xref: /linux/include/net/tcp.h (revision 273b281fa22c293963ee3e6eec418f5dda2dbc83)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Definitions for the TCP module.
7  *
8  * Version:	@(#)tcp.h	1.0.5	05/23/93
9  *
10  * Authors:	Ross Biro
11  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *
13  *		This program is free software; you can redistribute it and/or
14  *		modify it under the terms of the GNU General Public License
15  *		as published by the Free Software Foundation; either version
16  *		2 of the License, or (at your option) any later version.
17  */
18 #ifndef _TCP_H
19 #define _TCP_H
20 
21 #define TCP_DEBUG 1
22 #define FASTRETRANS_DEBUG 1
23 
24 #include <linux/list.h>
25 #include <linux/tcp.h>
26 #include <linux/slab.h>
27 #include <linux/cache.h>
28 #include <linux/percpu.h>
29 #include <linux/skbuff.h>
30 #include <linux/dmaengine.h>
31 #include <linux/crypto.h>
32 #include <linux/cryptohash.h>
33 #include <linux/kref.h>
34 
35 #include <net/inet_connection_sock.h>
36 #include <net/inet_timewait_sock.h>
37 #include <net/inet_hashtables.h>
38 #include <net/checksum.h>
39 #include <net/request_sock.h>
40 #include <net/sock.h>
41 #include <net/snmp.h>
42 #include <net/ip.h>
43 #include <net/tcp_states.h>
44 #include <net/inet_ecn.h>
45 #include <net/dst.h>
46 
47 #include <linux/seq_file.h>
48 
49 extern struct inet_hashinfo tcp_hashinfo;
50 
51 extern struct percpu_counter tcp_orphan_count;
52 extern void tcp_time_wait(struct sock *sk, int state, int timeo);
53 
54 #define MAX_TCP_HEADER	(128 + MAX_HEADER)
55 #define MAX_TCP_OPTION_SPACE 40
56 
57 /*
58  * Never offer a window over 32767 without using window scaling. Some
59  * poor stacks do signed 16bit maths!
60  */
61 #define MAX_TCP_WINDOW		32767U
62 
63 /* Minimal accepted MSS. It is (60+60+8) - (20+20). */
64 #define TCP_MIN_MSS		88U
65 
66 /* The least MTU to use for probing */
67 #define TCP_BASE_MSS		512
68 
69 /* After receiving this amount of duplicate ACKs fast retransmit starts. */
70 #define TCP_FASTRETRANS_THRESH 3
71 
72 /* Maximal reordering. */
73 #define TCP_MAX_REORDERING	127
74 
75 /* Maximal number of ACKs sent quickly to accelerate slow-start. */
76 #define TCP_MAX_QUICKACKS	16U
77 
78 /* urg_data states */
79 #define TCP_URG_VALID	0x0100
80 #define TCP_URG_NOTYET	0x0200
81 #define TCP_URG_READ	0x0400
82 
83 #define TCP_RETR1	3	/*
84 				 * This is how many retries it does before it
85 				 * tries to figure out if the gateway is
86 				 * down. Minimal RFC value is 3; it corresponds
87 				 * to ~3sec-8min depending on RTO.
88 				 */
89 
90 #define TCP_RETR2	15	/*
91 				 * This should take at least
92 				 * 90 minutes to time out.
93 				 * RFC1122 says that the limit is 100 sec.
94 				 * 15 is ~13-30min depending on RTO.
95 				 */
96 
97 #define TCP_SYN_RETRIES	 5	/* number of times to retry active opening a
98 				 * connection: ~180sec is RFC minimum	*/
99 
100 #define TCP_SYNACK_RETRIES 5	/* number of times to retry passive opening a
101 				 * connection: ~180sec is RFC minimum	*/
102 
103 
104 #define TCP_ORPHAN_RETRIES 7	/* number of times to retry on an orphaned
105 				 * socket. 7 is ~50sec-16min.
106 				 */
107 
108 
109 #define TCP_TIMEWAIT_LEN (60*HZ) /* how long to wait to destroy TIME-WAIT
110 				  * state, about 60 seconds	*/
111 #define TCP_FIN_TIMEOUT	TCP_TIMEWAIT_LEN
112                                  /* BSD style FIN_WAIT2 deadlock breaker.
113 				  * It used to be 3min, new value is 60sec,
114 				  * to combine FIN-WAIT-2 timeout with
115 				  * TIME-WAIT timer.
116 				  */
117 
118 #define TCP_DELACK_MAX	((unsigned)(HZ/5))	/* maximal time to delay before sending an ACK */
119 #if HZ >= 100
120 #define TCP_DELACK_MIN	((unsigned)(HZ/25))	/* minimal time to delay before sending an ACK */
121 #define TCP_ATO_MIN	((unsigned)(HZ/25))
122 #else
123 #define TCP_DELACK_MIN	4U
124 #define TCP_ATO_MIN	4U
125 #endif
126 #define TCP_RTO_MAX	((unsigned)(120*HZ))
127 #define TCP_RTO_MIN	((unsigned)(HZ/5))
128 #define TCP_TIMEOUT_INIT ((unsigned)(3*HZ))	/* RFC 1122 initial RTO value	*/
129 
130 #define TCP_RESOURCE_PROBE_INTERVAL ((unsigned)(HZ/2U)) /* Maximal interval between probes
131 					                 * for local resources.
132 					                 */
133 
134 #define TCP_KEEPALIVE_TIME	(120*60*HZ)	/* two hours */
135 #define TCP_KEEPALIVE_PROBES	9		/* Max of 9 keepalive probes	*/
136 #define TCP_KEEPALIVE_INTVL	(75*HZ)
137 
138 #define MAX_TCP_KEEPIDLE	32767
139 #define MAX_TCP_KEEPINTVL	32767
140 #define MAX_TCP_KEEPCNT		127
141 #define MAX_TCP_SYNCNT		127
142 
143 #define TCP_SYNQ_INTERVAL	(HZ/5)	/* Period of SYNACK timer */
144 
145 #define TCP_PAWS_24DAYS	(60 * 60 * 24 * 24)
146 #define TCP_PAWS_MSL	60		/* Per-host timestamps are invalidated
147 					 * after this time. It should be equal
148 					 * (or greater than) TCP_TIMEWAIT_LEN
149 					 * to provide reliability equal to one
150 					 * provided by timewait state.
151 					 */
152 #define TCP_PAWS_WINDOW	1		/* Replay window for per-host
153 					 * timestamps. It must be less than
154 					 * minimal timewait lifetime.
155 					 */
156 /*
157  *	TCP option
158  */
159 
160 #define TCPOPT_NOP		1	/* Padding */
161 #define TCPOPT_EOL		0	/* End of options */
162 #define TCPOPT_MSS		2	/* Segment size negotiating */
163 #define TCPOPT_WINDOW		3	/* Window scaling */
164 #define TCPOPT_SACK_PERM        4       /* SACK Permitted */
165 #define TCPOPT_SACK             5       /* SACK Block */
166 #define TCPOPT_TIMESTAMP	8	/* Better RTT estimations/PAWS */
167 #define TCPOPT_MD5SIG		19	/* MD5 Signature (RFC2385) */
168 #define TCPOPT_COOKIE		253	/* Cookie extension (experimental) */
169 
170 /*
171  *     TCP option lengths
172  */
173 
174 #define TCPOLEN_MSS            4
175 #define TCPOLEN_WINDOW         3
176 #define TCPOLEN_SACK_PERM      2
177 #define TCPOLEN_TIMESTAMP      10
178 #define TCPOLEN_MD5SIG         18
179 #define TCPOLEN_COOKIE_BASE    2	/* Cookie-less header extension */
180 #define TCPOLEN_COOKIE_PAIR    3	/* Cookie pair header extension */
181 #define TCPOLEN_COOKIE_MIN     (TCPOLEN_COOKIE_BASE+TCP_COOKIE_MIN)
182 #define TCPOLEN_COOKIE_MAX     (TCPOLEN_COOKIE_BASE+TCP_COOKIE_MAX)
183 
184 /* But this is what stacks really send out. */
185 #define TCPOLEN_TSTAMP_ALIGNED		12
186 #define TCPOLEN_WSCALE_ALIGNED		4
187 #define TCPOLEN_SACKPERM_ALIGNED	4
188 #define TCPOLEN_SACK_BASE		2
189 #define TCPOLEN_SACK_BASE_ALIGNED	4
190 #define TCPOLEN_SACK_PERBLOCK		8
191 #define TCPOLEN_MD5SIG_ALIGNED		20
192 #define TCPOLEN_MSS_ALIGNED		4
193 
194 /* Flags in tp->nonagle */
195 #define TCP_NAGLE_OFF		1	/* Nagle's algo is disabled */
196 #define TCP_NAGLE_CORK		2	/* Socket is corked	    */
197 #define TCP_NAGLE_PUSH		4	/* Cork is overridden for already queued data */
198 
199 extern struct inet_timewait_death_row tcp_death_row;
200 
201 /* sysctl variables for tcp */
202 extern int sysctl_tcp_timestamps;
203 extern int sysctl_tcp_window_scaling;
204 extern int sysctl_tcp_sack;
205 extern int sysctl_tcp_fin_timeout;
206 extern int sysctl_tcp_keepalive_time;
207 extern int sysctl_tcp_keepalive_probes;
208 extern int sysctl_tcp_keepalive_intvl;
209 extern int sysctl_tcp_syn_retries;
210 extern int sysctl_tcp_synack_retries;
211 extern int sysctl_tcp_retries1;
212 extern int sysctl_tcp_retries2;
213 extern int sysctl_tcp_orphan_retries;
214 extern int sysctl_tcp_syncookies;
215 extern int sysctl_tcp_retrans_collapse;
216 extern int sysctl_tcp_stdurg;
217 extern int sysctl_tcp_rfc1337;
218 extern int sysctl_tcp_abort_on_overflow;
219 extern int sysctl_tcp_max_orphans;
220 extern int sysctl_tcp_fack;
221 extern int sysctl_tcp_reordering;
222 extern int sysctl_tcp_ecn;
223 extern int sysctl_tcp_dsack;
224 extern int sysctl_tcp_mem[3];
225 extern int sysctl_tcp_wmem[3];
226 extern int sysctl_tcp_rmem[3];
227 extern int sysctl_tcp_app_win;
228 extern int sysctl_tcp_adv_win_scale;
229 extern int sysctl_tcp_tw_reuse;
230 extern int sysctl_tcp_frto;
231 extern int sysctl_tcp_frto_response;
232 extern int sysctl_tcp_low_latency;
233 extern int sysctl_tcp_dma_copybreak;
234 extern int sysctl_tcp_nometrics_save;
235 extern int sysctl_tcp_moderate_rcvbuf;
236 extern int sysctl_tcp_tso_win_divisor;
237 extern int sysctl_tcp_abc;
238 extern int sysctl_tcp_mtu_probing;
239 extern int sysctl_tcp_base_mss;
240 extern int sysctl_tcp_workaround_signed_windows;
241 extern int sysctl_tcp_slow_start_after_idle;
242 extern int sysctl_tcp_max_ssthresh;
243 extern int sysctl_tcp_cookie_size;
244 
245 extern atomic_t tcp_memory_allocated;
246 extern struct percpu_counter tcp_sockets_allocated;
247 extern int tcp_memory_pressure;
248 
249 /*
250  * The next routines deal with comparing 32 bit unsigned ints
251  * and worry about wraparound (automatic with unsigned arithmetic).
252  */
253 
254 static inline int before(__u32 seq1, __u32 seq2)
255 {
256         return (__s32)(seq1-seq2) < 0;
257 }
258 #define after(seq2, seq1) 	before(seq1, seq2)
259 
260 /* is s2<=s1<=s3 ? */
261 static inline int between(__u32 seq1, __u32 seq2, __u32 seq3)
262 {
263 	return seq3 - seq2 >= seq1 - seq2;
264 }
265 
266 static inline int tcp_too_many_orphans(struct sock *sk, int num)
267 {
268 	return (num > sysctl_tcp_max_orphans) ||
269 		(sk->sk_wmem_queued > SOCK_MIN_SNDBUF &&
270 		 atomic_read(&tcp_memory_allocated) > sysctl_tcp_mem[2]);
271 }
272 
273 /* syncookies: remember time of last synqueue overflow */
274 static inline void tcp_synq_overflow(struct sock *sk)
275 {
276 	tcp_sk(sk)->rx_opt.ts_recent_stamp = jiffies;
277 }
278 
279 /* syncookies: no recent synqueue overflow on this listening socket? */
280 static inline int tcp_synq_no_recent_overflow(const struct sock *sk)
281 {
282 	unsigned long last_overflow = tcp_sk(sk)->rx_opt.ts_recent_stamp;
283 	return time_after(jiffies, last_overflow + TCP_TIMEOUT_INIT);
284 }
285 
286 extern struct proto tcp_prot;
287 
288 #define TCP_INC_STATS(net, field)	SNMP_INC_STATS((net)->mib.tcp_statistics, field)
289 #define TCP_INC_STATS_BH(net, field)	SNMP_INC_STATS_BH((net)->mib.tcp_statistics, field)
290 #define TCP_DEC_STATS(net, field)	SNMP_DEC_STATS((net)->mib.tcp_statistics, field)
291 #define TCP_ADD_STATS_USER(net, field, val) SNMP_ADD_STATS_USER((net)->mib.tcp_statistics, field, val)
292 
293 extern void			tcp_v4_err(struct sk_buff *skb, u32);
294 
295 extern void			tcp_shutdown (struct sock *sk, int how);
296 
297 extern int			tcp_v4_rcv(struct sk_buff *skb);
298 
299 extern int			tcp_v4_remember_stamp(struct sock *sk);
300 
301 extern int		    	tcp_v4_tw_remember_stamp(struct inet_timewait_sock *tw);
302 
303 extern int			tcp_sendmsg(struct kiocb *iocb, struct socket *sock,
304 					    struct msghdr *msg, size_t size);
305 extern ssize_t			tcp_sendpage(struct socket *sock, struct page *page, int offset, size_t size, int flags);
306 
307 extern int			tcp_ioctl(struct sock *sk,
308 					  int cmd,
309 					  unsigned long arg);
310 
311 extern int			tcp_rcv_state_process(struct sock *sk,
312 						      struct sk_buff *skb,
313 						      struct tcphdr *th,
314 						      unsigned len);
315 
316 extern int			tcp_rcv_established(struct sock *sk,
317 						    struct sk_buff *skb,
318 						    struct tcphdr *th,
319 						    unsigned len);
320 
321 extern void			tcp_rcv_space_adjust(struct sock *sk);
322 
323 extern void			tcp_cleanup_rbuf(struct sock *sk, int copied);
324 
325 extern int			tcp_twsk_unique(struct sock *sk,
326 						struct sock *sktw, void *twp);
327 
328 extern void			tcp_twsk_destructor(struct sock *sk);
329 
330 extern ssize_t			tcp_splice_read(struct socket *sk, loff_t *ppos,
331 					        struct pipe_inode_info *pipe, size_t len, unsigned int flags);
332 
333 static inline void tcp_dec_quickack_mode(struct sock *sk,
334 					 const unsigned int pkts)
335 {
336 	struct inet_connection_sock *icsk = inet_csk(sk);
337 
338 	if (icsk->icsk_ack.quick) {
339 		if (pkts >= icsk->icsk_ack.quick) {
340 			icsk->icsk_ack.quick = 0;
341 			/* Leaving quickack mode we deflate ATO. */
342 			icsk->icsk_ack.ato   = TCP_ATO_MIN;
343 		} else
344 			icsk->icsk_ack.quick -= pkts;
345 	}
346 }
347 
348 extern void tcp_enter_quickack_mode(struct sock *sk);
349 
350 #define	TCP_ECN_OK		1
351 #define	TCP_ECN_QUEUE_CWR	2
352 #define	TCP_ECN_DEMAND_CWR	4
353 
354 static __inline__ void
355 TCP_ECN_create_request(struct request_sock *req, struct tcphdr *th)
356 {
357 	if (sysctl_tcp_ecn && th->ece && th->cwr)
358 		inet_rsk(req)->ecn_ok = 1;
359 }
360 
361 enum tcp_tw_status {
362 	TCP_TW_SUCCESS = 0,
363 	TCP_TW_RST = 1,
364 	TCP_TW_ACK = 2,
365 	TCP_TW_SYN = 3
366 };
367 
368 
369 extern enum tcp_tw_status	tcp_timewait_state_process(struct inet_timewait_sock *tw,
370 							   struct sk_buff *skb,
371 							   const struct tcphdr *th);
372 
373 extern struct sock *		tcp_check_req(struct sock *sk,struct sk_buff *skb,
374 					      struct request_sock *req,
375 					      struct request_sock **prev);
376 extern int			tcp_child_process(struct sock *parent,
377 						  struct sock *child,
378 						  struct sk_buff *skb);
379 extern int			tcp_use_frto(struct sock *sk);
380 extern void			tcp_enter_frto(struct sock *sk);
381 extern void			tcp_enter_loss(struct sock *sk, int how);
382 extern void			tcp_clear_retrans(struct tcp_sock *tp);
383 extern void			tcp_update_metrics(struct sock *sk);
384 
385 extern void			tcp_close(struct sock *sk,
386 					  long timeout);
387 extern unsigned int		tcp_poll(struct file * file, struct socket *sock, struct poll_table_struct *wait);
388 
389 extern int			tcp_getsockopt(struct sock *sk, int level,
390 					       int optname,
391 					       char __user *optval,
392 					       int __user *optlen);
393 extern int			tcp_setsockopt(struct sock *sk, int level,
394 					       int optname, char __user *optval,
395 					       unsigned int optlen);
396 extern int			compat_tcp_getsockopt(struct sock *sk,
397 					int level, int optname,
398 					char __user *optval, int __user *optlen);
399 extern int			compat_tcp_setsockopt(struct sock *sk,
400 					int level, int optname,
401 					char __user *optval, unsigned int optlen);
402 extern void			tcp_set_keepalive(struct sock *sk, int val);
403 extern int			tcp_recvmsg(struct kiocb *iocb, struct sock *sk,
404 					    struct msghdr *msg,
405 					    size_t len, int nonblock,
406 					    int flags, int *addr_len);
407 
408 extern void			tcp_parse_options(struct sk_buff *skb,
409 						  struct tcp_options_received *opt_rx,
410 						  u8 **hvpp,
411 						  int estab,
412 						  struct dst_entry *dst);
413 
414 extern u8			*tcp_parse_md5sig_option(struct tcphdr *th);
415 
416 /*
417  *	TCP v4 functions exported for the inet6 API
418  */
419 
420 extern void		       	tcp_v4_send_check(struct sock *sk, int len,
421 						  struct sk_buff *skb);
422 
423 extern int			tcp_v4_conn_request(struct sock *sk,
424 						    struct sk_buff *skb);
425 
426 extern struct sock *		tcp_create_openreq_child(struct sock *sk,
427 							 struct request_sock *req,
428 							 struct sk_buff *skb);
429 
430 extern struct sock *		tcp_v4_syn_recv_sock(struct sock *sk,
431 						     struct sk_buff *skb,
432 						     struct request_sock *req,
433 							struct dst_entry *dst);
434 
435 extern int			tcp_v4_do_rcv(struct sock *sk,
436 					      struct sk_buff *skb);
437 
438 extern int			tcp_v4_connect(struct sock *sk,
439 					       struct sockaddr *uaddr,
440 					       int addr_len);
441 
442 extern int			tcp_connect(struct sock *sk);
443 
444 extern struct sk_buff *		tcp_make_synack(struct sock *sk,
445 						struct dst_entry *dst,
446 						struct request_sock *req,
447 						struct request_values *rvp);
448 
449 extern int			tcp_disconnect(struct sock *sk, int flags);
450 
451 
452 /* From syncookies.c */
453 extern __u32 syncookie_secret[2][16-4+SHA_DIGEST_WORDS];
454 extern struct sock *cookie_v4_check(struct sock *sk, struct sk_buff *skb,
455 				    struct ip_options *opt);
456 extern __u32 cookie_v4_init_sequence(struct sock *sk, struct sk_buff *skb,
457 				     __u16 *mss);
458 
459 extern __u32 cookie_init_timestamp(struct request_sock *req);
460 extern void cookie_check_timestamp(struct tcp_options_received *tcp_opt);
461 
462 /* From net/ipv6/syncookies.c */
463 extern struct sock *cookie_v6_check(struct sock *sk, struct sk_buff *skb);
464 extern __u32 cookie_v6_init_sequence(struct sock *sk, struct sk_buff *skb,
465 				     __u16 *mss);
466 
467 /* tcp_output.c */
468 
469 extern void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
470 				      int nonagle);
471 extern int tcp_may_send_now(struct sock *sk);
472 extern int tcp_retransmit_skb(struct sock *, struct sk_buff *);
473 extern void tcp_retransmit_timer(struct sock *sk);
474 extern void tcp_xmit_retransmit_queue(struct sock *);
475 extern void tcp_simple_retransmit(struct sock *);
476 extern int tcp_trim_head(struct sock *, struct sk_buff *, u32);
477 extern int tcp_fragment(struct sock *, struct sk_buff *, u32, unsigned int);
478 
479 extern void tcp_send_probe0(struct sock *);
480 extern void tcp_send_partial(struct sock *);
481 extern int  tcp_write_wakeup(struct sock *);
482 extern void tcp_send_fin(struct sock *sk);
483 extern void tcp_send_active_reset(struct sock *sk, gfp_t priority);
484 extern int  tcp_send_synack(struct sock *);
485 extern void tcp_push_one(struct sock *, unsigned int mss_now);
486 extern void tcp_send_ack(struct sock *sk);
487 extern void tcp_send_delayed_ack(struct sock *sk);
488 
489 /* tcp_input.c */
490 extern void tcp_cwnd_application_limited(struct sock *sk);
491 
492 /* tcp_timer.c */
493 extern void tcp_init_xmit_timers(struct sock *);
494 static inline void tcp_clear_xmit_timers(struct sock *sk)
495 {
496 	inet_csk_clear_xmit_timers(sk);
497 }
498 
499 extern unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu);
500 extern unsigned int tcp_current_mss(struct sock *sk);
501 
502 /* Bound MSS / TSO packet size with the half of the window */
503 static inline int tcp_bound_to_half_wnd(struct tcp_sock *tp, int pktsize)
504 {
505 	if (tp->max_window && pktsize > (tp->max_window >> 1))
506 		return max(tp->max_window >> 1, 68U - tp->tcp_header_len);
507 	else
508 		return pktsize;
509 }
510 
511 /* tcp.c */
512 extern void tcp_get_info(struct sock *, struct tcp_info *);
513 
514 /* Read 'sendfile()'-style from a TCP socket */
515 typedef int (*sk_read_actor_t)(read_descriptor_t *, struct sk_buff *,
516 				unsigned int, size_t);
517 extern int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
518 			 sk_read_actor_t recv_actor);
519 
520 extern void tcp_initialize_rcv_mss(struct sock *sk);
521 
522 extern int tcp_mtu_to_mss(struct sock *sk, int pmtu);
523 extern int tcp_mss_to_mtu(struct sock *sk, int mss);
524 extern void tcp_mtup_init(struct sock *sk);
525 
526 static inline void tcp_bound_rto(const struct sock *sk)
527 {
528 	if (inet_csk(sk)->icsk_rto > TCP_RTO_MAX)
529 		inet_csk(sk)->icsk_rto = TCP_RTO_MAX;
530 }
531 
532 static inline u32 __tcp_set_rto(const struct tcp_sock *tp)
533 {
534 	return (tp->srtt >> 3) + tp->rttvar;
535 }
536 
537 static inline void __tcp_fast_path_on(struct tcp_sock *tp, u32 snd_wnd)
538 {
539 	tp->pred_flags = htonl((tp->tcp_header_len << 26) |
540 			       ntohl(TCP_FLAG_ACK) |
541 			       snd_wnd);
542 }
543 
544 static inline void tcp_fast_path_on(struct tcp_sock *tp)
545 {
546 	__tcp_fast_path_on(tp, tp->snd_wnd >> tp->rx_opt.snd_wscale);
547 }
548 
549 static inline void tcp_fast_path_check(struct sock *sk)
550 {
551 	struct tcp_sock *tp = tcp_sk(sk);
552 
553 	if (skb_queue_empty(&tp->out_of_order_queue) &&
554 	    tp->rcv_wnd &&
555 	    atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf &&
556 	    !tp->urg_data)
557 		tcp_fast_path_on(tp);
558 }
559 
560 /* Compute the actual rto_min value */
561 static inline u32 tcp_rto_min(struct sock *sk)
562 {
563 	struct dst_entry *dst = __sk_dst_get(sk);
564 	u32 rto_min = TCP_RTO_MIN;
565 
566 	if (dst && dst_metric_locked(dst, RTAX_RTO_MIN))
567 		rto_min = dst_metric_rtt(dst, RTAX_RTO_MIN);
568 	return rto_min;
569 }
570 
571 /* Compute the actual receive window we are currently advertising.
572  * Rcv_nxt can be after the window if our peer push more data
573  * than the offered window.
574  */
575 static inline u32 tcp_receive_window(const struct tcp_sock *tp)
576 {
577 	s32 win = tp->rcv_wup + tp->rcv_wnd - tp->rcv_nxt;
578 
579 	if (win < 0)
580 		win = 0;
581 	return (u32) win;
582 }
583 
584 /* Choose a new window, without checks for shrinking, and without
585  * scaling applied to the result.  The caller does these things
586  * if necessary.  This is a "raw" window selection.
587  */
588 extern u32	__tcp_select_window(struct sock *sk);
589 
590 /* TCP timestamps are only 32-bits, this causes a slight
591  * complication on 64-bit systems since we store a snapshot
592  * of jiffies in the buffer control blocks below.  We decided
593  * to use only the low 32-bits of jiffies and hide the ugly
594  * casts with the following macro.
595  */
596 #define tcp_time_stamp		((__u32)(jiffies))
597 
598 /* This is what the send packet queuing engine uses to pass
599  * TCP per-packet control information to the transmission
600  * code.  We also store the host-order sequence numbers in
601  * here too.  This is 36 bytes on 32-bit architectures,
602  * 40 bytes on 64-bit machines, if this grows please adjust
603  * skbuff.h:skbuff->cb[xxx] size appropriately.
604  */
605 struct tcp_skb_cb {
606 	union {
607 		struct inet_skb_parm	h4;
608 #if defined(CONFIG_IPV6) || defined (CONFIG_IPV6_MODULE)
609 		struct inet6_skb_parm	h6;
610 #endif
611 	} header;	/* For incoming frames		*/
612 	__u32		seq;		/* Starting sequence number	*/
613 	__u32		end_seq;	/* SEQ + FIN + SYN + datalen	*/
614 	__u32		when;		/* used to compute rtt's	*/
615 	__u8		flags;		/* TCP header flags.		*/
616 
617 	/* NOTE: These must match up to the flags byte in a
618 	 *       real TCP header.
619 	 */
620 #define TCPCB_FLAG_FIN		0x01
621 #define TCPCB_FLAG_SYN		0x02
622 #define TCPCB_FLAG_RST		0x04
623 #define TCPCB_FLAG_PSH		0x08
624 #define TCPCB_FLAG_ACK		0x10
625 #define TCPCB_FLAG_URG		0x20
626 #define TCPCB_FLAG_ECE		0x40
627 #define TCPCB_FLAG_CWR		0x80
628 
629 	__u8		sacked;		/* State flags for SACK/FACK.	*/
630 #define TCPCB_SACKED_ACKED	0x01	/* SKB ACK'd by a SACK block	*/
631 #define TCPCB_SACKED_RETRANS	0x02	/* SKB retransmitted		*/
632 #define TCPCB_LOST		0x04	/* SKB is lost			*/
633 #define TCPCB_TAGBITS		0x07	/* All tag bits			*/
634 
635 #define TCPCB_EVER_RETRANS	0x80	/* Ever retransmitted frame	*/
636 #define TCPCB_RETRANS		(TCPCB_SACKED_RETRANS|TCPCB_EVER_RETRANS)
637 
638 	__u32		ack_seq;	/* Sequence number ACK'd	*/
639 };
640 
641 #define TCP_SKB_CB(__skb)	((struct tcp_skb_cb *)&((__skb)->cb[0]))
642 
643 /* Due to TSO, an SKB can be composed of multiple actual
644  * packets.  To keep these tracked properly, we use this.
645  */
646 static inline int tcp_skb_pcount(const struct sk_buff *skb)
647 {
648 	return skb_shinfo(skb)->gso_segs;
649 }
650 
651 /* This is valid iff tcp_skb_pcount() > 1. */
652 static inline int tcp_skb_mss(const struct sk_buff *skb)
653 {
654 	return skb_shinfo(skb)->gso_size;
655 }
656 
657 /* Events passed to congestion control interface */
658 enum tcp_ca_event {
659 	CA_EVENT_TX_START,	/* first transmit when no packets in flight */
660 	CA_EVENT_CWND_RESTART,	/* congestion window restart */
661 	CA_EVENT_COMPLETE_CWR,	/* end of congestion recovery */
662 	CA_EVENT_FRTO,		/* fast recovery timeout */
663 	CA_EVENT_LOSS,		/* loss timeout */
664 	CA_EVENT_FAST_ACK,	/* in sequence ack */
665 	CA_EVENT_SLOW_ACK,	/* other ack */
666 };
667 
668 /*
669  * Interface for adding new TCP congestion control handlers
670  */
671 #define TCP_CA_NAME_MAX	16
672 #define TCP_CA_MAX	128
673 #define TCP_CA_BUF_MAX	(TCP_CA_NAME_MAX*TCP_CA_MAX)
674 
675 #define TCP_CONG_NON_RESTRICTED 0x1
676 #define TCP_CONG_RTT_STAMP	0x2
677 
678 struct tcp_congestion_ops {
679 	struct list_head	list;
680 	unsigned long flags;
681 
682 	/* initialize private data (optional) */
683 	void (*init)(struct sock *sk);
684 	/* cleanup private data  (optional) */
685 	void (*release)(struct sock *sk);
686 
687 	/* return slow start threshold (required) */
688 	u32 (*ssthresh)(struct sock *sk);
689 	/* lower bound for congestion window (optional) */
690 	u32 (*min_cwnd)(const struct sock *sk);
691 	/* do new cwnd calculation (required) */
692 	void (*cong_avoid)(struct sock *sk, u32 ack, u32 in_flight);
693 	/* call before changing ca_state (optional) */
694 	void (*set_state)(struct sock *sk, u8 new_state);
695 	/* call when cwnd event occurs (optional) */
696 	void (*cwnd_event)(struct sock *sk, enum tcp_ca_event ev);
697 	/* new value of cwnd after loss (optional) */
698 	u32  (*undo_cwnd)(struct sock *sk);
699 	/* hook for packet ack accounting (optional) */
700 	void (*pkts_acked)(struct sock *sk, u32 num_acked, s32 rtt_us);
701 	/* get info for inet_diag (optional) */
702 	void (*get_info)(struct sock *sk, u32 ext, struct sk_buff *skb);
703 
704 	char 		name[TCP_CA_NAME_MAX];
705 	struct module 	*owner;
706 };
707 
708 extern int tcp_register_congestion_control(struct tcp_congestion_ops *type);
709 extern void tcp_unregister_congestion_control(struct tcp_congestion_ops *type);
710 
711 extern void tcp_init_congestion_control(struct sock *sk);
712 extern void tcp_cleanup_congestion_control(struct sock *sk);
713 extern int tcp_set_default_congestion_control(const char *name);
714 extern void tcp_get_default_congestion_control(char *name);
715 extern void tcp_get_available_congestion_control(char *buf, size_t len);
716 extern void tcp_get_allowed_congestion_control(char *buf, size_t len);
717 extern int tcp_set_allowed_congestion_control(char *allowed);
718 extern int tcp_set_congestion_control(struct sock *sk, const char *name);
719 extern void tcp_slow_start(struct tcp_sock *tp);
720 extern void tcp_cong_avoid_ai(struct tcp_sock *tp, u32 w);
721 
722 extern struct tcp_congestion_ops tcp_init_congestion_ops;
723 extern u32 tcp_reno_ssthresh(struct sock *sk);
724 extern void tcp_reno_cong_avoid(struct sock *sk, u32 ack, u32 in_flight);
725 extern u32 tcp_reno_min_cwnd(const struct sock *sk);
726 extern struct tcp_congestion_ops tcp_reno;
727 
728 static inline void tcp_set_ca_state(struct sock *sk, const u8 ca_state)
729 {
730 	struct inet_connection_sock *icsk = inet_csk(sk);
731 
732 	if (icsk->icsk_ca_ops->set_state)
733 		icsk->icsk_ca_ops->set_state(sk, ca_state);
734 	icsk->icsk_ca_state = ca_state;
735 }
736 
737 static inline void tcp_ca_event(struct sock *sk, const enum tcp_ca_event event)
738 {
739 	const struct inet_connection_sock *icsk = inet_csk(sk);
740 
741 	if (icsk->icsk_ca_ops->cwnd_event)
742 		icsk->icsk_ca_ops->cwnd_event(sk, event);
743 }
744 
745 /* These functions determine how the current flow behaves in respect of SACK
746  * handling. SACK is negotiated with the peer, and therefore it can vary
747  * between different flows.
748  *
749  * tcp_is_sack - SACK enabled
750  * tcp_is_reno - No SACK
751  * tcp_is_fack - FACK enabled, implies SACK enabled
752  */
753 static inline int tcp_is_sack(const struct tcp_sock *tp)
754 {
755 	return tp->rx_opt.sack_ok;
756 }
757 
758 static inline int tcp_is_reno(const struct tcp_sock *tp)
759 {
760 	return !tcp_is_sack(tp);
761 }
762 
763 static inline int tcp_is_fack(const struct tcp_sock *tp)
764 {
765 	return tp->rx_opt.sack_ok & 2;
766 }
767 
768 static inline void tcp_enable_fack(struct tcp_sock *tp)
769 {
770 	tp->rx_opt.sack_ok |= 2;
771 }
772 
773 static inline unsigned int tcp_left_out(const struct tcp_sock *tp)
774 {
775 	return tp->sacked_out + tp->lost_out;
776 }
777 
778 /* This determines how many packets are "in the network" to the best
779  * of our knowledge.  In many cases it is conservative, but where
780  * detailed information is available from the receiver (via SACK
781  * blocks etc.) we can make more aggressive calculations.
782  *
783  * Use this for decisions involving congestion control, use just
784  * tp->packets_out to determine if the send queue is empty or not.
785  *
786  * Read this equation as:
787  *
788  *	"Packets sent once on transmission queue" MINUS
789  *	"Packets left network, but not honestly ACKed yet" PLUS
790  *	"Packets fast retransmitted"
791  */
792 static inline unsigned int tcp_packets_in_flight(const struct tcp_sock *tp)
793 {
794 	return tp->packets_out - tcp_left_out(tp) + tp->retrans_out;
795 }
796 
797 #define TCP_INFINITE_SSTHRESH	0x7fffffff
798 
799 static inline bool tcp_in_initial_slowstart(const struct tcp_sock *tp)
800 {
801 	return tp->snd_ssthresh >= TCP_INFINITE_SSTHRESH;
802 }
803 
804 /* If cwnd > ssthresh, we may raise ssthresh to be half-way to cwnd.
805  * The exception is rate halving phase, when cwnd is decreasing towards
806  * ssthresh.
807  */
808 static inline __u32 tcp_current_ssthresh(const struct sock *sk)
809 {
810 	const struct tcp_sock *tp = tcp_sk(sk);
811 	if ((1 << inet_csk(sk)->icsk_ca_state) & (TCPF_CA_CWR | TCPF_CA_Recovery))
812 		return tp->snd_ssthresh;
813 	else
814 		return max(tp->snd_ssthresh,
815 			   ((tp->snd_cwnd >> 1) +
816 			    (tp->snd_cwnd >> 2)));
817 }
818 
819 /* Use define here intentionally to get WARN_ON location shown at the caller */
820 #define tcp_verify_left_out(tp)	WARN_ON(tcp_left_out(tp) > tp->packets_out)
821 
822 extern void tcp_enter_cwr(struct sock *sk, const int set_ssthresh);
823 extern __u32 tcp_init_cwnd(struct tcp_sock *tp, struct dst_entry *dst);
824 
825 /* Slow start with delack produces 3 packets of burst, so that
826  * it is safe "de facto".  This will be the default - same as
827  * the default reordering threshold - but if reordering increases,
828  * we must be able to allow cwnd to burst at least this much in order
829  * to not pull it back when holes are filled.
830  */
831 static __inline__ __u32 tcp_max_burst(const struct tcp_sock *tp)
832 {
833 	return tp->reordering;
834 }
835 
836 /* Returns end sequence number of the receiver's advertised window */
837 static inline u32 tcp_wnd_end(const struct tcp_sock *tp)
838 {
839 	return tp->snd_una + tp->snd_wnd;
840 }
841 extern int tcp_is_cwnd_limited(const struct sock *sk, u32 in_flight);
842 
843 static inline void tcp_minshall_update(struct tcp_sock *tp, unsigned int mss,
844 				       const struct sk_buff *skb)
845 {
846 	if (skb->len < mss)
847 		tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
848 }
849 
850 static inline void tcp_check_probe_timer(struct sock *sk)
851 {
852 	struct tcp_sock *tp = tcp_sk(sk);
853 	const struct inet_connection_sock *icsk = inet_csk(sk);
854 
855 	if (!tp->packets_out && !icsk->icsk_pending)
856 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
857 					  icsk->icsk_rto, TCP_RTO_MAX);
858 }
859 
860 static inline void tcp_push_pending_frames(struct sock *sk)
861 {
862 	struct tcp_sock *tp = tcp_sk(sk);
863 
864 	__tcp_push_pending_frames(sk, tcp_current_mss(sk), tp->nonagle);
865 }
866 
867 static inline void tcp_init_wl(struct tcp_sock *tp, u32 seq)
868 {
869 	tp->snd_wl1 = seq;
870 }
871 
872 static inline void tcp_update_wl(struct tcp_sock *tp, u32 seq)
873 {
874 	tp->snd_wl1 = seq;
875 }
876 
877 /*
878  * Calculate(/check) TCP checksum
879  */
880 static inline __sum16 tcp_v4_check(int len, __be32 saddr,
881 				   __be32 daddr, __wsum base)
882 {
883 	return csum_tcpudp_magic(saddr,daddr,len,IPPROTO_TCP,base);
884 }
885 
886 static inline __sum16 __tcp_checksum_complete(struct sk_buff *skb)
887 {
888 	return __skb_checksum_complete(skb);
889 }
890 
891 static inline int tcp_checksum_complete(struct sk_buff *skb)
892 {
893 	return !skb_csum_unnecessary(skb) &&
894 		__tcp_checksum_complete(skb);
895 }
896 
897 /* Prequeue for VJ style copy to user, combined with checksumming. */
898 
899 static inline void tcp_prequeue_init(struct tcp_sock *tp)
900 {
901 	tp->ucopy.task = NULL;
902 	tp->ucopy.len = 0;
903 	tp->ucopy.memory = 0;
904 	skb_queue_head_init(&tp->ucopy.prequeue);
905 #ifdef CONFIG_NET_DMA
906 	tp->ucopy.dma_chan = NULL;
907 	tp->ucopy.wakeup = 0;
908 	tp->ucopy.pinned_list = NULL;
909 	tp->ucopy.dma_cookie = 0;
910 #endif
911 }
912 
913 /* Packet is added to VJ-style prequeue for processing in process
914  * context, if a reader task is waiting. Apparently, this exciting
915  * idea (VJ's mail "Re: query about TCP header on tcp-ip" of 07 Sep 93)
916  * failed somewhere. Latency? Burstiness? Well, at least now we will
917  * see, why it failed. 8)8)				  --ANK
918  *
919  * NOTE: is this not too big to inline?
920  */
921 static inline int tcp_prequeue(struct sock *sk, struct sk_buff *skb)
922 {
923 	struct tcp_sock *tp = tcp_sk(sk);
924 
925 	if (sysctl_tcp_low_latency || !tp->ucopy.task)
926 		return 0;
927 
928 	__skb_queue_tail(&tp->ucopy.prequeue, skb);
929 	tp->ucopy.memory += skb->truesize;
930 	if (tp->ucopy.memory > sk->sk_rcvbuf) {
931 		struct sk_buff *skb1;
932 
933 		BUG_ON(sock_owned_by_user(sk));
934 
935 		while ((skb1 = __skb_dequeue(&tp->ucopy.prequeue)) != NULL) {
936 			sk_backlog_rcv(sk, skb1);
937 			NET_INC_STATS_BH(sock_net(sk),
938 					 LINUX_MIB_TCPPREQUEUEDROPPED);
939 		}
940 
941 		tp->ucopy.memory = 0;
942 	} else if (skb_queue_len(&tp->ucopy.prequeue) == 1) {
943 		wake_up_interruptible_poll(sk->sk_sleep,
944 					   POLLIN | POLLRDNORM | POLLRDBAND);
945 		if (!inet_csk_ack_scheduled(sk))
946 			inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
947 						  (3 * tcp_rto_min(sk)) / 4,
948 						  TCP_RTO_MAX);
949 	}
950 	return 1;
951 }
952 
953 
954 #undef STATE_TRACE
955 
956 #ifdef STATE_TRACE
957 static const char *statename[]={
958 	"Unused","Established","Syn Sent","Syn Recv",
959 	"Fin Wait 1","Fin Wait 2","Time Wait", "Close",
960 	"Close Wait","Last ACK","Listen","Closing"
961 };
962 #endif
963 extern void tcp_set_state(struct sock *sk, int state);
964 
965 extern void tcp_done(struct sock *sk);
966 
967 static inline void tcp_sack_reset(struct tcp_options_received *rx_opt)
968 {
969 	rx_opt->dsack = 0;
970 	rx_opt->num_sacks = 0;
971 }
972 
973 /* Determine a window scaling and initial window to offer. */
974 extern void tcp_select_initial_window(int __space, __u32 mss,
975 				      __u32 *rcv_wnd, __u32 *window_clamp,
976 				      int wscale_ok, __u8 *rcv_wscale);
977 
978 static inline int tcp_win_from_space(int space)
979 {
980 	return sysctl_tcp_adv_win_scale<=0 ?
981 		(space>>(-sysctl_tcp_adv_win_scale)) :
982 		space - (space>>sysctl_tcp_adv_win_scale);
983 }
984 
985 /* Note: caller must be prepared to deal with negative returns */
986 static inline int tcp_space(const struct sock *sk)
987 {
988 	return tcp_win_from_space(sk->sk_rcvbuf -
989 				  atomic_read(&sk->sk_rmem_alloc));
990 }
991 
992 static inline int tcp_full_space(const struct sock *sk)
993 {
994 	return tcp_win_from_space(sk->sk_rcvbuf);
995 }
996 
997 static inline void tcp_openreq_init(struct request_sock *req,
998 				    struct tcp_options_received *rx_opt,
999 				    struct sk_buff *skb)
1000 {
1001 	struct inet_request_sock *ireq = inet_rsk(req);
1002 
1003 	req->rcv_wnd = 0;		/* So that tcp_send_synack() knows! */
1004 	req->cookie_ts = 0;
1005 	tcp_rsk(req)->rcv_isn = TCP_SKB_CB(skb)->seq;
1006 	req->mss = rx_opt->mss_clamp;
1007 	req->ts_recent = rx_opt->saw_tstamp ? rx_opt->rcv_tsval : 0;
1008 	ireq->tstamp_ok = rx_opt->tstamp_ok;
1009 	ireq->sack_ok = rx_opt->sack_ok;
1010 	ireq->snd_wscale = rx_opt->snd_wscale;
1011 	ireq->wscale_ok = rx_opt->wscale_ok;
1012 	ireq->acked = 0;
1013 	ireq->ecn_ok = 0;
1014 	ireq->rmt_port = tcp_hdr(skb)->source;
1015 	ireq->loc_port = tcp_hdr(skb)->dest;
1016 }
1017 
1018 extern void tcp_enter_memory_pressure(struct sock *sk);
1019 
1020 static inline int keepalive_intvl_when(const struct tcp_sock *tp)
1021 {
1022 	return tp->keepalive_intvl ? : sysctl_tcp_keepalive_intvl;
1023 }
1024 
1025 static inline int keepalive_time_when(const struct tcp_sock *tp)
1026 {
1027 	return tp->keepalive_time ? : sysctl_tcp_keepalive_time;
1028 }
1029 
1030 static inline int keepalive_probes(const struct tcp_sock *tp)
1031 {
1032 	return tp->keepalive_probes ? : sysctl_tcp_keepalive_probes;
1033 }
1034 
1035 static inline int tcp_fin_time(const struct sock *sk)
1036 {
1037 	int fin_timeout = tcp_sk(sk)->linger2 ? : sysctl_tcp_fin_timeout;
1038 	const int rto = inet_csk(sk)->icsk_rto;
1039 
1040 	if (fin_timeout < (rto << 2) - (rto >> 1))
1041 		fin_timeout = (rto << 2) - (rto >> 1);
1042 
1043 	return fin_timeout;
1044 }
1045 
1046 static inline int tcp_paws_check(const struct tcp_options_received *rx_opt,
1047 				 int paws_win)
1048 {
1049 	if ((s32)(rx_opt->ts_recent - rx_opt->rcv_tsval) <= paws_win)
1050 		return 1;
1051 	if (unlikely(get_seconds() >= rx_opt->ts_recent_stamp + TCP_PAWS_24DAYS))
1052 		return 1;
1053 
1054 	return 0;
1055 }
1056 
1057 static inline int tcp_paws_reject(const struct tcp_options_received *rx_opt,
1058 				  int rst)
1059 {
1060 	if (tcp_paws_check(rx_opt, 0))
1061 		return 0;
1062 
1063 	/* RST segments are not recommended to carry timestamp,
1064 	   and, if they do, it is recommended to ignore PAWS because
1065 	   "their cleanup function should take precedence over timestamps."
1066 	   Certainly, it is mistake. It is necessary to understand the reasons
1067 	   of this constraint to relax it: if peer reboots, clock may go
1068 	   out-of-sync and half-open connections will not be reset.
1069 	   Actually, the problem would be not existing if all
1070 	   the implementations followed draft about maintaining clock
1071 	   via reboots. Linux-2.2 DOES NOT!
1072 
1073 	   However, we can relax time bounds for RST segments to MSL.
1074 	 */
1075 	if (rst && get_seconds() >= rx_opt->ts_recent_stamp + TCP_PAWS_MSL)
1076 		return 0;
1077 	return 1;
1078 }
1079 
1080 #define TCP_CHECK_TIMER(sk) do { } while (0)
1081 
1082 static inline void tcp_mib_init(struct net *net)
1083 {
1084 	/* See RFC 2012 */
1085 	TCP_ADD_STATS_USER(net, TCP_MIB_RTOALGORITHM, 1);
1086 	TCP_ADD_STATS_USER(net, TCP_MIB_RTOMIN, TCP_RTO_MIN*1000/HZ);
1087 	TCP_ADD_STATS_USER(net, TCP_MIB_RTOMAX, TCP_RTO_MAX*1000/HZ);
1088 	TCP_ADD_STATS_USER(net, TCP_MIB_MAXCONN, -1);
1089 }
1090 
1091 /* from STCP */
1092 static inline void tcp_clear_retrans_hints_partial(struct tcp_sock *tp)
1093 {
1094 	tp->lost_skb_hint = NULL;
1095 	tp->scoreboard_skb_hint = NULL;
1096 }
1097 
1098 static inline void tcp_clear_all_retrans_hints(struct tcp_sock *tp)
1099 {
1100 	tcp_clear_retrans_hints_partial(tp);
1101 	tp->retransmit_skb_hint = NULL;
1102 }
1103 
1104 /* MD5 Signature */
1105 struct crypto_hash;
1106 
1107 /* - key database */
1108 struct tcp_md5sig_key {
1109 	u8			*key;
1110 	u8			keylen;
1111 };
1112 
1113 struct tcp4_md5sig_key {
1114 	struct tcp_md5sig_key	base;
1115 	__be32			addr;
1116 };
1117 
1118 struct tcp6_md5sig_key {
1119 	struct tcp_md5sig_key	base;
1120 #if 0
1121 	u32			scope_id;	/* XXX */
1122 #endif
1123 	struct in6_addr		addr;
1124 };
1125 
1126 /* - sock block */
1127 struct tcp_md5sig_info {
1128 	struct tcp4_md5sig_key	*keys4;
1129 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
1130 	struct tcp6_md5sig_key	*keys6;
1131 	u32			entries6;
1132 	u32			alloced6;
1133 #endif
1134 	u32			entries4;
1135 	u32			alloced4;
1136 };
1137 
1138 /* - pseudo header */
1139 struct tcp4_pseudohdr {
1140 	__be32		saddr;
1141 	__be32		daddr;
1142 	__u8		pad;
1143 	__u8		protocol;
1144 	__be16		len;
1145 };
1146 
1147 struct tcp6_pseudohdr {
1148 	struct in6_addr	saddr;
1149 	struct in6_addr daddr;
1150 	__be32		len;
1151 	__be32		protocol;	/* including padding */
1152 };
1153 
1154 union tcp_md5sum_block {
1155 	struct tcp4_pseudohdr ip4;
1156 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
1157 	struct tcp6_pseudohdr ip6;
1158 #endif
1159 };
1160 
1161 /* - pool: digest algorithm, hash description and scratch buffer */
1162 struct tcp_md5sig_pool {
1163 	struct hash_desc	md5_desc;
1164 	union tcp_md5sum_block	md5_blk;
1165 };
1166 
1167 #define TCP_MD5SIG_MAXKEYS	(~(u32)0)	/* really?! */
1168 
1169 /* - functions */
1170 extern int			tcp_v4_md5_hash_skb(char *md5_hash,
1171 						    struct tcp_md5sig_key *key,
1172 						    struct sock *sk,
1173 						    struct request_sock *req,
1174 						    struct sk_buff *skb);
1175 
1176 extern struct tcp_md5sig_key	*tcp_v4_md5_lookup(struct sock *sk,
1177 						   struct sock *addr_sk);
1178 
1179 extern int			tcp_v4_md5_do_add(struct sock *sk,
1180 						  __be32 addr,
1181 						  u8 *newkey,
1182 						  u8 newkeylen);
1183 
1184 extern int			tcp_v4_md5_do_del(struct sock *sk,
1185 						  __be32 addr);
1186 
1187 #ifdef CONFIG_TCP_MD5SIG
1188 #define tcp_twsk_md5_key(twsk)	((twsk)->tw_md5_keylen ? 		 \
1189 				 &(struct tcp_md5sig_key) {		 \
1190 					.key = (twsk)->tw_md5_key,	 \
1191 					.keylen = (twsk)->tw_md5_keylen, \
1192 				} : NULL)
1193 #else
1194 #define tcp_twsk_md5_key(twsk)	NULL
1195 #endif
1196 
1197 extern struct tcp_md5sig_pool	**tcp_alloc_md5sig_pool(struct sock *);
1198 extern void			tcp_free_md5sig_pool(void);
1199 
1200 extern struct tcp_md5sig_pool	*__tcp_get_md5sig_pool(int cpu);
1201 extern void			__tcp_put_md5sig_pool(void);
1202 extern int tcp_md5_hash_header(struct tcp_md5sig_pool *, struct tcphdr *);
1203 extern int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *, struct sk_buff *,
1204 				 unsigned header_len);
1205 extern int tcp_md5_hash_key(struct tcp_md5sig_pool *hp,
1206 			    struct tcp_md5sig_key *key);
1207 
1208 static inline
1209 struct tcp_md5sig_pool		*tcp_get_md5sig_pool(void)
1210 {
1211 	int cpu = get_cpu();
1212 	struct tcp_md5sig_pool *ret = __tcp_get_md5sig_pool(cpu);
1213 	if (!ret)
1214 		put_cpu();
1215 	return ret;
1216 }
1217 
1218 static inline void		tcp_put_md5sig_pool(void)
1219 {
1220 	__tcp_put_md5sig_pool();
1221 	put_cpu();
1222 }
1223 
1224 /* write queue abstraction */
1225 static inline void tcp_write_queue_purge(struct sock *sk)
1226 {
1227 	struct sk_buff *skb;
1228 
1229 	while ((skb = __skb_dequeue(&sk->sk_write_queue)) != NULL)
1230 		sk_wmem_free_skb(sk, skb);
1231 	sk_mem_reclaim(sk);
1232 	tcp_clear_all_retrans_hints(tcp_sk(sk));
1233 }
1234 
1235 static inline struct sk_buff *tcp_write_queue_head(struct sock *sk)
1236 {
1237 	return skb_peek(&sk->sk_write_queue);
1238 }
1239 
1240 static inline struct sk_buff *tcp_write_queue_tail(struct sock *sk)
1241 {
1242 	return skb_peek_tail(&sk->sk_write_queue);
1243 }
1244 
1245 static inline struct sk_buff *tcp_write_queue_next(struct sock *sk, struct sk_buff *skb)
1246 {
1247 	return skb_queue_next(&sk->sk_write_queue, skb);
1248 }
1249 
1250 static inline struct sk_buff *tcp_write_queue_prev(struct sock *sk, struct sk_buff *skb)
1251 {
1252 	return skb_queue_prev(&sk->sk_write_queue, skb);
1253 }
1254 
1255 #define tcp_for_write_queue(skb, sk)					\
1256 	skb_queue_walk(&(sk)->sk_write_queue, skb)
1257 
1258 #define tcp_for_write_queue_from(skb, sk)				\
1259 	skb_queue_walk_from(&(sk)->sk_write_queue, skb)
1260 
1261 #define tcp_for_write_queue_from_safe(skb, tmp, sk)			\
1262 	skb_queue_walk_from_safe(&(sk)->sk_write_queue, skb, tmp)
1263 
1264 static inline struct sk_buff *tcp_send_head(struct sock *sk)
1265 {
1266 	return sk->sk_send_head;
1267 }
1268 
1269 static inline bool tcp_skb_is_last(const struct sock *sk,
1270 				   const struct sk_buff *skb)
1271 {
1272 	return skb_queue_is_last(&sk->sk_write_queue, skb);
1273 }
1274 
1275 static inline void tcp_advance_send_head(struct sock *sk, struct sk_buff *skb)
1276 {
1277 	if (tcp_skb_is_last(sk, skb))
1278 		sk->sk_send_head = NULL;
1279 	else
1280 		sk->sk_send_head = tcp_write_queue_next(sk, skb);
1281 }
1282 
1283 static inline void tcp_check_send_head(struct sock *sk, struct sk_buff *skb_unlinked)
1284 {
1285 	if (sk->sk_send_head == skb_unlinked)
1286 		sk->sk_send_head = NULL;
1287 }
1288 
1289 static inline void tcp_init_send_head(struct sock *sk)
1290 {
1291 	sk->sk_send_head = NULL;
1292 }
1293 
1294 static inline void __tcp_add_write_queue_tail(struct sock *sk, struct sk_buff *skb)
1295 {
1296 	__skb_queue_tail(&sk->sk_write_queue, skb);
1297 }
1298 
1299 static inline void tcp_add_write_queue_tail(struct sock *sk, struct sk_buff *skb)
1300 {
1301 	__tcp_add_write_queue_tail(sk, skb);
1302 
1303 	/* Queue it, remembering where we must start sending. */
1304 	if (sk->sk_send_head == NULL) {
1305 		sk->sk_send_head = skb;
1306 
1307 		if (tcp_sk(sk)->highest_sack == NULL)
1308 			tcp_sk(sk)->highest_sack = skb;
1309 	}
1310 }
1311 
1312 static inline void __tcp_add_write_queue_head(struct sock *sk, struct sk_buff *skb)
1313 {
1314 	__skb_queue_head(&sk->sk_write_queue, skb);
1315 }
1316 
1317 /* Insert buff after skb on the write queue of sk.  */
1318 static inline void tcp_insert_write_queue_after(struct sk_buff *skb,
1319 						struct sk_buff *buff,
1320 						struct sock *sk)
1321 {
1322 	__skb_queue_after(&sk->sk_write_queue, skb, buff);
1323 }
1324 
1325 /* Insert new before skb on the write queue of sk.  */
1326 static inline void tcp_insert_write_queue_before(struct sk_buff *new,
1327 						  struct sk_buff *skb,
1328 						  struct sock *sk)
1329 {
1330 	__skb_queue_before(&sk->sk_write_queue, skb, new);
1331 
1332 	if (sk->sk_send_head == skb)
1333 		sk->sk_send_head = new;
1334 }
1335 
1336 static inline void tcp_unlink_write_queue(struct sk_buff *skb, struct sock *sk)
1337 {
1338 	__skb_unlink(skb, &sk->sk_write_queue);
1339 }
1340 
1341 static inline int tcp_write_queue_empty(struct sock *sk)
1342 {
1343 	return skb_queue_empty(&sk->sk_write_queue);
1344 }
1345 
1346 /* Start sequence of the highest skb with SACKed bit, valid only if
1347  * sacked > 0 or when the caller has ensured validity by itself.
1348  */
1349 static inline u32 tcp_highest_sack_seq(struct tcp_sock *tp)
1350 {
1351 	if (!tp->sacked_out)
1352 		return tp->snd_una;
1353 
1354 	if (tp->highest_sack == NULL)
1355 		return tp->snd_nxt;
1356 
1357 	return TCP_SKB_CB(tp->highest_sack)->seq;
1358 }
1359 
1360 static inline void tcp_advance_highest_sack(struct sock *sk, struct sk_buff *skb)
1361 {
1362 	tcp_sk(sk)->highest_sack = tcp_skb_is_last(sk, skb) ? NULL :
1363 						tcp_write_queue_next(sk, skb);
1364 }
1365 
1366 static inline struct sk_buff *tcp_highest_sack(struct sock *sk)
1367 {
1368 	return tcp_sk(sk)->highest_sack;
1369 }
1370 
1371 static inline void tcp_highest_sack_reset(struct sock *sk)
1372 {
1373 	tcp_sk(sk)->highest_sack = tcp_write_queue_head(sk);
1374 }
1375 
1376 /* Called when old skb is about to be deleted (to be combined with new skb) */
1377 static inline void tcp_highest_sack_combine(struct sock *sk,
1378 					    struct sk_buff *old,
1379 					    struct sk_buff *new)
1380 {
1381 	if (tcp_sk(sk)->sacked_out && (old == tcp_sk(sk)->highest_sack))
1382 		tcp_sk(sk)->highest_sack = new;
1383 }
1384 
1385 /* /proc */
1386 enum tcp_seq_states {
1387 	TCP_SEQ_STATE_LISTENING,
1388 	TCP_SEQ_STATE_OPENREQ,
1389 	TCP_SEQ_STATE_ESTABLISHED,
1390 	TCP_SEQ_STATE_TIME_WAIT,
1391 };
1392 
1393 struct tcp_seq_afinfo {
1394 	char			*name;
1395 	sa_family_t		family;
1396 	struct file_operations	seq_fops;
1397 	struct seq_operations	seq_ops;
1398 };
1399 
1400 struct tcp_iter_state {
1401 	struct seq_net_private	p;
1402 	sa_family_t		family;
1403 	enum tcp_seq_states	state;
1404 	struct sock		*syn_wait_sk;
1405 	int			bucket, sbucket, num, uid;
1406 };
1407 
1408 extern int tcp_proc_register(struct net *net, struct tcp_seq_afinfo *afinfo);
1409 extern void tcp_proc_unregister(struct net *net, struct tcp_seq_afinfo *afinfo);
1410 
1411 extern struct request_sock_ops tcp_request_sock_ops;
1412 extern struct request_sock_ops tcp6_request_sock_ops;
1413 
1414 extern void tcp_v4_destroy_sock(struct sock *sk);
1415 
1416 extern int tcp_v4_gso_send_check(struct sk_buff *skb);
1417 extern struct sk_buff *tcp_tso_segment(struct sk_buff *skb, int features);
1418 extern struct sk_buff **tcp_gro_receive(struct sk_buff **head,
1419 					struct sk_buff *skb);
1420 extern struct sk_buff **tcp4_gro_receive(struct sk_buff **head,
1421 					 struct sk_buff *skb);
1422 extern int tcp_gro_complete(struct sk_buff *skb);
1423 extern int tcp4_gro_complete(struct sk_buff *skb);
1424 
1425 #ifdef CONFIG_PROC_FS
1426 extern int  tcp4_proc_init(void);
1427 extern void tcp4_proc_exit(void);
1428 #endif
1429 
1430 /* TCP af-specific functions */
1431 struct tcp_sock_af_ops {
1432 #ifdef CONFIG_TCP_MD5SIG
1433 	struct tcp_md5sig_key	*(*md5_lookup) (struct sock *sk,
1434 						struct sock *addr_sk);
1435 	int			(*calc_md5_hash) (char *location,
1436 						  struct tcp_md5sig_key *md5,
1437 						  struct sock *sk,
1438 						  struct request_sock *req,
1439 						  struct sk_buff *skb);
1440 	int			(*md5_add) (struct sock *sk,
1441 					    struct sock *addr_sk,
1442 					    u8 *newkey,
1443 					    u8 len);
1444 	int			(*md5_parse) (struct sock *sk,
1445 					      char __user *optval,
1446 					      int optlen);
1447 #endif
1448 };
1449 
1450 struct tcp_request_sock_ops {
1451 #ifdef CONFIG_TCP_MD5SIG
1452 	struct tcp_md5sig_key	*(*md5_lookup) (struct sock *sk,
1453 						struct request_sock *req);
1454 	int			(*calc_md5_hash) (char *location,
1455 						  struct tcp_md5sig_key *md5,
1456 						  struct sock *sk,
1457 						  struct request_sock *req,
1458 						  struct sk_buff *skb);
1459 #endif
1460 };
1461 
1462 /* Using SHA1 for now, define some constants.
1463  */
1464 #define COOKIE_DIGEST_WORDS (SHA_DIGEST_WORDS)
1465 #define COOKIE_MESSAGE_WORDS (SHA_MESSAGE_BYTES / 4)
1466 #define COOKIE_WORKSPACE_WORDS (COOKIE_DIGEST_WORDS + COOKIE_MESSAGE_WORDS)
1467 
1468 extern int tcp_cookie_generator(u32 *bakery);
1469 
1470 /**
1471  *	struct tcp_cookie_values - each socket needs extra space for the
1472  *	cookies, together with (optional) space for any SYN data.
1473  *
1474  *	A tcp_sock contains a pointer to the current value, and this is
1475  *	cloned to the tcp_timewait_sock.
1476  *
1477  * @cookie_pair:	variable data from the option exchange.
1478  *
1479  * @cookie_desired:	user specified tcpct_cookie_desired.  Zero
1480  *			indicates default (sysctl_tcp_cookie_size).
1481  *			After cookie sent, remembers size of cookie.
1482  *			Range 0, TCP_COOKIE_MIN to TCP_COOKIE_MAX.
1483  *
1484  * @s_data_desired:	user specified tcpct_s_data_desired.  When the
1485  *			constant payload is specified (@s_data_constant),
1486  *			holds its length instead.
1487  *			Range 0 to TCP_MSS_DESIRED.
1488  *
1489  * @s_data_payload:	constant data that is to be included in the
1490  *			payload of SYN or SYNACK segments when the
1491  *			cookie option is present.
1492  */
1493 struct tcp_cookie_values {
1494 	struct kref	kref;
1495 	u8		cookie_pair[TCP_COOKIE_PAIR_SIZE];
1496 	u8		cookie_pair_size;
1497 	u8		cookie_desired;
1498 	u16		s_data_desired:11,
1499 			s_data_constant:1,
1500 			s_data_in:1,
1501 			s_data_out:1,
1502 			s_data_unused:2;
1503 	u8		s_data_payload[0];
1504 };
1505 
1506 static inline void tcp_cookie_values_release(struct kref *kref)
1507 {
1508 	kfree(container_of(kref, struct tcp_cookie_values, kref));
1509 }
1510 
1511 /* The length of constant payload data.  Note that s_data_desired is
1512  * overloaded, depending on s_data_constant: either the length of constant
1513  * data (returned here) or the limit on variable data.
1514  */
1515 static inline int tcp_s_data_size(const struct tcp_sock *tp)
1516 {
1517 	return (tp->cookie_values != NULL && tp->cookie_values->s_data_constant)
1518 		? tp->cookie_values->s_data_desired
1519 		: 0;
1520 }
1521 
1522 /**
1523  *	struct tcp_extend_values - tcp_ipv?.c to tcp_output.c workspace.
1524  *
1525  *	As tcp_request_sock has already been extended in other places, the
1526  *	only remaining method is to pass stack values along as function
1527  *	parameters.  These parameters are not needed after sending SYNACK.
1528  *
1529  * @cookie_bakery:	cryptographic secret and message workspace.
1530  *
1531  * @cookie_plus:	bytes in authenticator/cookie option, copied from
1532  *			struct tcp_options_received (above).
1533  */
1534 struct tcp_extend_values {
1535 	struct request_values		rv;
1536 	u32				cookie_bakery[COOKIE_WORKSPACE_WORDS];
1537 	u8				cookie_plus:6,
1538 					cookie_out_never:1,
1539 					cookie_in_always:1;
1540 };
1541 
1542 static inline struct tcp_extend_values *tcp_xv(struct request_values *rvp)
1543 {
1544 	return (struct tcp_extend_values *)rvp;
1545 }
1546 
1547 extern void tcp_v4_init(void);
1548 extern void tcp_init(void);
1549 
1550 #endif	/* _TCP_H */
1551