xref: /linux/include/net/tcp.h (revision 2aceb896ee18ae35b21b14c978d8c2ef8c7b439d)
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Definitions for the TCP module.
8  *
9  * Version:	@(#)tcp.h	1.0.5	05/23/93
10  *
11  * Authors:	Ross Biro
12  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
13  */
14 #ifndef _TCP_H
15 #define _TCP_H
16 
17 #define FASTRETRANS_DEBUG 1
18 
19 #include <linux/list.h>
20 #include <linux/tcp.h>
21 #include <linux/bug.h>
22 #include <linux/slab.h>
23 #include <linux/cache.h>
24 #include <linux/percpu.h>
25 #include <linux/skbuff.h>
26 #include <linux/kref.h>
27 #include <linux/ktime.h>
28 #include <linux/indirect_call_wrapper.h>
29 
30 #include <net/inet_connection_sock.h>
31 #include <net/inet_timewait_sock.h>
32 #include <net/inet_hashtables.h>
33 #include <net/checksum.h>
34 #include <net/request_sock.h>
35 #include <net/sock_reuseport.h>
36 #include <net/sock.h>
37 #include <net/snmp.h>
38 #include <net/ip.h>
39 #include <net/tcp_states.h>
40 #include <net/inet_ecn.h>
41 #include <net/dst.h>
42 #include <net/mptcp.h>
43 
44 #include <linux/seq_file.h>
45 #include <linux/memcontrol.h>
46 #include <linux/bpf-cgroup.h>
47 #include <linux/siphash.h>
48 
49 extern struct inet_hashinfo tcp_hashinfo;
50 
51 DECLARE_PER_CPU(unsigned int, tcp_orphan_count);
52 int tcp_orphan_count_sum(void);
53 
54 void tcp_time_wait(struct sock *sk, int state, int timeo);
55 
56 #define MAX_TCP_HEADER	L1_CACHE_ALIGN(128 + MAX_HEADER)
57 #define MAX_TCP_OPTION_SPACE 40
58 #define TCP_MIN_SND_MSS		48
59 #define TCP_MIN_GSO_SIZE	(TCP_MIN_SND_MSS - MAX_TCP_OPTION_SPACE)
60 
61 /*
62  * Never offer a window over 32767 without using window scaling. Some
63  * poor stacks do signed 16bit maths!
64  */
65 #define MAX_TCP_WINDOW		32767U
66 
67 /* Minimal accepted MSS. It is (60+60+8) - (20+20). */
68 #define TCP_MIN_MSS		88U
69 
70 /* The initial MTU to use for probing */
71 #define TCP_BASE_MSS		1024
72 
73 /* probing interval, default to 10 minutes as per RFC4821 */
74 #define TCP_PROBE_INTERVAL	600
75 
76 /* Specify interval when tcp mtu probing will stop */
77 #define TCP_PROBE_THRESHOLD	8
78 
79 /* After receiving this amount of duplicate ACKs fast retransmit starts. */
80 #define TCP_FASTRETRANS_THRESH 3
81 
82 /* Maximal number of ACKs sent quickly to accelerate slow-start. */
83 #define TCP_MAX_QUICKACKS	16U
84 
85 /* Maximal number of window scale according to RFC1323 */
86 #define TCP_MAX_WSCALE		14U
87 
88 /* urg_data states */
89 #define TCP_URG_VALID	0x0100
90 #define TCP_URG_NOTYET	0x0200
91 #define TCP_URG_READ	0x0400
92 
93 #define TCP_RETR1	3	/*
94 				 * This is how many retries it does before it
95 				 * tries to figure out if the gateway is
96 				 * down. Minimal RFC value is 3; it corresponds
97 				 * to ~3sec-8min depending on RTO.
98 				 */
99 
100 #define TCP_RETR2	15	/*
101 				 * This should take at least
102 				 * 90 minutes to time out.
103 				 * RFC1122 says that the limit is 100 sec.
104 				 * 15 is ~13-30min depending on RTO.
105 				 */
106 
107 #define TCP_SYN_RETRIES	 6	/* This is how many retries are done
108 				 * when active opening a connection.
109 				 * RFC1122 says the minimum retry MUST
110 				 * be at least 180secs.  Nevertheless
111 				 * this value is corresponding to
112 				 * 63secs of retransmission with the
113 				 * current initial RTO.
114 				 */
115 
116 #define TCP_SYNACK_RETRIES 5	/* This is how may retries are done
117 				 * when passive opening a connection.
118 				 * This is corresponding to 31secs of
119 				 * retransmission with the current
120 				 * initial RTO.
121 				 */
122 
123 #define TCP_TIMEWAIT_LEN (60*HZ) /* how long to wait to destroy TIME-WAIT
124 				  * state, about 60 seconds	*/
125 #define TCP_FIN_TIMEOUT	TCP_TIMEWAIT_LEN
126                                  /* BSD style FIN_WAIT2 deadlock breaker.
127 				  * It used to be 3min, new value is 60sec,
128 				  * to combine FIN-WAIT-2 timeout with
129 				  * TIME-WAIT timer.
130 				  */
131 #define TCP_FIN_TIMEOUT_MAX (120 * HZ) /* max TCP_LINGER2 value (two minutes) */
132 
133 #define TCP_DELACK_MAX	((unsigned)(HZ/5))	/* maximal time to delay before sending an ACK */
134 static_assert((1 << ATO_BITS) > TCP_DELACK_MAX);
135 
136 #if HZ >= 100
137 #define TCP_DELACK_MIN	((unsigned)(HZ/25))	/* minimal time to delay before sending an ACK */
138 #define TCP_ATO_MIN	((unsigned)(HZ/25))
139 #else
140 #define TCP_DELACK_MIN	4U
141 #define TCP_ATO_MIN	4U
142 #endif
143 #define TCP_RTO_MAX	((unsigned)(120*HZ))
144 #define TCP_RTO_MIN	((unsigned)(HZ/5))
145 #define TCP_TIMEOUT_MIN	(2U) /* Min timeout for TCP timers in jiffies */
146 
147 #define TCP_TIMEOUT_MIN_US (2*USEC_PER_MSEC) /* Min TCP timeout in microsecs */
148 
149 #define TCP_TIMEOUT_INIT ((unsigned)(1*HZ))	/* RFC6298 2.1 initial RTO value	*/
150 #define TCP_TIMEOUT_FALLBACK ((unsigned)(3*HZ))	/* RFC 1122 initial RTO value, now
151 						 * used as a fallback RTO for the
152 						 * initial data transmission if no
153 						 * valid RTT sample has been acquired,
154 						 * most likely due to retrans in 3WHS.
155 						 */
156 
157 #define TCP_RESOURCE_PROBE_INTERVAL ((unsigned)(HZ/2U)) /* Maximal interval between probes
158 					                 * for local resources.
159 					                 */
160 #define TCP_KEEPALIVE_TIME	(120*60*HZ)	/* two hours */
161 #define TCP_KEEPALIVE_PROBES	9		/* Max of 9 keepalive probes	*/
162 #define TCP_KEEPALIVE_INTVL	(75*HZ)
163 
164 #define MAX_TCP_KEEPIDLE	32767
165 #define MAX_TCP_KEEPINTVL	32767
166 #define MAX_TCP_KEEPCNT		127
167 #define MAX_TCP_SYNCNT		127
168 
169 #define TCP_PAWS_24DAYS	(60 * 60 * 24 * 24)
170 #define TCP_PAWS_MSL	60		/* Per-host timestamps are invalidated
171 					 * after this time. It should be equal
172 					 * (or greater than) TCP_TIMEWAIT_LEN
173 					 * to provide reliability equal to one
174 					 * provided by timewait state.
175 					 */
176 #define TCP_PAWS_WINDOW	1		/* Replay window for per-host
177 					 * timestamps. It must be less than
178 					 * minimal timewait lifetime.
179 					 */
180 /*
181  *	TCP option
182  */
183 
184 #define TCPOPT_NOP		1	/* Padding */
185 #define TCPOPT_EOL		0	/* End of options */
186 #define TCPOPT_MSS		2	/* Segment size negotiating */
187 #define TCPOPT_WINDOW		3	/* Window scaling */
188 #define TCPOPT_SACK_PERM        4       /* SACK Permitted */
189 #define TCPOPT_SACK             5       /* SACK Block */
190 #define TCPOPT_TIMESTAMP	8	/* Better RTT estimations/PAWS */
191 #define TCPOPT_MD5SIG		19	/* MD5 Signature (RFC2385) */
192 #define TCPOPT_MPTCP		30	/* Multipath TCP (RFC6824) */
193 #define TCPOPT_FASTOPEN		34	/* Fast open (RFC7413) */
194 #define TCPOPT_EXP		254	/* Experimental */
195 /* Magic number to be after the option value for sharing TCP
196  * experimental options. See draft-ietf-tcpm-experimental-options-00.txt
197  */
198 #define TCPOPT_FASTOPEN_MAGIC	0xF989
199 #define TCPOPT_SMC_MAGIC	0xE2D4C3D9
200 
201 /*
202  *     TCP option lengths
203  */
204 
205 #define TCPOLEN_MSS            4
206 #define TCPOLEN_WINDOW         3
207 #define TCPOLEN_SACK_PERM      2
208 #define TCPOLEN_TIMESTAMP      10
209 #define TCPOLEN_MD5SIG         18
210 #define TCPOLEN_FASTOPEN_BASE  2
211 #define TCPOLEN_EXP_FASTOPEN_BASE  4
212 #define TCPOLEN_EXP_SMC_BASE   6
213 
214 /* But this is what stacks really send out. */
215 #define TCPOLEN_TSTAMP_ALIGNED		12
216 #define TCPOLEN_WSCALE_ALIGNED		4
217 #define TCPOLEN_SACKPERM_ALIGNED	4
218 #define TCPOLEN_SACK_BASE		2
219 #define TCPOLEN_SACK_BASE_ALIGNED	4
220 #define TCPOLEN_SACK_PERBLOCK		8
221 #define TCPOLEN_MD5SIG_ALIGNED		20
222 #define TCPOLEN_MSS_ALIGNED		4
223 #define TCPOLEN_EXP_SMC_BASE_ALIGNED	8
224 
225 /* Flags in tp->nonagle */
226 #define TCP_NAGLE_OFF		1	/* Nagle's algo is disabled */
227 #define TCP_NAGLE_CORK		2	/* Socket is corked	    */
228 #define TCP_NAGLE_PUSH		4	/* Cork is overridden for already queued data */
229 
230 /* TCP thin-stream limits */
231 #define TCP_THIN_LINEAR_RETRIES 6       /* After 6 linear retries, do exp. backoff */
232 
233 /* TCP initial congestion window as per rfc6928 */
234 #define TCP_INIT_CWND		10
235 
236 /* Bit Flags for sysctl_tcp_fastopen */
237 #define	TFO_CLIENT_ENABLE	1
238 #define	TFO_SERVER_ENABLE	2
239 #define	TFO_CLIENT_NO_COOKIE	4	/* Data in SYN w/o cookie option */
240 
241 /* Accept SYN data w/o any cookie option */
242 #define	TFO_SERVER_COOKIE_NOT_REQD	0x200
243 
244 /* Force enable TFO on all listeners, i.e., not requiring the
245  * TCP_FASTOPEN socket option.
246  */
247 #define	TFO_SERVER_WO_SOCKOPT1	0x400
248 
249 
250 /* sysctl variables for tcp */
251 extern int sysctl_tcp_max_orphans;
252 extern long sysctl_tcp_mem[3];
253 
254 #define TCP_RACK_LOSS_DETECTION  0x1 /* Use RACK to detect losses */
255 #define TCP_RACK_STATIC_REO_WND  0x2 /* Use static RACK reo wnd */
256 #define TCP_RACK_NO_DUPTHRESH    0x4 /* Do not use DUPACK threshold in RACK */
257 
258 extern atomic_long_t tcp_memory_allocated;
259 DECLARE_PER_CPU(int, tcp_memory_per_cpu_fw_alloc);
260 
261 extern struct percpu_counter tcp_sockets_allocated;
262 extern unsigned long tcp_memory_pressure;
263 
264 /* optimized version of sk_under_memory_pressure() for TCP sockets */
265 static inline bool tcp_under_memory_pressure(const struct sock *sk)
266 {
267 	if (mem_cgroup_sockets_enabled && sk->sk_memcg &&
268 	    mem_cgroup_under_socket_pressure(sk->sk_memcg))
269 		return true;
270 
271 	return READ_ONCE(tcp_memory_pressure);
272 }
273 /*
274  * The next routines deal with comparing 32 bit unsigned ints
275  * and worry about wraparound (automatic with unsigned arithmetic).
276  */
277 
278 static inline bool before(__u32 seq1, __u32 seq2)
279 {
280         return (__s32)(seq1-seq2) < 0;
281 }
282 #define after(seq2, seq1) 	before(seq1, seq2)
283 
284 /* is s2<=s1<=s3 ? */
285 static inline bool between(__u32 seq1, __u32 seq2, __u32 seq3)
286 {
287 	return seq3 - seq2 >= seq1 - seq2;
288 }
289 
290 static inline bool tcp_out_of_memory(struct sock *sk)
291 {
292 	if (sk->sk_wmem_queued > SOCK_MIN_SNDBUF &&
293 	    sk_memory_allocated(sk) > sk_prot_mem_limits(sk, 2))
294 		return true;
295 	return false;
296 }
297 
298 static inline void tcp_wmem_free_skb(struct sock *sk, struct sk_buff *skb)
299 {
300 	sk_wmem_queued_add(sk, -skb->truesize);
301 	if (!skb_zcopy_pure(skb))
302 		sk_mem_uncharge(sk, skb->truesize);
303 	else
304 		sk_mem_uncharge(sk, SKB_TRUESIZE(skb_end_offset(skb)));
305 	__kfree_skb(skb);
306 }
307 
308 void sk_forced_mem_schedule(struct sock *sk, int size);
309 
310 bool tcp_check_oom(struct sock *sk, int shift);
311 
312 
313 extern struct proto tcp_prot;
314 
315 #define TCP_INC_STATS(net, field)	SNMP_INC_STATS((net)->mib.tcp_statistics, field)
316 #define __TCP_INC_STATS(net, field)	__SNMP_INC_STATS((net)->mib.tcp_statistics, field)
317 #define TCP_DEC_STATS(net, field)	SNMP_DEC_STATS((net)->mib.tcp_statistics, field)
318 #define TCP_ADD_STATS(net, field, val)	SNMP_ADD_STATS((net)->mib.tcp_statistics, field, val)
319 
320 void tcp_tasklet_init(void);
321 
322 int tcp_v4_err(struct sk_buff *skb, u32);
323 
324 void tcp_shutdown(struct sock *sk, int how);
325 
326 int tcp_v4_early_demux(struct sk_buff *skb);
327 int tcp_v4_rcv(struct sk_buff *skb);
328 
329 void tcp_remove_empty_skb(struct sock *sk);
330 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size);
331 int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size);
332 int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg, int *copied,
333 			 size_t size, struct ubuf_info *uarg);
334 void tcp_splice_eof(struct socket *sock);
335 int tcp_send_mss(struct sock *sk, int *size_goal, int flags);
336 int tcp_wmem_schedule(struct sock *sk, int copy);
337 void tcp_push(struct sock *sk, int flags, int mss_now, int nonagle,
338 	      int size_goal);
339 void tcp_release_cb(struct sock *sk);
340 void tcp_wfree(struct sk_buff *skb);
341 void tcp_write_timer_handler(struct sock *sk);
342 void tcp_delack_timer_handler(struct sock *sk);
343 int tcp_ioctl(struct sock *sk, int cmd, int *karg);
344 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb);
345 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb);
346 void tcp_rcv_space_adjust(struct sock *sk);
347 int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp);
348 void tcp_twsk_destructor(struct sock *sk);
349 void tcp_twsk_purge(struct list_head *net_exit_list, int family);
350 ssize_t tcp_splice_read(struct socket *sk, loff_t *ppos,
351 			struct pipe_inode_info *pipe, size_t len,
352 			unsigned int flags);
353 struct sk_buff *tcp_stream_alloc_skb(struct sock *sk, gfp_t gfp,
354 				     bool force_schedule);
355 
356 static inline void tcp_dec_quickack_mode(struct sock *sk)
357 {
358 	struct inet_connection_sock *icsk = inet_csk(sk);
359 
360 	if (icsk->icsk_ack.quick) {
361 		/* How many ACKs S/ACKing new data have we sent? */
362 		const unsigned int pkts = inet_csk_ack_scheduled(sk) ? 1 : 0;
363 
364 		if (pkts >= icsk->icsk_ack.quick) {
365 			icsk->icsk_ack.quick = 0;
366 			/* Leaving quickack mode we deflate ATO. */
367 			icsk->icsk_ack.ato   = TCP_ATO_MIN;
368 		} else
369 			icsk->icsk_ack.quick -= pkts;
370 	}
371 }
372 
373 #define	TCP_ECN_OK		1
374 #define	TCP_ECN_QUEUE_CWR	2
375 #define	TCP_ECN_DEMAND_CWR	4
376 #define	TCP_ECN_SEEN		8
377 
378 enum tcp_tw_status {
379 	TCP_TW_SUCCESS = 0,
380 	TCP_TW_RST = 1,
381 	TCP_TW_ACK = 2,
382 	TCP_TW_SYN = 3
383 };
384 
385 
386 enum tcp_tw_status tcp_timewait_state_process(struct inet_timewait_sock *tw,
387 					      struct sk_buff *skb,
388 					      const struct tcphdr *th);
389 struct sock *tcp_check_req(struct sock *sk, struct sk_buff *skb,
390 			   struct request_sock *req, bool fastopen,
391 			   bool *lost_race);
392 int tcp_child_process(struct sock *parent, struct sock *child,
393 		      struct sk_buff *skb);
394 void tcp_enter_loss(struct sock *sk);
395 void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int newly_lost, int flag);
396 void tcp_clear_retrans(struct tcp_sock *tp);
397 void tcp_update_metrics(struct sock *sk);
398 void tcp_init_metrics(struct sock *sk);
399 void tcp_metrics_init(void);
400 bool tcp_peer_is_proven(struct request_sock *req, struct dst_entry *dst);
401 void __tcp_close(struct sock *sk, long timeout);
402 void tcp_close(struct sock *sk, long timeout);
403 void tcp_init_sock(struct sock *sk);
404 void tcp_init_transfer(struct sock *sk, int bpf_op, struct sk_buff *skb);
405 __poll_t tcp_poll(struct file *file, struct socket *sock,
406 		      struct poll_table_struct *wait);
407 int do_tcp_getsockopt(struct sock *sk, int level,
408 		      int optname, sockptr_t optval, sockptr_t optlen);
409 int tcp_getsockopt(struct sock *sk, int level, int optname,
410 		   char __user *optval, int __user *optlen);
411 bool tcp_bpf_bypass_getsockopt(int level, int optname);
412 int do_tcp_setsockopt(struct sock *sk, int level, int optname,
413 		      sockptr_t optval, unsigned int optlen);
414 int tcp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval,
415 		   unsigned int optlen);
416 void tcp_set_keepalive(struct sock *sk, int val);
417 void tcp_syn_ack_timeout(const struct request_sock *req);
418 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len,
419 		int flags, int *addr_len);
420 int tcp_set_rcvlowat(struct sock *sk, int val);
421 int tcp_set_window_clamp(struct sock *sk, int val);
422 void tcp_update_recv_tstamps(struct sk_buff *skb,
423 			     struct scm_timestamping_internal *tss);
424 void tcp_recv_timestamp(struct msghdr *msg, const struct sock *sk,
425 			struct scm_timestamping_internal *tss);
426 void tcp_data_ready(struct sock *sk);
427 #ifdef CONFIG_MMU
428 int tcp_mmap(struct file *file, struct socket *sock,
429 	     struct vm_area_struct *vma);
430 #endif
431 void tcp_parse_options(const struct net *net, const struct sk_buff *skb,
432 		       struct tcp_options_received *opt_rx,
433 		       int estab, struct tcp_fastopen_cookie *foc);
434 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th);
435 
436 /*
437  *	BPF SKB-less helpers
438  */
439 u16 tcp_v4_get_syncookie(struct sock *sk, struct iphdr *iph,
440 			 struct tcphdr *th, u32 *cookie);
441 u16 tcp_v6_get_syncookie(struct sock *sk, struct ipv6hdr *iph,
442 			 struct tcphdr *th, u32 *cookie);
443 u16 tcp_parse_mss_option(const struct tcphdr *th, u16 user_mss);
444 u16 tcp_get_syncookie_mss(struct request_sock_ops *rsk_ops,
445 			  const struct tcp_request_sock_ops *af_ops,
446 			  struct sock *sk, struct tcphdr *th);
447 /*
448  *	TCP v4 functions exported for the inet6 API
449  */
450 
451 void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb);
452 void tcp_v4_mtu_reduced(struct sock *sk);
453 void tcp_req_err(struct sock *sk, u32 seq, bool abort);
454 void tcp_ld_RTO_revert(struct sock *sk, u32 seq);
455 int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb);
456 struct sock *tcp_create_openreq_child(const struct sock *sk,
457 				      struct request_sock *req,
458 				      struct sk_buff *skb);
459 void tcp_ca_openreq_child(struct sock *sk, const struct dst_entry *dst);
460 struct sock *tcp_v4_syn_recv_sock(const struct sock *sk, struct sk_buff *skb,
461 				  struct request_sock *req,
462 				  struct dst_entry *dst,
463 				  struct request_sock *req_unhash,
464 				  bool *own_req);
465 int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb);
466 int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len);
467 int tcp_connect(struct sock *sk);
468 enum tcp_synack_type {
469 	TCP_SYNACK_NORMAL,
470 	TCP_SYNACK_FASTOPEN,
471 	TCP_SYNACK_COOKIE,
472 };
473 struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst,
474 				struct request_sock *req,
475 				struct tcp_fastopen_cookie *foc,
476 				enum tcp_synack_type synack_type,
477 				struct sk_buff *syn_skb);
478 int tcp_disconnect(struct sock *sk, int flags);
479 
480 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb);
481 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size);
482 void inet_sk_rx_dst_set(struct sock *sk, const struct sk_buff *skb);
483 
484 /* From syncookies.c */
485 struct sock *tcp_get_cookie_sock(struct sock *sk, struct sk_buff *skb,
486 				 struct request_sock *req,
487 				 struct dst_entry *dst, u32 tsoff);
488 int __cookie_v4_check(const struct iphdr *iph, const struct tcphdr *th,
489 		      u32 cookie);
490 struct sock *cookie_v4_check(struct sock *sk, struct sk_buff *skb);
491 struct request_sock *cookie_tcp_reqsk_alloc(const struct request_sock_ops *ops,
492 					    const struct tcp_request_sock_ops *af_ops,
493 					    struct sock *sk, struct sk_buff *skb);
494 #ifdef CONFIG_SYN_COOKIES
495 
496 /* Syncookies use a monotonic timer which increments every 60 seconds.
497  * This counter is used both as a hash input and partially encoded into
498  * the cookie value.  A cookie is only validated further if the delta
499  * between the current counter value and the encoded one is less than this,
500  * i.e. a sent cookie is valid only at most for 2*60 seconds (or less if
501  * the counter advances immediately after a cookie is generated).
502  */
503 #define MAX_SYNCOOKIE_AGE	2
504 #define TCP_SYNCOOKIE_PERIOD	(60 * HZ)
505 #define TCP_SYNCOOKIE_VALID	(MAX_SYNCOOKIE_AGE * TCP_SYNCOOKIE_PERIOD)
506 
507 /* syncookies: remember time of last synqueue overflow
508  * But do not dirty this field too often (once per second is enough)
509  * It is racy as we do not hold a lock, but race is very minor.
510  */
511 static inline void tcp_synq_overflow(const struct sock *sk)
512 {
513 	unsigned int last_overflow;
514 	unsigned int now = jiffies;
515 
516 	if (sk->sk_reuseport) {
517 		struct sock_reuseport *reuse;
518 
519 		reuse = rcu_dereference(sk->sk_reuseport_cb);
520 		if (likely(reuse)) {
521 			last_overflow = READ_ONCE(reuse->synq_overflow_ts);
522 			if (!time_between32(now, last_overflow,
523 					    last_overflow + HZ))
524 				WRITE_ONCE(reuse->synq_overflow_ts, now);
525 			return;
526 		}
527 	}
528 
529 	last_overflow = READ_ONCE(tcp_sk(sk)->rx_opt.ts_recent_stamp);
530 	if (!time_between32(now, last_overflow, last_overflow + HZ))
531 		WRITE_ONCE(tcp_sk_rw(sk)->rx_opt.ts_recent_stamp, now);
532 }
533 
534 /* syncookies: no recent synqueue overflow on this listening socket? */
535 static inline bool tcp_synq_no_recent_overflow(const struct sock *sk)
536 {
537 	unsigned int last_overflow;
538 	unsigned int now = jiffies;
539 
540 	if (sk->sk_reuseport) {
541 		struct sock_reuseport *reuse;
542 
543 		reuse = rcu_dereference(sk->sk_reuseport_cb);
544 		if (likely(reuse)) {
545 			last_overflow = READ_ONCE(reuse->synq_overflow_ts);
546 			return !time_between32(now, last_overflow - HZ,
547 					       last_overflow +
548 					       TCP_SYNCOOKIE_VALID);
549 		}
550 	}
551 
552 	last_overflow = READ_ONCE(tcp_sk(sk)->rx_opt.ts_recent_stamp);
553 
554 	/* If last_overflow <= jiffies <= last_overflow + TCP_SYNCOOKIE_VALID,
555 	 * then we're under synflood. However, we have to use
556 	 * 'last_overflow - HZ' as lower bound. That's because a concurrent
557 	 * tcp_synq_overflow() could update .ts_recent_stamp after we read
558 	 * jiffies but before we store .ts_recent_stamp into last_overflow,
559 	 * which could lead to rejecting a valid syncookie.
560 	 */
561 	return !time_between32(now, last_overflow - HZ,
562 			       last_overflow + TCP_SYNCOOKIE_VALID);
563 }
564 
565 static inline u32 tcp_cookie_time(void)
566 {
567 	u64 val = get_jiffies_64();
568 
569 	do_div(val, TCP_SYNCOOKIE_PERIOD);
570 	return val;
571 }
572 
573 u32 __cookie_v4_init_sequence(const struct iphdr *iph, const struct tcphdr *th,
574 			      u16 *mssp);
575 __u32 cookie_v4_init_sequence(const struct sk_buff *skb, __u16 *mss);
576 u64 cookie_init_timestamp(struct request_sock *req, u64 now);
577 bool cookie_timestamp_decode(const struct net *net,
578 			     struct tcp_options_received *opt);
579 bool cookie_ecn_ok(const struct tcp_options_received *opt,
580 		   const struct net *net, const struct dst_entry *dst);
581 
582 /* From net/ipv6/syncookies.c */
583 int __cookie_v6_check(const struct ipv6hdr *iph, const struct tcphdr *th,
584 		      u32 cookie);
585 struct sock *cookie_v6_check(struct sock *sk, struct sk_buff *skb);
586 
587 u32 __cookie_v6_init_sequence(const struct ipv6hdr *iph,
588 			      const struct tcphdr *th, u16 *mssp);
589 __u32 cookie_v6_init_sequence(const struct sk_buff *skb, __u16 *mss);
590 #endif
591 /* tcp_output.c */
592 
593 void tcp_skb_entail(struct sock *sk, struct sk_buff *skb);
594 void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb);
595 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
596 			       int nonagle);
597 int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs);
598 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs);
599 void tcp_retransmit_timer(struct sock *sk);
600 void tcp_xmit_retransmit_queue(struct sock *);
601 void tcp_simple_retransmit(struct sock *);
602 void tcp_enter_recovery(struct sock *sk, bool ece_ack);
603 int tcp_trim_head(struct sock *, struct sk_buff *, u32);
604 enum tcp_queue {
605 	TCP_FRAG_IN_WRITE_QUEUE,
606 	TCP_FRAG_IN_RTX_QUEUE,
607 };
608 int tcp_fragment(struct sock *sk, enum tcp_queue tcp_queue,
609 		 struct sk_buff *skb, u32 len,
610 		 unsigned int mss_now, gfp_t gfp);
611 
612 void tcp_send_probe0(struct sock *);
613 int tcp_write_wakeup(struct sock *, int mib);
614 void tcp_send_fin(struct sock *sk);
615 void tcp_send_active_reset(struct sock *sk, gfp_t priority);
616 int tcp_send_synack(struct sock *);
617 void tcp_push_one(struct sock *, unsigned int mss_now);
618 void __tcp_send_ack(struct sock *sk, u32 rcv_nxt);
619 void tcp_send_ack(struct sock *sk);
620 void tcp_send_delayed_ack(struct sock *sk);
621 void tcp_send_loss_probe(struct sock *sk);
622 bool tcp_schedule_loss_probe(struct sock *sk, bool advancing_rto);
623 void tcp_skb_collapse_tstamp(struct sk_buff *skb,
624 			     const struct sk_buff *next_skb);
625 
626 /* tcp_input.c */
627 void tcp_rearm_rto(struct sock *sk);
628 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req);
629 void tcp_reset(struct sock *sk, struct sk_buff *skb);
630 void tcp_fin(struct sock *sk);
631 void tcp_check_space(struct sock *sk);
632 void tcp_sack_compress_send_ack(struct sock *sk);
633 
634 /* tcp_timer.c */
635 void tcp_init_xmit_timers(struct sock *);
636 static inline void tcp_clear_xmit_timers(struct sock *sk)
637 {
638 	if (hrtimer_try_to_cancel(&tcp_sk(sk)->pacing_timer) == 1)
639 		__sock_put(sk);
640 
641 	if (hrtimer_try_to_cancel(&tcp_sk(sk)->compressed_ack_timer) == 1)
642 		__sock_put(sk);
643 
644 	inet_csk_clear_xmit_timers(sk);
645 }
646 
647 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu);
648 unsigned int tcp_current_mss(struct sock *sk);
649 u32 tcp_clamp_probe0_to_user_timeout(const struct sock *sk, u32 when);
650 
651 /* Bound MSS / TSO packet size with the half of the window */
652 static inline int tcp_bound_to_half_wnd(struct tcp_sock *tp, int pktsize)
653 {
654 	int cutoff;
655 
656 	/* When peer uses tiny windows, there is no use in packetizing
657 	 * to sub-MSS pieces for the sake of SWS or making sure there
658 	 * are enough packets in the pipe for fast recovery.
659 	 *
660 	 * On the other hand, for extremely large MSS devices, handling
661 	 * smaller than MSS windows in this way does make sense.
662 	 */
663 	if (tp->max_window > TCP_MSS_DEFAULT)
664 		cutoff = (tp->max_window >> 1);
665 	else
666 		cutoff = tp->max_window;
667 
668 	if (cutoff && pktsize > cutoff)
669 		return max_t(int, cutoff, 68U - tp->tcp_header_len);
670 	else
671 		return pktsize;
672 }
673 
674 /* tcp.c */
675 void tcp_get_info(struct sock *, struct tcp_info *);
676 
677 /* Read 'sendfile()'-style from a TCP socket */
678 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
679 		  sk_read_actor_t recv_actor);
680 int tcp_read_skb(struct sock *sk, skb_read_actor_t recv_actor);
681 struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off);
682 void tcp_read_done(struct sock *sk, size_t len);
683 
684 void tcp_initialize_rcv_mss(struct sock *sk);
685 
686 int tcp_mtu_to_mss(struct sock *sk, int pmtu);
687 int tcp_mss_to_mtu(struct sock *sk, int mss);
688 void tcp_mtup_init(struct sock *sk);
689 
690 static inline void tcp_bound_rto(const struct sock *sk)
691 {
692 	if (inet_csk(sk)->icsk_rto > TCP_RTO_MAX)
693 		inet_csk(sk)->icsk_rto = TCP_RTO_MAX;
694 }
695 
696 static inline u32 __tcp_set_rto(const struct tcp_sock *tp)
697 {
698 	return usecs_to_jiffies((tp->srtt_us >> 3) + tp->rttvar_us);
699 }
700 
701 static inline void __tcp_fast_path_on(struct tcp_sock *tp, u32 snd_wnd)
702 {
703 	/* mptcp hooks are only on the slow path */
704 	if (sk_is_mptcp((struct sock *)tp))
705 		return;
706 
707 	tp->pred_flags = htonl((tp->tcp_header_len << 26) |
708 			       ntohl(TCP_FLAG_ACK) |
709 			       snd_wnd);
710 }
711 
712 static inline void tcp_fast_path_on(struct tcp_sock *tp)
713 {
714 	__tcp_fast_path_on(tp, tp->snd_wnd >> tp->rx_opt.snd_wscale);
715 }
716 
717 static inline void tcp_fast_path_check(struct sock *sk)
718 {
719 	struct tcp_sock *tp = tcp_sk(sk);
720 
721 	if (RB_EMPTY_ROOT(&tp->out_of_order_queue) &&
722 	    tp->rcv_wnd &&
723 	    atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf &&
724 	    !tp->urg_data)
725 		tcp_fast_path_on(tp);
726 }
727 
728 u32 tcp_delack_max(const struct sock *sk);
729 
730 /* Compute the actual rto_min value */
731 static inline u32 tcp_rto_min(const struct sock *sk)
732 {
733 	const struct dst_entry *dst = __sk_dst_get(sk);
734 	u32 rto_min = inet_csk(sk)->icsk_rto_min;
735 
736 	if (dst && dst_metric_locked(dst, RTAX_RTO_MIN))
737 		rto_min = dst_metric_rtt(dst, RTAX_RTO_MIN);
738 	return rto_min;
739 }
740 
741 static inline u32 tcp_rto_min_us(const struct sock *sk)
742 {
743 	return jiffies_to_usecs(tcp_rto_min(sk));
744 }
745 
746 static inline bool tcp_ca_dst_locked(const struct dst_entry *dst)
747 {
748 	return dst_metric_locked(dst, RTAX_CC_ALGO);
749 }
750 
751 /* Minimum RTT in usec. ~0 means not available. */
752 static inline u32 tcp_min_rtt(const struct tcp_sock *tp)
753 {
754 	return minmax_get(&tp->rtt_min);
755 }
756 
757 /* Compute the actual receive window we are currently advertising.
758  * Rcv_nxt can be after the window if our peer push more data
759  * than the offered window.
760  */
761 static inline u32 tcp_receive_window(const struct tcp_sock *tp)
762 {
763 	s32 win = tp->rcv_wup + tp->rcv_wnd - tp->rcv_nxt;
764 
765 	if (win < 0)
766 		win = 0;
767 	return (u32) win;
768 }
769 
770 /* Choose a new window, without checks for shrinking, and without
771  * scaling applied to the result.  The caller does these things
772  * if necessary.  This is a "raw" window selection.
773  */
774 u32 __tcp_select_window(struct sock *sk);
775 
776 void tcp_send_window_probe(struct sock *sk);
777 
778 /* TCP uses 32bit jiffies to save some space.
779  * Note that this is different from tcp_time_stamp, which
780  * historically has been the same until linux-4.13.
781  */
782 #define tcp_jiffies32 ((u32)jiffies)
783 
784 /*
785  * Deliver a 32bit value for TCP timestamp option (RFC 7323)
786  * It is no longer tied to jiffies, but to 1 ms clock.
787  * Note: double check if you want to use tcp_jiffies32 instead of this.
788  */
789 #define TCP_TS_HZ	1000
790 
791 static inline u64 tcp_clock_ns(void)
792 {
793 	return ktime_get_ns();
794 }
795 
796 static inline u64 tcp_clock_us(void)
797 {
798 	return div_u64(tcp_clock_ns(), NSEC_PER_USEC);
799 }
800 
801 /* This should only be used in contexts where tp->tcp_mstamp is up to date */
802 static inline u32 tcp_time_stamp(const struct tcp_sock *tp)
803 {
804 	return div_u64(tp->tcp_mstamp, USEC_PER_SEC / TCP_TS_HZ);
805 }
806 
807 /* Convert a nsec timestamp into TCP TSval timestamp (ms based currently) */
808 static inline u32 tcp_ns_to_ts(u64 ns)
809 {
810 	return div_u64(ns, NSEC_PER_SEC / TCP_TS_HZ);
811 }
812 
813 /* Could use tcp_clock_us() / 1000, but this version uses a single divide */
814 static inline u32 tcp_time_stamp_raw(void)
815 {
816 	return tcp_ns_to_ts(tcp_clock_ns());
817 }
818 
819 void tcp_mstamp_refresh(struct tcp_sock *tp);
820 
821 static inline u32 tcp_stamp_us_delta(u64 t1, u64 t0)
822 {
823 	return max_t(s64, t1 - t0, 0);
824 }
825 
826 static inline u32 tcp_skb_timestamp(const struct sk_buff *skb)
827 {
828 	return tcp_ns_to_ts(skb->skb_mstamp_ns);
829 }
830 
831 /* provide the departure time in us unit */
832 static inline u64 tcp_skb_timestamp_us(const struct sk_buff *skb)
833 {
834 	return div_u64(skb->skb_mstamp_ns, NSEC_PER_USEC);
835 }
836 
837 
838 #define tcp_flag_byte(th) (((u_int8_t *)th)[13])
839 
840 #define TCPHDR_FIN 0x01
841 #define TCPHDR_SYN 0x02
842 #define TCPHDR_RST 0x04
843 #define TCPHDR_PSH 0x08
844 #define TCPHDR_ACK 0x10
845 #define TCPHDR_URG 0x20
846 #define TCPHDR_ECE 0x40
847 #define TCPHDR_CWR 0x80
848 
849 #define TCPHDR_SYN_ECN	(TCPHDR_SYN | TCPHDR_ECE | TCPHDR_CWR)
850 
851 /* This is what the send packet queuing engine uses to pass
852  * TCP per-packet control information to the transmission code.
853  * We also store the host-order sequence numbers in here too.
854  * This is 44 bytes if IPV6 is enabled.
855  * If this grows please adjust skbuff.h:skbuff->cb[xxx] size appropriately.
856  */
857 struct tcp_skb_cb {
858 	__u32		seq;		/* Starting sequence number	*/
859 	__u32		end_seq;	/* SEQ + FIN + SYN + datalen	*/
860 	union {
861 		/* Note : tcp_tw_isn is used in input path only
862 		 *	  (isn chosen by tcp_timewait_state_process())
863 		 *
864 		 * 	  tcp_gso_segs/size are used in write queue only,
865 		 *	  cf tcp_skb_pcount()/tcp_skb_mss()
866 		 */
867 		__u32		tcp_tw_isn;
868 		struct {
869 			u16	tcp_gso_segs;
870 			u16	tcp_gso_size;
871 		};
872 	};
873 	__u8		tcp_flags;	/* TCP header flags. (tcp[13])	*/
874 
875 	__u8		sacked;		/* State flags for SACK.	*/
876 #define TCPCB_SACKED_ACKED	0x01	/* SKB ACK'd by a SACK block	*/
877 #define TCPCB_SACKED_RETRANS	0x02	/* SKB retransmitted		*/
878 #define TCPCB_LOST		0x04	/* SKB is lost			*/
879 #define TCPCB_TAGBITS		0x07	/* All tag bits			*/
880 #define TCPCB_REPAIRED		0x10	/* SKB repaired (no skb_mstamp_ns)	*/
881 #define TCPCB_EVER_RETRANS	0x80	/* Ever retransmitted frame	*/
882 #define TCPCB_RETRANS		(TCPCB_SACKED_RETRANS|TCPCB_EVER_RETRANS| \
883 				TCPCB_REPAIRED)
884 
885 	__u8		ip_dsfield;	/* IPv4 tos or IPv6 dsfield	*/
886 	__u8		txstamp_ack:1,	/* Record TX timestamp for ack? */
887 			eor:1,		/* Is skb MSG_EOR marked? */
888 			has_rxtstamp:1,	/* SKB has a RX timestamp	*/
889 			unused:5;
890 	__u32		ack_seq;	/* Sequence number ACK'd	*/
891 	union {
892 		struct {
893 #define TCPCB_DELIVERED_CE_MASK ((1U<<20) - 1)
894 			/* There is space for up to 24 bytes */
895 			__u32 is_app_limited:1, /* cwnd not fully used? */
896 			      delivered_ce:20,
897 			      unused:11;
898 			/* pkts S/ACKed so far upon tx of skb, incl retrans: */
899 			__u32 delivered;
900 			/* start of send pipeline phase */
901 			u64 first_tx_mstamp;
902 			/* when we reached the "delivered" count */
903 			u64 delivered_mstamp;
904 		} tx;   /* only used for outgoing skbs */
905 		union {
906 			struct inet_skb_parm	h4;
907 #if IS_ENABLED(CONFIG_IPV6)
908 			struct inet6_skb_parm	h6;
909 #endif
910 		} header;	/* For incoming skbs */
911 	};
912 };
913 
914 #define TCP_SKB_CB(__skb)	((struct tcp_skb_cb *)&((__skb)->cb[0]))
915 
916 extern const struct inet_connection_sock_af_ops ipv4_specific;
917 
918 #if IS_ENABLED(CONFIG_IPV6)
919 /* This is the variant of inet6_iif() that must be used by TCP,
920  * as TCP moves IP6CB into a different location in skb->cb[]
921  */
922 static inline int tcp_v6_iif(const struct sk_buff *skb)
923 {
924 	return TCP_SKB_CB(skb)->header.h6.iif;
925 }
926 
927 static inline int tcp_v6_iif_l3_slave(const struct sk_buff *skb)
928 {
929 	bool l3_slave = ipv6_l3mdev_skb(TCP_SKB_CB(skb)->header.h6.flags);
930 
931 	return l3_slave ? skb->skb_iif : TCP_SKB_CB(skb)->header.h6.iif;
932 }
933 
934 /* TCP_SKB_CB reference means this can not be used from early demux */
935 static inline int tcp_v6_sdif(const struct sk_buff *skb)
936 {
937 #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
938 	if (skb && ipv6_l3mdev_skb(TCP_SKB_CB(skb)->header.h6.flags))
939 		return TCP_SKB_CB(skb)->header.h6.iif;
940 #endif
941 	return 0;
942 }
943 
944 extern const struct inet_connection_sock_af_ops ipv6_specific;
945 
946 INDIRECT_CALLABLE_DECLARE(void tcp_v6_send_check(struct sock *sk, struct sk_buff *skb));
947 INDIRECT_CALLABLE_DECLARE(int tcp_v6_rcv(struct sk_buff *skb));
948 void tcp_v6_early_demux(struct sk_buff *skb);
949 
950 #endif
951 
952 /* TCP_SKB_CB reference means this can not be used from early demux */
953 static inline int tcp_v4_sdif(struct sk_buff *skb)
954 {
955 #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
956 	if (skb && ipv4_l3mdev_skb(TCP_SKB_CB(skb)->header.h4.flags))
957 		return TCP_SKB_CB(skb)->header.h4.iif;
958 #endif
959 	return 0;
960 }
961 
962 /* Due to TSO, an SKB can be composed of multiple actual
963  * packets.  To keep these tracked properly, we use this.
964  */
965 static inline int tcp_skb_pcount(const struct sk_buff *skb)
966 {
967 	return TCP_SKB_CB(skb)->tcp_gso_segs;
968 }
969 
970 static inline void tcp_skb_pcount_set(struct sk_buff *skb, int segs)
971 {
972 	TCP_SKB_CB(skb)->tcp_gso_segs = segs;
973 }
974 
975 static inline void tcp_skb_pcount_add(struct sk_buff *skb, int segs)
976 {
977 	TCP_SKB_CB(skb)->tcp_gso_segs += segs;
978 }
979 
980 /* This is valid iff skb is in write queue and tcp_skb_pcount() > 1. */
981 static inline int tcp_skb_mss(const struct sk_buff *skb)
982 {
983 	return TCP_SKB_CB(skb)->tcp_gso_size;
984 }
985 
986 static inline bool tcp_skb_can_collapse_to(const struct sk_buff *skb)
987 {
988 	return likely(!TCP_SKB_CB(skb)->eor);
989 }
990 
991 static inline bool tcp_skb_can_collapse(const struct sk_buff *to,
992 					const struct sk_buff *from)
993 {
994 	return likely(tcp_skb_can_collapse_to(to) &&
995 		      mptcp_skb_can_collapse(to, from) &&
996 		      skb_pure_zcopy_same(to, from));
997 }
998 
999 /* Events passed to congestion control interface */
1000 enum tcp_ca_event {
1001 	CA_EVENT_TX_START,	/* first transmit when no packets in flight */
1002 	CA_EVENT_CWND_RESTART,	/* congestion window restart */
1003 	CA_EVENT_COMPLETE_CWR,	/* end of congestion recovery */
1004 	CA_EVENT_LOSS,		/* loss timeout */
1005 	CA_EVENT_ECN_NO_CE,	/* ECT set, but not CE marked */
1006 	CA_EVENT_ECN_IS_CE,	/* received CE marked IP packet */
1007 };
1008 
1009 /* Information about inbound ACK, passed to cong_ops->in_ack_event() */
1010 enum tcp_ca_ack_event_flags {
1011 	CA_ACK_SLOWPATH		= (1 << 0),	/* In slow path processing */
1012 	CA_ACK_WIN_UPDATE	= (1 << 1),	/* ACK updated window */
1013 	CA_ACK_ECE		= (1 << 2),	/* ECE bit is set on ack */
1014 };
1015 
1016 /*
1017  * Interface for adding new TCP congestion control handlers
1018  */
1019 #define TCP_CA_NAME_MAX	16
1020 #define TCP_CA_MAX	128
1021 #define TCP_CA_BUF_MAX	(TCP_CA_NAME_MAX*TCP_CA_MAX)
1022 
1023 #define TCP_CA_UNSPEC	0
1024 
1025 /* Algorithm can be set on socket without CAP_NET_ADMIN privileges */
1026 #define TCP_CONG_NON_RESTRICTED 0x1
1027 /* Requires ECN/ECT set on all packets */
1028 #define TCP_CONG_NEEDS_ECN	0x2
1029 #define TCP_CONG_MASK	(TCP_CONG_NON_RESTRICTED | TCP_CONG_NEEDS_ECN)
1030 
1031 union tcp_cc_info;
1032 
1033 struct ack_sample {
1034 	u32 pkts_acked;
1035 	s32 rtt_us;
1036 	u32 in_flight;
1037 };
1038 
1039 /* A rate sample measures the number of (original/retransmitted) data
1040  * packets delivered "delivered" over an interval of time "interval_us".
1041  * The tcp_rate.c code fills in the rate sample, and congestion
1042  * control modules that define a cong_control function to run at the end
1043  * of ACK processing can optionally chose to consult this sample when
1044  * setting cwnd and pacing rate.
1045  * A sample is invalid if "delivered" or "interval_us" is negative.
1046  */
1047 struct rate_sample {
1048 	u64  prior_mstamp; /* starting timestamp for interval */
1049 	u32  prior_delivered;	/* tp->delivered at "prior_mstamp" */
1050 	u32  prior_delivered_ce;/* tp->delivered_ce at "prior_mstamp" */
1051 	s32  delivered;		/* number of packets delivered over interval */
1052 	s32  delivered_ce;	/* number of packets delivered w/ CE marks*/
1053 	long interval_us;	/* time for tp->delivered to incr "delivered" */
1054 	u32 snd_interval_us;	/* snd interval for delivered packets */
1055 	u32 rcv_interval_us;	/* rcv interval for delivered packets */
1056 	long rtt_us;		/* RTT of last (S)ACKed packet (or -1) */
1057 	int  losses;		/* number of packets marked lost upon ACK */
1058 	u32  acked_sacked;	/* number of packets newly (S)ACKed upon ACK */
1059 	u32  prior_in_flight;	/* in flight before this ACK */
1060 	u32  last_end_seq;	/* end_seq of most recently ACKed packet */
1061 	bool is_app_limited;	/* is sample from packet with bubble in pipe? */
1062 	bool is_retrans;	/* is sample from retransmission? */
1063 	bool is_ack_delayed;	/* is this (likely) a delayed ACK? */
1064 };
1065 
1066 struct tcp_congestion_ops {
1067 /* fast path fields are put first to fill one cache line */
1068 
1069 	/* return slow start threshold (required) */
1070 	u32 (*ssthresh)(struct sock *sk);
1071 
1072 	/* do new cwnd calculation (required) */
1073 	void (*cong_avoid)(struct sock *sk, u32 ack, u32 acked);
1074 
1075 	/* call before changing ca_state (optional) */
1076 	void (*set_state)(struct sock *sk, u8 new_state);
1077 
1078 	/* call when cwnd event occurs (optional) */
1079 	void (*cwnd_event)(struct sock *sk, enum tcp_ca_event ev);
1080 
1081 	/* call when ack arrives (optional) */
1082 	void (*in_ack_event)(struct sock *sk, u32 flags);
1083 
1084 	/* hook for packet ack accounting (optional) */
1085 	void (*pkts_acked)(struct sock *sk, const struct ack_sample *sample);
1086 
1087 	/* override sysctl_tcp_min_tso_segs */
1088 	u32 (*min_tso_segs)(struct sock *sk);
1089 
1090 	/* call when packets are delivered to update cwnd and pacing rate,
1091 	 * after all the ca_state processing. (optional)
1092 	 */
1093 	void (*cong_control)(struct sock *sk, const struct rate_sample *rs);
1094 
1095 
1096 	/* new value of cwnd after loss (required) */
1097 	u32  (*undo_cwnd)(struct sock *sk);
1098 	/* returns the multiplier used in tcp_sndbuf_expand (optional) */
1099 	u32 (*sndbuf_expand)(struct sock *sk);
1100 
1101 /* control/slow paths put last */
1102 	/* get info for inet_diag (optional) */
1103 	size_t (*get_info)(struct sock *sk, u32 ext, int *attr,
1104 			   union tcp_cc_info *info);
1105 
1106 	char 			name[TCP_CA_NAME_MAX];
1107 	struct module		*owner;
1108 	struct list_head	list;
1109 	u32			key;
1110 	u32			flags;
1111 
1112 	/* initialize private data (optional) */
1113 	void (*init)(struct sock *sk);
1114 	/* cleanup private data  (optional) */
1115 	void (*release)(struct sock *sk);
1116 } ____cacheline_aligned_in_smp;
1117 
1118 int tcp_register_congestion_control(struct tcp_congestion_ops *type);
1119 void tcp_unregister_congestion_control(struct tcp_congestion_ops *type);
1120 int tcp_update_congestion_control(struct tcp_congestion_ops *type,
1121 				  struct tcp_congestion_ops *old_type);
1122 int tcp_validate_congestion_control(struct tcp_congestion_ops *ca);
1123 
1124 void tcp_assign_congestion_control(struct sock *sk);
1125 void tcp_init_congestion_control(struct sock *sk);
1126 void tcp_cleanup_congestion_control(struct sock *sk);
1127 int tcp_set_default_congestion_control(struct net *net, const char *name);
1128 void tcp_get_default_congestion_control(struct net *net, char *name);
1129 void tcp_get_available_congestion_control(char *buf, size_t len);
1130 void tcp_get_allowed_congestion_control(char *buf, size_t len);
1131 int tcp_set_allowed_congestion_control(char *allowed);
1132 int tcp_set_congestion_control(struct sock *sk, const char *name, bool load,
1133 			       bool cap_net_admin);
1134 u32 tcp_slow_start(struct tcp_sock *tp, u32 acked);
1135 void tcp_cong_avoid_ai(struct tcp_sock *tp, u32 w, u32 acked);
1136 
1137 u32 tcp_reno_ssthresh(struct sock *sk);
1138 u32 tcp_reno_undo_cwnd(struct sock *sk);
1139 void tcp_reno_cong_avoid(struct sock *sk, u32 ack, u32 acked);
1140 extern struct tcp_congestion_ops tcp_reno;
1141 
1142 struct tcp_congestion_ops *tcp_ca_find(const char *name);
1143 struct tcp_congestion_ops *tcp_ca_find_key(u32 key);
1144 u32 tcp_ca_get_key_by_name(struct net *net, const char *name, bool *ecn_ca);
1145 #ifdef CONFIG_INET
1146 char *tcp_ca_get_name_by_key(u32 key, char *buffer);
1147 #else
1148 static inline char *tcp_ca_get_name_by_key(u32 key, char *buffer)
1149 {
1150 	return NULL;
1151 }
1152 #endif
1153 
1154 static inline bool tcp_ca_needs_ecn(const struct sock *sk)
1155 {
1156 	const struct inet_connection_sock *icsk = inet_csk(sk);
1157 
1158 	return icsk->icsk_ca_ops->flags & TCP_CONG_NEEDS_ECN;
1159 }
1160 
1161 static inline void tcp_ca_event(struct sock *sk, const enum tcp_ca_event event)
1162 {
1163 	const struct inet_connection_sock *icsk = inet_csk(sk);
1164 
1165 	if (icsk->icsk_ca_ops->cwnd_event)
1166 		icsk->icsk_ca_ops->cwnd_event(sk, event);
1167 }
1168 
1169 /* From tcp_cong.c */
1170 void tcp_set_ca_state(struct sock *sk, const u8 ca_state);
1171 
1172 /* From tcp_rate.c */
1173 void tcp_rate_skb_sent(struct sock *sk, struct sk_buff *skb);
1174 void tcp_rate_skb_delivered(struct sock *sk, struct sk_buff *skb,
1175 			    struct rate_sample *rs);
1176 void tcp_rate_gen(struct sock *sk, u32 delivered, u32 lost,
1177 		  bool is_sack_reneg, struct rate_sample *rs);
1178 void tcp_rate_check_app_limited(struct sock *sk);
1179 
1180 static inline bool tcp_skb_sent_after(u64 t1, u64 t2, u32 seq1, u32 seq2)
1181 {
1182 	return t1 > t2 || (t1 == t2 && after(seq1, seq2));
1183 }
1184 
1185 /* These functions determine how the current flow behaves in respect of SACK
1186  * handling. SACK is negotiated with the peer, and therefore it can vary
1187  * between different flows.
1188  *
1189  * tcp_is_sack - SACK enabled
1190  * tcp_is_reno - No SACK
1191  */
1192 static inline int tcp_is_sack(const struct tcp_sock *tp)
1193 {
1194 	return likely(tp->rx_opt.sack_ok);
1195 }
1196 
1197 static inline bool tcp_is_reno(const struct tcp_sock *tp)
1198 {
1199 	return !tcp_is_sack(tp);
1200 }
1201 
1202 static inline unsigned int tcp_left_out(const struct tcp_sock *tp)
1203 {
1204 	return tp->sacked_out + tp->lost_out;
1205 }
1206 
1207 /* This determines how many packets are "in the network" to the best
1208  * of our knowledge.  In many cases it is conservative, but where
1209  * detailed information is available from the receiver (via SACK
1210  * blocks etc.) we can make more aggressive calculations.
1211  *
1212  * Use this for decisions involving congestion control, use just
1213  * tp->packets_out to determine if the send queue is empty or not.
1214  *
1215  * Read this equation as:
1216  *
1217  *	"Packets sent once on transmission queue" MINUS
1218  *	"Packets left network, but not honestly ACKed yet" PLUS
1219  *	"Packets fast retransmitted"
1220  */
1221 static inline unsigned int tcp_packets_in_flight(const struct tcp_sock *tp)
1222 {
1223 	return tp->packets_out - tcp_left_out(tp) + tp->retrans_out;
1224 }
1225 
1226 #define TCP_INFINITE_SSTHRESH	0x7fffffff
1227 
1228 static inline u32 tcp_snd_cwnd(const struct tcp_sock *tp)
1229 {
1230 	return tp->snd_cwnd;
1231 }
1232 
1233 static inline void tcp_snd_cwnd_set(struct tcp_sock *tp, u32 val)
1234 {
1235 	WARN_ON_ONCE((int)val <= 0);
1236 	tp->snd_cwnd = val;
1237 }
1238 
1239 static inline bool tcp_in_slow_start(const struct tcp_sock *tp)
1240 {
1241 	return tcp_snd_cwnd(tp) < tp->snd_ssthresh;
1242 }
1243 
1244 static inline bool tcp_in_initial_slowstart(const struct tcp_sock *tp)
1245 {
1246 	return tp->snd_ssthresh >= TCP_INFINITE_SSTHRESH;
1247 }
1248 
1249 static inline bool tcp_in_cwnd_reduction(const struct sock *sk)
1250 {
1251 	return (TCPF_CA_CWR | TCPF_CA_Recovery) &
1252 	       (1 << inet_csk(sk)->icsk_ca_state);
1253 }
1254 
1255 /* If cwnd > ssthresh, we may raise ssthresh to be half-way to cwnd.
1256  * The exception is cwnd reduction phase, when cwnd is decreasing towards
1257  * ssthresh.
1258  */
1259 static inline __u32 tcp_current_ssthresh(const struct sock *sk)
1260 {
1261 	const struct tcp_sock *tp = tcp_sk(sk);
1262 
1263 	if (tcp_in_cwnd_reduction(sk))
1264 		return tp->snd_ssthresh;
1265 	else
1266 		return max(tp->snd_ssthresh,
1267 			   ((tcp_snd_cwnd(tp) >> 1) +
1268 			    (tcp_snd_cwnd(tp) >> 2)));
1269 }
1270 
1271 /* Use define here intentionally to get WARN_ON location shown at the caller */
1272 #define tcp_verify_left_out(tp)	WARN_ON(tcp_left_out(tp) > tp->packets_out)
1273 
1274 void tcp_enter_cwr(struct sock *sk);
1275 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst);
1276 
1277 /* The maximum number of MSS of available cwnd for which TSO defers
1278  * sending if not using sysctl_tcp_tso_win_divisor.
1279  */
1280 static inline __u32 tcp_max_tso_deferred_mss(const struct tcp_sock *tp)
1281 {
1282 	return 3;
1283 }
1284 
1285 /* Returns end sequence number of the receiver's advertised window */
1286 static inline u32 tcp_wnd_end(const struct tcp_sock *tp)
1287 {
1288 	return tp->snd_una + tp->snd_wnd;
1289 }
1290 
1291 /* We follow the spirit of RFC2861 to validate cwnd but implement a more
1292  * flexible approach. The RFC suggests cwnd should not be raised unless
1293  * it was fully used previously. And that's exactly what we do in
1294  * congestion avoidance mode. But in slow start we allow cwnd to grow
1295  * as long as the application has used half the cwnd.
1296  * Example :
1297  *    cwnd is 10 (IW10), but application sends 9 frames.
1298  *    We allow cwnd to reach 18 when all frames are ACKed.
1299  * This check is safe because it's as aggressive as slow start which already
1300  * risks 100% overshoot. The advantage is that we discourage application to
1301  * either send more filler packets or data to artificially blow up the cwnd
1302  * usage, and allow application-limited process to probe bw more aggressively.
1303  */
1304 static inline bool tcp_is_cwnd_limited(const struct sock *sk)
1305 {
1306 	const struct tcp_sock *tp = tcp_sk(sk);
1307 
1308 	if (tp->is_cwnd_limited)
1309 		return true;
1310 
1311 	/* If in slow start, ensure cwnd grows to twice what was ACKed. */
1312 	if (tcp_in_slow_start(tp))
1313 		return tcp_snd_cwnd(tp) < 2 * tp->max_packets_out;
1314 
1315 	return false;
1316 }
1317 
1318 /* BBR congestion control needs pacing.
1319  * Same remark for SO_MAX_PACING_RATE.
1320  * sch_fq packet scheduler is efficiently handling pacing,
1321  * but is not always installed/used.
1322  * Return true if TCP stack should pace packets itself.
1323  */
1324 static inline bool tcp_needs_internal_pacing(const struct sock *sk)
1325 {
1326 	return smp_load_acquire(&sk->sk_pacing_status) == SK_PACING_NEEDED;
1327 }
1328 
1329 /* Estimates in how many jiffies next packet for this flow can be sent.
1330  * Scheduling a retransmit timer too early would be silly.
1331  */
1332 static inline unsigned long tcp_pacing_delay(const struct sock *sk)
1333 {
1334 	s64 delay = tcp_sk(sk)->tcp_wstamp_ns - tcp_sk(sk)->tcp_clock_cache;
1335 
1336 	return delay > 0 ? nsecs_to_jiffies(delay) : 0;
1337 }
1338 
1339 static inline void tcp_reset_xmit_timer(struct sock *sk,
1340 					const int what,
1341 					unsigned long when,
1342 					const unsigned long max_when)
1343 {
1344 	inet_csk_reset_xmit_timer(sk, what, when + tcp_pacing_delay(sk),
1345 				  max_when);
1346 }
1347 
1348 /* Something is really bad, we could not queue an additional packet,
1349  * because qdisc is full or receiver sent a 0 window, or we are paced.
1350  * We do not want to add fuel to the fire, or abort too early,
1351  * so make sure the timer we arm now is at least 200ms in the future,
1352  * regardless of current icsk_rto value (as it could be ~2ms)
1353  */
1354 static inline unsigned long tcp_probe0_base(const struct sock *sk)
1355 {
1356 	return max_t(unsigned long, inet_csk(sk)->icsk_rto, TCP_RTO_MIN);
1357 }
1358 
1359 /* Variant of inet_csk_rto_backoff() used for zero window probes */
1360 static inline unsigned long tcp_probe0_when(const struct sock *sk,
1361 					    unsigned long max_when)
1362 {
1363 	u8 backoff = min_t(u8, ilog2(TCP_RTO_MAX / TCP_RTO_MIN) + 1,
1364 			   inet_csk(sk)->icsk_backoff);
1365 	u64 when = (u64)tcp_probe0_base(sk) << backoff;
1366 
1367 	return (unsigned long)min_t(u64, when, max_when);
1368 }
1369 
1370 static inline void tcp_check_probe_timer(struct sock *sk)
1371 {
1372 	if (!tcp_sk(sk)->packets_out && !inet_csk(sk)->icsk_pending)
1373 		tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
1374 				     tcp_probe0_base(sk), TCP_RTO_MAX);
1375 }
1376 
1377 static inline void tcp_init_wl(struct tcp_sock *tp, u32 seq)
1378 {
1379 	tp->snd_wl1 = seq;
1380 }
1381 
1382 static inline void tcp_update_wl(struct tcp_sock *tp, u32 seq)
1383 {
1384 	tp->snd_wl1 = seq;
1385 }
1386 
1387 /*
1388  * Calculate(/check) TCP checksum
1389  */
1390 static inline __sum16 tcp_v4_check(int len, __be32 saddr,
1391 				   __be32 daddr, __wsum base)
1392 {
1393 	return csum_tcpudp_magic(saddr, daddr, len, IPPROTO_TCP, base);
1394 }
1395 
1396 static inline bool tcp_checksum_complete(struct sk_buff *skb)
1397 {
1398 	return !skb_csum_unnecessary(skb) &&
1399 		__skb_checksum_complete(skb);
1400 }
1401 
1402 bool tcp_add_backlog(struct sock *sk, struct sk_buff *skb,
1403 		     enum skb_drop_reason *reason);
1404 
1405 
1406 int tcp_filter(struct sock *sk, struct sk_buff *skb);
1407 void tcp_set_state(struct sock *sk, int state);
1408 void tcp_done(struct sock *sk);
1409 int tcp_abort(struct sock *sk, int err);
1410 
1411 static inline void tcp_sack_reset(struct tcp_options_received *rx_opt)
1412 {
1413 	rx_opt->dsack = 0;
1414 	rx_opt->num_sacks = 0;
1415 }
1416 
1417 void tcp_cwnd_restart(struct sock *sk, s32 delta);
1418 
1419 static inline void tcp_slow_start_after_idle_check(struct sock *sk)
1420 {
1421 	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1422 	struct tcp_sock *tp = tcp_sk(sk);
1423 	s32 delta;
1424 
1425 	if (!READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_slow_start_after_idle) ||
1426 	    tp->packets_out || ca_ops->cong_control)
1427 		return;
1428 	delta = tcp_jiffies32 - tp->lsndtime;
1429 	if (delta > inet_csk(sk)->icsk_rto)
1430 		tcp_cwnd_restart(sk, delta);
1431 }
1432 
1433 /* Determine a window scaling and initial window to offer. */
1434 void tcp_select_initial_window(const struct sock *sk, int __space,
1435 			       __u32 mss, __u32 *rcv_wnd,
1436 			       __u32 *window_clamp, int wscale_ok,
1437 			       __u8 *rcv_wscale, __u32 init_rcv_wnd);
1438 
1439 static inline int __tcp_win_from_space(u8 scaling_ratio, int space)
1440 {
1441 	s64 scaled_space = (s64)space * scaling_ratio;
1442 
1443 	return scaled_space >> TCP_RMEM_TO_WIN_SCALE;
1444 }
1445 
1446 static inline int tcp_win_from_space(const struct sock *sk, int space)
1447 {
1448 	return __tcp_win_from_space(tcp_sk(sk)->scaling_ratio, space);
1449 }
1450 
1451 /* inverse of __tcp_win_from_space() */
1452 static inline int __tcp_space_from_win(u8 scaling_ratio, int win)
1453 {
1454 	u64 val = (u64)win << TCP_RMEM_TO_WIN_SCALE;
1455 
1456 	do_div(val, scaling_ratio);
1457 	return val;
1458 }
1459 
1460 static inline int tcp_space_from_win(const struct sock *sk, int win)
1461 {
1462 	return __tcp_space_from_win(tcp_sk(sk)->scaling_ratio, win);
1463 }
1464 
1465 static inline void tcp_scaling_ratio_init(struct sock *sk)
1466 {
1467 	/* Assume a conservative default of 1200 bytes of payload per 4K page.
1468 	 * This may be adjusted later in tcp_measure_rcv_mss().
1469 	 */
1470 	tcp_sk(sk)->scaling_ratio = (1200 << TCP_RMEM_TO_WIN_SCALE) /
1471 				    SKB_TRUESIZE(4096);
1472 }
1473 
1474 /* Note: caller must be prepared to deal with negative returns */
1475 static inline int tcp_space(const struct sock *sk)
1476 {
1477 	return tcp_win_from_space(sk, READ_ONCE(sk->sk_rcvbuf) -
1478 				  READ_ONCE(sk->sk_backlog.len) -
1479 				  atomic_read(&sk->sk_rmem_alloc));
1480 }
1481 
1482 static inline int tcp_full_space(const struct sock *sk)
1483 {
1484 	return tcp_win_from_space(sk, READ_ONCE(sk->sk_rcvbuf));
1485 }
1486 
1487 static inline void tcp_adjust_rcv_ssthresh(struct sock *sk)
1488 {
1489 	int unused_mem = sk_unused_reserved_mem(sk);
1490 	struct tcp_sock *tp = tcp_sk(sk);
1491 
1492 	tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
1493 	if (unused_mem)
1494 		tp->rcv_ssthresh = max_t(u32, tp->rcv_ssthresh,
1495 					 tcp_win_from_space(sk, unused_mem));
1496 }
1497 
1498 void tcp_cleanup_rbuf(struct sock *sk, int copied);
1499 void __tcp_cleanup_rbuf(struct sock *sk, int copied);
1500 
1501 
1502 /* We provision sk_rcvbuf around 200% of sk_rcvlowat.
1503  * If 87.5 % (7/8) of the space has been consumed, we want to override
1504  * SO_RCVLOWAT constraint, since we are receiving skbs with too small
1505  * len/truesize ratio.
1506  */
1507 static inline bool tcp_rmem_pressure(const struct sock *sk)
1508 {
1509 	int rcvbuf, threshold;
1510 
1511 	if (tcp_under_memory_pressure(sk))
1512 		return true;
1513 
1514 	rcvbuf = READ_ONCE(sk->sk_rcvbuf);
1515 	threshold = rcvbuf - (rcvbuf >> 3);
1516 
1517 	return atomic_read(&sk->sk_rmem_alloc) > threshold;
1518 }
1519 
1520 static inline bool tcp_epollin_ready(const struct sock *sk, int target)
1521 {
1522 	const struct tcp_sock *tp = tcp_sk(sk);
1523 	int avail = READ_ONCE(tp->rcv_nxt) - READ_ONCE(tp->copied_seq);
1524 
1525 	if (avail <= 0)
1526 		return false;
1527 
1528 	return (avail >= target) || tcp_rmem_pressure(sk) ||
1529 	       (tcp_receive_window(tp) <= inet_csk(sk)->icsk_ack.rcv_mss);
1530 }
1531 
1532 extern void tcp_openreq_init_rwin(struct request_sock *req,
1533 				  const struct sock *sk_listener,
1534 				  const struct dst_entry *dst);
1535 
1536 void tcp_enter_memory_pressure(struct sock *sk);
1537 void tcp_leave_memory_pressure(struct sock *sk);
1538 
1539 static inline int keepalive_intvl_when(const struct tcp_sock *tp)
1540 {
1541 	struct net *net = sock_net((struct sock *)tp);
1542 	int val;
1543 
1544 	/* Paired with WRITE_ONCE() in tcp_sock_set_keepintvl()
1545 	 * and do_tcp_setsockopt().
1546 	 */
1547 	val = READ_ONCE(tp->keepalive_intvl);
1548 
1549 	return val ? : READ_ONCE(net->ipv4.sysctl_tcp_keepalive_intvl);
1550 }
1551 
1552 static inline int keepalive_time_when(const struct tcp_sock *tp)
1553 {
1554 	struct net *net = sock_net((struct sock *)tp);
1555 	int val;
1556 
1557 	/* Paired with WRITE_ONCE() in tcp_sock_set_keepidle_locked() */
1558 	val = READ_ONCE(tp->keepalive_time);
1559 
1560 	return val ? : READ_ONCE(net->ipv4.sysctl_tcp_keepalive_time);
1561 }
1562 
1563 static inline int keepalive_probes(const struct tcp_sock *tp)
1564 {
1565 	struct net *net = sock_net((struct sock *)tp);
1566 	int val;
1567 
1568 	/* Paired with WRITE_ONCE() in tcp_sock_set_keepcnt()
1569 	 * and do_tcp_setsockopt().
1570 	 */
1571 	val = READ_ONCE(tp->keepalive_probes);
1572 
1573 	return val ? : READ_ONCE(net->ipv4.sysctl_tcp_keepalive_probes);
1574 }
1575 
1576 static inline u32 keepalive_time_elapsed(const struct tcp_sock *tp)
1577 {
1578 	const struct inet_connection_sock *icsk = &tp->inet_conn;
1579 
1580 	return min_t(u32, tcp_jiffies32 - icsk->icsk_ack.lrcvtime,
1581 			  tcp_jiffies32 - tp->rcv_tstamp);
1582 }
1583 
1584 static inline int tcp_fin_time(const struct sock *sk)
1585 {
1586 	int fin_timeout = tcp_sk(sk)->linger2 ? :
1587 		READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_fin_timeout);
1588 	const int rto = inet_csk(sk)->icsk_rto;
1589 
1590 	if (fin_timeout < (rto << 2) - (rto >> 1))
1591 		fin_timeout = (rto << 2) - (rto >> 1);
1592 
1593 	return fin_timeout;
1594 }
1595 
1596 static inline bool tcp_paws_check(const struct tcp_options_received *rx_opt,
1597 				  int paws_win)
1598 {
1599 	if ((s32)(rx_opt->ts_recent - rx_opt->rcv_tsval) <= paws_win)
1600 		return true;
1601 	if (unlikely(!time_before32(ktime_get_seconds(),
1602 				    rx_opt->ts_recent_stamp + TCP_PAWS_24DAYS)))
1603 		return true;
1604 	/*
1605 	 * Some OSes send SYN and SYNACK messages with tsval=0 tsecr=0,
1606 	 * then following tcp messages have valid values. Ignore 0 value,
1607 	 * or else 'negative' tsval might forbid us to accept their packets.
1608 	 */
1609 	if (!rx_opt->ts_recent)
1610 		return true;
1611 	return false;
1612 }
1613 
1614 static inline bool tcp_paws_reject(const struct tcp_options_received *rx_opt,
1615 				   int rst)
1616 {
1617 	if (tcp_paws_check(rx_opt, 0))
1618 		return false;
1619 
1620 	/* RST segments are not recommended to carry timestamp,
1621 	   and, if they do, it is recommended to ignore PAWS because
1622 	   "their cleanup function should take precedence over timestamps."
1623 	   Certainly, it is mistake. It is necessary to understand the reasons
1624 	   of this constraint to relax it: if peer reboots, clock may go
1625 	   out-of-sync and half-open connections will not be reset.
1626 	   Actually, the problem would be not existing if all
1627 	   the implementations followed draft about maintaining clock
1628 	   via reboots. Linux-2.2 DOES NOT!
1629 
1630 	   However, we can relax time bounds for RST segments to MSL.
1631 	 */
1632 	if (rst && !time_before32(ktime_get_seconds(),
1633 				  rx_opt->ts_recent_stamp + TCP_PAWS_MSL))
1634 		return false;
1635 	return true;
1636 }
1637 
1638 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
1639 			  int mib_idx, u32 *last_oow_ack_time);
1640 
1641 static inline void tcp_mib_init(struct net *net)
1642 {
1643 	/* See RFC 2012 */
1644 	TCP_ADD_STATS(net, TCP_MIB_RTOALGORITHM, 1);
1645 	TCP_ADD_STATS(net, TCP_MIB_RTOMIN, TCP_RTO_MIN*1000/HZ);
1646 	TCP_ADD_STATS(net, TCP_MIB_RTOMAX, TCP_RTO_MAX*1000/HZ);
1647 	TCP_ADD_STATS(net, TCP_MIB_MAXCONN, -1);
1648 }
1649 
1650 /* from STCP */
1651 static inline void tcp_clear_retrans_hints_partial(struct tcp_sock *tp)
1652 {
1653 	tp->lost_skb_hint = NULL;
1654 }
1655 
1656 static inline void tcp_clear_all_retrans_hints(struct tcp_sock *tp)
1657 {
1658 	tcp_clear_retrans_hints_partial(tp);
1659 	tp->retransmit_skb_hint = NULL;
1660 }
1661 
1662 union tcp_md5_addr {
1663 	struct in_addr  a4;
1664 #if IS_ENABLED(CONFIG_IPV6)
1665 	struct in6_addr	a6;
1666 #endif
1667 };
1668 
1669 /* - key database */
1670 struct tcp_md5sig_key {
1671 	struct hlist_node	node;
1672 	u8			keylen;
1673 	u8			family; /* AF_INET or AF_INET6 */
1674 	u8			prefixlen;
1675 	u8			flags;
1676 	union tcp_md5_addr	addr;
1677 	int			l3index; /* set if key added with L3 scope */
1678 	u8			key[TCP_MD5SIG_MAXKEYLEN];
1679 	struct rcu_head		rcu;
1680 };
1681 
1682 /* - sock block */
1683 struct tcp_md5sig_info {
1684 	struct hlist_head	head;
1685 	struct rcu_head		rcu;
1686 };
1687 
1688 /* - pseudo header */
1689 struct tcp4_pseudohdr {
1690 	__be32		saddr;
1691 	__be32		daddr;
1692 	__u8		pad;
1693 	__u8		protocol;
1694 	__be16		len;
1695 };
1696 
1697 struct tcp6_pseudohdr {
1698 	struct in6_addr	saddr;
1699 	struct in6_addr daddr;
1700 	__be32		len;
1701 	__be32		protocol;	/* including padding */
1702 };
1703 
1704 union tcp_md5sum_block {
1705 	struct tcp4_pseudohdr ip4;
1706 #if IS_ENABLED(CONFIG_IPV6)
1707 	struct tcp6_pseudohdr ip6;
1708 #endif
1709 };
1710 
1711 /* - pool: digest algorithm, hash description and scratch buffer */
1712 struct tcp_md5sig_pool {
1713 	struct ahash_request	*md5_req;
1714 	void			*scratch;
1715 };
1716 
1717 /* - functions */
1718 int tcp_v4_md5_hash_skb(char *md5_hash, const struct tcp_md5sig_key *key,
1719 			const struct sock *sk, const struct sk_buff *skb);
1720 int tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr,
1721 		   int family, u8 prefixlen, int l3index, u8 flags,
1722 		   const u8 *newkey, u8 newkeylen);
1723 int tcp_md5_key_copy(struct sock *sk, const union tcp_md5_addr *addr,
1724 		     int family, u8 prefixlen, int l3index,
1725 		     struct tcp_md5sig_key *key);
1726 
1727 int tcp_md5_do_del(struct sock *sk, const union tcp_md5_addr *addr,
1728 		   int family, u8 prefixlen, int l3index, u8 flags);
1729 struct tcp_md5sig_key *tcp_v4_md5_lookup(const struct sock *sk,
1730 					 const struct sock *addr_sk);
1731 
1732 #ifdef CONFIG_TCP_MD5SIG
1733 #include <linux/jump_label.h>
1734 extern struct static_key_false_deferred tcp_md5_needed;
1735 struct tcp_md5sig_key *__tcp_md5_do_lookup(const struct sock *sk, int l3index,
1736 					   const union tcp_md5_addr *addr,
1737 					   int family);
1738 static inline struct tcp_md5sig_key *
1739 tcp_md5_do_lookup(const struct sock *sk, int l3index,
1740 		  const union tcp_md5_addr *addr, int family)
1741 {
1742 	if (!static_branch_unlikely(&tcp_md5_needed.key))
1743 		return NULL;
1744 	return __tcp_md5_do_lookup(sk, l3index, addr, family);
1745 }
1746 
1747 enum skb_drop_reason
1748 tcp_inbound_md5_hash(const struct sock *sk, const struct sk_buff *skb,
1749 		     const void *saddr, const void *daddr,
1750 		     int family, int dif, int sdif);
1751 
1752 
1753 #define tcp_twsk_md5_key(twsk)	((twsk)->tw_md5_key)
1754 #else
1755 static inline struct tcp_md5sig_key *
1756 tcp_md5_do_lookup(const struct sock *sk, int l3index,
1757 		  const union tcp_md5_addr *addr, int family)
1758 {
1759 	return NULL;
1760 }
1761 
1762 static inline enum skb_drop_reason
1763 tcp_inbound_md5_hash(const struct sock *sk, const struct sk_buff *skb,
1764 		     const void *saddr, const void *daddr,
1765 		     int family, int dif, int sdif)
1766 {
1767 	return SKB_NOT_DROPPED_YET;
1768 }
1769 #define tcp_twsk_md5_key(twsk)	NULL
1770 #endif
1771 
1772 bool tcp_alloc_md5sig_pool(void);
1773 
1774 struct tcp_md5sig_pool *tcp_get_md5sig_pool(void);
1775 static inline void tcp_put_md5sig_pool(void)
1776 {
1777 	local_bh_enable();
1778 }
1779 
1780 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *, const struct sk_buff *,
1781 			  unsigned int header_len);
1782 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp,
1783 		     const struct tcp_md5sig_key *key);
1784 
1785 /* From tcp_fastopen.c */
1786 void tcp_fastopen_cache_get(struct sock *sk, u16 *mss,
1787 			    struct tcp_fastopen_cookie *cookie);
1788 void tcp_fastopen_cache_set(struct sock *sk, u16 mss,
1789 			    struct tcp_fastopen_cookie *cookie, bool syn_lost,
1790 			    u16 try_exp);
1791 struct tcp_fastopen_request {
1792 	/* Fast Open cookie. Size 0 means a cookie request */
1793 	struct tcp_fastopen_cookie	cookie;
1794 	struct msghdr			*data;  /* data in MSG_FASTOPEN */
1795 	size_t				size;
1796 	int				copied;	/* queued in tcp_connect() */
1797 	struct ubuf_info		*uarg;
1798 };
1799 void tcp_free_fastopen_req(struct tcp_sock *tp);
1800 void tcp_fastopen_destroy_cipher(struct sock *sk);
1801 void tcp_fastopen_ctx_destroy(struct net *net);
1802 int tcp_fastopen_reset_cipher(struct net *net, struct sock *sk,
1803 			      void *primary_key, void *backup_key);
1804 int tcp_fastopen_get_cipher(struct net *net, struct inet_connection_sock *icsk,
1805 			    u64 *key);
1806 void tcp_fastopen_add_skb(struct sock *sk, struct sk_buff *skb);
1807 struct sock *tcp_try_fastopen(struct sock *sk, struct sk_buff *skb,
1808 			      struct request_sock *req,
1809 			      struct tcp_fastopen_cookie *foc,
1810 			      const struct dst_entry *dst);
1811 void tcp_fastopen_init_key_once(struct net *net);
1812 bool tcp_fastopen_cookie_check(struct sock *sk, u16 *mss,
1813 			     struct tcp_fastopen_cookie *cookie);
1814 bool tcp_fastopen_defer_connect(struct sock *sk, int *err);
1815 #define TCP_FASTOPEN_KEY_LENGTH sizeof(siphash_key_t)
1816 #define TCP_FASTOPEN_KEY_MAX 2
1817 #define TCP_FASTOPEN_KEY_BUF_LENGTH \
1818 	(TCP_FASTOPEN_KEY_LENGTH * TCP_FASTOPEN_KEY_MAX)
1819 
1820 /* Fastopen key context */
1821 struct tcp_fastopen_context {
1822 	siphash_key_t	key[TCP_FASTOPEN_KEY_MAX];
1823 	int		num;
1824 	struct rcu_head	rcu;
1825 };
1826 
1827 void tcp_fastopen_active_disable(struct sock *sk);
1828 bool tcp_fastopen_active_should_disable(struct sock *sk);
1829 void tcp_fastopen_active_disable_ofo_check(struct sock *sk);
1830 void tcp_fastopen_active_detect_blackhole(struct sock *sk, bool expired);
1831 
1832 /* Caller needs to wrap with rcu_read_(un)lock() */
1833 static inline
1834 struct tcp_fastopen_context *tcp_fastopen_get_ctx(const struct sock *sk)
1835 {
1836 	struct tcp_fastopen_context *ctx;
1837 
1838 	ctx = rcu_dereference(inet_csk(sk)->icsk_accept_queue.fastopenq.ctx);
1839 	if (!ctx)
1840 		ctx = rcu_dereference(sock_net(sk)->ipv4.tcp_fastopen_ctx);
1841 	return ctx;
1842 }
1843 
1844 static inline
1845 bool tcp_fastopen_cookie_match(const struct tcp_fastopen_cookie *foc,
1846 			       const struct tcp_fastopen_cookie *orig)
1847 {
1848 	if (orig->len == TCP_FASTOPEN_COOKIE_SIZE &&
1849 	    orig->len == foc->len &&
1850 	    !memcmp(orig->val, foc->val, foc->len))
1851 		return true;
1852 	return false;
1853 }
1854 
1855 static inline
1856 int tcp_fastopen_context_len(const struct tcp_fastopen_context *ctx)
1857 {
1858 	return ctx->num;
1859 }
1860 
1861 /* Latencies incurred by various limits for a sender. They are
1862  * chronograph-like stats that are mutually exclusive.
1863  */
1864 enum tcp_chrono {
1865 	TCP_CHRONO_UNSPEC,
1866 	TCP_CHRONO_BUSY, /* Actively sending data (non-empty write queue) */
1867 	TCP_CHRONO_RWND_LIMITED, /* Stalled by insufficient receive window */
1868 	TCP_CHRONO_SNDBUF_LIMITED, /* Stalled by insufficient send buffer */
1869 	__TCP_CHRONO_MAX,
1870 };
1871 
1872 void tcp_chrono_start(struct sock *sk, const enum tcp_chrono type);
1873 void tcp_chrono_stop(struct sock *sk, const enum tcp_chrono type);
1874 
1875 /* This helper is needed, because skb->tcp_tsorted_anchor uses
1876  * the same memory storage than skb->destructor/_skb_refdst
1877  */
1878 static inline void tcp_skb_tsorted_anchor_cleanup(struct sk_buff *skb)
1879 {
1880 	skb->destructor = NULL;
1881 	skb->_skb_refdst = 0UL;
1882 }
1883 
1884 #define tcp_skb_tsorted_save(skb) {		\
1885 	unsigned long _save = skb->_skb_refdst;	\
1886 	skb->_skb_refdst = 0UL;
1887 
1888 #define tcp_skb_tsorted_restore(skb)		\
1889 	skb->_skb_refdst = _save;		\
1890 }
1891 
1892 void tcp_write_queue_purge(struct sock *sk);
1893 
1894 static inline struct sk_buff *tcp_rtx_queue_head(const struct sock *sk)
1895 {
1896 	return skb_rb_first(&sk->tcp_rtx_queue);
1897 }
1898 
1899 static inline struct sk_buff *tcp_rtx_queue_tail(const struct sock *sk)
1900 {
1901 	return skb_rb_last(&sk->tcp_rtx_queue);
1902 }
1903 
1904 static inline struct sk_buff *tcp_write_queue_tail(const struct sock *sk)
1905 {
1906 	return skb_peek_tail(&sk->sk_write_queue);
1907 }
1908 
1909 #define tcp_for_write_queue_from_safe(skb, tmp, sk)			\
1910 	skb_queue_walk_from_safe(&(sk)->sk_write_queue, skb, tmp)
1911 
1912 static inline struct sk_buff *tcp_send_head(const struct sock *sk)
1913 {
1914 	return skb_peek(&sk->sk_write_queue);
1915 }
1916 
1917 static inline bool tcp_skb_is_last(const struct sock *sk,
1918 				   const struct sk_buff *skb)
1919 {
1920 	return skb_queue_is_last(&sk->sk_write_queue, skb);
1921 }
1922 
1923 /**
1924  * tcp_write_queue_empty - test if any payload (or FIN) is available in write queue
1925  * @sk: socket
1926  *
1927  * Since the write queue can have a temporary empty skb in it,
1928  * we must not use "return skb_queue_empty(&sk->sk_write_queue)"
1929  */
1930 static inline bool tcp_write_queue_empty(const struct sock *sk)
1931 {
1932 	const struct tcp_sock *tp = tcp_sk(sk);
1933 
1934 	return tp->write_seq == tp->snd_nxt;
1935 }
1936 
1937 static inline bool tcp_rtx_queue_empty(const struct sock *sk)
1938 {
1939 	return RB_EMPTY_ROOT(&sk->tcp_rtx_queue);
1940 }
1941 
1942 static inline bool tcp_rtx_and_write_queues_empty(const struct sock *sk)
1943 {
1944 	return tcp_rtx_queue_empty(sk) && tcp_write_queue_empty(sk);
1945 }
1946 
1947 static inline void tcp_add_write_queue_tail(struct sock *sk, struct sk_buff *skb)
1948 {
1949 	__skb_queue_tail(&sk->sk_write_queue, skb);
1950 
1951 	/* Queue it, remembering where we must start sending. */
1952 	if (sk->sk_write_queue.next == skb)
1953 		tcp_chrono_start(sk, TCP_CHRONO_BUSY);
1954 }
1955 
1956 /* Insert new before skb on the write queue of sk.  */
1957 static inline void tcp_insert_write_queue_before(struct sk_buff *new,
1958 						  struct sk_buff *skb,
1959 						  struct sock *sk)
1960 {
1961 	__skb_queue_before(&sk->sk_write_queue, skb, new);
1962 }
1963 
1964 static inline void tcp_unlink_write_queue(struct sk_buff *skb, struct sock *sk)
1965 {
1966 	tcp_skb_tsorted_anchor_cleanup(skb);
1967 	__skb_unlink(skb, &sk->sk_write_queue);
1968 }
1969 
1970 void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb);
1971 
1972 static inline void tcp_rtx_queue_unlink(struct sk_buff *skb, struct sock *sk)
1973 {
1974 	tcp_skb_tsorted_anchor_cleanup(skb);
1975 	rb_erase(&skb->rbnode, &sk->tcp_rtx_queue);
1976 }
1977 
1978 static inline void tcp_rtx_queue_unlink_and_free(struct sk_buff *skb, struct sock *sk)
1979 {
1980 	list_del(&skb->tcp_tsorted_anchor);
1981 	tcp_rtx_queue_unlink(skb, sk);
1982 	tcp_wmem_free_skb(sk, skb);
1983 }
1984 
1985 static inline void tcp_push_pending_frames(struct sock *sk)
1986 {
1987 	if (tcp_send_head(sk)) {
1988 		struct tcp_sock *tp = tcp_sk(sk);
1989 
1990 		__tcp_push_pending_frames(sk, tcp_current_mss(sk), tp->nonagle);
1991 	}
1992 }
1993 
1994 /* Start sequence of the skb just after the highest skb with SACKed
1995  * bit, valid only if sacked_out > 0 or when the caller has ensured
1996  * validity by itself.
1997  */
1998 static inline u32 tcp_highest_sack_seq(struct tcp_sock *tp)
1999 {
2000 	if (!tp->sacked_out)
2001 		return tp->snd_una;
2002 
2003 	if (tp->highest_sack == NULL)
2004 		return tp->snd_nxt;
2005 
2006 	return TCP_SKB_CB(tp->highest_sack)->seq;
2007 }
2008 
2009 static inline void tcp_advance_highest_sack(struct sock *sk, struct sk_buff *skb)
2010 {
2011 	tcp_sk(sk)->highest_sack = skb_rb_next(skb);
2012 }
2013 
2014 static inline struct sk_buff *tcp_highest_sack(struct sock *sk)
2015 {
2016 	return tcp_sk(sk)->highest_sack;
2017 }
2018 
2019 static inline void tcp_highest_sack_reset(struct sock *sk)
2020 {
2021 	tcp_sk(sk)->highest_sack = tcp_rtx_queue_head(sk);
2022 }
2023 
2024 /* Called when old skb is about to be deleted and replaced by new skb */
2025 static inline void tcp_highest_sack_replace(struct sock *sk,
2026 					    struct sk_buff *old,
2027 					    struct sk_buff *new)
2028 {
2029 	if (old == tcp_highest_sack(sk))
2030 		tcp_sk(sk)->highest_sack = new;
2031 }
2032 
2033 /* This helper checks if socket has IP_TRANSPARENT set */
2034 static inline bool inet_sk_transparent(const struct sock *sk)
2035 {
2036 	switch (sk->sk_state) {
2037 	case TCP_TIME_WAIT:
2038 		return inet_twsk(sk)->tw_transparent;
2039 	case TCP_NEW_SYN_RECV:
2040 		return inet_rsk(inet_reqsk(sk))->no_srccheck;
2041 	}
2042 	return inet_test_bit(TRANSPARENT, sk);
2043 }
2044 
2045 /* Determines whether this is a thin stream (which may suffer from
2046  * increased latency). Used to trigger latency-reducing mechanisms.
2047  */
2048 static inline bool tcp_stream_is_thin(struct tcp_sock *tp)
2049 {
2050 	return tp->packets_out < 4 && !tcp_in_initial_slowstart(tp);
2051 }
2052 
2053 /* /proc */
2054 enum tcp_seq_states {
2055 	TCP_SEQ_STATE_LISTENING,
2056 	TCP_SEQ_STATE_ESTABLISHED,
2057 };
2058 
2059 void *tcp_seq_start(struct seq_file *seq, loff_t *pos);
2060 void *tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos);
2061 void tcp_seq_stop(struct seq_file *seq, void *v);
2062 
2063 struct tcp_seq_afinfo {
2064 	sa_family_t			family;
2065 };
2066 
2067 struct tcp_iter_state {
2068 	struct seq_net_private	p;
2069 	enum tcp_seq_states	state;
2070 	struct sock		*syn_wait_sk;
2071 	int			bucket, offset, sbucket, num;
2072 	loff_t			last_pos;
2073 };
2074 
2075 extern struct request_sock_ops tcp_request_sock_ops;
2076 extern struct request_sock_ops tcp6_request_sock_ops;
2077 
2078 void tcp_v4_destroy_sock(struct sock *sk);
2079 
2080 struct sk_buff *tcp_gso_segment(struct sk_buff *skb,
2081 				netdev_features_t features);
2082 struct sk_buff *tcp_gro_receive(struct list_head *head, struct sk_buff *skb);
2083 INDIRECT_CALLABLE_DECLARE(int tcp4_gro_complete(struct sk_buff *skb, int thoff));
2084 INDIRECT_CALLABLE_DECLARE(struct sk_buff *tcp4_gro_receive(struct list_head *head, struct sk_buff *skb));
2085 INDIRECT_CALLABLE_DECLARE(int tcp6_gro_complete(struct sk_buff *skb, int thoff));
2086 INDIRECT_CALLABLE_DECLARE(struct sk_buff *tcp6_gro_receive(struct list_head *head, struct sk_buff *skb));
2087 #ifdef CONFIG_INET
2088 void tcp_gro_complete(struct sk_buff *skb);
2089 #else
2090 static inline void tcp_gro_complete(struct sk_buff *skb) { }
2091 #endif
2092 
2093 void __tcp_v4_send_check(struct sk_buff *skb, __be32 saddr, __be32 daddr);
2094 
2095 static inline u32 tcp_notsent_lowat(const struct tcp_sock *tp)
2096 {
2097 	struct net *net = sock_net((struct sock *)tp);
2098 	u32 val;
2099 
2100 	val = READ_ONCE(tp->notsent_lowat);
2101 
2102 	return val ?: READ_ONCE(net->ipv4.sysctl_tcp_notsent_lowat);
2103 }
2104 
2105 bool tcp_stream_memory_free(const struct sock *sk, int wake);
2106 
2107 #ifdef CONFIG_PROC_FS
2108 int tcp4_proc_init(void);
2109 void tcp4_proc_exit(void);
2110 #endif
2111 
2112 int tcp_rtx_synack(const struct sock *sk, struct request_sock *req);
2113 int tcp_conn_request(struct request_sock_ops *rsk_ops,
2114 		     const struct tcp_request_sock_ops *af_ops,
2115 		     struct sock *sk, struct sk_buff *skb);
2116 
2117 /* TCP af-specific functions */
2118 struct tcp_sock_af_ops {
2119 #ifdef CONFIG_TCP_MD5SIG
2120 	struct tcp_md5sig_key	*(*md5_lookup) (const struct sock *sk,
2121 						const struct sock *addr_sk);
2122 	int		(*calc_md5_hash)(char *location,
2123 					 const struct tcp_md5sig_key *md5,
2124 					 const struct sock *sk,
2125 					 const struct sk_buff *skb);
2126 	int		(*md5_parse)(struct sock *sk,
2127 				     int optname,
2128 				     sockptr_t optval,
2129 				     int optlen);
2130 #endif
2131 };
2132 
2133 struct tcp_request_sock_ops {
2134 	u16 mss_clamp;
2135 #ifdef CONFIG_TCP_MD5SIG
2136 	struct tcp_md5sig_key *(*req_md5_lookup)(const struct sock *sk,
2137 						 const struct sock *addr_sk);
2138 	int		(*calc_md5_hash) (char *location,
2139 					  const struct tcp_md5sig_key *md5,
2140 					  const struct sock *sk,
2141 					  const struct sk_buff *skb);
2142 #endif
2143 #ifdef CONFIG_SYN_COOKIES
2144 	__u32 (*cookie_init_seq)(const struct sk_buff *skb,
2145 				 __u16 *mss);
2146 #endif
2147 	struct dst_entry *(*route_req)(const struct sock *sk,
2148 				       struct sk_buff *skb,
2149 				       struct flowi *fl,
2150 				       struct request_sock *req);
2151 	u32 (*init_seq)(const struct sk_buff *skb);
2152 	u32 (*init_ts_off)(const struct net *net, const struct sk_buff *skb);
2153 	int (*send_synack)(const struct sock *sk, struct dst_entry *dst,
2154 			   struct flowi *fl, struct request_sock *req,
2155 			   struct tcp_fastopen_cookie *foc,
2156 			   enum tcp_synack_type synack_type,
2157 			   struct sk_buff *syn_skb);
2158 };
2159 
2160 extern const struct tcp_request_sock_ops tcp_request_sock_ipv4_ops;
2161 #if IS_ENABLED(CONFIG_IPV6)
2162 extern const struct tcp_request_sock_ops tcp_request_sock_ipv6_ops;
2163 #endif
2164 
2165 #ifdef CONFIG_SYN_COOKIES
2166 static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops,
2167 					 const struct sock *sk, struct sk_buff *skb,
2168 					 __u16 *mss)
2169 {
2170 	tcp_synq_overflow(sk);
2171 	__NET_INC_STATS(sock_net(sk), LINUX_MIB_SYNCOOKIESSENT);
2172 	return ops->cookie_init_seq(skb, mss);
2173 }
2174 #else
2175 static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops,
2176 					 const struct sock *sk, struct sk_buff *skb,
2177 					 __u16 *mss)
2178 {
2179 	return 0;
2180 }
2181 #endif
2182 
2183 int tcpv4_offload_init(void);
2184 
2185 void tcp_v4_init(void);
2186 void tcp_init(void);
2187 
2188 /* tcp_recovery.c */
2189 void tcp_mark_skb_lost(struct sock *sk, struct sk_buff *skb);
2190 void tcp_newreno_mark_lost(struct sock *sk, bool snd_una_advanced);
2191 extern s32 tcp_rack_skb_timeout(struct tcp_sock *tp, struct sk_buff *skb,
2192 				u32 reo_wnd);
2193 extern bool tcp_rack_mark_lost(struct sock *sk);
2194 extern void tcp_rack_advance(struct tcp_sock *tp, u8 sacked, u32 end_seq,
2195 			     u64 xmit_time);
2196 extern void tcp_rack_reo_timeout(struct sock *sk);
2197 extern void tcp_rack_update_reo_wnd(struct sock *sk, struct rate_sample *rs);
2198 
2199 /* tcp_plb.c */
2200 
2201 /*
2202  * Scaling factor for fractions in PLB. For example, tcp_plb_update_state
2203  * expects cong_ratio which represents fraction of traffic that experienced
2204  * congestion over a single RTT. In order to avoid floating point operations,
2205  * this fraction should be mapped to (1 << TCP_PLB_SCALE) and passed in.
2206  */
2207 #define TCP_PLB_SCALE 8
2208 
2209 /* State for PLB (Protective Load Balancing) for a single TCP connection. */
2210 struct tcp_plb_state {
2211 	u8	consec_cong_rounds:5, /* consecutive congested rounds */
2212 		unused:3;
2213 	u32	pause_until; /* jiffies32 when PLB can resume rerouting */
2214 };
2215 
2216 static inline void tcp_plb_init(const struct sock *sk,
2217 				struct tcp_plb_state *plb)
2218 {
2219 	plb->consec_cong_rounds = 0;
2220 	plb->pause_until = 0;
2221 }
2222 void tcp_plb_update_state(const struct sock *sk, struct tcp_plb_state *plb,
2223 			  const int cong_ratio);
2224 void tcp_plb_check_rehash(struct sock *sk, struct tcp_plb_state *plb);
2225 void tcp_plb_update_state_upon_rto(struct sock *sk, struct tcp_plb_state *plb);
2226 
2227 /* At how many usecs into the future should the RTO fire? */
2228 static inline s64 tcp_rto_delta_us(const struct sock *sk)
2229 {
2230 	const struct sk_buff *skb = tcp_rtx_queue_head(sk);
2231 	u32 rto = inet_csk(sk)->icsk_rto;
2232 	u64 rto_time_stamp_us = tcp_skb_timestamp_us(skb) + jiffies_to_usecs(rto);
2233 
2234 	return rto_time_stamp_us - tcp_sk(sk)->tcp_mstamp;
2235 }
2236 
2237 /*
2238  * Save and compile IPv4 options, return a pointer to it
2239  */
2240 static inline struct ip_options_rcu *tcp_v4_save_options(struct net *net,
2241 							 struct sk_buff *skb)
2242 {
2243 	const struct ip_options *opt = &TCP_SKB_CB(skb)->header.h4.opt;
2244 	struct ip_options_rcu *dopt = NULL;
2245 
2246 	if (opt->optlen) {
2247 		int opt_size = sizeof(*dopt) + opt->optlen;
2248 
2249 		dopt = kmalloc(opt_size, GFP_ATOMIC);
2250 		if (dopt && __ip_options_echo(net, &dopt->opt, skb, opt)) {
2251 			kfree(dopt);
2252 			dopt = NULL;
2253 		}
2254 	}
2255 	return dopt;
2256 }
2257 
2258 /* locally generated TCP pure ACKs have skb->truesize == 2
2259  * (check tcp_send_ack() in net/ipv4/tcp_output.c )
2260  * This is much faster than dissecting the packet to find out.
2261  * (Think of GRE encapsulations, IPv4, IPv6, ...)
2262  */
2263 static inline bool skb_is_tcp_pure_ack(const struct sk_buff *skb)
2264 {
2265 	return skb->truesize == 2;
2266 }
2267 
2268 static inline void skb_set_tcp_pure_ack(struct sk_buff *skb)
2269 {
2270 	skb->truesize = 2;
2271 }
2272 
2273 static inline int tcp_inq(struct sock *sk)
2274 {
2275 	struct tcp_sock *tp = tcp_sk(sk);
2276 	int answ;
2277 
2278 	if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) {
2279 		answ = 0;
2280 	} else if (sock_flag(sk, SOCK_URGINLINE) ||
2281 		   !tp->urg_data ||
2282 		   before(tp->urg_seq, tp->copied_seq) ||
2283 		   !before(tp->urg_seq, tp->rcv_nxt)) {
2284 
2285 		answ = tp->rcv_nxt - tp->copied_seq;
2286 
2287 		/* Subtract 1, if FIN was received */
2288 		if (answ && sock_flag(sk, SOCK_DONE))
2289 			answ--;
2290 	} else {
2291 		answ = tp->urg_seq - tp->copied_seq;
2292 	}
2293 
2294 	return answ;
2295 }
2296 
2297 int tcp_peek_len(struct socket *sock);
2298 
2299 static inline void tcp_segs_in(struct tcp_sock *tp, const struct sk_buff *skb)
2300 {
2301 	u16 segs_in;
2302 
2303 	segs_in = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
2304 
2305 	/* We update these fields while other threads might
2306 	 * read them from tcp_get_info()
2307 	 */
2308 	WRITE_ONCE(tp->segs_in, tp->segs_in + segs_in);
2309 	if (skb->len > tcp_hdrlen(skb))
2310 		WRITE_ONCE(tp->data_segs_in, tp->data_segs_in + segs_in);
2311 }
2312 
2313 /*
2314  * TCP listen path runs lockless.
2315  * We forced "struct sock" to be const qualified to make sure
2316  * we don't modify one of its field by mistake.
2317  * Here, we increment sk_drops which is an atomic_t, so we can safely
2318  * make sock writable again.
2319  */
2320 static inline void tcp_listendrop(const struct sock *sk)
2321 {
2322 	atomic_inc(&((struct sock *)sk)->sk_drops);
2323 	__NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENDROPS);
2324 }
2325 
2326 enum hrtimer_restart tcp_pace_kick(struct hrtimer *timer);
2327 
2328 /*
2329  * Interface for adding Upper Level Protocols over TCP
2330  */
2331 
2332 #define TCP_ULP_NAME_MAX	16
2333 #define TCP_ULP_MAX		128
2334 #define TCP_ULP_BUF_MAX		(TCP_ULP_NAME_MAX*TCP_ULP_MAX)
2335 
2336 struct tcp_ulp_ops {
2337 	struct list_head	list;
2338 
2339 	/* initialize ulp */
2340 	int (*init)(struct sock *sk);
2341 	/* update ulp */
2342 	void (*update)(struct sock *sk, struct proto *p,
2343 		       void (*write_space)(struct sock *sk));
2344 	/* cleanup ulp */
2345 	void (*release)(struct sock *sk);
2346 	/* diagnostic */
2347 	int (*get_info)(const struct sock *sk, struct sk_buff *skb);
2348 	size_t (*get_info_size)(const struct sock *sk);
2349 	/* clone ulp */
2350 	void (*clone)(const struct request_sock *req, struct sock *newsk,
2351 		      const gfp_t priority);
2352 
2353 	char		name[TCP_ULP_NAME_MAX];
2354 	struct module	*owner;
2355 };
2356 int tcp_register_ulp(struct tcp_ulp_ops *type);
2357 void tcp_unregister_ulp(struct tcp_ulp_ops *type);
2358 int tcp_set_ulp(struct sock *sk, const char *name);
2359 void tcp_get_available_ulp(char *buf, size_t len);
2360 void tcp_cleanup_ulp(struct sock *sk);
2361 void tcp_update_ulp(struct sock *sk, struct proto *p,
2362 		    void (*write_space)(struct sock *sk));
2363 
2364 #define MODULE_ALIAS_TCP_ULP(name)				\
2365 	__MODULE_INFO(alias, alias_userspace, name);		\
2366 	__MODULE_INFO(alias, alias_tcp_ulp, "tcp-ulp-" name)
2367 
2368 #ifdef CONFIG_NET_SOCK_MSG
2369 struct sk_msg;
2370 struct sk_psock;
2371 
2372 #ifdef CONFIG_BPF_SYSCALL
2373 int tcp_bpf_update_proto(struct sock *sk, struct sk_psock *psock, bool restore);
2374 void tcp_bpf_clone(const struct sock *sk, struct sock *newsk);
2375 #endif /* CONFIG_BPF_SYSCALL */
2376 
2377 #ifdef CONFIG_INET
2378 void tcp_eat_skb(struct sock *sk, struct sk_buff *skb);
2379 #else
2380 static inline void tcp_eat_skb(struct sock *sk, struct sk_buff *skb)
2381 {
2382 }
2383 #endif
2384 
2385 int tcp_bpf_sendmsg_redir(struct sock *sk, bool ingress,
2386 			  struct sk_msg *msg, u32 bytes, int flags);
2387 #endif /* CONFIG_NET_SOCK_MSG */
2388 
2389 #if !defined(CONFIG_BPF_SYSCALL) || !defined(CONFIG_NET_SOCK_MSG)
2390 static inline void tcp_bpf_clone(const struct sock *sk, struct sock *newsk)
2391 {
2392 }
2393 #endif
2394 
2395 #ifdef CONFIG_CGROUP_BPF
2396 static inline void bpf_skops_init_skb(struct bpf_sock_ops_kern *skops,
2397 				      struct sk_buff *skb,
2398 				      unsigned int end_offset)
2399 {
2400 	skops->skb = skb;
2401 	skops->skb_data_end = skb->data + end_offset;
2402 }
2403 #else
2404 static inline void bpf_skops_init_skb(struct bpf_sock_ops_kern *skops,
2405 				      struct sk_buff *skb,
2406 				      unsigned int end_offset)
2407 {
2408 }
2409 #endif
2410 
2411 /* Call BPF_SOCK_OPS program that returns an int. If the return value
2412  * is < 0, then the BPF op failed (for example if the loaded BPF
2413  * program does not support the chosen operation or there is no BPF
2414  * program loaded).
2415  */
2416 #ifdef CONFIG_BPF
2417 static inline int tcp_call_bpf(struct sock *sk, int op, u32 nargs, u32 *args)
2418 {
2419 	struct bpf_sock_ops_kern sock_ops;
2420 	int ret;
2421 
2422 	memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
2423 	if (sk_fullsock(sk)) {
2424 		sock_ops.is_fullsock = 1;
2425 		sock_owned_by_me(sk);
2426 	}
2427 
2428 	sock_ops.sk = sk;
2429 	sock_ops.op = op;
2430 	if (nargs > 0)
2431 		memcpy(sock_ops.args, args, nargs * sizeof(*args));
2432 
2433 	ret = BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops);
2434 	if (ret == 0)
2435 		ret = sock_ops.reply;
2436 	else
2437 		ret = -1;
2438 	return ret;
2439 }
2440 
2441 static inline int tcp_call_bpf_2arg(struct sock *sk, int op, u32 arg1, u32 arg2)
2442 {
2443 	u32 args[2] = {arg1, arg2};
2444 
2445 	return tcp_call_bpf(sk, op, 2, args);
2446 }
2447 
2448 static inline int tcp_call_bpf_3arg(struct sock *sk, int op, u32 arg1, u32 arg2,
2449 				    u32 arg3)
2450 {
2451 	u32 args[3] = {arg1, arg2, arg3};
2452 
2453 	return tcp_call_bpf(sk, op, 3, args);
2454 }
2455 
2456 #else
2457 static inline int tcp_call_bpf(struct sock *sk, int op, u32 nargs, u32 *args)
2458 {
2459 	return -EPERM;
2460 }
2461 
2462 static inline int tcp_call_bpf_2arg(struct sock *sk, int op, u32 arg1, u32 arg2)
2463 {
2464 	return -EPERM;
2465 }
2466 
2467 static inline int tcp_call_bpf_3arg(struct sock *sk, int op, u32 arg1, u32 arg2,
2468 				    u32 arg3)
2469 {
2470 	return -EPERM;
2471 }
2472 
2473 #endif
2474 
2475 static inline u32 tcp_timeout_init(struct sock *sk)
2476 {
2477 	int timeout;
2478 
2479 	timeout = tcp_call_bpf(sk, BPF_SOCK_OPS_TIMEOUT_INIT, 0, NULL);
2480 
2481 	if (timeout <= 0)
2482 		timeout = TCP_TIMEOUT_INIT;
2483 	return min_t(int, timeout, TCP_RTO_MAX);
2484 }
2485 
2486 static inline u32 tcp_rwnd_init_bpf(struct sock *sk)
2487 {
2488 	int rwnd;
2489 
2490 	rwnd = tcp_call_bpf(sk, BPF_SOCK_OPS_RWND_INIT, 0, NULL);
2491 
2492 	if (rwnd < 0)
2493 		rwnd = 0;
2494 	return rwnd;
2495 }
2496 
2497 static inline bool tcp_bpf_ca_needs_ecn(struct sock *sk)
2498 {
2499 	return (tcp_call_bpf(sk, BPF_SOCK_OPS_NEEDS_ECN, 0, NULL) == 1);
2500 }
2501 
2502 static inline void tcp_bpf_rtt(struct sock *sk)
2503 {
2504 	if (BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), BPF_SOCK_OPS_RTT_CB_FLAG))
2505 		tcp_call_bpf(sk, BPF_SOCK_OPS_RTT_CB, 0, NULL);
2506 }
2507 
2508 #if IS_ENABLED(CONFIG_SMC)
2509 extern struct static_key_false tcp_have_smc;
2510 #endif
2511 
2512 #if IS_ENABLED(CONFIG_TLS_DEVICE)
2513 void clean_acked_data_enable(struct inet_connection_sock *icsk,
2514 			     void (*cad)(struct sock *sk, u32 ack_seq));
2515 void clean_acked_data_disable(struct inet_connection_sock *icsk);
2516 void clean_acked_data_flush(void);
2517 #endif
2518 
2519 DECLARE_STATIC_KEY_FALSE(tcp_tx_delay_enabled);
2520 static inline void tcp_add_tx_delay(struct sk_buff *skb,
2521 				    const struct tcp_sock *tp)
2522 {
2523 	if (static_branch_unlikely(&tcp_tx_delay_enabled))
2524 		skb->skb_mstamp_ns += (u64)tp->tcp_tx_delay * NSEC_PER_USEC;
2525 }
2526 
2527 /* Compute Earliest Departure Time for some control packets
2528  * like ACK or RST for TIME_WAIT or non ESTABLISHED sockets.
2529  */
2530 static inline u64 tcp_transmit_time(const struct sock *sk)
2531 {
2532 	if (static_branch_unlikely(&tcp_tx_delay_enabled)) {
2533 		u32 delay = (sk->sk_state == TCP_TIME_WAIT) ?
2534 			tcp_twsk(sk)->tw_tx_delay : tcp_sk(sk)->tcp_tx_delay;
2535 
2536 		return tcp_clock_ns() + (u64)delay * NSEC_PER_USEC;
2537 	}
2538 	return 0;
2539 }
2540 
2541 #endif	/* _TCP_H */
2542