1 /* SPDX-License-Identifier: GPL-2.0-or-later */ 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * Definitions for the TCP module. 8 * 9 * Version: @(#)tcp.h 1.0.5 05/23/93 10 * 11 * Authors: Ross Biro 12 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 13 */ 14 #ifndef _TCP_H 15 #define _TCP_H 16 17 #define FASTRETRANS_DEBUG 1 18 19 #include <linux/list.h> 20 #include <linux/tcp.h> 21 #include <linux/bug.h> 22 #include <linux/slab.h> 23 #include <linux/cache.h> 24 #include <linux/percpu.h> 25 #include <linux/skbuff.h> 26 #include <linux/kref.h> 27 #include <linux/ktime.h> 28 #include <linux/indirect_call_wrapper.h> 29 30 #include <net/inet_connection_sock.h> 31 #include <net/inet_timewait_sock.h> 32 #include <net/inet_hashtables.h> 33 #include <net/checksum.h> 34 #include <net/request_sock.h> 35 #include <net/sock_reuseport.h> 36 #include <net/sock.h> 37 #include <net/snmp.h> 38 #include <net/ip.h> 39 #include <net/tcp_states.h> 40 #include <net/tcp_ao.h> 41 #include <net/inet_ecn.h> 42 #include <net/dst.h> 43 #include <net/mptcp.h> 44 45 #include <linux/seq_file.h> 46 #include <linux/memcontrol.h> 47 #include <linux/bpf-cgroup.h> 48 #include <linux/siphash.h> 49 50 extern struct inet_hashinfo tcp_hashinfo; 51 52 DECLARE_PER_CPU(unsigned int, tcp_orphan_count); 53 int tcp_orphan_count_sum(void); 54 55 DECLARE_PER_CPU(u32, tcp_tw_isn); 56 57 void tcp_time_wait(struct sock *sk, int state, int timeo); 58 59 #define MAX_TCP_HEADER L1_CACHE_ALIGN(128 + MAX_HEADER) 60 #define MAX_TCP_OPTION_SPACE 40 61 #define TCP_MIN_SND_MSS 48 62 #define TCP_MIN_GSO_SIZE (TCP_MIN_SND_MSS - MAX_TCP_OPTION_SPACE) 63 64 /* 65 * Never offer a window over 32767 without using window scaling. Some 66 * poor stacks do signed 16bit maths! 67 */ 68 #define MAX_TCP_WINDOW 32767U 69 70 /* Minimal accepted MSS. It is (60+60+8) - (20+20). */ 71 #define TCP_MIN_MSS 88U 72 73 /* The initial MTU to use for probing */ 74 #define TCP_BASE_MSS 1024 75 76 /* probing interval, default to 10 minutes as per RFC4821 */ 77 #define TCP_PROBE_INTERVAL 600 78 79 /* Specify interval when tcp mtu probing will stop */ 80 #define TCP_PROBE_THRESHOLD 8 81 82 /* After receiving this amount of duplicate ACKs fast retransmit starts. */ 83 #define TCP_FASTRETRANS_THRESH 3 84 85 /* Maximal number of ACKs sent quickly to accelerate slow-start. */ 86 #define TCP_MAX_QUICKACKS 16U 87 88 /* Maximal number of window scale according to RFC1323 */ 89 #define TCP_MAX_WSCALE 14U 90 91 /* urg_data states */ 92 #define TCP_URG_VALID 0x0100 93 #define TCP_URG_NOTYET 0x0200 94 #define TCP_URG_READ 0x0400 95 96 #define TCP_RETR1 3 /* 97 * This is how many retries it does before it 98 * tries to figure out if the gateway is 99 * down. Minimal RFC value is 3; it corresponds 100 * to ~3sec-8min depending on RTO. 101 */ 102 103 #define TCP_RETR2 15 /* 104 * This should take at least 105 * 90 minutes to time out. 106 * RFC1122 says that the limit is 100 sec. 107 * 15 is ~13-30min depending on RTO. 108 */ 109 110 #define TCP_SYN_RETRIES 6 /* This is how many retries are done 111 * when active opening a connection. 112 * RFC1122 says the minimum retry MUST 113 * be at least 180secs. Nevertheless 114 * this value is corresponding to 115 * 63secs of retransmission with the 116 * current initial RTO. 117 */ 118 119 #define TCP_SYNACK_RETRIES 5 /* This is how may retries are done 120 * when passive opening a connection. 121 * This is corresponding to 31secs of 122 * retransmission with the current 123 * initial RTO. 124 */ 125 126 #define TCP_TIMEWAIT_LEN (60*HZ) /* how long to wait to destroy TIME-WAIT 127 * state, about 60 seconds */ 128 #define TCP_FIN_TIMEOUT TCP_TIMEWAIT_LEN 129 /* BSD style FIN_WAIT2 deadlock breaker. 130 * It used to be 3min, new value is 60sec, 131 * to combine FIN-WAIT-2 timeout with 132 * TIME-WAIT timer. 133 */ 134 #define TCP_FIN_TIMEOUT_MAX (120 * HZ) /* max TCP_LINGER2 value (two minutes) */ 135 136 #define TCP_DELACK_MAX ((unsigned)(HZ/5)) /* maximal time to delay before sending an ACK */ 137 static_assert((1 << ATO_BITS) > TCP_DELACK_MAX); 138 139 #if HZ >= 100 140 #define TCP_DELACK_MIN ((unsigned)(HZ/25)) /* minimal time to delay before sending an ACK */ 141 #define TCP_ATO_MIN ((unsigned)(HZ/25)) 142 #else 143 #define TCP_DELACK_MIN 4U 144 #define TCP_ATO_MIN 4U 145 #endif 146 #define TCP_RTO_MAX ((unsigned)(120*HZ)) 147 #define TCP_RTO_MIN ((unsigned)(HZ/5)) 148 #define TCP_TIMEOUT_MIN (2U) /* Min timeout for TCP timers in jiffies */ 149 150 #define TCP_TIMEOUT_MIN_US (2*USEC_PER_MSEC) /* Min TCP timeout in microsecs */ 151 152 #define TCP_TIMEOUT_INIT ((unsigned)(1*HZ)) /* RFC6298 2.1 initial RTO value */ 153 #define TCP_TIMEOUT_FALLBACK ((unsigned)(3*HZ)) /* RFC 1122 initial RTO value, now 154 * used as a fallback RTO for the 155 * initial data transmission if no 156 * valid RTT sample has been acquired, 157 * most likely due to retrans in 3WHS. 158 */ 159 160 #define TCP_RESOURCE_PROBE_INTERVAL ((unsigned)(HZ/2U)) /* Maximal interval between probes 161 * for local resources. 162 */ 163 #define TCP_KEEPALIVE_TIME (120*60*HZ) /* two hours */ 164 #define TCP_KEEPALIVE_PROBES 9 /* Max of 9 keepalive probes */ 165 #define TCP_KEEPALIVE_INTVL (75*HZ) 166 167 #define MAX_TCP_KEEPIDLE 32767 168 #define MAX_TCP_KEEPINTVL 32767 169 #define MAX_TCP_KEEPCNT 127 170 #define MAX_TCP_SYNCNT 127 171 172 /* Ensure that TCP PAWS checks are relaxed after ~2147 seconds 173 * to avoid overflows. This assumes a clock smaller than 1 Mhz. 174 * Default clock is 1 Khz, tcp_usec_ts uses 1 Mhz. 175 */ 176 #define TCP_PAWS_WRAP (INT_MAX / USEC_PER_SEC) 177 178 #define TCP_PAWS_MSL 60 /* Per-host timestamps are invalidated 179 * after this time. It should be equal 180 * (or greater than) TCP_TIMEWAIT_LEN 181 * to provide reliability equal to one 182 * provided by timewait state. 183 */ 184 #define TCP_PAWS_WINDOW 1 /* Replay window for per-host 185 * timestamps. It must be less than 186 * minimal timewait lifetime. 187 */ 188 /* 189 * TCP option 190 */ 191 192 #define TCPOPT_NOP 1 /* Padding */ 193 #define TCPOPT_EOL 0 /* End of options */ 194 #define TCPOPT_MSS 2 /* Segment size negotiating */ 195 #define TCPOPT_WINDOW 3 /* Window scaling */ 196 #define TCPOPT_SACK_PERM 4 /* SACK Permitted */ 197 #define TCPOPT_SACK 5 /* SACK Block */ 198 #define TCPOPT_TIMESTAMP 8 /* Better RTT estimations/PAWS */ 199 #define TCPOPT_MD5SIG 19 /* MD5 Signature (RFC2385) */ 200 #define TCPOPT_AO 29 /* Authentication Option (RFC5925) */ 201 #define TCPOPT_MPTCP 30 /* Multipath TCP (RFC6824) */ 202 #define TCPOPT_FASTOPEN 34 /* Fast open (RFC7413) */ 203 #define TCPOPT_EXP 254 /* Experimental */ 204 /* Magic number to be after the option value for sharing TCP 205 * experimental options. See draft-ietf-tcpm-experimental-options-00.txt 206 */ 207 #define TCPOPT_FASTOPEN_MAGIC 0xF989 208 #define TCPOPT_SMC_MAGIC 0xE2D4C3D9 209 210 /* 211 * TCP option lengths 212 */ 213 214 #define TCPOLEN_MSS 4 215 #define TCPOLEN_WINDOW 3 216 #define TCPOLEN_SACK_PERM 2 217 #define TCPOLEN_TIMESTAMP 10 218 #define TCPOLEN_MD5SIG 18 219 #define TCPOLEN_FASTOPEN_BASE 2 220 #define TCPOLEN_EXP_FASTOPEN_BASE 4 221 #define TCPOLEN_EXP_SMC_BASE 6 222 223 /* But this is what stacks really send out. */ 224 #define TCPOLEN_TSTAMP_ALIGNED 12 225 #define TCPOLEN_WSCALE_ALIGNED 4 226 #define TCPOLEN_SACKPERM_ALIGNED 4 227 #define TCPOLEN_SACK_BASE 2 228 #define TCPOLEN_SACK_BASE_ALIGNED 4 229 #define TCPOLEN_SACK_PERBLOCK 8 230 #define TCPOLEN_MD5SIG_ALIGNED 20 231 #define TCPOLEN_MSS_ALIGNED 4 232 #define TCPOLEN_EXP_SMC_BASE_ALIGNED 8 233 234 /* Flags in tp->nonagle */ 235 #define TCP_NAGLE_OFF 1 /* Nagle's algo is disabled */ 236 #define TCP_NAGLE_CORK 2 /* Socket is corked */ 237 #define TCP_NAGLE_PUSH 4 /* Cork is overridden for already queued data */ 238 239 /* TCP thin-stream limits */ 240 #define TCP_THIN_LINEAR_RETRIES 6 /* After 6 linear retries, do exp. backoff */ 241 242 /* TCP initial congestion window as per rfc6928 */ 243 #define TCP_INIT_CWND 10 244 245 /* Bit Flags for sysctl_tcp_fastopen */ 246 #define TFO_CLIENT_ENABLE 1 247 #define TFO_SERVER_ENABLE 2 248 #define TFO_CLIENT_NO_COOKIE 4 /* Data in SYN w/o cookie option */ 249 250 /* Accept SYN data w/o any cookie option */ 251 #define TFO_SERVER_COOKIE_NOT_REQD 0x200 252 253 /* Force enable TFO on all listeners, i.e., not requiring the 254 * TCP_FASTOPEN socket option. 255 */ 256 #define TFO_SERVER_WO_SOCKOPT1 0x400 257 258 259 /* sysctl variables for tcp */ 260 extern int sysctl_tcp_max_orphans; 261 extern long sysctl_tcp_mem[3]; 262 263 #define TCP_RACK_LOSS_DETECTION 0x1 /* Use RACK to detect losses */ 264 #define TCP_RACK_STATIC_REO_WND 0x2 /* Use static RACK reo wnd */ 265 #define TCP_RACK_NO_DUPTHRESH 0x4 /* Do not use DUPACK threshold in RACK */ 266 267 extern atomic_long_t tcp_memory_allocated; 268 DECLARE_PER_CPU(int, tcp_memory_per_cpu_fw_alloc); 269 270 extern struct percpu_counter tcp_sockets_allocated; 271 extern unsigned long tcp_memory_pressure; 272 273 /* optimized version of sk_under_memory_pressure() for TCP sockets */ 274 static inline bool tcp_under_memory_pressure(const struct sock *sk) 275 { 276 if (mem_cgroup_sockets_enabled && sk->sk_memcg && 277 mem_cgroup_under_socket_pressure(sk->sk_memcg)) 278 return true; 279 280 return READ_ONCE(tcp_memory_pressure); 281 } 282 /* 283 * The next routines deal with comparing 32 bit unsigned ints 284 * and worry about wraparound (automatic with unsigned arithmetic). 285 */ 286 287 static inline bool before(__u32 seq1, __u32 seq2) 288 { 289 return (__s32)(seq1-seq2) < 0; 290 } 291 #define after(seq2, seq1) before(seq1, seq2) 292 293 /* is s2<=s1<=s3 ? */ 294 static inline bool between(__u32 seq1, __u32 seq2, __u32 seq3) 295 { 296 return seq3 - seq2 >= seq1 - seq2; 297 } 298 299 static inline bool tcp_out_of_memory(struct sock *sk) 300 { 301 if (sk->sk_wmem_queued > SOCK_MIN_SNDBUF && 302 sk_memory_allocated(sk) > sk_prot_mem_limits(sk, 2)) 303 return true; 304 return false; 305 } 306 307 static inline void tcp_wmem_free_skb(struct sock *sk, struct sk_buff *skb) 308 { 309 sk_wmem_queued_add(sk, -skb->truesize); 310 if (!skb_zcopy_pure(skb)) 311 sk_mem_uncharge(sk, skb->truesize); 312 else 313 sk_mem_uncharge(sk, SKB_TRUESIZE(skb_end_offset(skb))); 314 __kfree_skb(skb); 315 } 316 317 void sk_forced_mem_schedule(struct sock *sk, int size); 318 319 bool tcp_check_oom(struct sock *sk, int shift); 320 321 322 extern struct proto tcp_prot; 323 324 #define TCP_INC_STATS(net, field) SNMP_INC_STATS((net)->mib.tcp_statistics, field) 325 #define __TCP_INC_STATS(net, field) __SNMP_INC_STATS((net)->mib.tcp_statistics, field) 326 #define TCP_DEC_STATS(net, field) SNMP_DEC_STATS((net)->mib.tcp_statistics, field) 327 #define TCP_ADD_STATS(net, field, val) SNMP_ADD_STATS((net)->mib.tcp_statistics, field, val) 328 329 void tcp_tasklet_init(void); 330 331 int tcp_v4_err(struct sk_buff *skb, u32); 332 333 void tcp_shutdown(struct sock *sk, int how); 334 335 int tcp_v4_early_demux(struct sk_buff *skb); 336 int tcp_v4_rcv(struct sk_buff *skb); 337 338 void tcp_remove_empty_skb(struct sock *sk); 339 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size); 340 int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size); 341 int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg, int *copied, 342 size_t size, struct ubuf_info *uarg); 343 void tcp_splice_eof(struct socket *sock); 344 int tcp_send_mss(struct sock *sk, int *size_goal, int flags); 345 int tcp_wmem_schedule(struct sock *sk, int copy); 346 void tcp_push(struct sock *sk, int flags, int mss_now, int nonagle, 347 int size_goal); 348 void tcp_release_cb(struct sock *sk); 349 void tcp_wfree(struct sk_buff *skb); 350 void tcp_write_timer_handler(struct sock *sk); 351 void tcp_delack_timer_handler(struct sock *sk); 352 int tcp_ioctl(struct sock *sk, int cmd, int *karg); 353 enum skb_drop_reason tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb); 354 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb); 355 void tcp_rcv_space_adjust(struct sock *sk); 356 int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp); 357 void tcp_twsk_destructor(struct sock *sk); 358 void tcp_twsk_purge(struct list_head *net_exit_list); 359 ssize_t tcp_splice_read(struct socket *sk, loff_t *ppos, 360 struct pipe_inode_info *pipe, size_t len, 361 unsigned int flags); 362 struct sk_buff *tcp_stream_alloc_skb(struct sock *sk, gfp_t gfp, 363 bool force_schedule); 364 365 static inline void tcp_dec_quickack_mode(struct sock *sk) 366 { 367 struct inet_connection_sock *icsk = inet_csk(sk); 368 369 if (icsk->icsk_ack.quick) { 370 /* How many ACKs S/ACKing new data have we sent? */ 371 const unsigned int pkts = inet_csk_ack_scheduled(sk) ? 1 : 0; 372 373 if (pkts >= icsk->icsk_ack.quick) { 374 icsk->icsk_ack.quick = 0; 375 /* Leaving quickack mode we deflate ATO. */ 376 icsk->icsk_ack.ato = TCP_ATO_MIN; 377 } else 378 icsk->icsk_ack.quick -= pkts; 379 } 380 } 381 382 #define TCP_ECN_OK 1 383 #define TCP_ECN_QUEUE_CWR 2 384 #define TCP_ECN_DEMAND_CWR 4 385 #define TCP_ECN_SEEN 8 386 387 enum tcp_tw_status { 388 TCP_TW_SUCCESS = 0, 389 TCP_TW_RST = 1, 390 TCP_TW_ACK = 2, 391 TCP_TW_SYN = 3 392 }; 393 394 395 enum tcp_tw_status tcp_timewait_state_process(struct inet_timewait_sock *tw, 396 struct sk_buff *skb, 397 const struct tcphdr *th, 398 u32 *tw_isn); 399 struct sock *tcp_check_req(struct sock *sk, struct sk_buff *skb, 400 struct request_sock *req, bool fastopen, 401 bool *lost_race); 402 enum skb_drop_reason tcp_child_process(struct sock *parent, struct sock *child, 403 struct sk_buff *skb); 404 void tcp_enter_loss(struct sock *sk); 405 void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int newly_lost, int flag); 406 void tcp_clear_retrans(struct tcp_sock *tp); 407 void tcp_update_metrics(struct sock *sk); 408 void tcp_init_metrics(struct sock *sk); 409 void tcp_metrics_init(void); 410 bool tcp_peer_is_proven(struct request_sock *req, struct dst_entry *dst); 411 void __tcp_close(struct sock *sk, long timeout); 412 void tcp_close(struct sock *sk, long timeout); 413 void tcp_init_sock(struct sock *sk); 414 void tcp_init_transfer(struct sock *sk, int bpf_op, struct sk_buff *skb); 415 __poll_t tcp_poll(struct file *file, struct socket *sock, 416 struct poll_table_struct *wait); 417 int do_tcp_getsockopt(struct sock *sk, int level, 418 int optname, sockptr_t optval, sockptr_t optlen); 419 int tcp_getsockopt(struct sock *sk, int level, int optname, 420 char __user *optval, int __user *optlen); 421 bool tcp_bpf_bypass_getsockopt(int level, int optname); 422 int do_tcp_setsockopt(struct sock *sk, int level, int optname, 423 sockptr_t optval, unsigned int optlen); 424 int tcp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval, 425 unsigned int optlen); 426 void tcp_set_keepalive(struct sock *sk, int val); 427 void tcp_syn_ack_timeout(const struct request_sock *req); 428 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, 429 int flags, int *addr_len); 430 int tcp_set_rcvlowat(struct sock *sk, int val); 431 int tcp_set_window_clamp(struct sock *sk, int val); 432 void tcp_update_recv_tstamps(struct sk_buff *skb, 433 struct scm_timestamping_internal *tss); 434 void tcp_recv_timestamp(struct msghdr *msg, const struct sock *sk, 435 struct scm_timestamping_internal *tss); 436 void tcp_data_ready(struct sock *sk); 437 #ifdef CONFIG_MMU 438 int tcp_mmap(struct file *file, struct socket *sock, 439 struct vm_area_struct *vma); 440 #endif 441 void tcp_parse_options(const struct net *net, const struct sk_buff *skb, 442 struct tcp_options_received *opt_rx, 443 int estab, struct tcp_fastopen_cookie *foc); 444 445 /* 446 * BPF SKB-less helpers 447 */ 448 u16 tcp_v4_get_syncookie(struct sock *sk, struct iphdr *iph, 449 struct tcphdr *th, u32 *cookie); 450 u16 tcp_v6_get_syncookie(struct sock *sk, struct ipv6hdr *iph, 451 struct tcphdr *th, u32 *cookie); 452 u16 tcp_parse_mss_option(const struct tcphdr *th, u16 user_mss); 453 u16 tcp_get_syncookie_mss(struct request_sock_ops *rsk_ops, 454 const struct tcp_request_sock_ops *af_ops, 455 struct sock *sk, struct tcphdr *th); 456 /* 457 * TCP v4 functions exported for the inet6 API 458 */ 459 460 void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb); 461 void tcp_v4_mtu_reduced(struct sock *sk); 462 void tcp_req_err(struct sock *sk, u32 seq, bool abort); 463 void tcp_ld_RTO_revert(struct sock *sk, u32 seq); 464 int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb); 465 struct sock *tcp_create_openreq_child(const struct sock *sk, 466 struct request_sock *req, 467 struct sk_buff *skb); 468 void tcp_ca_openreq_child(struct sock *sk, const struct dst_entry *dst); 469 struct sock *tcp_v4_syn_recv_sock(const struct sock *sk, struct sk_buff *skb, 470 struct request_sock *req, 471 struct dst_entry *dst, 472 struct request_sock *req_unhash, 473 bool *own_req); 474 int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb); 475 int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len); 476 int tcp_connect(struct sock *sk); 477 enum tcp_synack_type { 478 TCP_SYNACK_NORMAL, 479 TCP_SYNACK_FASTOPEN, 480 TCP_SYNACK_COOKIE, 481 }; 482 struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst, 483 struct request_sock *req, 484 struct tcp_fastopen_cookie *foc, 485 enum tcp_synack_type synack_type, 486 struct sk_buff *syn_skb); 487 int tcp_disconnect(struct sock *sk, int flags); 488 489 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb); 490 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size); 491 void inet_sk_rx_dst_set(struct sock *sk, const struct sk_buff *skb); 492 493 /* From syncookies.c */ 494 struct sock *tcp_get_cookie_sock(struct sock *sk, struct sk_buff *skb, 495 struct request_sock *req, 496 struct dst_entry *dst); 497 int __cookie_v4_check(const struct iphdr *iph, const struct tcphdr *th); 498 struct sock *cookie_v4_check(struct sock *sk, struct sk_buff *skb); 499 struct request_sock *cookie_tcp_reqsk_alloc(const struct request_sock_ops *ops, 500 struct sock *sk, struct sk_buff *skb, 501 struct tcp_options_received *tcp_opt, 502 int mss, u32 tsoff); 503 504 #if IS_ENABLED(CONFIG_BPF) 505 struct bpf_tcp_req_attrs { 506 u32 rcv_tsval; 507 u32 rcv_tsecr; 508 u16 mss; 509 u8 rcv_wscale; 510 u8 snd_wscale; 511 u8 ecn_ok; 512 u8 wscale_ok; 513 u8 sack_ok; 514 u8 tstamp_ok; 515 u8 usec_ts_ok; 516 u8 reserved[3]; 517 }; 518 #endif 519 520 #ifdef CONFIG_SYN_COOKIES 521 522 /* Syncookies use a monotonic timer which increments every 60 seconds. 523 * This counter is used both as a hash input and partially encoded into 524 * the cookie value. A cookie is only validated further if the delta 525 * between the current counter value and the encoded one is less than this, 526 * i.e. a sent cookie is valid only at most for 2*60 seconds (or less if 527 * the counter advances immediately after a cookie is generated). 528 */ 529 #define MAX_SYNCOOKIE_AGE 2 530 #define TCP_SYNCOOKIE_PERIOD (60 * HZ) 531 #define TCP_SYNCOOKIE_VALID (MAX_SYNCOOKIE_AGE * TCP_SYNCOOKIE_PERIOD) 532 533 /* syncookies: remember time of last synqueue overflow 534 * But do not dirty this field too often (once per second is enough) 535 * It is racy as we do not hold a lock, but race is very minor. 536 */ 537 static inline void tcp_synq_overflow(const struct sock *sk) 538 { 539 unsigned int last_overflow; 540 unsigned int now = jiffies; 541 542 if (sk->sk_reuseport) { 543 struct sock_reuseport *reuse; 544 545 reuse = rcu_dereference(sk->sk_reuseport_cb); 546 if (likely(reuse)) { 547 last_overflow = READ_ONCE(reuse->synq_overflow_ts); 548 if (!time_between32(now, last_overflow, 549 last_overflow + HZ)) 550 WRITE_ONCE(reuse->synq_overflow_ts, now); 551 return; 552 } 553 } 554 555 last_overflow = READ_ONCE(tcp_sk(sk)->rx_opt.ts_recent_stamp); 556 if (!time_between32(now, last_overflow, last_overflow + HZ)) 557 WRITE_ONCE(tcp_sk_rw(sk)->rx_opt.ts_recent_stamp, now); 558 } 559 560 /* syncookies: no recent synqueue overflow on this listening socket? */ 561 static inline bool tcp_synq_no_recent_overflow(const struct sock *sk) 562 { 563 unsigned int last_overflow; 564 unsigned int now = jiffies; 565 566 if (sk->sk_reuseport) { 567 struct sock_reuseport *reuse; 568 569 reuse = rcu_dereference(sk->sk_reuseport_cb); 570 if (likely(reuse)) { 571 last_overflow = READ_ONCE(reuse->synq_overflow_ts); 572 return !time_between32(now, last_overflow - HZ, 573 last_overflow + 574 TCP_SYNCOOKIE_VALID); 575 } 576 } 577 578 last_overflow = READ_ONCE(tcp_sk(sk)->rx_opt.ts_recent_stamp); 579 580 /* If last_overflow <= jiffies <= last_overflow + TCP_SYNCOOKIE_VALID, 581 * then we're under synflood. However, we have to use 582 * 'last_overflow - HZ' as lower bound. That's because a concurrent 583 * tcp_synq_overflow() could update .ts_recent_stamp after we read 584 * jiffies but before we store .ts_recent_stamp into last_overflow, 585 * which could lead to rejecting a valid syncookie. 586 */ 587 return !time_between32(now, last_overflow - HZ, 588 last_overflow + TCP_SYNCOOKIE_VALID); 589 } 590 591 static inline u32 tcp_cookie_time(void) 592 { 593 u64 val = get_jiffies_64(); 594 595 do_div(val, TCP_SYNCOOKIE_PERIOD); 596 return val; 597 } 598 599 /* Convert one nsec 64bit timestamp to ts (ms or usec resolution) */ 600 static inline u64 tcp_ns_to_ts(bool usec_ts, u64 val) 601 { 602 if (usec_ts) 603 return div_u64(val, NSEC_PER_USEC); 604 605 return div_u64(val, NSEC_PER_MSEC); 606 } 607 608 u32 __cookie_v4_init_sequence(const struct iphdr *iph, const struct tcphdr *th, 609 u16 *mssp); 610 __u32 cookie_v4_init_sequence(const struct sk_buff *skb, __u16 *mss); 611 u64 cookie_init_timestamp(struct request_sock *req, u64 now); 612 bool cookie_timestamp_decode(const struct net *net, 613 struct tcp_options_received *opt); 614 615 static inline bool cookie_ecn_ok(const struct net *net, const struct dst_entry *dst) 616 { 617 return READ_ONCE(net->ipv4.sysctl_tcp_ecn) || 618 dst_feature(dst, RTAX_FEATURE_ECN); 619 } 620 621 #if IS_ENABLED(CONFIG_BPF) 622 static inline bool cookie_bpf_ok(struct sk_buff *skb) 623 { 624 return skb->sk; 625 } 626 627 struct request_sock *cookie_bpf_check(struct sock *sk, struct sk_buff *skb); 628 #else 629 static inline bool cookie_bpf_ok(struct sk_buff *skb) 630 { 631 return false; 632 } 633 634 static inline struct request_sock *cookie_bpf_check(struct net *net, struct sock *sk, 635 struct sk_buff *skb) 636 { 637 return NULL; 638 } 639 #endif 640 641 /* From net/ipv6/syncookies.c */ 642 int __cookie_v6_check(const struct ipv6hdr *iph, const struct tcphdr *th); 643 struct sock *cookie_v6_check(struct sock *sk, struct sk_buff *skb); 644 645 u32 __cookie_v6_init_sequence(const struct ipv6hdr *iph, 646 const struct tcphdr *th, u16 *mssp); 647 __u32 cookie_v6_init_sequence(const struct sk_buff *skb, __u16 *mss); 648 #endif 649 /* tcp_output.c */ 650 651 void tcp_skb_entail(struct sock *sk, struct sk_buff *skb); 652 void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb); 653 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss, 654 int nonagle); 655 int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs); 656 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs); 657 void tcp_retransmit_timer(struct sock *sk); 658 void tcp_xmit_retransmit_queue(struct sock *); 659 void tcp_simple_retransmit(struct sock *); 660 void tcp_enter_recovery(struct sock *sk, bool ece_ack); 661 int tcp_trim_head(struct sock *, struct sk_buff *, u32); 662 enum tcp_queue { 663 TCP_FRAG_IN_WRITE_QUEUE, 664 TCP_FRAG_IN_RTX_QUEUE, 665 }; 666 int tcp_fragment(struct sock *sk, enum tcp_queue tcp_queue, 667 struct sk_buff *skb, u32 len, 668 unsigned int mss_now, gfp_t gfp); 669 670 void tcp_send_probe0(struct sock *); 671 int tcp_write_wakeup(struct sock *, int mib); 672 void tcp_send_fin(struct sock *sk); 673 void tcp_send_active_reset(struct sock *sk, gfp_t priority); 674 int tcp_send_synack(struct sock *); 675 void tcp_push_one(struct sock *, unsigned int mss_now); 676 void __tcp_send_ack(struct sock *sk, u32 rcv_nxt); 677 void tcp_send_ack(struct sock *sk); 678 void tcp_send_delayed_ack(struct sock *sk); 679 void tcp_send_loss_probe(struct sock *sk); 680 bool tcp_schedule_loss_probe(struct sock *sk, bool advancing_rto); 681 void tcp_skb_collapse_tstamp(struct sk_buff *skb, 682 const struct sk_buff *next_skb); 683 684 /* tcp_input.c */ 685 void tcp_rearm_rto(struct sock *sk); 686 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req); 687 void tcp_reset(struct sock *sk, struct sk_buff *skb); 688 void tcp_fin(struct sock *sk); 689 void tcp_check_space(struct sock *sk); 690 void tcp_sack_compress_send_ack(struct sock *sk); 691 692 /* tcp_timer.c */ 693 void tcp_init_xmit_timers(struct sock *); 694 static inline void tcp_clear_xmit_timers(struct sock *sk) 695 { 696 if (hrtimer_try_to_cancel(&tcp_sk(sk)->pacing_timer) == 1) 697 __sock_put(sk); 698 699 if (hrtimer_try_to_cancel(&tcp_sk(sk)->compressed_ack_timer) == 1) 700 __sock_put(sk); 701 702 inet_csk_clear_xmit_timers(sk); 703 } 704 705 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu); 706 unsigned int tcp_current_mss(struct sock *sk); 707 u32 tcp_clamp_probe0_to_user_timeout(const struct sock *sk, u32 when); 708 709 /* Bound MSS / TSO packet size with the half of the window */ 710 static inline int tcp_bound_to_half_wnd(struct tcp_sock *tp, int pktsize) 711 { 712 int cutoff; 713 714 /* When peer uses tiny windows, there is no use in packetizing 715 * to sub-MSS pieces for the sake of SWS or making sure there 716 * are enough packets in the pipe for fast recovery. 717 * 718 * On the other hand, for extremely large MSS devices, handling 719 * smaller than MSS windows in this way does make sense. 720 */ 721 if (tp->max_window > TCP_MSS_DEFAULT) 722 cutoff = (tp->max_window >> 1); 723 else 724 cutoff = tp->max_window; 725 726 if (cutoff && pktsize > cutoff) 727 return max_t(int, cutoff, 68U - tp->tcp_header_len); 728 else 729 return pktsize; 730 } 731 732 /* tcp.c */ 733 void tcp_get_info(struct sock *, struct tcp_info *); 734 735 /* Read 'sendfile()'-style from a TCP socket */ 736 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc, 737 sk_read_actor_t recv_actor); 738 int tcp_read_skb(struct sock *sk, skb_read_actor_t recv_actor); 739 struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off); 740 void tcp_read_done(struct sock *sk, size_t len); 741 742 void tcp_initialize_rcv_mss(struct sock *sk); 743 744 int tcp_mtu_to_mss(struct sock *sk, int pmtu); 745 int tcp_mss_to_mtu(struct sock *sk, int mss); 746 void tcp_mtup_init(struct sock *sk); 747 748 static inline void tcp_bound_rto(struct sock *sk) 749 { 750 if (inet_csk(sk)->icsk_rto > TCP_RTO_MAX) 751 inet_csk(sk)->icsk_rto = TCP_RTO_MAX; 752 } 753 754 static inline u32 __tcp_set_rto(const struct tcp_sock *tp) 755 { 756 return usecs_to_jiffies((tp->srtt_us >> 3) + tp->rttvar_us); 757 } 758 759 static inline void __tcp_fast_path_on(struct tcp_sock *tp, u32 snd_wnd) 760 { 761 /* mptcp hooks are only on the slow path */ 762 if (sk_is_mptcp((struct sock *)tp)) 763 return; 764 765 tp->pred_flags = htonl((tp->tcp_header_len << 26) | 766 ntohl(TCP_FLAG_ACK) | 767 snd_wnd); 768 } 769 770 static inline void tcp_fast_path_on(struct tcp_sock *tp) 771 { 772 __tcp_fast_path_on(tp, tp->snd_wnd >> tp->rx_opt.snd_wscale); 773 } 774 775 static inline void tcp_fast_path_check(struct sock *sk) 776 { 777 struct tcp_sock *tp = tcp_sk(sk); 778 779 if (RB_EMPTY_ROOT(&tp->out_of_order_queue) && 780 tp->rcv_wnd && 781 atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf && 782 !tp->urg_data) 783 tcp_fast_path_on(tp); 784 } 785 786 u32 tcp_delack_max(const struct sock *sk); 787 788 /* Compute the actual rto_min value */ 789 static inline u32 tcp_rto_min(const struct sock *sk) 790 { 791 const struct dst_entry *dst = __sk_dst_get(sk); 792 u32 rto_min = inet_csk(sk)->icsk_rto_min; 793 794 if (dst && dst_metric_locked(dst, RTAX_RTO_MIN)) 795 rto_min = dst_metric_rtt(dst, RTAX_RTO_MIN); 796 return rto_min; 797 } 798 799 static inline u32 tcp_rto_min_us(const struct sock *sk) 800 { 801 return jiffies_to_usecs(tcp_rto_min(sk)); 802 } 803 804 static inline bool tcp_ca_dst_locked(const struct dst_entry *dst) 805 { 806 return dst_metric_locked(dst, RTAX_CC_ALGO); 807 } 808 809 /* Minimum RTT in usec. ~0 means not available. */ 810 static inline u32 tcp_min_rtt(const struct tcp_sock *tp) 811 { 812 return minmax_get(&tp->rtt_min); 813 } 814 815 /* Compute the actual receive window we are currently advertising. 816 * Rcv_nxt can be after the window if our peer push more data 817 * than the offered window. 818 */ 819 static inline u32 tcp_receive_window(const struct tcp_sock *tp) 820 { 821 s32 win = tp->rcv_wup + tp->rcv_wnd - tp->rcv_nxt; 822 823 if (win < 0) 824 win = 0; 825 return (u32) win; 826 } 827 828 /* Choose a new window, without checks for shrinking, and without 829 * scaling applied to the result. The caller does these things 830 * if necessary. This is a "raw" window selection. 831 */ 832 u32 __tcp_select_window(struct sock *sk); 833 834 void tcp_send_window_probe(struct sock *sk); 835 836 /* TCP uses 32bit jiffies to save some space. 837 * Note that this is different from tcp_time_stamp, which 838 * historically has been the same until linux-4.13. 839 */ 840 #define tcp_jiffies32 ((u32)jiffies) 841 842 /* 843 * Deliver a 32bit value for TCP timestamp option (RFC 7323) 844 * It is no longer tied to jiffies, but to 1 ms clock. 845 * Note: double check if you want to use tcp_jiffies32 instead of this. 846 */ 847 #define TCP_TS_HZ 1000 848 849 static inline u64 tcp_clock_ns(void) 850 { 851 return ktime_get_ns(); 852 } 853 854 static inline u64 tcp_clock_us(void) 855 { 856 return div_u64(tcp_clock_ns(), NSEC_PER_USEC); 857 } 858 859 static inline u64 tcp_clock_ms(void) 860 { 861 return div_u64(tcp_clock_ns(), NSEC_PER_MSEC); 862 } 863 864 /* TCP Timestamp included in TS option (RFC 1323) can either use ms 865 * or usec resolution. Each socket carries a flag to select one or other 866 * resolution, as the route attribute could change anytime. 867 * Each flow must stick to initial resolution. 868 */ 869 static inline u32 tcp_clock_ts(bool usec_ts) 870 { 871 return usec_ts ? tcp_clock_us() : tcp_clock_ms(); 872 } 873 874 static inline u32 tcp_time_stamp_ms(const struct tcp_sock *tp) 875 { 876 return div_u64(tp->tcp_mstamp, USEC_PER_MSEC); 877 } 878 879 static inline u32 tcp_time_stamp_ts(const struct tcp_sock *tp) 880 { 881 if (tp->tcp_usec_ts) 882 return tp->tcp_mstamp; 883 return tcp_time_stamp_ms(tp); 884 } 885 886 void tcp_mstamp_refresh(struct tcp_sock *tp); 887 888 static inline u32 tcp_stamp_us_delta(u64 t1, u64 t0) 889 { 890 return max_t(s64, t1 - t0, 0); 891 } 892 893 /* provide the departure time in us unit */ 894 static inline u64 tcp_skb_timestamp_us(const struct sk_buff *skb) 895 { 896 return div_u64(skb->skb_mstamp_ns, NSEC_PER_USEC); 897 } 898 899 /* Provide skb TSval in usec or ms unit */ 900 static inline u32 tcp_skb_timestamp_ts(bool usec_ts, const struct sk_buff *skb) 901 { 902 if (usec_ts) 903 return tcp_skb_timestamp_us(skb); 904 905 return div_u64(skb->skb_mstamp_ns, NSEC_PER_MSEC); 906 } 907 908 static inline u32 tcp_tw_tsval(const struct tcp_timewait_sock *tcptw) 909 { 910 return tcp_clock_ts(tcptw->tw_sk.tw_usec_ts) + tcptw->tw_ts_offset; 911 } 912 913 static inline u32 tcp_rsk_tsval(const struct tcp_request_sock *treq) 914 { 915 return tcp_clock_ts(treq->req_usec_ts) + treq->ts_off; 916 } 917 918 #define tcp_flag_byte(th) (((u_int8_t *)th)[13]) 919 920 #define TCPHDR_FIN 0x01 921 #define TCPHDR_SYN 0x02 922 #define TCPHDR_RST 0x04 923 #define TCPHDR_PSH 0x08 924 #define TCPHDR_ACK 0x10 925 #define TCPHDR_URG 0x20 926 #define TCPHDR_ECE 0x40 927 #define TCPHDR_CWR 0x80 928 929 #define TCPHDR_SYN_ECN (TCPHDR_SYN | TCPHDR_ECE | TCPHDR_CWR) 930 931 /* State flags for sacked in struct tcp_skb_cb */ 932 enum tcp_skb_cb_sacked_flags { 933 TCPCB_SACKED_ACKED = (1 << 0), /* SKB ACK'd by a SACK block */ 934 TCPCB_SACKED_RETRANS = (1 << 1), /* SKB retransmitted */ 935 TCPCB_LOST = (1 << 2), /* SKB is lost */ 936 TCPCB_TAGBITS = (TCPCB_SACKED_ACKED | TCPCB_SACKED_RETRANS | 937 TCPCB_LOST), /* All tag bits */ 938 TCPCB_REPAIRED = (1 << 4), /* SKB repaired (no skb_mstamp_ns) */ 939 TCPCB_EVER_RETRANS = (1 << 7), /* Ever retransmitted frame */ 940 TCPCB_RETRANS = (TCPCB_SACKED_RETRANS | TCPCB_EVER_RETRANS | 941 TCPCB_REPAIRED), 942 }; 943 944 /* This is what the send packet queuing engine uses to pass 945 * TCP per-packet control information to the transmission code. 946 * We also store the host-order sequence numbers in here too. 947 * This is 44 bytes if IPV6 is enabled. 948 * If this grows please adjust skbuff.h:skbuff->cb[xxx] size appropriately. 949 */ 950 struct tcp_skb_cb { 951 __u32 seq; /* Starting sequence number */ 952 __u32 end_seq; /* SEQ + FIN + SYN + datalen */ 953 union { 954 /* Note : 955 * tcp_gso_segs/size are used in write queue only, 956 * cf tcp_skb_pcount()/tcp_skb_mss() 957 */ 958 struct { 959 u16 tcp_gso_segs; 960 u16 tcp_gso_size; 961 }; 962 }; 963 __u8 tcp_flags; /* TCP header flags. (tcp[13]) */ 964 965 __u8 sacked; /* State flags for SACK. */ 966 __u8 ip_dsfield; /* IPv4 tos or IPv6 dsfield */ 967 __u8 txstamp_ack:1, /* Record TX timestamp for ack? */ 968 eor:1, /* Is skb MSG_EOR marked? */ 969 has_rxtstamp:1, /* SKB has a RX timestamp */ 970 unused:5; 971 __u32 ack_seq; /* Sequence number ACK'd */ 972 union { 973 struct { 974 #define TCPCB_DELIVERED_CE_MASK ((1U<<20) - 1) 975 /* There is space for up to 24 bytes */ 976 __u32 is_app_limited:1, /* cwnd not fully used? */ 977 delivered_ce:20, 978 unused:11; 979 /* pkts S/ACKed so far upon tx of skb, incl retrans: */ 980 __u32 delivered; 981 /* start of send pipeline phase */ 982 u64 first_tx_mstamp; 983 /* when we reached the "delivered" count */ 984 u64 delivered_mstamp; 985 } tx; /* only used for outgoing skbs */ 986 union { 987 struct inet_skb_parm h4; 988 #if IS_ENABLED(CONFIG_IPV6) 989 struct inet6_skb_parm h6; 990 #endif 991 } header; /* For incoming skbs */ 992 }; 993 }; 994 995 #define TCP_SKB_CB(__skb) ((struct tcp_skb_cb *)&((__skb)->cb[0])) 996 997 extern const struct inet_connection_sock_af_ops ipv4_specific; 998 999 #if IS_ENABLED(CONFIG_IPV6) 1000 /* This is the variant of inet6_iif() that must be used by TCP, 1001 * as TCP moves IP6CB into a different location in skb->cb[] 1002 */ 1003 static inline int tcp_v6_iif(const struct sk_buff *skb) 1004 { 1005 return TCP_SKB_CB(skb)->header.h6.iif; 1006 } 1007 1008 static inline int tcp_v6_iif_l3_slave(const struct sk_buff *skb) 1009 { 1010 bool l3_slave = ipv6_l3mdev_skb(TCP_SKB_CB(skb)->header.h6.flags); 1011 1012 return l3_slave ? skb->skb_iif : TCP_SKB_CB(skb)->header.h6.iif; 1013 } 1014 1015 /* TCP_SKB_CB reference means this can not be used from early demux */ 1016 static inline int tcp_v6_sdif(const struct sk_buff *skb) 1017 { 1018 #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV) 1019 if (skb && ipv6_l3mdev_skb(TCP_SKB_CB(skb)->header.h6.flags)) 1020 return TCP_SKB_CB(skb)->header.h6.iif; 1021 #endif 1022 return 0; 1023 } 1024 1025 extern const struct inet_connection_sock_af_ops ipv6_specific; 1026 1027 INDIRECT_CALLABLE_DECLARE(void tcp_v6_send_check(struct sock *sk, struct sk_buff *skb)); 1028 INDIRECT_CALLABLE_DECLARE(int tcp_v6_rcv(struct sk_buff *skb)); 1029 void tcp_v6_early_demux(struct sk_buff *skb); 1030 1031 #endif 1032 1033 /* TCP_SKB_CB reference means this can not be used from early demux */ 1034 static inline int tcp_v4_sdif(struct sk_buff *skb) 1035 { 1036 #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV) 1037 if (skb && ipv4_l3mdev_skb(TCP_SKB_CB(skb)->header.h4.flags)) 1038 return TCP_SKB_CB(skb)->header.h4.iif; 1039 #endif 1040 return 0; 1041 } 1042 1043 /* Due to TSO, an SKB can be composed of multiple actual 1044 * packets. To keep these tracked properly, we use this. 1045 */ 1046 static inline int tcp_skb_pcount(const struct sk_buff *skb) 1047 { 1048 return TCP_SKB_CB(skb)->tcp_gso_segs; 1049 } 1050 1051 static inline void tcp_skb_pcount_set(struct sk_buff *skb, int segs) 1052 { 1053 TCP_SKB_CB(skb)->tcp_gso_segs = segs; 1054 } 1055 1056 static inline void tcp_skb_pcount_add(struct sk_buff *skb, int segs) 1057 { 1058 TCP_SKB_CB(skb)->tcp_gso_segs += segs; 1059 } 1060 1061 /* This is valid iff skb is in write queue and tcp_skb_pcount() > 1. */ 1062 static inline int tcp_skb_mss(const struct sk_buff *skb) 1063 { 1064 return TCP_SKB_CB(skb)->tcp_gso_size; 1065 } 1066 1067 static inline bool tcp_skb_can_collapse_to(const struct sk_buff *skb) 1068 { 1069 return likely(!TCP_SKB_CB(skb)->eor); 1070 } 1071 1072 static inline bool tcp_skb_can_collapse(const struct sk_buff *to, 1073 const struct sk_buff *from) 1074 { 1075 return likely(tcp_skb_can_collapse_to(to) && 1076 mptcp_skb_can_collapse(to, from) && 1077 skb_pure_zcopy_same(to, from)); 1078 } 1079 1080 /* Events passed to congestion control interface */ 1081 enum tcp_ca_event { 1082 CA_EVENT_TX_START, /* first transmit when no packets in flight */ 1083 CA_EVENT_CWND_RESTART, /* congestion window restart */ 1084 CA_EVENT_COMPLETE_CWR, /* end of congestion recovery */ 1085 CA_EVENT_LOSS, /* loss timeout */ 1086 CA_EVENT_ECN_NO_CE, /* ECT set, but not CE marked */ 1087 CA_EVENT_ECN_IS_CE, /* received CE marked IP packet */ 1088 }; 1089 1090 /* Information about inbound ACK, passed to cong_ops->in_ack_event() */ 1091 enum tcp_ca_ack_event_flags { 1092 CA_ACK_SLOWPATH = (1 << 0), /* In slow path processing */ 1093 CA_ACK_WIN_UPDATE = (1 << 1), /* ACK updated window */ 1094 CA_ACK_ECE = (1 << 2), /* ECE bit is set on ack */ 1095 }; 1096 1097 /* 1098 * Interface for adding new TCP congestion control handlers 1099 */ 1100 #define TCP_CA_NAME_MAX 16 1101 #define TCP_CA_MAX 128 1102 #define TCP_CA_BUF_MAX (TCP_CA_NAME_MAX*TCP_CA_MAX) 1103 1104 #define TCP_CA_UNSPEC 0 1105 1106 /* Algorithm can be set on socket without CAP_NET_ADMIN privileges */ 1107 #define TCP_CONG_NON_RESTRICTED 0x1 1108 /* Requires ECN/ECT set on all packets */ 1109 #define TCP_CONG_NEEDS_ECN 0x2 1110 #define TCP_CONG_MASK (TCP_CONG_NON_RESTRICTED | TCP_CONG_NEEDS_ECN) 1111 1112 union tcp_cc_info; 1113 1114 struct ack_sample { 1115 u32 pkts_acked; 1116 s32 rtt_us; 1117 u32 in_flight; 1118 }; 1119 1120 /* A rate sample measures the number of (original/retransmitted) data 1121 * packets delivered "delivered" over an interval of time "interval_us". 1122 * The tcp_rate.c code fills in the rate sample, and congestion 1123 * control modules that define a cong_control function to run at the end 1124 * of ACK processing can optionally chose to consult this sample when 1125 * setting cwnd and pacing rate. 1126 * A sample is invalid if "delivered" or "interval_us" is negative. 1127 */ 1128 struct rate_sample { 1129 u64 prior_mstamp; /* starting timestamp for interval */ 1130 u32 prior_delivered; /* tp->delivered at "prior_mstamp" */ 1131 u32 prior_delivered_ce;/* tp->delivered_ce at "prior_mstamp" */ 1132 s32 delivered; /* number of packets delivered over interval */ 1133 s32 delivered_ce; /* number of packets delivered w/ CE marks*/ 1134 long interval_us; /* time for tp->delivered to incr "delivered" */ 1135 u32 snd_interval_us; /* snd interval for delivered packets */ 1136 u32 rcv_interval_us; /* rcv interval for delivered packets */ 1137 long rtt_us; /* RTT of last (S)ACKed packet (or -1) */ 1138 int losses; /* number of packets marked lost upon ACK */ 1139 u32 acked_sacked; /* number of packets newly (S)ACKed upon ACK */ 1140 u32 prior_in_flight; /* in flight before this ACK */ 1141 u32 last_end_seq; /* end_seq of most recently ACKed packet */ 1142 bool is_app_limited; /* is sample from packet with bubble in pipe? */ 1143 bool is_retrans; /* is sample from retransmission? */ 1144 bool is_ack_delayed; /* is this (likely) a delayed ACK? */ 1145 }; 1146 1147 struct tcp_congestion_ops { 1148 /* fast path fields are put first to fill one cache line */ 1149 1150 /* return slow start threshold (required) */ 1151 u32 (*ssthresh)(struct sock *sk); 1152 1153 /* do new cwnd calculation (required) */ 1154 void (*cong_avoid)(struct sock *sk, u32 ack, u32 acked); 1155 1156 /* call before changing ca_state (optional) */ 1157 void (*set_state)(struct sock *sk, u8 new_state); 1158 1159 /* call when cwnd event occurs (optional) */ 1160 void (*cwnd_event)(struct sock *sk, enum tcp_ca_event ev); 1161 1162 /* call when ack arrives (optional) */ 1163 void (*in_ack_event)(struct sock *sk, u32 flags); 1164 1165 /* hook for packet ack accounting (optional) */ 1166 void (*pkts_acked)(struct sock *sk, const struct ack_sample *sample); 1167 1168 /* override sysctl_tcp_min_tso_segs */ 1169 u32 (*min_tso_segs)(struct sock *sk); 1170 1171 /* call when packets are delivered to update cwnd and pacing rate, 1172 * after all the ca_state processing. (optional) 1173 */ 1174 void (*cong_control)(struct sock *sk, const struct rate_sample *rs); 1175 1176 1177 /* new value of cwnd after loss (required) */ 1178 u32 (*undo_cwnd)(struct sock *sk); 1179 /* returns the multiplier used in tcp_sndbuf_expand (optional) */ 1180 u32 (*sndbuf_expand)(struct sock *sk); 1181 1182 /* control/slow paths put last */ 1183 /* get info for inet_diag (optional) */ 1184 size_t (*get_info)(struct sock *sk, u32 ext, int *attr, 1185 union tcp_cc_info *info); 1186 1187 char name[TCP_CA_NAME_MAX]; 1188 struct module *owner; 1189 struct list_head list; 1190 u32 key; 1191 u32 flags; 1192 1193 /* initialize private data (optional) */ 1194 void (*init)(struct sock *sk); 1195 /* cleanup private data (optional) */ 1196 void (*release)(struct sock *sk); 1197 } ____cacheline_aligned_in_smp; 1198 1199 int tcp_register_congestion_control(struct tcp_congestion_ops *type); 1200 void tcp_unregister_congestion_control(struct tcp_congestion_ops *type); 1201 int tcp_update_congestion_control(struct tcp_congestion_ops *type, 1202 struct tcp_congestion_ops *old_type); 1203 int tcp_validate_congestion_control(struct tcp_congestion_ops *ca); 1204 1205 void tcp_assign_congestion_control(struct sock *sk); 1206 void tcp_init_congestion_control(struct sock *sk); 1207 void tcp_cleanup_congestion_control(struct sock *sk); 1208 int tcp_set_default_congestion_control(struct net *net, const char *name); 1209 void tcp_get_default_congestion_control(struct net *net, char *name); 1210 void tcp_get_available_congestion_control(char *buf, size_t len); 1211 void tcp_get_allowed_congestion_control(char *buf, size_t len); 1212 int tcp_set_allowed_congestion_control(char *allowed); 1213 int tcp_set_congestion_control(struct sock *sk, const char *name, bool load, 1214 bool cap_net_admin); 1215 u32 tcp_slow_start(struct tcp_sock *tp, u32 acked); 1216 void tcp_cong_avoid_ai(struct tcp_sock *tp, u32 w, u32 acked); 1217 1218 u32 tcp_reno_ssthresh(struct sock *sk); 1219 u32 tcp_reno_undo_cwnd(struct sock *sk); 1220 void tcp_reno_cong_avoid(struct sock *sk, u32 ack, u32 acked); 1221 extern struct tcp_congestion_ops tcp_reno; 1222 1223 struct tcp_congestion_ops *tcp_ca_find(const char *name); 1224 struct tcp_congestion_ops *tcp_ca_find_key(u32 key); 1225 u32 tcp_ca_get_key_by_name(struct net *net, const char *name, bool *ecn_ca); 1226 #ifdef CONFIG_INET 1227 char *tcp_ca_get_name_by_key(u32 key, char *buffer); 1228 #else 1229 static inline char *tcp_ca_get_name_by_key(u32 key, char *buffer) 1230 { 1231 return NULL; 1232 } 1233 #endif 1234 1235 static inline bool tcp_ca_needs_ecn(const struct sock *sk) 1236 { 1237 const struct inet_connection_sock *icsk = inet_csk(sk); 1238 1239 return icsk->icsk_ca_ops->flags & TCP_CONG_NEEDS_ECN; 1240 } 1241 1242 static inline void tcp_ca_event(struct sock *sk, const enum tcp_ca_event event) 1243 { 1244 const struct inet_connection_sock *icsk = inet_csk(sk); 1245 1246 if (icsk->icsk_ca_ops->cwnd_event) 1247 icsk->icsk_ca_ops->cwnd_event(sk, event); 1248 } 1249 1250 /* From tcp_cong.c */ 1251 void tcp_set_ca_state(struct sock *sk, const u8 ca_state); 1252 1253 /* From tcp_rate.c */ 1254 void tcp_rate_skb_sent(struct sock *sk, struct sk_buff *skb); 1255 void tcp_rate_skb_delivered(struct sock *sk, struct sk_buff *skb, 1256 struct rate_sample *rs); 1257 void tcp_rate_gen(struct sock *sk, u32 delivered, u32 lost, 1258 bool is_sack_reneg, struct rate_sample *rs); 1259 void tcp_rate_check_app_limited(struct sock *sk); 1260 1261 static inline bool tcp_skb_sent_after(u64 t1, u64 t2, u32 seq1, u32 seq2) 1262 { 1263 return t1 > t2 || (t1 == t2 && after(seq1, seq2)); 1264 } 1265 1266 /* These functions determine how the current flow behaves in respect of SACK 1267 * handling. SACK is negotiated with the peer, and therefore it can vary 1268 * between different flows. 1269 * 1270 * tcp_is_sack - SACK enabled 1271 * tcp_is_reno - No SACK 1272 */ 1273 static inline int tcp_is_sack(const struct tcp_sock *tp) 1274 { 1275 return likely(tp->rx_opt.sack_ok); 1276 } 1277 1278 static inline bool tcp_is_reno(const struct tcp_sock *tp) 1279 { 1280 return !tcp_is_sack(tp); 1281 } 1282 1283 static inline unsigned int tcp_left_out(const struct tcp_sock *tp) 1284 { 1285 return tp->sacked_out + tp->lost_out; 1286 } 1287 1288 /* This determines how many packets are "in the network" to the best 1289 * of our knowledge. In many cases it is conservative, but where 1290 * detailed information is available from the receiver (via SACK 1291 * blocks etc.) we can make more aggressive calculations. 1292 * 1293 * Use this for decisions involving congestion control, use just 1294 * tp->packets_out to determine if the send queue is empty or not. 1295 * 1296 * Read this equation as: 1297 * 1298 * "Packets sent once on transmission queue" MINUS 1299 * "Packets left network, but not honestly ACKed yet" PLUS 1300 * "Packets fast retransmitted" 1301 */ 1302 static inline unsigned int tcp_packets_in_flight(const struct tcp_sock *tp) 1303 { 1304 return tp->packets_out - tcp_left_out(tp) + tp->retrans_out; 1305 } 1306 1307 #define TCP_INFINITE_SSTHRESH 0x7fffffff 1308 1309 static inline u32 tcp_snd_cwnd(const struct tcp_sock *tp) 1310 { 1311 return tp->snd_cwnd; 1312 } 1313 1314 static inline void tcp_snd_cwnd_set(struct tcp_sock *tp, u32 val) 1315 { 1316 WARN_ON_ONCE((int)val <= 0); 1317 tp->snd_cwnd = val; 1318 } 1319 1320 static inline bool tcp_in_slow_start(const struct tcp_sock *tp) 1321 { 1322 return tcp_snd_cwnd(tp) < tp->snd_ssthresh; 1323 } 1324 1325 static inline bool tcp_in_initial_slowstart(const struct tcp_sock *tp) 1326 { 1327 return tp->snd_ssthresh >= TCP_INFINITE_SSTHRESH; 1328 } 1329 1330 static inline bool tcp_in_cwnd_reduction(const struct sock *sk) 1331 { 1332 return (TCPF_CA_CWR | TCPF_CA_Recovery) & 1333 (1 << inet_csk(sk)->icsk_ca_state); 1334 } 1335 1336 /* If cwnd > ssthresh, we may raise ssthresh to be half-way to cwnd. 1337 * The exception is cwnd reduction phase, when cwnd is decreasing towards 1338 * ssthresh. 1339 */ 1340 static inline __u32 tcp_current_ssthresh(const struct sock *sk) 1341 { 1342 const struct tcp_sock *tp = tcp_sk(sk); 1343 1344 if (tcp_in_cwnd_reduction(sk)) 1345 return tp->snd_ssthresh; 1346 else 1347 return max(tp->snd_ssthresh, 1348 ((tcp_snd_cwnd(tp) >> 1) + 1349 (tcp_snd_cwnd(tp) >> 2))); 1350 } 1351 1352 /* Use define here intentionally to get WARN_ON location shown at the caller */ 1353 #define tcp_verify_left_out(tp) WARN_ON(tcp_left_out(tp) > tp->packets_out) 1354 1355 void tcp_enter_cwr(struct sock *sk); 1356 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst); 1357 1358 /* The maximum number of MSS of available cwnd for which TSO defers 1359 * sending if not using sysctl_tcp_tso_win_divisor. 1360 */ 1361 static inline __u32 tcp_max_tso_deferred_mss(const struct tcp_sock *tp) 1362 { 1363 return 3; 1364 } 1365 1366 /* Returns end sequence number of the receiver's advertised window */ 1367 static inline u32 tcp_wnd_end(const struct tcp_sock *tp) 1368 { 1369 return tp->snd_una + tp->snd_wnd; 1370 } 1371 1372 /* We follow the spirit of RFC2861 to validate cwnd but implement a more 1373 * flexible approach. The RFC suggests cwnd should not be raised unless 1374 * it was fully used previously. And that's exactly what we do in 1375 * congestion avoidance mode. But in slow start we allow cwnd to grow 1376 * as long as the application has used half the cwnd. 1377 * Example : 1378 * cwnd is 10 (IW10), but application sends 9 frames. 1379 * We allow cwnd to reach 18 when all frames are ACKed. 1380 * This check is safe because it's as aggressive as slow start which already 1381 * risks 100% overshoot. The advantage is that we discourage application to 1382 * either send more filler packets or data to artificially blow up the cwnd 1383 * usage, and allow application-limited process to probe bw more aggressively. 1384 */ 1385 static inline bool tcp_is_cwnd_limited(const struct sock *sk) 1386 { 1387 const struct tcp_sock *tp = tcp_sk(sk); 1388 1389 if (tp->is_cwnd_limited) 1390 return true; 1391 1392 /* If in slow start, ensure cwnd grows to twice what was ACKed. */ 1393 if (tcp_in_slow_start(tp)) 1394 return tcp_snd_cwnd(tp) < 2 * tp->max_packets_out; 1395 1396 return false; 1397 } 1398 1399 /* BBR congestion control needs pacing. 1400 * Same remark for SO_MAX_PACING_RATE. 1401 * sch_fq packet scheduler is efficiently handling pacing, 1402 * but is not always installed/used. 1403 * Return true if TCP stack should pace packets itself. 1404 */ 1405 static inline bool tcp_needs_internal_pacing(const struct sock *sk) 1406 { 1407 return smp_load_acquire(&sk->sk_pacing_status) == SK_PACING_NEEDED; 1408 } 1409 1410 /* Estimates in how many jiffies next packet for this flow can be sent. 1411 * Scheduling a retransmit timer too early would be silly. 1412 */ 1413 static inline unsigned long tcp_pacing_delay(const struct sock *sk) 1414 { 1415 s64 delay = tcp_sk(sk)->tcp_wstamp_ns - tcp_sk(sk)->tcp_clock_cache; 1416 1417 return delay > 0 ? nsecs_to_jiffies(delay) : 0; 1418 } 1419 1420 static inline void tcp_reset_xmit_timer(struct sock *sk, 1421 const int what, 1422 unsigned long when, 1423 const unsigned long max_when) 1424 { 1425 inet_csk_reset_xmit_timer(sk, what, when + tcp_pacing_delay(sk), 1426 max_when); 1427 } 1428 1429 /* Something is really bad, we could not queue an additional packet, 1430 * because qdisc is full or receiver sent a 0 window, or we are paced. 1431 * We do not want to add fuel to the fire, or abort too early, 1432 * so make sure the timer we arm now is at least 200ms in the future, 1433 * regardless of current icsk_rto value (as it could be ~2ms) 1434 */ 1435 static inline unsigned long tcp_probe0_base(const struct sock *sk) 1436 { 1437 return max_t(unsigned long, inet_csk(sk)->icsk_rto, TCP_RTO_MIN); 1438 } 1439 1440 /* Variant of inet_csk_rto_backoff() used for zero window probes */ 1441 static inline unsigned long tcp_probe0_when(const struct sock *sk, 1442 unsigned long max_when) 1443 { 1444 u8 backoff = min_t(u8, ilog2(TCP_RTO_MAX / TCP_RTO_MIN) + 1, 1445 inet_csk(sk)->icsk_backoff); 1446 u64 when = (u64)tcp_probe0_base(sk) << backoff; 1447 1448 return (unsigned long)min_t(u64, when, max_when); 1449 } 1450 1451 static inline void tcp_check_probe_timer(struct sock *sk) 1452 { 1453 if (!tcp_sk(sk)->packets_out && !inet_csk(sk)->icsk_pending) 1454 tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0, 1455 tcp_probe0_base(sk), TCP_RTO_MAX); 1456 } 1457 1458 static inline void tcp_init_wl(struct tcp_sock *tp, u32 seq) 1459 { 1460 tp->snd_wl1 = seq; 1461 } 1462 1463 static inline void tcp_update_wl(struct tcp_sock *tp, u32 seq) 1464 { 1465 tp->snd_wl1 = seq; 1466 } 1467 1468 /* 1469 * Calculate(/check) TCP checksum 1470 */ 1471 static inline __sum16 tcp_v4_check(int len, __be32 saddr, 1472 __be32 daddr, __wsum base) 1473 { 1474 return csum_tcpudp_magic(saddr, daddr, len, IPPROTO_TCP, base); 1475 } 1476 1477 static inline bool tcp_checksum_complete(struct sk_buff *skb) 1478 { 1479 return !skb_csum_unnecessary(skb) && 1480 __skb_checksum_complete(skb); 1481 } 1482 1483 bool tcp_add_backlog(struct sock *sk, struct sk_buff *skb, 1484 enum skb_drop_reason *reason); 1485 1486 1487 int tcp_filter(struct sock *sk, struct sk_buff *skb); 1488 void tcp_set_state(struct sock *sk, int state); 1489 void tcp_done(struct sock *sk); 1490 int tcp_abort(struct sock *sk, int err); 1491 1492 static inline void tcp_sack_reset(struct tcp_options_received *rx_opt) 1493 { 1494 rx_opt->dsack = 0; 1495 rx_opt->num_sacks = 0; 1496 } 1497 1498 void tcp_cwnd_restart(struct sock *sk, s32 delta); 1499 1500 static inline void tcp_slow_start_after_idle_check(struct sock *sk) 1501 { 1502 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops; 1503 struct tcp_sock *tp = tcp_sk(sk); 1504 s32 delta; 1505 1506 if (!READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_slow_start_after_idle) || 1507 tp->packets_out || ca_ops->cong_control) 1508 return; 1509 delta = tcp_jiffies32 - tp->lsndtime; 1510 if (delta > inet_csk(sk)->icsk_rto) 1511 tcp_cwnd_restart(sk, delta); 1512 } 1513 1514 /* Determine a window scaling and initial window to offer. */ 1515 void tcp_select_initial_window(const struct sock *sk, int __space, 1516 __u32 mss, __u32 *rcv_wnd, 1517 __u32 *window_clamp, int wscale_ok, 1518 __u8 *rcv_wscale, __u32 init_rcv_wnd); 1519 1520 static inline int __tcp_win_from_space(u8 scaling_ratio, int space) 1521 { 1522 s64 scaled_space = (s64)space * scaling_ratio; 1523 1524 return scaled_space >> TCP_RMEM_TO_WIN_SCALE; 1525 } 1526 1527 static inline int tcp_win_from_space(const struct sock *sk, int space) 1528 { 1529 return __tcp_win_from_space(tcp_sk(sk)->scaling_ratio, space); 1530 } 1531 1532 /* inverse of __tcp_win_from_space() */ 1533 static inline int __tcp_space_from_win(u8 scaling_ratio, int win) 1534 { 1535 u64 val = (u64)win << TCP_RMEM_TO_WIN_SCALE; 1536 1537 do_div(val, scaling_ratio); 1538 return val; 1539 } 1540 1541 static inline int tcp_space_from_win(const struct sock *sk, int win) 1542 { 1543 return __tcp_space_from_win(tcp_sk(sk)->scaling_ratio, win); 1544 } 1545 1546 /* Assume a 50% default for skb->len/skb->truesize ratio. 1547 * This may be adjusted later in tcp_measure_rcv_mss(). 1548 */ 1549 #define TCP_DEFAULT_SCALING_RATIO (1 << (TCP_RMEM_TO_WIN_SCALE - 1)) 1550 1551 static inline void tcp_scaling_ratio_init(struct sock *sk) 1552 { 1553 tcp_sk(sk)->scaling_ratio = TCP_DEFAULT_SCALING_RATIO; 1554 } 1555 1556 /* Note: caller must be prepared to deal with negative returns */ 1557 static inline int tcp_space(const struct sock *sk) 1558 { 1559 return tcp_win_from_space(sk, READ_ONCE(sk->sk_rcvbuf) - 1560 READ_ONCE(sk->sk_backlog.len) - 1561 atomic_read(&sk->sk_rmem_alloc)); 1562 } 1563 1564 static inline int tcp_full_space(const struct sock *sk) 1565 { 1566 return tcp_win_from_space(sk, READ_ONCE(sk->sk_rcvbuf)); 1567 } 1568 1569 static inline void __tcp_adjust_rcv_ssthresh(struct sock *sk, u32 new_ssthresh) 1570 { 1571 int unused_mem = sk_unused_reserved_mem(sk); 1572 struct tcp_sock *tp = tcp_sk(sk); 1573 1574 tp->rcv_ssthresh = min(tp->rcv_ssthresh, new_ssthresh); 1575 if (unused_mem) 1576 tp->rcv_ssthresh = max_t(u32, tp->rcv_ssthresh, 1577 tcp_win_from_space(sk, unused_mem)); 1578 } 1579 1580 static inline void tcp_adjust_rcv_ssthresh(struct sock *sk) 1581 { 1582 __tcp_adjust_rcv_ssthresh(sk, 4U * tcp_sk(sk)->advmss); 1583 } 1584 1585 void tcp_cleanup_rbuf(struct sock *sk, int copied); 1586 void __tcp_cleanup_rbuf(struct sock *sk, int copied); 1587 1588 1589 /* We provision sk_rcvbuf around 200% of sk_rcvlowat. 1590 * If 87.5 % (7/8) of the space has been consumed, we want to override 1591 * SO_RCVLOWAT constraint, since we are receiving skbs with too small 1592 * len/truesize ratio. 1593 */ 1594 static inline bool tcp_rmem_pressure(const struct sock *sk) 1595 { 1596 int rcvbuf, threshold; 1597 1598 if (tcp_under_memory_pressure(sk)) 1599 return true; 1600 1601 rcvbuf = READ_ONCE(sk->sk_rcvbuf); 1602 threshold = rcvbuf - (rcvbuf >> 3); 1603 1604 return atomic_read(&sk->sk_rmem_alloc) > threshold; 1605 } 1606 1607 static inline bool tcp_epollin_ready(const struct sock *sk, int target) 1608 { 1609 const struct tcp_sock *tp = tcp_sk(sk); 1610 int avail = READ_ONCE(tp->rcv_nxt) - READ_ONCE(tp->copied_seq); 1611 1612 if (avail <= 0) 1613 return false; 1614 1615 return (avail >= target) || tcp_rmem_pressure(sk) || 1616 (tcp_receive_window(tp) <= inet_csk(sk)->icsk_ack.rcv_mss); 1617 } 1618 1619 extern void tcp_openreq_init_rwin(struct request_sock *req, 1620 const struct sock *sk_listener, 1621 const struct dst_entry *dst); 1622 1623 void tcp_enter_memory_pressure(struct sock *sk); 1624 void tcp_leave_memory_pressure(struct sock *sk); 1625 1626 static inline int keepalive_intvl_when(const struct tcp_sock *tp) 1627 { 1628 struct net *net = sock_net((struct sock *)tp); 1629 int val; 1630 1631 /* Paired with WRITE_ONCE() in tcp_sock_set_keepintvl() 1632 * and do_tcp_setsockopt(). 1633 */ 1634 val = READ_ONCE(tp->keepalive_intvl); 1635 1636 return val ? : READ_ONCE(net->ipv4.sysctl_tcp_keepalive_intvl); 1637 } 1638 1639 static inline int keepalive_time_when(const struct tcp_sock *tp) 1640 { 1641 struct net *net = sock_net((struct sock *)tp); 1642 int val; 1643 1644 /* Paired with WRITE_ONCE() in tcp_sock_set_keepidle_locked() */ 1645 val = READ_ONCE(tp->keepalive_time); 1646 1647 return val ? : READ_ONCE(net->ipv4.sysctl_tcp_keepalive_time); 1648 } 1649 1650 static inline int keepalive_probes(const struct tcp_sock *tp) 1651 { 1652 struct net *net = sock_net((struct sock *)tp); 1653 int val; 1654 1655 /* Paired with WRITE_ONCE() in tcp_sock_set_keepcnt() 1656 * and do_tcp_setsockopt(). 1657 */ 1658 val = READ_ONCE(tp->keepalive_probes); 1659 1660 return val ? : READ_ONCE(net->ipv4.sysctl_tcp_keepalive_probes); 1661 } 1662 1663 static inline u32 keepalive_time_elapsed(const struct tcp_sock *tp) 1664 { 1665 const struct inet_connection_sock *icsk = &tp->inet_conn; 1666 1667 return min_t(u32, tcp_jiffies32 - icsk->icsk_ack.lrcvtime, 1668 tcp_jiffies32 - tp->rcv_tstamp); 1669 } 1670 1671 static inline int tcp_fin_time(const struct sock *sk) 1672 { 1673 int fin_timeout = tcp_sk(sk)->linger2 ? : 1674 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_fin_timeout); 1675 const int rto = inet_csk(sk)->icsk_rto; 1676 1677 if (fin_timeout < (rto << 2) - (rto >> 1)) 1678 fin_timeout = (rto << 2) - (rto >> 1); 1679 1680 return fin_timeout; 1681 } 1682 1683 static inline bool tcp_paws_check(const struct tcp_options_received *rx_opt, 1684 int paws_win) 1685 { 1686 if ((s32)(rx_opt->ts_recent - rx_opt->rcv_tsval) <= paws_win) 1687 return true; 1688 if (unlikely(!time_before32(ktime_get_seconds(), 1689 rx_opt->ts_recent_stamp + TCP_PAWS_WRAP))) 1690 return true; 1691 /* 1692 * Some OSes send SYN and SYNACK messages with tsval=0 tsecr=0, 1693 * then following tcp messages have valid values. Ignore 0 value, 1694 * or else 'negative' tsval might forbid us to accept their packets. 1695 */ 1696 if (!rx_opt->ts_recent) 1697 return true; 1698 return false; 1699 } 1700 1701 static inline bool tcp_paws_reject(const struct tcp_options_received *rx_opt, 1702 int rst) 1703 { 1704 if (tcp_paws_check(rx_opt, 0)) 1705 return false; 1706 1707 /* RST segments are not recommended to carry timestamp, 1708 and, if they do, it is recommended to ignore PAWS because 1709 "their cleanup function should take precedence over timestamps." 1710 Certainly, it is mistake. It is necessary to understand the reasons 1711 of this constraint to relax it: if peer reboots, clock may go 1712 out-of-sync and half-open connections will not be reset. 1713 Actually, the problem would be not existing if all 1714 the implementations followed draft about maintaining clock 1715 via reboots. Linux-2.2 DOES NOT! 1716 1717 However, we can relax time bounds for RST segments to MSL. 1718 */ 1719 if (rst && !time_before32(ktime_get_seconds(), 1720 rx_opt->ts_recent_stamp + TCP_PAWS_MSL)) 1721 return false; 1722 return true; 1723 } 1724 1725 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb, 1726 int mib_idx, u32 *last_oow_ack_time); 1727 1728 static inline void tcp_mib_init(struct net *net) 1729 { 1730 /* See RFC 2012 */ 1731 TCP_ADD_STATS(net, TCP_MIB_RTOALGORITHM, 1); 1732 TCP_ADD_STATS(net, TCP_MIB_RTOMIN, TCP_RTO_MIN*1000/HZ); 1733 TCP_ADD_STATS(net, TCP_MIB_RTOMAX, TCP_RTO_MAX*1000/HZ); 1734 TCP_ADD_STATS(net, TCP_MIB_MAXCONN, -1); 1735 } 1736 1737 /* from STCP */ 1738 static inline void tcp_clear_retrans_hints_partial(struct tcp_sock *tp) 1739 { 1740 tp->lost_skb_hint = NULL; 1741 } 1742 1743 static inline void tcp_clear_all_retrans_hints(struct tcp_sock *tp) 1744 { 1745 tcp_clear_retrans_hints_partial(tp); 1746 tp->retransmit_skb_hint = NULL; 1747 } 1748 1749 #define tcp_md5_addr tcp_ao_addr 1750 1751 /* - key database */ 1752 struct tcp_md5sig_key { 1753 struct hlist_node node; 1754 u8 keylen; 1755 u8 family; /* AF_INET or AF_INET6 */ 1756 u8 prefixlen; 1757 u8 flags; 1758 union tcp_md5_addr addr; 1759 int l3index; /* set if key added with L3 scope */ 1760 u8 key[TCP_MD5SIG_MAXKEYLEN]; 1761 struct rcu_head rcu; 1762 }; 1763 1764 /* - sock block */ 1765 struct tcp_md5sig_info { 1766 struct hlist_head head; 1767 struct rcu_head rcu; 1768 }; 1769 1770 /* - pseudo header */ 1771 struct tcp4_pseudohdr { 1772 __be32 saddr; 1773 __be32 daddr; 1774 __u8 pad; 1775 __u8 protocol; 1776 __be16 len; 1777 }; 1778 1779 struct tcp6_pseudohdr { 1780 struct in6_addr saddr; 1781 struct in6_addr daddr; 1782 __be32 len; 1783 __be32 protocol; /* including padding */ 1784 }; 1785 1786 union tcp_md5sum_block { 1787 struct tcp4_pseudohdr ip4; 1788 #if IS_ENABLED(CONFIG_IPV6) 1789 struct tcp6_pseudohdr ip6; 1790 #endif 1791 }; 1792 1793 /* 1794 * struct tcp_sigpool - per-CPU pool of ahash_requests 1795 * @scratch: per-CPU temporary area, that can be used between 1796 * tcp_sigpool_start() and tcp_sigpool_end() to perform 1797 * crypto request 1798 * @req: pre-allocated ahash request 1799 */ 1800 struct tcp_sigpool { 1801 void *scratch; 1802 struct ahash_request *req; 1803 }; 1804 1805 int tcp_sigpool_alloc_ahash(const char *alg, size_t scratch_size); 1806 void tcp_sigpool_get(unsigned int id); 1807 void tcp_sigpool_release(unsigned int id); 1808 int tcp_sigpool_hash_skb_data(struct tcp_sigpool *hp, 1809 const struct sk_buff *skb, 1810 unsigned int header_len); 1811 1812 /** 1813 * tcp_sigpool_start - disable bh and start using tcp_sigpool_ahash 1814 * @id: tcp_sigpool that was previously allocated by tcp_sigpool_alloc_ahash() 1815 * @c: returned tcp_sigpool for usage (uninitialized on failure) 1816 * 1817 * Returns 0 on success, error otherwise. 1818 */ 1819 int tcp_sigpool_start(unsigned int id, struct tcp_sigpool *c); 1820 /** 1821 * tcp_sigpool_end - enable bh and stop using tcp_sigpool 1822 * @c: tcp_sigpool context that was returned by tcp_sigpool_start() 1823 */ 1824 void tcp_sigpool_end(struct tcp_sigpool *c); 1825 size_t tcp_sigpool_algo(unsigned int id, char *buf, size_t buf_len); 1826 /* - functions */ 1827 int tcp_v4_md5_hash_skb(char *md5_hash, const struct tcp_md5sig_key *key, 1828 const struct sock *sk, const struct sk_buff *skb); 1829 int tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr, 1830 int family, u8 prefixlen, int l3index, u8 flags, 1831 const u8 *newkey, u8 newkeylen); 1832 int tcp_md5_key_copy(struct sock *sk, const union tcp_md5_addr *addr, 1833 int family, u8 prefixlen, int l3index, 1834 struct tcp_md5sig_key *key); 1835 1836 int tcp_md5_do_del(struct sock *sk, const union tcp_md5_addr *addr, 1837 int family, u8 prefixlen, int l3index, u8 flags); 1838 void tcp_clear_md5_list(struct sock *sk); 1839 struct tcp_md5sig_key *tcp_v4_md5_lookup(const struct sock *sk, 1840 const struct sock *addr_sk); 1841 1842 #ifdef CONFIG_TCP_MD5SIG 1843 struct tcp_md5sig_key *__tcp_md5_do_lookup(const struct sock *sk, int l3index, 1844 const union tcp_md5_addr *addr, 1845 int family, bool any_l3index); 1846 static inline struct tcp_md5sig_key * 1847 tcp_md5_do_lookup(const struct sock *sk, int l3index, 1848 const union tcp_md5_addr *addr, int family) 1849 { 1850 if (!static_branch_unlikely(&tcp_md5_needed.key)) 1851 return NULL; 1852 return __tcp_md5_do_lookup(sk, l3index, addr, family, false); 1853 } 1854 1855 static inline struct tcp_md5sig_key * 1856 tcp_md5_do_lookup_any_l3index(const struct sock *sk, 1857 const union tcp_md5_addr *addr, int family) 1858 { 1859 if (!static_branch_unlikely(&tcp_md5_needed.key)) 1860 return NULL; 1861 return __tcp_md5_do_lookup(sk, 0, addr, family, true); 1862 } 1863 1864 enum skb_drop_reason 1865 tcp_inbound_md5_hash(const struct sock *sk, const struct sk_buff *skb, 1866 const void *saddr, const void *daddr, 1867 int family, int l3index, const __u8 *hash_location); 1868 1869 1870 #define tcp_twsk_md5_key(twsk) ((twsk)->tw_md5_key) 1871 #else 1872 static inline struct tcp_md5sig_key * 1873 tcp_md5_do_lookup(const struct sock *sk, int l3index, 1874 const union tcp_md5_addr *addr, int family) 1875 { 1876 return NULL; 1877 } 1878 1879 static inline struct tcp_md5sig_key * 1880 tcp_md5_do_lookup_any_l3index(const struct sock *sk, 1881 const union tcp_md5_addr *addr, int family) 1882 { 1883 return NULL; 1884 } 1885 1886 static inline enum skb_drop_reason 1887 tcp_inbound_md5_hash(const struct sock *sk, const struct sk_buff *skb, 1888 const void *saddr, const void *daddr, 1889 int family, int l3index, const __u8 *hash_location) 1890 { 1891 return SKB_NOT_DROPPED_YET; 1892 } 1893 #define tcp_twsk_md5_key(twsk) NULL 1894 #endif 1895 1896 int tcp_md5_alloc_sigpool(void); 1897 void tcp_md5_release_sigpool(void); 1898 void tcp_md5_add_sigpool(void); 1899 extern int tcp_md5_sigpool_id; 1900 1901 int tcp_md5_hash_key(struct tcp_sigpool *hp, 1902 const struct tcp_md5sig_key *key); 1903 1904 /* From tcp_fastopen.c */ 1905 void tcp_fastopen_cache_get(struct sock *sk, u16 *mss, 1906 struct tcp_fastopen_cookie *cookie); 1907 void tcp_fastopen_cache_set(struct sock *sk, u16 mss, 1908 struct tcp_fastopen_cookie *cookie, bool syn_lost, 1909 u16 try_exp); 1910 struct tcp_fastopen_request { 1911 /* Fast Open cookie. Size 0 means a cookie request */ 1912 struct tcp_fastopen_cookie cookie; 1913 struct msghdr *data; /* data in MSG_FASTOPEN */ 1914 size_t size; 1915 int copied; /* queued in tcp_connect() */ 1916 struct ubuf_info *uarg; 1917 }; 1918 void tcp_free_fastopen_req(struct tcp_sock *tp); 1919 void tcp_fastopen_destroy_cipher(struct sock *sk); 1920 void tcp_fastopen_ctx_destroy(struct net *net); 1921 int tcp_fastopen_reset_cipher(struct net *net, struct sock *sk, 1922 void *primary_key, void *backup_key); 1923 int tcp_fastopen_get_cipher(struct net *net, struct inet_connection_sock *icsk, 1924 u64 *key); 1925 void tcp_fastopen_add_skb(struct sock *sk, struct sk_buff *skb); 1926 struct sock *tcp_try_fastopen(struct sock *sk, struct sk_buff *skb, 1927 struct request_sock *req, 1928 struct tcp_fastopen_cookie *foc, 1929 const struct dst_entry *dst); 1930 void tcp_fastopen_init_key_once(struct net *net); 1931 bool tcp_fastopen_cookie_check(struct sock *sk, u16 *mss, 1932 struct tcp_fastopen_cookie *cookie); 1933 bool tcp_fastopen_defer_connect(struct sock *sk, int *err); 1934 #define TCP_FASTOPEN_KEY_LENGTH sizeof(siphash_key_t) 1935 #define TCP_FASTOPEN_KEY_MAX 2 1936 #define TCP_FASTOPEN_KEY_BUF_LENGTH \ 1937 (TCP_FASTOPEN_KEY_LENGTH * TCP_FASTOPEN_KEY_MAX) 1938 1939 /* Fastopen key context */ 1940 struct tcp_fastopen_context { 1941 siphash_key_t key[TCP_FASTOPEN_KEY_MAX]; 1942 int num; 1943 struct rcu_head rcu; 1944 }; 1945 1946 void tcp_fastopen_active_disable(struct sock *sk); 1947 bool tcp_fastopen_active_should_disable(struct sock *sk); 1948 void tcp_fastopen_active_disable_ofo_check(struct sock *sk); 1949 void tcp_fastopen_active_detect_blackhole(struct sock *sk, bool expired); 1950 1951 /* Caller needs to wrap with rcu_read_(un)lock() */ 1952 static inline 1953 struct tcp_fastopen_context *tcp_fastopen_get_ctx(const struct sock *sk) 1954 { 1955 struct tcp_fastopen_context *ctx; 1956 1957 ctx = rcu_dereference(inet_csk(sk)->icsk_accept_queue.fastopenq.ctx); 1958 if (!ctx) 1959 ctx = rcu_dereference(sock_net(sk)->ipv4.tcp_fastopen_ctx); 1960 return ctx; 1961 } 1962 1963 static inline 1964 bool tcp_fastopen_cookie_match(const struct tcp_fastopen_cookie *foc, 1965 const struct tcp_fastopen_cookie *orig) 1966 { 1967 if (orig->len == TCP_FASTOPEN_COOKIE_SIZE && 1968 orig->len == foc->len && 1969 !memcmp(orig->val, foc->val, foc->len)) 1970 return true; 1971 return false; 1972 } 1973 1974 static inline 1975 int tcp_fastopen_context_len(const struct tcp_fastopen_context *ctx) 1976 { 1977 return ctx->num; 1978 } 1979 1980 /* Latencies incurred by various limits for a sender. They are 1981 * chronograph-like stats that are mutually exclusive. 1982 */ 1983 enum tcp_chrono { 1984 TCP_CHRONO_UNSPEC, 1985 TCP_CHRONO_BUSY, /* Actively sending data (non-empty write queue) */ 1986 TCP_CHRONO_RWND_LIMITED, /* Stalled by insufficient receive window */ 1987 TCP_CHRONO_SNDBUF_LIMITED, /* Stalled by insufficient send buffer */ 1988 __TCP_CHRONO_MAX, 1989 }; 1990 1991 void tcp_chrono_start(struct sock *sk, const enum tcp_chrono type); 1992 void tcp_chrono_stop(struct sock *sk, const enum tcp_chrono type); 1993 1994 /* This helper is needed, because skb->tcp_tsorted_anchor uses 1995 * the same memory storage than skb->destructor/_skb_refdst 1996 */ 1997 static inline void tcp_skb_tsorted_anchor_cleanup(struct sk_buff *skb) 1998 { 1999 skb->destructor = NULL; 2000 skb->_skb_refdst = 0UL; 2001 } 2002 2003 #define tcp_skb_tsorted_save(skb) { \ 2004 unsigned long _save = skb->_skb_refdst; \ 2005 skb->_skb_refdst = 0UL; 2006 2007 #define tcp_skb_tsorted_restore(skb) \ 2008 skb->_skb_refdst = _save; \ 2009 } 2010 2011 void tcp_write_queue_purge(struct sock *sk); 2012 2013 static inline struct sk_buff *tcp_rtx_queue_head(const struct sock *sk) 2014 { 2015 return skb_rb_first(&sk->tcp_rtx_queue); 2016 } 2017 2018 static inline struct sk_buff *tcp_rtx_queue_tail(const struct sock *sk) 2019 { 2020 return skb_rb_last(&sk->tcp_rtx_queue); 2021 } 2022 2023 static inline struct sk_buff *tcp_write_queue_tail(const struct sock *sk) 2024 { 2025 return skb_peek_tail(&sk->sk_write_queue); 2026 } 2027 2028 #define tcp_for_write_queue_from_safe(skb, tmp, sk) \ 2029 skb_queue_walk_from_safe(&(sk)->sk_write_queue, skb, tmp) 2030 2031 static inline struct sk_buff *tcp_send_head(const struct sock *sk) 2032 { 2033 return skb_peek(&sk->sk_write_queue); 2034 } 2035 2036 static inline bool tcp_skb_is_last(const struct sock *sk, 2037 const struct sk_buff *skb) 2038 { 2039 return skb_queue_is_last(&sk->sk_write_queue, skb); 2040 } 2041 2042 /** 2043 * tcp_write_queue_empty - test if any payload (or FIN) is available in write queue 2044 * @sk: socket 2045 * 2046 * Since the write queue can have a temporary empty skb in it, 2047 * we must not use "return skb_queue_empty(&sk->sk_write_queue)" 2048 */ 2049 static inline bool tcp_write_queue_empty(const struct sock *sk) 2050 { 2051 const struct tcp_sock *tp = tcp_sk(sk); 2052 2053 return tp->write_seq == tp->snd_nxt; 2054 } 2055 2056 static inline bool tcp_rtx_queue_empty(const struct sock *sk) 2057 { 2058 return RB_EMPTY_ROOT(&sk->tcp_rtx_queue); 2059 } 2060 2061 static inline bool tcp_rtx_and_write_queues_empty(const struct sock *sk) 2062 { 2063 return tcp_rtx_queue_empty(sk) && tcp_write_queue_empty(sk); 2064 } 2065 2066 static inline void tcp_add_write_queue_tail(struct sock *sk, struct sk_buff *skb) 2067 { 2068 __skb_queue_tail(&sk->sk_write_queue, skb); 2069 2070 /* Queue it, remembering where we must start sending. */ 2071 if (sk->sk_write_queue.next == skb) 2072 tcp_chrono_start(sk, TCP_CHRONO_BUSY); 2073 } 2074 2075 /* Insert new before skb on the write queue of sk. */ 2076 static inline void tcp_insert_write_queue_before(struct sk_buff *new, 2077 struct sk_buff *skb, 2078 struct sock *sk) 2079 { 2080 __skb_queue_before(&sk->sk_write_queue, skb, new); 2081 } 2082 2083 static inline void tcp_unlink_write_queue(struct sk_buff *skb, struct sock *sk) 2084 { 2085 tcp_skb_tsorted_anchor_cleanup(skb); 2086 __skb_unlink(skb, &sk->sk_write_queue); 2087 } 2088 2089 void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb); 2090 2091 static inline void tcp_rtx_queue_unlink(struct sk_buff *skb, struct sock *sk) 2092 { 2093 tcp_skb_tsorted_anchor_cleanup(skb); 2094 rb_erase(&skb->rbnode, &sk->tcp_rtx_queue); 2095 } 2096 2097 static inline void tcp_rtx_queue_unlink_and_free(struct sk_buff *skb, struct sock *sk) 2098 { 2099 list_del(&skb->tcp_tsorted_anchor); 2100 tcp_rtx_queue_unlink(skb, sk); 2101 tcp_wmem_free_skb(sk, skb); 2102 } 2103 2104 static inline void tcp_push_pending_frames(struct sock *sk) 2105 { 2106 if (tcp_send_head(sk)) { 2107 struct tcp_sock *tp = tcp_sk(sk); 2108 2109 __tcp_push_pending_frames(sk, tcp_current_mss(sk), tp->nonagle); 2110 } 2111 } 2112 2113 /* Start sequence of the skb just after the highest skb with SACKed 2114 * bit, valid only if sacked_out > 0 or when the caller has ensured 2115 * validity by itself. 2116 */ 2117 static inline u32 tcp_highest_sack_seq(struct tcp_sock *tp) 2118 { 2119 if (!tp->sacked_out) 2120 return tp->snd_una; 2121 2122 if (tp->highest_sack == NULL) 2123 return tp->snd_nxt; 2124 2125 return TCP_SKB_CB(tp->highest_sack)->seq; 2126 } 2127 2128 static inline void tcp_advance_highest_sack(struct sock *sk, struct sk_buff *skb) 2129 { 2130 tcp_sk(sk)->highest_sack = skb_rb_next(skb); 2131 } 2132 2133 static inline struct sk_buff *tcp_highest_sack(struct sock *sk) 2134 { 2135 return tcp_sk(sk)->highest_sack; 2136 } 2137 2138 static inline void tcp_highest_sack_reset(struct sock *sk) 2139 { 2140 tcp_sk(sk)->highest_sack = tcp_rtx_queue_head(sk); 2141 } 2142 2143 /* Called when old skb is about to be deleted and replaced by new skb */ 2144 static inline void tcp_highest_sack_replace(struct sock *sk, 2145 struct sk_buff *old, 2146 struct sk_buff *new) 2147 { 2148 if (old == tcp_highest_sack(sk)) 2149 tcp_sk(sk)->highest_sack = new; 2150 } 2151 2152 /* This helper checks if socket has IP_TRANSPARENT set */ 2153 static inline bool inet_sk_transparent(const struct sock *sk) 2154 { 2155 switch (sk->sk_state) { 2156 case TCP_TIME_WAIT: 2157 return inet_twsk(sk)->tw_transparent; 2158 case TCP_NEW_SYN_RECV: 2159 return inet_rsk(inet_reqsk(sk))->no_srccheck; 2160 } 2161 return inet_test_bit(TRANSPARENT, sk); 2162 } 2163 2164 /* Determines whether this is a thin stream (which may suffer from 2165 * increased latency). Used to trigger latency-reducing mechanisms. 2166 */ 2167 static inline bool tcp_stream_is_thin(struct tcp_sock *tp) 2168 { 2169 return tp->packets_out < 4 && !tcp_in_initial_slowstart(tp); 2170 } 2171 2172 /* /proc */ 2173 enum tcp_seq_states { 2174 TCP_SEQ_STATE_LISTENING, 2175 TCP_SEQ_STATE_ESTABLISHED, 2176 }; 2177 2178 void *tcp_seq_start(struct seq_file *seq, loff_t *pos); 2179 void *tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos); 2180 void tcp_seq_stop(struct seq_file *seq, void *v); 2181 2182 struct tcp_seq_afinfo { 2183 sa_family_t family; 2184 }; 2185 2186 struct tcp_iter_state { 2187 struct seq_net_private p; 2188 enum tcp_seq_states state; 2189 struct sock *syn_wait_sk; 2190 int bucket, offset, sbucket, num; 2191 loff_t last_pos; 2192 }; 2193 2194 extern struct request_sock_ops tcp_request_sock_ops; 2195 extern struct request_sock_ops tcp6_request_sock_ops; 2196 2197 void tcp_v4_destroy_sock(struct sock *sk); 2198 2199 struct sk_buff *tcp_gso_segment(struct sk_buff *skb, 2200 netdev_features_t features); 2201 struct sk_buff *tcp_gro_receive(struct list_head *head, struct sk_buff *skb); 2202 INDIRECT_CALLABLE_DECLARE(int tcp4_gro_complete(struct sk_buff *skb, int thoff)); 2203 INDIRECT_CALLABLE_DECLARE(struct sk_buff *tcp4_gro_receive(struct list_head *head, struct sk_buff *skb)); 2204 INDIRECT_CALLABLE_DECLARE(int tcp6_gro_complete(struct sk_buff *skb, int thoff)); 2205 INDIRECT_CALLABLE_DECLARE(struct sk_buff *tcp6_gro_receive(struct list_head *head, struct sk_buff *skb)); 2206 #ifdef CONFIG_INET 2207 void tcp_gro_complete(struct sk_buff *skb); 2208 #else 2209 static inline void tcp_gro_complete(struct sk_buff *skb) { } 2210 #endif 2211 2212 void __tcp_v4_send_check(struct sk_buff *skb, __be32 saddr, __be32 daddr); 2213 2214 static inline u32 tcp_notsent_lowat(const struct tcp_sock *tp) 2215 { 2216 struct net *net = sock_net((struct sock *)tp); 2217 u32 val; 2218 2219 val = READ_ONCE(tp->notsent_lowat); 2220 2221 return val ?: READ_ONCE(net->ipv4.sysctl_tcp_notsent_lowat); 2222 } 2223 2224 bool tcp_stream_memory_free(const struct sock *sk, int wake); 2225 2226 #ifdef CONFIG_PROC_FS 2227 int tcp4_proc_init(void); 2228 void tcp4_proc_exit(void); 2229 #endif 2230 2231 int tcp_rtx_synack(const struct sock *sk, struct request_sock *req); 2232 int tcp_conn_request(struct request_sock_ops *rsk_ops, 2233 const struct tcp_request_sock_ops *af_ops, 2234 struct sock *sk, struct sk_buff *skb); 2235 2236 /* TCP af-specific functions */ 2237 struct tcp_sock_af_ops { 2238 #ifdef CONFIG_TCP_MD5SIG 2239 struct tcp_md5sig_key *(*md5_lookup) (const struct sock *sk, 2240 const struct sock *addr_sk); 2241 int (*calc_md5_hash)(char *location, 2242 const struct tcp_md5sig_key *md5, 2243 const struct sock *sk, 2244 const struct sk_buff *skb); 2245 int (*md5_parse)(struct sock *sk, 2246 int optname, 2247 sockptr_t optval, 2248 int optlen); 2249 #endif 2250 #ifdef CONFIG_TCP_AO 2251 int (*ao_parse)(struct sock *sk, int optname, sockptr_t optval, int optlen); 2252 struct tcp_ao_key *(*ao_lookup)(const struct sock *sk, 2253 struct sock *addr_sk, 2254 int sndid, int rcvid); 2255 int (*ao_calc_key_sk)(struct tcp_ao_key *mkt, u8 *key, 2256 const struct sock *sk, 2257 __be32 sisn, __be32 disn, bool send); 2258 int (*calc_ao_hash)(char *location, struct tcp_ao_key *ao, 2259 const struct sock *sk, const struct sk_buff *skb, 2260 const u8 *tkey, int hash_offset, u32 sne); 2261 #endif 2262 }; 2263 2264 struct tcp_request_sock_ops { 2265 u16 mss_clamp; 2266 #ifdef CONFIG_TCP_MD5SIG 2267 struct tcp_md5sig_key *(*req_md5_lookup)(const struct sock *sk, 2268 const struct sock *addr_sk); 2269 int (*calc_md5_hash) (char *location, 2270 const struct tcp_md5sig_key *md5, 2271 const struct sock *sk, 2272 const struct sk_buff *skb); 2273 #endif 2274 #ifdef CONFIG_TCP_AO 2275 struct tcp_ao_key *(*ao_lookup)(const struct sock *sk, 2276 struct request_sock *req, 2277 int sndid, int rcvid); 2278 int (*ao_calc_key)(struct tcp_ao_key *mkt, u8 *key, struct request_sock *sk); 2279 int (*ao_synack_hash)(char *ao_hash, struct tcp_ao_key *mkt, 2280 struct request_sock *req, const struct sk_buff *skb, 2281 int hash_offset, u32 sne); 2282 #endif 2283 #ifdef CONFIG_SYN_COOKIES 2284 __u32 (*cookie_init_seq)(const struct sk_buff *skb, 2285 __u16 *mss); 2286 #endif 2287 struct dst_entry *(*route_req)(const struct sock *sk, 2288 struct sk_buff *skb, 2289 struct flowi *fl, 2290 struct request_sock *req, 2291 u32 tw_isn); 2292 u32 (*init_seq)(const struct sk_buff *skb); 2293 u32 (*init_ts_off)(const struct net *net, const struct sk_buff *skb); 2294 int (*send_synack)(const struct sock *sk, struct dst_entry *dst, 2295 struct flowi *fl, struct request_sock *req, 2296 struct tcp_fastopen_cookie *foc, 2297 enum tcp_synack_type synack_type, 2298 struct sk_buff *syn_skb); 2299 }; 2300 2301 extern const struct tcp_request_sock_ops tcp_request_sock_ipv4_ops; 2302 #if IS_ENABLED(CONFIG_IPV6) 2303 extern const struct tcp_request_sock_ops tcp_request_sock_ipv6_ops; 2304 #endif 2305 2306 #ifdef CONFIG_SYN_COOKIES 2307 static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops, 2308 const struct sock *sk, struct sk_buff *skb, 2309 __u16 *mss) 2310 { 2311 tcp_synq_overflow(sk); 2312 __NET_INC_STATS(sock_net(sk), LINUX_MIB_SYNCOOKIESSENT); 2313 return ops->cookie_init_seq(skb, mss); 2314 } 2315 #else 2316 static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops, 2317 const struct sock *sk, struct sk_buff *skb, 2318 __u16 *mss) 2319 { 2320 return 0; 2321 } 2322 #endif 2323 2324 struct tcp_key { 2325 union { 2326 struct { 2327 struct tcp_ao_key *ao_key; 2328 char *traffic_key; 2329 u32 sne; 2330 u8 rcv_next; 2331 }; 2332 struct tcp_md5sig_key *md5_key; 2333 }; 2334 enum { 2335 TCP_KEY_NONE = 0, 2336 TCP_KEY_MD5, 2337 TCP_KEY_AO, 2338 } type; 2339 }; 2340 2341 static inline void tcp_get_current_key(const struct sock *sk, 2342 struct tcp_key *out) 2343 { 2344 #if defined(CONFIG_TCP_AO) || defined(CONFIG_TCP_MD5SIG) 2345 const struct tcp_sock *tp = tcp_sk(sk); 2346 #endif 2347 2348 #ifdef CONFIG_TCP_AO 2349 if (static_branch_unlikely(&tcp_ao_needed.key)) { 2350 struct tcp_ao_info *ao; 2351 2352 ao = rcu_dereference_protected(tp->ao_info, 2353 lockdep_sock_is_held(sk)); 2354 if (ao) { 2355 out->ao_key = READ_ONCE(ao->current_key); 2356 out->type = TCP_KEY_AO; 2357 return; 2358 } 2359 } 2360 #endif 2361 #ifdef CONFIG_TCP_MD5SIG 2362 if (static_branch_unlikely(&tcp_md5_needed.key) && 2363 rcu_access_pointer(tp->md5sig_info)) { 2364 out->md5_key = tp->af_specific->md5_lookup(sk, sk); 2365 if (out->md5_key) { 2366 out->type = TCP_KEY_MD5; 2367 return; 2368 } 2369 } 2370 #endif 2371 out->type = TCP_KEY_NONE; 2372 } 2373 2374 static inline bool tcp_key_is_md5(const struct tcp_key *key) 2375 { 2376 #ifdef CONFIG_TCP_MD5SIG 2377 if (static_branch_unlikely(&tcp_md5_needed.key) && 2378 key->type == TCP_KEY_MD5) 2379 return true; 2380 #endif 2381 return false; 2382 } 2383 2384 static inline bool tcp_key_is_ao(const struct tcp_key *key) 2385 { 2386 #ifdef CONFIG_TCP_AO 2387 if (static_branch_unlikely(&tcp_ao_needed.key) && 2388 key->type == TCP_KEY_AO) 2389 return true; 2390 #endif 2391 return false; 2392 } 2393 2394 int tcpv4_offload_init(void); 2395 2396 void tcp_v4_init(void); 2397 void tcp_init(void); 2398 2399 /* tcp_recovery.c */ 2400 void tcp_mark_skb_lost(struct sock *sk, struct sk_buff *skb); 2401 void tcp_newreno_mark_lost(struct sock *sk, bool snd_una_advanced); 2402 extern s32 tcp_rack_skb_timeout(struct tcp_sock *tp, struct sk_buff *skb, 2403 u32 reo_wnd); 2404 extern bool tcp_rack_mark_lost(struct sock *sk); 2405 extern void tcp_rack_advance(struct tcp_sock *tp, u8 sacked, u32 end_seq, 2406 u64 xmit_time); 2407 extern void tcp_rack_reo_timeout(struct sock *sk); 2408 extern void tcp_rack_update_reo_wnd(struct sock *sk, struct rate_sample *rs); 2409 2410 /* tcp_plb.c */ 2411 2412 /* 2413 * Scaling factor for fractions in PLB. For example, tcp_plb_update_state 2414 * expects cong_ratio which represents fraction of traffic that experienced 2415 * congestion over a single RTT. In order to avoid floating point operations, 2416 * this fraction should be mapped to (1 << TCP_PLB_SCALE) and passed in. 2417 */ 2418 #define TCP_PLB_SCALE 8 2419 2420 /* State for PLB (Protective Load Balancing) for a single TCP connection. */ 2421 struct tcp_plb_state { 2422 u8 consec_cong_rounds:5, /* consecutive congested rounds */ 2423 unused:3; 2424 u32 pause_until; /* jiffies32 when PLB can resume rerouting */ 2425 }; 2426 2427 static inline void tcp_plb_init(const struct sock *sk, 2428 struct tcp_plb_state *plb) 2429 { 2430 plb->consec_cong_rounds = 0; 2431 plb->pause_until = 0; 2432 } 2433 void tcp_plb_update_state(const struct sock *sk, struct tcp_plb_state *plb, 2434 const int cong_ratio); 2435 void tcp_plb_check_rehash(struct sock *sk, struct tcp_plb_state *plb); 2436 void tcp_plb_update_state_upon_rto(struct sock *sk, struct tcp_plb_state *plb); 2437 2438 /* At how many usecs into the future should the RTO fire? */ 2439 static inline s64 tcp_rto_delta_us(const struct sock *sk) 2440 { 2441 const struct sk_buff *skb = tcp_rtx_queue_head(sk); 2442 u32 rto = inet_csk(sk)->icsk_rto; 2443 u64 rto_time_stamp_us = tcp_skb_timestamp_us(skb) + jiffies_to_usecs(rto); 2444 2445 return rto_time_stamp_us - tcp_sk(sk)->tcp_mstamp; 2446 } 2447 2448 /* 2449 * Save and compile IPv4 options, return a pointer to it 2450 */ 2451 static inline struct ip_options_rcu *tcp_v4_save_options(struct net *net, 2452 struct sk_buff *skb) 2453 { 2454 const struct ip_options *opt = &TCP_SKB_CB(skb)->header.h4.opt; 2455 struct ip_options_rcu *dopt = NULL; 2456 2457 if (opt->optlen) { 2458 int opt_size = sizeof(*dopt) + opt->optlen; 2459 2460 dopt = kmalloc(opt_size, GFP_ATOMIC); 2461 if (dopt && __ip_options_echo(net, &dopt->opt, skb, opt)) { 2462 kfree(dopt); 2463 dopt = NULL; 2464 } 2465 } 2466 return dopt; 2467 } 2468 2469 /* locally generated TCP pure ACKs have skb->truesize == 2 2470 * (check tcp_send_ack() in net/ipv4/tcp_output.c ) 2471 * This is much faster than dissecting the packet to find out. 2472 * (Think of GRE encapsulations, IPv4, IPv6, ...) 2473 */ 2474 static inline bool skb_is_tcp_pure_ack(const struct sk_buff *skb) 2475 { 2476 return skb->truesize == 2; 2477 } 2478 2479 static inline void skb_set_tcp_pure_ack(struct sk_buff *skb) 2480 { 2481 skb->truesize = 2; 2482 } 2483 2484 static inline int tcp_inq(struct sock *sk) 2485 { 2486 struct tcp_sock *tp = tcp_sk(sk); 2487 int answ; 2488 2489 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) { 2490 answ = 0; 2491 } else if (sock_flag(sk, SOCK_URGINLINE) || 2492 !tp->urg_data || 2493 before(tp->urg_seq, tp->copied_seq) || 2494 !before(tp->urg_seq, tp->rcv_nxt)) { 2495 2496 answ = tp->rcv_nxt - tp->copied_seq; 2497 2498 /* Subtract 1, if FIN was received */ 2499 if (answ && sock_flag(sk, SOCK_DONE)) 2500 answ--; 2501 } else { 2502 answ = tp->urg_seq - tp->copied_seq; 2503 } 2504 2505 return answ; 2506 } 2507 2508 int tcp_peek_len(struct socket *sock); 2509 2510 static inline void tcp_segs_in(struct tcp_sock *tp, const struct sk_buff *skb) 2511 { 2512 u16 segs_in; 2513 2514 segs_in = max_t(u16, 1, skb_shinfo(skb)->gso_segs); 2515 2516 /* We update these fields while other threads might 2517 * read them from tcp_get_info() 2518 */ 2519 WRITE_ONCE(tp->segs_in, tp->segs_in + segs_in); 2520 if (skb->len > tcp_hdrlen(skb)) 2521 WRITE_ONCE(tp->data_segs_in, tp->data_segs_in + segs_in); 2522 } 2523 2524 /* 2525 * TCP listen path runs lockless. 2526 * We forced "struct sock" to be const qualified to make sure 2527 * we don't modify one of its field by mistake. 2528 * Here, we increment sk_drops which is an atomic_t, so we can safely 2529 * make sock writable again. 2530 */ 2531 static inline void tcp_listendrop(const struct sock *sk) 2532 { 2533 atomic_inc(&((struct sock *)sk)->sk_drops); 2534 __NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENDROPS); 2535 } 2536 2537 enum hrtimer_restart tcp_pace_kick(struct hrtimer *timer); 2538 2539 /* 2540 * Interface for adding Upper Level Protocols over TCP 2541 */ 2542 2543 #define TCP_ULP_NAME_MAX 16 2544 #define TCP_ULP_MAX 128 2545 #define TCP_ULP_BUF_MAX (TCP_ULP_NAME_MAX*TCP_ULP_MAX) 2546 2547 struct tcp_ulp_ops { 2548 struct list_head list; 2549 2550 /* initialize ulp */ 2551 int (*init)(struct sock *sk); 2552 /* update ulp */ 2553 void (*update)(struct sock *sk, struct proto *p, 2554 void (*write_space)(struct sock *sk)); 2555 /* cleanup ulp */ 2556 void (*release)(struct sock *sk); 2557 /* diagnostic */ 2558 int (*get_info)(struct sock *sk, struct sk_buff *skb); 2559 size_t (*get_info_size)(const struct sock *sk); 2560 /* clone ulp */ 2561 void (*clone)(const struct request_sock *req, struct sock *newsk, 2562 const gfp_t priority); 2563 2564 char name[TCP_ULP_NAME_MAX]; 2565 struct module *owner; 2566 }; 2567 int tcp_register_ulp(struct tcp_ulp_ops *type); 2568 void tcp_unregister_ulp(struct tcp_ulp_ops *type); 2569 int tcp_set_ulp(struct sock *sk, const char *name); 2570 void tcp_get_available_ulp(char *buf, size_t len); 2571 void tcp_cleanup_ulp(struct sock *sk); 2572 void tcp_update_ulp(struct sock *sk, struct proto *p, 2573 void (*write_space)(struct sock *sk)); 2574 2575 #define MODULE_ALIAS_TCP_ULP(name) \ 2576 __MODULE_INFO(alias, alias_userspace, name); \ 2577 __MODULE_INFO(alias, alias_tcp_ulp, "tcp-ulp-" name) 2578 2579 #ifdef CONFIG_NET_SOCK_MSG 2580 struct sk_msg; 2581 struct sk_psock; 2582 2583 #ifdef CONFIG_BPF_SYSCALL 2584 int tcp_bpf_update_proto(struct sock *sk, struct sk_psock *psock, bool restore); 2585 void tcp_bpf_clone(const struct sock *sk, struct sock *newsk); 2586 #endif /* CONFIG_BPF_SYSCALL */ 2587 2588 #ifdef CONFIG_INET 2589 void tcp_eat_skb(struct sock *sk, struct sk_buff *skb); 2590 #else 2591 static inline void tcp_eat_skb(struct sock *sk, struct sk_buff *skb) 2592 { 2593 } 2594 #endif 2595 2596 int tcp_bpf_sendmsg_redir(struct sock *sk, bool ingress, 2597 struct sk_msg *msg, u32 bytes, int flags); 2598 #endif /* CONFIG_NET_SOCK_MSG */ 2599 2600 #if !defined(CONFIG_BPF_SYSCALL) || !defined(CONFIG_NET_SOCK_MSG) 2601 static inline void tcp_bpf_clone(const struct sock *sk, struct sock *newsk) 2602 { 2603 } 2604 #endif 2605 2606 #ifdef CONFIG_CGROUP_BPF 2607 static inline void bpf_skops_init_skb(struct bpf_sock_ops_kern *skops, 2608 struct sk_buff *skb, 2609 unsigned int end_offset) 2610 { 2611 skops->skb = skb; 2612 skops->skb_data_end = skb->data + end_offset; 2613 } 2614 #else 2615 static inline void bpf_skops_init_skb(struct bpf_sock_ops_kern *skops, 2616 struct sk_buff *skb, 2617 unsigned int end_offset) 2618 { 2619 } 2620 #endif 2621 2622 /* Call BPF_SOCK_OPS program that returns an int. If the return value 2623 * is < 0, then the BPF op failed (for example if the loaded BPF 2624 * program does not support the chosen operation or there is no BPF 2625 * program loaded). 2626 */ 2627 #ifdef CONFIG_BPF 2628 static inline int tcp_call_bpf(struct sock *sk, int op, u32 nargs, u32 *args) 2629 { 2630 struct bpf_sock_ops_kern sock_ops; 2631 int ret; 2632 2633 memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp)); 2634 if (sk_fullsock(sk)) { 2635 sock_ops.is_fullsock = 1; 2636 sock_owned_by_me(sk); 2637 } 2638 2639 sock_ops.sk = sk; 2640 sock_ops.op = op; 2641 if (nargs > 0) 2642 memcpy(sock_ops.args, args, nargs * sizeof(*args)); 2643 2644 ret = BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops); 2645 if (ret == 0) 2646 ret = sock_ops.reply; 2647 else 2648 ret = -1; 2649 return ret; 2650 } 2651 2652 static inline int tcp_call_bpf_2arg(struct sock *sk, int op, u32 arg1, u32 arg2) 2653 { 2654 u32 args[2] = {arg1, arg2}; 2655 2656 return tcp_call_bpf(sk, op, 2, args); 2657 } 2658 2659 static inline int tcp_call_bpf_3arg(struct sock *sk, int op, u32 arg1, u32 arg2, 2660 u32 arg3) 2661 { 2662 u32 args[3] = {arg1, arg2, arg3}; 2663 2664 return tcp_call_bpf(sk, op, 3, args); 2665 } 2666 2667 #else 2668 static inline int tcp_call_bpf(struct sock *sk, int op, u32 nargs, u32 *args) 2669 { 2670 return -EPERM; 2671 } 2672 2673 static inline int tcp_call_bpf_2arg(struct sock *sk, int op, u32 arg1, u32 arg2) 2674 { 2675 return -EPERM; 2676 } 2677 2678 static inline int tcp_call_bpf_3arg(struct sock *sk, int op, u32 arg1, u32 arg2, 2679 u32 arg3) 2680 { 2681 return -EPERM; 2682 } 2683 2684 #endif 2685 2686 static inline u32 tcp_timeout_init(struct sock *sk) 2687 { 2688 int timeout; 2689 2690 timeout = tcp_call_bpf(sk, BPF_SOCK_OPS_TIMEOUT_INIT, 0, NULL); 2691 2692 if (timeout <= 0) 2693 timeout = TCP_TIMEOUT_INIT; 2694 return min_t(int, timeout, TCP_RTO_MAX); 2695 } 2696 2697 static inline u32 tcp_rwnd_init_bpf(struct sock *sk) 2698 { 2699 int rwnd; 2700 2701 rwnd = tcp_call_bpf(sk, BPF_SOCK_OPS_RWND_INIT, 0, NULL); 2702 2703 if (rwnd < 0) 2704 rwnd = 0; 2705 return rwnd; 2706 } 2707 2708 static inline bool tcp_bpf_ca_needs_ecn(struct sock *sk) 2709 { 2710 return (tcp_call_bpf(sk, BPF_SOCK_OPS_NEEDS_ECN, 0, NULL) == 1); 2711 } 2712 2713 static inline void tcp_bpf_rtt(struct sock *sk) 2714 { 2715 if (BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), BPF_SOCK_OPS_RTT_CB_FLAG)) 2716 tcp_call_bpf(sk, BPF_SOCK_OPS_RTT_CB, 0, NULL); 2717 } 2718 2719 #if IS_ENABLED(CONFIG_SMC) 2720 extern struct static_key_false tcp_have_smc; 2721 #endif 2722 2723 #if IS_ENABLED(CONFIG_TLS_DEVICE) 2724 void clean_acked_data_enable(struct inet_connection_sock *icsk, 2725 void (*cad)(struct sock *sk, u32 ack_seq)); 2726 void clean_acked_data_disable(struct inet_connection_sock *icsk); 2727 void clean_acked_data_flush(void); 2728 #endif 2729 2730 DECLARE_STATIC_KEY_FALSE(tcp_tx_delay_enabled); 2731 static inline void tcp_add_tx_delay(struct sk_buff *skb, 2732 const struct tcp_sock *tp) 2733 { 2734 if (static_branch_unlikely(&tcp_tx_delay_enabled)) 2735 skb->skb_mstamp_ns += (u64)tp->tcp_tx_delay * NSEC_PER_USEC; 2736 } 2737 2738 /* Compute Earliest Departure Time for some control packets 2739 * like ACK or RST for TIME_WAIT or non ESTABLISHED sockets. 2740 */ 2741 static inline u64 tcp_transmit_time(const struct sock *sk) 2742 { 2743 if (static_branch_unlikely(&tcp_tx_delay_enabled)) { 2744 u32 delay = (sk->sk_state == TCP_TIME_WAIT) ? 2745 tcp_twsk(sk)->tw_tx_delay : tcp_sk(sk)->tcp_tx_delay; 2746 2747 return tcp_clock_ns() + (u64)delay * NSEC_PER_USEC; 2748 } 2749 return 0; 2750 } 2751 2752 static inline int tcp_parse_auth_options(const struct tcphdr *th, 2753 const u8 **md5_hash, const struct tcp_ao_hdr **aoh) 2754 { 2755 const u8 *md5_tmp, *ao_tmp; 2756 int ret; 2757 2758 ret = tcp_do_parse_auth_options(th, &md5_tmp, &ao_tmp); 2759 if (ret) 2760 return ret; 2761 2762 if (md5_hash) 2763 *md5_hash = md5_tmp; 2764 2765 if (aoh) { 2766 if (!ao_tmp) 2767 *aoh = NULL; 2768 else 2769 *aoh = (struct tcp_ao_hdr *)(ao_tmp - 2); 2770 } 2771 2772 return 0; 2773 } 2774 2775 static inline bool tcp_ao_required(struct sock *sk, const void *saddr, 2776 int family, int l3index, bool stat_inc) 2777 { 2778 #ifdef CONFIG_TCP_AO 2779 struct tcp_ao_info *ao_info; 2780 struct tcp_ao_key *ao_key; 2781 2782 if (!static_branch_unlikely(&tcp_ao_needed.key)) 2783 return false; 2784 2785 ao_info = rcu_dereference_check(tcp_sk(sk)->ao_info, 2786 lockdep_sock_is_held(sk)); 2787 if (!ao_info) 2788 return false; 2789 2790 ao_key = tcp_ao_do_lookup(sk, l3index, saddr, family, -1, -1); 2791 if (ao_info->ao_required || ao_key) { 2792 if (stat_inc) { 2793 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAOREQUIRED); 2794 atomic64_inc(&ao_info->counters.ao_required); 2795 } 2796 return true; 2797 } 2798 #endif 2799 return false; 2800 } 2801 2802 /* Called with rcu_read_lock() */ 2803 static inline enum skb_drop_reason 2804 tcp_inbound_hash(struct sock *sk, const struct request_sock *req, 2805 const struct sk_buff *skb, 2806 const void *saddr, const void *daddr, 2807 int family, int dif, int sdif) 2808 { 2809 const struct tcphdr *th = tcp_hdr(skb); 2810 const struct tcp_ao_hdr *aoh; 2811 const __u8 *md5_location; 2812 int l3index; 2813 2814 /* Invalid option or two times meet any of auth options */ 2815 if (tcp_parse_auth_options(th, &md5_location, &aoh)) { 2816 tcp_hash_fail("TCP segment has incorrect auth options set", 2817 family, skb, ""); 2818 return SKB_DROP_REASON_TCP_AUTH_HDR; 2819 } 2820 2821 if (req) { 2822 if (tcp_rsk_used_ao(req) != !!aoh) { 2823 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAOBAD); 2824 tcp_hash_fail("TCP connection can't start/end using TCP-AO", 2825 family, skb, "%s", 2826 !aoh ? "missing AO" : "AO signed"); 2827 return SKB_DROP_REASON_TCP_AOFAILURE; 2828 } 2829 } 2830 2831 /* sdif set, means packet ingressed via a device 2832 * in an L3 domain and dif is set to the l3mdev 2833 */ 2834 l3index = sdif ? dif : 0; 2835 2836 /* Fast path: unsigned segments */ 2837 if (likely(!md5_location && !aoh)) { 2838 /* Drop if there's TCP-MD5 or TCP-AO key with any rcvid/sndid 2839 * for the remote peer. On TCP-AO established connection 2840 * the last key is impossible to remove, so there's 2841 * always at least one current_key. 2842 */ 2843 if (tcp_ao_required(sk, saddr, family, l3index, true)) { 2844 tcp_hash_fail("AO hash is required, but not found", 2845 family, skb, "L3 index %d", l3index); 2846 return SKB_DROP_REASON_TCP_AONOTFOUND; 2847 } 2848 if (unlikely(tcp_md5_do_lookup(sk, l3index, saddr, family))) { 2849 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5NOTFOUND); 2850 tcp_hash_fail("MD5 Hash not found", 2851 family, skb, "L3 index %d", l3index); 2852 return SKB_DROP_REASON_TCP_MD5NOTFOUND; 2853 } 2854 return SKB_NOT_DROPPED_YET; 2855 } 2856 2857 if (aoh) 2858 return tcp_inbound_ao_hash(sk, skb, family, req, l3index, aoh); 2859 2860 return tcp_inbound_md5_hash(sk, skb, saddr, daddr, family, 2861 l3index, md5_location); 2862 } 2863 2864 #endif /* _TCP_H */ 2865