ulp_ops *type);
2565 int tcp_set_ulp(struct sock *sk, const char *name);
2566 void tcp_get_available_ulp(char *buf, size_t len);
2567 void tcp_cleanup_ulp(struct sock *sk);
2568 void tcp_update_ulp(struct sock *sk, struct proto *p,
2569 		    void (*write_space)(struct sock *sk));
2570 
2571 #define MODULE_ALIAS_TCP_ULP(name)				\
2572 	__MODULE_INFO(alias, alias_userspace, name);		\
2573 	__MODULE_INFO(alias, alias_tcp_ulp, "tcp-ulp-" name)
2574 
2575 #ifdef CONFIG_NET_SOCK_MSG
2576 struct sk_msg;
2577 struct sk_psock;
2578 
2579 #ifdef CONFIG_BPF_SYSCALL
2580 int tcp_bpf_update_proto(struct sock *sk, struct sk_psock *psock, bool restore);
2581 void tcp_bpf_clone(const struct sock *sk, struct sock *newsk);
2582 #endif /* CONFIG_BPF_SYSCALL */
2583 
2584 #ifdef CONFIG_INET
2585 void tcp_eat_skb(struct sock *sk, struct sk_buff *skb);
2586 #else
2587 static inline void tcp_eat_skb(struct sock *sk, struct sk_buff *skb)
2588 {
2589 }
2590 #endif
2591 
2592 int tcp_bpf_sendmsg_redir(struct sock *sk, bool ingress,
2593 			  struct sk_msg *msg, u32 bytes, int flags);
2594 #endif /* CONFIG_NET_SOCK_MSG */
2595 
2596 #if !defined(CONFIG_BPF_SYSCALL) || !defined(CONFIG_NET_SOCK_MSG)
2597 static inline void tcp_bpf_clone(const struct sock *sk, struct sock *newsk)
2598 {
2599 }
2600 #endif
2601 
2602 #ifdef CONFIG_CGROUP_BPF
2603 static inline void bpf_skops_init_skb(struct bpf_sock_ops_kern *skops,
2604 				      struct sk_buff *skb,
2605 				      unsigned int end_offset)
2606 {
2607 	skops->skb = skb;
2608 	skops->skb_data_end = skb->data + end_offset;
2609 }
2610 #else
2611 static inline void bpf_skops_init_skb(struct bpf_sock_ops_kern *skops,
2612 				      struct sk_buff *skb,
2613 				      unsigned int end_offset)
2614 {
2615 }
2616 #endif
2617 
2618 /* Call BPF_SOCK_OPS program that returns an int. If the return value
2619  * is < 0, then the BPF op failed (for example if the loaded BPF
2620  * program does not support the chosen operation or there is no BPF
2621  * program loaded).
2622  */
2623 #ifdef CONFIG_BPF
2624 static inline int tcp_call_bpf(struct sock *sk, int op, u32 nargs, u32 *args)
2625 {
2626 	struct bpf_sock_ops_kern sock_ops;
2627 	int ret;
2628 
2629 	memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
2630 	if (sk_fullsock(sk)) {
2631 		sock_ops.is_fullsock = 1;
2632 		sock_owned_by_me(sk);
2633 	}
2634 
2635 	sock_ops.sk = sk;
2636 	sock_ops.op = op;
2637 	if (nargs > 0)
2638 		memcpy(sock_ops.args, args, nargs * sizeof(*args));
2639 
2640 	ret = BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops);
2641 	if (ret == 0)
2642 		ret = sock_ops.reply;
2643 	else
2644 		ret = -1;
2645 	return ret;
2646 }
2647 
2648 static inline int tcp_call_bpf_2arg(struct sock *sk, int op, u32 arg1, u32 arg2)
2649 {
2650 	u32 args[2] = {arg1, arg2};
2651 
2652 	return tcp_call_bpf(sk, op, 2, args);
2653 }
2654 
2655 static inline int tcp_call_bpf_3arg(struct sock *sk, int op, u32 arg1, u32 arg2,
2656 				    u32 arg3)
2657 {
2658 	u32 args[3] = {arg1, arg2, arg3};
2659 
2660 	return tcp_call_bpf(sk, op, 3, args);
2661 }
2662 
2663 #else
2664 static inline int tcp_call_bpf(struct sock *sk, int op, u32 nargs, u32 *args)
2665 {
2666 	return -EPERM;
2667 }
2668 
2669 static inline int tcp_call_bpf_2arg(struct sock *sk, int op, u32 arg1, u32 arg2)
2670 {
2671 	return -EPERM;
2672 }
2673 
2674 static inline int tcp_call_bpf_3arg(struct sock *sk, int op, u32 arg1, u32 arg2,
2675 				    u32 arg3)
2676 {
2677 	return -EPERM;
2678 }
2679 
2680 #endif
2681 
2682 static inline u32 tcp_timeout_init(struct sock *sk)
2683 {
2684 	int timeout;
2685 
2686 	timeout = tcp_call_bpf(sk, BPF_SOCK_OPS_TIMEOUT_INIT, 0, NULL);
2687 
2688 	if (timeout <= 0)
2689 		timeout = TCP_TIMEOUT_INIT;
2690 	return min_t(int, timeout, TCP_RTO_MAX);
2691 }
2692 
2693 static inline u32 tcp_rwnd_init_bpf(struct sock *sk)
2694 {
2695 	int rwnd;
2696 
2697 	rwnd = tcp_call_bpf(sk, BPF_SOCK_OPS_RWND_INIT, 0, NULL);
2698 
2699 	if (rwnd < 0)
2700 		rwnd = 0;
2701 	return rwnd;
2702 }
2703 
2704 static inline bool tcp_bpf_ca_needs_ecn(struct sock *sk)
2705 {
2706 	return (tcp_call_bpf(sk, BPF_SOCK_OPS_NEEDS_ECN, 0, NULL) == 1);
2707 }
2708 
2709 static inline void tcp_bpf_rtt(struct sock *sk)
2710 {
2711 	if (BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), BPF_SOCK_OPS_RTT_CB_FLAG))
2712 		tcp_call_bpf(sk, BPF_SOCK_OPS_RTT_CB, 0, NULL);
2713 }
2714 
2715 #if IS_ENABLED(CONFIG_SMC)
2716 extern struct static_key_false tcp_have_smc;
2717 #endif
2718 
2719 #if IS_ENABLED(CONFIG_TLS_DEVICE)
2720 void clean_acked_data_enable(struct inet_connection_sock *icsk,
2721 			     void (*cad)(struct sock *sk, u32 ack_seq));
2722 void clean_acked_data_disable(struct inet_connection_sock *icsk);
2723 void clean_acked_data_flush(void);
2724 #endif
2725 
2726 DECLARE_STATIC_KEY_FALSE(tcp_tx_delay_enabled);
2727 static inline void tcp_add_tx_delay(struct sk_buff *skb,
2728 				    const struct tcp_sock *tp)
2729 {
2730 	if (static_branch_unlikely(&tcp_tx_delay_enabled))
2731 		skb->skb_mstamp_ns += (u64)tp->tcp_tx_delay * NSEC_PER_USEC;
2732 }
2733 
2734 /* Compute Earliest Departure Time for some control packets
2735  * like ACK or RST for TIME_WAIT or non ESTABLISHED sockets.
2736  */
2737 static inline u64 tcp_transmit_time(const struct sock *sk)
2738 {
2739 	if (static_branch_unlikely(&tcp_tx_delay_enabled)) {
2740 		u32 delay = (sk->sk_state == TCP_TIME_WAIT) ?
2741 			tcp_twsk(sk)->tw_tx_delay : tcp_sk(sk)->tcp_tx_delay;
2742 
2743 		return tcp_clock_ns() + (u64)delay * NSEC_PER_USEC;
2744 	}
2745 	return 0;
2746 }
2747 
2748 static inline int tcp_parse_auth_options(const struct tcphdr *th,
2749 		const u8 **md5_hash, const struct tcp_ao_hdr **aoh)
2750 {
2751 	const u8 *md5_tmp, *ao_tmp;
2752 	int ret;
2753 
2754 	ret = tcp_do_parse_auth_options(th, &md5_tmp, &ao_tmp);
2755 	if (ret)
2756 		return ret;
2757 
2758 	if (md5_hash)
2759 		*md5_hash = md5_tmp;
2760 
2761 	if (aoh) {
2762 		if (!ao_tmp)
2763 			*aoh = NULL;
2764 		else
2765 			*aoh = (struct tcp_ao_hdr *)(ao_tmp - 2);
2766 	}
2767 
2768 	return 0;
2769 }
2770 
2771 static inline bool tcp_ao_required(struct sock *sk, const void *saddr,
2772 				   int family, int l3index, bool stat_inc)
2773 {
2774 #ifdef CONFIG_TCP_AO
2775 	struct tcp_ao_info *ao_info;
2776 	struct tcp_ao_key *ao_key;
2777 
2778 	if (!static_branch_unlikely(&tcp_ao_needed.key))
2779 		return false;
2780 
2781 	ao_info = rcu_dereference_check(tcp_sk(sk)->ao_info,
2782 					lockdep_sock_is_held(sk));
2783 	if (!ao_info)
2784 		return false;
2785 
2786 	ao_key = tcp_ao_do_lookup(sk, l3index, saddr, family, -1, -1);
2787 	if (ao_info->ao_required || ao_key) {
2788 		if (stat_inc) {
2789 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAOREQUIRED);
2790 			atomic64_inc(&ao_info->counters.ao_required);
2791 		}
2792 		return true;
2793 	}
2794 #endif
2795 	return false;
2796 }
2797 
2798 /* Called with rcu_read_lock() */
2799 static inline enum skb_drop_reason
2800 tcp_inbound_hash(struct sock *sk, const struct request_sock *req,
2801 		 const struct sk_buff *skb,
2802 		 const void *saddr, const void *daddr,
2803 		 int family, int dif, int sdif)
2804 {
2805 	const struct tcphdr *th = tcp_hdr(skb);
2806 	const struct tcp_ao_hdr *aoh;
2807 	const __u8 *md5_location;
2808 	int l3index;
2809 
2810 	/* Invalid option or two times meet any of auth options */
2811 	if (tcp_parse_auth_options(th, &md5_location, &aoh)) {
2812 		tcp_hash_fail("TCP segment has incorrect auth options set",
2813 			      family, skb, "");
2814 		return SKB_DROP_REASON_TCP_AUTH_HDR;
2815 	}
2816 
2817 	if (req) {
2818 		if (tcp_rsk_used_ao(req) != !!aoh) {
2819 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAOBAD);
2820 			tcp_hash_fail("TCP connection can't start/end using TCP-AO",
2821 				      family, skb, "%s",
2822 				      !aoh ? "missing AO" : "AO signed");
2823 			return SKB_DROP_REASON_TCP_AOFAILURE;
2824 		}
2825 	}
2826 
2827 	/* sdif set, means packet ingressed via a device
2828 	 * in an L3 domain and dif is set to the l3mdev
2829 	 */
2830 	l3index = sdif ? dif : 0;
2831 
2832 	/* Fast path: unsigned segments */
2833 	if (likely(!md5_location && !aoh)) {
2834 		/* Drop if there's TCP-MD5 or TCP-AO key with any rcvid/sndid
2835 		 * for the remote peer. On TCP-AO established connection
2836 		 * the last key is impossible to remove, so there's
2837 		 * always at least one current_key.
2838 		 */
2839 		if (tcp_ao_required(sk, saddr, family, l3index, true)) {
2840 			tcp_hash_fail("AO hash is required, but not found",
2841 					family, skb, "L3 index %d", l3index);
2842 			return SKB_DROP_REASON_TCP_AONOTFOUND;
2843 		}
2844 		if (unlikely(tcp_md5_do_lookup(sk, l3index, saddr, family))) {
2845 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5NOTFOUND);
2846 			tcp_hash_fail("MD5 Hash not found",
2847 				      family, skb, "L3 index %d", l3index);
2848 			return SKB_DROP_REASON_TCP_MD5NOTFOUND;
2849 		}
2850 		return SKB_NOT_DROPPED_YET;
2851 	}
2852 
2853 	if (aoh)
2854 		return tcp_inbound_ao_hash(sk, skb, family, req, l3index, aoh);
2855 
2856 	return tcp_inbound_md5_hash(sk, skb, saddr, daddr, family,
2857 				    l3index, md5_location);
2858 }
2859 
2860 #endif	/* _TCP_H */
2861