xref: /linux/include/net/tcp.h (revision 2bd87951de659df3381ce083342aaf5b1ea24689)
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Definitions for the TCP module.
8  *
9  * Version:	@(#)tcp.h	1.0.5	05/23/93
10  *
11  * Authors:	Ross Biro
12  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
13  */
14 #ifndef _TCP_H
15 #define _TCP_H
16 
17 #define FASTRETRANS_DEBUG 1
18 
19 #include <linux/list.h>
20 #include <linux/tcp.h>
21 #include <linux/bug.h>
22 #include <linux/slab.h>
23 #include <linux/cache.h>
24 #include <linux/percpu.h>
25 #include <linux/skbuff.h>
26 #include <linux/kref.h>
27 #include <linux/ktime.h>
28 #include <linux/indirect_call_wrapper.h>
29 
30 #include <net/inet_connection_sock.h>
31 #include <net/inet_timewait_sock.h>
32 #include <net/inet_hashtables.h>
33 #include <net/checksum.h>
34 #include <net/request_sock.h>
35 #include <net/sock_reuseport.h>
36 #include <net/sock.h>
37 #include <net/snmp.h>
38 #include <net/ip.h>
39 #include <net/tcp_states.h>
40 #include <net/tcp_ao.h>
41 #include <net/inet_ecn.h>
42 #include <net/dst.h>
43 #include <net/mptcp.h>
44 
45 #include <linux/seq_file.h>
46 #include <linux/memcontrol.h>
47 #include <linux/bpf-cgroup.h>
48 #include <linux/siphash.h>
49 
50 extern struct inet_hashinfo tcp_hashinfo;
51 
52 DECLARE_PER_CPU(unsigned int, tcp_orphan_count);
53 int tcp_orphan_count_sum(void);
54 
55 DECLARE_PER_CPU(u32, tcp_tw_isn);
56 
57 void tcp_time_wait(struct sock *sk, int state, int timeo);
58 
59 #define MAX_TCP_HEADER	L1_CACHE_ALIGN(128 + MAX_HEADER)
60 #define MAX_TCP_OPTION_SPACE 40
61 #define TCP_MIN_SND_MSS		48
62 #define TCP_MIN_GSO_SIZE	(TCP_MIN_SND_MSS - MAX_TCP_OPTION_SPACE)
63 
64 /*
65  * Never offer a window over 32767 without using window scaling. Some
66  * poor stacks do signed 16bit maths!
67  */
68 #define MAX_TCP_WINDOW		32767U
69 
70 /* Minimal accepted MSS. It is (60+60+8) - (20+20). */
71 #define TCP_MIN_MSS		88U
72 
73 /* The initial MTU to use for probing */
74 #define TCP_BASE_MSS		1024
75 
76 /* probing interval, default to 10 minutes as per RFC4821 */
77 #define TCP_PROBE_INTERVAL	600
78 
79 /* Specify interval when tcp mtu probing will stop */
80 #define TCP_PROBE_THRESHOLD	8
81 
82 /* After receiving this amount of duplicate ACKs fast retransmit starts. */
83 #define TCP_FASTRETRANS_THRESH 3
84 
85 /* Maximal number of ACKs sent quickly to accelerate slow-start. */
86 #define TCP_MAX_QUICKACKS	16U
87 
88 /* Maximal number of window scale according to RFC1323 */
89 #define TCP_MAX_WSCALE		14U
90 
91 /* urg_data states */
92 #define TCP_URG_VALID	0x0100
93 #define TCP_URG_NOTYET	0x0200
94 #define TCP_URG_READ	0x0400
95 
96 #define TCP_RETR1	3	/*
97 				 * This is how many retries it does before it
98 				 * tries to figure out if the gateway is
99 				 * down. Minimal RFC value is 3; it corresponds
100 				 * to ~3sec-8min depending on RTO.
101 				 */
102 
103 #define TCP_RETR2	15	/*
104 				 * This should take at least
105 				 * 90 minutes to time out.
106 				 * RFC1122 says that the limit is 100 sec.
107 				 * 15 is ~13-30min depending on RTO.
108 				 */
109 
110 #define TCP_SYN_RETRIES	 6	/* This is how many retries are done
111 				 * when active opening a connection.
112 				 * RFC1122 says the minimum retry MUST
113 				 * be at least 180secs.  Nevertheless
114 				 * this value is corresponding to
115 				 * 63secs of retransmission with the
116 				 * current initial RTO.
117 				 */
118 
119 #define TCP_SYNACK_RETRIES 5	/* This is how may retries are done
120 				 * when passive opening a connection.
121 				 * This is corresponding to 31secs of
122 				 * retransmission with the current
123 				 * initial RTO.
124 				 */
125 
126 #define TCP_TIMEWAIT_LEN (60*HZ) /* how long to wait to destroy TIME-WAIT
127 				  * state, about 60 seconds	*/
128 #define TCP_FIN_TIMEOUT	TCP_TIMEWAIT_LEN
129                                  /* BSD style FIN_WAIT2 deadlock breaker.
130 				  * It used to be 3min, new value is 60sec,
131 				  * to combine FIN-WAIT-2 timeout with
132 				  * TIME-WAIT timer.
133 				  */
134 #define TCP_FIN_TIMEOUT_MAX (120 * HZ) /* max TCP_LINGER2 value (two minutes) */
135 
136 #define TCP_DELACK_MAX	((unsigned)(HZ/5))	/* maximal time to delay before sending an ACK */
137 static_assert((1 << ATO_BITS) > TCP_DELACK_MAX);
138 
139 #if HZ >= 100
140 #define TCP_DELACK_MIN	((unsigned)(HZ/25))	/* minimal time to delay before sending an ACK */
141 #define TCP_ATO_MIN	((unsigned)(HZ/25))
142 #else
143 #define TCP_DELACK_MIN	4U
144 #define TCP_ATO_MIN	4U
145 #endif
146 #define TCP_RTO_MAX	((unsigned)(120*HZ))
147 #define TCP_RTO_MIN	((unsigned)(HZ/5))
148 #define TCP_TIMEOUT_MIN	(2U) /* Min timeout for TCP timers in jiffies */
149 
150 #define TCP_TIMEOUT_MIN_US (2*USEC_PER_MSEC) /* Min TCP timeout in microsecs */
151 
152 #define TCP_TIMEOUT_INIT ((unsigned)(1*HZ))	/* RFC6298 2.1 initial RTO value	*/
153 #define TCP_TIMEOUT_FALLBACK ((unsigned)(3*HZ))	/* RFC 1122 initial RTO value, now
154 						 * used as a fallback RTO for the
155 						 * initial data transmission if no
156 						 * valid RTT sample has been acquired,
157 						 * most likely due to retrans in 3WHS.
158 						 */
159 
160 #define TCP_RESOURCE_PROBE_INTERVAL ((unsigned)(HZ/2U)) /* Maximal interval between probes
161 					                 * for local resources.
162 					                 */
163 #define TCP_KEEPALIVE_TIME	(120*60*HZ)	/* two hours */
164 #define TCP_KEEPALIVE_PROBES	9		/* Max of 9 keepalive probes	*/
165 #define TCP_KEEPALIVE_INTVL	(75*HZ)
166 
167 #define MAX_TCP_KEEPIDLE	32767
168 #define MAX_TCP_KEEPINTVL	32767
169 #define MAX_TCP_KEEPCNT		127
170 #define MAX_TCP_SYNCNT		127
171 
172 /* Ensure that TCP PAWS checks are relaxed after ~2147 seconds
173  * to avoid overflows. This assumes a clock smaller than 1 Mhz.
174  * Default clock is 1 Khz, tcp_usec_ts uses 1 Mhz.
175  */
176 #define TCP_PAWS_WRAP (INT_MAX / USEC_PER_SEC)
177 
178 #define TCP_PAWS_MSL	60		/* Per-host timestamps are invalidated
179 					 * after this time. It should be equal
180 					 * (or greater than) TCP_TIMEWAIT_LEN
181 					 * to provide reliability equal to one
182 					 * provided by timewait state.
183 					 */
184 #define TCP_PAWS_WINDOW	1		/* Replay window for per-host
185 					 * timestamps. It must be less than
186 					 * minimal timewait lifetime.
187 					 */
188 /*
189  *	TCP option
190  */
191 
192 #define TCPOPT_NOP		1	/* Padding */
193 #define TCPOPT_EOL		0	/* End of options */
194 #define TCPOPT_MSS		2	/* Segment size negotiating */
195 #define TCPOPT_WINDOW		3	/* Window scaling */
196 #define TCPOPT_SACK_PERM        4       /* SACK Permitted */
197 #define TCPOPT_SACK             5       /* SACK Block */
198 #define TCPOPT_TIMESTAMP	8	/* Better RTT estimations/PAWS */
199 #define TCPOPT_MD5SIG		19	/* MD5 Signature (RFC2385) */
200 #define TCPOPT_AO		29	/* Authentication Option (RFC5925) */
201 #define TCPOPT_MPTCP		30	/* Multipath TCP (RFC6824) */
202 #define TCPOPT_FASTOPEN		34	/* Fast open (RFC7413) */
203 #define TCPOPT_EXP		254	/* Experimental */
204 /* Magic number to be after the option value for sharing TCP
205  * experimental options. See draft-ietf-tcpm-experimental-options-00.txt
206  */
207 #define TCPOPT_FASTOPEN_MAGIC	0xF989
208 #define TCPOPT_SMC_MAGIC	0xE2D4C3D9
209 
210 /*
211  *     TCP option lengths
212  */
213 
214 #define TCPOLEN_MSS            4
215 #define TCPOLEN_WINDOW         3
216 #define TCPOLEN_SACK_PERM      2
217 #define TCPOLEN_TIMESTAMP      10
218 #define TCPOLEN_MD5SIG         18
219 #define TCPOLEN_FASTOPEN_BASE  2
220 #define TCPOLEN_EXP_FASTOPEN_BASE  4
221 #define TCPOLEN_EXP_SMC_BASE   6
222 
223 /* But this is what stacks really send out. */
224 #define TCPOLEN_TSTAMP_ALIGNED		12
225 #define TCPOLEN_WSCALE_ALIGNED		4
226 #define TCPOLEN_SACKPERM_ALIGNED	4
227 #define TCPOLEN_SACK_BASE		2
228 #define TCPOLEN_SACK_BASE_ALIGNED	4
229 #define TCPOLEN_SACK_PERBLOCK		8
230 #define TCPOLEN_MD5SIG_ALIGNED		20
231 #define TCPOLEN_MSS_ALIGNED		4
232 #define TCPOLEN_EXP_SMC_BASE_ALIGNED	8
233 
234 /* Flags in tp->nonagle */
235 #define TCP_NAGLE_OFF		1	/* Nagle's algo is disabled */
236 #define TCP_NAGLE_CORK		2	/* Socket is corked	    */
237 #define TCP_NAGLE_PUSH		4	/* Cork is overridden for already queued data */
238 
239 /* TCP thin-stream limits */
240 #define TCP_THIN_LINEAR_RETRIES 6       /* After 6 linear retries, do exp. backoff */
241 
242 /* TCP initial congestion window as per rfc6928 */
243 #define TCP_INIT_CWND		10
244 
245 /* Bit Flags for sysctl_tcp_fastopen */
246 #define	TFO_CLIENT_ENABLE	1
247 #define	TFO_SERVER_ENABLE	2
248 #define	TFO_CLIENT_NO_COOKIE	4	/* Data in SYN w/o cookie option */
249 
250 /* Accept SYN data w/o any cookie option */
251 #define	TFO_SERVER_COOKIE_NOT_REQD	0x200
252 
253 /* Force enable TFO on all listeners, i.e., not requiring the
254  * TCP_FASTOPEN socket option.
255  */
256 #define	TFO_SERVER_WO_SOCKOPT1	0x400
257 
258 
259 /* sysctl variables for tcp */
260 extern int sysctl_tcp_max_orphans;
261 extern long sysctl_tcp_mem[3];
262 
263 #define TCP_RACK_LOSS_DETECTION  0x1 /* Use RACK to detect losses */
264 #define TCP_RACK_STATIC_REO_WND  0x2 /* Use static RACK reo wnd */
265 #define TCP_RACK_NO_DUPTHRESH    0x4 /* Do not use DUPACK threshold in RACK */
266 
267 extern atomic_long_t tcp_memory_allocated;
268 DECLARE_PER_CPU(int, tcp_memory_per_cpu_fw_alloc);
269 
270 extern struct percpu_counter tcp_sockets_allocated;
271 extern unsigned long tcp_memory_pressure;
272 
273 /* optimized version of sk_under_memory_pressure() for TCP sockets */
274 static inline bool tcp_under_memory_pressure(const struct sock *sk)
275 {
276 	if (mem_cgroup_sockets_enabled && sk->sk_memcg &&
277 	    mem_cgroup_under_socket_pressure(sk->sk_memcg))
278 		return true;
279 
280 	return READ_ONCE(tcp_memory_pressure);
281 }
282 /*
283  * The next routines deal with comparing 32 bit unsigned ints
284  * and worry about wraparound (automatic with unsigned arithmetic).
285  */
286 
287 static inline bool before(__u32 seq1, __u32 seq2)
288 {
289         return (__s32)(seq1-seq2) < 0;
290 }
291 #define after(seq2, seq1) 	before(seq1, seq2)
292 
293 /* is s2<=s1<=s3 ? */
294 static inline bool between(__u32 seq1, __u32 seq2, __u32 seq3)
295 {
296 	return seq3 - seq2 >= seq1 - seq2;
297 }
298 
299 static inline bool tcp_out_of_memory(struct sock *sk)
300 {
301 	if (sk->sk_wmem_queued > SOCK_MIN_SNDBUF &&
302 	    sk_memory_allocated(sk) > sk_prot_mem_limits(sk, 2))
303 		return true;
304 	return false;
305 }
306 
307 static inline void tcp_wmem_free_skb(struct sock *sk, struct sk_buff *skb)
308 {
309 	sk_wmem_queued_add(sk, -skb->truesize);
310 	if (!skb_zcopy_pure(skb))
311 		sk_mem_uncharge(sk, skb->truesize);
312 	else
313 		sk_mem_uncharge(sk, SKB_TRUESIZE(skb_end_offset(skb)));
314 	__kfree_skb(skb);
315 }
316 
317 void sk_forced_mem_schedule(struct sock *sk, int size);
318 
319 bool tcp_check_oom(struct sock *sk, int shift);
320 
321 
322 extern struct proto tcp_prot;
323 
324 #define TCP_INC_STATS(net, field)	SNMP_INC_STATS((net)->mib.tcp_statistics, field)
325 #define __TCP_INC_STATS(net, field)	__SNMP_INC_STATS((net)->mib.tcp_statistics, field)
326 #define TCP_DEC_STATS(net, field)	SNMP_DEC_STATS((net)->mib.tcp_statistics, field)
327 #define TCP_ADD_STATS(net, field, val)	SNMP_ADD_STATS((net)->mib.tcp_statistics, field, val)
328 
329 void tcp_tasklet_init(void);
330 
331 int tcp_v4_err(struct sk_buff *skb, u32);
332 
333 void tcp_shutdown(struct sock *sk, int how);
334 
335 int tcp_v4_early_demux(struct sk_buff *skb);
336 int tcp_v4_rcv(struct sk_buff *skb);
337 
338 void tcp_remove_empty_skb(struct sock *sk);
339 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size);
340 int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size);
341 int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg, int *copied,
342 			 size_t size, struct ubuf_info *uarg);
343 void tcp_splice_eof(struct socket *sock);
344 int tcp_send_mss(struct sock *sk, int *size_goal, int flags);
345 int tcp_wmem_schedule(struct sock *sk, int copy);
346 void tcp_push(struct sock *sk, int flags, int mss_now, int nonagle,
347 	      int size_goal);
348 void tcp_release_cb(struct sock *sk);
349 void tcp_wfree(struct sk_buff *skb);
350 void tcp_write_timer_handler(struct sock *sk);
351 void tcp_delack_timer_handler(struct sock *sk);
352 int tcp_ioctl(struct sock *sk, int cmd, int *karg);
353 enum skb_drop_reason tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb);
354 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb);
355 void tcp_rcv_space_adjust(struct sock *sk);
356 int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp);
357 void tcp_twsk_destructor(struct sock *sk);
358 void tcp_twsk_purge(struct list_head *net_exit_list);
359 ssize_t tcp_splice_read(struct socket *sk, loff_t *ppos,
360 			struct pipe_inode_info *pipe, size_t len,
361 			unsigned int flags);
362 struct sk_buff *tcp_stream_alloc_skb(struct sock *sk, gfp_t gfp,
363 				     bool force_schedule);
364 
365 static inline void tcp_dec_quickack_mode(struct sock *sk)
366 {
367 	struct inet_connection_sock *icsk = inet_csk(sk);
368 
369 	if (icsk->icsk_ack.quick) {
370 		/* How many ACKs S/ACKing new data have we sent? */
371 		const unsigned int pkts = inet_csk_ack_scheduled(sk) ? 1 : 0;
372 
373 		if (pkts >= icsk->icsk_ack.quick) {
374 			icsk->icsk_ack.quick = 0;
375 			/* Leaving quickack mode we deflate ATO. */
376 			icsk->icsk_ack.ato   = TCP_ATO_MIN;
377 		} else
378 			icsk->icsk_ack.quick -= pkts;
379 	}
380 }
381 
382 #define	TCP_ECN_OK		1
383 #define	TCP_ECN_QUEUE_CWR	2
384 #define	TCP_ECN_DEMAND_CWR	4
385 #define	TCP_ECN_SEEN		8
386 
387 enum tcp_tw_status {
388 	TCP_TW_SUCCESS = 0,
389 	TCP_TW_RST = 1,
390 	TCP_TW_ACK = 2,
391 	TCP_TW_SYN = 3
392 };
393 
394 
395 enum tcp_tw_status tcp_timewait_state_process(struct inet_timewait_sock *tw,
396 					      struct sk_buff *skb,
397 					      const struct tcphdr *th,
398 					      u32 *tw_isn);
399 struct sock *tcp_check_req(struct sock *sk, struct sk_buff *skb,
400 			   struct request_sock *req, bool fastopen,
401 			   bool *lost_race);
402 enum skb_drop_reason tcp_child_process(struct sock *parent, struct sock *child,
403 				       struct sk_buff *skb);
404 void tcp_enter_loss(struct sock *sk);
405 void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int newly_lost, int flag);
406 void tcp_clear_retrans(struct tcp_sock *tp);
407 void tcp_update_metrics(struct sock *sk);
408 void tcp_init_metrics(struct sock *sk);
409 void tcp_metrics_init(void);
410 bool tcp_peer_is_proven(struct request_sock *req, struct dst_entry *dst);
411 void __tcp_close(struct sock *sk, long timeout);
412 void tcp_close(struct sock *sk, long timeout);
413 void tcp_init_sock(struct sock *sk);
414 void tcp_init_transfer(struct sock *sk, int bpf_op, struct sk_buff *skb);
415 __poll_t tcp_poll(struct file *file, struct socket *sock,
416 		      struct poll_table_struct *wait);
417 int do_tcp_getsockopt(struct sock *sk, int level,
418 		      int optname, sockptr_t optval, sockptr_t optlen);
419 int tcp_getsockopt(struct sock *sk, int level, int optname,
420 		   char __user *optval, int __user *optlen);
421 bool tcp_bpf_bypass_getsockopt(int level, int optname);
422 int do_tcp_setsockopt(struct sock *sk, int level, int optname,
423 		      sockptr_t optval, unsigned int optlen);
424 int tcp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval,
425 		   unsigned int optlen);
426 void tcp_set_keepalive(struct sock *sk, int val);
427 void tcp_syn_ack_timeout(const struct request_sock *req);
428 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len,
429 		int flags, int *addr_len);
430 int tcp_set_rcvlowat(struct sock *sk, int val);
431 int tcp_set_window_clamp(struct sock *sk, int val);
432 void tcp_update_recv_tstamps(struct sk_buff *skb,
433 			     struct scm_timestamping_internal *tss);
434 void tcp_recv_timestamp(struct msghdr *msg, const struct sock *sk,
435 			struct scm_timestamping_internal *tss);
436 void tcp_data_ready(struct sock *sk);
437 #ifdef CONFIG_MMU
438 int tcp_mmap(struct file *file, struct socket *sock,
439 	     struct vm_area_struct *vma);
440 #endif
441 void tcp_parse_options(const struct net *net, const struct sk_buff *skb,
442 		       struct tcp_options_received *opt_rx,
443 		       int estab, struct tcp_fastopen_cookie *foc);
444 
445 /*
446  *	BPF SKB-less helpers
447  */
448 u16 tcp_v4_get_syncookie(struct sock *sk, struct iphdr *iph,
449 			 struct tcphdr *th, u32 *cookie);
450 u16 tcp_v6_get_syncookie(struct sock *sk, struct ipv6hdr *iph,
451 			 struct tcphdr *th, u32 *cookie);
452 u16 tcp_parse_mss_option(const struct tcphdr *th, u16 user_mss);
453 u16 tcp_get_syncookie_mss(struct request_sock_ops *rsk_ops,
454 			  const struct tcp_request_sock_ops *af_ops,
455 			  struct sock *sk, struct tcphdr *th);
456 /*
457  *	TCP v4 functions exported for the inet6 API
458  */
459 
460 void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb);
461 void tcp_v4_mtu_reduced(struct sock *sk);
462 void tcp_req_err(struct sock *sk, u32 seq, bool abort);
463 void tcp_ld_RTO_revert(struct sock *sk, u32 seq);
464 int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb);
465 struct sock *tcp_create_openreq_child(const struct sock *sk,
466 				      struct request_sock *req,
467 				      struct sk_buff *skb);
468 void tcp_ca_openreq_child(struct sock *sk, const struct dst_entry *dst);
469 struct sock *tcp_v4_syn_recv_sock(const struct sock *sk, struct sk_buff *skb,
470 				  struct request_sock *req,
471 				  struct dst_entry *dst,
472 				  struct request_sock *req_unhash,
473 				  bool *own_req);
474 int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb);
475 int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len);
476 int tcp_connect(struct sock *sk);
477 enum tcp_synack_type {
478 	TCP_SYNACK_NORMAL,
479 	TCP_SYNACK_FASTOPEN,
480 	TCP_SYNACK_COOKIE,
481 };
482 struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst,
483 				struct request_sock *req,
484 				struct tcp_fastopen_cookie *foc,
485 				enum tcp_synack_type synack_type,
486 				struct sk_buff *syn_skb);
487 int tcp_disconnect(struct sock *sk, int flags);
488 
489 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb);
490 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size);
491 void inet_sk_rx_dst_set(struct sock *sk, const struct sk_buff *skb);
492 
493 /* From syncookies.c */
494 struct sock *tcp_get_cookie_sock(struct sock *sk, struct sk_buff *skb,
495 				 struct request_sock *req,
496 				 struct dst_entry *dst);
497 int __cookie_v4_check(const struct iphdr *iph, const struct tcphdr *th);
498 struct sock *cookie_v4_check(struct sock *sk, struct sk_buff *skb);
499 struct request_sock *cookie_tcp_reqsk_alloc(const struct request_sock_ops *ops,
500 					    struct sock *sk, struct sk_buff *skb,
501 					    struct tcp_options_received *tcp_opt,
502 					    int mss, u32 tsoff);
503 
504 #if IS_ENABLED(CONFIG_BPF)
505 struct bpf_tcp_req_attrs {
506 	u32 rcv_tsval;
507 	u32 rcv_tsecr;
508 	u16 mss;
509 	u8 rcv_wscale;
510 	u8 snd_wscale;
511 	u8 ecn_ok;
512 	u8 wscale_ok;
513 	u8 sack_ok;
514 	u8 tstamp_ok;
515 	u8 usec_ts_ok;
516 	u8 reserved[3];
517 };
518 #endif
519 
520 #ifdef CONFIG_SYN_COOKIES
521 
522 /* Syncookies use a monotonic timer which increments every 60 seconds.
523  * This counter is used both as a hash input and partially encoded into
524  * the cookie value.  A cookie is only validated further if the delta
525  * between the current counter value and the encoded one is less than this,
526  * i.e. a sent cookie is valid only at most for 2*60 seconds (or less if
527  * the counter advances immediately after a cookie is generated).
528  */
529 #define MAX_SYNCOOKIE_AGE	2
530 #define TCP_SYNCOOKIE_PERIOD	(60 * HZ)
531 #define TCP_SYNCOOKIE_VALID	(MAX_SYNCOOKIE_AGE * TCP_SYNCOOKIE_PERIOD)
532 
533 /* syncookies: remember time of last synqueue overflow
534  * But do not dirty this field too often (once per second is enough)
535  * It is racy as we do not hold a lock, but race is very minor.
536  */
537 static inline void tcp_synq_overflow(const struct sock *sk)
538 {
539 	unsigned int last_overflow;
540 	unsigned int now = jiffies;
541 
542 	if (sk->sk_reuseport) {
543 		struct sock_reuseport *reuse;
544 
545 		reuse = rcu_dereference(sk->sk_reuseport_cb);
546 		if (likely(reuse)) {
547 			last_overflow = READ_ONCE(reuse->synq_overflow_ts);
548 			if (!time_between32(now, last_overflow,
549 					    last_overflow + HZ))
550 				WRITE_ONCE(reuse->synq_overflow_ts, now);
551 			return;
552 		}
553 	}
554 
555 	last_overflow = READ_ONCE(tcp_sk(sk)->rx_opt.ts_recent_stamp);
556 	if (!time_between32(now, last_overflow, last_overflow + HZ))
557 		WRITE_ONCE(tcp_sk_rw(sk)->rx_opt.ts_recent_stamp, now);
558 }
559 
560 /* syncookies: no recent synqueue overflow on this listening socket? */
561 static inline bool tcp_synq_no_recent_overflow(const struct sock *sk)
562 {
563 	unsigned int last_overflow;
564 	unsigned int now = jiffies;
565 
566 	if (sk->sk_reuseport) {
567 		struct sock_reuseport *reuse;
568 
569 		reuse = rcu_dereference(sk->sk_reuseport_cb);
570 		if (likely(reuse)) {
571 			last_overflow = READ_ONCE(reuse->synq_overflow_ts);
572 			return !time_between32(now, last_overflow - HZ,
573 					       last_overflow +
574 					       TCP_SYNCOOKIE_VALID);
575 		}
576 	}
577 
578 	last_overflow = READ_ONCE(tcp_sk(sk)->rx_opt.ts_recent_stamp);
579 
580 	/* If last_overflow <= jiffies <= last_overflow + TCP_SYNCOOKIE_VALID,
581 	 * then we're under synflood. However, we have to use
582 	 * 'last_overflow - HZ' as lower bound. That's because a concurrent
583 	 * tcp_synq_overflow() could update .ts_recent_stamp after we read
584 	 * jiffies but before we store .ts_recent_stamp into last_overflow,
585 	 * which could lead to rejecting a valid syncookie.
586 	 */
587 	return !time_between32(now, last_overflow - HZ,
588 			       last_overflow + TCP_SYNCOOKIE_VALID);
589 }
590 
591 static inline u32 tcp_cookie_time(void)
592 {
593 	u64 val = get_jiffies_64();
594 
595 	do_div(val, TCP_SYNCOOKIE_PERIOD);
596 	return val;
597 }
598 
599 /* Convert one nsec 64bit timestamp to ts (ms or usec resolution) */
600 static inline u64 tcp_ns_to_ts(bool usec_ts, u64 val)
601 {
602 	if (usec_ts)
603 		return div_u64(val, NSEC_PER_USEC);
604 
605 	return div_u64(val, NSEC_PER_MSEC);
606 }
607 
608 u32 __cookie_v4_init_sequence(const struct iphdr *iph, const struct tcphdr *th,
609 			      u16 *mssp);
610 __u32 cookie_v4_init_sequence(const struct sk_buff *skb, __u16 *mss);
611 u64 cookie_init_timestamp(struct request_sock *req, u64 now);
612 bool cookie_timestamp_decode(const struct net *net,
613 			     struct tcp_options_received *opt);
614 
615 static inline bool cookie_ecn_ok(const struct net *net, const struct dst_entry *dst)
616 {
617 	return READ_ONCE(net->ipv4.sysctl_tcp_ecn) ||
618 		dst_feature(dst, RTAX_FEATURE_ECN);
619 }
620 
621 #if IS_ENABLED(CONFIG_BPF)
622 static inline bool cookie_bpf_ok(struct sk_buff *skb)
623 {
624 	return skb->sk;
625 }
626 
627 struct request_sock *cookie_bpf_check(struct sock *sk, struct sk_buff *skb);
628 #else
629 static inline bool cookie_bpf_ok(struct sk_buff *skb)
630 {
631 	return false;
632 }
633 
634 static inline struct request_sock *cookie_bpf_check(struct net *net, struct sock *sk,
635 						    struct sk_buff *skb)
636 {
637 	return NULL;
638 }
639 #endif
640 
641 /* From net/ipv6/syncookies.c */
642 int __cookie_v6_check(const struct ipv6hdr *iph, const struct tcphdr *th);
643 struct sock *cookie_v6_check(struct sock *sk, struct sk_buff *skb);
644 
645 u32 __cookie_v6_init_sequence(const struct ipv6hdr *iph,
646 			      const struct tcphdr *th, u16 *mssp);
647 __u32 cookie_v6_init_sequence(const struct sk_buff *skb, __u16 *mss);
648 #endif
649 /* tcp_output.c */
650 
651 void tcp_skb_entail(struct sock *sk, struct sk_buff *skb);
652 void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb);
653 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
654 			       int nonagle);
655 int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs);
656 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs);
657 void tcp_retransmit_timer(struct sock *sk);
658 void tcp_xmit_retransmit_queue(struct sock *);
659 void tcp_simple_retransmit(struct sock *);
660 void tcp_enter_recovery(struct sock *sk, bool ece_ack);
661 int tcp_trim_head(struct sock *, struct sk_buff *, u32);
662 enum tcp_queue {
663 	TCP_FRAG_IN_WRITE_QUEUE,
664 	TCP_FRAG_IN_RTX_QUEUE,
665 };
666 int tcp_fragment(struct sock *sk, enum tcp_queue tcp_queue,
667 		 struct sk_buff *skb, u32 len,
668 		 unsigned int mss_now, gfp_t gfp);
669 
670 void tcp_send_probe0(struct sock *);
671 int tcp_write_wakeup(struct sock *, int mib);
672 void tcp_send_fin(struct sock *sk);
673 void tcp_send_active_reset(struct sock *sk, gfp_t priority);
674 int tcp_send_synack(struct sock *);
675 void tcp_push_one(struct sock *, unsigned int mss_now);
676 void __tcp_send_ack(struct sock *sk, u32 rcv_nxt);
677 void tcp_send_ack(struct sock *sk);
678 void tcp_send_delayed_ack(struct sock *sk);
679 void tcp_send_loss_probe(struct sock *sk);
680 bool tcp_schedule_loss_probe(struct sock *sk, bool advancing_rto);
681 void tcp_skb_collapse_tstamp(struct sk_buff *skb,
682 			     const struct sk_buff *next_skb);
683 
684 /* tcp_input.c */
685 void tcp_rearm_rto(struct sock *sk);
686 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req);
687 void tcp_reset(struct sock *sk, struct sk_buff *skb);
688 void tcp_fin(struct sock *sk);
689 void tcp_check_space(struct sock *sk);
690 void tcp_sack_compress_send_ack(struct sock *sk);
691 
692 /* tcp_timer.c */
693 void tcp_init_xmit_timers(struct sock *);
694 static inline void tcp_clear_xmit_timers(struct sock *sk)
695 {
696 	if (hrtimer_try_to_cancel(&tcp_sk(sk)->pacing_timer) == 1)
697 		__sock_put(sk);
698 
699 	if (hrtimer_try_to_cancel(&tcp_sk(sk)->compressed_ack_timer) == 1)
700 		__sock_put(sk);
701 
702 	inet_csk_clear_xmit_timers(sk);
703 }
704 
705 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu);
706 unsigned int tcp_current_mss(struct sock *sk);
707 u32 tcp_clamp_probe0_to_user_timeout(const struct sock *sk, u32 when);
708 
709 /* Bound MSS / TSO packet size with the half of the window */
710 static inline int tcp_bound_to_half_wnd(struct tcp_sock *tp, int pktsize)
711 {
712 	int cutoff;
713 
714 	/* When peer uses tiny windows, there is no use in packetizing
715 	 * to sub-MSS pieces for the sake of SWS or making sure there
716 	 * are enough packets in the pipe for fast recovery.
717 	 *
718 	 * On the other hand, for extremely large MSS devices, handling
719 	 * smaller than MSS windows in this way does make sense.
720 	 */
721 	if (tp->max_window > TCP_MSS_DEFAULT)
722 		cutoff = (tp->max_window >> 1);
723 	else
724 		cutoff = tp->max_window;
725 
726 	if (cutoff && pktsize > cutoff)
727 		return max_t(int, cutoff, 68U - tp->tcp_header_len);
728 	else
729 		return pktsize;
730 }
731 
732 /* tcp.c */
733 void tcp_get_info(struct sock *, struct tcp_info *);
734 
735 /* Read 'sendfile()'-style from a TCP socket */
736 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
737 		  sk_read_actor_t recv_actor);
738 int tcp_read_skb(struct sock *sk, skb_read_actor_t recv_actor);
739 struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off);
740 void tcp_read_done(struct sock *sk, size_t len);
741 
742 void tcp_initialize_rcv_mss(struct sock *sk);
743 
744 int tcp_mtu_to_mss(struct sock *sk, int pmtu);
745 int tcp_mss_to_mtu(struct sock *sk, int mss);
746 void tcp_mtup_init(struct sock *sk);
747 
748 static inline void tcp_bound_rto(struct sock *sk)
749 {
750 	if (inet_csk(sk)->icsk_rto > TCP_RTO_MAX)
751 		inet_csk(sk)->icsk_rto = TCP_RTO_MAX;
752 }
753 
754 static inline u32 __tcp_set_rto(const struct tcp_sock *tp)
755 {
756 	return usecs_to_jiffies((tp->srtt_us >> 3) + tp->rttvar_us);
757 }
758 
759 static inline void __tcp_fast_path_on(struct tcp_sock *tp, u32 snd_wnd)
760 {
761 	/* mptcp hooks are only on the slow path */
762 	if (sk_is_mptcp((struct sock *)tp))
763 		return;
764 
765 	tp->pred_flags = htonl((tp->tcp_header_len << 26) |
766 			       ntohl(TCP_FLAG_ACK) |
767 			       snd_wnd);
768 }
769 
770 static inline void tcp_fast_path_on(struct tcp_sock *tp)
771 {
772 	__tcp_fast_path_on(tp, tp->snd_wnd >> tp->rx_opt.snd_wscale);
773 }
774 
775 static inline void tcp_fast_path_check(struct sock *sk)
776 {
777 	struct tcp_sock *tp = tcp_sk(sk);
778 
779 	if (RB_EMPTY_ROOT(&tp->out_of_order_queue) &&
780 	    tp->rcv_wnd &&
781 	    atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf &&
782 	    !tp->urg_data)
783 		tcp_fast_path_on(tp);
784 }
785 
786 u32 tcp_delack_max(const struct sock *sk);
787 
788 /* Compute the actual rto_min value */
789 static inline u32 tcp_rto_min(const struct sock *sk)
790 {
791 	const struct dst_entry *dst = __sk_dst_get(sk);
792 	u32 rto_min = inet_csk(sk)->icsk_rto_min;
793 
794 	if (dst && dst_metric_locked(dst, RTAX_RTO_MIN))
795 		rto_min = dst_metric_rtt(dst, RTAX_RTO_MIN);
796 	return rto_min;
797 }
798 
799 static inline u32 tcp_rto_min_us(const struct sock *sk)
800 {
801 	return jiffies_to_usecs(tcp_rto_min(sk));
802 }
803 
804 static inline bool tcp_ca_dst_locked(const struct dst_entry *dst)
805 {
806 	return dst_metric_locked(dst, RTAX_CC_ALGO);
807 }
808 
809 /* Minimum RTT in usec. ~0 means not available. */
810 static inline u32 tcp_min_rtt(const struct tcp_sock *tp)
811 {
812 	return minmax_get(&tp->rtt_min);
813 }
814 
815 /* Compute the actual receive window we are currently advertising.
816  * Rcv_nxt can be after the window if our peer push more data
817  * than the offered window.
818  */
819 static inline u32 tcp_receive_window(const struct tcp_sock *tp)
820 {
821 	s32 win = tp->rcv_wup + tp->rcv_wnd - tp->rcv_nxt;
822 
823 	if (win < 0)
824 		win = 0;
825 	return (u32) win;
826 }
827 
828 /* Choose a new window, without checks for shrinking, and without
829  * scaling applied to the result.  The caller does these things
830  * if necessary.  This is a "raw" window selection.
831  */
832 u32 __tcp_select_window(struct sock *sk);
833 
834 void tcp_send_window_probe(struct sock *sk);
835 
836 /* TCP uses 32bit jiffies to save some space.
837  * Note that this is different from tcp_time_stamp, which
838  * historically has been the same until linux-4.13.
839  */
840 #define tcp_jiffies32 ((u32)jiffies)
841 
842 /*
843  * Deliver a 32bit value for TCP timestamp option (RFC 7323)
844  * It is no longer tied to jiffies, but to 1 ms clock.
845  * Note: double check if you want to use tcp_jiffies32 instead of this.
846  */
847 #define TCP_TS_HZ	1000
848 
849 static inline u64 tcp_clock_ns(void)
850 {
851 	return ktime_get_ns();
852 }
853 
854 static inline u64 tcp_clock_us(void)
855 {
856 	return div_u64(tcp_clock_ns(), NSEC_PER_USEC);
857 }
858 
859 static inline u64 tcp_clock_ms(void)
860 {
861 	return div_u64(tcp_clock_ns(), NSEC_PER_MSEC);
862 }
863 
864 /* TCP Timestamp included in TS option (RFC 1323) can either use ms
865  * or usec resolution. Each socket carries a flag to select one or other
866  * resolution, as the route attribute could change anytime.
867  * Each flow must stick to initial resolution.
868  */
869 static inline u32 tcp_clock_ts(bool usec_ts)
870 {
871 	return usec_ts ? tcp_clock_us() : tcp_clock_ms();
872 }
873 
874 static inline u32 tcp_time_stamp_ms(const struct tcp_sock *tp)
875 {
876 	return div_u64(tp->tcp_mstamp, USEC_PER_MSEC);
877 }
878 
879 static inline u32 tcp_time_stamp_ts(const struct tcp_sock *tp)
880 {
881 	if (tp->tcp_usec_ts)
882 		return tp->tcp_mstamp;
883 	return tcp_time_stamp_ms(tp);
884 }
885 
886 void tcp_mstamp_refresh(struct tcp_sock *tp);
887 
888 static inline u32 tcp_stamp_us_delta(u64 t1, u64 t0)
889 {
890 	return max_t(s64, t1 - t0, 0);
891 }
892 
893 /* provide the departure time in us unit */
894 static inline u64 tcp_skb_timestamp_us(const struct sk_buff *skb)
895 {
896 	return div_u64(skb->skb_mstamp_ns, NSEC_PER_USEC);
897 }
898 
899 /* Provide skb TSval in usec or ms unit */
900 static inline u32 tcp_skb_timestamp_ts(bool usec_ts, const struct sk_buff *skb)
901 {
902 	if (usec_ts)
903 		return tcp_skb_timestamp_us(skb);
904 
905 	return div_u64(skb->skb_mstamp_ns, NSEC_PER_MSEC);
906 }
907 
908 static inline u32 tcp_tw_tsval(const struct tcp_timewait_sock *tcptw)
909 {
910 	return tcp_clock_ts(tcptw->tw_sk.tw_usec_ts) + tcptw->tw_ts_offset;
911 }
912 
913 static inline u32 tcp_rsk_tsval(const struct tcp_request_sock *treq)
914 {
915 	return tcp_clock_ts(treq->req_usec_ts) + treq->ts_off;
916 }
917 
918 #define tcp_flag_byte(th) (((u_int8_t *)th)[13])
919 
920 #define TCPHDR_FIN 0x01
921 #define TCPHDR_SYN 0x02
922 #define TCPHDR_RST 0x04
923 #define TCPHDR_PSH 0x08
924 #define TCPHDR_ACK 0x10
925 #define TCPHDR_URG 0x20
926 #define TCPHDR_ECE 0x40
927 #define TCPHDR_CWR 0x80
928 
929 #define TCPHDR_SYN_ECN	(TCPHDR_SYN | TCPHDR_ECE | TCPHDR_CWR)
930 
931 /* State flags for sacked in struct tcp_skb_cb */
932 enum tcp_skb_cb_sacked_flags {
933 	TCPCB_SACKED_ACKED	= (1 << 0),	/* SKB ACK'd by a SACK block	*/
934 	TCPCB_SACKED_RETRANS	= (1 << 1),	/* SKB retransmitted		*/
935 	TCPCB_LOST		= (1 << 2),	/* SKB is lost			*/
936 	TCPCB_TAGBITS		= (TCPCB_SACKED_ACKED | TCPCB_SACKED_RETRANS |
937 				   TCPCB_LOST),	/* All tag bits			*/
938 	TCPCB_REPAIRED		= (1 << 4),	/* SKB repaired (no skb_mstamp_ns)	*/
939 	TCPCB_EVER_RETRANS	= (1 << 7),	/* Ever retransmitted frame	*/
940 	TCPCB_RETRANS		= (TCPCB_SACKED_RETRANS | TCPCB_EVER_RETRANS |
941 				   TCPCB_REPAIRED),
942 };
943 
944 /* This is what the send packet queuing engine uses to pass
945  * TCP per-packet control information to the transmission code.
946  * We also store the host-order sequence numbers in here too.
947  * This is 44 bytes if IPV6 is enabled.
948  * If this grows please adjust skbuff.h:skbuff->cb[xxx] size appropriately.
949  */
950 struct tcp_skb_cb {
951 	__u32		seq;		/* Starting sequence number	*/
952 	__u32		end_seq;	/* SEQ + FIN + SYN + datalen	*/
953 	union {
954 		/* Note :
955 		 * 	  tcp_gso_segs/size are used in write queue only,
956 		 *	  cf tcp_skb_pcount()/tcp_skb_mss()
957 		 */
958 		struct {
959 			u16	tcp_gso_segs;
960 			u16	tcp_gso_size;
961 		};
962 	};
963 	__u8		tcp_flags;	/* TCP header flags. (tcp[13])	*/
964 
965 	__u8		sacked;		/* State flags for SACK.	*/
966 	__u8		ip_dsfield;	/* IPv4 tos or IPv6 dsfield	*/
967 	__u8		txstamp_ack:1,	/* Record TX timestamp for ack? */
968 			eor:1,		/* Is skb MSG_EOR marked? */
969 			has_rxtstamp:1,	/* SKB has a RX timestamp	*/
970 			unused:5;
971 	__u32		ack_seq;	/* Sequence number ACK'd	*/
972 	union {
973 		struct {
974 #define TCPCB_DELIVERED_CE_MASK ((1U<<20) - 1)
975 			/* There is space for up to 24 bytes */
976 			__u32 is_app_limited:1, /* cwnd not fully used? */
977 			      delivered_ce:20,
978 			      unused:11;
979 			/* pkts S/ACKed so far upon tx of skb, incl retrans: */
980 			__u32 delivered;
981 			/* start of send pipeline phase */
982 			u64 first_tx_mstamp;
983 			/* when we reached the "delivered" count */
984 			u64 delivered_mstamp;
985 		} tx;   /* only used for outgoing skbs */
986 		union {
987 			struct inet_skb_parm	h4;
988 #if IS_ENABLED(CONFIG_IPV6)
989 			struct inet6_skb_parm	h6;
990 #endif
991 		} header;	/* For incoming skbs */
992 	};
993 };
994 
995 #define TCP_SKB_CB(__skb)	((struct tcp_skb_cb *)&((__skb)->cb[0]))
996 
997 extern const struct inet_connection_sock_af_ops ipv4_specific;
998 
999 #if IS_ENABLED(CONFIG_IPV6)
1000 /* This is the variant of inet6_iif() that must be used by TCP,
1001  * as TCP moves IP6CB into a different location in skb->cb[]
1002  */
1003 static inline int tcp_v6_iif(const struct sk_buff *skb)
1004 {
1005 	return TCP_SKB_CB(skb)->header.h6.iif;
1006 }
1007 
1008 static inline int tcp_v6_iif_l3_slave(const struct sk_buff *skb)
1009 {
1010 	bool l3_slave = ipv6_l3mdev_skb(TCP_SKB_CB(skb)->header.h6.flags);
1011 
1012 	return l3_slave ? skb->skb_iif : TCP_SKB_CB(skb)->header.h6.iif;
1013 }
1014 
1015 /* TCP_SKB_CB reference means this can not be used from early demux */
1016 static inline int tcp_v6_sdif(const struct sk_buff *skb)
1017 {
1018 #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
1019 	if (skb && ipv6_l3mdev_skb(TCP_SKB_CB(skb)->header.h6.flags))
1020 		return TCP_SKB_CB(skb)->header.h6.iif;
1021 #endif
1022 	return 0;
1023 }
1024 
1025 extern const struct inet_connection_sock_af_ops ipv6_specific;
1026 
1027 INDIRECT_CALLABLE_DECLARE(void tcp_v6_send_check(struct sock *sk, struct sk_buff *skb));
1028 INDIRECT_CALLABLE_DECLARE(int tcp_v6_rcv(struct sk_buff *skb));
1029 void tcp_v6_early_demux(struct sk_buff *skb);
1030 
1031 #endif
1032 
1033 /* TCP_SKB_CB reference means this can not be used from early demux */
1034 static inline int tcp_v4_sdif(struct sk_buff *skb)
1035 {
1036 #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
1037 	if (skb && ipv4_l3mdev_skb(TCP_SKB_CB(skb)->header.h4.flags))
1038 		return TCP_SKB_CB(skb)->header.h4.iif;
1039 #endif
1040 	return 0;
1041 }
1042 
1043 /* Due to TSO, an SKB can be composed of multiple actual
1044  * packets.  To keep these tracked properly, we use this.
1045  */
1046 static inline int tcp_skb_pcount(const struct sk_buff *skb)
1047 {
1048 	return TCP_SKB_CB(skb)->tcp_gso_segs;
1049 }
1050 
1051 static inline void tcp_skb_pcount_set(struct sk_buff *skb, int segs)
1052 {
1053 	TCP_SKB_CB(skb)->tcp_gso_segs = segs;
1054 }
1055 
1056 static inline void tcp_skb_pcount_add(struct sk_buff *skb, int segs)
1057 {
1058 	TCP_SKB_CB(skb)->tcp_gso_segs += segs;
1059 }
1060 
1061 /* This is valid iff skb is in write queue and tcp_skb_pcount() > 1. */
1062 static inline int tcp_skb_mss(const struct sk_buff *skb)
1063 {
1064 	return TCP_SKB_CB(skb)->tcp_gso_size;
1065 }
1066 
1067 static inline bool tcp_skb_can_collapse_to(const struct sk_buff *skb)
1068 {
1069 	return likely(!TCP_SKB_CB(skb)->eor);
1070 }
1071 
1072 static inline bool tcp_skb_can_collapse(const struct sk_buff *to,
1073 					const struct sk_buff *from)
1074 {
1075 	return likely(tcp_skb_can_collapse_to(to) &&
1076 		      mptcp_skb_can_collapse(to, from) &&
1077 		      skb_pure_zcopy_same(to, from));
1078 }
1079 
1080 /* Events passed to congestion control interface */
1081 enum tcp_ca_event {
1082 	CA_EVENT_TX_START,	/* first transmit when no packets in flight */
1083 	CA_EVENT_CWND_RESTART,	/* congestion window restart */
1084 	CA_EVENT_COMPLETE_CWR,	/* end of congestion recovery */
1085 	CA_EVENT_LOSS,		/* loss timeout */
1086 	CA_EVENT_ECN_NO_CE,	/* ECT set, but not CE marked */
1087 	CA_EVENT_ECN_IS_CE,	/* received CE marked IP packet */
1088 };
1089 
1090 /* Information about inbound ACK, passed to cong_ops->in_ack_event() */
1091 enum tcp_ca_ack_event_flags {
1092 	CA_ACK_SLOWPATH		= (1 << 0),	/* In slow path processing */
1093 	CA_ACK_WIN_UPDATE	= (1 << 1),	/* ACK updated window */
1094 	CA_ACK_ECE		= (1 << 2),	/* ECE bit is set on ack */
1095 };
1096 
1097 /*
1098  * Interface for adding new TCP congestion control handlers
1099  */
1100 #define TCP_CA_NAME_MAX	16
1101 #define TCP_CA_MAX	128
1102 #define TCP_CA_BUF_MAX	(TCP_CA_NAME_MAX*TCP_CA_MAX)
1103 
1104 #define TCP_CA_UNSPEC	0
1105 
1106 /* Algorithm can be set on socket without CAP_NET_ADMIN privileges */
1107 #define TCP_CONG_NON_RESTRICTED 0x1
1108 /* Requires ECN/ECT set on all packets */
1109 #define TCP_CONG_NEEDS_ECN	0x2
1110 #define TCP_CONG_MASK	(TCP_CONG_NON_RESTRICTED | TCP_CONG_NEEDS_ECN)
1111 
1112 union tcp_cc_info;
1113 
1114 struct ack_sample {
1115 	u32 pkts_acked;
1116 	s32 rtt_us;
1117 	u32 in_flight;
1118 };
1119 
1120 /* A rate sample measures the number of (original/retransmitted) data
1121  * packets delivered "delivered" over an interval of time "interval_us".
1122  * The tcp_rate.c code fills in the rate sample, and congestion
1123  * control modules that define a cong_control function to run at the end
1124  * of ACK processing can optionally chose to consult this sample when
1125  * setting cwnd and pacing rate.
1126  * A sample is invalid if "delivered" or "interval_us" is negative.
1127  */
1128 struct rate_sample {
1129 	u64  prior_mstamp; /* starting timestamp for interval */
1130 	u32  prior_delivered;	/* tp->delivered at "prior_mstamp" */
1131 	u32  prior_delivered_ce;/* tp->delivered_ce at "prior_mstamp" */
1132 	s32  delivered;		/* number of packets delivered over interval */
1133 	s32  delivered_ce;	/* number of packets delivered w/ CE marks*/
1134 	long interval_us;	/* time for tp->delivered to incr "delivered" */
1135 	u32 snd_interval_us;	/* snd interval for delivered packets */
1136 	u32 rcv_interval_us;	/* rcv interval for delivered packets */
1137 	long rtt_us;		/* RTT of last (S)ACKed packet (or -1) */
1138 	int  losses;		/* number of packets marked lost upon ACK */
1139 	u32  acked_sacked;	/* number of packets newly (S)ACKed upon ACK */
1140 	u32  prior_in_flight;	/* in flight before this ACK */
1141 	u32  last_end_seq;	/* end_seq of most recently ACKed packet */
1142 	bool is_app_limited;	/* is sample from packet with bubble in pipe? */
1143 	bool is_retrans;	/* is sample from retransmission? */
1144 	bool is_ack_delayed;	/* is this (likely) a delayed ACK? */
1145 };
1146 
1147 struct tcp_congestion_ops {
1148 /* fast path fields are put first to fill one cache line */
1149 
1150 	/* return slow start threshold (required) */
1151 	u32 (*ssthresh)(struct sock *sk);
1152 
1153 	/* do new cwnd calculation (required) */
1154 	void (*cong_avoid)(struct sock *sk, u32 ack, u32 acked);
1155 
1156 	/* call before changing ca_state (optional) */
1157 	void (*set_state)(struct sock *sk, u8 new_state);
1158 
1159 	/* call when cwnd event occurs (optional) */
1160 	void (*cwnd_event)(struct sock *sk, enum tcp_ca_event ev);
1161 
1162 	/* call when ack arrives (optional) */
1163 	void (*in_ack_event)(struct sock *sk, u32 flags);
1164 
1165 	/* hook for packet ack accounting (optional) */
1166 	void (*pkts_acked)(struct sock *sk, const struct ack_sample *sample);
1167 
1168 	/* override sysctl_tcp_min_tso_segs */
1169 	u32 (*min_tso_segs)(struct sock *sk);
1170 
1171 	/* call when packets are delivered to update cwnd and pacing rate,
1172 	 * after all the ca_state processing. (optional)
1173 	 */
1174 	void (*cong_control)(struct sock *sk, const struct rate_sample *rs);
1175 
1176 
1177 	/* new value of cwnd after loss (required) */
1178 	u32  (*undo_cwnd)(struct sock *sk);
1179 	/* returns the multiplier used in tcp_sndbuf_expand (optional) */
1180 	u32 (*sndbuf_expand)(struct sock *sk);
1181 
1182 /* control/slow paths put last */
1183 	/* get info for inet_diag (optional) */
1184 	size_t (*get_info)(struct sock *sk, u32 ext, int *attr,
1185 			   union tcp_cc_info *info);
1186 
1187 	char 			name[TCP_CA_NAME_MAX];
1188 	struct module		*owner;
1189 	struct list_head	list;
1190 	u32			key;
1191 	u32			flags;
1192 
1193 	/* initialize private data (optional) */
1194 	void (*init)(struct sock *sk);
1195 	/* cleanup private data  (optional) */
1196 	void (*release)(struct sock *sk);
1197 } ____cacheline_aligned_in_smp;
1198 
1199 int tcp_register_congestion_control(struct tcp_congestion_ops *type);
1200 void tcp_unregister_congestion_control(struct tcp_congestion_ops *type);
1201 int tcp_update_congestion_control(struct tcp_congestion_ops *type,
1202 				  struct tcp_congestion_ops *old_type);
1203 int tcp_validate_congestion_control(struct tcp_congestion_ops *ca);
1204 
1205 void tcp_assign_congestion_control(struct sock *sk);
1206 void tcp_init_congestion_control(struct sock *sk);
1207 void tcp_cleanup_congestion_control(struct sock *sk);
1208 int tcp_set_default_congestion_control(struct net *net, const char *name);
1209 void tcp_get_default_congestion_control(struct net *net, char *name);
1210 void tcp_get_available_congestion_control(char *buf, size_t len);
1211 void tcp_get_allowed_congestion_control(char *buf, size_t len);
1212 int tcp_set_allowed_congestion_control(char *allowed);
1213 int tcp_set_congestion_control(struct sock *sk, const char *name, bool load,
1214 			       bool cap_net_admin);
1215 u32 tcp_slow_start(struct tcp_sock *tp, u32 acked);
1216 void tcp_cong_avoid_ai(struct tcp_sock *tp, u32 w, u32 acked);
1217 
1218 u32 tcp_reno_ssthresh(struct sock *sk);
1219 u32 tcp_reno_undo_cwnd(struct sock *sk);
1220 void tcp_reno_cong_avoid(struct sock *sk, u32 ack, u32 acked);
1221 extern struct tcp_congestion_ops tcp_reno;
1222 
1223 struct tcp_congestion_ops *tcp_ca_find(const char *name);
1224 struct tcp_congestion_ops *tcp_ca_find_key(u32 key);
1225 u32 tcp_ca_get_key_by_name(struct net *net, const char *name, bool *ecn_ca);
1226 #ifdef CONFIG_INET
1227 char *tcp_ca_get_name_by_key(u32 key, char *buffer);
1228 #else
1229 static inline char *tcp_ca_get_name_by_key(u32 key, char *buffer)
1230 {
1231 	return NULL;
1232 }
1233 #endif
1234 
1235 static inline bool tcp_ca_needs_ecn(const struct sock *sk)
1236 {
1237 	const struct inet_connection_sock *icsk = inet_csk(sk);
1238 
1239 	return icsk->icsk_ca_ops->flags & TCP_CONG_NEEDS_ECN;
1240 }
1241 
1242 static inline void tcp_ca_event(struct sock *sk, const enum tcp_ca_event event)
1243 {
1244 	const struct inet_connection_sock *icsk = inet_csk(sk);
1245 
1246 	if (icsk->icsk_ca_ops->cwnd_event)
1247 		icsk->icsk_ca_ops->cwnd_event(sk, event);
1248 }
1249 
1250 /* From tcp_cong.c */
1251 void tcp_set_ca_state(struct sock *sk, const u8 ca_state);
1252 
1253 /* From tcp_rate.c */
1254 void tcp_rate_skb_sent(struct sock *sk, struct sk_buff *skb);
1255 void tcp_rate_skb_delivered(struct sock *sk, struct sk_buff *skb,
1256 			    struct rate_sample *rs);
1257 void tcp_rate_gen(struct sock *sk, u32 delivered, u32 lost,
1258 		  bool is_sack_reneg, struct rate_sample *rs);
1259 void tcp_rate_check_app_limited(struct sock *sk);
1260 
1261 static inline bool tcp_skb_sent_after(u64 t1, u64 t2, u32 seq1, u32 seq2)
1262 {
1263 	return t1 > t2 || (t1 == t2 && after(seq1, seq2));
1264 }
1265 
1266 /* These functions determine how the current flow behaves in respect of SACK
1267  * handling. SACK is negotiated with the peer, and therefore it can vary
1268  * between different flows.
1269  *
1270  * tcp_is_sack - SACK enabled
1271  * tcp_is_reno - No SACK
1272  */
1273 static inline int tcp_is_sack(const struct tcp_sock *tp)
1274 {
1275 	return likely(tp->rx_opt.sack_ok);
1276 }
1277 
1278 static inline bool tcp_is_reno(const struct tcp_sock *tp)
1279 {
1280 	return !tcp_is_sack(tp);
1281 }
1282 
1283 static inline unsigned int tcp_left_out(const struct tcp_sock *tp)
1284 {
1285 	return tp->sacked_out + tp->lost_out;
1286 }
1287 
1288 /* This determines how many packets are "in the network" to the best
1289  * of our knowledge.  In many cases it is conservative, but where
1290  * detailed information is available from the receiver (via SACK
1291  * blocks etc.) we can make more aggressive calculations.
1292  *
1293  * Use this for decisions involving congestion control, use just
1294  * tp->packets_out to determine if the send queue is empty or not.
1295  *
1296  * Read this equation as:
1297  *
1298  *	"Packets sent once on transmission queue" MINUS
1299  *	"Packets left network, but not honestly ACKed yet" PLUS
1300  *	"Packets fast retransmitted"
1301  */
1302 static inline unsigned int tcp_packets_in_flight(const struct tcp_sock *tp)
1303 {
1304 	return tp->packets_out - tcp_left_out(tp) + tp->retrans_out;
1305 }
1306 
1307 #define TCP_INFINITE_SSTHRESH	0x7fffffff
1308 
1309 static inline u32 tcp_snd_cwnd(const struct tcp_sock *tp)
1310 {
1311 	return tp->snd_cwnd;
1312 }
1313 
1314 static inline void tcp_snd_cwnd_set(struct tcp_sock *tp, u32 val)
1315 {
1316 	WARN_ON_ONCE((int)val <= 0);
1317 	tp->snd_cwnd = val;
1318 }
1319 
1320 static inline bool tcp_in_slow_start(const struct tcp_sock *tp)
1321 {
1322 	return tcp_snd_cwnd(tp) < tp->snd_ssthresh;
1323 }
1324 
1325 static inline bool tcp_in_initial_slowstart(const struct tcp_sock *tp)
1326 {
1327 	return tp->snd_ssthresh >= TCP_INFINITE_SSTHRESH;
1328 }
1329 
1330 static inline bool tcp_in_cwnd_reduction(const struct sock *sk)
1331 {
1332 	return (TCPF_CA_CWR | TCPF_CA_Recovery) &
1333 	       (1 << inet_csk(sk)->icsk_ca_state);
1334 }
1335 
1336 /* If cwnd > ssthresh, we may raise ssthresh to be half-way to cwnd.
1337  * The exception is cwnd reduction phase, when cwnd is decreasing towards
1338  * ssthresh.
1339  */
1340 static inline __u32 tcp_current_ssthresh(const struct sock *sk)
1341 {
1342 	const struct tcp_sock *tp = tcp_sk(sk);
1343 
1344 	if (tcp_in_cwnd_reduction(sk))
1345 		return tp->snd_ssthresh;
1346 	else
1347 		return max(tp->snd_ssthresh,
1348 			   ((tcp_snd_cwnd(tp) >> 1) +
1349 			    (tcp_snd_cwnd(tp) >> 2)));
1350 }
1351 
1352 /* Use define here intentionally to get WARN_ON location shown at the caller */
1353 #define tcp_verify_left_out(tp)	WARN_ON(tcp_left_out(tp) > tp->packets_out)
1354 
1355 void tcp_enter_cwr(struct sock *sk);
1356 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst);
1357 
1358 /* The maximum number of MSS of available cwnd for which TSO defers
1359  * sending if not using sysctl_tcp_tso_win_divisor.
1360  */
1361 static inline __u32 tcp_max_tso_deferred_mss(const struct tcp_sock *tp)
1362 {
1363 	return 3;
1364 }
1365 
1366 /* Returns end sequence number of the receiver's advertised window */
1367 static inline u32 tcp_wnd_end(const struct tcp_sock *tp)
1368 {
1369 	return tp->snd_una + tp->snd_wnd;
1370 }
1371 
1372 /* We follow the spirit of RFC2861 to validate cwnd but implement a more
1373  * flexible approach. The RFC suggests cwnd should not be raised unless
1374  * it was fully used previously. And that's exactly what we do in
1375  * congestion avoidance mode. But in slow start we allow cwnd to grow
1376  * as long as the application has used half the cwnd.
1377  * Example :
1378  *    cwnd is 10 (IW10), but application sends 9 frames.
1379  *    We allow cwnd to reach 18 when all frames are ACKed.
1380  * This check is safe because it's as aggressive as slow start which already
1381  * risks 100% overshoot. The advantage is that we discourage application to
1382  * either send more filler packets or data to artificially blow up the cwnd
1383  * usage, and allow application-limited process to probe bw more aggressively.
1384  */
1385 static inline bool tcp_is_cwnd_limited(const struct sock *sk)
1386 {
1387 	const struct tcp_sock *tp = tcp_sk(sk);
1388 
1389 	if (tp->is_cwnd_limited)
1390 		return true;
1391 
1392 	/* If in slow start, ensure cwnd grows to twice what was ACKed. */
1393 	if (tcp_in_slow_start(tp))
1394 		return tcp_snd_cwnd(tp) < 2 * tp->max_packets_out;
1395 
1396 	return false;
1397 }
1398 
1399 /* BBR congestion control needs pacing.
1400  * Same remark for SO_MAX_PACING_RATE.
1401  * sch_fq packet scheduler is efficiently handling pacing,
1402  * but is not always installed/used.
1403  * Return true if TCP stack should pace packets itself.
1404  */
1405 static inline bool tcp_needs_internal_pacing(const struct sock *sk)
1406 {
1407 	return smp_load_acquire(&sk->sk_pacing_status) == SK_PACING_NEEDED;
1408 }
1409 
1410 /* Estimates in how many jiffies next packet for this flow can be sent.
1411  * Scheduling a retransmit timer too early would be silly.
1412  */
1413 static inline unsigned long tcp_pacing_delay(const struct sock *sk)
1414 {
1415 	s64 delay = tcp_sk(sk)->tcp_wstamp_ns - tcp_sk(sk)->tcp_clock_cache;
1416 
1417 	return delay > 0 ? nsecs_to_jiffies(delay) : 0;
1418 }
1419 
1420 static inline void tcp_reset_xmit_timer(struct sock *sk,
1421 					const int what,
1422 					unsigned long when,
1423 					const unsigned long max_when)
1424 {
1425 	inet_csk_reset_xmit_timer(sk, what, when + tcp_pacing_delay(sk),
1426 				  max_when);
1427 }
1428 
1429 /* Something is really bad, we could not queue an additional packet,
1430  * because qdisc is full or receiver sent a 0 window, or we are paced.
1431  * We do not want to add fuel to the fire, or abort too early,
1432  * so make sure the timer we arm now is at least 200ms in the future,
1433  * regardless of current icsk_rto value (as it could be ~2ms)
1434  */
1435 static inline unsigned long tcp_probe0_base(const struct sock *sk)
1436 {
1437 	return max_t(unsigned long, inet_csk(sk)->icsk_rto, TCP_RTO_MIN);
1438 }
1439 
1440 /* Variant of inet_csk_rto_backoff() used for zero window probes */
1441 static inline unsigned long tcp_probe0_when(const struct sock *sk,
1442 					    unsigned long max_when)
1443 {
1444 	u8 backoff = min_t(u8, ilog2(TCP_RTO_MAX / TCP_RTO_MIN) + 1,
1445 			   inet_csk(sk)->icsk_backoff);
1446 	u64 when = (u64)tcp_probe0_base(sk) << backoff;
1447 
1448 	return (unsigned long)min_t(u64, when, max_when);
1449 }
1450 
1451 static inline void tcp_check_probe_timer(struct sock *sk)
1452 {
1453 	if (!tcp_sk(sk)->packets_out && !inet_csk(sk)->icsk_pending)
1454 		tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
1455 				     tcp_probe0_base(sk), TCP_RTO_MAX);
1456 }
1457 
1458 static inline void tcp_init_wl(struct tcp_sock *tp, u32 seq)
1459 {
1460 	tp->snd_wl1 = seq;
1461 }
1462 
1463 static inline void tcp_update_wl(struct tcp_sock *tp, u32 seq)
1464 {
1465 	tp->snd_wl1 = seq;
1466 }
1467 
1468 /*
1469  * Calculate(/check) TCP checksum
1470  */
1471 static inline __sum16 tcp_v4_check(int len, __be32 saddr,
1472 				   __be32 daddr, __wsum base)
1473 {
1474 	return csum_tcpudp_magic(saddr, daddr, len, IPPROTO_TCP, base);
1475 }
1476 
1477 static inline bool tcp_checksum_complete(struct sk_buff *skb)
1478 {
1479 	return !skb_csum_unnecessary(skb) &&
1480 		__skb_checksum_complete(skb);
1481 }
1482 
1483 bool tcp_add_backlog(struct sock *sk, struct sk_buff *skb,
1484 		     enum skb_drop_reason *reason);
1485 
1486 
1487 int tcp_filter(struct sock *sk, struct sk_buff *skb);
1488 void tcp_set_state(struct sock *sk, int state);
1489 void tcp_done(struct sock *sk);
1490 int tcp_abort(struct sock *sk, int err);
1491 
1492 static inline void tcp_sack_reset(struct tcp_options_received *rx_opt)
1493 {
1494 	rx_opt->dsack = 0;
1495 	rx_opt->num_sacks = 0;
1496 }
1497 
1498 void tcp_cwnd_restart(struct sock *sk, s32 delta);
1499 
1500 static inline void tcp_slow_start_after_idle_check(struct sock *sk)
1501 {
1502 	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1503 	struct tcp_sock *tp = tcp_sk(sk);
1504 	s32 delta;
1505 
1506 	if (!READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_slow_start_after_idle) ||
1507 	    tp->packets_out || ca_ops->cong_control)
1508 		return;
1509 	delta = tcp_jiffies32 - tp->lsndtime;
1510 	if (delta > inet_csk(sk)->icsk_rto)
1511 		tcp_cwnd_restart(sk, delta);
1512 }
1513 
1514 /* Determine a window scaling and initial window to offer. */
1515 void tcp_select_initial_window(const struct sock *sk, int __space,
1516 			       __u32 mss, __u32 *rcv_wnd,
1517 			       __u32 *window_clamp, int wscale_ok,
1518 			       __u8 *rcv_wscale, __u32 init_rcv_wnd);
1519 
1520 static inline int __tcp_win_from_space(u8 scaling_ratio, int space)
1521 {
1522 	s64 scaled_space = (s64)space * scaling_ratio;
1523 
1524 	return scaled_space >> TCP_RMEM_TO_WIN_SCALE;
1525 }
1526 
1527 static inline int tcp_win_from_space(const struct sock *sk, int space)
1528 {
1529 	return __tcp_win_from_space(tcp_sk(sk)->scaling_ratio, space);
1530 }
1531 
1532 /* inverse of __tcp_win_from_space() */
1533 static inline int __tcp_space_from_win(u8 scaling_ratio, int win)
1534 {
1535 	u64 val = (u64)win << TCP_RMEM_TO_WIN_SCALE;
1536 
1537 	do_div(val, scaling_ratio);
1538 	return val;
1539 }
1540 
1541 static inline int tcp_space_from_win(const struct sock *sk, int win)
1542 {
1543 	return __tcp_space_from_win(tcp_sk(sk)->scaling_ratio, win);
1544 }
1545 
1546 /* Assume a 50% default for skb->len/skb->truesize ratio.
1547  * This may be adjusted later in tcp_measure_rcv_mss().
1548  */
1549 #define TCP_DEFAULT_SCALING_RATIO (1 << (TCP_RMEM_TO_WIN_SCALE - 1))
1550 
1551 static inline void tcp_scaling_ratio_init(struct sock *sk)
1552 {
1553 	tcp_sk(sk)->scaling_ratio = TCP_DEFAULT_SCALING_RATIO;
1554 }
1555 
1556 /* Note: caller must be prepared to deal with negative returns */
1557 static inline int tcp_space(const struct sock *sk)
1558 {
1559 	return tcp_win_from_space(sk, READ_ONCE(sk->sk_rcvbuf) -
1560 				  READ_ONCE(sk->sk_backlog.len) -
1561 				  atomic_read(&sk->sk_rmem_alloc));
1562 }
1563 
1564 static inline int tcp_full_space(const struct sock *sk)
1565 {
1566 	return tcp_win_from_space(sk, READ_ONCE(sk->sk_rcvbuf));
1567 }
1568 
1569 static inline void __tcp_adjust_rcv_ssthresh(struct sock *sk, u32 new_ssthresh)
1570 {
1571 	int unused_mem = sk_unused_reserved_mem(sk);
1572 	struct tcp_sock *tp = tcp_sk(sk);
1573 
1574 	tp->rcv_ssthresh = min(tp->rcv_ssthresh, new_ssthresh);
1575 	if (unused_mem)
1576 		tp->rcv_ssthresh = max_t(u32, tp->rcv_ssthresh,
1577 					 tcp_win_from_space(sk, unused_mem));
1578 }
1579 
1580 static inline void tcp_adjust_rcv_ssthresh(struct sock *sk)
1581 {
1582 	__tcp_adjust_rcv_ssthresh(sk, 4U * tcp_sk(sk)->advmss);
1583 }
1584 
1585 void tcp_cleanup_rbuf(struct sock *sk, int copied);
1586 void __tcp_cleanup_rbuf(struct sock *sk, int copied);
1587 
1588 
1589 /* We provision sk_rcvbuf around 200% of sk_rcvlowat.
1590  * If 87.5 % (7/8) of the space has been consumed, we want to override
1591  * SO_RCVLOWAT constraint, since we are receiving skbs with too small
1592  * len/truesize ratio.
1593  */
1594 static inline bool tcp_rmem_pressure(const struct sock *sk)
1595 {
1596 	int rcvbuf, threshold;
1597 
1598 	if (tcp_under_memory_pressure(sk))
1599 		return true;
1600 
1601 	rcvbuf = READ_ONCE(sk->sk_rcvbuf);
1602 	threshold = rcvbuf - (rcvbuf >> 3);
1603 
1604 	return atomic_read(&sk->sk_rmem_alloc) > threshold;
1605 }
1606 
1607 static inline bool tcp_epollin_ready(const struct sock *sk, int target)
1608 {
1609 	const struct tcp_sock *tp = tcp_sk(sk);
1610 	int avail = READ_ONCE(tp->rcv_nxt) - READ_ONCE(tp->copied_seq);
1611 
1612 	if (avail <= 0)
1613 		return false;
1614 
1615 	return (avail >= target) || tcp_rmem_pressure(sk) ||
1616 	       (tcp_receive_window(tp) <= inet_csk(sk)->icsk_ack.rcv_mss);
1617 }
1618 
1619 extern void tcp_openreq_init_rwin(struct request_sock *req,
1620 				  const struct sock *sk_listener,
1621 				  const struct dst_entry *dst);
1622 
1623 void tcp_enter_memory_pressure(struct sock *sk);
1624 void tcp_leave_memory_pressure(struct sock *sk);
1625 
1626 static inline int keepalive_intvl_when(const struct tcp_sock *tp)
1627 {
1628 	struct net *net = sock_net((struct sock *)tp);
1629 	int val;
1630 
1631 	/* Paired with WRITE_ONCE() in tcp_sock_set_keepintvl()
1632 	 * and do_tcp_setsockopt().
1633 	 */
1634 	val = READ_ONCE(tp->keepalive_intvl);
1635 
1636 	return val ? : READ_ONCE(net->ipv4.sysctl_tcp_keepalive_intvl);
1637 }
1638 
1639 static inline int keepalive_time_when(const struct tcp_sock *tp)
1640 {
1641 	struct net *net = sock_net((struct sock *)tp);
1642 	int val;
1643 
1644 	/* Paired with WRITE_ONCE() in tcp_sock_set_keepidle_locked() */
1645 	val = READ_ONCE(tp->keepalive_time);
1646 
1647 	return val ? : READ_ONCE(net->ipv4.sysctl_tcp_keepalive_time);
1648 }
1649 
1650 static inline int keepalive_probes(const struct tcp_sock *tp)
1651 {
1652 	struct net *net = sock_net((struct sock *)tp);
1653 	int val;
1654 
1655 	/* Paired with WRITE_ONCE() in tcp_sock_set_keepcnt()
1656 	 * and do_tcp_setsockopt().
1657 	 */
1658 	val = READ_ONCE(tp->keepalive_probes);
1659 
1660 	return val ? : READ_ONCE(net->ipv4.sysctl_tcp_keepalive_probes);
1661 }
1662 
1663 static inline u32 keepalive_time_elapsed(const struct tcp_sock *tp)
1664 {
1665 	const struct inet_connection_sock *icsk = &tp->inet_conn;
1666 
1667 	return min_t(u32, tcp_jiffies32 - icsk->icsk_ack.lrcvtime,
1668 			  tcp_jiffies32 - tp->rcv_tstamp);
1669 }
1670 
1671 static inline int tcp_fin_time(const struct sock *sk)
1672 {
1673 	int fin_timeout = tcp_sk(sk)->linger2 ? :
1674 		READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_fin_timeout);
1675 	const int rto = inet_csk(sk)->icsk_rto;
1676 
1677 	if (fin_timeout < (rto << 2) - (rto >> 1))
1678 		fin_timeout = (rto << 2) - (rto >> 1);
1679 
1680 	return fin_timeout;
1681 }
1682 
1683 static inline bool tcp_paws_check(const struct tcp_options_received *rx_opt,
1684 				  int paws_win)
1685 {
1686 	if ((s32)(rx_opt->ts_recent - rx_opt->rcv_tsval) <= paws_win)
1687 		return true;
1688 	if (unlikely(!time_before32(ktime_get_seconds(),
1689 				    rx_opt->ts_recent_stamp + TCP_PAWS_WRAP)))
1690 		return true;
1691 	/*
1692 	 * Some OSes send SYN and SYNACK messages with tsval=0 tsecr=0,
1693 	 * then following tcp messages have valid values. Ignore 0 value,
1694 	 * or else 'negative' tsval might forbid us to accept their packets.
1695 	 */
1696 	if (!rx_opt->ts_recent)
1697 		return true;
1698 	return false;
1699 }
1700 
1701 static inline bool tcp_paws_reject(const struct tcp_options_received *rx_opt,
1702 				   int rst)
1703 {
1704 	if (tcp_paws_check(rx_opt, 0))
1705 		return false;
1706 
1707 	/* RST segments are not recommended to carry timestamp,
1708 	   and, if they do, it is recommended to ignore PAWS because
1709 	   "their cleanup function should take precedence over timestamps."
1710 	   Certainly, it is mistake. It is necessary to understand the reasons
1711 	   of this constraint to relax it: if peer reboots, clock may go
1712 	   out-of-sync and half-open connections will not be reset.
1713 	   Actually, the problem would be not existing if all
1714 	   the implementations followed draft about maintaining clock
1715 	   via reboots. Linux-2.2 DOES NOT!
1716 
1717 	   However, we can relax time bounds for RST segments to MSL.
1718 	 */
1719 	if (rst && !time_before32(ktime_get_seconds(),
1720 				  rx_opt->ts_recent_stamp + TCP_PAWS_MSL))
1721 		return false;
1722 	return true;
1723 }
1724 
1725 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
1726 			  int mib_idx, u32 *last_oow_ack_time);
1727 
1728 static inline void tcp_mib_init(struct net *net)
1729 {
1730 	/* See RFC 2012 */
1731 	TCP_ADD_STATS(net, TCP_MIB_RTOALGORITHM, 1);
1732 	TCP_ADD_STATS(net, TCP_MIB_RTOMIN, TCP_RTO_MIN*1000/HZ);
1733 	TCP_ADD_STATS(net, TCP_MIB_RTOMAX, TCP_RTO_MAX*1000/HZ);
1734 	TCP_ADD_STATS(net, TCP_MIB_MAXCONN, -1);
1735 }
1736 
1737 /* from STCP */
1738 static inline void tcp_clear_retrans_hints_partial(struct tcp_sock *tp)
1739 {
1740 	tp->lost_skb_hint = NULL;
1741 }
1742 
1743 static inline void tcp_clear_all_retrans_hints(struct tcp_sock *tp)
1744 {
1745 	tcp_clear_retrans_hints_partial(tp);
1746 	tp->retransmit_skb_hint = NULL;
1747 }
1748 
1749 #define tcp_md5_addr tcp_ao_addr
1750 
1751 /* - key database */
1752 struct tcp_md5sig_key {
1753 	struct hlist_node	node;
1754 	u8			keylen;
1755 	u8			family; /* AF_INET or AF_INET6 */
1756 	u8			prefixlen;
1757 	u8			flags;
1758 	union tcp_md5_addr	addr;
1759 	int			l3index; /* set if key added with L3 scope */
1760 	u8			key[TCP_MD5SIG_MAXKEYLEN];
1761 	struct rcu_head		rcu;
1762 };
1763 
1764 /* - sock block */
1765 struct tcp_md5sig_info {
1766 	struct hlist_head	head;
1767 	struct rcu_head		rcu;
1768 };
1769 
1770 /* - pseudo header */
1771 struct tcp4_pseudohdr {
1772 	__be32		saddr;
1773 	__be32		daddr;
1774 	__u8		pad;
1775 	__u8		protocol;
1776 	__be16		len;
1777 };
1778 
1779 struct tcp6_pseudohdr {
1780 	struct in6_addr	saddr;
1781 	struct in6_addr daddr;
1782 	__be32		len;
1783 	__be32		protocol;	/* including padding */
1784 };
1785 
1786 union tcp_md5sum_block {
1787 	struct tcp4_pseudohdr ip4;
1788 #if IS_ENABLED(CONFIG_IPV6)
1789 	struct tcp6_pseudohdr ip6;
1790 #endif
1791 };
1792 
1793 /*
1794  * struct tcp_sigpool - per-CPU pool of ahash_requests
1795  * @scratch: per-CPU temporary area, that can be used between
1796  *	     tcp_sigpool_start() and tcp_sigpool_end() to perform
1797  *	     crypto request
1798  * @req: pre-allocated ahash request
1799  */
1800 struct tcp_sigpool {
1801 	void *scratch;
1802 	struct ahash_request *req;
1803 };
1804 
1805 int tcp_sigpool_alloc_ahash(const char *alg, size_t scratch_size);
1806 void tcp_sigpool_get(unsigned int id);
1807 void tcp_sigpool_release(unsigned int id);
1808 int tcp_sigpool_hash_skb_data(struct tcp_sigpool *hp,
1809 			      const struct sk_buff *skb,
1810 			      unsigned int header_len);
1811 
1812 /**
1813  * tcp_sigpool_start - disable bh and start using tcp_sigpool_ahash
1814  * @id: tcp_sigpool that was previously allocated by tcp_sigpool_alloc_ahash()
1815  * @c: returned tcp_sigpool for usage (uninitialized on failure)
1816  *
1817  * Returns 0 on success, error otherwise.
1818  */
1819 int tcp_sigpool_start(unsigned int id, struct tcp_sigpool *c);
1820 /**
1821  * tcp_sigpool_end - enable bh and stop using tcp_sigpool
1822  * @c: tcp_sigpool context that was returned by tcp_sigpool_start()
1823  */
1824 void tcp_sigpool_end(struct tcp_sigpool *c);
1825 size_t tcp_sigpool_algo(unsigned int id, char *buf, size_t buf_len);
1826 /* - functions */
1827 int tcp_v4_md5_hash_skb(char *md5_hash, const struct tcp_md5sig_key *key,
1828 			const struct sock *sk, const struct sk_buff *skb);
1829 int tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr,
1830 		   int family, u8 prefixlen, int l3index, u8 flags,
1831 		   const u8 *newkey, u8 newkeylen);
1832 int tcp_md5_key_copy(struct sock *sk, const union tcp_md5_addr *addr,
1833 		     int family, u8 prefixlen, int l3index,
1834 		     struct tcp_md5sig_key *key);
1835 
1836 int tcp_md5_do_del(struct sock *sk, const union tcp_md5_addr *addr,
1837 		   int family, u8 prefixlen, int l3index, u8 flags);
1838 void tcp_clear_md5_list(struct sock *sk);
1839 struct tcp_md5sig_key *tcp_v4_md5_lookup(const struct sock *sk,
1840 					 const struct sock *addr_sk);
1841 
1842 #ifdef CONFIG_TCP_MD5SIG
1843 struct tcp_md5sig_key *__tcp_md5_do_lookup(const struct sock *sk, int l3index,
1844 					   const union tcp_md5_addr *addr,
1845 					   int family, bool any_l3index);
1846 static inline struct tcp_md5sig_key *
1847 tcp_md5_do_lookup(const struct sock *sk, int l3index,
1848 		  const union tcp_md5_addr *addr, int family)
1849 {
1850 	if (!static_branch_unlikely(&tcp_md5_needed.key))
1851 		return NULL;
1852 	return __tcp_md5_do_lookup(sk, l3index, addr, family, false);
1853 }
1854 
1855 static inline struct tcp_md5sig_key *
1856 tcp_md5_do_lookup_any_l3index(const struct sock *sk,
1857 			      const union tcp_md5_addr *addr, int family)
1858 {
1859 	if (!static_branch_unlikely(&tcp_md5_needed.key))
1860 		return NULL;
1861 	return __tcp_md5_do_lookup(sk, 0, addr, family, true);
1862 }
1863 
1864 enum skb_drop_reason
1865 tcp_inbound_md5_hash(const struct sock *sk, const struct sk_buff *skb,
1866 		     const void *saddr, const void *daddr,
1867 		     int family, int l3index, const __u8 *hash_location);
1868 
1869 
1870 #define tcp_twsk_md5_key(twsk)	((twsk)->tw_md5_key)
1871 #else
1872 static inline struct tcp_md5sig_key *
1873 tcp_md5_do_lookup(const struct sock *sk, int l3index,
1874 		  const union tcp_md5_addr *addr, int family)
1875 {
1876 	return NULL;
1877 }
1878 
1879 static inline struct tcp_md5sig_key *
1880 tcp_md5_do_lookup_any_l3index(const struct sock *sk,
1881 			      const union tcp_md5_addr *addr, int family)
1882 {
1883 	return NULL;
1884 }
1885 
1886 static inline enum skb_drop_reason
1887 tcp_inbound_md5_hash(const struct sock *sk, const struct sk_buff *skb,
1888 		     const void *saddr, const void *daddr,
1889 		     int family, int l3index, const __u8 *hash_location)
1890 {
1891 	return SKB_NOT_DROPPED_YET;
1892 }
1893 #define tcp_twsk_md5_key(twsk)	NULL
1894 #endif
1895 
1896 int tcp_md5_alloc_sigpool(void);
1897 void tcp_md5_release_sigpool(void);
1898 void tcp_md5_add_sigpool(void);
1899 extern int tcp_md5_sigpool_id;
1900 
1901 int tcp_md5_hash_key(struct tcp_sigpool *hp,
1902 		     const struct tcp_md5sig_key *key);
1903 
1904 /* From tcp_fastopen.c */
1905 void tcp_fastopen_cache_get(struct sock *sk, u16 *mss,
1906 			    struct tcp_fastopen_cookie *cookie);
1907 void tcp_fastopen_cache_set(struct sock *sk, u16 mss,
1908 			    struct tcp_fastopen_cookie *cookie, bool syn_lost,
1909 			    u16 try_exp);
1910 struct tcp_fastopen_request {
1911 	/* Fast Open cookie. Size 0 means a cookie request */
1912 	struct tcp_fastopen_cookie	cookie;
1913 	struct msghdr			*data;  /* data in MSG_FASTOPEN */
1914 	size_t				size;
1915 	int				copied;	/* queued in tcp_connect() */
1916 	struct ubuf_info		*uarg;
1917 };
1918 void tcp_free_fastopen_req(struct tcp_sock *tp);
1919 void tcp_fastopen_destroy_cipher(struct sock *sk);
1920 void tcp_fastopen_ctx_destroy(struct net *net);
1921 int tcp_fastopen_reset_cipher(struct net *net, struct sock *sk,
1922 			      void *primary_key, void *backup_key);
1923 int tcp_fastopen_get_cipher(struct net *net, struct inet_connection_sock *icsk,
1924 			    u64 *key);
1925 void tcp_fastopen_add_skb(struct sock *sk, struct sk_buff *skb);
1926 struct sock *tcp_try_fastopen(struct sock *sk, struct sk_buff *skb,
1927 			      struct request_sock *req,
1928 			      struct tcp_fastopen_cookie *foc,
1929 			      const struct dst_entry *dst);
1930 void tcp_fastopen_init_key_once(struct net *net);
1931 bool tcp_fastopen_cookie_check(struct sock *sk, u16 *mss,
1932 			     struct tcp_fastopen_cookie *cookie);
1933 bool tcp_fastopen_defer_connect(struct sock *sk, int *err);
1934 #define TCP_FASTOPEN_KEY_LENGTH sizeof(siphash_key_t)
1935 #define TCP_FASTOPEN_KEY_MAX 2
1936 #define TCP_FASTOPEN_KEY_BUF_LENGTH \
1937 	(TCP_FASTOPEN_KEY_LENGTH * TCP_FASTOPEN_KEY_MAX)
1938 
1939 /* Fastopen key context */
1940 struct tcp_fastopen_context {
1941 	siphash_key_t	key[TCP_FASTOPEN_KEY_MAX];
1942 	int		num;
1943 	struct rcu_head	rcu;
1944 };
1945 
1946 void tcp_fastopen_active_disable(struct sock *sk);
1947 bool tcp_fastopen_active_should_disable(struct sock *sk);
1948 void tcp_fastopen_active_disable_ofo_check(struct sock *sk);
1949 void tcp_fastopen_active_detect_blackhole(struct sock *sk, bool expired);
1950 
1951 /* Caller needs to wrap with rcu_read_(un)lock() */
1952 static inline
1953 struct tcp_fastopen_context *tcp_fastopen_get_ctx(const struct sock *sk)
1954 {
1955 	struct tcp_fastopen_context *ctx;
1956 
1957 	ctx = rcu_dereference(inet_csk(sk)->icsk_accept_queue.fastopenq.ctx);
1958 	if (!ctx)
1959 		ctx = rcu_dereference(sock_net(sk)->ipv4.tcp_fastopen_ctx);
1960 	return ctx;
1961 }
1962 
1963 static inline
1964 bool tcp_fastopen_cookie_match(const struct tcp_fastopen_cookie *foc,
1965 			       const struct tcp_fastopen_cookie *orig)
1966 {
1967 	if (orig->len == TCP_FASTOPEN_COOKIE_SIZE &&
1968 	    orig->len == foc->len &&
1969 	    !memcmp(orig->val, foc->val, foc->len))
1970 		return true;
1971 	return false;
1972 }
1973 
1974 static inline
1975 int tcp_fastopen_context_len(const struct tcp_fastopen_context *ctx)
1976 {
1977 	return ctx->num;
1978 }
1979 
1980 /* Latencies incurred by various limits for a sender. They are
1981  * chronograph-like stats that are mutually exclusive.
1982  */
1983 enum tcp_chrono {
1984 	TCP_CHRONO_UNSPEC,
1985 	TCP_CHRONO_BUSY, /* Actively sending data (non-empty write queue) */
1986 	TCP_CHRONO_RWND_LIMITED, /* Stalled by insufficient receive window */
1987 	TCP_CHRONO_SNDBUF_LIMITED, /* Stalled by insufficient send buffer */
1988 	__TCP_CHRONO_MAX,
1989 };
1990 
1991 void tcp_chrono_start(struct sock *sk, const enum tcp_chrono type);
1992 void tcp_chrono_stop(struct sock *sk, const enum tcp_chrono type);
1993 
1994 /* This helper is needed, because skb->tcp_tsorted_anchor uses
1995  * the same memory storage than skb->destructor/_skb_refdst
1996  */
1997 static inline void tcp_skb_tsorted_anchor_cleanup(struct sk_buff *skb)
1998 {
1999 	skb->destructor = NULL;
2000 	skb->_skb_refdst = 0UL;
2001 }
2002 
2003 #define tcp_skb_tsorted_save(skb) {		\
2004 	unsigned long _save = skb->_skb_refdst;	\
2005 	skb->_skb_refdst = 0UL;
2006 
2007 #define tcp_skb_tsorted_restore(skb)		\
2008 	skb->_skb_refdst = _save;		\
2009 }
2010 
2011 void tcp_write_queue_purge(struct sock *sk);
2012 
2013 static inline struct sk_buff *tcp_rtx_queue_head(const struct sock *sk)
2014 {
2015 	return skb_rb_first(&sk->tcp_rtx_queue);
2016 }
2017 
2018 static inline struct sk_buff *tcp_rtx_queue_tail(const struct sock *sk)
2019 {
2020 	return skb_rb_last(&sk->tcp_rtx_queue);
2021 }
2022 
2023 static inline struct sk_buff *tcp_write_queue_tail(const struct sock *sk)
2024 {
2025 	return skb_peek_tail(&sk->sk_write_queue);
2026 }
2027 
2028 #define tcp_for_write_queue_from_safe(skb, tmp, sk)			\
2029 	skb_queue_walk_from_safe(&(sk)->sk_write_queue, skb, tmp)
2030 
2031 static inline struct sk_buff *tcp_send_head(const struct sock *sk)
2032 {
2033 	return skb_peek(&sk->sk_write_queue);
2034 }
2035 
2036 static inline bool tcp_skb_is_last(const struct sock *sk,
2037 				   const struct sk_buff *skb)
2038 {
2039 	return skb_queue_is_last(&sk->sk_write_queue, skb);
2040 }
2041 
2042 /**
2043  * tcp_write_queue_empty - test if any payload (or FIN) is available in write queue
2044  * @sk: socket
2045  *
2046  * Since the write queue can have a temporary empty skb in it,
2047  * we must not use "return skb_queue_empty(&sk->sk_write_queue)"
2048  */
2049 static inline bool tcp_write_queue_empty(const struct sock *sk)
2050 {
2051 	const struct tcp_sock *tp = tcp_sk(sk);
2052 
2053 	return tp->write_seq == tp->snd_nxt;
2054 }
2055 
2056 static inline bool tcp_rtx_queue_empty(const struct sock *sk)
2057 {
2058 	return RB_EMPTY_ROOT(&sk->tcp_rtx_queue);
2059 }
2060 
2061 static inline bool tcp_rtx_and_write_queues_empty(const struct sock *sk)
2062 {
2063 	return tcp_rtx_queue_empty(sk) && tcp_write_queue_empty(sk);
2064 }
2065 
2066 static inline void tcp_add_write_queue_tail(struct sock *sk, struct sk_buff *skb)
2067 {
2068 	__skb_queue_tail(&sk->sk_write_queue, skb);
2069 
2070 	/* Queue it, remembering where we must start sending. */
2071 	if (sk->sk_write_queue.next == skb)
2072 		tcp_chrono_start(sk, TCP_CHRONO_BUSY);
2073 }
2074 
2075 /* Insert new before skb on the write queue of sk.  */
2076 static inline void tcp_insert_write_queue_before(struct sk_buff *new,
2077 						  struct sk_buff *skb,
2078 						  struct sock *sk)
2079 {
2080 	__skb_queue_before(&sk->sk_write_queue, skb, new);
2081 }
2082 
2083 static inline void tcp_unlink_write_queue(struct sk_buff *skb, struct sock *sk)
2084 {
2085 	tcp_skb_tsorted_anchor_cleanup(skb);
2086 	__skb_unlink(skb, &sk->sk_write_queue);
2087 }
2088 
2089 void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb);
2090 
2091 static inline void tcp_rtx_queue_unlink(struct sk_buff *skb, struct sock *sk)
2092 {
2093 	tcp_skb_tsorted_anchor_cleanup(skb);
2094 	rb_erase(&skb->rbnode, &sk->tcp_rtx_queue);
2095 }
2096 
2097 static inline void tcp_rtx_queue_unlink_and_free(struct sk_buff *skb, struct sock *sk)
2098 {
2099 	list_del(&skb->tcp_tsorted_anchor);
2100 	tcp_rtx_queue_unlink(skb, sk);
2101 	tcp_wmem_free_skb(sk, skb);
2102 }
2103 
2104 static inline void tcp_push_pending_frames(struct sock *sk)
2105 {
2106 	if (tcp_send_head(sk)) {
2107 		struct tcp_sock *tp = tcp_sk(sk);
2108 
2109 		__tcp_push_pending_frames(sk, tcp_current_mss(sk), tp->nonagle);
2110 	}
2111 }
2112 
2113 /* Start sequence of the skb just after the highest skb with SACKed
2114  * bit, valid only if sacked_out > 0 or when the caller has ensured
2115  * validity by itself.
2116  */
2117 static inline u32 tcp_highest_sack_seq(struct tcp_sock *tp)
2118 {
2119 	if (!tp->sacked_out)
2120 		return tp->snd_una;
2121 
2122 	if (tp->highest_sack == NULL)
2123 		return tp->snd_nxt;
2124 
2125 	return TCP_SKB_CB(tp->highest_sack)->seq;
2126 }
2127 
2128 static inline void tcp_advance_highest_sack(struct sock *sk, struct sk_buff *skb)
2129 {
2130 	tcp_sk(sk)->highest_sack = skb_rb_next(skb);
2131 }
2132 
2133 static inline struct sk_buff *tcp_highest_sack(struct sock *sk)
2134 {
2135 	return tcp_sk(sk)->highest_sack;
2136 }
2137 
2138 static inline void tcp_highest_sack_reset(struct sock *sk)
2139 {
2140 	tcp_sk(sk)->highest_sack = tcp_rtx_queue_head(sk);
2141 }
2142 
2143 /* Called when old skb is about to be deleted and replaced by new skb */
2144 static inline void tcp_highest_sack_replace(struct sock *sk,
2145 					    struct sk_buff *old,
2146 					    struct sk_buff *new)
2147 {
2148 	if (old == tcp_highest_sack(sk))
2149 		tcp_sk(sk)->highest_sack = new;
2150 }
2151 
2152 /* This helper checks if socket has IP_TRANSPARENT set */
2153 static inline bool inet_sk_transparent(const struct sock *sk)
2154 {
2155 	switch (sk->sk_state) {
2156 	case TCP_TIME_WAIT:
2157 		return inet_twsk(sk)->tw_transparent;
2158 	case TCP_NEW_SYN_RECV:
2159 		return inet_rsk(inet_reqsk(sk))->no_srccheck;
2160 	}
2161 	return inet_test_bit(TRANSPARENT, sk);
2162 }
2163 
2164 /* Determines whether this is a thin stream (which may suffer from
2165  * increased latency). Used to trigger latency-reducing mechanisms.
2166  */
2167 static inline bool tcp_stream_is_thin(struct tcp_sock *tp)
2168 {
2169 	return tp->packets_out < 4 && !tcp_in_initial_slowstart(tp);
2170 }
2171 
2172 /* /proc */
2173 enum tcp_seq_states {
2174 	TCP_SEQ_STATE_LISTENING,
2175 	TCP_SEQ_STATE_ESTABLISHED,
2176 };
2177 
2178 void *tcp_seq_start(struct seq_file *seq, loff_t *pos);
2179 void *tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos);
2180 void tcp_seq_stop(struct seq_file *seq, void *v);
2181 
2182 struct tcp_seq_afinfo {
2183 	sa_family_t			family;
2184 };
2185 
2186 struct tcp_iter_state {
2187 	struct seq_net_private	p;
2188 	enum tcp_seq_states	state;
2189 	struct sock		*syn_wait_sk;
2190 	int			bucket, offset, sbucket, num;
2191 	loff_t			last_pos;
2192 };
2193 
2194 extern struct request_sock_ops tcp_request_sock_ops;
2195 extern struct request_sock_ops tcp6_request_sock_ops;
2196 
2197 void tcp_v4_destroy_sock(struct sock *sk);
2198 
2199 struct sk_buff *tcp_gso_segment(struct sk_buff *skb,
2200 				netdev_features_t features);
2201 struct sk_buff *tcp_gro_receive(struct list_head *head, struct sk_buff *skb);
2202 INDIRECT_CALLABLE_DECLARE(int tcp4_gro_complete(struct sk_buff *skb, int thoff));
2203 INDIRECT_CALLABLE_DECLARE(struct sk_buff *tcp4_gro_receive(struct list_head *head, struct sk_buff *skb));
2204 INDIRECT_CALLABLE_DECLARE(int tcp6_gro_complete(struct sk_buff *skb, int thoff));
2205 INDIRECT_CALLABLE_DECLARE(struct sk_buff *tcp6_gro_receive(struct list_head *head, struct sk_buff *skb));
2206 #ifdef CONFIG_INET
2207 void tcp_gro_complete(struct sk_buff *skb);
2208 #else
2209 static inline void tcp_gro_complete(struct sk_buff *skb) { }
2210 #endif
2211 
2212 void __tcp_v4_send_check(struct sk_buff *skb, __be32 saddr, __be32 daddr);
2213 
2214 static inline u32 tcp_notsent_lowat(const struct tcp_sock *tp)
2215 {
2216 	struct net *net = sock_net((struct sock *)tp);
2217 	u32 val;
2218 
2219 	val = READ_ONCE(tp->notsent_lowat);
2220 
2221 	return val ?: READ_ONCE(net->ipv4.sysctl_tcp_notsent_lowat);
2222 }
2223 
2224 bool tcp_stream_memory_free(const struct sock *sk, int wake);
2225 
2226 #ifdef CONFIG_PROC_FS
2227 int tcp4_proc_init(void);
2228 void tcp4_proc_exit(void);
2229 #endif
2230 
2231 int tcp_rtx_synack(const struct sock *sk, struct request_sock *req);
2232 int tcp_conn_request(struct request_sock_ops *rsk_ops,
2233 		     const struct tcp_request_sock_ops *af_ops,
2234 		     struct sock *sk, struct sk_buff *skb);
2235 
2236 /* TCP af-specific functions */
2237 struct tcp_sock_af_ops {
2238 #ifdef CONFIG_TCP_MD5SIG
2239 	struct tcp_md5sig_key	*(*md5_lookup) (const struct sock *sk,
2240 						const struct sock *addr_sk);
2241 	int		(*calc_md5_hash)(char *location,
2242 					 const struct tcp_md5sig_key *md5,
2243 					 const struct sock *sk,
2244 					 const struct sk_buff *skb);
2245 	int		(*md5_parse)(struct sock *sk,
2246 				     int optname,
2247 				     sockptr_t optval,
2248 				     int optlen);
2249 #endif
2250 #ifdef CONFIG_TCP_AO
2251 	int (*ao_parse)(struct sock *sk, int optname, sockptr_t optval, int optlen);
2252 	struct tcp_ao_key *(*ao_lookup)(const struct sock *sk,
2253 					struct sock *addr_sk,
2254 					int sndid, int rcvid);
2255 	int (*ao_calc_key_sk)(struct tcp_ao_key *mkt, u8 *key,
2256 			      const struct sock *sk,
2257 			      __be32 sisn, __be32 disn, bool send);
2258 	int (*calc_ao_hash)(char *location, struct tcp_ao_key *ao,
2259 			    const struct sock *sk, const struct sk_buff *skb,
2260 			    const u8 *tkey, int hash_offset, u32 sne);
2261 #endif
2262 };
2263 
2264 struct tcp_request_sock_ops {
2265 	u16 mss_clamp;
2266 #ifdef CONFIG_TCP_MD5SIG
2267 	struct tcp_md5sig_key *(*req_md5_lookup)(const struct sock *sk,
2268 						 const struct sock *addr_sk);
2269 	int		(*calc_md5_hash) (char *location,
2270 					  const struct tcp_md5sig_key *md5,
2271 					  const struct sock *sk,
2272 					  const struct sk_buff *skb);
2273 #endif
2274 #ifdef CONFIG_TCP_AO
2275 	struct tcp_ao_key *(*ao_lookup)(const struct sock *sk,
2276 					struct request_sock *req,
2277 					int sndid, int rcvid);
2278 	int (*ao_calc_key)(struct tcp_ao_key *mkt, u8 *key, struct request_sock *sk);
2279 	int (*ao_synack_hash)(char *ao_hash, struct tcp_ao_key *mkt,
2280 			      struct request_sock *req, const struct sk_buff *skb,
2281 			      int hash_offset, u32 sne);
2282 #endif
2283 #ifdef CONFIG_SYN_COOKIES
2284 	__u32 (*cookie_init_seq)(const struct sk_buff *skb,
2285 				 __u16 *mss);
2286 #endif
2287 	struct dst_entry *(*route_req)(const struct sock *sk,
2288 				       struct sk_buff *skb,
2289 				       struct flowi *fl,
2290 				       struct request_sock *req,
2291 				       u32 tw_isn);
2292 	u32 (*init_seq)(const struct sk_buff *skb);
2293 	u32 (*init_ts_off)(const struct net *net, const struct sk_buff *skb);
2294 	int (*send_synack)(const struct sock *sk, struct dst_entry *dst,
2295 			   struct flowi *fl, struct request_sock *req,
2296 			   struct tcp_fastopen_cookie *foc,
2297 			   enum tcp_synack_type synack_type,
2298 			   struct sk_buff *syn_skb);
2299 };
2300 
2301 extern const struct tcp_request_sock_ops tcp_request_sock_ipv4_ops;
2302 #if IS_ENABLED(CONFIG_IPV6)
2303 extern const struct tcp_request_sock_ops tcp_request_sock_ipv6_ops;
2304 #endif
2305 
2306 #ifdef CONFIG_SYN_COOKIES
2307 static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops,
2308 					 const struct sock *sk, struct sk_buff *skb,
2309 					 __u16 *mss)
2310 {
2311 	tcp_synq_overflow(sk);
2312 	__NET_INC_STATS(sock_net(sk), LINUX_MIB_SYNCOOKIESSENT);
2313 	return ops->cookie_init_seq(skb, mss);
2314 }
2315 #else
2316 static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops,
2317 					 const struct sock *sk, struct sk_buff *skb,
2318 					 __u16 *mss)
2319 {
2320 	return 0;
2321 }
2322 #endif
2323 
2324 struct tcp_key {
2325 	union {
2326 		struct {
2327 			struct tcp_ao_key *ao_key;
2328 			char *traffic_key;
2329 			u32 sne;
2330 			u8 rcv_next;
2331 		};
2332 		struct tcp_md5sig_key *md5_key;
2333 	};
2334 	enum {
2335 		TCP_KEY_NONE = 0,
2336 		TCP_KEY_MD5,
2337 		TCP_KEY_AO,
2338 	} type;
2339 };
2340 
2341 static inline void tcp_get_current_key(const struct sock *sk,
2342 				       struct tcp_key *out)
2343 {
2344 #if defined(CONFIG_TCP_AO) || defined(CONFIG_TCP_MD5SIG)
2345 	const struct tcp_sock *tp = tcp_sk(sk);
2346 #endif
2347 
2348 #ifdef CONFIG_TCP_AO
2349 	if (static_branch_unlikely(&tcp_ao_needed.key)) {
2350 		struct tcp_ao_info *ao;
2351 
2352 		ao = rcu_dereference_protected(tp->ao_info,
2353 					       lockdep_sock_is_held(sk));
2354 		if (ao) {
2355 			out->ao_key = READ_ONCE(ao->current_key);
2356 			out->type = TCP_KEY_AO;
2357 			return;
2358 		}
2359 	}
2360 #endif
2361 #ifdef CONFIG_TCP_MD5SIG
2362 	if (static_branch_unlikely(&tcp_md5_needed.key) &&
2363 	    rcu_access_pointer(tp->md5sig_info)) {
2364 		out->md5_key = tp->af_specific->md5_lookup(sk, sk);
2365 		if (out->md5_key) {
2366 			out->type = TCP_KEY_MD5;
2367 			return;
2368 		}
2369 	}
2370 #endif
2371 	out->type = TCP_KEY_NONE;
2372 }
2373 
2374 static inline bool tcp_key_is_md5(const struct tcp_key *key)
2375 {
2376 #ifdef CONFIG_TCP_MD5SIG
2377 	if (static_branch_unlikely(&tcp_md5_needed.key) &&
2378 	    key->type == TCP_KEY_MD5)
2379 		return true;
2380 #endif
2381 	return false;
2382 }
2383 
2384 static inline bool tcp_key_is_ao(const struct tcp_key *key)
2385 {
2386 #ifdef CONFIG_TCP_AO
2387 	if (static_branch_unlikely(&tcp_ao_needed.key) &&
2388 	    key->type == TCP_KEY_AO)
2389 		return true;
2390 #endif
2391 	return false;
2392 }
2393 
2394 int tcpv4_offload_init(void);
2395 
2396 void tcp_v4_init(void);
2397 void tcp_init(void);
2398 
2399 /* tcp_recovery.c */
2400 void tcp_mark_skb_lost(struct sock *sk, struct sk_buff *skb);
2401 void tcp_newreno_mark_lost(struct sock *sk, bool snd_una_advanced);
2402 extern s32 tcp_rack_skb_timeout(struct tcp_sock *tp, struct sk_buff *skb,
2403 				u32 reo_wnd);
2404 extern bool tcp_rack_mark_lost(struct sock *sk);
2405 extern void tcp_rack_advance(struct tcp_sock *tp, u8 sacked, u32 end_seq,
2406 			     u64 xmit_time);
2407 extern void tcp_rack_reo_timeout(struct sock *sk);
2408 extern void tcp_rack_update_reo_wnd(struct sock *sk, struct rate_sample *rs);
2409 
2410 /* tcp_plb.c */
2411 
2412 /*
2413  * Scaling factor for fractions in PLB. For example, tcp_plb_update_state
2414  * expects cong_ratio which represents fraction of traffic that experienced
2415  * congestion over a single RTT. In order to avoid floating point operations,
2416  * this fraction should be mapped to (1 << TCP_PLB_SCALE) and passed in.
2417  */
2418 #define TCP_PLB_SCALE 8
2419 
2420 /* State for PLB (Protective Load Balancing) for a single TCP connection. */
2421 struct tcp_plb_state {
2422 	u8	consec_cong_rounds:5, /* consecutive congested rounds */
2423 		unused:3;
2424 	u32	pause_until; /* jiffies32 when PLB can resume rerouting */
2425 };
2426 
2427 static inline void tcp_plb_init(const struct sock *sk,
2428 				struct tcp_plb_state *plb)
2429 {
2430 	plb->consec_cong_rounds = 0;
2431 	plb->pause_until = 0;
2432 }
2433 void tcp_plb_update_state(const struct sock *sk, struct tcp_plb_state *plb,
2434 			  const int cong_ratio);
2435 void tcp_plb_check_rehash(struct sock *sk, struct tcp_plb_state *plb);
2436 void tcp_plb_update_state_upon_rto(struct sock *sk, struct tcp_plb_state *plb);
2437 
2438 /* At how many usecs into the future should the RTO fire? */
2439 static inline s64 tcp_rto_delta_us(const struct sock *sk)
2440 {
2441 	const struct sk_buff *skb = tcp_rtx_queue_head(sk);
2442 	u32 rto = inet_csk(sk)->icsk_rto;
2443 	u64 rto_time_stamp_us = tcp_skb_timestamp_us(skb) + jiffies_to_usecs(rto);
2444 
2445 	return rto_time_stamp_us - tcp_sk(sk)->tcp_mstamp;
2446 }
2447 
2448 /*
2449  * Save and compile IPv4 options, return a pointer to it
2450  */
2451 static inline struct ip_options_rcu *tcp_v4_save_options(struct net *net,
2452 							 struct sk_buff *skb)
2453 {
2454 	const struct ip_options *opt = &TCP_SKB_CB(skb)->header.h4.opt;
2455 	struct ip_options_rcu *dopt = NULL;
2456 
2457 	if (opt->optlen) {
2458 		int opt_size = sizeof(*dopt) + opt->optlen;
2459 
2460 		dopt = kmalloc(opt_size, GFP_ATOMIC);
2461 		if (dopt && __ip_options_echo(net, &dopt->opt, skb, opt)) {
2462 			kfree(dopt);
2463 			dopt = NULL;
2464 		}
2465 	}
2466 	return dopt;
2467 }
2468 
2469 /* locally generated TCP pure ACKs have skb->truesize == 2
2470  * (check tcp_send_ack() in net/ipv4/tcp_output.c )
2471  * This is much faster than dissecting the packet to find out.
2472  * (Think of GRE encapsulations, IPv4, IPv6, ...)
2473  */
2474 static inline bool skb_is_tcp_pure_ack(const struct sk_buff *skb)
2475 {
2476 	return skb->truesize == 2;
2477 }
2478 
2479 static inline void skb_set_tcp_pure_ack(struct sk_buff *skb)
2480 {
2481 	skb->truesize = 2;
2482 }
2483 
2484 static inline int tcp_inq(struct sock *sk)
2485 {
2486 	struct tcp_sock *tp = tcp_sk(sk);
2487 	int answ;
2488 
2489 	if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) {
2490 		answ = 0;
2491 	} else if (sock_flag(sk, SOCK_URGINLINE) ||
2492 		   !tp->urg_data ||
2493 		   before(tp->urg_seq, tp->copied_seq) ||
2494 		   !before(tp->urg_seq, tp->rcv_nxt)) {
2495 
2496 		answ = tp->rcv_nxt - tp->copied_seq;
2497 
2498 		/* Subtract 1, if FIN was received */
2499 		if (answ && sock_flag(sk, SOCK_DONE))
2500 			answ--;
2501 	} else {
2502 		answ = tp->urg_seq - tp->copied_seq;
2503 	}
2504 
2505 	return answ;
2506 }
2507 
2508 int tcp_peek_len(struct socket *sock);
2509 
2510 static inline void tcp_segs_in(struct tcp_sock *tp, const struct sk_buff *skb)
2511 {
2512 	u16 segs_in;
2513 
2514 	segs_in = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
2515 
2516 	/* We update these fields while other threads might
2517 	 * read them from tcp_get_info()
2518 	 */
2519 	WRITE_ONCE(tp->segs_in, tp->segs_in + segs_in);
2520 	if (skb->len > tcp_hdrlen(skb))
2521 		WRITE_ONCE(tp->data_segs_in, tp->data_segs_in + segs_in);
2522 }
2523 
2524 /*
2525  * TCP listen path runs lockless.
2526  * We forced "struct sock" to be const qualified to make sure
2527  * we don't modify one of its field by mistake.
2528  * Here, we increment sk_drops which is an atomic_t, so we can safely
2529  * make sock writable again.
2530  */
2531 static inline void tcp_listendrop(const struct sock *sk)
2532 {
2533 	atomic_inc(&((struct sock *)sk)->sk_drops);
2534 	__NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENDROPS);
2535 }
2536 
2537 enum hrtimer_restart tcp_pace_kick(struct hrtimer *timer);
2538 
2539 /*
2540  * Interface for adding Upper Level Protocols over TCP
2541  */
2542 
2543 #define TCP_ULP_NAME_MAX	16
2544 #define TCP_ULP_MAX		128
2545 #define TCP_ULP_BUF_MAX		(TCP_ULP_NAME_MAX*TCP_ULP_MAX)
2546 
2547 struct tcp_ulp_ops {
2548 	struct list_head	list;
2549 
2550 	/* initialize ulp */
2551 	int (*init)(struct sock *sk);
2552 	/* update ulp */
2553 	void (*update)(struct sock *sk, struct proto *p,
2554 		       void (*write_space)(struct sock *sk));
2555 	/* cleanup ulp */
2556 	void (*release)(struct sock *sk);
2557 	/* diagnostic */
2558 	int (*get_info)(struct sock *sk, struct sk_buff *skb);
2559 	size_t (*get_info_size)(const struct sock *sk);
2560 	/* clone ulp */
2561 	void (*clone)(const struct request_sock *req, struct sock *newsk,
2562 		      const gfp_t priority);
2563 
2564 	char		name[TCP_ULP_NAME_MAX];
2565 	struct module	*owner;
2566 };
2567 int tcp_register_ulp(struct tcp_ulp_ops *type);
2568 void tcp_unregister_ulp(struct tcp_ulp_ops *type);
2569 int tcp_set_ulp(struct sock *sk, const char *name);
2570 void tcp_get_available_ulp(char *buf, size_t len);
2571 void tcp_cleanup_ulp(struct sock *sk);
2572 void tcp_update_ulp(struct sock *sk, struct proto *p,
2573 		    void (*write_space)(struct sock *sk));
2574 
2575 #define MODULE_ALIAS_TCP_ULP(name)				\
2576 	__MODULE_INFO(alias, alias_userspace, name);		\
2577 	__MODULE_INFO(alias, alias_tcp_ulp, "tcp-ulp-" name)
2578 
2579 #ifdef CONFIG_NET_SOCK_MSG
2580 struct sk_msg;
2581 struct sk_psock;
2582 
2583 #ifdef CONFIG_BPF_SYSCALL
2584 int tcp_bpf_update_proto(struct sock *sk, struct sk_psock *psock, bool restore);
2585 void tcp_bpf_clone(const struct sock *sk, struct sock *newsk);
2586 #endif /* CONFIG_BPF_SYSCALL */
2587 
2588 #ifdef CONFIG_INET
2589 void tcp_eat_skb(struct sock *sk, struct sk_buff *skb);
2590 #else
2591 static inline void tcp_eat_skb(struct sock *sk, struct sk_buff *skb)
2592 {
2593 }
2594 #endif
2595 
2596 int tcp_bpf_sendmsg_redir(struct sock *sk, bool ingress,
2597 			  struct sk_msg *msg, u32 bytes, int flags);
2598 #endif /* CONFIG_NET_SOCK_MSG */
2599 
2600 #if !defined(CONFIG_BPF_SYSCALL) || !defined(CONFIG_NET_SOCK_MSG)
2601 static inline void tcp_bpf_clone(const struct sock *sk, struct sock *newsk)
2602 {
2603 }
2604 #endif
2605 
2606 #ifdef CONFIG_CGROUP_BPF
2607 static inline void bpf_skops_init_skb(struct bpf_sock_ops_kern *skops,
2608 				      struct sk_buff *skb,
2609 				      unsigned int end_offset)
2610 {
2611 	skops->skb = skb;
2612 	skops->skb_data_end = skb->data + end_offset;
2613 }
2614 #else
2615 static inline void bpf_skops_init_skb(struct bpf_sock_ops_kern *skops,
2616 				      struct sk_buff *skb,
2617 				      unsigned int end_offset)
2618 {
2619 }
2620 #endif
2621 
2622 /* Call BPF_SOCK_OPS program that returns an int. If the return value
2623  * is < 0, then the BPF op failed (for example if the loaded BPF
2624  * program does not support the chosen operation or there is no BPF
2625  * program loaded).
2626  */
2627 #ifdef CONFIG_BPF
2628 static inline int tcp_call_bpf(struct sock *sk, int op, u32 nargs, u32 *args)
2629 {
2630 	struct bpf_sock_ops_kern sock_ops;
2631 	int ret;
2632 
2633 	memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
2634 	if (sk_fullsock(sk)) {
2635 		sock_ops.is_fullsock = 1;
2636 		sock_owned_by_me(sk);
2637 	}
2638 
2639 	sock_ops.sk = sk;
2640 	sock_ops.op = op;
2641 	if (nargs > 0)
2642 		memcpy(sock_ops.args, args, nargs * sizeof(*args));
2643 
2644 	ret = BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops);
2645 	if (ret == 0)
2646 		ret = sock_ops.reply;
2647 	else
2648 		ret = -1;
2649 	return ret;
2650 }
2651 
2652 static inline int tcp_call_bpf_2arg(struct sock *sk, int op, u32 arg1, u32 arg2)
2653 {
2654 	u32 args[2] = {arg1, arg2};
2655 
2656 	return tcp_call_bpf(sk, op, 2, args);
2657 }
2658 
2659 static inline int tcp_call_bpf_3arg(struct sock *sk, int op, u32 arg1, u32 arg2,
2660 				    u32 arg3)
2661 {
2662 	u32 args[3] = {arg1, arg2, arg3};
2663 
2664 	return tcp_call_bpf(sk, op, 3, args);
2665 }
2666 
2667 #else
2668 static inline int tcp_call_bpf(struct sock *sk, int op, u32 nargs, u32 *args)
2669 {
2670 	return -EPERM;
2671 }
2672 
2673 static inline int tcp_call_bpf_2arg(struct sock *sk, int op, u32 arg1, u32 arg2)
2674 {
2675 	return -EPERM;
2676 }
2677 
2678 static inline int tcp_call_bpf_3arg(struct sock *sk, int op, u32 arg1, u32 arg2,
2679 				    u32 arg3)
2680 {
2681 	return -EPERM;
2682 }
2683 
2684 #endif
2685 
2686 static inline u32 tcp_timeout_init(struct sock *sk)
2687 {
2688 	int timeout;
2689 
2690 	timeout = tcp_call_bpf(sk, BPF_SOCK_OPS_TIMEOUT_INIT, 0, NULL);
2691 
2692 	if (timeout <= 0)
2693 		timeout = TCP_TIMEOUT_INIT;
2694 	return min_t(int, timeout, TCP_RTO_MAX);
2695 }
2696 
2697 static inline u32 tcp_rwnd_init_bpf(struct sock *sk)
2698 {
2699 	int rwnd;
2700 
2701 	rwnd = tcp_call_bpf(sk, BPF_SOCK_OPS_RWND_INIT, 0, NULL);
2702 
2703 	if (rwnd < 0)
2704 		rwnd = 0;
2705 	return rwnd;
2706 }
2707 
2708 static inline bool tcp_bpf_ca_needs_ecn(struct sock *sk)
2709 {
2710 	return (tcp_call_bpf(sk, BPF_SOCK_OPS_NEEDS_ECN, 0, NULL) == 1);
2711 }
2712 
2713 static inline void tcp_bpf_rtt(struct sock *sk)
2714 {
2715 	if (BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), BPF_SOCK_OPS_RTT_CB_FLAG))
2716 		tcp_call_bpf(sk, BPF_SOCK_OPS_RTT_CB, 0, NULL);
2717 }
2718 
2719 #if IS_ENABLED(CONFIG_SMC)
2720 extern struct static_key_false tcp_have_smc;
2721 #endif
2722 
2723 #if IS_ENABLED(CONFIG_TLS_DEVICE)
2724 void clean_acked_data_enable(struct inet_connection_sock *icsk,
2725 			     void (*cad)(struct sock *sk, u32 ack_seq));
2726 void clean_acked_data_disable(struct inet_connection_sock *icsk);
2727 void clean_acked_data_flush(void);
2728 #endif
2729 
2730 DECLARE_STATIC_KEY_FALSE(tcp_tx_delay_enabled);
2731 static inline void tcp_add_tx_delay(struct sk_buff *skb,
2732 				    const struct tcp_sock *tp)
2733 {
2734 	if (static_branch_unlikely(&tcp_tx_delay_enabled))
2735 		skb->skb_mstamp_ns += (u64)tp->tcp_tx_delay * NSEC_PER_USEC;
2736 }
2737 
2738 /* Compute Earliest Departure Time for some control packets
2739  * like ACK or RST for TIME_WAIT or non ESTABLISHED sockets.
2740  */
2741 static inline u64 tcp_transmit_time(const struct sock *sk)
2742 {
2743 	if (static_branch_unlikely(&tcp_tx_delay_enabled)) {
2744 		u32 delay = (sk->sk_state == TCP_TIME_WAIT) ?
2745 			tcp_twsk(sk)->tw_tx_delay : tcp_sk(sk)->tcp_tx_delay;
2746 
2747 		return tcp_clock_ns() + (u64)delay * NSEC_PER_USEC;
2748 	}
2749 	return 0;
2750 }
2751 
2752 static inline int tcp_parse_auth_options(const struct tcphdr *th,
2753 		const u8 **md5_hash, const struct tcp_ao_hdr **aoh)
2754 {
2755 	const u8 *md5_tmp, *ao_tmp;
2756 	int ret;
2757 
2758 	ret = tcp_do_parse_auth_options(th, &md5_tmp, &ao_tmp);
2759 	if (ret)
2760 		return ret;
2761 
2762 	if (md5_hash)
2763 		*md5_hash = md5_tmp;
2764 
2765 	if (aoh) {
2766 		if (!ao_tmp)
2767 			*aoh = NULL;
2768 		else
2769 			*aoh = (struct tcp_ao_hdr *)(ao_tmp - 2);
2770 	}
2771 
2772 	return 0;
2773 }
2774 
2775 static inline bool tcp_ao_required(struct sock *sk, const void *saddr,
2776 				   int family, int l3index, bool stat_inc)
2777 {
2778 #ifdef CONFIG_TCP_AO
2779 	struct tcp_ao_info *ao_info;
2780 	struct tcp_ao_key *ao_key;
2781 
2782 	if (!static_branch_unlikely(&tcp_ao_needed.key))
2783 		return false;
2784 
2785 	ao_info = rcu_dereference_check(tcp_sk(sk)->ao_info,
2786 					lockdep_sock_is_held(sk));
2787 	if (!ao_info)
2788 		return false;
2789 
2790 	ao_key = tcp_ao_do_lookup(sk, l3index, saddr, family, -1, -1);
2791 	if (ao_info->ao_required || ao_key) {
2792 		if (stat_inc) {
2793 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAOREQUIRED);
2794 			atomic64_inc(&ao_info->counters.ao_required);
2795 		}
2796 		return true;
2797 	}
2798 #endif
2799 	return false;
2800 }
2801 
2802 /* Called with rcu_read_lock() */
2803 static inline enum skb_drop_reason
2804 tcp_inbound_hash(struct sock *sk, const struct request_sock *req,
2805 		 const struct sk_buff *skb,
2806 		 const void *saddr, const void *daddr,
2807 		 int family, int dif, int sdif)
2808 {
2809 	const struct tcphdr *th = tcp_hdr(skb);
2810 	const struct tcp_ao_hdr *aoh;
2811 	const __u8 *md5_location;
2812 	int l3index;
2813 
2814 	/* Invalid option or two times meet any of auth options */
2815 	if (tcp_parse_auth_options(th, &md5_location, &aoh)) {
2816 		tcp_hash_fail("TCP segment has incorrect auth options set",
2817 			      family, skb, "");
2818 		return SKB_DROP_REASON_TCP_AUTH_HDR;
2819 	}
2820 
2821 	if (req) {
2822 		if (tcp_rsk_used_ao(req) != !!aoh) {
2823 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAOBAD);
2824 			tcp_hash_fail("TCP connection can't start/end using TCP-AO",
2825 				      family, skb, "%s",
2826 				      !aoh ? "missing AO" : "AO signed");
2827 			return SKB_DROP_REASON_TCP_AOFAILURE;
2828 		}
2829 	}
2830 
2831 	/* sdif set, means packet ingressed via a device
2832 	 * in an L3 domain and dif is set to the l3mdev
2833 	 */
2834 	l3index = sdif ? dif : 0;
2835 
2836 	/* Fast path: unsigned segments */
2837 	if (likely(!md5_location && !aoh)) {
2838 		/* Drop if there's TCP-MD5 or TCP-AO key with any rcvid/sndid
2839 		 * for the remote peer. On TCP-AO established connection
2840 		 * the last key is impossible to remove, so there's
2841 		 * always at least one current_key.
2842 		 */
2843 		if (tcp_ao_required(sk, saddr, family, l3index, true)) {
2844 			tcp_hash_fail("AO hash is required, but not found",
2845 					family, skb, "L3 index %d", l3index);
2846 			return SKB_DROP_REASON_TCP_AONOTFOUND;
2847 		}
2848 		if (unlikely(tcp_md5_do_lookup(sk, l3index, saddr, family))) {
2849 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5NOTFOUND);
2850 			tcp_hash_fail("MD5 Hash not found",
2851 				      family, skb, "L3 index %d", l3index);
2852 			return SKB_DROP_REASON_TCP_MD5NOTFOUND;
2853 		}
2854 		return SKB_NOT_DROPPED_YET;
2855 	}
2856 
2857 	if (aoh)
2858 		return tcp_inbound_ao_hash(sk, skb, family, req, l3index, aoh);
2859 
2860 	return tcp_inbound_md5_hash(sk, skb, saddr, daddr, family,
2861 				    l3index, md5_location);
2862 }
2863 
2864 #endif	/* _TCP_H */
2865