xref: /linux/include/net/tcp.h (revision 25aee3debe0464f6c680173041fa3de30ec9ff54)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Definitions for the TCP module.
7  *
8  * Version:	@(#)tcp.h	1.0.5	05/23/93
9  *
10  * Authors:	Ross Biro
11  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *
13  *		This program is free software; you can redistribute it and/or
14  *		modify it under the terms of the GNU General Public License
15  *		as published by the Free Software Foundation; either version
16  *		2 of the License, or (at your option) any later version.
17  */
18 #ifndef _TCP_H
19 #define _TCP_H
20 
21 #define FASTRETRANS_DEBUG 1
22 
23 #include <linux/list.h>
24 #include <linux/tcp.h>
25 #include <linux/bug.h>
26 #include <linux/slab.h>
27 #include <linux/cache.h>
28 #include <linux/percpu.h>
29 #include <linux/skbuff.h>
30 #include <linux/dmaengine.h>
31 #include <linux/crypto.h>
32 #include <linux/cryptohash.h>
33 #include <linux/kref.h>
34 
35 #include <net/inet_connection_sock.h>
36 #include <net/inet_timewait_sock.h>
37 #include <net/inet_hashtables.h>
38 #include <net/checksum.h>
39 #include <net/request_sock.h>
40 #include <net/sock.h>
41 #include <net/snmp.h>
42 #include <net/ip.h>
43 #include <net/tcp_states.h>
44 #include <net/inet_ecn.h>
45 #include <net/dst.h>
46 
47 #include <linux/seq_file.h>
48 #include <linux/memcontrol.h>
49 
50 extern struct inet_hashinfo tcp_hashinfo;
51 
52 extern struct percpu_counter tcp_orphan_count;
53 extern void tcp_time_wait(struct sock *sk, int state, int timeo);
54 
55 #define MAX_TCP_HEADER	(128 + MAX_HEADER)
56 #define MAX_TCP_OPTION_SPACE 40
57 
58 /*
59  * Never offer a window over 32767 without using window scaling. Some
60  * poor stacks do signed 16bit maths!
61  */
62 #define MAX_TCP_WINDOW		32767U
63 
64 /* Offer an initial receive window of 10 mss. */
65 #define TCP_DEFAULT_INIT_RCVWND	10
66 
67 /* Minimal accepted MSS. It is (60+60+8) - (20+20). */
68 #define TCP_MIN_MSS		88U
69 
70 /* The least MTU to use for probing */
71 #define TCP_BASE_MSS		512
72 
73 /* After receiving this amount of duplicate ACKs fast retransmit starts. */
74 #define TCP_FASTRETRANS_THRESH 3
75 
76 /* Maximal reordering. */
77 #define TCP_MAX_REORDERING	127
78 
79 /* Maximal number of ACKs sent quickly to accelerate slow-start. */
80 #define TCP_MAX_QUICKACKS	16U
81 
82 /* urg_data states */
83 #define TCP_URG_VALID	0x0100
84 #define TCP_URG_NOTYET	0x0200
85 #define TCP_URG_READ	0x0400
86 
87 #define TCP_RETR1	3	/*
88 				 * This is how many retries it does before it
89 				 * tries to figure out if the gateway is
90 				 * down. Minimal RFC value is 3; it corresponds
91 				 * to ~3sec-8min depending on RTO.
92 				 */
93 
94 #define TCP_RETR2	15	/*
95 				 * This should take at least
96 				 * 90 minutes to time out.
97 				 * RFC1122 says that the limit is 100 sec.
98 				 * 15 is ~13-30min depending on RTO.
99 				 */
100 
101 #define TCP_SYN_RETRIES	 5	/* number of times to retry active opening a
102 				 * connection: ~180sec is RFC minimum	*/
103 
104 #define TCP_SYNACK_RETRIES 5	/* number of times to retry passive opening a
105 				 * connection: ~180sec is RFC minimum	*/
106 
107 #define TCP_TIMEWAIT_LEN (60*HZ) /* how long to wait to destroy TIME-WAIT
108 				  * state, about 60 seconds	*/
109 #define TCP_FIN_TIMEOUT	TCP_TIMEWAIT_LEN
110                                  /* BSD style FIN_WAIT2 deadlock breaker.
111 				  * It used to be 3min, new value is 60sec,
112 				  * to combine FIN-WAIT-2 timeout with
113 				  * TIME-WAIT timer.
114 				  */
115 
116 #define TCP_DELACK_MAX	((unsigned)(HZ/5))	/* maximal time to delay before sending an ACK */
117 #if HZ >= 100
118 #define TCP_DELACK_MIN	((unsigned)(HZ/25))	/* minimal time to delay before sending an ACK */
119 #define TCP_ATO_MIN	((unsigned)(HZ/25))
120 #else
121 #define TCP_DELACK_MIN	4U
122 #define TCP_ATO_MIN	4U
123 #endif
124 #define TCP_RTO_MAX	((unsigned)(120*HZ))
125 #define TCP_RTO_MIN	((unsigned)(HZ/5))
126 #define TCP_TIMEOUT_INIT ((unsigned)(1*HZ))	/* RFC6298 2.1 initial RTO value	*/
127 #define TCP_TIMEOUT_FALLBACK ((unsigned)(3*HZ))	/* RFC 1122 initial RTO value, now
128 						 * used as a fallback RTO for the
129 						 * initial data transmission if no
130 						 * valid RTT sample has been acquired,
131 						 * most likely due to retrans in 3WHS.
132 						 */
133 
134 #define TCP_RESOURCE_PROBE_INTERVAL ((unsigned)(HZ/2U)) /* Maximal interval between probes
135 					                 * for local resources.
136 					                 */
137 
138 #define TCP_KEEPALIVE_TIME	(120*60*HZ)	/* two hours */
139 #define TCP_KEEPALIVE_PROBES	9		/* Max of 9 keepalive probes	*/
140 #define TCP_KEEPALIVE_INTVL	(75*HZ)
141 
142 #define MAX_TCP_KEEPIDLE	32767
143 #define MAX_TCP_KEEPINTVL	32767
144 #define MAX_TCP_KEEPCNT		127
145 #define MAX_TCP_SYNCNT		127
146 
147 #define TCP_SYNQ_INTERVAL	(HZ/5)	/* Period of SYNACK timer */
148 
149 #define TCP_PAWS_24DAYS	(60 * 60 * 24 * 24)
150 #define TCP_PAWS_MSL	60		/* Per-host timestamps are invalidated
151 					 * after this time. It should be equal
152 					 * (or greater than) TCP_TIMEWAIT_LEN
153 					 * to provide reliability equal to one
154 					 * provided by timewait state.
155 					 */
156 #define TCP_PAWS_WINDOW	1		/* Replay window for per-host
157 					 * timestamps. It must be less than
158 					 * minimal timewait lifetime.
159 					 */
160 /*
161  *	TCP option
162  */
163 
164 #define TCPOPT_NOP		1	/* Padding */
165 #define TCPOPT_EOL		0	/* End of options */
166 #define TCPOPT_MSS		2	/* Segment size negotiating */
167 #define TCPOPT_WINDOW		3	/* Window scaling */
168 #define TCPOPT_SACK_PERM        4       /* SACK Permitted */
169 #define TCPOPT_SACK             5       /* SACK Block */
170 #define TCPOPT_TIMESTAMP	8	/* Better RTT estimations/PAWS */
171 #define TCPOPT_MD5SIG		19	/* MD5 Signature (RFC2385) */
172 #define TCPOPT_COOKIE		253	/* Cookie extension (experimental) */
173 #define TCPOPT_EXP		254	/* Experimental */
174 /* Magic number to be after the option value for sharing TCP
175  * experimental options. See draft-ietf-tcpm-experimental-options-00.txt
176  */
177 #define TCPOPT_FASTOPEN_MAGIC	0xF989
178 
179 /*
180  *     TCP option lengths
181  */
182 
183 #define TCPOLEN_MSS            4
184 #define TCPOLEN_WINDOW         3
185 #define TCPOLEN_SACK_PERM      2
186 #define TCPOLEN_TIMESTAMP      10
187 #define TCPOLEN_MD5SIG         18
188 #define TCPOLEN_EXP_FASTOPEN_BASE  4
189 #define TCPOLEN_COOKIE_BASE    2	/* Cookie-less header extension */
190 #define TCPOLEN_COOKIE_PAIR    3	/* Cookie pair header extension */
191 #define TCPOLEN_COOKIE_MIN     (TCPOLEN_COOKIE_BASE+TCP_COOKIE_MIN)
192 #define TCPOLEN_COOKIE_MAX     (TCPOLEN_COOKIE_BASE+TCP_COOKIE_MAX)
193 
194 /* But this is what stacks really send out. */
195 #define TCPOLEN_TSTAMP_ALIGNED		12
196 #define TCPOLEN_WSCALE_ALIGNED		4
197 #define TCPOLEN_SACKPERM_ALIGNED	4
198 #define TCPOLEN_SACK_BASE		2
199 #define TCPOLEN_SACK_BASE_ALIGNED	4
200 #define TCPOLEN_SACK_PERBLOCK		8
201 #define TCPOLEN_MD5SIG_ALIGNED		20
202 #define TCPOLEN_MSS_ALIGNED		4
203 
204 /* Flags in tp->nonagle */
205 #define TCP_NAGLE_OFF		1	/* Nagle's algo is disabled */
206 #define TCP_NAGLE_CORK		2	/* Socket is corked	    */
207 #define TCP_NAGLE_PUSH		4	/* Cork is overridden for already queued data */
208 
209 /* TCP thin-stream limits */
210 #define TCP_THIN_LINEAR_RETRIES 6       /* After 6 linear retries, do exp. backoff */
211 
212 /* TCP initial congestion window as per draft-hkchu-tcpm-initcwnd-01 */
213 #define TCP_INIT_CWND		10
214 
215 /* Bit Flags for sysctl_tcp_fastopen */
216 #define	TFO_CLIENT_ENABLE	1
217 #define	TFO_CLIENT_NO_COOKIE	4	/* Data in SYN w/o cookie option */
218 
219 extern struct inet_timewait_death_row tcp_death_row;
220 
221 /* sysctl variables for tcp */
222 extern int sysctl_tcp_timestamps;
223 extern int sysctl_tcp_window_scaling;
224 extern int sysctl_tcp_sack;
225 extern int sysctl_tcp_fin_timeout;
226 extern int sysctl_tcp_keepalive_time;
227 extern int sysctl_tcp_keepalive_probes;
228 extern int sysctl_tcp_keepalive_intvl;
229 extern int sysctl_tcp_syn_retries;
230 extern int sysctl_tcp_synack_retries;
231 extern int sysctl_tcp_retries1;
232 extern int sysctl_tcp_retries2;
233 extern int sysctl_tcp_orphan_retries;
234 extern int sysctl_tcp_syncookies;
235 extern int sysctl_tcp_fastopen;
236 extern int sysctl_tcp_retrans_collapse;
237 extern int sysctl_tcp_stdurg;
238 extern int sysctl_tcp_rfc1337;
239 extern int sysctl_tcp_abort_on_overflow;
240 extern int sysctl_tcp_max_orphans;
241 extern int sysctl_tcp_fack;
242 extern int sysctl_tcp_reordering;
243 extern int sysctl_tcp_ecn;
244 extern int sysctl_tcp_dsack;
245 extern int sysctl_tcp_wmem[3];
246 extern int sysctl_tcp_rmem[3];
247 extern int sysctl_tcp_app_win;
248 extern int sysctl_tcp_adv_win_scale;
249 extern int sysctl_tcp_tw_reuse;
250 extern int sysctl_tcp_frto;
251 extern int sysctl_tcp_frto_response;
252 extern int sysctl_tcp_low_latency;
253 extern int sysctl_tcp_dma_copybreak;
254 extern int sysctl_tcp_nometrics_save;
255 extern int sysctl_tcp_moderate_rcvbuf;
256 extern int sysctl_tcp_tso_win_divisor;
257 extern int sysctl_tcp_abc;
258 extern int sysctl_tcp_mtu_probing;
259 extern int sysctl_tcp_base_mss;
260 extern int sysctl_tcp_workaround_signed_windows;
261 extern int sysctl_tcp_slow_start_after_idle;
262 extern int sysctl_tcp_max_ssthresh;
263 extern int sysctl_tcp_cookie_size;
264 extern int sysctl_tcp_thin_linear_timeouts;
265 extern int sysctl_tcp_thin_dupack;
266 extern int sysctl_tcp_early_retrans;
267 extern int sysctl_tcp_limit_output_bytes;
268 extern int sysctl_tcp_challenge_ack_limit;
269 
270 extern atomic_long_t tcp_memory_allocated;
271 extern struct percpu_counter tcp_sockets_allocated;
272 extern int tcp_memory_pressure;
273 
274 /*
275  * The next routines deal with comparing 32 bit unsigned ints
276  * and worry about wraparound (automatic with unsigned arithmetic).
277  */
278 
279 static inline bool before(__u32 seq1, __u32 seq2)
280 {
281         return (__s32)(seq1-seq2) < 0;
282 }
283 #define after(seq2, seq1) 	before(seq1, seq2)
284 
285 /* is s2<=s1<=s3 ? */
286 static inline bool between(__u32 seq1, __u32 seq2, __u32 seq3)
287 {
288 	return seq3 - seq2 >= seq1 - seq2;
289 }
290 
291 static inline bool tcp_out_of_memory(struct sock *sk)
292 {
293 	if (sk->sk_wmem_queued > SOCK_MIN_SNDBUF &&
294 	    sk_memory_allocated(sk) > sk_prot_mem_limits(sk, 2))
295 		return true;
296 	return false;
297 }
298 
299 static inline bool tcp_too_many_orphans(struct sock *sk, int shift)
300 {
301 	struct percpu_counter *ocp = sk->sk_prot->orphan_count;
302 	int orphans = percpu_counter_read_positive(ocp);
303 
304 	if (orphans << shift > sysctl_tcp_max_orphans) {
305 		orphans = percpu_counter_sum_positive(ocp);
306 		if (orphans << shift > sysctl_tcp_max_orphans)
307 			return true;
308 	}
309 	return false;
310 }
311 
312 extern bool tcp_check_oom(struct sock *sk, int shift);
313 
314 /* syncookies: remember time of last synqueue overflow */
315 static inline void tcp_synq_overflow(struct sock *sk)
316 {
317 	tcp_sk(sk)->rx_opt.ts_recent_stamp = jiffies;
318 }
319 
320 /* syncookies: no recent synqueue overflow on this listening socket? */
321 static inline bool tcp_synq_no_recent_overflow(const struct sock *sk)
322 {
323 	unsigned long last_overflow = tcp_sk(sk)->rx_opt.ts_recent_stamp;
324 	return time_after(jiffies, last_overflow + TCP_TIMEOUT_FALLBACK);
325 }
326 
327 extern struct proto tcp_prot;
328 
329 #define TCP_INC_STATS(net, field)	SNMP_INC_STATS((net)->mib.tcp_statistics, field)
330 #define TCP_INC_STATS_BH(net, field)	SNMP_INC_STATS_BH((net)->mib.tcp_statistics, field)
331 #define TCP_DEC_STATS(net, field)	SNMP_DEC_STATS((net)->mib.tcp_statistics, field)
332 #define TCP_ADD_STATS_USER(net, field, val) SNMP_ADD_STATS_USER((net)->mib.tcp_statistics, field, val)
333 #define TCP_ADD_STATS(net, field, val)	SNMP_ADD_STATS((net)->mib.tcp_statistics, field, val)
334 
335 extern void tcp_init_mem(struct net *net);
336 
337 extern void tcp_tasklet_init(void);
338 
339 extern void tcp_v4_err(struct sk_buff *skb, u32);
340 
341 extern void tcp_shutdown (struct sock *sk, int how);
342 
343 extern void tcp_v4_early_demux(struct sk_buff *skb);
344 extern int tcp_v4_rcv(struct sk_buff *skb);
345 
346 extern struct inet_peer *tcp_v4_get_peer(struct sock *sk);
347 extern int tcp_v4_tw_remember_stamp(struct inet_timewait_sock *tw);
348 extern int tcp_sendmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg,
349 		       size_t size);
350 extern int tcp_sendpage(struct sock *sk, struct page *page, int offset,
351 			size_t size, int flags);
352 extern void tcp_release_cb(struct sock *sk);
353 extern void tcp_write_timer_handler(struct sock *sk);
354 extern void tcp_delack_timer_handler(struct sock *sk);
355 extern int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg);
356 extern int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb,
357 				 const struct tcphdr *th, unsigned int len);
358 extern int tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
359 			       const struct tcphdr *th, unsigned int len);
360 extern void tcp_rcv_space_adjust(struct sock *sk);
361 extern void tcp_cleanup_rbuf(struct sock *sk, int copied);
362 extern int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp);
363 extern void tcp_twsk_destructor(struct sock *sk);
364 extern ssize_t tcp_splice_read(struct socket *sk, loff_t *ppos,
365 			       struct pipe_inode_info *pipe, size_t len,
366 			       unsigned int flags);
367 
368 static inline void tcp_dec_quickack_mode(struct sock *sk,
369 					 const unsigned int pkts)
370 {
371 	struct inet_connection_sock *icsk = inet_csk(sk);
372 
373 	if (icsk->icsk_ack.quick) {
374 		if (pkts >= icsk->icsk_ack.quick) {
375 			icsk->icsk_ack.quick = 0;
376 			/* Leaving quickack mode we deflate ATO. */
377 			icsk->icsk_ack.ato   = TCP_ATO_MIN;
378 		} else
379 			icsk->icsk_ack.quick -= pkts;
380 	}
381 }
382 
383 #define	TCP_ECN_OK		1
384 #define	TCP_ECN_QUEUE_CWR	2
385 #define	TCP_ECN_DEMAND_CWR	4
386 #define	TCP_ECN_SEEN		8
387 
388 enum tcp_tw_status {
389 	TCP_TW_SUCCESS = 0,
390 	TCP_TW_RST = 1,
391 	TCP_TW_ACK = 2,
392 	TCP_TW_SYN = 3
393 };
394 
395 
396 extern enum tcp_tw_status tcp_timewait_state_process(struct inet_timewait_sock *tw,
397 						     struct sk_buff *skb,
398 						     const struct tcphdr *th);
399 extern struct sock * tcp_check_req(struct sock *sk,struct sk_buff *skb,
400 				   struct request_sock *req,
401 				   struct request_sock **prev);
402 extern int tcp_child_process(struct sock *parent, struct sock *child,
403 			     struct sk_buff *skb);
404 extern bool tcp_use_frto(struct sock *sk);
405 extern void tcp_enter_frto(struct sock *sk);
406 extern void tcp_enter_loss(struct sock *sk, int how);
407 extern void tcp_clear_retrans(struct tcp_sock *tp);
408 extern void tcp_update_metrics(struct sock *sk);
409 extern void tcp_init_metrics(struct sock *sk);
410 extern void tcp_metrics_init(void);
411 extern bool tcp_peer_is_proven(struct request_sock *req, struct dst_entry *dst, bool paws_check);
412 extern bool tcp_remember_stamp(struct sock *sk);
413 extern bool tcp_tw_remember_stamp(struct inet_timewait_sock *tw);
414 extern void tcp_fastopen_cache_get(struct sock *sk, u16 *mss,
415 				   struct tcp_fastopen_cookie *cookie,
416 				   int *syn_loss, unsigned long *last_syn_loss);
417 extern void tcp_fastopen_cache_set(struct sock *sk, u16 mss,
418 				   struct tcp_fastopen_cookie *cookie,
419 				   bool syn_lost);
420 extern void tcp_fetch_timewait_stamp(struct sock *sk, struct dst_entry *dst);
421 extern void tcp_disable_fack(struct tcp_sock *tp);
422 extern void tcp_close(struct sock *sk, long timeout);
423 extern void tcp_init_sock(struct sock *sk);
424 extern unsigned int tcp_poll(struct file * file, struct socket *sock,
425 			     struct poll_table_struct *wait);
426 extern int tcp_getsockopt(struct sock *sk, int level, int optname,
427 			  char __user *optval, int __user *optlen);
428 extern int tcp_setsockopt(struct sock *sk, int level, int optname,
429 			  char __user *optval, unsigned int optlen);
430 extern int compat_tcp_getsockopt(struct sock *sk, int level, int optname,
431 				 char __user *optval, int __user *optlen);
432 extern int compat_tcp_setsockopt(struct sock *sk, int level, int optname,
433 				 char __user *optval, unsigned int optlen);
434 extern void tcp_set_keepalive(struct sock *sk, int val);
435 extern void tcp_syn_ack_timeout(struct sock *sk, struct request_sock *req);
436 extern int tcp_recvmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg,
437 		       size_t len, int nonblock, int flags, int *addr_len);
438 extern void tcp_parse_options(const struct sk_buff *skb,
439 			      struct tcp_options_received *opt_rx, const u8 **hvpp,
440 			      int estab, struct tcp_fastopen_cookie *foc);
441 extern const u8 *tcp_parse_md5sig_option(const struct tcphdr *th);
442 
443 /*
444  *	TCP v4 functions exported for the inet6 API
445  */
446 
447 extern void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb);
448 extern int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb);
449 extern struct sock * tcp_create_openreq_child(struct sock *sk,
450 					      struct request_sock *req,
451 					      struct sk_buff *skb);
452 extern struct sock * tcp_v4_syn_recv_sock(struct sock *sk, struct sk_buff *skb,
453 					  struct request_sock *req,
454 					  struct dst_entry *dst);
455 extern int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb);
456 extern int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr,
457 			  int addr_len);
458 extern int tcp_connect(struct sock *sk);
459 extern struct sk_buff * tcp_make_synack(struct sock *sk, struct dst_entry *dst,
460 					struct request_sock *req,
461 					struct request_values *rvp);
462 extern int tcp_disconnect(struct sock *sk, int flags);
463 
464 void tcp_connect_init(struct sock *sk);
465 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb);
466 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size);
467 
468 /* From syncookies.c */
469 extern __u32 syncookie_secret[2][16-4+SHA_DIGEST_WORDS];
470 extern struct sock *cookie_v4_check(struct sock *sk, struct sk_buff *skb,
471 				    struct ip_options *opt);
472 #ifdef CONFIG_SYN_COOKIES
473 extern __u32 cookie_v4_init_sequence(struct sock *sk, struct sk_buff *skb,
474 				     __u16 *mss);
475 #else
476 static inline __u32 cookie_v4_init_sequence(struct sock *sk,
477 					    struct sk_buff *skb,
478 					    __u16 *mss)
479 {
480 	return 0;
481 }
482 #endif
483 
484 extern __u32 cookie_init_timestamp(struct request_sock *req);
485 extern bool cookie_check_timestamp(struct tcp_options_received *opt, bool *);
486 
487 /* From net/ipv6/syncookies.c */
488 extern struct sock *cookie_v6_check(struct sock *sk, struct sk_buff *skb);
489 #ifdef CONFIG_SYN_COOKIES
490 extern __u32 cookie_v6_init_sequence(struct sock *sk, const struct sk_buff *skb,
491 				     __u16 *mss);
492 #else
493 static inline __u32 cookie_v6_init_sequence(struct sock *sk,
494 					    struct sk_buff *skb,
495 					    __u16 *mss)
496 {
497 	return 0;
498 }
499 #endif
500 /* tcp_output.c */
501 
502 extern void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
503 				      int nonagle);
504 extern bool tcp_may_send_now(struct sock *sk);
505 extern int tcp_retransmit_skb(struct sock *, struct sk_buff *);
506 extern void tcp_retransmit_timer(struct sock *sk);
507 extern void tcp_xmit_retransmit_queue(struct sock *);
508 extern void tcp_simple_retransmit(struct sock *);
509 extern int tcp_trim_head(struct sock *, struct sk_buff *, u32);
510 extern int tcp_fragment(struct sock *, struct sk_buff *, u32, unsigned int);
511 
512 extern void tcp_send_probe0(struct sock *);
513 extern void tcp_send_partial(struct sock *);
514 extern int tcp_write_wakeup(struct sock *);
515 extern void tcp_send_fin(struct sock *sk);
516 extern void tcp_send_active_reset(struct sock *sk, gfp_t priority);
517 extern int tcp_send_synack(struct sock *);
518 extern bool tcp_syn_flood_action(struct sock *sk,
519 				 const struct sk_buff *skb,
520 				 const char *proto);
521 extern void tcp_push_one(struct sock *, unsigned int mss_now);
522 extern void tcp_send_ack(struct sock *sk);
523 extern void tcp_send_delayed_ack(struct sock *sk);
524 
525 /* tcp_input.c */
526 extern void tcp_cwnd_application_limited(struct sock *sk);
527 extern void tcp_resume_early_retransmit(struct sock *sk);
528 extern void tcp_rearm_rto(struct sock *sk);
529 
530 /* tcp_timer.c */
531 extern void tcp_init_xmit_timers(struct sock *);
532 static inline void tcp_clear_xmit_timers(struct sock *sk)
533 {
534 	inet_csk_clear_xmit_timers(sk);
535 }
536 
537 extern unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu);
538 extern unsigned int tcp_current_mss(struct sock *sk);
539 
540 /* Bound MSS / TSO packet size with the half of the window */
541 static inline int tcp_bound_to_half_wnd(struct tcp_sock *tp, int pktsize)
542 {
543 	int cutoff;
544 
545 	/* When peer uses tiny windows, there is no use in packetizing
546 	 * to sub-MSS pieces for the sake of SWS or making sure there
547 	 * are enough packets in the pipe for fast recovery.
548 	 *
549 	 * On the other hand, for extremely large MSS devices, handling
550 	 * smaller than MSS windows in this way does make sense.
551 	 */
552 	if (tp->max_window >= 512)
553 		cutoff = (tp->max_window >> 1);
554 	else
555 		cutoff = tp->max_window;
556 
557 	if (cutoff && pktsize > cutoff)
558 		return max_t(int, cutoff, 68U - tp->tcp_header_len);
559 	else
560 		return pktsize;
561 }
562 
563 /* tcp.c */
564 extern void tcp_get_info(const struct sock *, struct tcp_info *);
565 
566 /* Read 'sendfile()'-style from a TCP socket */
567 typedef int (*sk_read_actor_t)(read_descriptor_t *, struct sk_buff *,
568 				unsigned int, size_t);
569 extern int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
570 			 sk_read_actor_t recv_actor);
571 
572 extern void tcp_initialize_rcv_mss(struct sock *sk);
573 
574 extern int tcp_mtu_to_mss(struct sock *sk, int pmtu);
575 extern int tcp_mss_to_mtu(struct sock *sk, int mss);
576 extern void tcp_mtup_init(struct sock *sk);
577 extern void tcp_valid_rtt_meas(struct sock *sk, u32 seq_rtt);
578 
579 static inline void tcp_bound_rto(const struct sock *sk)
580 {
581 	if (inet_csk(sk)->icsk_rto > TCP_RTO_MAX)
582 		inet_csk(sk)->icsk_rto = TCP_RTO_MAX;
583 }
584 
585 static inline u32 __tcp_set_rto(const struct tcp_sock *tp)
586 {
587 	return (tp->srtt >> 3) + tp->rttvar;
588 }
589 
590 extern void tcp_set_rto(struct sock *sk);
591 
592 static inline void __tcp_fast_path_on(struct tcp_sock *tp, u32 snd_wnd)
593 {
594 	tp->pred_flags = htonl((tp->tcp_header_len << 26) |
595 			       ntohl(TCP_FLAG_ACK) |
596 			       snd_wnd);
597 }
598 
599 static inline void tcp_fast_path_on(struct tcp_sock *tp)
600 {
601 	__tcp_fast_path_on(tp, tp->snd_wnd >> tp->rx_opt.snd_wscale);
602 }
603 
604 static inline void tcp_fast_path_check(struct sock *sk)
605 {
606 	struct tcp_sock *tp = tcp_sk(sk);
607 
608 	if (skb_queue_empty(&tp->out_of_order_queue) &&
609 	    tp->rcv_wnd &&
610 	    atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf &&
611 	    !tp->urg_data)
612 		tcp_fast_path_on(tp);
613 }
614 
615 /* Compute the actual rto_min value */
616 static inline u32 tcp_rto_min(struct sock *sk)
617 {
618 	const struct dst_entry *dst = __sk_dst_get(sk);
619 	u32 rto_min = TCP_RTO_MIN;
620 
621 	if (dst && dst_metric_locked(dst, RTAX_RTO_MIN))
622 		rto_min = dst_metric_rtt(dst, RTAX_RTO_MIN);
623 	return rto_min;
624 }
625 
626 /* Compute the actual receive window we are currently advertising.
627  * Rcv_nxt can be after the window if our peer push more data
628  * than the offered window.
629  */
630 static inline u32 tcp_receive_window(const struct tcp_sock *tp)
631 {
632 	s32 win = tp->rcv_wup + tp->rcv_wnd - tp->rcv_nxt;
633 
634 	if (win < 0)
635 		win = 0;
636 	return (u32) win;
637 }
638 
639 /* Choose a new window, without checks for shrinking, and without
640  * scaling applied to the result.  The caller does these things
641  * if necessary.  This is a "raw" window selection.
642  */
643 extern u32 __tcp_select_window(struct sock *sk);
644 
645 void tcp_send_window_probe(struct sock *sk);
646 
647 /* TCP timestamps are only 32-bits, this causes a slight
648  * complication on 64-bit systems since we store a snapshot
649  * of jiffies in the buffer control blocks below.  We decided
650  * to use only the low 32-bits of jiffies and hide the ugly
651  * casts with the following macro.
652  */
653 #define tcp_time_stamp		((__u32)(jiffies))
654 
655 #define tcp_flag_byte(th) (((u_int8_t *)th)[13])
656 
657 #define TCPHDR_FIN 0x01
658 #define TCPHDR_SYN 0x02
659 #define TCPHDR_RST 0x04
660 #define TCPHDR_PSH 0x08
661 #define TCPHDR_ACK 0x10
662 #define TCPHDR_URG 0x20
663 #define TCPHDR_ECE 0x40
664 #define TCPHDR_CWR 0x80
665 
666 /* This is what the send packet queuing engine uses to pass
667  * TCP per-packet control information to the transmission code.
668  * We also store the host-order sequence numbers in here too.
669  * This is 44 bytes if IPV6 is enabled.
670  * If this grows please adjust skbuff.h:skbuff->cb[xxx] size appropriately.
671  */
672 struct tcp_skb_cb {
673 	union {
674 		struct inet_skb_parm	h4;
675 #if IS_ENABLED(CONFIG_IPV6)
676 		struct inet6_skb_parm	h6;
677 #endif
678 	} header;	/* For incoming frames		*/
679 	__u32		seq;		/* Starting sequence number	*/
680 	__u32		end_seq;	/* SEQ + FIN + SYN + datalen	*/
681 	__u32		when;		/* used to compute rtt's	*/
682 	__u8		tcp_flags;	/* TCP header flags. (tcp[13])	*/
683 
684 	__u8		sacked;		/* State flags for SACK/FACK.	*/
685 #define TCPCB_SACKED_ACKED	0x01	/* SKB ACK'd by a SACK block	*/
686 #define TCPCB_SACKED_RETRANS	0x02	/* SKB retransmitted		*/
687 #define TCPCB_LOST		0x04	/* SKB is lost			*/
688 #define TCPCB_TAGBITS		0x07	/* All tag bits			*/
689 #define TCPCB_EVER_RETRANS	0x80	/* Ever retransmitted frame	*/
690 #define TCPCB_RETRANS		(TCPCB_SACKED_RETRANS|TCPCB_EVER_RETRANS)
691 
692 	__u8		ip_dsfield;	/* IPv4 tos or IPv6 dsfield	*/
693 	/* 1 byte hole */
694 	__u32		ack_seq;	/* Sequence number ACK'd	*/
695 };
696 
697 #define TCP_SKB_CB(__skb)	((struct tcp_skb_cb *)&((__skb)->cb[0]))
698 
699 /* RFC3168 : 6.1.1 SYN packets must not have ECT/ECN bits set
700  *
701  * If we receive a SYN packet with these bits set, it means a network is
702  * playing bad games with TOS bits. In order to avoid possible false congestion
703  * notifications, we disable TCP ECN negociation.
704  */
705 static inline void
706 TCP_ECN_create_request(struct request_sock *req, const struct sk_buff *skb)
707 {
708 	const struct tcphdr *th = tcp_hdr(skb);
709 
710 	if (sysctl_tcp_ecn && th->ece && th->cwr &&
711 	    INET_ECN_is_not_ect(TCP_SKB_CB(skb)->ip_dsfield))
712 		inet_rsk(req)->ecn_ok = 1;
713 }
714 
715 /* Due to TSO, an SKB can be composed of multiple actual
716  * packets.  To keep these tracked properly, we use this.
717  */
718 static inline int tcp_skb_pcount(const struct sk_buff *skb)
719 {
720 	return skb_shinfo(skb)->gso_segs;
721 }
722 
723 /* This is valid iff tcp_skb_pcount() > 1. */
724 static inline int tcp_skb_mss(const struct sk_buff *skb)
725 {
726 	return skb_shinfo(skb)->gso_size;
727 }
728 
729 /* Events passed to congestion control interface */
730 enum tcp_ca_event {
731 	CA_EVENT_TX_START,	/* first transmit when no packets in flight */
732 	CA_EVENT_CWND_RESTART,	/* congestion window restart */
733 	CA_EVENT_COMPLETE_CWR,	/* end of congestion recovery */
734 	CA_EVENT_FRTO,		/* fast recovery timeout */
735 	CA_EVENT_LOSS,		/* loss timeout */
736 	CA_EVENT_FAST_ACK,	/* in sequence ack */
737 	CA_EVENT_SLOW_ACK,	/* other ack */
738 };
739 
740 /*
741  * Interface for adding new TCP congestion control handlers
742  */
743 #define TCP_CA_NAME_MAX	16
744 #define TCP_CA_MAX	128
745 #define TCP_CA_BUF_MAX	(TCP_CA_NAME_MAX*TCP_CA_MAX)
746 
747 #define TCP_CONG_NON_RESTRICTED 0x1
748 #define TCP_CONG_RTT_STAMP	0x2
749 
750 struct tcp_congestion_ops {
751 	struct list_head	list;
752 	unsigned long flags;
753 
754 	/* initialize private data (optional) */
755 	void (*init)(struct sock *sk);
756 	/* cleanup private data  (optional) */
757 	void (*release)(struct sock *sk);
758 
759 	/* return slow start threshold (required) */
760 	u32 (*ssthresh)(struct sock *sk);
761 	/* lower bound for congestion window (optional) */
762 	u32 (*min_cwnd)(const struct sock *sk);
763 	/* do new cwnd calculation (required) */
764 	void (*cong_avoid)(struct sock *sk, u32 ack, u32 in_flight);
765 	/* call before changing ca_state (optional) */
766 	void (*set_state)(struct sock *sk, u8 new_state);
767 	/* call when cwnd event occurs (optional) */
768 	void (*cwnd_event)(struct sock *sk, enum tcp_ca_event ev);
769 	/* new value of cwnd after loss (optional) */
770 	u32  (*undo_cwnd)(struct sock *sk);
771 	/* hook for packet ack accounting (optional) */
772 	void (*pkts_acked)(struct sock *sk, u32 num_acked, s32 rtt_us);
773 	/* get info for inet_diag (optional) */
774 	void (*get_info)(struct sock *sk, u32 ext, struct sk_buff *skb);
775 
776 	char 		name[TCP_CA_NAME_MAX];
777 	struct module 	*owner;
778 };
779 
780 extern int tcp_register_congestion_control(struct tcp_congestion_ops *type);
781 extern void tcp_unregister_congestion_control(struct tcp_congestion_ops *type);
782 
783 extern void tcp_init_congestion_control(struct sock *sk);
784 extern void tcp_cleanup_congestion_control(struct sock *sk);
785 extern int tcp_set_default_congestion_control(const char *name);
786 extern void tcp_get_default_congestion_control(char *name);
787 extern void tcp_get_available_congestion_control(char *buf, size_t len);
788 extern void tcp_get_allowed_congestion_control(char *buf, size_t len);
789 extern int tcp_set_allowed_congestion_control(char *allowed);
790 extern int tcp_set_congestion_control(struct sock *sk, const char *name);
791 extern void tcp_slow_start(struct tcp_sock *tp);
792 extern void tcp_cong_avoid_ai(struct tcp_sock *tp, u32 w);
793 
794 extern struct tcp_congestion_ops tcp_init_congestion_ops;
795 extern u32 tcp_reno_ssthresh(struct sock *sk);
796 extern void tcp_reno_cong_avoid(struct sock *sk, u32 ack, u32 in_flight);
797 extern u32 tcp_reno_min_cwnd(const struct sock *sk);
798 extern struct tcp_congestion_ops tcp_reno;
799 
800 static inline void tcp_set_ca_state(struct sock *sk, const u8 ca_state)
801 {
802 	struct inet_connection_sock *icsk = inet_csk(sk);
803 
804 	if (icsk->icsk_ca_ops->set_state)
805 		icsk->icsk_ca_ops->set_state(sk, ca_state);
806 	icsk->icsk_ca_state = ca_state;
807 }
808 
809 static inline void tcp_ca_event(struct sock *sk, const enum tcp_ca_event event)
810 {
811 	const struct inet_connection_sock *icsk = inet_csk(sk);
812 
813 	if (icsk->icsk_ca_ops->cwnd_event)
814 		icsk->icsk_ca_ops->cwnd_event(sk, event);
815 }
816 
817 /* These functions determine how the current flow behaves in respect of SACK
818  * handling. SACK is negotiated with the peer, and therefore it can vary
819  * between different flows.
820  *
821  * tcp_is_sack - SACK enabled
822  * tcp_is_reno - No SACK
823  * tcp_is_fack - FACK enabled, implies SACK enabled
824  */
825 static inline int tcp_is_sack(const struct tcp_sock *tp)
826 {
827 	return tp->rx_opt.sack_ok;
828 }
829 
830 static inline bool tcp_is_reno(const struct tcp_sock *tp)
831 {
832 	return !tcp_is_sack(tp);
833 }
834 
835 static inline bool tcp_is_fack(const struct tcp_sock *tp)
836 {
837 	return tp->rx_opt.sack_ok & TCP_FACK_ENABLED;
838 }
839 
840 static inline void tcp_enable_fack(struct tcp_sock *tp)
841 {
842 	tp->rx_opt.sack_ok |= TCP_FACK_ENABLED;
843 }
844 
845 /* TCP early-retransmit (ER) is similar to but more conservative than
846  * the thin-dupack feature.  Enable ER only if thin-dupack is disabled.
847  */
848 static inline void tcp_enable_early_retrans(struct tcp_sock *tp)
849 {
850 	tp->do_early_retrans = sysctl_tcp_early_retrans &&
851 		!sysctl_tcp_thin_dupack && sysctl_tcp_reordering == 3;
852 	tp->early_retrans_delayed = 0;
853 }
854 
855 static inline void tcp_disable_early_retrans(struct tcp_sock *tp)
856 {
857 	tp->do_early_retrans = 0;
858 }
859 
860 static inline unsigned int tcp_left_out(const struct tcp_sock *tp)
861 {
862 	return tp->sacked_out + tp->lost_out;
863 }
864 
865 /* This determines how many packets are "in the network" to the best
866  * of our knowledge.  In many cases it is conservative, but where
867  * detailed information is available from the receiver (via SACK
868  * blocks etc.) we can make more aggressive calculations.
869  *
870  * Use this for decisions involving congestion control, use just
871  * tp->packets_out to determine if the send queue is empty or not.
872  *
873  * Read this equation as:
874  *
875  *	"Packets sent once on transmission queue" MINUS
876  *	"Packets left network, but not honestly ACKed yet" PLUS
877  *	"Packets fast retransmitted"
878  */
879 static inline unsigned int tcp_packets_in_flight(const struct tcp_sock *tp)
880 {
881 	return tp->packets_out - tcp_left_out(tp) + tp->retrans_out;
882 }
883 
884 #define TCP_INFINITE_SSTHRESH	0x7fffffff
885 
886 static inline bool tcp_in_initial_slowstart(const struct tcp_sock *tp)
887 {
888 	return tp->snd_ssthresh >= TCP_INFINITE_SSTHRESH;
889 }
890 
891 /* If cwnd > ssthresh, we may raise ssthresh to be half-way to cwnd.
892  * The exception is rate halving phase, when cwnd is decreasing towards
893  * ssthresh.
894  */
895 static inline __u32 tcp_current_ssthresh(const struct sock *sk)
896 {
897 	const struct tcp_sock *tp = tcp_sk(sk);
898 
899 	if ((1 << inet_csk(sk)->icsk_ca_state) & (TCPF_CA_CWR | TCPF_CA_Recovery))
900 		return tp->snd_ssthresh;
901 	else
902 		return max(tp->snd_ssthresh,
903 			   ((tp->snd_cwnd >> 1) +
904 			    (tp->snd_cwnd >> 2)));
905 }
906 
907 /* Use define here intentionally to get WARN_ON location shown at the caller */
908 #define tcp_verify_left_out(tp)	WARN_ON(tcp_left_out(tp) > tp->packets_out)
909 
910 extern void tcp_enter_cwr(struct sock *sk, const int set_ssthresh);
911 extern __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst);
912 
913 /* The maximum number of MSS of available cwnd for which TSO defers
914  * sending if not using sysctl_tcp_tso_win_divisor.
915  */
916 static inline __u32 tcp_max_tso_deferred_mss(const struct tcp_sock *tp)
917 {
918 	return 3;
919 }
920 
921 /* Slow start with delack produces 3 packets of burst, so that
922  * it is safe "de facto".  This will be the default - same as
923  * the default reordering threshold - but if reordering increases,
924  * we must be able to allow cwnd to burst at least this much in order
925  * to not pull it back when holes are filled.
926  */
927 static __inline__ __u32 tcp_max_burst(const struct tcp_sock *tp)
928 {
929 	return tp->reordering;
930 }
931 
932 /* Returns end sequence number of the receiver's advertised window */
933 static inline u32 tcp_wnd_end(const struct tcp_sock *tp)
934 {
935 	return tp->snd_una + tp->snd_wnd;
936 }
937 extern bool tcp_is_cwnd_limited(const struct sock *sk, u32 in_flight);
938 
939 static inline void tcp_minshall_update(struct tcp_sock *tp, unsigned int mss,
940 				       const struct sk_buff *skb)
941 {
942 	if (skb->len < mss)
943 		tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
944 }
945 
946 static inline void tcp_check_probe_timer(struct sock *sk)
947 {
948 	const struct tcp_sock *tp = tcp_sk(sk);
949 	const struct inet_connection_sock *icsk = inet_csk(sk);
950 
951 	if (!tp->packets_out && !icsk->icsk_pending)
952 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
953 					  icsk->icsk_rto, TCP_RTO_MAX);
954 }
955 
956 static inline void tcp_init_wl(struct tcp_sock *tp, u32 seq)
957 {
958 	tp->snd_wl1 = seq;
959 }
960 
961 static inline void tcp_update_wl(struct tcp_sock *tp, u32 seq)
962 {
963 	tp->snd_wl1 = seq;
964 }
965 
966 /*
967  * Calculate(/check) TCP checksum
968  */
969 static inline __sum16 tcp_v4_check(int len, __be32 saddr,
970 				   __be32 daddr, __wsum base)
971 {
972 	return csum_tcpudp_magic(saddr,daddr,len,IPPROTO_TCP,base);
973 }
974 
975 static inline __sum16 __tcp_checksum_complete(struct sk_buff *skb)
976 {
977 	return __skb_checksum_complete(skb);
978 }
979 
980 static inline bool tcp_checksum_complete(struct sk_buff *skb)
981 {
982 	return !skb_csum_unnecessary(skb) &&
983 		__tcp_checksum_complete(skb);
984 }
985 
986 /* Prequeue for VJ style copy to user, combined with checksumming. */
987 
988 static inline void tcp_prequeue_init(struct tcp_sock *tp)
989 {
990 	tp->ucopy.task = NULL;
991 	tp->ucopy.len = 0;
992 	tp->ucopy.memory = 0;
993 	skb_queue_head_init(&tp->ucopy.prequeue);
994 #ifdef CONFIG_NET_DMA
995 	tp->ucopy.dma_chan = NULL;
996 	tp->ucopy.wakeup = 0;
997 	tp->ucopy.pinned_list = NULL;
998 	tp->ucopy.dma_cookie = 0;
999 #endif
1000 }
1001 
1002 /* Packet is added to VJ-style prequeue for processing in process
1003  * context, if a reader task is waiting. Apparently, this exciting
1004  * idea (VJ's mail "Re: query about TCP header on tcp-ip" of 07 Sep 93)
1005  * failed somewhere. Latency? Burstiness? Well, at least now we will
1006  * see, why it failed. 8)8)				  --ANK
1007  *
1008  * NOTE: is this not too big to inline?
1009  */
1010 static inline bool tcp_prequeue(struct sock *sk, struct sk_buff *skb)
1011 {
1012 	struct tcp_sock *tp = tcp_sk(sk);
1013 
1014 	if (sysctl_tcp_low_latency || !tp->ucopy.task)
1015 		return false;
1016 
1017 	__skb_queue_tail(&tp->ucopy.prequeue, skb);
1018 	tp->ucopy.memory += skb->truesize;
1019 	if (tp->ucopy.memory > sk->sk_rcvbuf) {
1020 		struct sk_buff *skb1;
1021 
1022 		BUG_ON(sock_owned_by_user(sk));
1023 
1024 		while ((skb1 = __skb_dequeue(&tp->ucopy.prequeue)) != NULL) {
1025 			sk_backlog_rcv(sk, skb1);
1026 			NET_INC_STATS_BH(sock_net(sk),
1027 					 LINUX_MIB_TCPPREQUEUEDROPPED);
1028 		}
1029 
1030 		tp->ucopy.memory = 0;
1031 	} else if (skb_queue_len(&tp->ucopy.prequeue) == 1) {
1032 		wake_up_interruptible_sync_poll(sk_sleep(sk),
1033 					   POLLIN | POLLRDNORM | POLLRDBAND);
1034 		if (!inet_csk_ack_scheduled(sk))
1035 			inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
1036 						  (3 * tcp_rto_min(sk)) / 4,
1037 						  TCP_RTO_MAX);
1038 	}
1039 	return true;
1040 }
1041 
1042 
1043 #undef STATE_TRACE
1044 
1045 #ifdef STATE_TRACE
1046 static const char *statename[]={
1047 	"Unused","Established","Syn Sent","Syn Recv",
1048 	"Fin Wait 1","Fin Wait 2","Time Wait", "Close",
1049 	"Close Wait","Last ACK","Listen","Closing"
1050 };
1051 #endif
1052 extern void tcp_set_state(struct sock *sk, int state);
1053 
1054 extern void tcp_done(struct sock *sk);
1055 
1056 static inline void tcp_sack_reset(struct tcp_options_received *rx_opt)
1057 {
1058 	rx_opt->dsack = 0;
1059 	rx_opt->num_sacks = 0;
1060 }
1061 
1062 /* Determine a window scaling and initial window to offer. */
1063 extern void tcp_select_initial_window(int __space, __u32 mss,
1064 				      __u32 *rcv_wnd, __u32 *window_clamp,
1065 				      int wscale_ok, __u8 *rcv_wscale,
1066 				      __u32 init_rcv_wnd);
1067 
1068 static inline int tcp_win_from_space(int space)
1069 {
1070 	return sysctl_tcp_adv_win_scale<=0 ?
1071 		(space>>(-sysctl_tcp_adv_win_scale)) :
1072 		space - (space>>sysctl_tcp_adv_win_scale);
1073 }
1074 
1075 /* Note: caller must be prepared to deal with negative returns */
1076 static inline int tcp_space(const struct sock *sk)
1077 {
1078 	return tcp_win_from_space(sk->sk_rcvbuf -
1079 				  atomic_read(&sk->sk_rmem_alloc));
1080 }
1081 
1082 static inline int tcp_full_space(const struct sock *sk)
1083 {
1084 	return tcp_win_from_space(sk->sk_rcvbuf);
1085 }
1086 
1087 static inline void tcp_openreq_init(struct request_sock *req,
1088 				    struct tcp_options_received *rx_opt,
1089 				    struct sk_buff *skb)
1090 {
1091 	struct inet_request_sock *ireq = inet_rsk(req);
1092 
1093 	req->rcv_wnd = 0;		/* So that tcp_send_synack() knows! */
1094 	req->cookie_ts = 0;
1095 	tcp_rsk(req)->rcv_isn = TCP_SKB_CB(skb)->seq;
1096 	req->mss = rx_opt->mss_clamp;
1097 	req->ts_recent = rx_opt->saw_tstamp ? rx_opt->rcv_tsval : 0;
1098 	ireq->tstamp_ok = rx_opt->tstamp_ok;
1099 	ireq->sack_ok = rx_opt->sack_ok;
1100 	ireq->snd_wscale = rx_opt->snd_wscale;
1101 	ireq->wscale_ok = rx_opt->wscale_ok;
1102 	ireq->acked = 0;
1103 	ireq->ecn_ok = 0;
1104 	ireq->rmt_port = tcp_hdr(skb)->source;
1105 	ireq->loc_port = tcp_hdr(skb)->dest;
1106 }
1107 
1108 extern void tcp_enter_memory_pressure(struct sock *sk);
1109 
1110 static inline int keepalive_intvl_when(const struct tcp_sock *tp)
1111 {
1112 	return tp->keepalive_intvl ? : sysctl_tcp_keepalive_intvl;
1113 }
1114 
1115 static inline int keepalive_time_when(const struct tcp_sock *tp)
1116 {
1117 	return tp->keepalive_time ? : sysctl_tcp_keepalive_time;
1118 }
1119 
1120 static inline int keepalive_probes(const struct tcp_sock *tp)
1121 {
1122 	return tp->keepalive_probes ? : sysctl_tcp_keepalive_probes;
1123 }
1124 
1125 static inline u32 keepalive_time_elapsed(const struct tcp_sock *tp)
1126 {
1127 	const struct inet_connection_sock *icsk = &tp->inet_conn;
1128 
1129 	return min_t(u32, tcp_time_stamp - icsk->icsk_ack.lrcvtime,
1130 			  tcp_time_stamp - tp->rcv_tstamp);
1131 }
1132 
1133 static inline int tcp_fin_time(const struct sock *sk)
1134 {
1135 	int fin_timeout = tcp_sk(sk)->linger2 ? : sysctl_tcp_fin_timeout;
1136 	const int rto = inet_csk(sk)->icsk_rto;
1137 
1138 	if (fin_timeout < (rto << 2) - (rto >> 1))
1139 		fin_timeout = (rto << 2) - (rto >> 1);
1140 
1141 	return fin_timeout;
1142 }
1143 
1144 static inline bool tcp_paws_check(const struct tcp_options_received *rx_opt,
1145 				  int paws_win)
1146 {
1147 	if ((s32)(rx_opt->ts_recent - rx_opt->rcv_tsval) <= paws_win)
1148 		return true;
1149 	if (unlikely(get_seconds() >= rx_opt->ts_recent_stamp + TCP_PAWS_24DAYS))
1150 		return true;
1151 	/*
1152 	 * Some OSes send SYN and SYNACK messages with tsval=0 tsecr=0,
1153 	 * then following tcp messages have valid values. Ignore 0 value,
1154 	 * or else 'negative' tsval might forbid us to accept their packets.
1155 	 */
1156 	if (!rx_opt->ts_recent)
1157 		return true;
1158 	return false;
1159 }
1160 
1161 static inline bool tcp_paws_reject(const struct tcp_options_received *rx_opt,
1162 				   int rst)
1163 {
1164 	if (tcp_paws_check(rx_opt, 0))
1165 		return false;
1166 
1167 	/* RST segments are not recommended to carry timestamp,
1168 	   and, if they do, it is recommended to ignore PAWS because
1169 	   "their cleanup function should take precedence over timestamps."
1170 	   Certainly, it is mistake. It is necessary to understand the reasons
1171 	   of this constraint to relax it: if peer reboots, clock may go
1172 	   out-of-sync and half-open connections will not be reset.
1173 	   Actually, the problem would be not existing if all
1174 	   the implementations followed draft about maintaining clock
1175 	   via reboots. Linux-2.2 DOES NOT!
1176 
1177 	   However, we can relax time bounds for RST segments to MSL.
1178 	 */
1179 	if (rst && get_seconds() >= rx_opt->ts_recent_stamp + TCP_PAWS_MSL)
1180 		return false;
1181 	return true;
1182 }
1183 
1184 static inline void tcp_mib_init(struct net *net)
1185 {
1186 	/* See RFC 2012 */
1187 	TCP_ADD_STATS_USER(net, TCP_MIB_RTOALGORITHM, 1);
1188 	TCP_ADD_STATS_USER(net, TCP_MIB_RTOMIN, TCP_RTO_MIN*1000/HZ);
1189 	TCP_ADD_STATS_USER(net, TCP_MIB_RTOMAX, TCP_RTO_MAX*1000/HZ);
1190 	TCP_ADD_STATS_USER(net, TCP_MIB_MAXCONN, -1);
1191 }
1192 
1193 /* from STCP */
1194 static inline void tcp_clear_retrans_hints_partial(struct tcp_sock *tp)
1195 {
1196 	tp->lost_skb_hint = NULL;
1197 	tp->scoreboard_skb_hint = NULL;
1198 }
1199 
1200 static inline void tcp_clear_all_retrans_hints(struct tcp_sock *tp)
1201 {
1202 	tcp_clear_retrans_hints_partial(tp);
1203 	tp->retransmit_skb_hint = NULL;
1204 }
1205 
1206 /* MD5 Signature */
1207 struct crypto_hash;
1208 
1209 union tcp_md5_addr {
1210 	struct in_addr  a4;
1211 #if IS_ENABLED(CONFIG_IPV6)
1212 	struct in6_addr	a6;
1213 #endif
1214 };
1215 
1216 /* - key database */
1217 struct tcp_md5sig_key {
1218 	struct hlist_node	node;
1219 	u8			keylen;
1220 	u8			family; /* AF_INET or AF_INET6 */
1221 	union tcp_md5_addr	addr;
1222 	u8			key[TCP_MD5SIG_MAXKEYLEN];
1223 	struct rcu_head		rcu;
1224 };
1225 
1226 /* - sock block */
1227 struct tcp_md5sig_info {
1228 	struct hlist_head	head;
1229 	struct rcu_head		rcu;
1230 };
1231 
1232 /* - pseudo header */
1233 struct tcp4_pseudohdr {
1234 	__be32		saddr;
1235 	__be32		daddr;
1236 	__u8		pad;
1237 	__u8		protocol;
1238 	__be16		len;
1239 };
1240 
1241 struct tcp6_pseudohdr {
1242 	struct in6_addr	saddr;
1243 	struct in6_addr daddr;
1244 	__be32		len;
1245 	__be32		protocol;	/* including padding */
1246 };
1247 
1248 union tcp_md5sum_block {
1249 	struct tcp4_pseudohdr ip4;
1250 #if IS_ENABLED(CONFIG_IPV6)
1251 	struct tcp6_pseudohdr ip6;
1252 #endif
1253 };
1254 
1255 /* - pool: digest algorithm, hash description and scratch buffer */
1256 struct tcp_md5sig_pool {
1257 	struct hash_desc	md5_desc;
1258 	union tcp_md5sum_block	md5_blk;
1259 };
1260 
1261 /* - functions */
1262 extern int tcp_v4_md5_hash_skb(char *md5_hash, struct tcp_md5sig_key *key,
1263 			       const struct sock *sk,
1264 			       const struct request_sock *req,
1265 			       const struct sk_buff *skb);
1266 extern int tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr,
1267 			  int family, const u8 *newkey,
1268 			  u8 newkeylen, gfp_t gfp);
1269 extern int tcp_md5_do_del(struct sock *sk, const union tcp_md5_addr *addr,
1270 			  int family);
1271 extern struct tcp_md5sig_key *tcp_v4_md5_lookup(struct sock *sk,
1272 					 struct sock *addr_sk);
1273 
1274 #ifdef CONFIG_TCP_MD5SIG
1275 extern struct tcp_md5sig_key *tcp_md5_do_lookup(struct sock *sk,
1276 			const union tcp_md5_addr *addr, int family);
1277 #define tcp_twsk_md5_key(twsk)	((twsk)->tw_md5_key)
1278 #else
1279 static inline struct tcp_md5sig_key *tcp_md5_do_lookup(struct sock *sk,
1280 					 const union tcp_md5_addr *addr,
1281 					 int family)
1282 {
1283 	return NULL;
1284 }
1285 #define tcp_twsk_md5_key(twsk)	NULL
1286 #endif
1287 
1288 extern struct tcp_md5sig_pool __percpu *tcp_alloc_md5sig_pool(struct sock *);
1289 extern void tcp_free_md5sig_pool(void);
1290 
1291 extern struct tcp_md5sig_pool	*tcp_get_md5sig_pool(void);
1292 extern void tcp_put_md5sig_pool(void);
1293 
1294 extern int tcp_md5_hash_header(struct tcp_md5sig_pool *, const struct tcphdr *);
1295 extern int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *, const struct sk_buff *,
1296 				 unsigned int header_len);
1297 extern int tcp_md5_hash_key(struct tcp_md5sig_pool *hp,
1298 			    const struct tcp_md5sig_key *key);
1299 
1300 struct tcp_fastopen_request {
1301 	/* Fast Open cookie. Size 0 means a cookie request */
1302 	struct tcp_fastopen_cookie	cookie;
1303 	struct msghdr			*data;  /* data in MSG_FASTOPEN */
1304 	u16				copied;	/* queued in tcp_connect() */
1305 };
1306 
1307 void tcp_free_fastopen_req(struct tcp_sock *tp);
1308 
1309 /* write queue abstraction */
1310 static inline void tcp_write_queue_purge(struct sock *sk)
1311 {
1312 	struct sk_buff *skb;
1313 
1314 	while ((skb = __skb_dequeue(&sk->sk_write_queue)) != NULL)
1315 		sk_wmem_free_skb(sk, skb);
1316 	sk_mem_reclaim(sk);
1317 	tcp_clear_all_retrans_hints(tcp_sk(sk));
1318 }
1319 
1320 static inline struct sk_buff *tcp_write_queue_head(const struct sock *sk)
1321 {
1322 	return skb_peek(&sk->sk_write_queue);
1323 }
1324 
1325 static inline struct sk_buff *tcp_write_queue_tail(const struct sock *sk)
1326 {
1327 	return skb_peek_tail(&sk->sk_write_queue);
1328 }
1329 
1330 static inline struct sk_buff *tcp_write_queue_next(const struct sock *sk,
1331 						   const struct sk_buff *skb)
1332 {
1333 	return skb_queue_next(&sk->sk_write_queue, skb);
1334 }
1335 
1336 static inline struct sk_buff *tcp_write_queue_prev(const struct sock *sk,
1337 						   const struct sk_buff *skb)
1338 {
1339 	return skb_queue_prev(&sk->sk_write_queue, skb);
1340 }
1341 
1342 #define tcp_for_write_queue(skb, sk)					\
1343 	skb_queue_walk(&(sk)->sk_write_queue, skb)
1344 
1345 #define tcp_for_write_queue_from(skb, sk)				\
1346 	skb_queue_walk_from(&(sk)->sk_write_queue, skb)
1347 
1348 #define tcp_for_write_queue_from_safe(skb, tmp, sk)			\
1349 	skb_queue_walk_from_safe(&(sk)->sk_write_queue, skb, tmp)
1350 
1351 static inline struct sk_buff *tcp_send_head(const struct sock *sk)
1352 {
1353 	return sk->sk_send_head;
1354 }
1355 
1356 static inline bool tcp_skb_is_last(const struct sock *sk,
1357 				   const struct sk_buff *skb)
1358 {
1359 	return skb_queue_is_last(&sk->sk_write_queue, skb);
1360 }
1361 
1362 static inline void tcp_advance_send_head(struct sock *sk, const struct sk_buff *skb)
1363 {
1364 	if (tcp_skb_is_last(sk, skb))
1365 		sk->sk_send_head = NULL;
1366 	else
1367 		sk->sk_send_head = tcp_write_queue_next(sk, skb);
1368 }
1369 
1370 static inline void tcp_check_send_head(struct sock *sk, struct sk_buff *skb_unlinked)
1371 {
1372 	if (sk->sk_send_head == skb_unlinked)
1373 		sk->sk_send_head = NULL;
1374 }
1375 
1376 static inline void tcp_init_send_head(struct sock *sk)
1377 {
1378 	sk->sk_send_head = NULL;
1379 }
1380 
1381 static inline void __tcp_add_write_queue_tail(struct sock *sk, struct sk_buff *skb)
1382 {
1383 	__skb_queue_tail(&sk->sk_write_queue, skb);
1384 }
1385 
1386 static inline void tcp_add_write_queue_tail(struct sock *sk, struct sk_buff *skb)
1387 {
1388 	__tcp_add_write_queue_tail(sk, skb);
1389 
1390 	/* Queue it, remembering where we must start sending. */
1391 	if (sk->sk_send_head == NULL) {
1392 		sk->sk_send_head = skb;
1393 
1394 		if (tcp_sk(sk)->highest_sack == NULL)
1395 			tcp_sk(sk)->highest_sack = skb;
1396 	}
1397 }
1398 
1399 static inline void __tcp_add_write_queue_head(struct sock *sk, struct sk_buff *skb)
1400 {
1401 	__skb_queue_head(&sk->sk_write_queue, skb);
1402 }
1403 
1404 /* Insert buff after skb on the write queue of sk.  */
1405 static inline void tcp_insert_write_queue_after(struct sk_buff *skb,
1406 						struct sk_buff *buff,
1407 						struct sock *sk)
1408 {
1409 	__skb_queue_after(&sk->sk_write_queue, skb, buff);
1410 }
1411 
1412 /* Insert new before skb on the write queue of sk.  */
1413 static inline void tcp_insert_write_queue_before(struct sk_buff *new,
1414 						  struct sk_buff *skb,
1415 						  struct sock *sk)
1416 {
1417 	__skb_queue_before(&sk->sk_write_queue, skb, new);
1418 
1419 	if (sk->sk_send_head == skb)
1420 		sk->sk_send_head = new;
1421 }
1422 
1423 static inline void tcp_unlink_write_queue(struct sk_buff *skb, struct sock *sk)
1424 {
1425 	__skb_unlink(skb, &sk->sk_write_queue);
1426 }
1427 
1428 static inline bool tcp_write_queue_empty(struct sock *sk)
1429 {
1430 	return skb_queue_empty(&sk->sk_write_queue);
1431 }
1432 
1433 static inline void tcp_push_pending_frames(struct sock *sk)
1434 {
1435 	if (tcp_send_head(sk)) {
1436 		struct tcp_sock *tp = tcp_sk(sk);
1437 
1438 		__tcp_push_pending_frames(sk, tcp_current_mss(sk), tp->nonagle);
1439 	}
1440 }
1441 
1442 /* Start sequence of the skb just after the highest skb with SACKed
1443  * bit, valid only if sacked_out > 0 or when the caller has ensured
1444  * validity by itself.
1445  */
1446 static inline u32 tcp_highest_sack_seq(struct tcp_sock *tp)
1447 {
1448 	if (!tp->sacked_out)
1449 		return tp->snd_una;
1450 
1451 	if (tp->highest_sack == NULL)
1452 		return tp->snd_nxt;
1453 
1454 	return TCP_SKB_CB(tp->highest_sack)->seq;
1455 }
1456 
1457 static inline void tcp_advance_highest_sack(struct sock *sk, struct sk_buff *skb)
1458 {
1459 	tcp_sk(sk)->highest_sack = tcp_skb_is_last(sk, skb) ? NULL :
1460 						tcp_write_queue_next(sk, skb);
1461 }
1462 
1463 static inline struct sk_buff *tcp_highest_sack(struct sock *sk)
1464 {
1465 	return tcp_sk(sk)->highest_sack;
1466 }
1467 
1468 static inline void tcp_highest_sack_reset(struct sock *sk)
1469 {
1470 	tcp_sk(sk)->highest_sack = tcp_write_queue_head(sk);
1471 }
1472 
1473 /* Called when old skb is about to be deleted (to be combined with new skb) */
1474 static inline void tcp_highest_sack_combine(struct sock *sk,
1475 					    struct sk_buff *old,
1476 					    struct sk_buff *new)
1477 {
1478 	if (tcp_sk(sk)->sacked_out && (old == tcp_sk(sk)->highest_sack))
1479 		tcp_sk(sk)->highest_sack = new;
1480 }
1481 
1482 /* Determines whether this is a thin stream (which may suffer from
1483  * increased latency). Used to trigger latency-reducing mechanisms.
1484  */
1485 static inline bool tcp_stream_is_thin(struct tcp_sock *tp)
1486 {
1487 	return tp->packets_out < 4 && !tcp_in_initial_slowstart(tp);
1488 }
1489 
1490 /* /proc */
1491 enum tcp_seq_states {
1492 	TCP_SEQ_STATE_LISTENING,
1493 	TCP_SEQ_STATE_OPENREQ,
1494 	TCP_SEQ_STATE_ESTABLISHED,
1495 	TCP_SEQ_STATE_TIME_WAIT,
1496 };
1497 
1498 int tcp_seq_open(struct inode *inode, struct file *file);
1499 
1500 struct tcp_seq_afinfo {
1501 	char				*name;
1502 	sa_family_t			family;
1503 	const struct file_operations	*seq_fops;
1504 	struct seq_operations		seq_ops;
1505 };
1506 
1507 struct tcp_iter_state {
1508 	struct seq_net_private	p;
1509 	sa_family_t		family;
1510 	enum tcp_seq_states	state;
1511 	struct sock		*syn_wait_sk;
1512 	int			bucket, offset, sbucket, num, uid;
1513 	loff_t			last_pos;
1514 };
1515 
1516 extern int tcp_proc_register(struct net *net, struct tcp_seq_afinfo *afinfo);
1517 extern void tcp_proc_unregister(struct net *net, struct tcp_seq_afinfo *afinfo);
1518 
1519 extern struct request_sock_ops tcp_request_sock_ops;
1520 extern struct request_sock_ops tcp6_request_sock_ops;
1521 
1522 extern void tcp_v4_destroy_sock(struct sock *sk);
1523 
1524 extern int tcp_v4_gso_send_check(struct sk_buff *skb);
1525 extern struct sk_buff *tcp_tso_segment(struct sk_buff *skb,
1526 				       netdev_features_t features);
1527 extern struct sk_buff **tcp_gro_receive(struct sk_buff **head,
1528 					struct sk_buff *skb);
1529 extern struct sk_buff **tcp4_gro_receive(struct sk_buff **head,
1530 					 struct sk_buff *skb);
1531 extern int tcp_gro_complete(struct sk_buff *skb);
1532 extern int tcp4_gro_complete(struct sk_buff *skb);
1533 
1534 #ifdef CONFIG_PROC_FS
1535 extern int tcp4_proc_init(void);
1536 extern void tcp4_proc_exit(void);
1537 #endif
1538 
1539 /* TCP af-specific functions */
1540 struct tcp_sock_af_ops {
1541 #ifdef CONFIG_TCP_MD5SIG
1542 	struct tcp_md5sig_key	*(*md5_lookup) (struct sock *sk,
1543 						struct sock *addr_sk);
1544 	int			(*calc_md5_hash) (char *location,
1545 						  struct tcp_md5sig_key *md5,
1546 						  const struct sock *sk,
1547 						  const struct request_sock *req,
1548 						  const struct sk_buff *skb);
1549 	int			(*md5_parse) (struct sock *sk,
1550 					      char __user *optval,
1551 					      int optlen);
1552 #endif
1553 };
1554 
1555 struct tcp_request_sock_ops {
1556 #ifdef CONFIG_TCP_MD5SIG
1557 	struct tcp_md5sig_key	*(*md5_lookup) (struct sock *sk,
1558 						struct request_sock *req);
1559 	int			(*calc_md5_hash) (char *location,
1560 						  struct tcp_md5sig_key *md5,
1561 						  const struct sock *sk,
1562 						  const struct request_sock *req,
1563 						  const struct sk_buff *skb);
1564 #endif
1565 };
1566 
1567 /* Using SHA1 for now, define some constants.
1568  */
1569 #define COOKIE_DIGEST_WORDS (SHA_DIGEST_WORDS)
1570 #define COOKIE_MESSAGE_WORDS (SHA_MESSAGE_BYTES / 4)
1571 #define COOKIE_WORKSPACE_WORDS (COOKIE_DIGEST_WORDS + COOKIE_MESSAGE_WORDS)
1572 
1573 extern int tcp_cookie_generator(u32 *bakery);
1574 
1575 /**
1576  *	struct tcp_cookie_values - each socket needs extra space for the
1577  *	cookies, together with (optional) space for any SYN data.
1578  *
1579  *	A tcp_sock contains a pointer to the current value, and this is
1580  *	cloned to the tcp_timewait_sock.
1581  *
1582  * @cookie_pair:	variable data from the option exchange.
1583  *
1584  * @cookie_desired:	user specified tcpct_cookie_desired.  Zero
1585  *			indicates default (sysctl_tcp_cookie_size).
1586  *			After cookie sent, remembers size of cookie.
1587  *			Range 0, TCP_COOKIE_MIN to TCP_COOKIE_MAX.
1588  *
1589  * @s_data_desired:	user specified tcpct_s_data_desired.  When the
1590  *			constant payload is specified (@s_data_constant),
1591  *			holds its length instead.
1592  *			Range 0 to TCP_MSS_DESIRED.
1593  *
1594  * @s_data_payload:	constant data that is to be included in the
1595  *			payload of SYN or SYNACK segments when the
1596  *			cookie option is present.
1597  */
1598 struct tcp_cookie_values {
1599 	struct kref	kref;
1600 	u8		cookie_pair[TCP_COOKIE_PAIR_SIZE];
1601 	u8		cookie_pair_size;
1602 	u8		cookie_desired;
1603 	u16		s_data_desired:11,
1604 			s_data_constant:1,
1605 			s_data_in:1,
1606 			s_data_out:1,
1607 			s_data_unused:2;
1608 	u8		s_data_payload[0];
1609 };
1610 
1611 static inline void tcp_cookie_values_release(struct kref *kref)
1612 {
1613 	kfree(container_of(kref, struct tcp_cookie_values, kref));
1614 }
1615 
1616 /* The length of constant payload data.  Note that s_data_desired is
1617  * overloaded, depending on s_data_constant: either the length of constant
1618  * data (returned here) or the limit on variable data.
1619  */
1620 static inline int tcp_s_data_size(const struct tcp_sock *tp)
1621 {
1622 	return (tp->cookie_values != NULL && tp->cookie_values->s_data_constant)
1623 		? tp->cookie_values->s_data_desired
1624 		: 0;
1625 }
1626 
1627 /**
1628  *	struct tcp_extend_values - tcp_ipv?.c to tcp_output.c workspace.
1629  *
1630  *	As tcp_request_sock has already been extended in other places, the
1631  *	only remaining method is to pass stack values along as function
1632  *	parameters.  These parameters are not needed after sending SYNACK.
1633  *
1634  * @cookie_bakery:	cryptographic secret and message workspace.
1635  *
1636  * @cookie_plus:	bytes in authenticator/cookie option, copied from
1637  *			struct tcp_options_received (above).
1638  */
1639 struct tcp_extend_values {
1640 	struct request_values		rv;
1641 	u32				cookie_bakery[COOKIE_WORKSPACE_WORDS];
1642 	u8				cookie_plus:6,
1643 					cookie_out_never:1,
1644 					cookie_in_always:1;
1645 };
1646 
1647 static inline struct tcp_extend_values *tcp_xv(struct request_values *rvp)
1648 {
1649 	return (struct tcp_extend_values *)rvp;
1650 }
1651 
1652 extern void tcp_v4_init(void);
1653 extern void tcp_init(void);
1654 
1655 #endif	/* _TCP_H */
1656