xref: /linux/include/net/tcp.h (revision 30614cf34105c5b5b9a39c65a2ea32c58b03aa8e)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Definitions for the TCP module.
7  *
8  * Version:	@(#)tcp.h	1.0.5	05/23/93
9  *
10  * Authors:	Ross Biro
11  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *
13  *		This program is free software; you can redistribute it and/or
14  *		modify it under the terms of the GNU General Public License
15  *		as published by the Free Software Foundation; either version
16  *		2 of the License, or (at your option) any later version.
17  */
18 #ifndef _TCP_H
19 #define _TCP_H
20 
21 #define FASTRETRANS_DEBUG 1
22 
23 #include <linux/list.h>
24 #include <linux/tcp.h>
25 #include <linux/bug.h>
26 #include <linux/slab.h>
27 #include <linux/cache.h>
28 #include <linux/percpu.h>
29 #include <linux/skbuff.h>
30 #include <linux/crypto.h>
31 #include <linux/cryptohash.h>
32 #include <linux/kref.h>
33 #include <linux/ktime.h>
34 
35 #include <net/inet_connection_sock.h>
36 #include <net/inet_timewait_sock.h>
37 #include <net/inet_hashtables.h>
38 #include <net/checksum.h>
39 #include <net/request_sock.h>
40 #include <net/sock.h>
41 #include <net/snmp.h>
42 #include <net/ip.h>
43 #include <net/tcp_states.h>
44 #include <net/inet_ecn.h>
45 #include <net/dst.h>
46 
47 #include <linux/seq_file.h>
48 #include <linux/memcontrol.h>
49 
50 extern struct inet_hashinfo tcp_hashinfo;
51 
52 extern struct percpu_counter tcp_orphan_count;
53 void tcp_time_wait(struct sock *sk, int state, int timeo);
54 
55 #define MAX_TCP_HEADER	(128 + MAX_HEADER)
56 #define MAX_TCP_OPTION_SPACE 40
57 
58 /*
59  * Never offer a window over 32767 without using window scaling. Some
60  * poor stacks do signed 16bit maths!
61  */
62 #define MAX_TCP_WINDOW		32767U
63 
64 /* Minimal accepted MSS. It is (60+60+8) - (20+20). */
65 #define TCP_MIN_MSS		88U
66 
67 /* The least MTU to use for probing */
68 #define TCP_BASE_MSS		512
69 
70 /* After receiving this amount of duplicate ACKs fast retransmit starts. */
71 #define TCP_FASTRETRANS_THRESH 3
72 
73 /* Maximal reordering. */
74 #define TCP_MAX_REORDERING	127
75 
76 /* Maximal number of ACKs sent quickly to accelerate slow-start. */
77 #define TCP_MAX_QUICKACKS	16U
78 
79 /* urg_data states */
80 #define TCP_URG_VALID	0x0100
81 #define TCP_URG_NOTYET	0x0200
82 #define TCP_URG_READ	0x0400
83 
84 #define TCP_RETR1	3	/*
85 				 * This is how many retries it does before it
86 				 * tries to figure out if the gateway is
87 				 * down. Minimal RFC value is 3; it corresponds
88 				 * to ~3sec-8min depending on RTO.
89 				 */
90 
91 #define TCP_RETR2	15	/*
92 				 * This should take at least
93 				 * 90 minutes to time out.
94 				 * RFC1122 says that the limit is 100 sec.
95 				 * 15 is ~13-30min depending on RTO.
96 				 */
97 
98 #define TCP_SYN_RETRIES	 6	/* This is how many retries are done
99 				 * when active opening a connection.
100 				 * RFC1122 says the minimum retry MUST
101 				 * be at least 180secs.  Nevertheless
102 				 * this value is corresponding to
103 				 * 63secs of retransmission with the
104 				 * current initial RTO.
105 				 */
106 
107 #define TCP_SYNACK_RETRIES 5	/* This is how may retries are done
108 				 * when passive opening a connection.
109 				 * This is corresponding to 31secs of
110 				 * retransmission with the current
111 				 * initial RTO.
112 				 */
113 
114 #define TCP_TIMEWAIT_LEN (60*HZ) /* how long to wait to destroy TIME-WAIT
115 				  * state, about 60 seconds	*/
116 #define TCP_FIN_TIMEOUT	TCP_TIMEWAIT_LEN
117                                  /* BSD style FIN_WAIT2 deadlock breaker.
118 				  * It used to be 3min, new value is 60sec,
119 				  * to combine FIN-WAIT-2 timeout with
120 				  * TIME-WAIT timer.
121 				  */
122 
123 #define TCP_DELACK_MAX	((unsigned)(HZ/5))	/* maximal time to delay before sending an ACK */
124 #if HZ >= 100
125 #define TCP_DELACK_MIN	((unsigned)(HZ/25))	/* minimal time to delay before sending an ACK */
126 #define TCP_ATO_MIN	((unsigned)(HZ/25))
127 #else
128 #define TCP_DELACK_MIN	4U
129 #define TCP_ATO_MIN	4U
130 #endif
131 #define TCP_RTO_MAX	((unsigned)(120*HZ))
132 #define TCP_RTO_MIN	((unsigned)(HZ/5))
133 #define TCP_TIMEOUT_INIT ((unsigned)(1*HZ))	/* RFC6298 2.1 initial RTO value	*/
134 #define TCP_TIMEOUT_FALLBACK ((unsigned)(3*HZ))	/* RFC 1122 initial RTO value, now
135 						 * used as a fallback RTO for the
136 						 * initial data transmission if no
137 						 * valid RTT sample has been acquired,
138 						 * most likely due to retrans in 3WHS.
139 						 */
140 
141 #define TCP_RESOURCE_PROBE_INTERVAL ((unsigned)(HZ/2U)) /* Maximal interval between probes
142 					                 * for local resources.
143 					                 */
144 
145 #define TCP_KEEPALIVE_TIME	(120*60*HZ)	/* two hours */
146 #define TCP_KEEPALIVE_PROBES	9		/* Max of 9 keepalive probes	*/
147 #define TCP_KEEPALIVE_INTVL	(75*HZ)
148 
149 #define MAX_TCP_KEEPIDLE	32767
150 #define MAX_TCP_KEEPINTVL	32767
151 #define MAX_TCP_KEEPCNT		127
152 #define MAX_TCP_SYNCNT		127
153 
154 #define TCP_SYNQ_INTERVAL	(HZ/5)	/* Period of SYNACK timer */
155 
156 #define TCP_PAWS_24DAYS	(60 * 60 * 24 * 24)
157 #define TCP_PAWS_MSL	60		/* Per-host timestamps are invalidated
158 					 * after this time. It should be equal
159 					 * (or greater than) TCP_TIMEWAIT_LEN
160 					 * to provide reliability equal to one
161 					 * provided by timewait state.
162 					 */
163 #define TCP_PAWS_WINDOW	1		/* Replay window for per-host
164 					 * timestamps. It must be less than
165 					 * minimal timewait lifetime.
166 					 */
167 /*
168  *	TCP option
169  */
170 
171 #define TCPOPT_NOP		1	/* Padding */
172 #define TCPOPT_EOL		0	/* End of options */
173 #define TCPOPT_MSS		2	/* Segment size negotiating */
174 #define TCPOPT_WINDOW		3	/* Window scaling */
175 #define TCPOPT_SACK_PERM        4       /* SACK Permitted */
176 #define TCPOPT_SACK             5       /* SACK Block */
177 #define TCPOPT_TIMESTAMP	8	/* Better RTT estimations/PAWS */
178 #define TCPOPT_MD5SIG		19	/* MD5 Signature (RFC2385) */
179 #define TCPOPT_EXP		254	/* Experimental */
180 /* Magic number to be after the option value for sharing TCP
181  * experimental options. See draft-ietf-tcpm-experimental-options-00.txt
182  */
183 #define TCPOPT_FASTOPEN_MAGIC	0xF989
184 
185 /*
186  *     TCP option lengths
187  */
188 
189 #define TCPOLEN_MSS            4
190 #define TCPOLEN_WINDOW         3
191 #define TCPOLEN_SACK_PERM      2
192 #define TCPOLEN_TIMESTAMP      10
193 #define TCPOLEN_MD5SIG         18
194 #define TCPOLEN_EXP_FASTOPEN_BASE  4
195 
196 /* But this is what stacks really send out. */
197 #define TCPOLEN_TSTAMP_ALIGNED		12
198 #define TCPOLEN_WSCALE_ALIGNED		4
199 #define TCPOLEN_SACKPERM_ALIGNED	4
200 #define TCPOLEN_SACK_BASE		2
201 #define TCPOLEN_SACK_BASE_ALIGNED	4
202 #define TCPOLEN_SACK_PERBLOCK		8
203 #define TCPOLEN_MD5SIG_ALIGNED		20
204 #define TCPOLEN_MSS_ALIGNED		4
205 
206 /* Flags in tp->nonagle */
207 #define TCP_NAGLE_OFF		1	/* Nagle's algo is disabled */
208 #define TCP_NAGLE_CORK		2	/* Socket is corked	    */
209 #define TCP_NAGLE_PUSH		4	/* Cork is overridden for already queued data */
210 
211 /* TCP thin-stream limits */
212 #define TCP_THIN_LINEAR_RETRIES 6       /* After 6 linear retries, do exp. backoff */
213 
214 /* TCP initial congestion window as per draft-hkchu-tcpm-initcwnd-01 */
215 #define TCP_INIT_CWND		10
216 
217 /* Bit Flags for sysctl_tcp_fastopen */
218 #define	TFO_CLIENT_ENABLE	1
219 #define	TFO_SERVER_ENABLE	2
220 #define	TFO_CLIENT_NO_COOKIE	4	/* Data in SYN w/o cookie option */
221 
222 /* Accept SYN data w/o any cookie option */
223 #define	TFO_SERVER_COOKIE_NOT_REQD	0x200
224 
225 /* Force enable TFO on all listeners, i.e., not requiring the
226  * TCP_FASTOPEN socket option. SOCKOPT1/2 determine how to set max_qlen.
227  */
228 #define	TFO_SERVER_WO_SOCKOPT1	0x400
229 #define	TFO_SERVER_WO_SOCKOPT2	0x800
230 
231 extern struct inet_timewait_death_row tcp_death_row;
232 
233 /* sysctl variables for tcp */
234 extern int sysctl_tcp_timestamps;
235 extern int sysctl_tcp_window_scaling;
236 extern int sysctl_tcp_sack;
237 extern int sysctl_tcp_fin_timeout;
238 extern int sysctl_tcp_keepalive_time;
239 extern int sysctl_tcp_keepalive_probes;
240 extern int sysctl_tcp_keepalive_intvl;
241 extern int sysctl_tcp_syn_retries;
242 extern int sysctl_tcp_synack_retries;
243 extern int sysctl_tcp_retries1;
244 extern int sysctl_tcp_retries2;
245 extern int sysctl_tcp_orphan_retries;
246 extern int sysctl_tcp_syncookies;
247 extern int sysctl_tcp_fastopen;
248 extern int sysctl_tcp_retrans_collapse;
249 extern int sysctl_tcp_stdurg;
250 extern int sysctl_tcp_rfc1337;
251 extern int sysctl_tcp_abort_on_overflow;
252 extern int sysctl_tcp_max_orphans;
253 extern int sysctl_tcp_fack;
254 extern int sysctl_tcp_reordering;
255 extern int sysctl_tcp_dsack;
256 extern long sysctl_tcp_mem[3];
257 extern int sysctl_tcp_wmem[3];
258 extern int sysctl_tcp_rmem[3];
259 extern int sysctl_tcp_app_win;
260 extern int sysctl_tcp_adv_win_scale;
261 extern int sysctl_tcp_tw_reuse;
262 extern int sysctl_tcp_frto;
263 extern int sysctl_tcp_low_latency;
264 extern int sysctl_tcp_nometrics_save;
265 extern int sysctl_tcp_moderate_rcvbuf;
266 extern int sysctl_tcp_tso_win_divisor;
267 extern int sysctl_tcp_mtu_probing;
268 extern int sysctl_tcp_base_mss;
269 extern int sysctl_tcp_workaround_signed_windows;
270 extern int sysctl_tcp_slow_start_after_idle;
271 extern int sysctl_tcp_thin_linear_timeouts;
272 extern int sysctl_tcp_thin_dupack;
273 extern int sysctl_tcp_early_retrans;
274 extern int sysctl_tcp_limit_output_bytes;
275 extern int sysctl_tcp_challenge_ack_limit;
276 extern unsigned int sysctl_tcp_notsent_lowat;
277 extern int sysctl_tcp_min_tso_segs;
278 extern int sysctl_tcp_autocorking;
279 
280 extern atomic_long_t tcp_memory_allocated;
281 extern struct percpu_counter tcp_sockets_allocated;
282 extern int tcp_memory_pressure;
283 
284 /*
285  * The next routines deal with comparing 32 bit unsigned ints
286  * and worry about wraparound (automatic with unsigned arithmetic).
287  */
288 
289 static inline bool before(__u32 seq1, __u32 seq2)
290 {
291         return (__s32)(seq1-seq2) < 0;
292 }
293 #define after(seq2, seq1) 	before(seq1, seq2)
294 
295 /* is s2<=s1<=s3 ? */
296 static inline bool between(__u32 seq1, __u32 seq2, __u32 seq3)
297 {
298 	return seq3 - seq2 >= seq1 - seq2;
299 }
300 
301 static inline bool tcp_out_of_memory(struct sock *sk)
302 {
303 	if (sk->sk_wmem_queued > SOCK_MIN_SNDBUF &&
304 	    sk_memory_allocated(sk) > sk_prot_mem_limits(sk, 2))
305 		return true;
306 	return false;
307 }
308 
309 static inline bool tcp_too_many_orphans(struct sock *sk, int shift)
310 {
311 	struct percpu_counter *ocp = sk->sk_prot->orphan_count;
312 	int orphans = percpu_counter_read_positive(ocp);
313 
314 	if (orphans << shift > sysctl_tcp_max_orphans) {
315 		orphans = percpu_counter_sum_positive(ocp);
316 		if (orphans << shift > sysctl_tcp_max_orphans)
317 			return true;
318 	}
319 	return false;
320 }
321 
322 bool tcp_check_oom(struct sock *sk, int shift);
323 
324 /* syncookies: remember time of last synqueue overflow */
325 static inline void tcp_synq_overflow(struct sock *sk)
326 {
327 	tcp_sk(sk)->rx_opt.ts_recent_stamp = jiffies;
328 }
329 
330 /* syncookies: no recent synqueue overflow on this listening socket? */
331 static inline bool tcp_synq_no_recent_overflow(const struct sock *sk)
332 {
333 	unsigned long last_overflow = tcp_sk(sk)->rx_opt.ts_recent_stamp;
334 	return time_after(jiffies, last_overflow + TCP_TIMEOUT_FALLBACK);
335 }
336 
337 extern struct proto tcp_prot;
338 
339 #define TCP_INC_STATS(net, field)	SNMP_INC_STATS((net)->mib.tcp_statistics, field)
340 #define TCP_INC_STATS_BH(net, field)	SNMP_INC_STATS_BH((net)->mib.tcp_statistics, field)
341 #define TCP_DEC_STATS(net, field)	SNMP_DEC_STATS((net)->mib.tcp_statistics, field)
342 #define TCP_ADD_STATS_USER(net, field, val) SNMP_ADD_STATS_USER((net)->mib.tcp_statistics, field, val)
343 #define TCP_ADD_STATS(net, field, val)	SNMP_ADD_STATS((net)->mib.tcp_statistics, field, val)
344 
345 void tcp_tasklet_init(void);
346 
347 void tcp_v4_err(struct sk_buff *skb, u32);
348 
349 void tcp_shutdown(struct sock *sk, int how);
350 
351 void tcp_v4_early_demux(struct sk_buff *skb);
352 int tcp_v4_rcv(struct sk_buff *skb);
353 
354 int tcp_v4_tw_remember_stamp(struct inet_timewait_sock *tw);
355 int tcp_sendmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg,
356 		size_t size);
357 int tcp_sendpage(struct sock *sk, struct page *page, int offset, size_t size,
358 		 int flags);
359 void tcp_release_cb(struct sock *sk);
360 void tcp_wfree(struct sk_buff *skb);
361 void tcp_write_timer_handler(struct sock *sk);
362 void tcp_delack_timer_handler(struct sock *sk);
363 int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg);
364 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb,
365 			  const struct tcphdr *th, unsigned int len);
366 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
367 			 const struct tcphdr *th, unsigned int len);
368 void tcp_rcv_space_adjust(struct sock *sk);
369 int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp);
370 void tcp_twsk_destructor(struct sock *sk);
371 ssize_t tcp_splice_read(struct socket *sk, loff_t *ppos,
372 			struct pipe_inode_info *pipe, size_t len,
373 			unsigned int flags);
374 
375 static inline void tcp_dec_quickack_mode(struct sock *sk,
376 					 const unsigned int pkts)
377 {
378 	struct inet_connection_sock *icsk = inet_csk(sk);
379 
380 	if (icsk->icsk_ack.quick) {
381 		if (pkts >= icsk->icsk_ack.quick) {
382 			icsk->icsk_ack.quick = 0;
383 			/* Leaving quickack mode we deflate ATO. */
384 			icsk->icsk_ack.ato   = TCP_ATO_MIN;
385 		} else
386 			icsk->icsk_ack.quick -= pkts;
387 	}
388 }
389 
390 #define	TCP_ECN_OK		1
391 #define	TCP_ECN_QUEUE_CWR	2
392 #define	TCP_ECN_DEMAND_CWR	4
393 #define	TCP_ECN_SEEN		8
394 
395 enum tcp_tw_status {
396 	TCP_TW_SUCCESS = 0,
397 	TCP_TW_RST = 1,
398 	TCP_TW_ACK = 2,
399 	TCP_TW_SYN = 3
400 };
401 
402 
403 enum tcp_tw_status tcp_timewait_state_process(struct inet_timewait_sock *tw,
404 					      struct sk_buff *skb,
405 					      const struct tcphdr *th);
406 struct sock *tcp_check_req(struct sock *sk, struct sk_buff *skb,
407 			   struct request_sock *req, struct request_sock **prev,
408 			   bool fastopen);
409 int tcp_child_process(struct sock *parent, struct sock *child,
410 		      struct sk_buff *skb);
411 void tcp_enter_loss(struct sock *sk);
412 void tcp_clear_retrans(struct tcp_sock *tp);
413 void tcp_update_metrics(struct sock *sk);
414 void tcp_init_metrics(struct sock *sk);
415 void tcp_metrics_init(void);
416 bool tcp_peer_is_proven(struct request_sock *req, struct dst_entry *dst,
417 			bool paws_check, bool timestamps);
418 bool tcp_remember_stamp(struct sock *sk);
419 bool tcp_tw_remember_stamp(struct inet_timewait_sock *tw);
420 void tcp_fetch_timewait_stamp(struct sock *sk, struct dst_entry *dst);
421 void tcp_disable_fack(struct tcp_sock *tp);
422 void tcp_close(struct sock *sk, long timeout);
423 void tcp_init_sock(struct sock *sk);
424 unsigned int tcp_poll(struct file *file, struct socket *sock,
425 		      struct poll_table_struct *wait);
426 int tcp_getsockopt(struct sock *sk, int level, int optname,
427 		   char __user *optval, int __user *optlen);
428 int tcp_setsockopt(struct sock *sk, int level, int optname,
429 		   char __user *optval, unsigned int optlen);
430 int compat_tcp_getsockopt(struct sock *sk, int level, int optname,
431 			  char __user *optval, int __user *optlen);
432 int compat_tcp_setsockopt(struct sock *sk, int level, int optname,
433 			  char __user *optval, unsigned int optlen);
434 void tcp_set_keepalive(struct sock *sk, int val);
435 void tcp_syn_ack_timeout(struct sock *sk, struct request_sock *req);
436 int tcp_recvmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg,
437 		size_t len, int nonblock, int flags, int *addr_len);
438 void tcp_parse_options(const struct sk_buff *skb,
439 		       struct tcp_options_received *opt_rx,
440 		       int estab, struct tcp_fastopen_cookie *foc);
441 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th);
442 
443 /*
444  *	TCP v4 functions exported for the inet6 API
445  */
446 
447 void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb);
448 void tcp_v4_mtu_reduced(struct sock *sk);
449 int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb);
450 struct sock *tcp_create_openreq_child(struct sock *sk,
451 				      struct request_sock *req,
452 				      struct sk_buff *skb);
453 struct sock *tcp_v4_syn_recv_sock(struct sock *sk, struct sk_buff *skb,
454 				  struct request_sock *req,
455 				  struct dst_entry *dst);
456 int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb);
457 int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len);
458 int tcp_connect(struct sock *sk);
459 struct sk_buff *tcp_make_synack(struct sock *sk, struct dst_entry *dst,
460 				struct request_sock *req,
461 				struct tcp_fastopen_cookie *foc);
462 int tcp_disconnect(struct sock *sk, int flags);
463 
464 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb);
465 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size);
466 void inet_sk_rx_dst_set(struct sock *sk, const struct sk_buff *skb);
467 
468 /* From syncookies.c */
469 int __cookie_v4_check(const struct iphdr *iph, const struct tcphdr *th,
470 		      u32 cookie);
471 struct sock *cookie_v4_check(struct sock *sk, struct sk_buff *skb,
472 			     struct ip_options *opt);
473 #ifdef CONFIG_SYN_COOKIES
474 
475 /* Syncookies use a monotonic timer which increments every 60 seconds.
476  * This counter is used both as a hash input and partially encoded into
477  * the cookie value.  A cookie is only validated further if the delta
478  * between the current counter value and the encoded one is less than this,
479  * i.e. a sent cookie is valid only at most for 2*60 seconds (or less if
480  * the counter advances immediately after a cookie is generated).
481  */
482 #define MAX_SYNCOOKIE_AGE 2
483 
484 static inline u32 tcp_cookie_time(void)
485 {
486 	u64 val = get_jiffies_64();
487 
488 	do_div(val, 60 * HZ);
489 	return val;
490 }
491 
492 u32 __cookie_v4_init_sequence(const struct iphdr *iph, const struct tcphdr *th,
493 			      u16 *mssp);
494 __u32 cookie_v4_init_sequence(struct sock *sk, const struct sk_buff *skb,
495 			      __u16 *mss);
496 #endif
497 
498 __u32 cookie_init_timestamp(struct request_sock *req);
499 bool cookie_check_timestamp(struct tcp_options_received *opt, struct net *net,
500 			    bool *ecn_ok);
501 
502 /* From net/ipv6/syncookies.c */
503 int __cookie_v6_check(const struct ipv6hdr *iph, const struct tcphdr *th,
504 		      u32 cookie);
505 struct sock *cookie_v6_check(struct sock *sk, struct sk_buff *skb);
506 #ifdef CONFIG_SYN_COOKIES
507 u32 __cookie_v6_init_sequence(const struct ipv6hdr *iph,
508 			      const struct tcphdr *th, u16 *mssp);
509 __u32 cookie_v6_init_sequence(struct sock *sk, const struct sk_buff *skb,
510 			      __u16 *mss);
511 #endif
512 /* tcp_output.c */
513 
514 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
515 			       int nonagle);
516 bool tcp_may_send_now(struct sock *sk);
517 int __tcp_retransmit_skb(struct sock *, struct sk_buff *);
518 int tcp_retransmit_skb(struct sock *, struct sk_buff *);
519 void tcp_retransmit_timer(struct sock *sk);
520 void tcp_xmit_retransmit_queue(struct sock *);
521 void tcp_simple_retransmit(struct sock *);
522 int tcp_trim_head(struct sock *, struct sk_buff *, u32);
523 int tcp_fragment(struct sock *, struct sk_buff *, u32, unsigned int, gfp_t);
524 
525 void tcp_send_probe0(struct sock *);
526 void tcp_send_partial(struct sock *);
527 int tcp_write_wakeup(struct sock *);
528 void tcp_send_fin(struct sock *sk);
529 void tcp_send_active_reset(struct sock *sk, gfp_t priority);
530 int tcp_send_synack(struct sock *);
531 bool tcp_syn_flood_action(struct sock *sk, const struct sk_buff *skb,
532 			  const char *proto);
533 void tcp_push_one(struct sock *, unsigned int mss_now);
534 void tcp_send_ack(struct sock *sk);
535 void tcp_send_delayed_ack(struct sock *sk);
536 void tcp_send_loss_probe(struct sock *sk);
537 bool tcp_schedule_loss_probe(struct sock *sk);
538 
539 /* tcp_input.c */
540 void tcp_resume_early_retransmit(struct sock *sk);
541 void tcp_rearm_rto(struct sock *sk);
542 void tcp_reset(struct sock *sk);
543 
544 /* tcp_timer.c */
545 void tcp_init_xmit_timers(struct sock *);
546 static inline void tcp_clear_xmit_timers(struct sock *sk)
547 {
548 	inet_csk_clear_xmit_timers(sk);
549 }
550 
551 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu);
552 unsigned int tcp_current_mss(struct sock *sk);
553 
554 /* Bound MSS / TSO packet size with the half of the window */
555 static inline int tcp_bound_to_half_wnd(struct tcp_sock *tp, int pktsize)
556 {
557 	int cutoff;
558 
559 	/* When peer uses tiny windows, there is no use in packetizing
560 	 * to sub-MSS pieces for the sake of SWS or making sure there
561 	 * are enough packets in the pipe for fast recovery.
562 	 *
563 	 * On the other hand, for extremely large MSS devices, handling
564 	 * smaller than MSS windows in this way does make sense.
565 	 */
566 	if (tp->max_window >= 512)
567 		cutoff = (tp->max_window >> 1);
568 	else
569 		cutoff = tp->max_window;
570 
571 	if (cutoff && pktsize > cutoff)
572 		return max_t(int, cutoff, 68U - tp->tcp_header_len);
573 	else
574 		return pktsize;
575 }
576 
577 /* tcp.c */
578 void tcp_get_info(const struct sock *, struct tcp_info *);
579 
580 /* Read 'sendfile()'-style from a TCP socket */
581 typedef int (*sk_read_actor_t)(read_descriptor_t *, struct sk_buff *,
582 				unsigned int, size_t);
583 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
584 		  sk_read_actor_t recv_actor);
585 
586 void tcp_initialize_rcv_mss(struct sock *sk);
587 
588 int tcp_mtu_to_mss(struct sock *sk, int pmtu);
589 int tcp_mss_to_mtu(struct sock *sk, int mss);
590 void tcp_mtup_init(struct sock *sk);
591 void tcp_init_buffer_space(struct sock *sk);
592 
593 static inline void tcp_bound_rto(const struct sock *sk)
594 {
595 	if (inet_csk(sk)->icsk_rto > TCP_RTO_MAX)
596 		inet_csk(sk)->icsk_rto = TCP_RTO_MAX;
597 }
598 
599 static inline u32 __tcp_set_rto(const struct tcp_sock *tp)
600 {
601 	return usecs_to_jiffies((tp->srtt_us >> 3) + tp->rttvar_us);
602 }
603 
604 static inline void __tcp_fast_path_on(struct tcp_sock *tp, u32 snd_wnd)
605 {
606 	tp->pred_flags = htonl((tp->tcp_header_len << 26) |
607 			       ntohl(TCP_FLAG_ACK) |
608 			       snd_wnd);
609 }
610 
611 static inline void tcp_fast_path_on(struct tcp_sock *tp)
612 {
613 	__tcp_fast_path_on(tp, tp->snd_wnd >> tp->rx_opt.snd_wscale);
614 }
615 
616 static inline void tcp_fast_path_check(struct sock *sk)
617 {
618 	struct tcp_sock *tp = tcp_sk(sk);
619 
620 	if (skb_queue_empty(&tp->out_of_order_queue) &&
621 	    tp->rcv_wnd &&
622 	    atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf &&
623 	    !tp->urg_data)
624 		tcp_fast_path_on(tp);
625 }
626 
627 /* Compute the actual rto_min value */
628 static inline u32 tcp_rto_min(struct sock *sk)
629 {
630 	const struct dst_entry *dst = __sk_dst_get(sk);
631 	u32 rto_min = TCP_RTO_MIN;
632 
633 	if (dst && dst_metric_locked(dst, RTAX_RTO_MIN))
634 		rto_min = dst_metric_rtt(dst, RTAX_RTO_MIN);
635 	return rto_min;
636 }
637 
638 static inline u32 tcp_rto_min_us(struct sock *sk)
639 {
640 	return jiffies_to_usecs(tcp_rto_min(sk));
641 }
642 
643 /* Compute the actual receive window we are currently advertising.
644  * Rcv_nxt can be after the window if our peer push more data
645  * than the offered window.
646  */
647 static inline u32 tcp_receive_window(const struct tcp_sock *tp)
648 {
649 	s32 win = tp->rcv_wup + tp->rcv_wnd - tp->rcv_nxt;
650 
651 	if (win < 0)
652 		win = 0;
653 	return (u32) win;
654 }
655 
656 /* Choose a new window, without checks for shrinking, and without
657  * scaling applied to the result.  The caller does these things
658  * if necessary.  This is a "raw" window selection.
659  */
660 u32 __tcp_select_window(struct sock *sk);
661 
662 void tcp_send_window_probe(struct sock *sk);
663 
664 /* TCP timestamps are only 32-bits, this causes a slight
665  * complication on 64-bit systems since we store a snapshot
666  * of jiffies in the buffer control blocks below.  We decided
667  * to use only the low 32-bits of jiffies and hide the ugly
668  * casts with the following macro.
669  */
670 #define tcp_time_stamp		((__u32)(jiffies))
671 
672 static inline u32 tcp_skb_timestamp(const struct sk_buff *skb)
673 {
674 	return skb->skb_mstamp.stamp_jiffies;
675 }
676 
677 
678 #define tcp_flag_byte(th) (((u_int8_t *)th)[13])
679 
680 #define TCPHDR_FIN 0x01
681 #define TCPHDR_SYN 0x02
682 #define TCPHDR_RST 0x04
683 #define TCPHDR_PSH 0x08
684 #define TCPHDR_ACK 0x10
685 #define TCPHDR_URG 0x20
686 #define TCPHDR_ECE 0x40
687 #define TCPHDR_CWR 0x80
688 
689 /* This is what the send packet queuing engine uses to pass
690  * TCP per-packet control information to the transmission code.
691  * We also store the host-order sequence numbers in here too.
692  * This is 44 bytes if IPV6 is enabled.
693  * If this grows please adjust skbuff.h:skbuff->cb[xxx] size appropriately.
694  */
695 struct tcp_skb_cb {
696 	__u32		seq;		/* Starting sequence number	*/
697 	__u32		end_seq;	/* SEQ + FIN + SYN + datalen	*/
698 	union {
699 		/* Note : tcp_tw_isn is used in input path only
700 		 *	  (isn chosen by tcp_timewait_state_process())
701 		 *
702 		 * 	  tcp_gso_segs is used in write queue only,
703 		 *	  cf tcp_skb_pcount()
704 		 */
705 		__u32		tcp_tw_isn;
706 		__u32		tcp_gso_segs;
707 	};
708 	__u8		tcp_flags;	/* TCP header flags. (tcp[13])	*/
709 
710 	__u8		sacked;		/* State flags for SACK/FACK.	*/
711 #define TCPCB_SACKED_ACKED	0x01	/* SKB ACK'd by a SACK block	*/
712 #define TCPCB_SACKED_RETRANS	0x02	/* SKB retransmitted		*/
713 #define TCPCB_LOST		0x04	/* SKB is lost			*/
714 #define TCPCB_TAGBITS		0x07	/* All tag bits			*/
715 #define TCPCB_REPAIRED		0x10	/* SKB repaired (no skb_mstamp)	*/
716 #define TCPCB_EVER_RETRANS	0x80	/* Ever retransmitted frame	*/
717 #define TCPCB_RETRANS		(TCPCB_SACKED_RETRANS|TCPCB_EVER_RETRANS| \
718 				TCPCB_REPAIRED)
719 
720 	__u8		ip_dsfield;	/* IPv4 tos or IPv6 dsfield	*/
721 	/* 1 byte hole */
722 	__u32		ack_seq;	/* Sequence number ACK'd	*/
723 	union {
724 		struct inet_skb_parm	h4;
725 #if IS_ENABLED(CONFIG_IPV6)
726 		struct inet6_skb_parm	h6;
727 #endif
728 	} header;	/* For incoming frames		*/
729 };
730 
731 #define TCP_SKB_CB(__skb)	((struct tcp_skb_cb *)&((__skb)->cb[0]))
732 
733 /* Due to TSO, an SKB can be composed of multiple actual
734  * packets.  To keep these tracked properly, we use this.
735  */
736 static inline int tcp_skb_pcount(const struct sk_buff *skb)
737 {
738 	return TCP_SKB_CB(skb)->tcp_gso_segs;
739 }
740 
741 static inline void tcp_skb_pcount_set(struct sk_buff *skb, int segs)
742 {
743 	TCP_SKB_CB(skb)->tcp_gso_segs = segs;
744 }
745 
746 static inline void tcp_skb_pcount_add(struct sk_buff *skb, int segs)
747 {
748 	TCP_SKB_CB(skb)->tcp_gso_segs += segs;
749 }
750 
751 /* This is valid iff tcp_skb_pcount() > 1. */
752 static inline int tcp_skb_mss(const struct sk_buff *skb)
753 {
754 	return skb_shinfo(skb)->gso_size;
755 }
756 
757 /* Events passed to congestion control interface */
758 enum tcp_ca_event {
759 	CA_EVENT_TX_START,	/* first transmit when no packets in flight */
760 	CA_EVENT_CWND_RESTART,	/* congestion window restart */
761 	CA_EVENT_COMPLETE_CWR,	/* end of congestion recovery */
762 	CA_EVENT_LOSS,		/* loss timeout */
763 	CA_EVENT_ECN_NO_CE,	/* ECT set, but not CE marked */
764 	CA_EVENT_ECN_IS_CE,	/* received CE marked IP packet */
765 	CA_EVENT_DELAYED_ACK,	/* Delayed ack is sent */
766 	CA_EVENT_NON_DELAYED_ACK,
767 };
768 
769 /* Information about inbound ACK, passed to cong_ops->in_ack_event() */
770 enum tcp_ca_ack_event_flags {
771 	CA_ACK_SLOWPATH		= (1 << 0),	/* In slow path processing */
772 	CA_ACK_WIN_UPDATE	= (1 << 1),	/* ACK updated window */
773 	CA_ACK_ECE		= (1 << 2),	/* ECE bit is set on ack */
774 };
775 
776 /*
777  * Interface for adding new TCP congestion control handlers
778  */
779 #define TCP_CA_NAME_MAX	16
780 #define TCP_CA_MAX	128
781 #define TCP_CA_BUF_MAX	(TCP_CA_NAME_MAX*TCP_CA_MAX)
782 
783 /* Algorithm can be set on socket without CAP_NET_ADMIN privileges */
784 #define TCP_CONG_NON_RESTRICTED 0x1
785 /* Requires ECN/ECT set on all packets */
786 #define TCP_CONG_NEEDS_ECN	0x2
787 
788 struct tcp_congestion_ops {
789 	struct list_head	list;
790 	unsigned long flags;
791 
792 	/* initialize private data (optional) */
793 	void (*init)(struct sock *sk);
794 	/* cleanup private data  (optional) */
795 	void (*release)(struct sock *sk);
796 
797 	/* return slow start threshold (required) */
798 	u32 (*ssthresh)(struct sock *sk);
799 	/* do new cwnd calculation (required) */
800 	void (*cong_avoid)(struct sock *sk, u32 ack, u32 acked);
801 	/* call before changing ca_state (optional) */
802 	void (*set_state)(struct sock *sk, u8 new_state);
803 	/* call when cwnd event occurs (optional) */
804 	void (*cwnd_event)(struct sock *sk, enum tcp_ca_event ev);
805 	/* call when ack arrives (optional) */
806 	void (*in_ack_event)(struct sock *sk, u32 flags);
807 	/* new value of cwnd after loss (optional) */
808 	u32  (*undo_cwnd)(struct sock *sk);
809 	/* hook for packet ack accounting (optional) */
810 	void (*pkts_acked)(struct sock *sk, u32 num_acked, s32 rtt_us);
811 	/* get info for inet_diag (optional) */
812 	void (*get_info)(struct sock *sk, u32 ext, struct sk_buff *skb);
813 
814 	char 		name[TCP_CA_NAME_MAX];
815 	struct module 	*owner;
816 };
817 
818 int tcp_register_congestion_control(struct tcp_congestion_ops *type);
819 void tcp_unregister_congestion_control(struct tcp_congestion_ops *type);
820 
821 void tcp_assign_congestion_control(struct sock *sk);
822 void tcp_init_congestion_control(struct sock *sk);
823 void tcp_cleanup_congestion_control(struct sock *sk);
824 int tcp_set_default_congestion_control(const char *name);
825 void tcp_get_default_congestion_control(char *name);
826 void tcp_get_available_congestion_control(char *buf, size_t len);
827 void tcp_get_allowed_congestion_control(char *buf, size_t len);
828 int tcp_set_allowed_congestion_control(char *allowed);
829 int tcp_set_congestion_control(struct sock *sk, const char *name);
830 void tcp_slow_start(struct tcp_sock *tp, u32 acked);
831 void tcp_cong_avoid_ai(struct tcp_sock *tp, u32 w);
832 
833 u32 tcp_reno_ssthresh(struct sock *sk);
834 void tcp_reno_cong_avoid(struct sock *sk, u32 ack, u32 acked);
835 extern struct tcp_congestion_ops tcp_reno;
836 
837 static inline bool tcp_ca_needs_ecn(const struct sock *sk)
838 {
839 	const struct inet_connection_sock *icsk = inet_csk(sk);
840 
841 	return icsk->icsk_ca_ops->flags & TCP_CONG_NEEDS_ECN;
842 }
843 
844 static inline void tcp_set_ca_state(struct sock *sk, const u8 ca_state)
845 {
846 	struct inet_connection_sock *icsk = inet_csk(sk);
847 
848 	if (icsk->icsk_ca_ops->set_state)
849 		icsk->icsk_ca_ops->set_state(sk, ca_state);
850 	icsk->icsk_ca_state = ca_state;
851 }
852 
853 static inline void tcp_ca_event(struct sock *sk, const enum tcp_ca_event event)
854 {
855 	const struct inet_connection_sock *icsk = inet_csk(sk);
856 
857 	if (icsk->icsk_ca_ops->cwnd_event)
858 		icsk->icsk_ca_ops->cwnd_event(sk, event);
859 }
860 
861 /* These functions determine how the current flow behaves in respect of SACK
862  * handling. SACK is negotiated with the peer, and therefore it can vary
863  * between different flows.
864  *
865  * tcp_is_sack - SACK enabled
866  * tcp_is_reno - No SACK
867  * tcp_is_fack - FACK enabled, implies SACK enabled
868  */
869 static inline int tcp_is_sack(const struct tcp_sock *tp)
870 {
871 	return tp->rx_opt.sack_ok;
872 }
873 
874 static inline bool tcp_is_reno(const struct tcp_sock *tp)
875 {
876 	return !tcp_is_sack(tp);
877 }
878 
879 static inline bool tcp_is_fack(const struct tcp_sock *tp)
880 {
881 	return tp->rx_opt.sack_ok & TCP_FACK_ENABLED;
882 }
883 
884 static inline void tcp_enable_fack(struct tcp_sock *tp)
885 {
886 	tp->rx_opt.sack_ok |= TCP_FACK_ENABLED;
887 }
888 
889 /* TCP early-retransmit (ER) is similar to but more conservative than
890  * the thin-dupack feature.  Enable ER only if thin-dupack is disabled.
891  */
892 static inline void tcp_enable_early_retrans(struct tcp_sock *tp)
893 {
894 	tp->do_early_retrans = sysctl_tcp_early_retrans &&
895 		sysctl_tcp_early_retrans < 4 && !sysctl_tcp_thin_dupack &&
896 		sysctl_tcp_reordering == 3;
897 }
898 
899 static inline void tcp_disable_early_retrans(struct tcp_sock *tp)
900 {
901 	tp->do_early_retrans = 0;
902 }
903 
904 static inline unsigned int tcp_left_out(const struct tcp_sock *tp)
905 {
906 	return tp->sacked_out + tp->lost_out;
907 }
908 
909 /* This determines how many packets are "in the network" to the best
910  * of our knowledge.  In many cases it is conservative, but where
911  * detailed information is available from the receiver (via SACK
912  * blocks etc.) we can make more aggressive calculations.
913  *
914  * Use this for decisions involving congestion control, use just
915  * tp->packets_out to determine if the send queue is empty or not.
916  *
917  * Read this equation as:
918  *
919  *	"Packets sent once on transmission queue" MINUS
920  *	"Packets left network, but not honestly ACKed yet" PLUS
921  *	"Packets fast retransmitted"
922  */
923 static inline unsigned int tcp_packets_in_flight(const struct tcp_sock *tp)
924 {
925 	return tp->packets_out - tcp_left_out(tp) + tp->retrans_out;
926 }
927 
928 #define TCP_INFINITE_SSTHRESH	0x7fffffff
929 
930 static inline bool tcp_in_initial_slowstart(const struct tcp_sock *tp)
931 {
932 	return tp->snd_ssthresh >= TCP_INFINITE_SSTHRESH;
933 }
934 
935 static inline bool tcp_in_cwnd_reduction(const struct sock *sk)
936 {
937 	return (TCPF_CA_CWR | TCPF_CA_Recovery) &
938 	       (1 << inet_csk(sk)->icsk_ca_state);
939 }
940 
941 /* If cwnd > ssthresh, we may raise ssthresh to be half-way to cwnd.
942  * The exception is cwnd reduction phase, when cwnd is decreasing towards
943  * ssthresh.
944  */
945 static inline __u32 tcp_current_ssthresh(const struct sock *sk)
946 {
947 	const struct tcp_sock *tp = tcp_sk(sk);
948 
949 	if (tcp_in_cwnd_reduction(sk))
950 		return tp->snd_ssthresh;
951 	else
952 		return max(tp->snd_ssthresh,
953 			   ((tp->snd_cwnd >> 1) +
954 			    (tp->snd_cwnd >> 2)));
955 }
956 
957 /* Use define here intentionally to get WARN_ON location shown at the caller */
958 #define tcp_verify_left_out(tp)	WARN_ON(tcp_left_out(tp) > tp->packets_out)
959 
960 void tcp_enter_cwr(struct sock *sk);
961 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst);
962 
963 /* The maximum number of MSS of available cwnd for which TSO defers
964  * sending if not using sysctl_tcp_tso_win_divisor.
965  */
966 static inline __u32 tcp_max_tso_deferred_mss(const struct tcp_sock *tp)
967 {
968 	return 3;
969 }
970 
971 /* Slow start with delack produces 3 packets of burst, so that
972  * it is safe "de facto".  This will be the default - same as
973  * the default reordering threshold - but if reordering increases,
974  * we must be able to allow cwnd to burst at least this much in order
975  * to not pull it back when holes are filled.
976  */
977 static __inline__ __u32 tcp_max_burst(const struct tcp_sock *tp)
978 {
979 	return tp->reordering;
980 }
981 
982 /* Returns end sequence number of the receiver's advertised window */
983 static inline u32 tcp_wnd_end(const struct tcp_sock *tp)
984 {
985 	return tp->snd_una + tp->snd_wnd;
986 }
987 
988 /* We follow the spirit of RFC2861 to validate cwnd but implement a more
989  * flexible approach. The RFC suggests cwnd should not be raised unless
990  * it was fully used previously. And that's exactly what we do in
991  * congestion avoidance mode. But in slow start we allow cwnd to grow
992  * as long as the application has used half the cwnd.
993  * Example :
994  *    cwnd is 10 (IW10), but application sends 9 frames.
995  *    We allow cwnd to reach 18 when all frames are ACKed.
996  * This check is safe because it's as aggressive as slow start which already
997  * risks 100% overshoot. The advantage is that we discourage application to
998  * either send more filler packets or data to artificially blow up the cwnd
999  * usage, and allow application-limited process to probe bw more aggressively.
1000  */
1001 static inline bool tcp_is_cwnd_limited(const struct sock *sk)
1002 {
1003 	const struct tcp_sock *tp = tcp_sk(sk);
1004 
1005 	/* If in slow start, ensure cwnd grows to twice what was ACKed. */
1006 	if (tp->snd_cwnd <= tp->snd_ssthresh)
1007 		return tp->snd_cwnd < 2 * tp->max_packets_out;
1008 
1009 	return tp->is_cwnd_limited;
1010 }
1011 
1012 static inline void tcp_check_probe_timer(struct sock *sk)
1013 {
1014 	const struct tcp_sock *tp = tcp_sk(sk);
1015 	const struct inet_connection_sock *icsk = inet_csk(sk);
1016 
1017 	if (!tp->packets_out && !icsk->icsk_pending)
1018 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
1019 					  icsk->icsk_rto, TCP_RTO_MAX);
1020 }
1021 
1022 static inline void tcp_init_wl(struct tcp_sock *tp, u32 seq)
1023 {
1024 	tp->snd_wl1 = seq;
1025 }
1026 
1027 static inline void tcp_update_wl(struct tcp_sock *tp, u32 seq)
1028 {
1029 	tp->snd_wl1 = seq;
1030 }
1031 
1032 /*
1033  * Calculate(/check) TCP checksum
1034  */
1035 static inline __sum16 tcp_v4_check(int len, __be32 saddr,
1036 				   __be32 daddr, __wsum base)
1037 {
1038 	return csum_tcpudp_magic(saddr,daddr,len,IPPROTO_TCP,base);
1039 }
1040 
1041 static inline __sum16 __tcp_checksum_complete(struct sk_buff *skb)
1042 {
1043 	return __skb_checksum_complete(skb);
1044 }
1045 
1046 static inline bool tcp_checksum_complete(struct sk_buff *skb)
1047 {
1048 	return !skb_csum_unnecessary(skb) &&
1049 		__tcp_checksum_complete(skb);
1050 }
1051 
1052 /* Prequeue for VJ style copy to user, combined with checksumming. */
1053 
1054 static inline void tcp_prequeue_init(struct tcp_sock *tp)
1055 {
1056 	tp->ucopy.task = NULL;
1057 	tp->ucopy.len = 0;
1058 	tp->ucopy.memory = 0;
1059 	skb_queue_head_init(&tp->ucopy.prequeue);
1060 }
1061 
1062 bool tcp_prequeue(struct sock *sk, struct sk_buff *skb);
1063 
1064 #undef STATE_TRACE
1065 
1066 #ifdef STATE_TRACE
1067 static const char *statename[]={
1068 	"Unused","Established","Syn Sent","Syn Recv",
1069 	"Fin Wait 1","Fin Wait 2","Time Wait", "Close",
1070 	"Close Wait","Last ACK","Listen","Closing"
1071 };
1072 #endif
1073 void tcp_set_state(struct sock *sk, int state);
1074 
1075 void tcp_done(struct sock *sk);
1076 
1077 static inline void tcp_sack_reset(struct tcp_options_received *rx_opt)
1078 {
1079 	rx_opt->dsack = 0;
1080 	rx_opt->num_sacks = 0;
1081 }
1082 
1083 u32 tcp_default_init_rwnd(u32 mss);
1084 
1085 /* Determine a window scaling and initial window to offer. */
1086 void tcp_select_initial_window(int __space, __u32 mss, __u32 *rcv_wnd,
1087 			       __u32 *window_clamp, int wscale_ok,
1088 			       __u8 *rcv_wscale, __u32 init_rcv_wnd);
1089 
1090 static inline int tcp_win_from_space(int space)
1091 {
1092 	return sysctl_tcp_adv_win_scale<=0 ?
1093 		(space>>(-sysctl_tcp_adv_win_scale)) :
1094 		space - (space>>sysctl_tcp_adv_win_scale);
1095 }
1096 
1097 /* Note: caller must be prepared to deal with negative returns */
1098 static inline int tcp_space(const struct sock *sk)
1099 {
1100 	return tcp_win_from_space(sk->sk_rcvbuf -
1101 				  atomic_read(&sk->sk_rmem_alloc));
1102 }
1103 
1104 static inline int tcp_full_space(const struct sock *sk)
1105 {
1106 	return tcp_win_from_space(sk->sk_rcvbuf);
1107 }
1108 
1109 static inline void tcp_openreq_init(struct request_sock *req,
1110 				    struct tcp_options_received *rx_opt,
1111 				    struct sk_buff *skb, struct sock *sk)
1112 {
1113 	struct inet_request_sock *ireq = inet_rsk(req);
1114 
1115 	req->rcv_wnd = 0;		/* So that tcp_send_synack() knows! */
1116 	req->cookie_ts = 0;
1117 	tcp_rsk(req)->rcv_isn = TCP_SKB_CB(skb)->seq;
1118 	tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
1119 	tcp_rsk(req)->snt_synack = tcp_time_stamp;
1120 	req->mss = rx_opt->mss_clamp;
1121 	req->ts_recent = rx_opt->saw_tstamp ? rx_opt->rcv_tsval : 0;
1122 	ireq->tstamp_ok = rx_opt->tstamp_ok;
1123 	ireq->sack_ok = rx_opt->sack_ok;
1124 	ireq->snd_wscale = rx_opt->snd_wscale;
1125 	ireq->wscale_ok = rx_opt->wscale_ok;
1126 	ireq->acked = 0;
1127 	ireq->ecn_ok = 0;
1128 	ireq->ir_rmt_port = tcp_hdr(skb)->source;
1129 	ireq->ir_num = ntohs(tcp_hdr(skb)->dest);
1130 	ireq->ir_mark = inet_request_mark(sk, skb);
1131 }
1132 
1133 extern void tcp_openreq_init_rwin(struct request_sock *req,
1134 				  struct sock *sk, struct dst_entry *dst);
1135 
1136 void tcp_enter_memory_pressure(struct sock *sk);
1137 
1138 static inline int keepalive_intvl_when(const struct tcp_sock *tp)
1139 {
1140 	return tp->keepalive_intvl ? : sysctl_tcp_keepalive_intvl;
1141 }
1142 
1143 static inline int keepalive_time_when(const struct tcp_sock *tp)
1144 {
1145 	return tp->keepalive_time ? : sysctl_tcp_keepalive_time;
1146 }
1147 
1148 static inline int keepalive_probes(const struct tcp_sock *tp)
1149 {
1150 	return tp->keepalive_probes ? : sysctl_tcp_keepalive_probes;
1151 }
1152 
1153 static inline u32 keepalive_time_elapsed(const struct tcp_sock *tp)
1154 {
1155 	const struct inet_connection_sock *icsk = &tp->inet_conn;
1156 
1157 	return min_t(u32, tcp_time_stamp - icsk->icsk_ack.lrcvtime,
1158 			  tcp_time_stamp - tp->rcv_tstamp);
1159 }
1160 
1161 static inline int tcp_fin_time(const struct sock *sk)
1162 {
1163 	int fin_timeout = tcp_sk(sk)->linger2 ? : sysctl_tcp_fin_timeout;
1164 	const int rto = inet_csk(sk)->icsk_rto;
1165 
1166 	if (fin_timeout < (rto << 2) - (rto >> 1))
1167 		fin_timeout = (rto << 2) - (rto >> 1);
1168 
1169 	return fin_timeout;
1170 }
1171 
1172 static inline bool tcp_paws_check(const struct tcp_options_received *rx_opt,
1173 				  int paws_win)
1174 {
1175 	if ((s32)(rx_opt->ts_recent - rx_opt->rcv_tsval) <= paws_win)
1176 		return true;
1177 	if (unlikely(get_seconds() >= rx_opt->ts_recent_stamp + TCP_PAWS_24DAYS))
1178 		return true;
1179 	/*
1180 	 * Some OSes send SYN and SYNACK messages with tsval=0 tsecr=0,
1181 	 * then following tcp messages have valid values. Ignore 0 value,
1182 	 * or else 'negative' tsval might forbid us to accept their packets.
1183 	 */
1184 	if (!rx_opt->ts_recent)
1185 		return true;
1186 	return false;
1187 }
1188 
1189 static inline bool tcp_paws_reject(const struct tcp_options_received *rx_opt,
1190 				   int rst)
1191 {
1192 	if (tcp_paws_check(rx_opt, 0))
1193 		return false;
1194 
1195 	/* RST segments are not recommended to carry timestamp,
1196 	   and, if they do, it is recommended to ignore PAWS because
1197 	   "their cleanup function should take precedence over timestamps."
1198 	   Certainly, it is mistake. It is necessary to understand the reasons
1199 	   of this constraint to relax it: if peer reboots, clock may go
1200 	   out-of-sync and half-open connections will not be reset.
1201 	   Actually, the problem would be not existing if all
1202 	   the implementations followed draft about maintaining clock
1203 	   via reboots. Linux-2.2 DOES NOT!
1204 
1205 	   However, we can relax time bounds for RST segments to MSL.
1206 	 */
1207 	if (rst && get_seconds() >= rx_opt->ts_recent_stamp + TCP_PAWS_MSL)
1208 		return false;
1209 	return true;
1210 }
1211 
1212 static inline void tcp_mib_init(struct net *net)
1213 {
1214 	/* See RFC 2012 */
1215 	TCP_ADD_STATS_USER(net, TCP_MIB_RTOALGORITHM, 1);
1216 	TCP_ADD_STATS_USER(net, TCP_MIB_RTOMIN, TCP_RTO_MIN*1000/HZ);
1217 	TCP_ADD_STATS_USER(net, TCP_MIB_RTOMAX, TCP_RTO_MAX*1000/HZ);
1218 	TCP_ADD_STATS_USER(net, TCP_MIB_MAXCONN, -1);
1219 }
1220 
1221 /* from STCP */
1222 static inline void tcp_clear_retrans_hints_partial(struct tcp_sock *tp)
1223 {
1224 	tp->lost_skb_hint = NULL;
1225 }
1226 
1227 static inline void tcp_clear_all_retrans_hints(struct tcp_sock *tp)
1228 {
1229 	tcp_clear_retrans_hints_partial(tp);
1230 	tp->retransmit_skb_hint = NULL;
1231 }
1232 
1233 /* MD5 Signature */
1234 struct crypto_hash;
1235 
1236 union tcp_md5_addr {
1237 	struct in_addr  a4;
1238 #if IS_ENABLED(CONFIG_IPV6)
1239 	struct in6_addr	a6;
1240 #endif
1241 };
1242 
1243 /* - key database */
1244 struct tcp_md5sig_key {
1245 	struct hlist_node	node;
1246 	u8			keylen;
1247 	u8			family; /* AF_INET or AF_INET6 */
1248 	union tcp_md5_addr	addr;
1249 	u8			key[TCP_MD5SIG_MAXKEYLEN];
1250 	struct rcu_head		rcu;
1251 };
1252 
1253 /* - sock block */
1254 struct tcp_md5sig_info {
1255 	struct hlist_head	head;
1256 	struct rcu_head		rcu;
1257 };
1258 
1259 /* - pseudo header */
1260 struct tcp4_pseudohdr {
1261 	__be32		saddr;
1262 	__be32		daddr;
1263 	__u8		pad;
1264 	__u8		protocol;
1265 	__be16		len;
1266 };
1267 
1268 struct tcp6_pseudohdr {
1269 	struct in6_addr	saddr;
1270 	struct in6_addr daddr;
1271 	__be32		len;
1272 	__be32		protocol;	/* including padding */
1273 };
1274 
1275 union tcp_md5sum_block {
1276 	struct tcp4_pseudohdr ip4;
1277 #if IS_ENABLED(CONFIG_IPV6)
1278 	struct tcp6_pseudohdr ip6;
1279 #endif
1280 };
1281 
1282 /* - pool: digest algorithm, hash description and scratch buffer */
1283 struct tcp_md5sig_pool {
1284 	struct hash_desc	md5_desc;
1285 	union tcp_md5sum_block	md5_blk;
1286 };
1287 
1288 /* - functions */
1289 int tcp_v4_md5_hash_skb(char *md5_hash, struct tcp_md5sig_key *key,
1290 			const struct sock *sk, const struct request_sock *req,
1291 			const struct sk_buff *skb);
1292 int tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr,
1293 		   int family, const u8 *newkey, u8 newkeylen, gfp_t gfp);
1294 int tcp_md5_do_del(struct sock *sk, const union tcp_md5_addr *addr,
1295 		   int family);
1296 struct tcp_md5sig_key *tcp_v4_md5_lookup(struct sock *sk,
1297 					 struct sock *addr_sk);
1298 
1299 #ifdef CONFIG_TCP_MD5SIG
1300 struct tcp_md5sig_key *tcp_md5_do_lookup(struct sock *sk,
1301 					 const union tcp_md5_addr *addr,
1302 					 int family);
1303 #define tcp_twsk_md5_key(twsk)	((twsk)->tw_md5_key)
1304 #else
1305 static inline struct tcp_md5sig_key *tcp_md5_do_lookup(struct sock *sk,
1306 					 const union tcp_md5_addr *addr,
1307 					 int family)
1308 {
1309 	return NULL;
1310 }
1311 #define tcp_twsk_md5_key(twsk)	NULL
1312 #endif
1313 
1314 bool tcp_alloc_md5sig_pool(void);
1315 
1316 struct tcp_md5sig_pool *tcp_get_md5sig_pool(void);
1317 static inline void tcp_put_md5sig_pool(void)
1318 {
1319 	local_bh_enable();
1320 }
1321 
1322 int tcp_md5_hash_header(struct tcp_md5sig_pool *, const struct tcphdr *);
1323 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *, const struct sk_buff *,
1324 			  unsigned int header_len);
1325 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp,
1326 		     const struct tcp_md5sig_key *key);
1327 
1328 /* From tcp_fastopen.c */
1329 void tcp_fastopen_cache_get(struct sock *sk, u16 *mss,
1330 			    struct tcp_fastopen_cookie *cookie, int *syn_loss,
1331 			    unsigned long *last_syn_loss);
1332 void tcp_fastopen_cache_set(struct sock *sk, u16 mss,
1333 			    struct tcp_fastopen_cookie *cookie, bool syn_lost);
1334 struct tcp_fastopen_request {
1335 	/* Fast Open cookie. Size 0 means a cookie request */
1336 	struct tcp_fastopen_cookie	cookie;
1337 	struct msghdr			*data;  /* data in MSG_FASTOPEN */
1338 	size_t				size;
1339 	int				copied;	/* queued in tcp_connect() */
1340 };
1341 void tcp_free_fastopen_req(struct tcp_sock *tp);
1342 
1343 extern struct tcp_fastopen_context __rcu *tcp_fastopen_ctx;
1344 int tcp_fastopen_reset_cipher(void *key, unsigned int len);
1345 bool tcp_try_fastopen(struct sock *sk, struct sk_buff *skb,
1346 		      struct request_sock *req,
1347 		      struct tcp_fastopen_cookie *foc,
1348 		      struct dst_entry *dst);
1349 void tcp_fastopen_init_key_once(bool publish);
1350 #define TCP_FASTOPEN_KEY_LENGTH 16
1351 
1352 /* Fastopen key context */
1353 struct tcp_fastopen_context {
1354 	struct crypto_cipher	*tfm;
1355 	__u8			key[TCP_FASTOPEN_KEY_LENGTH];
1356 	struct rcu_head		rcu;
1357 };
1358 
1359 /* write queue abstraction */
1360 static inline void tcp_write_queue_purge(struct sock *sk)
1361 {
1362 	struct sk_buff *skb;
1363 
1364 	while ((skb = __skb_dequeue(&sk->sk_write_queue)) != NULL)
1365 		sk_wmem_free_skb(sk, skb);
1366 	sk_mem_reclaim(sk);
1367 	tcp_clear_all_retrans_hints(tcp_sk(sk));
1368 }
1369 
1370 static inline struct sk_buff *tcp_write_queue_head(const struct sock *sk)
1371 {
1372 	return skb_peek(&sk->sk_write_queue);
1373 }
1374 
1375 static inline struct sk_buff *tcp_write_queue_tail(const struct sock *sk)
1376 {
1377 	return skb_peek_tail(&sk->sk_write_queue);
1378 }
1379 
1380 static inline struct sk_buff *tcp_write_queue_next(const struct sock *sk,
1381 						   const struct sk_buff *skb)
1382 {
1383 	return skb_queue_next(&sk->sk_write_queue, skb);
1384 }
1385 
1386 static inline struct sk_buff *tcp_write_queue_prev(const struct sock *sk,
1387 						   const struct sk_buff *skb)
1388 {
1389 	return skb_queue_prev(&sk->sk_write_queue, skb);
1390 }
1391 
1392 #define tcp_for_write_queue(skb, sk)					\
1393 	skb_queue_walk(&(sk)->sk_write_queue, skb)
1394 
1395 #define tcp_for_write_queue_from(skb, sk)				\
1396 	skb_queue_walk_from(&(sk)->sk_write_queue, skb)
1397 
1398 #define tcp_for_write_queue_from_safe(skb, tmp, sk)			\
1399 	skb_queue_walk_from_safe(&(sk)->sk_write_queue, skb, tmp)
1400 
1401 static inline struct sk_buff *tcp_send_head(const struct sock *sk)
1402 {
1403 	return sk->sk_send_head;
1404 }
1405 
1406 static inline bool tcp_skb_is_last(const struct sock *sk,
1407 				   const struct sk_buff *skb)
1408 {
1409 	return skb_queue_is_last(&sk->sk_write_queue, skb);
1410 }
1411 
1412 static inline void tcp_advance_send_head(struct sock *sk, const struct sk_buff *skb)
1413 {
1414 	if (tcp_skb_is_last(sk, skb))
1415 		sk->sk_send_head = NULL;
1416 	else
1417 		sk->sk_send_head = tcp_write_queue_next(sk, skb);
1418 }
1419 
1420 static inline void tcp_check_send_head(struct sock *sk, struct sk_buff *skb_unlinked)
1421 {
1422 	if (sk->sk_send_head == skb_unlinked)
1423 		sk->sk_send_head = NULL;
1424 }
1425 
1426 static inline void tcp_init_send_head(struct sock *sk)
1427 {
1428 	sk->sk_send_head = NULL;
1429 }
1430 
1431 static inline void __tcp_add_write_queue_tail(struct sock *sk, struct sk_buff *skb)
1432 {
1433 	__skb_queue_tail(&sk->sk_write_queue, skb);
1434 }
1435 
1436 static inline void tcp_add_write_queue_tail(struct sock *sk, struct sk_buff *skb)
1437 {
1438 	__tcp_add_write_queue_tail(sk, skb);
1439 
1440 	/* Queue it, remembering where we must start sending. */
1441 	if (sk->sk_send_head == NULL) {
1442 		sk->sk_send_head = skb;
1443 
1444 		if (tcp_sk(sk)->highest_sack == NULL)
1445 			tcp_sk(sk)->highest_sack = skb;
1446 	}
1447 }
1448 
1449 static inline void __tcp_add_write_queue_head(struct sock *sk, struct sk_buff *skb)
1450 {
1451 	__skb_queue_head(&sk->sk_write_queue, skb);
1452 }
1453 
1454 /* Insert buff after skb on the write queue of sk.  */
1455 static inline void tcp_insert_write_queue_after(struct sk_buff *skb,
1456 						struct sk_buff *buff,
1457 						struct sock *sk)
1458 {
1459 	__skb_queue_after(&sk->sk_write_queue, skb, buff);
1460 }
1461 
1462 /* Insert new before skb on the write queue of sk.  */
1463 static inline void tcp_insert_write_queue_before(struct sk_buff *new,
1464 						  struct sk_buff *skb,
1465 						  struct sock *sk)
1466 {
1467 	__skb_queue_before(&sk->sk_write_queue, skb, new);
1468 
1469 	if (sk->sk_send_head == skb)
1470 		sk->sk_send_head = new;
1471 }
1472 
1473 static inline void tcp_unlink_write_queue(struct sk_buff *skb, struct sock *sk)
1474 {
1475 	__skb_unlink(skb, &sk->sk_write_queue);
1476 }
1477 
1478 static inline bool tcp_write_queue_empty(struct sock *sk)
1479 {
1480 	return skb_queue_empty(&sk->sk_write_queue);
1481 }
1482 
1483 static inline void tcp_push_pending_frames(struct sock *sk)
1484 {
1485 	if (tcp_send_head(sk)) {
1486 		struct tcp_sock *tp = tcp_sk(sk);
1487 
1488 		__tcp_push_pending_frames(sk, tcp_current_mss(sk), tp->nonagle);
1489 	}
1490 }
1491 
1492 /* Start sequence of the skb just after the highest skb with SACKed
1493  * bit, valid only if sacked_out > 0 or when the caller has ensured
1494  * validity by itself.
1495  */
1496 static inline u32 tcp_highest_sack_seq(struct tcp_sock *tp)
1497 {
1498 	if (!tp->sacked_out)
1499 		return tp->snd_una;
1500 
1501 	if (tp->highest_sack == NULL)
1502 		return tp->snd_nxt;
1503 
1504 	return TCP_SKB_CB(tp->highest_sack)->seq;
1505 }
1506 
1507 static inline void tcp_advance_highest_sack(struct sock *sk, struct sk_buff *skb)
1508 {
1509 	tcp_sk(sk)->highest_sack = tcp_skb_is_last(sk, skb) ? NULL :
1510 						tcp_write_queue_next(sk, skb);
1511 }
1512 
1513 static inline struct sk_buff *tcp_highest_sack(struct sock *sk)
1514 {
1515 	return tcp_sk(sk)->highest_sack;
1516 }
1517 
1518 static inline void tcp_highest_sack_reset(struct sock *sk)
1519 {
1520 	tcp_sk(sk)->highest_sack = tcp_write_queue_head(sk);
1521 }
1522 
1523 /* Called when old skb is about to be deleted (to be combined with new skb) */
1524 static inline void tcp_highest_sack_combine(struct sock *sk,
1525 					    struct sk_buff *old,
1526 					    struct sk_buff *new)
1527 {
1528 	if (tcp_sk(sk)->sacked_out && (old == tcp_sk(sk)->highest_sack))
1529 		tcp_sk(sk)->highest_sack = new;
1530 }
1531 
1532 /* Determines whether this is a thin stream (which may suffer from
1533  * increased latency). Used to trigger latency-reducing mechanisms.
1534  */
1535 static inline bool tcp_stream_is_thin(struct tcp_sock *tp)
1536 {
1537 	return tp->packets_out < 4 && !tcp_in_initial_slowstart(tp);
1538 }
1539 
1540 /* /proc */
1541 enum tcp_seq_states {
1542 	TCP_SEQ_STATE_LISTENING,
1543 	TCP_SEQ_STATE_OPENREQ,
1544 	TCP_SEQ_STATE_ESTABLISHED,
1545 };
1546 
1547 int tcp_seq_open(struct inode *inode, struct file *file);
1548 
1549 struct tcp_seq_afinfo {
1550 	char				*name;
1551 	sa_family_t			family;
1552 	const struct file_operations	*seq_fops;
1553 	struct seq_operations		seq_ops;
1554 };
1555 
1556 struct tcp_iter_state {
1557 	struct seq_net_private	p;
1558 	sa_family_t		family;
1559 	enum tcp_seq_states	state;
1560 	struct sock		*syn_wait_sk;
1561 	int			bucket, offset, sbucket, num;
1562 	kuid_t			uid;
1563 	loff_t			last_pos;
1564 };
1565 
1566 int tcp_proc_register(struct net *net, struct tcp_seq_afinfo *afinfo);
1567 void tcp_proc_unregister(struct net *net, struct tcp_seq_afinfo *afinfo);
1568 
1569 extern struct request_sock_ops tcp_request_sock_ops;
1570 extern struct request_sock_ops tcp6_request_sock_ops;
1571 
1572 void tcp_v4_destroy_sock(struct sock *sk);
1573 
1574 struct sk_buff *tcp_gso_segment(struct sk_buff *skb,
1575 				netdev_features_t features);
1576 struct sk_buff **tcp_gro_receive(struct sk_buff **head, struct sk_buff *skb);
1577 int tcp_gro_complete(struct sk_buff *skb);
1578 
1579 void __tcp_v4_send_check(struct sk_buff *skb, __be32 saddr, __be32 daddr);
1580 
1581 static inline u32 tcp_notsent_lowat(const struct tcp_sock *tp)
1582 {
1583 	return tp->notsent_lowat ?: sysctl_tcp_notsent_lowat;
1584 }
1585 
1586 static inline bool tcp_stream_memory_free(const struct sock *sk)
1587 {
1588 	const struct tcp_sock *tp = tcp_sk(sk);
1589 	u32 notsent_bytes = tp->write_seq - tp->snd_nxt;
1590 
1591 	return notsent_bytes < tcp_notsent_lowat(tp);
1592 }
1593 
1594 #ifdef CONFIG_PROC_FS
1595 int tcp4_proc_init(void);
1596 void tcp4_proc_exit(void);
1597 #endif
1598 
1599 int tcp_rtx_synack(struct sock *sk, struct request_sock *req);
1600 int tcp_conn_request(struct request_sock_ops *rsk_ops,
1601 		     const struct tcp_request_sock_ops *af_ops,
1602 		     struct sock *sk, struct sk_buff *skb);
1603 
1604 /* TCP af-specific functions */
1605 struct tcp_sock_af_ops {
1606 #ifdef CONFIG_TCP_MD5SIG
1607 	struct tcp_md5sig_key	*(*md5_lookup) (struct sock *sk,
1608 						struct sock *addr_sk);
1609 	int			(*calc_md5_hash) (char *location,
1610 						  struct tcp_md5sig_key *md5,
1611 						  const struct sock *sk,
1612 						  const struct request_sock *req,
1613 						  const struct sk_buff *skb);
1614 	int			(*md5_parse) (struct sock *sk,
1615 					      char __user *optval,
1616 					      int optlen);
1617 #endif
1618 };
1619 
1620 struct tcp_request_sock_ops {
1621 	u16 mss_clamp;
1622 #ifdef CONFIG_TCP_MD5SIG
1623 	struct tcp_md5sig_key	*(*md5_lookup) (struct sock *sk,
1624 						struct request_sock *req);
1625 	int			(*calc_md5_hash) (char *location,
1626 						  struct tcp_md5sig_key *md5,
1627 						  const struct sock *sk,
1628 						  const struct request_sock *req,
1629 						  const struct sk_buff *skb);
1630 #endif
1631 	void (*init_req)(struct request_sock *req, struct sock *sk,
1632 			 struct sk_buff *skb);
1633 #ifdef CONFIG_SYN_COOKIES
1634 	__u32 (*cookie_init_seq)(struct sock *sk, const struct sk_buff *skb,
1635 				 __u16 *mss);
1636 #endif
1637 	struct dst_entry *(*route_req)(struct sock *sk, struct flowi *fl,
1638 				       const struct request_sock *req,
1639 				       bool *strict);
1640 	__u32 (*init_seq)(const struct sk_buff *skb);
1641 	int (*send_synack)(struct sock *sk, struct dst_entry *dst,
1642 			   struct flowi *fl, struct request_sock *req,
1643 			   u16 queue_mapping, struct tcp_fastopen_cookie *foc);
1644 	void (*queue_hash_add)(struct sock *sk, struct request_sock *req,
1645 			       const unsigned long timeout);
1646 };
1647 
1648 #ifdef CONFIG_SYN_COOKIES
1649 static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops,
1650 					 struct sock *sk, struct sk_buff *skb,
1651 					 __u16 *mss)
1652 {
1653 	return ops->cookie_init_seq(sk, skb, mss);
1654 }
1655 #else
1656 static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops,
1657 					 struct sock *sk, struct sk_buff *skb,
1658 					 __u16 *mss)
1659 {
1660 	return 0;
1661 }
1662 #endif
1663 
1664 int tcpv4_offload_init(void);
1665 
1666 void tcp_v4_init(void);
1667 void tcp_init(void);
1668 
1669 #endif	/* _TCP_H */
1670