1 /* SPDX-License-Identifier: GPL-2.0-or-later */ 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * Definitions for the TCP module. 8 * 9 * Version: @(#)tcp.h 1.0.5 05/23/93 10 * 11 * Authors: Ross Biro 12 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 13 */ 14 #ifndef _TCP_H 15 #define _TCP_H 16 17 #define FASTRETRANS_DEBUG 1 18 19 #include <linux/list.h> 20 #include <linux/tcp.h> 21 #include <linux/bug.h> 22 #include <linux/slab.h> 23 #include <linux/cache.h> 24 #include <linux/percpu.h> 25 #include <linux/skbuff.h> 26 #include <linux/kref.h> 27 #include <linux/ktime.h> 28 #include <linux/indirect_call_wrapper.h> 29 30 #include <net/inet_connection_sock.h> 31 #include <net/inet_timewait_sock.h> 32 #include <net/inet_hashtables.h> 33 #include <net/checksum.h> 34 #include <net/request_sock.h> 35 #include <net/sock_reuseport.h> 36 #include <net/sock.h> 37 #include <net/snmp.h> 38 #include <net/ip.h> 39 #include <net/tcp_states.h> 40 #include <net/inet_ecn.h> 41 #include <net/dst.h> 42 #include <net/mptcp.h> 43 44 #include <linux/seq_file.h> 45 #include <linux/memcontrol.h> 46 #include <linux/bpf-cgroup.h> 47 #include <linux/siphash.h> 48 49 extern struct inet_hashinfo tcp_hashinfo; 50 51 DECLARE_PER_CPU(unsigned int, tcp_orphan_count); 52 int tcp_orphan_count_sum(void); 53 54 void tcp_time_wait(struct sock *sk, int state, int timeo); 55 56 #define MAX_TCP_HEADER L1_CACHE_ALIGN(128 + MAX_HEADER) 57 #define MAX_TCP_OPTION_SPACE 40 58 #define TCP_MIN_SND_MSS 48 59 #define TCP_MIN_GSO_SIZE (TCP_MIN_SND_MSS - MAX_TCP_OPTION_SPACE) 60 61 /* 62 * Never offer a window over 32767 without using window scaling. Some 63 * poor stacks do signed 16bit maths! 64 */ 65 #define MAX_TCP_WINDOW 32767U 66 67 /* Minimal accepted MSS. It is (60+60+8) - (20+20). */ 68 #define TCP_MIN_MSS 88U 69 70 /* The initial MTU to use for probing */ 71 #define TCP_BASE_MSS 1024 72 73 /* probing interval, default to 10 minutes as per RFC4821 */ 74 #define TCP_PROBE_INTERVAL 600 75 76 /* Specify interval when tcp mtu probing will stop */ 77 #define TCP_PROBE_THRESHOLD 8 78 79 /* After receiving this amount of duplicate ACKs fast retransmit starts. */ 80 #define TCP_FASTRETRANS_THRESH 3 81 82 /* Maximal number of ACKs sent quickly to accelerate slow-start. */ 83 #define TCP_MAX_QUICKACKS 16U 84 85 /* Maximal number of window scale according to RFC1323 */ 86 #define TCP_MAX_WSCALE 14U 87 88 /* urg_data states */ 89 #define TCP_URG_VALID 0x0100 90 #define TCP_URG_NOTYET 0x0200 91 #define TCP_URG_READ 0x0400 92 93 #define TCP_RETR1 3 /* 94 * This is how many retries it does before it 95 * tries to figure out if the gateway is 96 * down. Minimal RFC value is 3; it corresponds 97 * to ~3sec-8min depending on RTO. 98 */ 99 100 #define TCP_RETR2 15 /* 101 * This should take at least 102 * 90 minutes to time out. 103 * RFC1122 says that the limit is 100 sec. 104 * 15 is ~13-30min depending on RTO. 105 */ 106 107 #define TCP_SYN_RETRIES 6 /* This is how many retries are done 108 * when active opening a connection. 109 * RFC1122 says the minimum retry MUST 110 * be at least 180secs. Nevertheless 111 * this value is corresponding to 112 * 63secs of retransmission with the 113 * current initial RTO. 114 */ 115 116 #define TCP_SYNACK_RETRIES 5 /* This is how may retries are done 117 * when passive opening a connection. 118 * This is corresponding to 31secs of 119 * retransmission with the current 120 * initial RTO. 121 */ 122 123 #define TCP_TIMEWAIT_LEN (60*HZ) /* how long to wait to destroy TIME-WAIT 124 * state, about 60 seconds */ 125 #define TCP_FIN_TIMEOUT TCP_TIMEWAIT_LEN 126 /* BSD style FIN_WAIT2 deadlock breaker. 127 * It used to be 3min, new value is 60sec, 128 * to combine FIN-WAIT-2 timeout with 129 * TIME-WAIT timer. 130 */ 131 #define TCP_FIN_TIMEOUT_MAX (120 * HZ) /* max TCP_LINGER2 value (two minutes) */ 132 133 #define TCP_DELACK_MAX ((unsigned)(HZ/5)) /* maximal time to delay before sending an ACK */ 134 static_assert((1 << ATO_BITS) > TCP_DELACK_MAX); 135 136 #if HZ >= 100 137 #define TCP_DELACK_MIN ((unsigned)(HZ/25)) /* minimal time to delay before sending an ACK */ 138 #define TCP_ATO_MIN ((unsigned)(HZ/25)) 139 #else 140 #define TCP_DELACK_MIN 4U 141 #define TCP_ATO_MIN 4U 142 #endif 143 #define TCP_RTO_MAX ((unsigned)(120*HZ)) 144 #define TCP_RTO_MIN ((unsigned)(HZ/5)) 145 #define TCP_TIMEOUT_MIN (2U) /* Min timeout for TCP timers in jiffies */ 146 147 #define TCP_TIMEOUT_MIN_US (2*USEC_PER_MSEC) /* Min TCP timeout in microsecs */ 148 149 #define TCP_TIMEOUT_INIT ((unsigned)(1*HZ)) /* RFC6298 2.1 initial RTO value */ 150 #define TCP_TIMEOUT_FALLBACK ((unsigned)(3*HZ)) /* RFC 1122 initial RTO value, now 151 * used as a fallback RTO for the 152 * initial data transmission if no 153 * valid RTT sample has been acquired, 154 * most likely due to retrans in 3WHS. 155 */ 156 157 #define TCP_RESOURCE_PROBE_INTERVAL ((unsigned)(HZ/2U)) /* Maximal interval between probes 158 * for local resources. 159 */ 160 #define TCP_KEEPALIVE_TIME (120*60*HZ) /* two hours */ 161 #define TCP_KEEPALIVE_PROBES 9 /* Max of 9 keepalive probes */ 162 #define TCP_KEEPALIVE_INTVL (75*HZ) 163 164 #define MAX_TCP_KEEPIDLE 32767 165 #define MAX_TCP_KEEPINTVL 32767 166 #define MAX_TCP_KEEPCNT 127 167 #define MAX_TCP_SYNCNT 127 168 169 #define TCP_PAWS_24DAYS (60 * 60 * 24 * 24) 170 #define TCP_PAWS_MSL 60 /* Per-host timestamps are invalidated 171 * after this time. It should be equal 172 * (or greater than) TCP_TIMEWAIT_LEN 173 * to provide reliability equal to one 174 * provided by timewait state. 175 */ 176 #define TCP_PAWS_WINDOW 1 /* Replay window for per-host 177 * timestamps. It must be less than 178 * minimal timewait lifetime. 179 */ 180 /* 181 * TCP option 182 */ 183 184 #define TCPOPT_NOP 1 /* Padding */ 185 #define TCPOPT_EOL 0 /* End of options */ 186 #define TCPOPT_MSS 2 /* Segment size negotiating */ 187 #define TCPOPT_WINDOW 3 /* Window scaling */ 188 #define TCPOPT_SACK_PERM 4 /* SACK Permitted */ 189 #define TCPOPT_SACK 5 /* SACK Block */ 190 #define TCPOPT_TIMESTAMP 8 /* Better RTT estimations/PAWS */ 191 #define TCPOPT_MD5SIG 19 /* MD5 Signature (RFC2385) */ 192 #define TCPOPT_MPTCP 30 /* Multipath TCP (RFC6824) */ 193 #define TCPOPT_FASTOPEN 34 /* Fast open (RFC7413) */ 194 #define TCPOPT_EXP 254 /* Experimental */ 195 /* Magic number to be after the option value for sharing TCP 196 * experimental options. See draft-ietf-tcpm-experimental-options-00.txt 197 */ 198 #define TCPOPT_FASTOPEN_MAGIC 0xF989 199 #define TCPOPT_SMC_MAGIC 0xE2D4C3D9 200 201 /* 202 * TCP option lengths 203 */ 204 205 #define TCPOLEN_MSS 4 206 #define TCPOLEN_WINDOW 3 207 #define TCPOLEN_SACK_PERM 2 208 #define TCPOLEN_TIMESTAMP 10 209 #define TCPOLEN_MD5SIG 18 210 #define TCPOLEN_FASTOPEN_BASE 2 211 #define TCPOLEN_EXP_FASTOPEN_BASE 4 212 #define TCPOLEN_EXP_SMC_BASE 6 213 214 /* But this is what stacks really send out. */ 215 #define TCPOLEN_TSTAMP_ALIGNED 12 216 #define TCPOLEN_WSCALE_ALIGNED 4 217 #define TCPOLEN_SACKPERM_ALIGNED 4 218 #define TCPOLEN_SACK_BASE 2 219 #define TCPOLEN_SACK_BASE_ALIGNED 4 220 #define TCPOLEN_SACK_PERBLOCK 8 221 #define TCPOLEN_MD5SIG_ALIGNED 20 222 #define TCPOLEN_MSS_ALIGNED 4 223 #define TCPOLEN_EXP_SMC_BASE_ALIGNED 8 224 225 /* Flags in tp->nonagle */ 226 #define TCP_NAGLE_OFF 1 /* Nagle's algo is disabled */ 227 #define TCP_NAGLE_CORK 2 /* Socket is corked */ 228 #define TCP_NAGLE_PUSH 4 /* Cork is overridden for already queued data */ 229 230 /* TCP thin-stream limits */ 231 #define TCP_THIN_LINEAR_RETRIES 6 /* After 6 linear retries, do exp. backoff */ 232 233 /* TCP initial congestion window as per rfc6928 */ 234 #define TCP_INIT_CWND 10 235 236 /* Bit Flags for sysctl_tcp_fastopen */ 237 #define TFO_CLIENT_ENABLE 1 238 #define TFO_SERVER_ENABLE 2 239 #define TFO_CLIENT_NO_COOKIE 4 /* Data in SYN w/o cookie option */ 240 241 /* Accept SYN data w/o any cookie option */ 242 #define TFO_SERVER_COOKIE_NOT_REQD 0x200 243 244 /* Force enable TFO on all listeners, i.e., not requiring the 245 * TCP_FASTOPEN socket option. 246 */ 247 #define TFO_SERVER_WO_SOCKOPT1 0x400 248 249 250 /* sysctl variables for tcp */ 251 extern int sysctl_tcp_max_orphans; 252 extern long sysctl_tcp_mem[3]; 253 254 #define TCP_RACK_LOSS_DETECTION 0x1 /* Use RACK to detect losses */ 255 #define TCP_RACK_STATIC_REO_WND 0x2 /* Use static RACK reo wnd */ 256 #define TCP_RACK_NO_DUPTHRESH 0x4 /* Do not use DUPACK threshold in RACK */ 257 258 extern atomic_long_t tcp_memory_allocated; 259 DECLARE_PER_CPU(int, tcp_memory_per_cpu_fw_alloc); 260 261 extern struct percpu_counter tcp_sockets_allocated; 262 extern unsigned long tcp_memory_pressure; 263 264 /* optimized version of sk_under_memory_pressure() for TCP sockets */ 265 static inline bool tcp_under_memory_pressure(const struct sock *sk) 266 { 267 if (mem_cgroup_sockets_enabled && sk->sk_memcg && 268 mem_cgroup_under_socket_pressure(sk->sk_memcg)) 269 return true; 270 271 return READ_ONCE(tcp_memory_pressure); 272 } 273 /* 274 * The next routines deal with comparing 32 bit unsigned ints 275 * and worry about wraparound (automatic with unsigned arithmetic). 276 */ 277 278 static inline bool before(__u32 seq1, __u32 seq2) 279 { 280 return (__s32)(seq1-seq2) < 0; 281 } 282 #define after(seq2, seq1) before(seq1, seq2) 283 284 /* is s2<=s1<=s3 ? */ 285 static inline bool between(__u32 seq1, __u32 seq2, __u32 seq3) 286 { 287 return seq3 - seq2 >= seq1 - seq2; 288 } 289 290 static inline bool tcp_out_of_memory(struct sock *sk) 291 { 292 if (sk->sk_wmem_queued > SOCK_MIN_SNDBUF && 293 sk_memory_allocated(sk) > sk_prot_mem_limits(sk, 2)) 294 return true; 295 return false; 296 } 297 298 static inline void tcp_wmem_free_skb(struct sock *sk, struct sk_buff *skb) 299 { 300 sk_wmem_queued_add(sk, -skb->truesize); 301 if (!skb_zcopy_pure(skb)) 302 sk_mem_uncharge(sk, skb->truesize); 303 else 304 sk_mem_uncharge(sk, SKB_TRUESIZE(skb_end_offset(skb))); 305 __kfree_skb(skb); 306 } 307 308 void sk_forced_mem_schedule(struct sock *sk, int size); 309 310 bool tcp_check_oom(struct sock *sk, int shift); 311 312 313 extern struct proto tcp_prot; 314 315 #define TCP_INC_STATS(net, field) SNMP_INC_STATS((net)->mib.tcp_statistics, field) 316 #define __TCP_INC_STATS(net, field) __SNMP_INC_STATS((net)->mib.tcp_statistics, field) 317 #define TCP_DEC_STATS(net, field) SNMP_DEC_STATS((net)->mib.tcp_statistics, field) 318 #define TCP_ADD_STATS(net, field, val) SNMP_ADD_STATS((net)->mib.tcp_statistics, field, val) 319 320 void tcp_tasklet_init(void); 321 322 int tcp_v4_err(struct sk_buff *skb, u32); 323 324 void tcp_shutdown(struct sock *sk, int how); 325 326 int tcp_v4_early_demux(struct sk_buff *skb); 327 int tcp_v4_rcv(struct sk_buff *skb); 328 329 void tcp_remove_empty_skb(struct sock *sk); 330 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size); 331 int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size); 332 int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg, int *copied, 333 size_t size, struct ubuf_info *uarg); 334 void tcp_splice_eof(struct socket *sock); 335 int tcp_send_mss(struct sock *sk, int *size_goal, int flags); 336 int tcp_wmem_schedule(struct sock *sk, int copy); 337 void tcp_push(struct sock *sk, int flags, int mss_now, int nonagle, 338 int size_goal); 339 void tcp_release_cb(struct sock *sk); 340 void tcp_wfree(struct sk_buff *skb); 341 void tcp_write_timer_handler(struct sock *sk); 342 void tcp_delack_timer_handler(struct sock *sk); 343 int tcp_ioctl(struct sock *sk, int cmd, int *karg); 344 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb); 345 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb); 346 void tcp_rcv_space_adjust(struct sock *sk); 347 int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp); 348 void tcp_twsk_destructor(struct sock *sk); 349 void tcp_twsk_purge(struct list_head *net_exit_list, int family); 350 ssize_t tcp_splice_read(struct socket *sk, loff_t *ppos, 351 struct pipe_inode_info *pipe, size_t len, 352 unsigned int flags); 353 struct sk_buff *tcp_stream_alloc_skb(struct sock *sk, gfp_t gfp, 354 bool force_schedule); 355 356 static inline void tcp_dec_quickack_mode(struct sock *sk) 357 { 358 struct inet_connection_sock *icsk = inet_csk(sk); 359 360 if (icsk->icsk_ack.quick) { 361 /* How many ACKs S/ACKing new data have we sent? */ 362 const unsigned int pkts = inet_csk_ack_scheduled(sk) ? 1 : 0; 363 364 if (pkts >= icsk->icsk_ack.quick) { 365 icsk->icsk_ack.quick = 0; 366 /* Leaving quickack mode we deflate ATO. */ 367 icsk->icsk_ack.ato = TCP_ATO_MIN; 368 } else 369 icsk->icsk_ack.quick -= pkts; 370 } 371 } 372 373 #define TCP_ECN_OK 1 374 #define TCP_ECN_QUEUE_CWR 2 375 #define TCP_ECN_DEMAND_CWR 4 376 #define TCP_ECN_SEEN 8 377 378 enum tcp_tw_status { 379 TCP_TW_SUCCESS = 0, 380 TCP_TW_RST = 1, 381 TCP_TW_ACK = 2, 382 TCP_TW_SYN = 3 383 }; 384 385 386 enum tcp_tw_status tcp_timewait_state_process(struct inet_timewait_sock *tw, 387 struct sk_buff *skb, 388 const struct tcphdr *th); 389 struct sock *tcp_check_req(struct sock *sk, struct sk_buff *skb, 390 struct request_sock *req, bool fastopen, 391 bool *lost_race); 392 int tcp_child_process(struct sock *parent, struct sock *child, 393 struct sk_buff *skb); 394 void tcp_enter_loss(struct sock *sk); 395 void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int newly_lost, int flag); 396 void tcp_clear_retrans(struct tcp_sock *tp); 397 void tcp_update_metrics(struct sock *sk); 398 void tcp_init_metrics(struct sock *sk); 399 void tcp_metrics_init(void); 400 bool tcp_peer_is_proven(struct request_sock *req, struct dst_entry *dst); 401 void __tcp_close(struct sock *sk, long timeout); 402 void tcp_close(struct sock *sk, long timeout); 403 void tcp_init_sock(struct sock *sk); 404 void tcp_init_transfer(struct sock *sk, int bpf_op, struct sk_buff *skb); 405 __poll_t tcp_poll(struct file *file, struct socket *sock, 406 struct poll_table_struct *wait); 407 int do_tcp_getsockopt(struct sock *sk, int level, 408 int optname, sockptr_t optval, sockptr_t optlen); 409 int tcp_getsockopt(struct sock *sk, int level, int optname, 410 char __user *optval, int __user *optlen); 411 bool tcp_bpf_bypass_getsockopt(int level, int optname); 412 int do_tcp_setsockopt(struct sock *sk, int level, int optname, 413 sockptr_t optval, unsigned int optlen); 414 int tcp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval, 415 unsigned int optlen); 416 void tcp_set_keepalive(struct sock *sk, int val); 417 void tcp_syn_ack_timeout(const struct request_sock *req); 418 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, 419 int flags, int *addr_len); 420 int tcp_set_rcvlowat(struct sock *sk, int val); 421 int tcp_set_window_clamp(struct sock *sk, int val); 422 void tcp_update_recv_tstamps(struct sk_buff *skb, 423 struct scm_timestamping_internal *tss); 424 void tcp_recv_timestamp(struct msghdr *msg, const struct sock *sk, 425 struct scm_timestamping_internal *tss); 426 void tcp_data_ready(struct sock *sk); 427 #ifdef CONFIG_MMU 428 int tcp_mmap(struct file *file, struct socket *sock, 429 struct vm_area_struct *vma); 430 #endif 431 void tcp_parse_options(const struct net *net, const struct sk_buff *skb, 432 struct tcp_options_received *opt_rx, 433 int estab, struct tcp_fastopen_cookie *foc); 434 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th); 435 436 /* 437 * BPF SKB-less helpers 438 */ 439 u16 tcp_v4_get_syncookie(struct sock *sk, struct iphdr *iph, 440 struct tcphdr *th, u32 *cookie); 441 u16 tcp_v6_get_syncookie(struct sock *sk, struct ipv6hdr *iph, 442 struct tcphdr *th, u32 *cookie); 443 u16 tcp_parse_mss_option(const struct tcphdr *th, u16 user_mss); 444 u16 tcp_get_syncookie_mss(struct request_sock_ops *rsk_ops, 445 const struct tcp_request_sock_ops *af_ops, 446 struct sock *sk, struct tcphdr *th); 447 /* 448 * TCP v4 functions exported for the inet6 API 449 */ 450 451 void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb); 452 void tcp_v4_mtu_reduced(struct sock *sk); 453 void tcp_req_err(struct sock *sk, u32 seq, bool abort); 454 void tcp_ld_RTO_revert(struct sock *sk, u32 seq); 455 int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb); 456 struct sock *tcp_create_openreq_child(const struct sock *sk, 457 struct request_sock *req, 458 struct sk_buff *skb); 459 void tcp_ca_openreq_child(struct sock *sk, const struct dst_entry *dst); 460 struct sock *tcp_v4_syn_recv_sock(const struct sock *sk, struct sk_buff *skb, 461 struct request_sock *req, 462 struct dst_entry *dst, 463 struct request_sock *req_unhash, 464 bool *own_req); 465 int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb); 466 int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len); 467 int tcp_connect(struct sock *sk); 468 enum tcp_synack_type { 469 TCP_SYNACK_NORMAL, 470 TCP_SYNACK_FASTOPEN, 471 TCP_SYNACK_COOKIE, 472 }; 473 struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst, 474 struct request_sock *req, 475 struct tcp_fastopen_cookie *foc, 476 enum tcp_synack_type synack_type, 477 struct sk_buff *syn_skb); 478 int tcp_disconnect(struct sock *sk, int flags); 479 480 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb); 481 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size); 482 void inet_sk_rx_dst_set(struct sock *sk, const struct sk_buff *skb); 483 484 /* From syncookies.c */ 485 struct sock *tcp_get_cookie_sock(struct sock *sk, struct sk_buff *skb, 486 struct request_sock *req, 487 struct dst_entry *dst, u32 tsoff); 488 int __cookie_v4_check(const struct iphdr *iph, const struct tcphdr *th, 489 u32 cookie); 490 struct sock *cookie_v4_check(struct sock *sk, struct sk_buff *skb); 491 struct request_sock *cookie_tcp_reqsk_alloc(const struct request_sock_ops *ops, 492 const struct tcp_request_sock_ops *af_ops, 493 struct sock *sk, struct sk_buff *skb); 494 #ifdef CONFIG_SYN_COOKIES 495 496 /* Syncookies use a monotonic timer which increments every 60 seconds. 497 * This counter is used both as a hash input and partially encoded into 498 * the cookie value. A cookie is only validated further if the delta 499 * between the current counter value and the encoded one is less than this, 500 * i.e. a sent cookie is valid only at most for 2*60 seconds (or less if 501 * the counter advances immediately after a cookie is generated). 502 */ 503 #define MAX_SYNCOOKIE_AGE 2 504 #define TCP_SYNCOOKIE_PERIOD (60 * HZ) 505 #define TCP_SYNCOOKIE_VALID (MAX_SYNCOOKIE_AGE * TCP_SYNCOOKIE_PERIOD) 506 507 /* syncookies: remember time of last synqueue overflow 508 * But do not dirty this field too often (once per second is enough) 509 * It is racy as we do not hold a lock, but race is very minor. 510 */ 511 static inline void tcp_synq_overflow(const struct sock *sk) 512 { 513 unsigned int last_overflow; 514 unsigned int now = jiffies; 515 516 if (sk->sk_reuseport) { 517 struct sock_reuseport *reuse; 518 519 reuse = rcu_dereference(sk->sk_reuseport_cb); 520 if (likely(reuse)) { 521 last_overflow = READ_ONCE(reuse->synq_overflow_ts); 522 if (!time_between32(now, last_overflow, 523 last_overflow + HZ)) 524 WRITE_ONCE(reuse->synq_overflow_ts, now); 525 return; 526 } 527 } 528 529 last_overflow = READ_ONCE(tcp_sk(sk)->rx_opt.ts_recent_stamp); 530 if (!time_between32(now, last_overflow, last_overflow + HZ)) 531 WRITE_ONCE(tcp_sk_rw(sk)->rx_opt.ts_recent_stamp, now); 532 } 533 534 /* syncookies: no recent synqueue overflow on this listening socket? */ 535 static inline bool tcp_synq_no_recent_overflow(const struct sock *sk) 536 { 537 unsigned int last_overflow; 538 unsigned int now = jiffies; 539 540 if (sk->sk_reuseport) { 541 struct sock_reuseport *reuse; 542 543 reuse = rcu_dereference(sk->sk_reuseport_cb); 544 if (likely(reuse)) { 545 last_overflow = READ_ONCE(reuse->synq_overflow_ts); 546 return !time_between32(now, last_overflow - HZ, 547 last_overflow + 548 TCP_SYNCOOKIE_VALID); 549 } 550 } 551 552 last_overflow = READ_ONCE(tcp_sk(sk)->rx_opt.ts_recent_stamp); 553 554 /* If last_overflow <= jiffies <= last_overflow + TCP_SYNCOOKIE_VALID, 555 * then we're under synflood. However, we have to use 556 * 'last_overflow - HZ' as lower bound. That's because a concurrent 557 * tcp_synq_overflow() could update .ts_recent_stamp after we read 558 * jiffies but before we store .ts_recent_stamp into last_overflow, 559 * which could lead to rejecting a valid syncookie. 560 */ 561 return !time_between32(now, last_overflow - HZ, 562 last_overflow + TCP_SYNCOOKIE_VALID); 563 } 564 565 static inline u32 tcp_cookie_time(void) 566 { 567 u64 val = get_jiffies_64(); 568 569 do_div(val, TCP_SYNCOOKIE_PERIOD); 570 return val; 571 } 572 573 u32 __cookie_v4_init_sequence(const struct iphdr *iph, const struct tcphdr *th, 574 u16 *mssp); 575 __u32 cookie_v4_init_sequence(const struct sk_buff *skb, __u16 *mss); 576 u64 cookie_init_timestamp(struct request_sock *req, u64 now); 577 bool cookie_timestamp_decode(const struct net *net, 578 struct tcp_options_received *opt); 579 bool cookie_ecn_ok(const struct tcp_options_received *opt, 580 const struct net *net, const struct dst_entry *dst); 581 582 /* From net/ipv6/syncookies.c */ 583 int __cookie_v6_check(const struct ipv6hdr *iph, const struct tcphdr *th, 584 u32 cookie); 585 struct sock *cookie_v6_check(struct sock *sk, struct sk_buff *skb); 586 587 u32 __cookie_v6_init_sequence(const struct ipv6hdr *iph, 588 const struct tcphdr *th, u16 *mssp); 589 __u32 cookie_v6_init_sequence(const struct sk_buff *skb, __u16 *mss); 590 #endif 591 /* tcp_output.c */ 592 593 void tcp_skb_entail(struct sock *sk, struct sk_buff *skb); 594 void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb); 595 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss, 596 int nonagle); 597 int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs); 598 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs); 599 void tcp_retransmit_timer(struct sock *sk); 600 void tcp_xmit_retransmit_queue(struct sock *); 601 void tcp_simple_retransmit(struct sock *); 602 void tcp_enter_recovery(struct sock *sk, bool ece_ack); 603 int tcp_trim_head(struct sock *, struct sk_buff *, u32); 604 enum tcp_queue { 605 TCP_FRAG_IN_WRITE_QUEUE, 606 TCP_FRAG_IN_RTX_QUEUE, 607 }; 608 int tcp_fragment(struct sock *sk, enum tcp_queue tcp_queue, 609 struct sk_buff *skb, u32 len, 610 unsigned int mss_now, gfp_t gfp); 611 612 void tcp_send_probe0(struct sock *); 613 int tcp_write_wakeup(struct sock *, int mib); 614 void tcp_send_fin(struct sock *sk); 615 void tcp_send_active_reset(struct sock *sk, gfp_t priority); 616 int tcp_send_synack(struct sock *); 617 void tcp_push_one(struct sock *, unsigned int mss_now); 618 void __tcp_send_ack(struct sock *sk, u32 rcv_nxt); 619 void tcp_send_ack(struct sock *sk); 620 void tcp_send_delayed_ack(struct sock *sk); 621 void tcp_send_loss_probe(struct sock *sk); 622 bool tcp_schedule_loss_probe(struct sock *sk, bool advancing_rto); 623 void tcp_skb_collapse_tstamp(struct sk_buff *skb, 624 const struct sk_buff *next_skb); 625 626 /* tcp_input.c */ 627 void tcp_rearm_rto(struct sock *sk); 628 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req); 629 void tcp_reset(struct sock *sk, struct sk_buff *skb); 630 void tcp_fin(struct sock *sk); 631 void tcp_check_space(struct sock *sk); 632 void tcp_sack_compress_send_ack(struct sock *sk); 633 634 /* tcp_timer.c */ 635 void tcp_init_xmit_timers(struct sock *); 636 static inline void tcp_clear_xmit_timers(struct sock *sk) 637 { 638 if (hrtimer_try_to_cancel(&tcp_sk(sk)->pacing_timer) == 1) 639 __sock_put(sk); 640 641 if (hrtimer_try_to_cancel(&tcp_sk(sk)->compressed_ack_timer) == 1) 642 __sock_put(sk); 643 644 inet_csk_clear_xmit_timers(sk); 645 } 646 647 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu); 648 unsigned int tcp_current_mss(struct sock *sk); 649 u32 tcp_clamp_probe0_to_user_timeout(const struct sock *sk, u32 when); 650 651 /* Bound MSS / TSO packet size with the half of the window */ 652 static inline int tcp_bound_to_half_wnd(struct tcp_sock *tp, int pktsize) 653 { 654 int cutoff; 655 656 /* When peer uses tiny windows, there is no use in packetizing 657 * to sub-MSS pieces for the sake of SWS or making sure there 658 * are enough packets in the pipe for fast recovery. 659 * 660 * On the other hand, for extremely large MSS devices, handling 661 * smaller than MSS windows in this way does make sense. 662 */ 663 if (tp->max_window > TCP_MSS_DEFAULT) 664 cutoff = (tp->max_window >> 1); 665 else 666 cutoff = tp->max_window; 667 668 if (cutoff && pktsize > cutoff) 669 return max_t(int, cutoff, 68U - tp->tcp_header_len); 670 else 671 return pktsize; 672 } 673 674 /* tcp.c */ 675 void tcp_get_info(struct sock *, struct tcp_info *); 676 677 /* Read 'sendfile()'-style from a TCP socket */ 678 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc, 679 sk_read_actor_t recv_actor); 680 int tcp_read_skb(struct sock *sk, skb_read_actor_t recv_actor); 681 struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off); 682 void tcp_read_done(struct sock *sk, size_t len); 683 684 void tcp_initialize_rcv_mss(struct sock *sk); 685 686 int tcp_mtu_to_mss(struct sock *sk, int pmtu); 687 int tcp_mss_to_mtu(struct sock *sk, int mss); 688 void tcp_mtup_init(struct sock *sk); 689 690 static inline void tcp_bound_rto(const struct sock *sk) 691 { 692 if (inet_csk(sk)->icsk_rto > TCP_RTO_MAX) 693 inet_csk(sk)->icsk_rto = TCP_RTO_MAX; 694 } 695 696 static inline u32 __tcp_set_rto(const struct tcp_sock *tp) 697 { 698 return usecs_to_jiffies((tp->srtt_us >> 3) + tp->rttvar_us); 699 } 700 701 static inline void __tcp_fast_path_on(struct tcp_sock *tp, u32 snd_wnd) 702 { 703 /* mptcp hooks are only on the slow path */ 704 if (sk_is_mptcp((struct sock *)tp)) 705 return; 706 707 tp->pred_flags = htonl((tp->tcp_header_len << 26) | 708 ntohl(TCP_FLAG_ACK) | 709 snd_wnd); 710 } 711 712 static inline void tcp_fast_path_on(struct tcp_sock *tp) 713 { 714 __tcp_fast_path_on(tp, tp->snd_wnd >> tp->rx_opt.snd_wscale); 715 } 716 717 static inline void tcp_fast_path_check(struct sock *sk) 718 { 719 struct tcp_sock *tp = tcp_sk(sk); 720 721 if (RB_EMPTY_ROOT(&tp->out_of_order_queue) && 722 tp->rcv_wnd && 723 atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf && 724 !tp->urg_data) 725 tcp_fast_path_on(tp); 726 } 727 728 u32 tcp_delack_max(const struct sock *sk); 729 730 /* Compute the actual rto_min value */ 731 static inline u32 tcp_rto_min(const struct sock *sk) 732 { 733 const struct dst_entry *dst = __sk_dst_get(sk); 734 u32 rto_min = inet_csk(sk)->icsk_rto_min; 735 736 if (dst && dst_metric_locked(dst, RTAX_RTO_MIN)) 737 rto_min = dst_metric_rtt(dst, RTAX_RTO_MIN); 738 return rto_min; 739 } 740 741 static inline u32 tcp_rto_min_us(const struct sock *sk) 742 { 743 return jiffies_to_usecs(tcp_rto_min(sk)); 744 } 745 746 static inline bool tcp_ca_dst_locked(const struct dst_entry *dst) 747 { 748 return dst_metric_locked(dst, RTAX_CC_ALGO); 749 } 750 751 /* Minimum RTT in usec. ~0 means not available. */ 752 static inline u32 tcp_min_rtt(const struct tcp_sock *tp) 753 { 754 return minmax_get(&tp->rtt_min); 755 } 756 757 /* Compute the actual receive window we are currently advertising. 758 * Rcv_nxt can be after the window if our peer push more data 759 * than the offered window. 760 */ 761 static inline u32 tcp_receive_window(const struct tcp_sock *tp) 762 { 763 s32 win = tp->rcv_wup + tp->rcv_wnd - tp->rcv_nxt; 764 765 if (win < 0) 766 win = 0; 767 return (u32) win; 768 } 769 770 /* Choose a new window, without checks for shrinking, and without 771 * scaling applied to the result. The caller does these things 772 * if necessary. This is a "raw" window selection. 773 */ 774 u32 __tcp_select_window(struct sock *sk); 775 776 void tcp_send_window_probe(struct sock *sk); 777 778 /* TCP uses 32bit jiffies to save some space. 779 * Note that this is different from tcp_time_stamp, which 780 * historically has been the same until linux-4.13. 781 */ 782 #define tcp_jiffies32 ((u32)jiffies) 783 784 /* 785 * Deliver a 32bit value for TCP timestamp option (RFC 7323) 786 * It is no longer tied to jiffies, but to 1 ms clock. 787 * Note: double check if you want to use tcp_jiffies32 instead of this. 788 */ 789 #define TCP_TS_HZ 1000 790 791 static inline u64 tcp_clock_ns(void) 792 { 793 return ktime_get_ns(); 794 } 795 796 static inline u64 tcp_clock_us(void) 797 { 798 return div_u64(tcp_clock_ns(), NSEC_PER_USEC); 799 } 800 801 /* This should only be used in contexts where tp->tcp_mstamp is up to date */ 802 static inline u32 tcp_time_stamp(const struct tcp_sock *tp) 803 { 804 return div_u64(tp->tcp_mstamp, USEC_PER_SEC / TCP_TS_HZ); 805 } 806 807 /* Convert a nsec timestamp into TCP TSval timestamp (ms based currently) */ 808 static inline u32 tcp_ns_to_ts(u64 ns) 809 { 810 return div_u64(ns, NSEC_PER_SEC / TCP_TS_HZ); 811 } 812 813 /* Could use tcp_clock_us() / 1000, but this version uses a single divide */ 814 static inline u32 tcp_time_stamp_raw(void) 815 { 816 return tcp_ns_to_ts(tcp_clock_ns()); 817 } 818 819 void tcp_mstamp_refresh(struct tcp_sock *tp); 820 821 static inline u32 tcp_stamp_us_delta(u64 t1, u64 t0) 822 { 823 return max_t(s64, t1 - t0, 0); 824 } 825 826 static inline u32 tcp_skb_timestamp(const struct sk_buff *skb) 827 { 828 return tcp_ns_to_ts(skb->skb_mstamp_ns); 829 } 830 831 /* provide the departure time in us unit */ 832 static inline u64 tcp_skb_timestamp_us(const struct sk_buff *skb) 833 { 834 return div_u64(skb->skb_mstamp_ns, NSEC_PER_USEC); 835 } 836 837 838 #define tcp_flag_byte(th) (((u_int8_t *)th)[13]) 839 840 #define TCPHDR_FIN 0x01 841 #define TCPHDR_SYN 0x02 842 #define TCPHDR_RST 0x04 843 #define TCPHDR_PSH 0x08 844 #define TCPHDR_ACK 0x10 845 #define TCPHDR_URG 0x20 846 #define TCPHDR_ECE 0x40 847 #define TCPHDR_CWR 0x80 848 849 #define TCPHDR_SYN_ECN (TCPHDR_SYN | TCPHDR_ECE | TCPHDR_CWR) 850 851 /* This is what the send packet queuing engine uses to pass 852 * TCP per-packet control information to the transmission code. 853 * We also store the host-order sequence numbers in here too. 854 * This is 44 bytes if IPV6 is enabled. 855 * If this grows please adjust skbuff.h:skbuff->cb[xxx] size appropriately. 856 */ 857 struct tcp_skb_cb { 858 __u32 seq; /* Starting sequence number */ 859 __u32 end_seq; /* SEQ + FIN + SYN + datalen */ 860 union { 861 /* Note : tcp_tw_isn is used in input path only 862 * (isn chosen by tcp_timewait_state_process()) 863 * 864 * tcp_gso_segs/size are used in write queue only, 865 * cf tcp_skb_pcount()/tcp_skb_mss() 866 */ 867 __u32 tcp_tw_isn; 868 struct { 869 u16 tcp_gso_segs; 870 u16 tcp_gso_size; 871 }; 872 }; 873 __u8 tcp_flags; /* TCP header flags. (tcp[13]) */ 874 875 __u8 sacked; /* State flags for SACK. */ 876 #define TCPCB_SACKED_ACKED 0x01 /* SKB ACK'd by a SACK block */ 877 #define TCPCB_SACKED_RETRANS 0x02 /* SKB retransmitted */ 878 #define TCPCB_LOST 0x04 /* SKB is lost */ 879 #define TCPCB_TAGBITS 0x07 /* All tag bits */ 880 #define TCPCB_REPAIRED 0x10 /* SKB repaired (no skb_mstamp_ns) */ 881 #define TCPCB_EVER_RETRANS 0x80 /* Ever retransmitted frame */ 882 #define TCPCB_RETRANS (TCPCB_SACKED_RETRANS|TCPCB_EVER_RETRANS| \ 883 TCPCB_REPAIRED) 884 885 __u8 ip_dsfield; /* IPv4 tos or IPv6 dsfield */ 886 __u8 txstamp_ack:1, /* Record TX timestamp for ack? */ 887 eor:1, /* Is skb MSG_EOR marked? */ 888 has_rxtstamp:1, /* SKB has a RX timestamp */ 889 unused:5; 890 __u32 ack_seq; /* Sequence number ACK'd */ 891 union { 892 struct { 893 #define TCPCB_DELIVERED_CE_MASK ((1U<<20) - 1) 894 /* There is space for up to 24 bytes */ 895 __u32 is_app_limited:1, /* cwnd not fully used? */ 896 delivered_ce:20, 897 unused:11; 898 /* pkts S/ACKed so far upon tx of skb, incl retrans: */ 899 __u32 delivered; 900 /* start of send pipeline phase */ 901 u64 first_tx_mstamp; 902 /* when we reached the "delivered" count */ 903 u64 delivered_mstamp; 904 } tx; /* only used for outgoing skbs */ 905 union { 906 struct inet_skb_parm h4; 907 #if IS_ENABLED(CONFIG_IPV6) 908 struct inet6_skb_parm h6; 909 #endif 910 } header; /* For incoming skbs */ 911 }; 912 }; 913 914 #define TCP_SKB_CB(__skb) ((struct tcp_skb_cb *)&((__skb)->cb[0])) 915 916 extern const struct inet_connection_sock_af_ops ipv4_specific; 917 918 #if IS_ENABLED(CONFIG_IPV6) 919 /* This is the variant of inet6_iif() that must be used by TCP, 920 * as TCP moves IP6CB into a different location in skb->cb[] 921 */ 922 static inline int tcp_v6_iif(const struct sk_buff *skb) 923 { 924 return TCP_SKB_CB(skb)->header.h6.iif; 925 } 926 927 static inline int tcp_v6_iif_l3_slave(const struct sk_buff *skb) 928 { 929 bool l3_slave = ipv6_l3mdev_skb(TCP_SKB_CB(skb)->header.h6.flags); 930 931 return l3_slave ? skb->skb_iif : TCP_SKB_CB(skb)->header.h6.iif; 932 } 933 934 /* TCP_SKB_CB reference means this can not be used from early demux */ 935 static inline int tcp_v6_sdif(const struct sk_buff *skb) 936 { 937 #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV) 938 if (skb && ipv6_l3mdev_skb(TCP_SKB_CB(skb)->header.h6.flags)) 939 return TCP_SKB_CB(skb)->header.h6.iif; 940 #endif 941 return 0; 942 } 943 944 extern const struct inet_connection_sock_af_ops ipv6_specific; 945 946 INDIRECT_CALLABLE_DECLARE(void tcp_v6_send_check(struct sock *sk, struct sk_buff *skb)); 947 INDIRECT_CALLABLE_DECLARE(int tcp_v6_rcv(struct sk_buff *skb)); 948 void tcp_v6_early_demux(struct sk_buff *skb); 949 950 #endif 951 952 /* TCP_SKB_CB reference means this can not be used from early demux */ 953 static inline int tcp_v4_sdif(struct sk_buff *skb) 954 { 955 #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV) 956 if (skb && ipv4_l3mdev_skb(TCP_SKB_CB(skb)->header.h4.flags)) 957 return TCP_SKB_CB(skb)->header.h4.iif; 958 #endif 959 return 0; 960 } 961 962 /* Due to TSO, an SKB can be composed of multiple actual 963 * packets. To keep these tracked properly, we use this. 964 */ 965 static inline int tcp_skb_pcount(const struct sk_buff *skb) 966 { 967 return TCP_SKB_CB(skb)->tcp_gso_segs; 968 } 969 970 static inline void tcp_skb_pcount_set(struct sk_buff *skb, int segs) 971 { 972 TCP_SKB_CB(skb)->tcp_gso_segs = segs; 973 } 974 975 static inline void tcp_skb_pcount_add(struct sk_buff *skb, int segs) 976 { 977 TCP_SKB_CB(skb)->tcp_gso_segs += segs; 978 } 979 980 /* This is valid iff skb is in write queue and tcp_skb_pcount() > 1. */ 981 static inline int tcp_skb_mss(const struct sk_buff *skb) 982 { 983 return TCP_SKB_CB(skb)->tcp_gso_size; 984 } 985 986 static inline bool tcp_skb_can_collapse_to(const struct sk_buff *skb) 987 { 988 return likely(!TCP_SKB_CB(skb)->eor); 989 } 990 991 static inline bool tcp_skb_can_collapse(const struct sk_buff *to, 992 const struct sk_buff *from) 993 { 994 return likely(tcp_skb_can_collapse_to(to) && 995 mptcp_skb_can_collapse(to, from) && 996 skb_pure_zcopy_same(to, from)); 997 } 998 999 /* Events passed to congestion control interface */ 1000 enum tcp_ca_event { 1001 CA_EVENT_TX_START, /* first transmit when no packets in flight */ 1002 CA_EVENT_CWND_RESTART, /* congestion window restart */ 1003 CA_EVENT_COMPLETE_CWR, /* end of congestion recovery */ 1004 CA_EVENT_LOSS, /* loss timeout */ 1005 CA_EVENT_ECN_NO_CE, /* ECT set, but not CE marked */ 1006 CA_EVENT_ECN_IS_CE, /* received CE marked IP packet */ 1007 }; 1008 1009 /* Information about inbound ACK, passed to cong_ops->in_ack_event() */ 1010 enum tcp_ca_ack_event_flags { 1011 CA_ACK_SLOWPATH = (1 << 0), /* In slow path processing */ 1012 CA_ACK_WIN_UPDATE = (1 << 1), /* ACK updated window */ 1013 CA_ACK_ECE = (1 << 2), /* ECE bit is set on ack */ 1014 }; 1015 1016 /* 1017 * Interface for adding new TCP congestion control handlers 1018 */ 1019 #define TCP_CA_NAME_MAX 16 1020 #define TCP_CA_MAX 128 1021 #define TCP_CA_BUF_MAX (TCP_CA_NAME_MAX*TCP_CA_MAX) 1022 1023 #define TCP_CA_UNSPEC 0 1024 1025 /* Algorithm can be set on socket without CAP_NET_ADMIN privileges */ 1026 #define TCP_CONG_NON_RESTRICTED 0x1 1027 /* Requires ECN/ECT set on all packets */ 1028 #define TCP_CONG_NEEDS_ECN 0x2 1029 #define TCP_CONG_MASK (TCP_CONG_NON_RESTRICTED | TCP_CONG_NEEDS_ECN) 1030 1031 union tcp_cc_info; 1032 1033 struct ack_sample { 1034 u32 pkts_acked; 1035 s32 rtt_us; 1036 u32 in_flight; 1037 }; 1038 1039 /* A rate sample measures the number of (original/retransmitted) data 1040 * packets delivered "delivered" over an interval of time "interval_us". 1041 * The tcp_rate.c code fills in the rate sample, and congestion 1042 * control modules that define a cong_control function to run at the end 1043 * of ACK processing can optionally chose to consult this sample when 1044 * setting cwnd and pacing rate. 1045 * A sample is invalid if "delivered" or "interval_us" is negative. 1046 */ 1047 struct rate_sample { 1048 u64 prior_mstamp; /* starting timestamp for interval */ 1049 u32 prior_delivered; /* tp->delivered at "prior_mstamp" */ 1050 u32 prior_delivered_ce;/* tp->delivered_ce at "prior_mstamp" */ 1051 s32 delivered; /* number of packets delivered over interval */ 1052 s32 delivered_ce; /* number of packets delivered w/ CE marks*/ 1053 long interval_us; /* time for tp->delivered to incr "delivered" */ 1054 u32 snd_interval_us; /* snd interval for delivered packets */ 1055 u32 rcv_interval_us; /* rcv interval for delivered packets */ 1056 long rtt_us; /* RTT of last (S)ACKed packet (or -1) */ 1057 int losses; /* number of packets marked lost upon ACK */ 1058 u32 acked_sacked; /* number of packets newly (S)ACKed upon ACK */ 1059 u32 prior_in_flight; /* in flight before this ACK */ 1060 u32 last_end_seq; /* end_seq of most recently ACKed packet */ 1061 bool is_app_limited; /* is sample from packet with bubble in pipe? */ 1062 bool is_retrans; /* is sample from retransmission? */ 1063 bool is_ack_delayed; /* is this (likely) a delayed ACK? */ 1064 }; 1065 1066 struct tcp_congestion_ops { 1067 /* fast path fields are put first to fill one cache line */ 1068 1069 /* return slow start threshold (required) */ 1070 u32 (*ssthresh)(struct sock *sk); 1071 1072 /* do new cwnd calculation (required) */ 1073 void (*cong_avoid)(struct sock *sk, u32 ack, u32 acked); 1074 1075 /* call before changing ca_state (optional) */ 1076 void (*set_state)(struct sock *sk, u8 new_state); 1077 1078 /* call when cwnd event occurs (optional) */ 1079 void (*cwnd_event)(struct sock *sk, enum tcp_ca_event ev); 1080 1081 /* call when ack arrives (optional) */ 1082 void (*in_ack_event)(struct sock *sk, u32 flags); 1083 1084 /* hook for packet ack accounting (optional) */ 1085 void (*pkts_acked)(struct sock *sk, const struct ack_sample *sample); 1086 1087 /* override sysctl_tcp_min_tso_segs */ 1088 u32 (*min_tso_segs)(struct sock *sk); 1089 1090 /* call when packets are delivered to update cwnd and pacing rate, 1091 * after all the ca_state processing. (optional) 1092 */ 1093 void (*cong_control)(struct sock *sk, const struct rate_sample *rs); 1094 1095 1096 /* new value of cwnd after loss (required) */ 1097 u32 (*undo_cwnd)(struct sock *sk); 1098 /* returns the multiplier used in tcp_sndbuf_expand (optional) */ 1099 u32 (*sndbuf_expand)(struct sock *sk); 1100 1101 /* control/slow paths put last */ 1102 /* get info for inet_diag (optional) */ 1103 size_t (*get_info)(struct sock *sk, u32 ext, int *attr, 1104 union tcp_cc_info *info); 1105 1106 char name[TCP_CA_NAME_MAX]; 1107 struct module *owner; 1108 struct list_head list; 1109 u32 key; 1110 u32 flags; 1111 1112 /* initialize private data (optional) */ 1113 void (*init)(struct sock *sk); 1114 /* cleanup private data (optional) */ 1115 void (*release)(struct sock *sk); 1116 } ____cacheline_aligned_in_smp; 1117 1118 int tcp_register_congestion_control(struct tcp_congestion_ops *type); 1119 void tcp_unregister_congestion_control(struct tcp_congestion_ops *type); 1120 int tcp_update_congestion_control(struct tcp_congestion_ops *type, 1121 struct tcp_congestion_ops *old_type); 1122 int tcp_validate_congestion_control(struct tcp_congestion_ops *ca); 1123 1124 void tcp_assign_congestion_control(struct sock *sk); 1125 void tcp_init_congestion_control(struct sock *sk); 1126 void tcp_cleanup_congestion_control(struct sock *sk); 1127 int tcp_set_default_congestion_control(struct net *net, const char *name); 1128 void tcp_get_default_congestion_control(struct net *net, char *name); 1129 void tcp_get_available_congestion_control(char *buf, size_t len); 1130 void tcp_get_allowed_congestion_control(char *buf, size_t len); 1131 int tcp_set_allowed_congestion_control(char *allowed); 1132 int tcp_set_congestion_control(struct sock *sk, const char *name, bool load, 1133 bool cap_net_admin); 1134 u32 tcp_slow_start(struct tcp_sock *tp, u32 acked); 1135 void tcp_cong_avoid_ai(struct tcp_sock *tp, u32 w, u32 acked); 1136 1137 u32 tcp_reno_ssthresh(struct sock *sk); 1138 u32 tcp_reno_undo_cwnd(struct sock *sk); 1139 void tcp_reno_cong_avoid(struct sock *sk, u32 ack, u32 acked); 1140 extern struct tcp_congestion_ops tcp_reno; 1141 1142 struct tcp_congestion_ops *tcp_ca_find(const char *name); 1143 struct tcp_congestion_ops *tcp_ca_find_key(u32 key); 1144 u32 tcp_ca_get_key_by_name(struct net *net, const char *name, bool *ecn_ca); 1145 #ifdef CONFIG_INET 1146 char *tcp_ca_get_name_by_key(u32 key, char *buffer); 1147 #else 1148 static inline char *tcp_ca_get_name_by_key(u32 key, char *buffer) 1149 { 1150 return NULL; 1151 } 1152 #endif 1153 1154 static inline bool tcp_ca_needs_ecn(const struct sock *sk) 1155 { 1156 const struct inet_connection_sock *icsk = inet_csk(sk); 1157 1158 return icsk->icsk_ca_ops->flags & TCP_CONG_NEEDS_ECN; 1159 } 1160 1161 static inline void tcp_ca_event(struct sock *sk, const enum tcp_ca_event event) 1162 { 1163 const struct inet_connection_sock *icsk = inet_csk(sk); 1164 1165 if (icsk->icsk_ca_ops->cwnd_event) 1166 icsk->icsk_ca_ops->cwnd_event(sk, event); 1167 } 1168 1169 /* From tcp_cong.c */ 1170 void tcp_set_ca_state(struct sock *sk, const u8 ca_state); 1171 1172 /* From tcp_rate.c */ 1173 void tcp_rate_skb_sent(struct sock *sk, struct sk_buff *skb); 1174 void tcp_rate_skb_delivered(struct sock *sk, struct sk_buff *skb, 1175 struct rate_sample *rs); 1176 void tcp_rate_gen(struct sock *sk, u32 delivered, u32 lost, 1177 bool is_sack_reneg, struct rate_sample *rs); 1178 void tcp_rate_check_app_limited(struct sock *sk); 1179 1180 static inline bool tcp_skb_sent_after(u64 t1, u64 t2, u32 seq1, u32 seq2) 1181 { 1182 return t1 > t2 || (t1 == t2 && after(seq1, seq2)); 1183 } 1184 1185 /* These functions determine how the current flow behaves in respect of SACK 1186 * handling. SACK is negotiated with the peer, and therefore it can vary 1187 * between different flows. 1188 * 1189 * tcp_is_sack - SACK enabled 1190 * tcp_is_reno - No SACK 1191 */ 1192 static inline int tcp_is_sack(const struct tcp_sock *tp) 1193 { 1194 return likely(tp->rx_opt.sack_ok); 1195 } 1196 1197 static inline bool tcp_is_reno(const struct tcp_sock *tp) 1198 { 1199 return !tcp_is_sack(tp); 1200 } 1201 1202 static inline unsigned int tcp_left_out(const struct tcp_sock *tp) 1203 { 1204 return tp->sacked_out + tp->lost_out; 1205 } 1206 1207 /* This determines how many packets are "in the network" to the best 1208 * of our knowledge. In many cases it is conservative, but where 1209 * detailed information is available from the receiver (via SACK 1210 * blocks etc.) we can make more aggressive calculations. 1211 * 1212 * Use this for decisions involving congestion control, use just 1213 * tp->packets_out to determine if the send queue is empty or not. 1214 * 1215 * Read this equation as: 1216 * 1217 * "Packets sent once on transmission queue" MINUS 1218 * "Packets left network, but not honestly ACKed yet" PLUS 1219 * "Packets fast retransmitted" 1220 */ 1221 static inline unsigned int tcp_packets_in_flight(const struct tcp_sock *tp) 1222 { 1223 return tp->packets_out - tcp_left_out(tp) + tp->retrans_out; 1224 } 1225 1226 #define TCP_INFINITE_SSTHRESH 0x7fffffff 1227 1228 static inline u32 tcp_snd_cwnd(const struct tcp_sock *tp) 1229 { 1230 return tp->snd_cwnd; 1231 } 1232 1233 static inline void tcp_snd_cwnd_set(struct tcp_sock *tp, u32 val) 1234 { 1235 WARN_ON_ONCE((int)val <= 0); 1236 tp->snd_cwnd = val; 1237 } 1238 1239 static inline bool tcp_in_slow_start(const struct tcp_sock *tp) 1240 { 1241 return tcp_snd_cwnd(tp) < tp->snd_ssthresh; 1242 } 1243 1244 static inline bool tcp_in_initial_slowstart(const struct tcp_sock *tp) 1245 { 1246 return tp->snd_ssthresh >= TCP_INFINITE_SSTHRESH; 1247 } 1248 1249 static inline bool tcp_in_cwnd_reduction(const struct sock *sk) 1250 { 1251 return (TCPF_CA_CWR | TCPF_CA_Recovery) & 1252 (1 << inet_csk(sk)->icsk_ca_state); 1253 } 1254 1255 /* If cwnd > ssthresh, we may raise ssthresh to be half-way to cwnd. 1256 * The exception is cwnd reduction phase, when cwnd is decreasing towards 1257 * ssthresh. 1258 */ 1259 static inline __u32 tcp_current_ssthresh(const struct sock *sk) 1260 { 1261 const struct tcp_sock *tp = tcp_sk(sk); 1262 1263 if (tcp_in_cwnd_reduction(sk)) 1264 return tp->snd_ssthresh; 1265 else 1266 return max(tp->snd_ssthresh, 1267 ((tcp_snd_cwnd(tp) >> 1) + 1268 (tcp_snd_cwnd(tp) >> 2))); 1269 } 1270 1271 /* Use define here intentionally to get WARN_ON location shown at the caller */ 1272 #define tcp_verify_left_out(tp) WARN_ON(tcp_left_out(tp) > tp->packets_out) 1273 1274 void tcp_enter_cwr(struct sock *sk); 1275 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst); 1276 1277 /* The maximum number of MSS of available cwnd for which TSO defers 1278 * sending if not using sysctl_tcp_tso_win_divisor. 1279 */ 1280 static inline __u32 tcp_max_tso_deferred_mss(const struct tcp_sock *tp) 1281 { 1282 return 3; 1283 } 1284 1285 /* Returns end sequence number of the receiver's advertised window */ 1286 static inline u32 tcp_wnd_end(const struct tcp_sock *tp) 1287 { 1288 return tp->snd_una + tp->snd_wnd; 1289 } 1290 1291 /* We follow the spirit of RFC2861 to validate cwnd but implement a more 1292 * flexible approach. The RFC suggests cwnd should not be raised unless 1293 * it was fully used previously. And that's exactly what we do in 1294 * congestion avoidance mode. But in slow start we allow cwnd to grow 1295 * as long as the application has used half the cwnd. 1296 * Example : 1297 * cwnd is 10 (IW10), but application sends 9 frames. 1298 * We allow cwnd to reach 18 when all frames are ACKed. 1299 * This check is safe because it's as aggressive as slow start which already 1300 * risks 100% overshoot. The advantage is that we discourage application to 1301 * either send more filler packets or data to artificially blow up the cwnd 1302 * usage, and allow application-limited process to probe bw more aggressively. 1303 */ 1304 static inline bool tcp_is_cwnd_limited(const struct sock *sk) 1305 { 1306 const struct tcp_sock *tp = tcp_sk(sk); 1307 1308 if (tp->is_cwnd_limited) 1309 return true; 1310 1311 /* If in slow start, ensure cwnd grows to twice what was ACKed. */ 1312 if (tcp_in_slow_start(tp)) 1313 return tcp_snd_cwnd(tp) < 2 * tp->max_packets_out; 1314 1315 return false; 1316 } 1317 1318 /* BBR congestion control needs pacing. 1319 * Same remark for SO_MAX_PACING_RATE. 1320 * sch_fq packet scheduler is efficiently handling pacing, 1321 * but is not always installed/used. 1322 * Return true if TCP stack should pace packets itself. 1323 */ 1324 static inline bool tcp_needs_internal_pacing(const struct sock *sk) 1325 { 1326 return smp_load_acquire(&sk->sk_pacing_status) == SK_PACING_NEEDED; 1327 } 1328 1329 /* Estimates in how many jiffies next packet for this flow can be sent. 1330 * Scheduling a retransmit timer too early would be silly. 1331 */ 1332 static inline unsigned long tcp_pacing_delay(const struct sock *sk) 1333 { 1334 s64 delay = tcp_sk(sk)->tcp_wstamp_ns - tcp_sk(sk)->tcp_clock_cache; 1335 1336 return delay > 0 ? nsecs_to_jiffies(delay) : 0; 1337 } 1338 1339 static inline void tcp_reset_xmit_timer(struct sock *sk, 1340 const int what, 1341 unsigned long when, 1342 const unsigned long max_when) 1343 { 1344 inet_csk_reset_xmit_timer(sk, what, when + tcp_pacing_delay(sk), 1345 max_when); 1346 } 1347 1348 /* Something is really bad, we could not queue an additional packet, 1349 * because qdisc is full or receiver sent a 0 window, or we are paced. 1350 * We do not want to add fuel to the fire, or abort too early, 1351 * so make sure the timer we arm now is at least 200ms in the future, 1352 * regardless of current icsk_rto value (as it could be ~2ms) 1353 */ 1354 static inline unsigned long tcp_probe0_base(const struct sock *sk) 1355 { 1356 return max_t(unsigned long, inet_csk(sk)->icsk_rto, TCP_RTO_MIN); 1357 } 1358 1359 /* Variant of inet_csk_rto_backoff() used for zero window probes */ 1360 static inline unsigned long tcp_probe0_when(const struct sock *sk, 1361 unsigned long max_when) 1362 { 1363 u8 backoff = min_t(u8, ilog2(TCP_RTO_MAX / TCP_RTO_MIN) + 1, 1364 inet_csk(sk)->icsk_backoff); 1365 u64 when = (u64)tcp_probe0_base(sk) << backoff; 1366 1367 return (unsigned long)min_t(u64, when, max_when); 1368 } 1369 1370 static inline void tcp_check_probe_timer(struct sock *sk) 1371 { 1372 if (!tcp_sk(sk)->packets_out && !inet_csk(sk)->icsk_pending) 1373 tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0, 1374 tcp_probe0_base(sk), TCP_RTO_MAX); 1375 } 1376 1377 static inline void tcp_init_wl(struct tcp_sock *tp, u32 seq) 1378 { 1379 tp->snd_wl1 = seq; 1380 } 1381 1382 static inline void tcp_update_wl(struct tcp_sock *tp, u32 seq) 1383 { 1384 tp->snd_wl1 = seq; 1385 } 1386 1387 /* 1388 * Calculate(/check) TCP checksum 1389 */ 1390 static inline __sum16 tcp_v4_check(int len, __be32 saddr, 1391 __be32 daddr, __wsum base) 1392 { 1393 return csum_tcpudp_magic(saddr, daddr, len, IPPROTO_TCP, base); 1394 } 1395 1396 static inline bool tcp_checksum_complete(struct sk_buff *skb) 1397 { 1398 return !skb_csum_unnecessary(skb) && 1399 __skb_checksum_complete(skb); 1400 } 1401 1402 bool tcp_add_backlog(struct sock *sk, struct sk_buff *skb, 1403 enum skb_drop_reason *reason); 1404 1405 1406 int tcp_filter(struct sock *sk, struct sk_buff *skb); 1407 void tcp_set_state(struct sock *sk, int state); 1408 void tcp_done(struct sock *sk); 1409 int tcp_abort(struct sock *sk, int err); 1410 1411 static inline void tcp_sack_reset(struct tcp_options_received *rx_opt) 1412 { 1413 rx_opt->dsack = 0; 1414 rx_opt->num_sacks = 0; 1415 } 1416 1417 void tcp_cwnd_restart(struct sock *sk, s32 delta); 1418 1419 static inline void tcp_slow_start_after_idle_check(struct sock *sk) 1420 { 1421 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops; 1422 struct tcp_sock *tp = tcp_sk(sk); 1423 s32 delta; 1424 1425 if (!READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_slow_start_after_idle) || 1426 tp->packets_out || ca_ops->cong_control) 1427 return; 1428 delta = tcp_jiffies32 - tp->lsndtime; 1429 if (delta > inet_csk(sk)->icsk_rto) 1430 tcp_cwnd_restart(sk, delta); 1431 } 1432 1433 /* Determine a window scaling and initial window to offer. */ 1434 void tcp_select_initial_window(const struct sock *sk, int __space, 1435 __u32 mss, __u32 *rcv_wnd, 1436 __u32 *window_clamp, int wscale_ok, 1437 __u8 *rcv_wscale, __u32 init_rcv_wnd); 1438 1439 static inline int __tcp_win_from_space(u8 scaling_ratio, int space) 1440 { 1441 s64 scaled_space = (s64)space * scaling_ratio; 1442 1443 return scaled_space >> TCP_RMEM_TO_WIN_SCALE; 1444 } 1445 1446 static inline int tcp_win_from_space(const struct sock *sk, int space) 1447 { 1448 return __tcp_win_from_space(tcp_sk(sk)->scaling_ratio, space); 1449 } 1450 1451 /* inverse of __tcp_win_from_space() */ 1452 static inline int __tcp_space_from_win(u8 scaling_ratio, int win) 1453 { 1454 u64 val = (u64)win << TCP_RMEM_TO_WIN_SCALE; 1455 1456 do_div(val, scaling_ratio); 1457 return val; 1458 } 1459 1460 static inline int tcp_space_from_win(const struct sock *sk, int win) 1461 { 1462 return __tcp_space_from_win(tcp_sk(sk)->scaling_ratio, win); 1463 } 1464 1465 static inline void tcp_scaling_ratio_init(struct sock *sk) 1466 { 1467 /* Assume a conservative default of 1200 bytes of payload per 4K page. 1468 * This may be adjusted later in tcp_measure_rcv_mss(). 1469 */ 1470 tcp_sk(sk)->scaling_ratio = (1200 << TCP_RMEM_TO_WIN_SCALE) / 1471 SKB_TRUESIZE(4096); 1472 } 1473 1474 /* Note: caller must be prepared to deal with negative returns */ 1475 static inline int tcp_space(const struct sock *sk) 1476 { 1477 return tcp_win_from_space(sk, READ_ONCE(sk->sk_rcvbuf) - 1478 READ_ONCE(sk->sk_backlog.len) - 1479 atomic_read(&sk->sk_rmem_alloc)); 1480 } 1481 1482 static inline int tcp_full_space(const struct sock *sk) 1483 { 1484 return tcp_win_from_space(sk, READ_ONCE(sk->sk_rcvbuf)); 1485 } 1486 1487 static inline void tcp_adjust_rcv_ssthresh(struct sock *sk) 1488 { 1489 int unused_mem = sk_unused_reserved_mem(sk); 1490 struct tcp_sock *tp = tcp_sk(sk); 1491 1492 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss); 1493 if (unused_mem) 1494 tp->rcv_ssthresh = max_t(u32, tp->rcv_ssthresh, 1495 tcp_win_from_space(sk, unused_mem)); 1496 } 1497 1498 void tcp_cleanup_rbuf(struct sock *sk, int copied); 1499 void __tcp_cleanup_rbuf(struct sock *sk, int copied); 1500 1501 1502 /* We provision sk_rcvbuf around 200% of sk_rcvlowat. 1503 * If 87.5 % (7/8) of the space has been consumed, we want to override 1504 * SO_RCVLOWAT constraint, since we are receiving skbs with too small 1505 * len/truesize ratio. 1506 */ 1507 static inline bool tcp_rmem_pressure(const struct sock *sk) 1508 { 1509 int rcvbuf, threshold; 1510 1511 if (tcp_under_memory_pressure(sk)) 1512 return true; 1513 1514 rcvbuf = READ_ONCE(sk->sk_rcvbuf); 1515 threshold = rcvbuf - (rcvbuf >> 3); 1516 1517 return atomic_read(&sk->sk_rmem_alloc) > threshold; 1518 } 1519 1520 static inline bool tcp_epollin_ready(const struct sock *sk, int target) 1521 { 1522 const struct tcp_sock *tp = tcp_sk(sk); 1523 int avail = READ_ONCE(tp->rcv_nxt) - READ_ONCE(tp->copied_seq); 1524 1525 if (avail <= 0) 1526 return false; 1527 1528 return (avail >= target) || tcp_rmem_pressure(sk) || 1529 (tcp_receive_window(tp) <= inet_csk(sk)->icsk_ack.rcv_mss); 1530 } 1531 1532 extern void tcp_openreq_init_rwin(struct request_sock *req, 1533 const struct sock *sk_listener, 1534 const struct dst_entry *dst); 1535 1536 void tcp_enter_memory_pressure(struct sock *sk); 1537 void tcp_leave_memory_pressure(struct sock *sk); 1538 1539 static inline int keepalive_intvl_when(const struct tcp_sock *tp) 1540 { 1541 struct net *net = sock_net((struct sock *)tp); 1542 int val; 1543 1544 /* Paired with WRITE_ONCE() in tcp_sock_set_keepintvl() 1545 * and do_tcp_setsockopt(). 1546 */ 1547 val = READ_ONCE(tp->keepalive_intvl); 1548 1549 return val ? : READ_ONCE(net->ipv4.sysctl_tcp_keepalive_intvl); 1550 } 1551 1552 static inline int keepalive_time_when(const struct tcp_sock *tp) 1553 { 1554 struct net *net = sock_net((struct sock *)tp); 1555 int val; 1556 1557 /* Paired with WRITE_ONCE() in tcp_sock_set_keepidle_locked() */ 1558 val = READ_ONCE(tp->keepalive_time); 1559 1560 return val ? : READ_ONCE(net->ipv4.sysctl_tcp_keepalive_time); 1561 } 1562 1563 static inline int keepalive_probes(const struct tcp_sock *tp) 1564 { 1565 struct net *net = sock_net((struct sock *)tp); 1566 int val; 1567 1568 /* Paired with WRITE_ONCE() in tcp_sock_set_keepcnt() 1569 * and do_tcp_setsockopt(). 1570 */ 1571 val = READ_ONCE(tp->keepalive_probes); 1572 1573 return val ? : READ_ONCE(net->ipv4.sysctl_tcp_keepalive_probes); 1574 } 1575 1576 static inline u32 keepalive_time_elapsed(const struct tcp_sock *tp) 1577 { 1578 const struct inet_connection_sock *icsk = &tp->inet_conn; 1579 1580 return min_t(u32, tcp_jiffies32 - icsk->icsk_ack.lrcvtime, 1581 tcp_jiffies32 - tp->rcv_tstamp); 1582 } 1583 1584 static inline int tcp_fin_time(const struct sock *sk) 1585 { 1586 int fin_timeout = tcp_sk(sk)->linger2 ? : 1587 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_fin_timeout); 1588 const int rto = inet_csk(sk)->icsk_rto; 1589 1590 if (fin_timeout < (rto << 2) - (rto >> 1)) 1591 fin_timeout = (rto << 2) - (rto >> 1); 1592 1593 return fin_timeout; 1594 } 1595 1596 static inline bool tcp_paws_check(const struct tcp_options_received *rx_opt, 1597 int paws_win) 1598 { 1599 if ((s32)(rx_opt->ts_recent - rx_opt->rcv_tsval) <= paws_win) 1600 return true; 1601 if (unlikely(!time_before32(ktime_get_seconds(), 1602 rx_opt->ts_recent_stamp + TCP_PAWS_24DAYS))) 1603 return true; 1604 /* 1605 * Some OSes send SYN and SYNACK messages with tsval=0 tsecr=0, 1606 * then following tcp messages have valid values. Ignore 0 value, 1607 * or else 'negative' tsval might forbid us to accept their packets. 1608 */ 1609 if (!rx_opt->ts_recent) 1610 return true; 1611 return false; 1612 } 1613 1614 static inline bool tcp_paws_reject(const struct tcp_options_received *rx_opt, 1615 int rst) 1616 { 1617 if (tcp_paws_check(rx_opt, 0)) 1618 return false; 1619 1620 /* RST segments are not recommended to carry timestamp, 1621 and, if they do, it is recommended to ignore PAWS because 1622 "their cleanup function should take precedence over timestamps." 1623 Certainly, it is mistake. It is necessary to understand the reasons 1624 of this constraint to relax it: if peer reboots, clock may go 1625 out-of-sync and half-open connections will not be reset. 1626 Actually, the problem would be not existing if all 1627 the implementations followed draft about maintaining clock 1628 via reboots. Linux-2.2 DOES NOT! 1629 1630 However, we can relax time bounds for RST segments to MSL. 1631 */ 1632 if (rst && !time_before32(ktime_get_seconds(), 1633 rx_opt->ts_recent_stamp + TCP_PAWS_MSL)) 1634 return false; 1635 return true; 1636 } 1637 1638 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb, 1639 int mib_idx, u32 *last_oow_ack_time); 1640 1641 static inline void tcp_mib_init(struct net *net) 1642 { 1643 /* See RFC 2012 */ 1644 TCP_ADD_STATS(net, TCP_MIB_RTOALGORITHM, 1); 1645 TCP_ADD_STATS(net, TCP_MIB_RTOMIN, TCP_RTO_MIN*1000/HZ); 1646 TCP_ADD_STATS(net, TCP_MIB_RTOMAX, TCP_RTO_MAX*1000/HZ); 1647 TCP_ADD_STATS(net, TCP_MIB_MAXCONN, -1); 1648 } 1649 1650 /* from STCP */ 1651 static inline void tcp_clear_retrans_hints_partial(struct tcp_sock *tp) 1652 { 1653 tp->lost_skb_hint = NULL; 1654 } 1655 1656 static inline void tcp_clear_all_retrans_hints(struct tcp_sock *tp) 1657 { 1658 tcp_clear_retrans_hints_partial(tp); 1659 tp->retransmit_skb_hint = NULL; 1660 } 1661 1662 union tcp_md5_addr { 1663 struct in_addr a4; 1664 #if IS_ENABLED(CONFIG_IPV6) 1665 struct in6_addr a6; 1666 #endif 1667 }; 1668 1669 /* - key database */ 1670 struct tcp_md5sig_key { 1671 struct hlist_node node; 1672 u8 keylen; 1673 u8 family; /* AF_INET or AF_INET6 */ 1674 u8 prefixlen; 1675 u8 flags; 1676 union tcp_md5_addr addr; 1677 int l3index; /* set if key added with L3 scope */ 1678 u8 key[TCP_MD5SIG_MAXKEYLEN]; 1679 struct rcu_head rcu; 1680 }; 1681 1682 /* - sock block */ 1683 struct tcp_md5sig_info { 1684 struct hlist_head head; 1685 struct rcu_head rcu; 1686 }; 1687 1688 /* - pseudo header */ 1689 struct tcp4_pseudohdr { 1690 __be32 saddr; 1691 __be32 daddr; 1692 __u8 pad; 1693 __u8 protocol; 1694 __be16 len; 1695 }; 1696 1697 struct tcp6_pseudohdr { 1698 struct in6_addr saddr; 1699 struct in6_addr daddr; 1700 __be32 len; 1701 __be32 protocol; /* including padding */ 1702 }; 1703 1704 union tcp_md5sum_block { 1705 struct tcp4_pseudohdr ip4; 1706 #if IS_ENABLED(CONFIG_IPV6) 1707 struct tcp6_pseudohdr ip6; 1708 #endif 1709 }; 1710 1711 /* - pool: digest algorithm, hash description and scratch buffer */ 1712 struct tcp_md5sig_pool { 1713 struct ahash_request *md5_req; 1714 void *scratch; 1715 }; 1716 1717 /* - functions */ 1718 int tcp_v4_md5_hash_skb(char *md5_hash, const struct tcp_md5sig_key *key, 1719 const struct sock *sk, const struct sk_buff *skb); 1720 int tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr, 1721 int family, u8 prefixlen, int l3index, u8 flags, 1722 const u8 *newkey, u8 newkeylen); 1723 int tcp_md5_key_copy(struct sock *sk, const union tcp_md5_addr *addr, 1724 int family, u8 prefixlen, int l3index, 1725 struct tcp_md5sig_key *key); 1726 1727 int tcp_md5_do_del(struct sock *sk, const union tcp_md5_addr *addr, 1728 int family, u8 prefixlen, int l3index, u8 flags); 1729 struct tcp_md5sig_key *tcp_v4_md5_lookup(const struct sock *sk, 1730 const struct sock *addr_sk); 1731 1732 #ifdef CONFIG_TCP_MD5SIG 1733 #include <linux/jump_label.h> 1734 extern struct static_key_false_deferred tcp_md5_needed; 1735 struct tcp_md5sig_key *__tcp_md5_do_lookup(const struct sock *sk, int l3index, 1736 const union tcp_md5_addr *addr, 1737 int family); 1738 static inline struct tcp_md5sig_key * 1739 tcp_md5_do_lookup(const struct sock *sk, int l3index, 1740 const union tcp_md5_addr *addr, int family) 1741 { 1742 if (!static_branch_unlikely(&tcp_md5_needed.key)) 1743 return NULL; 1744 return __tcp_md5_do_lookup(sk, l3index, addr, family); 1745 } 1746 1747 enum skb_drop_reason 1748 tcp_inbound_md5_hash(const struct sock *sk, const struct sk_buff *skb, 1749 const void *saddr, const void *daddr, 1750 int family, int dif, int sdif); 1751 1752 1753 #define tcp_twsk_md5_key(twsk) ((twsk)->tw_md5_key) 1754 #else 1755 static inline struct tcp_md5sig_key * 1756 tcp_md5_do_lookup(const struct sock *sk, int l3index, 1757 const union tcp_md5_addr *addr, int family) 1758 { 1759 return NULL; 1760 } 1761 1762 static inline enum skb_drop_reason 1763 tcp_inbound_md5_hash(const struct sock *sk, const struct sk_buff *skb, 1764 const void *saddr, const void *daddr, 1765 int family, int dif, int sdif) 1766 { 1767 return SKB_NOT_DROPPED_YET; 1768 } 1769 #define tcp_twsk_md5_key(twsk) NULL 1770 #endif 1771 1772 bool tcp_alloc_md5sig_pool(void); 1773 1774 struct tcp_md5sig_pool *tcp_get_md5sig_pool(void); 1775 static inline void tcp_put_md5sig_pool(void) 1776 { 1777 local_bh_enable(); 1778 } 1779 1780 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *, const struct sk_buff *, 1781 unsigned int header_len); 1782 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp, 1783 const struct tcp_md5sig_key *key); 1784 1785 /* From tcp_fastopen.c */ 1786 void tcp_fastopen_cache_get(struct sock *sk, u16 *mss, 1787 struct tcp_fastopen_cookie *cookie); 1788 void tcp_fastopen_cache_set(struct sock *sk, u16 mss, 1789 struct tcp_fastopen_cookie *cookie, bool syn_lost, 1790 u16 try_exp); 1791 struct tcp_fastopen_request { 1792 /* Fast Open cookie. Size 0 means a cookie request */ 1793 struct tcp_fastopen_cookie cookie; 1794 struct msghdr *data; /* data in MSG_FASTOPEN */ 1795 size_t size; 1796 int copied; /* queued in tcp_connect() */ 1797 struct ubuf_info *uarg; 1798 }; 1799 void tcp_free_fastopen_req(struct tcp_sock *tp); 1800 void tcp_fastopen_destroy_cipher(struct sock *sk); 1801 void tcp_fastopen_ctx_destroy(struct net *net); 1802 int tcp_fastopen_reset_cipher(struct net *net, struct sock *sk, 1803 void *primary_key, void *backup_key); 1804 int tcp_fastopen_get_cipher(struct net *net, struct inet_connection_sock *icsk, 1805 u64 *key); 1806 void tcp_fastopen_add_skb(struct sock *sk, struct sk_buff *skb); 1807 struct sock *tcp_try_fastopen(struct sock *sk, struct sk_buff *skb, 1808 struct request_sock *req, 1809 struct tcp_fastopen_cookie *foc, 1810 const struct dst_entry *dst); 1811 void tcp_fastopen_init_key_once(struct net *net); 1812 bool tcp_fastopen_cookie_check(struct sock *sk, u16 *mss, 1813 struct tcp_fastopen_cookie *cookie); 1814 bool tcp_fastopen_defer_connect(struct sock *sk, int *err); 1815 #define TCP_FASTOPEN_KEY_LENGTH sizeof(siphash_key_t) 1816 #define TCP_FASTOPEN_KEY_MAX 2 1817 #define TCP_FASTOPEN_KEY_BUF_LENGTH \ 1818 (TCP_FASTOPEN_KEY_LENGTH * TCP_FASTOPEN_KEY_MAX) 1819 1820 /* Fastopen key context */ 1821 struct tcp_fastopen_context { 1822 siphash_key_t key[TCP_FASTOPEN_KEY_MAX]; 1823 int num; 1824 struct rcu_head rcu; 1825 }; 1826 1827 void tcp_fastopen_active_disable(struct sock *sk); 1828 bool tcp_fastopen_active_should_disable(struct sock *sk); 1829 void tcp_fastopen_active_disable_ofo_check(struct sock *sk); 1830 void tcp_fastopen_active_detect_blackhole(struct sock *sk, bool expired); 1831 1832 /* Caller needs to wrap with rcu_read_(un)lock() */ 1833 static inline 1834 struct tcp_fastopen_context *tcp_fastopen_get_ctx(const struct sock *sk) 1835 { 1836 struct tcp_fastopen_context *ctx; 1837 1838 ctx = rcu_dereference(inet_csk(sk)->icsk_accept_queue.fastopenq.ctx); 1839 if (!ctx) 1840 ctx = rcu_dereference(sock_net(sk)->ipv4.tcp_fastopen_ctx); 1841 return ctx; 1842 } 1843 1844 static inline 1845 bool tcp_fastopen_cookie_match(const struct tcp_fastopen_cookie *foc, 1846 const struct tcp_fastopen_cookie *orig) 1847 { 1848 if (orig->len == TCP_FASTOPEN_COOKIE_SIZE && 1849 orig->len == foc->len && 1850 !memcmp(orig->val, foc->val, foc->len)) 1851 return true; 1852 return false; 1853 } 1854 1855 static inline 1856 int tcp_fastopen_context_len(const struct tcp_fastopen_context *ctx) 1857 { 1858 return ctx->num; 1859 } 1860 1861 /* Latencies incurred by various limits for a sender. They are 1862 * chronograph-like stats that are mutually exclusive. 1863 */ 1864 enum tcp_chrono { 1865 TCP_CHRONO_UNSPEC, 1866 TCP_CHRONO_BUSY, /* Actively sending data (non-empty write queue) */ 1867 TCP_CHRONO_RWND_LIMITED, /* Stalled by insufficient receive window */ 1868 TCP_CHRONO_SNDBUF_LIMITED, /* Stalled by insufficient send buffer */ 1869 __TCP_CHRONO_MAX, 1870 }; 1871 1872 void tcp_chrono_start(struct sock *sk, const enum tcp_chrono type); 1873 void tcp_chrono_stop(struct sock *sk, const enum tcp_chrono type); 1874 1875 /* This helper is needed, because skb->tcp_tsorted_anchor uses 1876 * the same memory storage than skb->destructor/_skb_refdst 1877 */ 1878 static inline void tcp_skb_tsorted_anchor_cleanup(struct sk_buff *skb) 1879 { 1880 skb->destructor = NULL; 1881 skb->_skb_refdst = 0UL; 1882 } 1883 1884 #define tcp_skb_tsorted_save(skb) { \ 1885 unsigned long _save = skb->_skb_refdst; \ 1886 skb->_skb_refdst = 0UL; 1887 1888 #define tcp_skb_tsorted_restore(skb) \ 1889 skb->_skb_refdst = _save; \ 1890 } 1891 1892 void tcp_write_queue_purge(struct sock *sk); 1893 1894 static inline struct sk_buff *tcp_rtx_queue_head(const struct sock *sk) 1895 { 1896 return skb_rb_first(&sk->tcp_rtx_queue); 1897 } 1898 1899 static inline struct sk_buff *tcp_rtx_queue_tail(const struct sock *sk) 1900 { 1901 return skb_rb_last(&sk->tcp_rtx_queue); 1902 } 1903 1904 static inline struct sk_buff *tcp_write_queue_tail(const struct sock *sk) 1905 { 1906 return skb_peek_tail(&sk->sk_write_queue); 1907 } 1908 1909 #define tcp_for_write_queue_from_safe(skb, tmp, sk) \ 1910 skb_queue_walk_from_safe(&(sk)->sk_write_queue, skb, tmp) 1911 1912 static inline struct sk_buff *tcp_send_head(const struct sock *sk) 1913 { 1914 return skb_peek(&sk->sk_write_queue); 1915 } 1916 1917 static inline bool tcp_skb_is_last(const struct sock *sk, 1918 const struct sk_buff *skb) 1919 { 1920 return skb_queue_is_last(&sk->sk_write_queue, skb); 1921 } 1922 1923 /** 1924 * tcp_write_queue_empty - test if any payload (or FIN) is available in write queue 1925 * @sk: socket 1926 * 1927 * Since the write queue can have a temporary empty skb in it, 1928 * we must not use "return skb_queue_empty(&sk->sk_write_queue)" 1929 */ 1930 static inline bool tcp_write_queue_empty(const struct sock *sk) 1931 { 1932 const struct tcp_sock *tp = tcp_sk(sk); 1933 1934 return tp->write_seq == tp->snd_nxt; 1935 } 1936 1937 static inline bool tcp_rtx_queue_empty(const struct sock *sk) 1938 { 1939 return RB_EMPTY_ROOT(&sk->tcp_rtx_queue); 1940 } 1941 1942 static inline bool tcp_rtx_and_write_queues_empty(const struct sock *sk) 1943 { 1944 return tcp_rtx_queue_empty(sk) && tcp_write_queue_empty(sk); 1945 } 1946 1947 static inline void tcp_add_write_queue_tail(struct sock *sk, struct sk_buff *skb) 1948 { 1949 __skb_queue_tail(&sk->sk_write_queue, skb); 1950 1951 /* Queue it, remembering where we must start sending. */ 1952 if (sk->sk_write_queue.next == skb) 1953 tcp_chrono_start(sk, TCP_CHRONO_BUSY); 1954 } 1955 1956 /* Insert new before skb on the write queue of sk. */ 1957 static inline void tcp_insert_write_queue_before(struct sk_buff *new, 1958 struct sk_buff *skb, 1959 struct sock *sk) 1960 { 1961 __skb_queue_before(&sk->sk_write_queue, skb, new); 1962 } 1963 1964 static inline void tcp_unlink_write_queue(struct sk_buff *skb, struct sock *sk) 1965 { 1966 tcp_skb_tsorted_anchor_cleanup(skb); 1967 __skb_unlink(skb, &sk->sk_write_queue); 1968 } 1969 1970 void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb); 1971 1972 static inline void tcp_rtx_queue_unlink(struct sk_buff *skb, struct sock *sk) 1973 { 1974 tcp_skb_tsorted_anchor_cleanup(skb); 1975 rb_erase(&skb->rbnode, &sk->tcp_rtx_queue); 1976 } 1977 1978 static inline void tcp_rtx_queue_unlink_and_free(struct sk_buff *skb, struct sock *sk) 1979 { 1980 list_del(&skb->tcp_tsorted_anchor); 1981 tcp_rtx_queue_unlink(skb, sk); 1982 tcp_wmem_free_skb(sk, skb); 1983 } 1984 1985 static inline void tcp_push_pending_frames(struct sock *sk) 1986 { 1987 if (tcp_send_head(sk)) { 1988 struct tcp_sock *tp = tcp_sk(sk); 1989 1990 __tcp_push_pending_frames(sk, tcp_current_mss(sk), tp->nonagle); 1991 } 1992 } 1993 1994 /* Start sequence of the skb just after the highest skb with SACKed 1995 * bit, valid only if sacked_out > 0 or when the caller has ensured 1996 * validity by itself. 1997 */ 1998 static inline u32 tcp_highest_sack_seq(struct tcp_sock *tp) 1999 { 2000 if (!tp->sacked_out) 2001 return tp->snd_una; 2002 2003 if (tp->highest_sack == NULL) 2004 return tp->snd_nxt; 2005 2006 return TCP_SKB_CB(tp->highest_sack)->seq; 2007 } 2008 2009 static inline void tcp_advance_highest_sack(struct sock *sk, struct sk_buff *skb) 2010 { 2011 tcp_sk(sk)->highest_sack = skb_rb_next(skb); 2012 } 2013 2014 static inline struct sk_buff *tcp_highest_sack(struct sock *sk) 2015 { 2016 return tcp_sk(sk)->highest_sack; 2017 } 2018 2019 static inline void tcp_highest_sack_reset(struct sock *sk) 2020 { 2021 tcp_sk(sk)->highest_sack = tcp_rtx_queue_head(sk); 2022 } 2023 2024 /* Called when old skb is about to be deleted and replaced by new skb */ 2025 static inline void tcp_highest_sack_replace(struct sock *sk, 2026 struct sk_buff *old, 2027 struct sk_buff *new) 2028 { 2029 if (old == tcp_highest_sack(sk)) 2030 tcp_sk(sk)->highest_sack = new; 2031 } 2032 2033 /* This helper checks if socket has IP_TRANSPARENT set */ 2034 static inline bool inet_sk_transparent(const struct sock *sk) 2035 { 2036 switch (sk->sk_state) { 2037 case TCP_TIME_WAIT: 2038 return inet_twsk(sk)->tw_transparent; 2039 case TCP_NEW_SYN_RECV: 2040 return inet_rsk(inet_reqsk(sk))->no_srccheck; 2041 } 2042 return inet_test_bit(TRANSPARENT, sk); 2043 } 2044 2045 /* Determines whether this is a thin stream (which may suffer from 2046 * increased latency). Used to trigger latency-reducing mechanisms. 2047 */ 2048 static inline bool tcp_stream_is_thin(struct tcp_sock *tp) 2049 { 2050 return tp->packets_out < 4 && !tcp_in_initial_slowstart(tp); 2051 } 2052 2053 /* /proc */ 2054 enum tcp_seq_states { 2055 TCP_SEQ_STATE_LISTENING, 2056 TCP_SEQ_STATE_ESTABLISHED, 2057 }; 2058 2059 void *tcp_seq_start(struct seq_file *seq, loff_t *pos); 2060 void *tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos); 2061 void tcp_seq_stop(struct seq_file *seq, void *v); 2062 2063 struct tcp_seq_afinfo { 2064 sa_family_t family; 2065 }; 2066 2067 struct tcp_iter_state { 2068 struct seq_net_private p; 2069 enum tcp_seq_states state; 2070 struct sock *syn_wait_sk; 2071 int bucket, offset, sbucket, num; 2072 loff_t last_pos; 2073 }; 2074 2075 extern struct request_sock_ops tcp_request_sock_ops; 2076 extern struct request_sock_ops tcp6_request_sock_ops; 2077 2078 void tcp_v4_destroy_sock(struct sock *sk); 2079 2080 struct sk_buff *tcp_gso_segment(struct sk_buff *skb, 2081 netdev_features_t features); 2082 struct sk_buff *tcp_gro_receive(struct list_head *head, struct sk_buff *skb); 2083 INDIRECT_CALLABLE_DECLARE(int tcp4_gro_complete(struct sk_buff *skb, int thoff)); 2084 INDIRECT_CALLABLE_DECLARE(struct sk_buff *tcp4_gro_receive(struct list_head *head, struct sk_buff *skb)); 2085 INDIRECT_CALLABLE_DECLARE(int tcp6_gro_complete(struct sk_buff *skb, int thoff)); 2086 INDIRECT_CALLABLE_DECLARE(struct sk_buff *tcp6_gro_receive(struct list_head *head, struct sk_buff *skb)); 2087 #ifdef CONFIG_INET 2088 void tcp_gro_complete(struct sk_buff *skb); 2089 #else 2090 static inline void tcp_gro_complete(struct sk_buff *skb) { } 2091 #endif 2092 2093 void __tcp_v4_send_check(struct sk_buff *skb, __be32 saddr, __be32 daddr); 2094 2095 static inline u32 tcp_notsent_lowat(const struct tcp_sock *tp) 2096 { 2097 struct net *net = sock_net((struct sock *)tp); 2098 u32 val; 2099 2100 val = READ_ONCE(tp->notsent_lowat); 2101 2102 return val ?: READ_ONCE(net->ipv4.sysctl_tcp_notsent_lowat); 2103 } 2104 2105 bool tcp_stream_memory_free(const struct sock *sk, int wake); 2106 2107 #ifdef CONFIG_PROC_FS 2108 int tcp4_proc_init(void); 2109 void tcp4_proc_exit(void); 2110 #endif 2111 2112 int tcp_rtx_synack(const struct sock *sk, struct request_sock *req); 2113 int tcp_conn_request(struct request_sock_ops *rsk_ops, 2114 const struct tcp_request_sock_ops *af_ops, 2115 struct sock *sk, struct sk_buff *skb); 2116 2117 /* TCP af-specific functions */ 2118 struct tcp_sock_af_ops { 2119 #ifdef CONFIG_TCP_MD5SIG 2120 struct tcp_md5sig_key *(*md5_lookup) (const struct sock *sk, 2121 const struct sock *addr_sk); 2122 int (*calc_md5_hash)(char *location, 2123 const struct tcp_md5sig_key *md5, 2124 const struct sock *sk, 2125 const struct sk_buff *skb); 2126 int (*md5_parse)(struct sock *sk, 2127 int optname, 2128 sockptr_t optval, 2129 int optlen); 2130 #endif 2131 }; 2132 2133 struct tcp_request_sock_ops { 2134 u16 mss_clamp; 2135 #ifdef CONFIG_TCP_MD5SIG 2136 struct tcp_md5sig_key *(*req_md5_lookup)(const struct sock *sk, 2137 const struct sock *addr_sk); 2138 int (*calc_md5_hash) (char *location, 2139 const struct tcp_md5sig_key *md5, 2140 const struct sock *sk, 2141 const struct sk_buff *skb); 2142 #endif 2143 #ifdef CONFIG_SYN_COOKIES 2144 __u32 (*cookie_init_seq)(const struct sk_buff *skb, 2145 __u16 *mss); 2146 #endif 2147 struct dst_entry *(*route_req)(const struct sock *sk, 2148 struct sk_buff *skb, 2149 struct flowi *fl, 2150 struct request_sock *req); 2151 u32 (*init_seq)(const struct sk_buff *skb); 2152 u32 (*init_ts_off)(const struct net *net, const struct sk_buff *skb); 2153 int (*send_synack)(const struct sock *sk, struct dst_entry *dst, 2154 struct flowi *fl, struct request_sock *req, 2155 struct tcp_fastopen_cookie *foc, 2156 enum tcp_synack_type synack_type, 2157 struct sk_buff *syn_skb); 2158 }; 2159 2160 extern const struct tcp_request_sock_ops tcp_request_sock_ipv4_ops; 2161 #if IS_ENABLED(CONFIG_IPV6) 2162 extern const struct tcp_request_sock_ops tcp_request_sock_ipv6_ops; 2163 #endif 2164 2165 #ifdef CONFIG_SYN_COOKIES 2166 static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops, 2167 const struct sock *sk, struct sk_buff *skb, 2168 __u16 *mss) 2169 { 2170 tcp_synq_overflow(sk); 2171 __NET_INC_STATS(sock_net(sk), LINUX_MIB_SYNCOOKIESSENT); 2172 return ops->cookie_init_seq(skb, mss); 2173 } 2174 #else 2175 static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops, 2176 const struct sock *sk, struct sk_buff *skb, 2177 __u16 *mss) 2178 { 2179 return 0; 2180 } 2181 #endif 2182 2183 int tcpv4_offload_init(void); 2184 2185 void tcp_v4_init(void); 2186 void tcp_init(void); 2187 2188 /* tcp_recovery.c */ 2189 void tcp_mark_skb_lost(struct sock *sk, struct sk_buff *skb); 2190 void tcp_newreno_mark_lost(struct sock *sk, bool snd_una_advanced); 2191 extern s32 tcp_rack_skb_timeout(struct tcp_sock *tp, struct sk_buff *skb, 2192 u32 reo_wnd); 2193 extern bool tcp_rack_mark_lost(struct sock *sk); 2194 extern void tcp_rack_advance(struct tcp_sock *tp, u8 sacked, u32 end_seq, 2195 u64 xmit_time); 2196 extern void tcp_rack_reo_timeout(struct sock *sk); 2197 extern void tcp_rack_update_reo_wnd(struct sock *sk, struct rate_sample *rs); 2198 2199 /* tcp_plb.c */ 2200 2201 /* 2202 * Scaling factor for fractions in PLB. For example, tcp_plb_update_state 2203 * expects cong_ratio which represents fraction of traffic that experienced 2204 * congestion over a single RTT. In order to avoid floating point operations, 2205 * this fraction should be mapped to (1 << TCP_PLB_SCALE) and passed in. 2206 */ 2207 #define TCP_PLB_SCALE 8 2208 2209 /* State for PLB (Protective Load Balancing) for a single TCP connection. */ 2210 struct tcp_plb_state { 2211 u8 consec_cong_rounds:5, /* consecutive congested rounds */ 2212 unused:3; 2213 u32 pause_until; /* jiffies32 when PLB can resume rerouting */ 2214 }; 2215 2216 static inline void tcp_plb_init(const struct sock *sk, 2217 struct tcp_plb_state *plb) 2218 { 2219 plb->consec_cong_rounds = 0; 2220 plb->pause_until = 0; 2221 } 2222 void tcp_plb_update_state(const struct sock *sk, struct tcp_plb_state *plb, 2223 const int cong_ratio); 2224 void tcp_plb_check_rehash(struct sock *sk, struct tcp_plb_state *plb); 2225 void tcp_plb_update_state_upon_rto(struct sock *sk, struct tcp_plb_state *plb); 2226 2227 /* At how many usecs into the future should the RTO fire? */ 2228 static inline s64 tcp_rto_delta_us(const struct sock *sk) 2229 { 2230 const struct sk_buff *skb = tcp_rtx_queue_head(sk); 2231 u32 rto = inet_csk(sk)->icsk_rto; 2232 u64 rto_time_stamp_us = tcp_skb_timestamp_us(skb) + jiffies_to_usecs(rto); 2233 2234 return rto_time_stamp_us - tcp_sk(sk)->tcp_mstamp; 2235 } 2236 2237 /* 2238 * Save and compile IPv4 options, return a pointer to it 2239 */ 2240 static inline struct ip_options_rcu *tcp_v4_save_options(struct net *net, 2241 struct sk_buff *skb) 2242 { 2243 const struct ip_options *opt = &TCP_SKB_CB(skb)->header.h4.opt; 2244 struct ip_options_rcu *dopt = NULL; 2245 2246 if (opt->optlen) { 2247 int opt_size = sizeof(*dopt) + opt->optlen; 2248 2249 dopt = kmalloc(opt_size, GFP_ATOMIC); 2250 if (dopt && __ip_options_echo(net, &dopt->opt, skb, opt)) { 2251 kfree(dopt); 2252 dopt = NULL; 2253 } 2254 } 2255 return dopt; 2256 } 2257 2258 /* locally generated TCP pure ACKs have skb->truesize == 2 2259 * (check tcp_send_ack() in net/ipv4/tcp_output.c ) 2260 * This is much faster than dissecting the packet to find out. 2261 * (Think of GRE encapsulations, IPv4, IPv6, ...) 2262 */ 2263 static inline bool skb_is_tcp_pure_ack(const struct sk_buff *skb) 2264 { 2265 return skb->truesize == 2; 2266 } 2267 2268 static inline void skb_set_tcp_pure_ack(struct sk_buff *skb) 2269 { 2270 skb->truesize = 2; 2271 } 2272 2273 static inline int tcp_inq(struct sock *sk) 2274 { 2275 struct tcp_sock *tp = tcp_sk(sk); 2276 int answ; 2277 2278 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) { 2279 answ = 0; 2280 } else if (sock_flag(sk, SOCK_URGINLINE) || 2281 !tp->urg_data || 2282 before(tp->urg_seq, tp->copied_seq) || 2283 !before(tp->urg_seq, tp->rcv_nxt)) { 2284 2285 answ = tp->rcv_nxt - tp->copied_seq; 2286 2287 /* Subtract 1, if FIN was received */ 2288 if (answ && sock_flag(sk, SOCK_DONE)) 2289 answ--; 2290 } else { 2291 answ = tp->urg_seq - tp->copied_seq; 2292 } 2293 2294 return answ; 2295 } 2296 2297 int tcp_peek_len(struct socket *sock); 2298 2299 static inline void tcp_segs_in(struct tcp_sock *tp, const struct sk_buff *skb) 2300 { 2301 u16 segs_in; 2302 2303 segs_in = max_t(u16, 1, skb_shinfo(skb)->gso_segs); 2304 2305 /* We update these fields while other threads might 2306 * read them from tcp_get_info() 2307 */ 2308 WRITE_ONCE(tp->segs_in, tp->segs_in + segs_in); 2309 if (skb->len > tcp_hdrlen(skb)) 2310 WRITE_ONCE(tp->data_segs_in, tp->data_segs_in + segs_in); 2311 } 2312 2313 /* 2314 * TCP listen path runs lockless. 2315 * We forced "struct sock" to be const qualified to make sure 2316 * we don't modify one of its field by mistake. 2317 * Here, we increment sk_drops which is an atomic_t, so we can safely 2318 * make sock writable again. 2319 */ 2320 static inline void tcp_listendrop(const struct sock *sk) 2321 { 2322 atomic_inc(&((struct sock *)sk)->sk_drops); 2323 __NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENDROPS); 2324 } 2325 2326 enum hrtimer_restart tcp_pace_kick(struct hrtimer *timer); 2327 2328 /* 2329 * Interface for adding Upper Level Protocols over TCP 2330 */ 2331 2332 #define TCP_ULP_NAME_MAX 16 2333 #define TCP_ULP_MAX 128 2334 #define TCP_ULP_BUF_MAX (TCP_ULP_NAME_MAX*TCP_ULP_MAX) 2335 2336 struct tcp_ulp_ops { 2337 struct list_head list; 2338 2339 /* initialize ulp */ 2340 int (*init)(struct sock *sk); 2341 /* update ulp */ 2342 void (*update)(struct sock *sk, struct proto *p, 2343 void (*write_space)(struct sock *sk)); 2344 /* cleanup ulp */ 2345 void (*release)(struct sock *sk); 2346 /* diagnostic */ 2347 int (*get_info)(const struct sock *sk, struct sk_buff *skb); 2348 size_t (*get_info_size)(const struct sock *sk); 2349 /* clone ulp */ 2350 void (*clone)(const struct request_sock *req, struct sock *newsk, 2351 const gfp_t priority); 2352 2353 char name[TCP_ULP_NAME_MAX]; 2354 struct module *owner; 2355 }; 2356 int tcp_register_ulp(struct tcp_ulp_ops *type); 2357 void tcp_unregister_ulp(struct tcp_ulp_ops *type); 2358 int tcp_set_ulp(struct sock *sk, const char *name); 2359 void tcp_get_available_ulp(char *buf, size_t len); 2360 void tcp_cleanup_ulp(struct sock *sk); 2361 void tcp_update_ulp(struct sock *sk, struct proto *p, 2362 void (*write_space)(struct sock *sk)); 2363 2364 #define MODULE_ALIAS_TCP_ULP(name) \ 2365 __MODULE_INFO(alias, alias_userspace, name); \ 2366 __MODULE_INFO(alias, alias_tcp_ulp, "tcp-ulp-" name) 2367 2368 #ifdef CONFIG_NET_SOCK_MSG 2369 struct sk_msg; 2370 struct sk_psock; 2371 2372 #ifdef CONFIG_BPF_SYSCALL 2373 int tcp_bpf_update_proto(struct sock *sk, struct sk_psock *psock, bool restore); 2374 void tcp_bpf_clone(const struct sock *sk, struct sock *newsk); 2375 #endif /* CONFIG_BPF_SYSCALL */ 2376 2377 #ifdef CONFIG_INET 2378 void tcp_eat_skb(struct sock *sk, struct sk_buff *skb); 2379 #else 2380 static inline void tcp_eat_skb(struct sock *sk, struct sk_buff *skb) 2381 { 2382 } 2383 #endif 2384 2385 int tcp_bpf_sendmsg_redir(struct sock *sk, bool ingress, 2386 struct sk_msg *msg, u32 bytes, int flags); 2387 #endif /* CONFIG_NET_SOCK_MSG */ 2388 2389 #if !defined(CONFIG_BPF_SYSCALL) || !defined(CONFIG_NET_SOCK_MSG) 2390 static inline void tcp_bpf_clone(const struct sock *sk, struct sock *newsk) 2391 { 2392 } 2393 #endif 2394 2395 #ifdef CONFIG_CGROUP_BPF 2396 static inline void bpf_skops_init_skb(struct bpf_sock_ops_kern *skops, 2397 struct sk_buff *skb, 2398 unsigned int end_offset) 2399 { 2400 skops->skb = skb; 2401 skops->skb_data_end = skb->data + end_offset; 2402 } 2403 #else 2404 static inline void bpf_skops_init_skb(struct bpf_sock_ops_kern *skops, 2405 struct sk_buff *skb, 2406 unsigned int end_offset) 2407 { 2408 } 2409 #endif 2410 2411 /* Call BPF_SOCK_OPS program that returns an int. If the return value 2412 * is < 0, then the BPF op failed (for example if the loaded BPF 2413 * program does not support the chosen operation or there is no BPF 2414 * program loaded). 2415 */ 2416 #ifdef CONFIG_BPF 2417 static inline int tcp_call_bpf(struct sock *sk, int op, u32 nargs, u32 *args) 2418 { 2419 struct bpf_sock_ops_kern sock_ops; 2420 int ret; 2421 2422 memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp)); 2423 if (sk_fullsock(sk)) { 2424 sock_ops.is_fullsock = 1; 2425 sock_owned_by_me(sk); 2426 } 2427 2428 sock_ops.sk = sk; 2429 sock_ops.op = op; 2430 if (nargs > 0) 2431 memcpy(sock_ops.args, args, nargs * sizeof(*args)); 2432 2433 ret = BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops); 2434 if (ret == 0) 2435 ret = sock_ops.reply; 2436 else 2437 ret = -1; 2438 return ret; 2439 } 2440 2441 static inline int tcp_call_bpf_2arg(struct sock *sk, int op, u32 arg1, u32 arg2) 2442 { 2443 u32 args[2] = {arg1, arg2}; 2444 2445 return tcp_call_bpf(sk, op, 2, args); 2446 } 2447 2448 static inline int tcp_call_bpf_3arg(struct sock *sk, int op, u32 arg1, u32 arg2, 2449 u32 arg3) 2450 { 2451 u32 args[3] = {arg1, arg2, arg3}; 2452 2453 return tcp_call_bpf(sk, op, 3, args); 2454 } 2455 2456 #else 2457 static inline int tcp_call_bpf(struct sock *sk, int op, u32 nargs, u32 *args) 2458 { 2459 return -EPERM; 2460 } 2461 2462 static inline int tcp_call_bpf_2arg(struct sock *sk, int op, u32 arg1, u32 arg2) 2463 { 2464 return -EPERM; 2465 } 2466 2467 static inline int tcp_call_bpf_3arg(struct sock *sk, int op, u32 arg1, u32 arg2, 2468 u32 arg3) 2469 { 2470 return -EPERM; 2471 } 2472 2473 #endif 2474 2475 static inline u32 tcp_timeout_init(struct sock *sk) 2476 { 2477 int timeout; 2478 2479 timeout = tcp_call_bpf(sk, BPF_SOCK_OPS_TIMEOUT_INIT, 0, NULL); 2480 2481 if (timeout <= 0) 2482 timeout = TCP_TIMEOUT_INIT; 2483 return min_t(int, timeout, TCP_RTO_MAX); 2484 } 2485 2486 static inline u32 tcp_rwnd_init_bpf(struct sock *sk) 2487 { 2488 int rwnd; 2489 2490 rwnd = tcp_call_bpf(sk, BPF_SOCK_OPS_RWND_INIT, 0, NULL); 2491 2492 if (rwnd < 0) 2493 rwnd = 0; 2494 return rwnd; 2495 } 2496 2497 static inline bool tcp_bpf_ca_needs_ecn(struct sock *sk) 2498 { 2499 return (tcp_call_bpf(sk, BPF_SOCK_OPS_NEEDS_ECN, 0, NULL) == 1); 2500 } 2501 2502 static inline void tcp_bpf_rtt(struct sock *sk) 2503 { 2504 if (BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), BPF_SOCK_OPS_RTT_CB_FLAG)) 2505 tcp_call_bpf(sk, BPF_SOCK_OPS_RTT_CB, 0, NULL); 2506 } 2507 2508 #if IS_ENABLED(CONFIG_SMC) 2509 extern struct static_key_false tcp_have_smc; 2510 #endif 2511 2512 #if IS_ENABLED(CONFIG_TLS_DEVICE) 2513 void clean_acked_data_enable(struct inet_connection_sock *icsk, 2514 void (*cad)(struct sock *sk, u32 ack_seq)); 2515 void clean_acked_data_disable(struct inet_connection_sock *icsk); 2516 void clean_acked_data_flush(void); 2517 #endif 2518 2519 DECLARE_STATIC_KEY_FALSE(tcp_tx_delay_enabled); 2520 static inline void tcp_add_tx_delay(struct sk_buff *skb, 2521 const struct tcp_sock *tp) 2522 { 2523 if (static_branch_unlikely(&tcp_tx_delay_enabled)) 2524 skb->skb_mstamp_ns += (u64)tp->tcp_tx_delay * NSEC_PER_USEC; 2525 } 2526 2527 /* Compute Earliest Departure Time for some control packets 2528 * like ACK or RST for TIME_WAIT or non ESTABLISHED sockets. 2529 */ 2530 static inline u64 tcp_transmit_time(const struct sock *sk) 2531 { 2532 if (static_branch_unlikely(&tcp_tx_delay_enabled)) { 2533 u32 delay = (sk->sk_state == TCP_TIME_WAIT) ? 2534 tcp_twsk(sk)->tw_tx_delay : tcp_sk(sk)->tcp_tx_delay; 2535 2536 return tcp_clock_ns() + (u64)delay * NSEC_PER_USEC; 2537 } 2538 return 0; 2539 } 2540 2541 #endif /* _TCP_H */ 2542