xref: /linux/include/net/tcp.h (revision 24aeeb107f0724fa15e16d5f28b39f3c3ecfc746)
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Definitions for the TCP module.
8  *
9  * Version:	@(#)tcp.h	1.0.5	05/23/93
10  *
11  * Authors:	Ross Biro
12  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
13  */
14 #ifndef _TCP_H
15 #define _TCP_H
16 
17 #define FASTRETRANS_DEBUG 1
18 
19 #include <linux/list.h>
20 #include <linux/tcp.h>
21 #include <linux/bug.h>
22 #include <linux/slab.h>
23 #include <linux/cache.h>
24 #include <linux/percpu.h>
25 #include <linux/skbuff.h>
26 #include <linux/kref.h>
27 #include <linux/ktime.h>
28 #include <linux/indirect_call_wrapper.h>
29 
30 #include <net/inet_connection_sock.h>
31 #include <net/inet_timewait_sock.h>
32 #include <net/inet_hashtables.h>
33 #include <net/checksum.h>
34 #include <net/request_sock.h>
35 #include <net/sock_reuseport.h>
36 #include <net/sock.h>
37 #include <net/snmp.h>
38 #include <net/ip.h>
39 #include <net/tcp_states.h>
40 #include <net/inet_ecn.h>
41 #include <net/dst.h>
42 #include <net/mptcp.h>
43 
44 #include <linux/seq_file.h>
45 #include <linux/memcontrol.h>
46 #include <linux/bpf-cgroup.h>
47 #include <linux/siphash.h>
48 
49 extern struct inet_hashinfo tcp_hashinfo;
50 
51 DECLARE_PER_CPU(unsigned int, tcp_orphan_count);
52 int tcp_orphan_count_sum(void);
53 
54 void tcp_time_wait(struct sock *sk, int state, int timeo);
55 
56 #define MAX_TCP_HEADER	L1_CACHE_ALIGN(128 + MAX_HEADER)
57 #define MAX_TCP_OPTION_SPACE 40
58 #define TCP_MIN_SND_MSS		48
59 #define TCP_MIN_GSO_SIZE	(TCP_MIN_SND_MSS - MAX_TCP_OPTION_SPACE)
60 
61 /*
62  * Never offer a window over 32767 without using window scaling. Some
63  * poor stacks do signed 16bit maths!
64  */
65 #define MAX_TCP_WINDOW		32767U
66 
67 /* Minimal accepted MSS. It is (60+60+8) - (20+20). */
68 #define TCP_MIN_MSS		88U
69 
70 /* The initial MTU to use for probing */
71 #define TCP_BASE_MSS		1024
72 
73 /* probing interval, default to 10 minutes as per RFC4821 */
74 #define TCP_PROBE_INTERVAL	600
75 
76 /* Specify interval when tcp mtu probing will stop */
77 #define TCP_PROBE_THRESHOLD	8
78 
79 /* After receiving this amount of duplicate ACKs fast retransmit starts. */
80 #define TCP_FASTRETRANS_THRESH 3
81 
82 /* Maximal number of ACKs sent quickly to accelerate slow-start. */
83 #define TCP_MAX_QUICKACKS	16U
84 
85 /* Maximal number of window scale according to RFC1323 */
86 #define TCP_MAX_WSCALE		14U
87 
88 /* urg_data states */
89 #define TCP_URG_VALID	0x0100
90 #define TCP_URG_NOTYET	0x0200
91 #define TCP_URG_READ	0x0400
92 
93 #define TCP_RETR1	3	/*
94 				 * This is how many retries it does before it
95 				 * tries to figure out if the gateway is
96 				 * down. Minimal RFC value is 3; it corresponds
97 				 * to ~3sec-8min depending on RTO.
98 				 */
99 
100 #define TCP_RETR2	15	/*
101 				 * This should take at least
102 				 * 90 minutes to time out.
103 				 * RFC1122 says that the limit is 100 sec.
104 				 * 15 is ~13-30min depending on RTO.
105 				 */
106 
107 #define TCP_SYN_RETRIES	 6	/* This is how many retries are done
108 				 * when active opening a connection.
109 				 * RFC1122 says the minimum retry MUST
110 				 * be at least 180secs.  Nevertheless
111 				 * this value is corresponding to
112 				 * 63secs of retransmission with the
113 				 * current initial RTO.
114 				 */
115 
116 #define TCP_SYNACK_RETRIES 5	/* This is how may retries are done
117 				 * when passive opening a connection.
118 				 * This is corresponding to 31secs of
119 				 * retransmission with the current
120 				 * initial RTO.
121 				 */
122 
123 #define TCP_TIMEWAIT_LEN (60*HZ) /* how long to wait to destroy TIME-WAIT
124 				  * state, about 60 seconds	*/
125 #define TCP_FIN_TIMEOUT	TCP_TIMEWAIT_LEN
126                                  /* BSD style FIN_WAIT2 deadlock breaker.
127 				  * It used to be 3min, new value is 60sec,
128 				  * to combine FIN-WAIT-2 timeout with
129 				  * TIME-WAIT timer.
130 				  */
131 #define TCP_FIN_TIMEOUT_MAX (120 * HZ) /* max TCP_LINGER2 value (two minutes) */
132 
133 #define TCP_DELACK_MAX	((unsigned)(HZ/5))	/* maximal time to delay before sending an ACK */
134 #if HZ >= 100
135 #define TCP_DELACK_MIN	((unsigned)(HZ/25))	/* minimal time to delay before sending an ACK */
136 #define TCP_ATO_MIN	((unsigned)(HZ/25))
137 #else
138 #define TCP_DELACK_MIN	4U
139 #define TCP_ATO_MIN	4U
140 #endif
141 #define TCP_RTO_MAX	((unsigned)(120*HZ))
142 #define TCP_RTO_MIN	((unsigned)(HZ/5))
143 #define TCP_TIMEOUT_MIN	(2U) /* Min timeout for TCP timers in jiffies */
144 #define TCP_TIMEOUT_INIT ((unsigned)(1*HZ))	/* RFC6298 2.1 initial RTO value	*/
145 #define TCP_TIMEOUT_FALLBACK ((unsigned)(3*HZ))	/* RFC 1122 initial RTO value, now
146 						 * used as a fallback RTO for the
147 						 * initial data transmission if no
148 						 * valid RTT sample has been acquired,
149 						 * most likely due to retrans in 3WHS.
150 						 */
151 
152 #define TCP_RESOURCE_PROBE_INTERVAL ((unsigned)(HZ/2U)) /* Maximal interval between probes
153 					                 * for local resources.
154 					                 */
155 #define TCP_KEEPALIVE_TIME	(120*60*HZ)	/* two hours */
156 #define TCP_KEEPALIVE_PROBES	9		/* Max of 9 keepalive probes	*/
157 #define TCP_KEEPALIVE_INTVL	(75*HZ)
158 
159 #define MAX_TCP_KEEPIDLE	32767
160 #define MAX_TCP_KEEPINTVL	32767
161 #define MAX_TCP_KEEPCNT		127
162 #define MAX_TCP_SYNCNT		127
163 
164 #define TCP_SYNQ_INTERVAL	(HZ/5)	/* Period of SYNACK timer */
165 
166 #define TCP_PAWS_24DAYS	(60 * 60 * 24 * 24)
167 #define TCP_PAWS_MSL	60		/* Per-host timestamps are invalidated
168 					 * after this time. It should be equal
169 					 * (or greater than) TCP_TIMEWAIT_LEN
170 					 * to provide reliability equal to one
171 					 * provided by timewait state.
172 					 */
173 #define TCP_PAWS_WINDOW	1		/* Replay window for per-host
174 					 * timestamps. It must be less than
175 					 * minimal timewait lifetime.
176 					 */
177 /*
178  *	TCP option
179  */
180 
181 #define TCPOPT_NOP		1	/* Padding */
182 #define TCPOPT_EOL		0	/* End of options */
183 #define TCPOPT_MSS		2	/* Segment size negotiating */
184 #define TCPOPT_WINDOW		3	/* Window scaling */
185 #define TCPOPT_SACK_PERM        4       /* SACK Permitted */
186 #define TCPOPT_SACK             5       /* SACK Block */
187 #define TCPOPT_TIMESTAMP	8	/* Better RTT estimations/PAWS */
188 #define TCPOPT_MD5SIG		19	/* MD5 Signature (RFC2385) */
189 #define TCPOPT_MPTCP		30	/* Multipath TCP (RFC6824) */
190 #define TCPOPT_FASTOPEN		34	/* Fast open (RFC7413) */
191 #define TCPOPT_EXP		254	/* Experimental */
192 /* Magic number to be after the option value for sharing TCP
193  * experimental options. See draft-ietf-tcpm-experimental-options-00.txt
194  */
195 #define TCPOPT_FASTOPEN_MAGIC	0xF989
196 #define TCPOPT_SMC_MAGIC	0xE2D4C3D9
197 
198 /*
199  *     TCP option lengths
200  */
201 
202 #define TCPOLEN_MSS            4
203 #define TCPOLEN_WINDOW         3
204 #define TCPOLEN_SACK_PERM      2
205 #define TCPOLEN_TIMESTAMP      10
206 #define TCPOLEN_MD5SIG         18
207 #define TCPOLEN_FASTOPEN_BASE  2
208 #define TCPOLEN_EXP_FASTOPEN_BASE  4
209 #define TCPOLEN_EXP_SMC_BASE   6
210 
211 /* But this is what stacks really send out. */
212 #define TCPOLEN_TSTAMP_ALIGNED		12
213 #define TCPOLEN_WSCALE_ALIGNED		4
214 #define TCPOLEN_SACKPERM_ALIGNED	4
215 #define TCPOLEN_SACK_BASE		2
216 #define TCPOLEN_SACK_BASE_ALIGNED	4
217 #define TCPOLEN_SACK_PERBLOCK		8
218 #define TCPOLEN_MD5SIG_ALIGNED		20
219 #define TCPOLEN_MSS_ALIGNED		4
220 #define TCPOLEN_EXP_SMC_BASE_ALIGNED	8
221 
222 /* Flags in tp->nonagle */
223 #define TCP_NAGLE_OFF		1	/* Nagle's algo is disabled */
224 #define TCP_NAGLE_CORK		2	/* Socket is corked	    */
225 #define TCP_NAGLE_PUSH		4	/* Cork is overridden for already queued data */
226 
227 /* TCP thin-stream limits */
228 #define TCP_THIN_LINEAR_RETRIES 6       /* After 6 linear retries, do exp. backoff */
229 
230 /* TCP initial congestion window as per rfc6928 */
231 #define TCP_INIT_CWND		10
232 
233 /* Bit Flags for sysctl_tcp_fastopen */
234 #define	TFO_CLIENT_ENABLE	1
235 #define	TFO_SERVER_ENABLE	2
236 #define	TFO_CLIENT_NO_COOKIE	4	/* Data in SYN w/o cookie option */
237 
238 /* Accept SYN data w/o any cookie option */
239 #define	TFO_SERVER_COOKIE_NOT_REQD	0x200
240 
241 /* Force enable TFO on all listeners, i.e., not requiring the
242  * TCP_FASTOPEN socket option.
243  */
244 #define	TFO_SERVER_WO_SOCKOPT1	0x400
245 
246 
247 /* sysctl variables for tcp */
248 extern int sysctl_tcp_max_orphans;
249 extern long sysctl_tcp_mem[3];
250 
251 #define TCP_RACK_LOSS_DETECTION  0x1 /* Use RACK to detect losses */
252 #define TCP_RACK_STATIC_REO_WND  0x2 /* Use static RACK reo wnd */
253 #define TCP_RACK_NO_DUPTHRESH    0x4 /* Do not use DUPACK threshold in RACK */
254 
255 extern atomic_long_t tcp_memory_allocated;
256 DECLARE_PER_CPU(int, tcp_memory_per_cpu_fw_alloc);
257 
258 extern struct percpu_counter tcp_sockets_allocated;
259 extern unsigned long tcp_memory_pressure;
260 
261 /* optimized version of sk_under_memory_pressure() for TCP sockets */
262 static inline bool tcp_under_memory_pressure(const struct sock *sk)
263 {
264 	if (mem_cgroup_sockets_enabled && sk->sk_memcg &&
265 	    mem_cgroup_under_socket_pressure(sk->sk_memcg))
266 		return true;
267 
268 	return READ_ONCE(tcp_memory_pressure);
269 }
270 /*
271  * The next routines deal with comparing 32 bit unsigned ints
272  * and worry about wraparound (automatic with unsigned arithmetic).
273  */
274 
275 static inline bool before(__u32 seq1, __u32 seq2)
276 {
277         return (__s32)(seq1-seq2) < 0;
278 }
279 #define after(seq2, seq1) 	before(seq1, seq2)
280 
281 /* is s2<=s1<=s3 ? */
282 static inline bool between(__u32 seq1, __u32 seq2, __u32 seq3)
283 {
284 	return seq3 - seq2 >= seq1 - seq2;
285 }
286 
287 static inline bool tcp_out_of_memory(struct sock *sk)
288 {
289 	if (sk->sk_wmem_queued > SOCK_MIN_SNDBUF &&
290 	    sk_memory_allocated(sk) > sk_prot_mem_limits(sk, 2))
291 		return true;
292 	return false;
293 }
294 
295 static inline void tcp_wmem_free_skb(struct sock *sk, struct sk_buff *skb)
296 {
297 	sk_wmem_queued_add(sk, -skb->truesize);
298 	if (!skb_zcopy_pure(skb))
299 		sk_mem_uncharge(sk, skb->truesize);
300 	else
301 		sk_mem_uncharge(sk, SKB_TRUESIZE(skb_end_offset(skb)));
302 	__kfree_skb(skb);
303 }
304 
305 void sk_forced_mem_schedule(struct sock *sk, int size);
306 
307 bool tcp_check_oom(struct sock *sk, int shift);
308 
309 
310 extern struct proto tcp_prot;
311 
312 #define TCP_INC_STATS(net, field)	SNMP_INC_STATS((net)->mib.tcp_statistics, field)
313 #define __TCP_INC_STATS(net, field)	__SNMP_INC_STATS((net)->mib.tcp_statistics, field)
314 #define TCP_DEC_STATS(net, field)	SNMP_DEC_STATS((net)->mib.tcp_statistics, field)
315 #define TCP_ADD_STATS(net, field, val)	SNMP_ADD_STATS((net)->mib.tcp_statistics, field, val)
316 
317 void tcp_tasklet_init(void);
318 
319 int tcp_v4_err(struct sk_buff *skb, u32);
320 
321 void tcp_shutdown(struct sock *sk, int how);
322 
323 int tcp_v4_early_demux(struct sk_buff *skb);
324 int tcp_v4_rcv(struct sk_buff *skb);
325 
326 void tcp_remove_empty_skb(struct sock *sk);
327 int tcp_v4_tw_remember_stamp(struct inet_timewait_sock *tw);
328 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size);
329 int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size);
330 int tcp_sendpage(struct sock *sk, struct page *page, int offset, size_t size,
331 		 int flags);
332 int tcp_sendpage_locked(struct sock *sk, struct page *page, int offset,
333 			size_t size, int flags);
334 ssize_t do_tcp_sendpages(struct sock *sk, struct page *page, int offset,
335 		 size_t size, int flags);
336 int tcp_send_mss(struct sock *sk, int *size_goal, int flags);
337 void tcp_push(struct sock *sk, int flags, int mss_now, int nonagle,
338 	      int size_goal);
339 void tcp_release_cb(struct sock *sk);
340 void tcp_wfree(struct sk_buff *skb);
341 void tcp_write_timer_handler(struct sock *sk);
342 void tcp_delack_timer_handler(struct sock *sk);
343 int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg);
344 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb);
345 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb);
346 void tcp_rcv_space_adjust(struct sock *sk);
347 int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp);
348 void tcp_twsk_destructor(struct sock *sk);
349 void tcp_twsk_purge(struct list_head *net_exit_list, int family);
350 ssize_t tcp_splice_read(struct socket *sk, loff_t *ppos,
351 			struct pipe_inode_info *pipe, size_t len,
352 			unsigned int flags);
353 struct sk_buff *tcp_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp,
354 				     bool force_schedule);
355 
356 void tcp_enter_quickack_mode(struct sock *sk, unsigned int max_quickacks);
357 static inline void tcp_dec_quickack_mode(struct sock *sk,
358 					 const unsigned int pkts)
359 {
360 	struct inet_connection_sock *icsk = inet_csk(sk);
361 
362 	if (icsk->icsk_ack.quick) {
363 		if (pkts >= icsk->icsk_ack.quick) {
364 			icsk->icsk_ack.quick = 0;
365 			/* Leaving quickack mode we deflate ATO. */
366 			icsk->icsk_ack.ato   = TCP_ATO_MIN;
367 		} else
368 			icsk->icsk_ack.quick -= pkts;
369 	}
370 }
371 
372 #define	TCP_ECN_OK		1
373 #define	TCP_ECN_QUEUE_CWR	2
374 #define	TCP_ECN_DEMAND_CWR	4
375 #define	TCP_ECN_SEEN		8
376 
377 enum tcp_tw_status {
378 	TCP_TW_SUCCESS = 0,
379 	TCP_TW_RST = 1,
380 	TCP_TW_ACK = 2,
381 	TCP_TW_SYN = 3
382 };
383 
384 
385 enum tcp_tw_status tcp_timewait_state_process(struct inet_timewait_sock *tw,
386 					      struct sk_buff *skb,
387 					      const struct tcphdr *th);
388 struct sock *tcp_check_req(struct sock *sk, struct sk_buff *skb,
389 			   struct request_sock *req, bool fastopen,
390 			   bool *lost_race);
391 int tcp_child_process(struct sock *parent, struct sock *child,
392 		      struct sk_buff *skb);
393 void tcp_enter_loss(struct sock *sk);
394 void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int newly_lost, int flag);
395 void tcp_clear_retrans(struct tcp_sock *tp);
396 void tcp_update_metrics(struct sock *sk);
397 void tcp_init_metrics(struct sock *sk);
398 void tcp_metrics_init(void);
399 bool tcp_peer_is_proven(struct request_sock *req, struct dst_entry *dst);
400 void __tcp_close(struct sock *sk, long timeout);
401 void tcp_close(struct sock *sk, long timeout);
402 void tcp_init_sock(struct sock *sk);
403 void tcp_init_transfer(struct sock *sk, int bpf_op, struct sk_buff *skb);
404 __poll_t tcp_poll(struct file *file, struct socket *sock,
405 		      struct poll_table_struct *wait);
406 int do_tcp_getsockopt(struct sock *sk, int level,
407 		      int optname, sockptr_t optval, sockptr_t optlen);
408 int tcp_getsockopt(struct sock *sk, int level, int optname,
409 		   char __user *optval, int __user *optlen);
410 bool tcp_bpf_bypass_getsockopt(int level, int optname);
411 int do_tcp_setsockopt(struct sock *sk, int level, int optname,
412 		      sockptr_t optval, unsigned int optlen);
413 int tcp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval,
414 		   unsigned int optlen);
415 void tcp_set_keepalive(struct sock *sk, int val);
416 void tcp_syn_ack_timeout(const struct request_sock *req);
417 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len,
418 		int flags, int *addr_len);
419 int tcp_set_rcvlowat(struct sock *sk, int val);
420 int tcp_set_window_clamp(struct sock *sk, int val);
421 void tcp_update_recv_tstamps(struct sk_buff *skb,
422 			     struct scm_timestamping_internal *tss);
423 void tcp_recv_timestamp(struct msghdr *msg, const struct sock *sk,
424 			struct scm_timestamping_internal *tss);
425 void tcp_data_ready(struct sock *sk);
426 #ifdef CONFIG_MMU
427 int tcp_mmap(struct file *file, struct socket *sock,
428 	     struct vm_area_struct *vma);
429 #endif
430 void tcp_parse_options(const struct net *net, const struct sk_buff *skb,
431 		       struct tcp_options_received *opt_rx,
432 		       int estab, struct tcp_fastopen_cookie *foc);
433 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th);
434 
435 /*
436  *	BPF SKB-less helpers
437  */
438 u16 tcp_v4_get_syncookie(struct sock *sk, struct iphdr *iph,
439 			 struct tcphdr *th, u32 *cookie);
440 u16 tcp_v6_get_syncookie(struct sock *sk, struct ipv6hdr *iph,
441 			 struct tcphdr *th, u32 *cookie);
442 u16 tcp_parse_mss_option(const struct tcphdr *th, u16 user_mss);
443 u16 tcp_get_syncookie_mss(struct request_sock_ops *rsk_ops,
444 			  const struct tcp_request_sock_ops *af_ops,
445 			  struct sock *sk, struct tcphdr *th);
446 /*
447  *	TCP v4 functions exported for the inet6 API
448  */
449 
450 void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb);
451 void tcp_v4_mtu_reduced(struct sock *sk);
452 void tcp_req_err(struct sock *sk, u32 seq, bool abort);
453 void tcp_ld_RTO_revert(struct sock *sk, u32 seq);
454 int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb);
455 struct sock *tcp_create_openreq_child(const struct sock *sk,
456 				      struct request_sock *req,
457 				      struct sk_buff *skb);
458 void tcp_ca_openreq_child(struct sock *sk, const struct dst_entry *dst);
459 struct sock *tcp_v4_syn_recv_sock(const struct sock *sk, struct sk_buff *skb,
460 				  struct request_sock *req,
461 				  struct dst_entry *dst,
462 				  struct request_sock *req_unhash,
463 				  bool *own_req);
464 int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb);
465 int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len);
466 int tcp_connect(struct sock *sk);
467 enum tcp_synack_type {
468 	TCP_SYNACK_NORMAL,
469 	TCP_SYNACK_FASTOPEN,
470 	TCP_SYNACK_COOKIE,
471 };
472 struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst,
473 				struct request_sock *req,
474 				struct tcp_fastopen_cookie *foc,
475 				enum tcp_synack_type synack_type,
476 				struct sk_buff *syn_skb);
477 int tcp_disconnect(struct sock *sk, int flags);
478 
479 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb);
480 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size);
481 void inet_sk_rx_dst_set(struct sock *sk, const struct sk_buff *skb);
482 
483 /* From syncookies.c */
484 struct sock *tcp_get_cookie_sock(struct sock *sk, struct sk_buff *skb,
485 				 struct request_sock *req,
486 				 struct dst_entry *dst, u32 tsoff);
487 int __cookie_v4_check(const struct iphdr *iph, const struct tcphdr *th,
488 		      u32 cookie);
489 struct sock *cookie_v4_check(struct sock *sk, struct sk_buff *skb);
490 struct request_sock *cookie_tcp_reqsk_alloc(const struct request_sock_ops *ops,
491 					    const struct tcp_request_sock_ops *af_ops,
492 					    struct sock *sk, struct sk_buff *skb);
493 #ifdef CONFIG_SYN_COOKIES
494 
495 /* Syncookies use a monotonic timer which increments every 60 seconds.
496  * This counter is used both as a hash input and partially encoded into
497  * the cookie value.  A cookie is only validated further if the delta
498  * between the current counter value and the encoded one is less than this,
499  * i.e. a sent cookie is valid only at most for 2*60 seconds (or less if
500  * the counter advances immediately after a cookie is generated).
501  */
502 #define MAX_SYNCOOKIE_AGE	2
503 #define TCP_SYNCOOKIE_PERIOD	(60 * HZ)
504 #define TCP_SYNCOOKIE_VALID	(MAX_SYNCOOKIE_AGE * TCP_SYNCOOKIE_PERIOD)
505 
506 /* syncookies: remember time of last synqueue overflow
507  * But do not dirty this field too often (once per second is enough)
508  * It is racy as we do not hold a lock, but race is very minor.
509  */
510 static inline void tcp_synq_overflow(const struct sock *sk)
511 {
512 	unsigned int last_overflow;
513 	unsigned int now = jiffies;
514 
515 	if (sk->sk_reuseport) {
516 		struct sock_reuseport *reuse;
517 
518 		reuse = rcu_dereference(sk->sk_reuseport_cb);
519 		if (likely(reuse)) {
520 			last_overflow = READ_ONCE(reuse->synq_overflow_ts);
521 			if (!time_between32(now, last_overflow,
522 					    last_overflow + HZ))
523 				WRITE_ONCE(reuse->synq_overflow_ts, now);
524 			return;
525 		}
526 	}
527 
528 	last_overflow = READ_ONCE(tcp_sk(sk)->rx_opt.ts_recent_stamp);
529 	if (!time_between32(now, last_overflow, last_overflow + HZ))
530 		WRITE_ONCE(tcp_sk(sk)->rx_opt.ts_recent_stamp, now);
531 }
532 
533 /* syncookies: no recent synqueue overflow on this listening socket? */
534 static inline bool tcp_synq_no_recent_overflow(const struct sock *sk)
535 {
536 	unsigned int last_overflow;
537 	unsigned int now = jiffies;
538 
539 	if (sk->sk_reuseport) {
540 		struct sock_reuseport *reuse;
541 
542 		reuse = rcu_dereference(sk->sk_reuseport_cb);
543 		if (likely(reuse)) {
544 			last_overflow = READ_ONCE(reuse->synq_overflow_ts);
545 			return !time_between32(now, last_overflow - HZ,
546 					       last_overflow +
547 					       TCP_SYNCOOKIE_VALID);
548 		}
549 	}
550 
551 	last_overflow = READ_ONCE(tcp_sk(sk)->rx_opt.ts_recent_stamp);
552 
553 	/* If last_overflow <= jiffies <= last_overflow + TCP_SYNCOOKIE_VALID,
554 	 * then we're under synflood. However, we have to use
555 	 * 'last_overflow - HZ' as lower bound. That's because a concurrent
556 	 * tcp_synq_overflow() could update .ts_recent_stamp after we read
557 	 * jiffies but before we store .ts_recent_stamp into last_overflow,
558 	 * which could lead to rejecting a valid syncookie.
559 	 */
560 	return !time_between32(now, last_overflow - HZ,
561 			       last_overflow + TCP_SYNCOOKIE_VALID);
562 }
563 
564 static inline u32 tcp_cookie_time(void)
565 {
566 	u64 val = get_jiffies_64();
567 
568 	do_div(val, TCP_SYNCOOKIE_PERIOD);
569 	return val;
570 }
571 
572 u32 __cookie_v4_init_sequence(const struct iphdr *iph, const struct tcphdr *th,
573 			      u16 *mssp);
574 __u32 cookie_v4_init_sequence(const struct sk_buff *skb, __u16 *mss);
575 u64 cookie_init_timestamp(struct request_sock *req, u64 now);
576 bool cookie_timestamp_decode(const struct net *net,
577 			     struct tcp_options_received *opt);
578 bool cookie_ecn_ok(const struct tcp_options_received *opt,
579 		   const struct net *net, const struct dst_entry *dst);
580 
581 /* From net/ipv6/syncookies.c */
582 int __cookie_v6_check(const struct ipv6hdr *iph, const struct tcphdr *th,
583 		      u32 cookie);
584 struct sock *cookie_v6_check(struct sock *sk, struct sk_buff *skb);
585 
586 u32 __cookie_v6_init_sequence(const struct ipv6hdr *iph,
587 			      const struct tcphdr *th, u16 *mssp);
588 __u32 cookie_v6_init_sequence(const struct sk_buff *skb, __u16 *mss);
589 #endif
590 /* tcp_output.c */
591 
592 void tcp_skb_entail(struct sock *sk, struct sk_buff *skb);
593 void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb);
594 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
595 			       int nonagle);
596 int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs);
597 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs);
598 void tcp_retransmit_timer(struct sock *sk);
599 void tcp_xmit_retransmit_queue(struct sock *);
600 void tcp_simple_retransmit(struct sock *);
601 void tcp_enter_recovery(struct sock *sk, bool ece_ack);
602 int tcp_trim_head(struct sock *, struct sk_buff *, u32);
603 enum tcp_queue {
604 	TCP_FRAG_IN_WRITE_QUEUE,
605 	TCP_FRAG_IN_RTX_QUEUE,
606 };
607 int tcp_fragment(struct sock *sk, enum tcp_queue tcp_queue,
608 		 struct sk_buff *skb, u32 len,
609 		 unsigned int mss_now, gfp_t gfp);
610 
611 void tcp_send_probe0(struct sock *);
612 void tcp_send_partial(struct sock *);
613 int tcp_write_wakeup(struct sock *, int mib);
614 void tcp_send_fin(struct sock *sk);
615 void tcp_send_active_reset(struct sock *sk, gfp_t priority);
616 int tcp_send_synack(struct sock *);
617 void tcp_push_one(struct sock *, unsigned int mss_now);
618 void __tcp_send_ack(struct sock *sk, u32 rcv_nxt);
619 void tcp_send_ack(struct sock *sk);
620 void tcp_send_delayed_ack(struct sock *sk);
621 void tcp_send_loss_probe(struct sock *sk);
622 bool tcp_schedule_loss_probe(struct sock *sk, bool advancing_rto);
623 void tcp_skb_collapse_tstamp(struct sk_buff *skb,
624 			     const struct sk_buff *next_skb);
625 
626 /* tcp_input.c */
627 void tcp_rearm_rto(struct sock *sk);
628 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req);
629 void tcp_reset(struct sock *sk, struct sk_buff *skb);
630 void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp, struct sk_buff *skb);
631 void tcp_fin(struct sock *sk);
632 void tcp_check_space(struct sock *sk);
633 
634 /* tcp_timer.c */
635 void tcp_init_xmit_timers(struct sock *);
636 static inline void tcp_clear_xmit_timers(struct sock *sk)
637 {
638 	if (hrtimer_try_to_cancel(&tcp_sk(sk)->pacing_timer) == 1)
639 		__sock_put(sk);
640 
641 	if (hrtimer_try_to_cancel(&tcp_sk(sk)->compressed_ack_timer) == 1)
642 		__sock_put(sk);
643 
644 	inet_csk_clear_xmit_timers(sk);
645 }
646 
647 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu);
648 unsigned int tcp_current_mss(struct sock *sk);
649 u32 tcp_clamp_probe0_to_user_timeout(const struct sock *sk, u32 when);
650 
651 /* Bound MSS / TSO packet size with the half of the window */
652 static inline int tcp_bound_to_half_wnd(struct tcp_sock *tp, int pktsize)
653 {
654 	int cutoff;
655 
656 	/* When peer uses tiny windows, there is no use in packetizing
657 	 * to sub-MSS pieces for the sake of SWS or making sure there
658 	 * are enough packets in the pipe for fast recovery.
659 	 *
660 	 * On the other hand, for extremely large MSS devices, handling
661 	 * smaller than MSS windows in this way does make sense.
662 	 */
663 	if (tp->max_window > TCP_MSS_DEFAULT)
664 		cutoff = (tp->max_window >> 1);
665 	else
666 		cutoff = tp->max_window;
667 
668 	if (cutoff && pktsize > cutoff)
669 		return max_t(int, cutoff, 68U - tp->tcp_header_len);
670 	else
671 		return pktsize;
672 }
673 
674 /* tcp.c */
675 void tcp_get_info(struct sock *, struct tcp_info *);
676 
677 /* Read 'sendfile()'-style from a TCP socket */
678 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
679 		  sk_read_actor_t recv_actor);
680 int tcp_read_skb(struct sock *sk, skb_read_actor_t recv_actor);
681 struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off);
682 void tcp_read_done(struct sock *sk, size_t len);
683 
684 void tcp_initialize_rcv_mss(struct sock *sk);
685 
686 int tcp_mtu_to_mss(struct sock *sk, int pmtu);
687 int tcp_mss_to_mtu(struct sock *sk, int mss);
688 void tcp_mtup_init(struct sock *sk);
689 
690 static inline void tcp_bound_rto(const struct sock *sk)
691 {
692 	if (inet_csk(sk)->icsk_rto > TCP_RTO_MAX)
693 		inet_csk(sk)->icsk_rto = TCP_RTO_MAX;
694 }
695 
696 static inline u32 __tcp_set_rto(const struct tcp_sock *tp)
697 {
698 	return usecs_to_jiffies((tp->srtt_us >> 3) + tp->rttvar_us);
699 }
700 
701 static inline void __tcp_fast_path_on(struct tcp_sock *tp, u32 snd_wnd)
702 {
703 	/* mptcp hooks are only on the slow path */
704 	if (sk_is_mptcp((struct sock *)tp))
705 		return;
706 
707 	tp->pred_flags = htonl((tp->tcp_header_len << 26) |
708 			       ntohl(TCP_FLAG_ACK) |
709 			       snd_wnd);
710 }
711 
712 static inline void tcp_fast_path_on(struct tcp_sock *tp)
713 {
714 	__tcp_fast_path_on(tp, tp->snd_wnd >> tp->rx_opt.snd_wscale);
715 }
716 
717 static inline void tcp_fast_path_check(struct sock *sk)
718 {
719 	struct tcp_sock *tp = tcp_sk(sk);
720 
721 	if (RB_EMPTY_ROOT(&tp->out_of_order_queue) &&
722 	    tp->rcv_wnd &&
723 	    atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf &&
724 	    !tp->urg_data)
725 		tcp_fast_path_on(tp);
726 }
727 
728 /* Compute the actual rto_min value */
729 static inline u32 tcp_rto_min(struct sock *sk)
730 {
731 	const struct dst_entry *dst = __sk_dst_get(sk);
732 	u32 rto_min = inet_csk(sk)->icsk_rto_min;
733 
734 	if (dst && dst_metric_locked(dst, RTAX_RTO_MIN))
735 		rto_min = dst_metric_rtt(dst, RTAX_RTO_MIN);
736 	return rto_min;
737 }
738 
739 static inline u32 tcp_rto_min_us(struct sock *sk)
740 {
741 	return jiffies_to_usecs(tcp_rto_min(sk));
742 }
743 
744 static inline bool tcp_ca_dst_locked(const struct dst_entry *dst)
745 {
746 	return dst_metric_locked(dst, RTAX_CC_ALGO);
747 }
748 
749 /* Minimum RTT in usec. ~0 means not available. */
750 static inline u32 tcp_min_rtt(const struct tcp_sock *tp)
751 {
752 	return minmax_get(&tp->rtt_min);
753 }
754 
755 /* Compute the actual receive window we are currently advertising.
756  * Rcv_nxt can be after the window if our peer push more data
757  * than the offered window.
758  */
759 static inline u32 tcp_receive_window(const struct tcp_sock *tp)
760 {
761 	s32 win = tp->rcv_wup + tp->rcv_wnd - tp->rcv_nxt;
762 
763 	if (win < 0)
764 		win = 0;
765 	return (u32) win;
766 }
767 
768 /* Choose a new window, without checks for shrinking, and without
769  * scaling applied to the result.  The caller does these things
770  * if necessary.  This is a "raw" window selection.
771  */
772 u32 __tcp_select_window(struct sock *sk);
773 
774 void tcp_send_window_probe(struct sock *sk);
775 
776 /* TCP uses 32bit jiffies to save some space.
777  * Note that this is different from tcp_time_stamp, which
778  * historically has been the same until linux-4.13.
779  */
780 #define tcp_jiffies32 ((u32)jiffies)
781 
782 /*
783  * Deliver a 32bit value for TCP timestamp option (RFC 7323)
784  * It is no longer tied to jiffies, but to 1 ms clock.
785  * Note: double check if you want to use tcp_jiffies32 instead of this.
786  */
787 #define TCP_TS_HZ	1000
788 
789 static inline u64 tcp_clock_ns(void)
790 {
791 	return ktime_get_ns();
792 }
793 
794 static inline u64 tcp_clock_us(void)
795 {
796 	return div_u64(tcp_clock_ns(), NSEC_PER_USEC);
797 }
798 
799 /* This should only be used in contexts where tp->tcp_mstamp is up to date */
800 static inline u32 tcp_time_stamp(const struct tcp_sock *tp)
801 {
802 	return div_u64(tp->tcp_mstamp, USEC_PER_SEC / TCP_TS_HZ);
803 }
804 
805 /* Convert a nsec timestamp into TCP TSval timestamp (ms based currently) */
806 static inline u32 tcp_ns_to_ts(u64 ns)
807 {
808 	return div_u64(ns, NSEC_PER_SEC / TCP_TS_HZ);
809 }
810 
811 /* Could use tcp_clock_us() / 1000, but this version uses a single divide */
812 static inline u32 tcp_time_stamp_raw(void)
813 {
814 	return tcp_ns_to_ts(tcp_clock_ns());
815 }
816 
817 void tcp_mstamp_refresh(struct tcp_sock *tp);
818 
819 static inline u32 tcp_stamp_us_delta(u64 t1, u64 t0)
820 {
821 	return max_t(s64, t1 - t0, 0);
822 }
823 
824 static inline u32 tcp_skb_timestamp(const struct sk_buff *skb)
825 {
826 	return tcp_ns_to_ts(skb->skb_mstamp_ns);
827 }
828 
829 /* provide the departure time in us unit */
830 static inline u64 tcp_skb_timestamp_us(const struct sk_buff *skb)
831 {
832 	return div_u64(skb->skb_mstamp_ns, NSEC_PER_USEC);
833 }
834 
835 
836 #define tcp_flag_byte(th) (((u_int8_t *)th)[13])
837 
838 #define TCPHDR_FIN 0x01
839 #define TCPHDR_SYN 0x02
840 #define TCPHDR_RST 0x04
841 #define TCPHDR_PSH 0x08
842 #define TCPHDR_ACK 0x10
843 #define TCPHDR_URG 0x20
844 #define TCPHDR_ECE 0x40
845 #define TCPHDR_CWR 0x80
846 
847 #define TCPHDR_SYN_ECN	(TCPHDR_SYN | TCPHDR_ECE | TCPHDR_CWR)
848 
849 /* This is what the send packet queuing engine uses to pass
850  * TCP per-packet control information to the transmission code.
851  * We also store the host-order sequence numbers in here too.
852  * This is 44 bytes if IPV6 is enabled.
853  * If this grows please adjust skbuff.h:skbuff->cb[xxx] size appropriately.
854  */
855 struct tcp_skb_cb {
856 	__u32		seq;		/* Starting sequence number	*/
857 	__u32		end_seq;	/* SEQ + FIN + SYN + datalen	*/
858 	union {
859 		/* Note : tcp_tw_isn is used in input path only
860 		 *	  (isn chosen by tcp_timewait_state_process())
861 		 *
862 		 * 	  tcp_gso_segs/size are used in write queue only,
863 		 *	  cf tcp_skb_pcount()/tcp_skb_mss()
864 		 */
865 		__u32		tcp_tw_isn;
866 		struct {
867 			u16	tcp_gso_segs;
868 			u16	tcp_gso_size;
869 		};
870 	};
871 	__u8		tcp_flags;	/* TCP header flags. (tcp[13])	*/
872 
873 	__u8		sacked;		/* State flags for SACK.	*/
874 #define TCPCB_SACKED_ACKED	0x01	/* SKB ACK'd by a SACK block	*/
875 #define TCPCB_SACKED_RETRANS	0x02	/* SKB retransmitted		*/
876 #define TCPCB_LOST		0x04	/* SKB is lost			*/
877 #define TCPCB_TAGBITS		0x07	/* All tag bits			*/
878 #define TCPCB_REPAIRED		0x10	/* SKB repaired (no skb_mstamp_ns)	*/
879 #define TCPCB_EVER_RETRANS	0x80	/* Ever retransmitted frame	*/
880 #define TCPCB_RETRANS		(TCPCB_SACKED_RETRANS|TCPCB_EVER_RETRANS| \
881 				TCPCB_REPAIRED)
882 
883 	__u8		ip_dsfield;	/* IPv4 tos or IPv6 dsfield	*/
884 	__u8		txstamp_ack:1,	/* Record TX timestamp for ack? */
885 			eor:1,		/* Is skb MSG_EOR marked? */
886 			has_rxtstamp:1,	/* SKB has a RX timestamp	*/
887 			unused:5;
888 	__u32		ack_seq;	/* Sequence number ACK'd	*/
889 	union {
890 		struct {
891 #define TCPCB_DELIVERED_CE_MASK ((1U<<20) - 1)
892 			/* There is space for up to 24 bytes */
893 			__u32 is_app_limited:1, /* cwnd not fully used? */
894 			      delivered_ce:20,
895 			      unused:11;
896 			/* pkts S/ACKed so far upon tx of skb, incl retrans: */
897 			__u32 delivered;
898 			/* start of send pipeline phase */
899 			u64 first_tx_mstamp;
900 			/* when we reached the "delivered" count */
901 			u64 delivered_mstamp;
902 		} tx;   /* only used for outgoing skbs */
903 		union {
904 			struct inet_skb_parm	h4;
905 #if IS_ENABLED(CONFIG_IPV6)
906 			struct inet6_skb_parm	h6;
907 #endif
908 		} header;	/* For incoming skbs */
909 	};
910 };
911 
912 #define TCP_SKB_CB(__skb)	((struct tcp_skb_cb *)&((__skb)->cb[0]))
913 
914 extern const struct inet_connection_sock_af_ops ipv4_specific;
915 
916 #if IS_ENABLED(CONFIG_IPV6)
917 /* This is the variant of inet6_iif() that must be used by TCP,
918  * as TCP moves IP6CB into a different location in skb->cb[]
919  */
920 static inline int tcp_v6_iif(const struct sk_buff *skb)
921 {
922 	return TCP_SKB_CB(skb)->header.h6.iif;
923 }
924 
925 static inline int tcp_v6_iif_l3_slave(const struct sk_buff *skb)
926 {
927 	bool l3_slave = ipv6_l3mdev_skb(TCP_SKB_CB(skb)->header.h6.flags);
928 
929 	return l3_slave ? skb->skb_iif : TCP_SKB_CB(skb)->header.h6.iif;
930 }
931 
932 /* TCP_SKB_CB reference means this can not be used from early demux */
933 static inline int tcp_v6_sdif(const struct sk_buff *skb)
934 {
935 #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
936 	if (skb && ipv6_l3mdev_skb(TCP_SKB_CB(skb)->header.h6.flags))
937 		return TCP_SKB_CB(skb)->header.h6.iif;
938 #endif
939 	return 0;
940 }
941 
942 extern const struct inet_connection_sock_af_ops ipv6_specific;
943 
944 INDIRECT_CALLABLE_DECLARE(void tcp_v6_send_check(struct sock *sk, struct sk_buff *skb));
945 INDIRECT_CALLABLE_DECLARE(int tcp_v6_rcv(struct sk_buff *skb));
946 void tcp_v6_early_demux(struct sk_buff *skb);
947 
948 #endif
949 
950 /* TCP_SKB_CB reference means this can not be used from early demux */
951 static inline int tcp_v4_sdif(struct sk_buff *skb)
952 {
953 #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
954 	if (skb && ipv4_l3mdev_skb(TCP_SKB_CB(skb)->header.h4.flags))
955 		return TCP_SKB_CB(skb)->header.h4.iif;
956 #endif
957 	return 0;
958 }
959 
960 /* Due to TSO, an SKB can be composed of multiple actual
961  * packets.  To keep these tracked properly, we use this.
962  */
963 static inline int tcp_skb_pcount(const struct sk_buff *skb)
964 {
965 	return TCP_SKB_CB(skb)->tcp_gso_segs;
966 }
967 
968 static inline void tcp_skb_pcount_set(struct sk_buff *skb, int segs)
969 {
970 	TCP_SKB_CB(skb)->tcp_gso_segs = segs;
971 }
972 
973 static inline void tcp_skb_pcount_add(struct sk_buff *skb, int segs)
974 {
975 	TCP_SKB_CB(skb)->tcp_gso_segs += segs;
976 }
977 
978 /* This is valid iff skb is in write queue and tcp_skb_pcount() > 1. */
979 static inline int tcp_skb_mss(const struct sk_buff *skb)
980 {
981 	return TCP_SKB_CB(skb)->tcp_gso_size;
982 }
983 
984 static inline bool tcp_skb_can_collapse_to(const struct sk_buff *skb)
985 {
986 	return likely(!TCP_SKB_CB(skb)->eor);
987 }
988 
989 static inline bool tcp_skb_can_collapse(const struct sk_buff *to,
990 					const struct sk_buff *from)
991 {
992 	return likely(tcp_skb_can_collapse_to(to) &&
993 		      mptcp_skb_can_collapse(to, from) &&
994 		      skb_pure_zcopy_same(to, from));
995 }
996 
997 /* Events passed to congestion control interface */
998 enum tcp_ca_event {
999 	CA_EVENT_TX_START,	/* first transmit when no packets in flight */
1000 	CA_EVENT_CWND_RESTART,	/* congestion window restart */
1001 	CA_EVENT_COMPLETE_CWR,	/* end of congestion recovery */
1002 	CA_EVENT_LOSS,		/* loss timeout */
1003 	CA_EVENT_ECN_NO_CE,	/* ECT set, but not CE marked */
1004 	CA_EVENT_ECN_IS_CE,	/* received CE marked IP packet */
1005 };
1006 
1007 /* Information about inbound ACK, passed to cong_ops->in_ack_event() */
1008 enum tcp_ca_ack_event_flags {
1009 	CA_ACK_SLOWPATH		= (1 << 0),	/* In slow path processing */
1010 	CA_ACK_WIN_UPDATE	= (1 << 1),	/* ACK updated window */
1011 	CA_ACK_ECE		= (1 << 2),	/* ECE bit is set on ack */
1012 };
1013 
1014 /*
1015  * Interface for adding new TCP congestion control handlers
1016  */
1017 #define TCP_CA_NAME_MAX	16
1018 #define TCP_CA_MAX	128
1019 #define TCP_CA_BUF_MAX	(TCP_CA_NAME_MAX*TCP_CA_MAX)
1020 
1021 #define TCP_CA_UNSPEC	0
1022 
1023 /* Algorithm can be set on socket without CAP_NET_ADMIN privileges */
1024 #define TCP_CONG_NON_RESTRICTED 0x1
1025 /* Requires ECN/ECT set on all packets */
1026 #define TCP_CONG_NEEDS_ECN	0x2
1027 #define TCP_CONG_MASK	(TCP_CONG_NON_RESTRICTED | TCP_CONG_NEEDS_ECN)
1028 
1029 union tcp_cc_info;
1030 
1031 struct ack_sample {
1032 	u32 pkts_acked;
1033 	s32 rtt_us;
1034 	u32 in_flight;
1035 };
1036 
1037 /* A rate sample measures the number of (original/retransmitted) data
1038  * packets delivered "delivered" over an interval of time "interval_us".
1039  * The tcp_rate.c code fills in the rate sample, and congestion
1040  * control modules that define a cong_control function to run at the end
1041  * of ACK processing can optionally chose to consult this sample when
1042  * setting cwnd and pacing rate.
1043  * A sample is invalid if "delivered" or "interval_us" is negative.
1044  */
1045 struct rate_sample {
1046 	u64  prior_mstamp; /* starting timestamp for interval */
1047 	u32  prior_delivered;	/* tp->delivered at "prior_mstamp" */
1048 	u32  prior_delivered_ce;/* tp->delivered_ce at "prior_mstamp" */
1049 	s32  delivered;		/* number of packets delivered over interval */
1050 	s32  delivered_ce;	/* number of packets delivered w/ CE marks*/
1051 	long interval_us;	/* time for tp->delivered to incr "delivered" */
1052 	u32 snd_interval_us;	/* snd interval for delivered packets */
1053 	u32 rcv_interval_us;	/* rcv interval for delivered packets */
1054 	long rtt_us;		/* RTT of last (S)ACKed packet (or -1) */
1055 	int  losses;		/* number of packets marked lost upon ACK */
1056 	u32  acked_sacked;	/* number of packets newly (S)ACKed upon ACK */
1057 	u32  prior_in_flight;	/* in flight before this ACK */
1058 	u32  last_end_seq;	/* end_seq of most recently ACKed packet */
1059 	bool is_app_limited;	/* is sample from packet with bubble in pipe? */
1060 	bool is_retrans;	/* is sample from retransmission? */
1061 	bool is_ack_delayed;	/* is this (likely) a delayed ACK? */
1062 };
1063 
1064 struct tcp_congestion_ops {
1065 /* fast path fields are put first to fill one cache line */
1066 
1067 	/* return slow start threshold (required) */
1068 	u32 (*ssthresh)(struct sock *sk);
1069 
1070 	/* do new cwnd calculation (required) */
1071 	void (*cong_avoid)(struct sock *sk, u32 ack, u32 acked);
1072 
1073 	/* call before changing ca_state (optional) */
1074 	void (*set_state)(struct sock *sk, u8 new_state);
1075 
1076 	/* call when cwnd event occurs (optional) */
1077 	void (*cwnd_event)(struct sock *sk, enum tcp_ca_event ev);
1078 
1079 	/* call when ack arrives (optional) */
1080 	void (*in_ack_event)(struct sock *sk, u32 flags);
1081 
1082 	/* hook for packet ack accounting (optional) */
1083 	void (*pkts_acked)(struct sock *sk, const struct ack_sample *sample);
1084 
1085 	/* override sysctl_tcp_min_tso_segs */
1086 	u32 (*min_tso_segs)(struct sock *sk);
1087 
1088 	/* call when packets are delivered to update cwnd and pacing rate,
1089 	 * after all the ca_state processing. (optional)
1090 	 */
1091 	void (*cong_control)(struct sock *sk, const struct rate_sample *rs);
1092 
1093 
1094 	/* new value of cwnd after loss (required) */
1095 	u32  (*undo_cwnd)(struct sock *sk);
1096 	/* returns the multiplier used in tcp_sndbuf_expand (optional) */
1097 	u32 (*sndbuf_expand)(struct sock *sk);
1098 
1099 /* control/slow paths put last */
1100 	/* get info for inet_diag (optional) */
1101 	size_t (*get_info)(struct sock *sk, u32 ext, int *attr,
1102 			   union tcp_cc_info *info);
1103 
1104 	char 			name[TCP_CA_NAME_MAX];
1105 	struct module		*owner;
1106 	struct list_head	list;
1107 	u32			key;
1108 	u32			flags;
1109 
1110 	/* initialize private data (optional) */
1111 	void (*init)(struct sock *sk);
1112 	/* cleanup private data  (optional) */
1113 	void (*release)(struct sock *sk);
1114 } ____cacheline_aligned_in_smp;
1115 
1116 int tcp_register_congestion_control(struct tcp_congestion_ops *type);
1117 void tcp_unregister_congestion_control(struct tcp_congestion_ops *type);
1118 
1119 void tcp_assign_congestion_control(struct sock *sk);
1120 void tcp_init_congestion_control(struct sock *sk);
1121 void tcp_cleanup_congestion_control(struct sock *sk);
1122 int tcp_set_default_congestion_control(struct net *net, const char *name);
1123 void tcp_get_default_congestion_control(struct net *net, char *name);
1124 void tcp_get_available_congestion_control(char *buf, size_t len);
1125 void tcp_get_allowed_congestion_control(char *buf, size_t len);
1126 int tcp_set_allowed_congestion_control(char *allowed);
1127 int tcp_set_congestion_control(struct sock *sk, const char *name, bool load,
1128 			       bool cap_net_admin);
1129 u32 tcp_slow_start(struct tcp_sock *tp, u32 acked);
1130 void tcp_cong_avoid_ai(struct tcp_sock *tp, u32 w, u32 acked);
1131 
1132 u32 tcp_reno_ssthresh(struct sock *sk);
1133 u32 tcp_reno_undo_cwnd(struct sock *sk);
1134 void tcp_reno_cong_avoid(struct sock *sk, u32 ack, u32 acked);
1135 extern struct tcp_congestion_ops tcp_reno;
1136 
1137 struct tcp_congestion_ops *tcp_ca_find(const char *name);
1138 struct tcp_congestion_ops *tcp_ca_find_key(u32 key);
1139 u32 tcp_ca_get_key_by_name(struct net *net, const char *name, bool *ecn_ca);
1140 #ifdef CONFIG_INET
1141 char *tcp_ca_get_name_by_key(u32 key, char *buffer);
1142 #else
1143 static inline char *tcp_ca_get_name_by_key(u32 key, char *buffer)
1144 {
1145 	return NULL;
1146 }
1147 #endif
1148 
1149 static inline bool tcp_ca_needs_ecn(const struct sock *sk)
1150 {
1151 	const struct inet_connection_sock *icsk = inet_csk(sk);
1152 
1153 	return icsk->icsk_ca_ops->flags & TCP_CONG_NEEDS_ECN;
1154 }
1155 
1156 static inline void tcp_ca_event(struct sock *sk, const enum tcp_ca_event event)
1157 {
1158 	const struct inet_connection_sock *icsk = inet_csk(sk);
1159 
1160 	if (icsk->icsk_ca_ops->cwnd_event)
1161 		icsk->icsk_ca_ops->cwnd_event(sk, event);
1162 }
1163 
1164 /* From tcp_cong.c */
1165 void tcp_set_ca_state(struct sock *sk, const u8 ca_state);
1166 
1167 /* From tcp_rate.c */
1168 void tcp_rate_skb_sent(struct sock *sk, struct sk_buff *skb);
1169 void tcp_rate_skb_delivered(struct sock *sk, struct sk_buff *skb,
1170 			    struct rate_sample *rs);
1171 void tcp_rate_gen(struct sock *sk, u32 delivered, u32 lost,
1172 		  bool is_sack_reneg, struct rate_sample *rs);
1173 void tcp_rate_check_app_limited(struct sock *sk);
1174 
1175 static inline bool tcp_skb_sent_after(u64 t1, u64 t2, u32 seq1, u32 seq2)
1176 {
1177 	return t1 > t2 || (t1 == t2 && after(seq1, seq2));
1178 }
1179 
1180 /* These functions determine how the current flow behaves in respect of SACK
1181  * handling. SACK is negotiated with the peer, and therefore it can vary
1182  * between different flows.
1183  *
1184  * tcp_is_sack - SACK enabled
1185  * tcp_is_reno - No SACK
1186  */
1187 static inline int tcp_is_sack(const struct tcp_sock *tp)
1188 {
1189 	return likely(tp->rx_opt.sack_ok);
1190 }
1191 
1192 static inline bool tcp_is_reno(const struct tcp_sock *tp)
1193 {
1194 	return !tcp_is_sack(tp);
1195 }
1196 
1197 static inline unsigned int tcp_left_out(const struct tcp_sock *tp)
1198 {
1199 	return tp->sacked_out + tp->lost_out;
1200 }
1201 
1202 /* This determines how many packets are "in the network" to the best
1203  * of our knowledge.  In many cases it is conservative, but where
1204  * detailed information is available from the receiver (via SACK
1205  * blocks etc.) we can make more aggressive calculations.
1206  *
1207  * Use this for decisions involving congestion control, use just
1208  * tp->packets_out to determine if the send queue is empty or not.
1209  *
1210  * Read this equation as:
1211  *
1212  *	"Packets sent once on transmission queue" MINUS
1213  *	"Packets left network, but not honestly ACKed yet" PLUS
1214  *	"Packets fast retransmitted"
1215  */
1216 static inline unsigned int tcp_packets_in_flight(const struct tcp_sock *tp)
1217 {
1218 	return tp->packets_out - tcp_left_out(tp) + tp->retrans_out;
1219 }
1220 
1221 #define TCP_INFINITE_SSTHRESH	0x7fffffff
1222 
1223 static inline u32 tcp_snd_cwnd(const struct tcp_sock *tp)
1224 {
1225 	return tp->snd_cwnd;
1226 }
1227 
1228 static inline void tcp_snd_cwnd_set(struct tcp_sock *tp, u32 val)
1229 {
1230 	WARN_ON_ONCE((int)val <= 0);
1231 	tp->snd_cwnd = val;
1232 }
1233 
1234 static inline bool tcp_in_slow_start(const struct tcp_sock *tp)
1235 {
1236 	return tcp_snd_cwnd(tp) < tp->snd_ssthresh;
1237 }
1238 
1239 static inline bool tcp_in_initial_slowstart(const struct tcp_sock *tp)
1240 {
1241 	return tp->snd_ssthresh >= TCP_INFINITE_SSTHRESH;
1242 }
1243 
1244 static inline bool tcp_in_cwnd_reduction(const struct sock *sk)
1245 {
1246 	return (TCPF_CA_CWR | TCPF_CA_Recovery) &
1247 	       (1 << inet_csk(sk)->icsk_ca_state);
1248 }
1249 
1250 /* If cwnd > ssthresh, we may raise ssthresh to be half-way to cwnd.
1251  * The exception is cwnd reduction phase, when cwnd is decreasing towards
1252  * ssthresh.
1253  */
1254 static inline __u32 tcp_current_ssthresh(const struct sock *sk)
1255 {
1256 	const struct tcp_sock *tp = tcp_sk(sk);
1257 
1258 	if (tcp_in_cwnd_reduction(sk))
1259 		return tp->snd_ssthresh;
1260 	else
1261 		return max(tp->snd_ssthresh,
1262 			   ((tcp_snd_cwnd(tp) >> 1) +
1263 			    (tcp_snd_cwnd(tp) >> 2)));
1264 }
1265 
1266 /* Use define here intentionally to get WARN_ON location shown at the caller */
1267 #define tcp_verify_left_out(tp)	WARN_ON(tcp_left_out(tp) > tp->packets_out)
1268 
1269 void tcp_enter_cwr(struct sock *sk);
1270 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst);
1271 
1272 /* The maximum number of MSS of available cwnd for which TSO defers
1273  * sending if not using sysctl_tcp_tso_win_divisor.
1274  */
1275 static inline __u32 tcp_max_tso_deferred_mss(const struct tcp_sock *tp)
1276 {
1277 	return 3;
1278 }
1279 
1280 /* Returns end sequence number of the receiver's advertised window */
1281 static inline u32 tcp_wnd_end(const struct tcp_sock *tp)
1282 {
1283 	return tp->snd_una + tp->snd_wnd;
1284 }
1285 
1286 /* We follow the spirit of RFC2861 to validate cwnd but implement a more
1287  * flexible approach. The RFC suggests cwnd should not be raised unless
1288  * it was fully used previously. And that's exactly what we do in
1289  * congestion avoidance mode. But in slow start we allow cwnd to grow
1290  * as long as the application has used half the cwnd.
1291  * Example :
1292  *    cwnd is 10 (IW10), but application sends 9 frames.
1293  *    We allow cwnd to reach 18 when all frames are ACKed.
1294  * This check is safe because it's as aggressive as slow start which already
1295  * risks 100% overshoot. The advantage is that we discourage application to
1296  * either send more filler packets or data to artificially blow up the cwnd
1297  * usage, and allow application-limited process to probe bw more aggressively.
1298  */
1299 static inline bool tcp_is_cwnd_limited(const struct sock *sk)
1300 {
1301 	const struct tcp_sock *tp = tcp_sk(sk);
1302 
1303 	/* If in slow start, ensure cwnd grows to twice what was ACKed. */
1304 	if (tcp_in_slow_start(tp))
1305 		return tcp_snd_cwnd(tp) < 2 * tp->max_packets_out;
1306 
1307 	return tp->is_cwnd_limited;
1308 }
1309 
1310 /* BBR congestion control needs pacing.
1311  * Same remark for SO_MAX_PACING_RATE.
1312  * sch_fq packet scheduler is efficiently handling pacing,
1313  * but is not always installed/used.
1314  * Return true if TCP stack should pace packets itself.
1315  */
1316 static inline bool tcp_needs_internal_pacing(const struct sock *sk)
1317 {
1318 	return smp_load_acquire(&sk->sk_pacing_status) == SK_PACING_NEEDED;
1319 }
1320 
1321 /* Estimates in how many jiffies next packet for this flow can be sent.
1322  * Scheduling a retransmit timer too early would be silly.
1323  */
1324 static inline unsigned long tcp_pacing_delay(const struct sock *sk)
1325 {
1326 	s64 delay = tcp_sk(sk)->tcp_wstamp_ns - tcp_sk(sk)->tcp_clock_cache;
1327 
1328 	return delay > 0 ? nsecs_to_jiffies(delay) : 0;
1329 }
1330 
1331 static inline void tcp_reset_xmit_timer(struct sock *sk,
1332 					const int what,
1333 					unsigned long when,
1334 					const unsigned long max_when)
1335 {
1336 	inet_csk_reset_xmit_timer(sk, what, when + tcp_pacing_delay(sk),
1337 				  max_when);
1338 }
1339 
1340 /* Something is really bad, we could not queue an additional packet,
1341  * because qdisc is full or receiver sent a 0 window, or we are paced.
1342  * We do not want to add fuel to the fire, or abort too early,
1343  * so make sure the timer we arm now is at least 200ms in the future,
1344  * regardless of current icsk_rto value (as it could be ~2ms)
1345  */
1346 static inline unsigned long tcp_probe0_base(const struct sock *sk)
1347 {
1348 	return max_t(unsigned long, inet_csk(sk)->icsk_rto, TCP_RTO_MIN);
1349 }
1350 
1351 /* Variant of inet_csk_rto_backoff() used for zero window probes */
1352 static inline unsigned long tcp_probe0_when(const struct sock *sk,
1353 					    unsigned long max_when)
1354 {
1355 	u8 backoff = min_t(u8, ilog2(TCP_RTO_MAX / TCP_RTO_MIN) + 1,
1356 			   inet_csk(sk)->icsk_backoff);
1357 	u64 when = (u64)tcp_probe0_base(sk) << backoff;
1358 
1359 	return (unsigned long)min_t(u64, when, max_when);
1360 }
1361 
1362 static inline void tcp_check_probe_timer(struct sock *sk)
1363 {
1364 	if (!tcp_sk(sk)->packets_out && !inet_csk(sk)->icsk_pending)
1365 		tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
1366 				     tcp_probe0_base(sk), TCP_RTO_MAX);
1367 }
1368 
1369 static inline void tcp_init_wl(struct tcp_sock *tp, u32 seq)
1370 {
1371 	tp->snd_wl1 = seq;
1372 }
1373 
1374 static inline void tcp_update_wl(struct tcp_sock *tp, u32 seq)
1375 {
1376 	tp->snd_wl1 = seq;
1377 }
1378 
1379 /*
1380  * Calculate(/check) TCP checksum
1381  */
1382 static inline __sum16 tcp_v4_check(int len, __be32 saddr,
1383 				   __be32 daddr, __wsum base)
1384 {
1385 	return csum_tcpudp_magic(saddr, daddr, len, IPPROTO_TCP, base);
1386 }
1387 
1388 static inline bool tcp_checksum_complete(struct sk_buff *skb)
1389 {
1390 	return !skb_csum_unnecessary(skb) &&
1391 		__skb_checksum_complete(skb);
1392 }
1393 
1394 bool tcp_add_backlog(struct sock *sk, struct sk_buff *skb,
1395 		     enum skb_drop_reason *reason);
1396 
1397 
1398 int tcp_filter(struct sock *sk, struct sk_buff *skb);
1399 void tcp_set_state(struct sock *sk, int state);
1400 void tcp_done(struct sock *sk);
1401 int tcp_abort(struct sock *sk, int err);
1402 
1403 static inline void tcp_sack_reset(struct tcp_options_received *rx_opt)
1404 {
1405 	rx_opt->dsack = 0;
1406 	rx_opt->num_sacks = 0;
1407 }
1408 
1409 void tcp_cwnd_restart(struct sock *sk, s32 delta);
1410 
1411 static inline void tcp_slow_start_after_idle_check(struct sock *sk)
1412 {
1413 	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1414 	struct tcp_sock *tp = tcp_sk(sk);
1415 	s32 delta;
1416 
1417 	if (!READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_slow_start_after_idle) ||
1418 	    tp->packets_out || ca_ops->cong_control)
1419 		return;
1420 	delta = tcp_jiffies32 - tp->lsndtime;
1421 	if (delta > inet_csk(sk)->icsk_rto)
1422 		tcp_cwnd_restart(sk, delta);
1423 }
1424 
1425 /* Determine a window scaling and initial window to offer. */
1426 void tcp_select_initial_window(const struct sock *sk, int __space,
1427 			       __u32 mss, __u32 *rcv_wnd,
1428 			       __u32 *window_clamp, int wscale_ok,
1429 			       __u8 *rcv_wscale, __u32 init_rcv_wnd);
1430 
1431 static inline int tcp_win_from_space(const struct sock *sk, int space)
1432 {
1433 	int tcp_adv_win_scale = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_adv_win_scale);
1434 
1435 	return tcp_adv_win_scale <= 0 ?
1436 		(space>>(-tcp_adv_win_scale)) :
1437 		space - (space>>tcp_adv_win_scale);
1438 }
1439 
1440 /* Note: caller must be prepared to deal with negative returns */
1441 static inline int tcp_space(const struct sock *sk)
1442 {
1443 	return tcp_win_from_space(sk, READ_ONCE(sk->sk_rcvbuf) -
1444 				  READ_ONCE(sk->sk_backlog.len) -
1445 				  atomic_read(&sk->sk_rmem_alloc));
1446 }
1447 
1448 static inline int tcp_full_space(const struct sock *sk)
1449 {
1450 	return tcp_win_from_space(sk, READ_ONCE(sk->sk_rcvbuf));
1451 }
1452 
1453 static inline void tcp_adjust_rcv_ssthresh(struct sock *sk)
1454 {
1455 	int unused_mem = sk_unused_reserved_mem(sk);
1456 	struct tcp_sock *tp = tcp_sk(sk);
1457 
1458 	tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
1459 	if (unused_mem)
1460 		tp->rcv_ssthresh = max_t(u32, tp->rcv_ssthresh,
1461 					 tcp_win_from_space(sk, unused_mem));
1462 }
1463 
1464 void tcp_cleanup_rbuf(struct sock *sk, int copied);
1465 
1466 /* We provision sk_rcvbuf around 200% of sk_rcvlowat.
1467  * If 87.5 % (7/8) of the space has been consumed, we want to override
1468  * SO_RCVLOWAT constraint, since we are receiving skbs with too small
1469  * len/truesize ratio.
1470  */
1471 static inline bool tcp_rmem_pressure(const struct sock *sk)
1472 {
1473 	int rcvbuf, threshold;
1474 
1475 	if (tcp_under_memory_pressure(sk))
1476 		return true;
1477 
1478 	rcvbuf = READ_ONCE(sk->sk_rcvbuf);
1479 	threshold = rcvbuf - (rcvbuf >> 3);
1480 
1481 	return atomic_read(&sk->sk_rmem_alloc) > threshold;
1482 }
1483 
1484 static inline bool tcp_epollin_ready(const struct sock *sk, int target)
1485 {
1486 	const struct tcp_sock *tp = tcp_sk(sk);
1487 	int avail = READ_ONCE(tp->rcv_nxt) - READ_ONCE(tp->copied_seq);
1488 
1489 	if (avail <= 0)
1490 		return false;
1491 
1492 	return (avail >= target) || tcp_rmem_pressure(sk) ||
1493 	       (tcp_receive_window(tp) <= inet_csk(sk)->icsk_ack.rcv_mss);
1494 }
1495 
1496 extern void tcp_openreq_init_rwin(struct request_sock *req,
1497 				  const struct sock *sk_listener,
1498 				  const struct dst_entry *dst);
1499 
1500 void tcp_enter_memory_pressure(struct sock *sk);
1501 void tcp_leave_memory_pressure(struct sock *sk);
1502 
1503 static inline int keepalive_intvl_when(const struct tcp_sock *tp)
1504 {
1505 	struct net *net = sock_net((struct sock *)tp);
1506 
1507 	return tp->keepalive_intvl ? :
1508 		READ_ONCE(net->ipv4.sysctl_tcp_keepalive_intvl);
1509 }
1510 
1511 static inline int keepalive_time_when(const struct tcp_sock *tp)
1512 {
1513 	struct net *net = sock_net((struct sock *)tp);
1514 
1515 	return tp->keepalive_time ? :
1516 		READ_ONCE(net->ipv4.sysctl_tcp_keepalive_time);
1517 }
1518 
1519 static inline int keepalive_probes(const struct tcp_sock *tp)
1520 {
1521 	struct net *net = sock_net((struct sock *)tp);
1522 
1523 	return tp->keepalive_probes ? :
1524 		READ_ONCE(net->ipv4.sysctl_tcp_keepalive_probes);
1525 }
1526 
1527 static inline u32 keepalive_time_elapsed(const struct tcp_sock *tp)
1528 {
1529 	const struct inet_connection_sock *icsk = &tp->inet_conn;
1530 
1531 	return min_t(u32, tcp_jiffies32 - icsk->icsk_ack.lrcvtime,
1532 			  tcp_jiffies32 - tp->rcv_tstamp);
1533 }
1534 
1535 static inline int tcp_fin_time(const struct sock *sk)
1536 {
1537 	int fin_timeout = tcp_sk(sk)->linger2 ? :
1538 		READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_fin_timeout);
1539 	const int rto = inet_csk(sk)->icsk_rto;
1540 
1541 	if (fin_timeout < (rto << 2) - (rto >> 1))
1542 		fin_timeout = (rto << 2) - (rto >> 1);
1543 
1544 	return fin_timeout;
1545 }
1546 
1547 static inline bool tcp_paws_check(const struct tcp_options_received *rx_opt,
1548 				  int paws_win)
1549 {
1550 	if ((s32)(rx_opt->ts_recent - rx_opt->rcv_tsval) <= paws_win)
1551 		return true;
1552 	if (unlikely(!time_before32(ktime_get_seconds(),
1553 				    rx_opt->ts_recent_stamp + TCP_PAWS_24DAYS)))
1554 		return true;
1555 	/*
1556 	 * Some OSes send SYN and SYNACK messages with tsval=0 tsecr=0,
1557 	 * then following tcp messages have valid values. Ignore 0 value,
1558 	 * or else 'negative' tsval might forbid us to accept their packets.
1559 	 */
1560 	if (!rx_opt->ts_recent)
1561 		return true;
1562 	return false;
1563 }
1564 
1565 static inline bool tcp_paws_reject(const struct tcp_options_received *rx_opt,
1566 				   int rst)
1567 {
1568 	if (tcp_paws_check(rx_opt, 0))
1569 		return false;
1570 
1571 	/* RST segments are not recommended to carry timestamp,
1572 	   and, if they do, it is recommended to ignore PAWS because
1573 	   "their cleanup function should take precedence over timestamps."
1574 	   Certainly, it is mistake. It is necessary to understand the reasons
1575 	   of this constraint to relax it: if peer reboots, clock may go
1576 	   out-of-sync and half-open connections will not be reset.
1577 	   Actually, the problem would be not existing if all
1578 	   the implementations followed draft about maintaining clock
1579 	   via reboots. Linux-2.2 DOES NOT!
1580 
1581 	   However, we can relax time bounds for RST segments to MSL.
1582 	 */
1583 	if (rst && !time_before32(ktime_get_seconds(),
1584 				  rx_opt->ts_recent_stamp + TCP_PAWS_MSL))
1585 		return false;
1586 	return true;
1587 }
1588 
1589 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
1590 			  int mib_idx, u32 *last_oow_ack_time);
1591 
1592 static inline void tcp_mib_init(struct net *net)
1593 {
1594 	/* See RFC 2012 */
1595 	TCP_ADD_STATS(net, TCP_MIB_RTOALGORITHM, 1);
1596 	TCP_ADD_STATS(net, TCP_MIB_RTOMIN, TCP_RTO_MIN*1000/HZ);
1597 	TCP_ADD_STATS(net, TCP_MIB_RTOMAX, TCP_RTO_MAX*1000/HZ);
1598 	TCP_ADD_STATS(net, TCP_MIB_MAXCONN, -1);
1599 }
1600 
1601 /* from STCP */
1602 static inline void tcp_clear_retrans_hints_partial(struct tcp_sock *tp)
1603 {
1604 	tp->lost_skb_hint = NULL;
1605 }
1606 
1607 static inline void tcp_clear_all_retrans_hints(struct tcp_sock *tp)
1608 {
1609 	tcp_clear_retrans_hints_partial(tp);
1610 	tp->retransmit_skb_hint = NULL;
1611 }
1612 
1613 union tcp_md5_addr {
1614 	struct in_addr  a4;
1615 #if IS_ENABLED(CONFIG_IPV6)
1616 	struct in6_addr	a6;
1617 #endif
1618 };
1619 
1620 /* - key database */
1621 struct tcp_md5sig_key {
1622 	struct hlist_node	node;
1623 	u8			keylen;
1624 	u8			family; /* AF_INET or AF_INET6 */
1625 	u8			prefixlen;
1626 	u8			flags;
1627 	union tcp_md5_addr	addr;
1628 	int			l3index; /* set if key added with L3 scope */
1629 	u8			key[TCP_MD5SIG_MAXKEYLEN];
1630 	struct rcu_head		rcu;
1631 };
1632 
1633 /* - sock block */
1634 struct tcp_md5sig_info {
1635 	struct hlist_head	head;
1636 	struct rcu_head		rcu;
1637 };
1638 
1639 /* - pseudo header */
1640 struct tcp4_pseudohdr {
1641 	__be32		saddr;
1642 	__be32		daddr;
1643 	__u8		pad;
1644 	__u8		protocol;
1645 	__be16		len;
1646 };
1647 
1648 struct tcp6_pseudohdr {
1649 	struct in6_addr	saddr;
1650 	struct in6_addr daddr;
1651 	__be32		len;
1652 	__be32		protocol;	/* including padding */
1653 };
1654 
1655 union tcp_md5sum_block {
1656 	struct tcp4_pseudohdr ip4;
1657 #if IS_ENABLED(CONFIG_IPV6)
1658 	struct tcp6_pseudohdr ip6;
1659 #endif
1660 };
1661 
1662 /* - pool: digest algorithm, hash description and scratch buffer */
1663 struct tcp_md5sig_pool {
1664 	struct ahash_request	*md5_req;
1665 	void			*scratch;
1666 };
1667 
1668 /* - functions */
1669 int tcp_v4_md5_hash_skb(char *md5_hash, const struct tcp_md5sig_key *key,
1670 			const struct sock *sk, const struct sk_buff *skb);
1671 int tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr,
1672 		   int family, u8 prefixlen, int l3index, u8 flags,
1673 		   const u8 *newkey, u8 newkeylen, gfp_t gfp);
1674 int tcp_md5_do_del(struct sock *sk, const union tcp_md5_addr *addr,
1675 		   int family, u8 prefixlen, int l3index, u8 flags);
1676 struct tcp_md5sig_key *tcp_v4_md5_lookup(const struct sock *sk,
1677 					 const struct sock *addr_sk);
1678 
1679 #ifdef CONFIG_TCP_MD5SIG
1680 #include <linux/jump_label.h>
1681 extern struct static_key_false tcp_md5_needed;
1682 struct tcp_md5sig_key *__tcp_md5_do_lookup(const struct sock *sk, int l3index,
1683 					   const union tcp_md5_addr *addr,
1684 					   int family);
1685 static inline struct tcp_md5sig_key *
1686 tcp_md5_do_lookup(const struct sock *sk, int l3index,
1687 		  const union tcp_md5_addr *addr, int family)
1688 {
1689 	if (!static_branch_unlikely(&tcp_md5_needed))
1690 		return NULL;
1691 	return __tcp_md5_do_lookup(sk, l3index, addr, family);
1692 }
1693 
1694 enum skb_drop_reason
1695 tcp_inbound_md5_hash(const struct sock *sk, const struct sk_buff *skb,
1696 		     const void *saddr, const void *daddr,
1697 		     int family, int dif, int sdif);
1698 
1699 
1700 #define tcp_twsk_md5_key(twsk)	((twsk)->tw_md5_key)
1701 #else
1702 static inline struct tcp_md5sig_key *
1703 tcp_md5_do_lookup(const struct sock *sk, int l3index,
1704 		  const union tcp_md5_addr *addr, int family)
1705 {
1706 	return NULL;
1707 }
1708 
1709 static inline enum skb_drop_reason
1710 tcp_inbound_md5_hash(const struct sock *sk, const struct sk_buff *skb,
1711 		     const void *saddr, const void *daddr,
1712 		     int family, int dif, int sdif)
1713 {
1714 	return SKB_NOT_DROPPED_YET;
1715 }
1716 #define tcp_twsk_md5_key(twsk)	NULL
1717 #endif
1718 
1719 bool tcp_alloc_md5sig_pool(void);
1720 
1721 struct tcp_md5sig_pool *tcp_get_md5sig_pool(void);
1722 static inline void tcp_put_md5sig_pool(void)
1723 {
1724 	local_bh_enable();
1725 }
1726 
1727 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *, const struct sk_buff *,
1728 			  unsigned int header_len);
1729 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp,
1730 		     const struct tcp_md5sig_key *key);
1731 
1732 /* From tcp_fastopen.c */
1733 void tcp_fastopen_cache_get(struct sock *sk, u16 *mss,
1734 			    struct tcp_fastopen_cookie *cookie);
1735 void tcp_fastopen_cache_set(struct sock *sk, u16 mss,
1736 			    struct tcp_fastopen_cookie *cookie, bool syn_lost,
1737 			    u16 try_exp);
1738 struct tcp_fastopen_request {
1739 	/* Fast Open cookie. Size 0 means a cookie request */
1740 	struct tcp_fastopen_cookie	cookie;
1741 	struct msghdr			*data;  /* data in MSG_FASTOPEN */
1742 	size_t				size;
1743 	int				copied;	/* queued in tcp_connect() */
1744 	struct ubuf_info		*uarg;
1745 };
1746 void tcp_free_fastopen_req(struct tcp_sock *tp);
1747 void tcp_fastopen_destroy_cipher(struct sock *sk);
1748 void tcp_fastopen_ctx_destroy(struct net *net);
1749 int tcp_fastopen_reset_cipher(struct net *net, struct sock *sk,
1750 			      void *primary_key, void *backup_key);
1751 int tcp_fastopen_get_cipher(struct net *net, struct inet_connection_sock *icsk,
1752 			    u64 *key);
1753 void tcp_fastopen_add_skb(struct sock *sk, struct sk_buff *skb);
1754 struct sock *tcp_try_fastopen(struct sock *sk, struct sk_buff *skb,
1755 			      struct request_sock *req,
1756 			      struct tcp_fastopen_cookie *foc,
1757 			      const struct dst_entry *dst);
1758 void tcp_fastopen_init_key_once(struct net *net);
1759 bool tcp_fastopen_cookie_check(struct sock *sk, u16 *mss,
1760 			     struct tcp_fastopen_cookie *cookie);
1761 bool tcp_fastopen_defer_connect(struct sock *sk, int *err);
1762 #define TCP_FASTOPEN_KEY_LENGTH sizeof(siphash_key_t)
1763 #define TCP_FASTOPEN_KEY_MAX 2
1764 #define TCP_FASTOPEN_KEY_BUF_LENGTH \
1765 	(TCP_FASTOPEN_KEY_LENGTH * TCP_FASTOPEN_KEY_MAX)
1766 
1767 /* Fastopen key context */
1768 struct tcp_fastopen_context {
1769 	siphash_key_t	key[TCP_FASTOPEN_KEY_MAX];
1770 	int		num;
1771 	struct rcu_head	rcu;
1772 };
1773 
1774 void tcp_fastopen_active_disable(struct sock *sk);
1775 bool tcp_fastopen_active_should_disable(struct sock *sk);
1776 void tcp_fastopen_active_disable_ofo_check(struct sock *sk);
1777 void tcp_fastopen_active_detect_blackhole(struct sock *sk, bool expired);
1778 
1779 /* Caller needs to wrap with rcu_read_(un)lock() */
1780 static inline
1781 struct tcp_fastopen_context *tcp_fastopen_get_ctx(const struct sock *sk)
1782 {
1783 	struct tcp_fastopen_context *ctx;
1784 
1785 	ctx = rcu_dereference(inet_csk(sk)->icsk_accept_queue.fastopenq.ctx);
1786 	if (!ctx)
1787 		ctx = rcu_dereference(sock_net(sk)->ipv4.tcp_fastopen_ctx);
1788 	return ctx;
1789 }
1790 
1791 static inline
1792 bool tcp_fastopen_cookie_match(const struct tcp_fastopen_cookie *foc,
1793 			       const struct tcp_fastopen_cookie *orig)
1794 {
1795 	if (orig->len == TCP_FASTOPEN_COOKIE_SIZE &&
1796 	    orig->len == foc->len &&
1797 	    !memcmp(orig->val, foc->val, foc->len))
1798 		return true;
1799 	return false;
1800 }
1801 
1802 static inline
1803 int tcp_fastopen_context_len(const struct tcp_fastopen_context *ctx)
1804 {
1805 	return ctx->num;
1806 }
1807 
1808 /* Latencies incurred by various limits for a sender. They are
1809  * chronograph-like stats that are mutually exclusive.
1810  */
1811 enum tcp_chrono {
1812 	TCP_CHRONO_UNSPEC,
1813 	TCP_CHRONO_BUSY, /* Actively sending data (non-empty write queue) */
1814 	TCP_CHRONO_RWND_LIMITED, /* Stalled by insufficient receive window */
1815 	TCP_CHRONO_SNDBUF_LIMITED, /* Stalled by insufficient send buffer */
1816 	__TCP_CHRONO_MAX,
1817 };
1818 
1819 void tcp_chrono_start(struct sock *sk, const enum tcp_chrono type);
1820 void tcp_chrono_stop(struct sock *sk, const enum tcp_chrono type);
1821 
1822 /* This helper is needed, because skb->tcp_tsorted_anchor uses
1823  * the same memory storage than skb->destructor/_skb_refdst
1824  */
1825 static inline void tcp_skb_tsorted_anchor_cleanup(struct sk_buff *skb)
1826 {
1827 	skb->destructor = NULL;
1828 	skb->_skb_refdst = 0UL;
1829 }
1830 
1831 #define tcp_skb_tsorted_save(skb) {		\
1832 	unsigned long _save = skb->_skb_refdst;	\
1833 	skb->_skb_refdst = 0UL;
1834 
1835 #define tcp_skb_tsorted_restore(skb)		\
1836 	skb->_skb_refdst = _save;		\
1837 }
1838 
1839 void tcp_write_queue_purge(struct sock *sk);
1840 
1841 static inline struct sk_buff *tcp_rtx_queue_head(const struct sock *sk)
1842 {
1843 	return skb_rb_first(&sk->tcp_rtx_queue);
1844 }
1845 
1846 static inline struct sk_buff *tcp_rtx_queue_tail(const struct sock *sk)
1847 {
1848 	return skb_rb_last(&sk->tcp_rtx_queue);
1849 }
1850 
1851 static inline struct sk_buff *tcp_write_queue_tail(const struct sock *sk)
1852 {
1853 	return skb_peek_tail(&sk->sk_write_queue);
1854 }
1855 
1856 #define tcp_for_write_queue_from_safe(skb, tmp, sk)			\
1857 	skb_queue_walk_from_safe(&(sk)->sk_write_queue, skb, tmp)
1858 
1859 static inline struct sk_buff *tcp_send_head(const struct sock *sk)
1860 {
1861 	return skb_peek(&sk->sk_write_queue);
1862 }
1863 
1864 static inline bool tcp_skb_is_last(const struct sock *sk,
1865 				   const struct sk_buff *skb)
1866 {
1867 	return skb_queue_is_last(&sk->sk_write_queue, skb);
1868 }
1869 
1870 /**
1871  * tcp_write_queue_empty - test if any payload (or FIN) is available in write queue
1872  * @sk: socket
1873  *
1874  * Since the write queue can have a temporary empty skb in it,
1875  * we must not use "return skb_queue_empty(&sk->sk_write_queue)"
1876  */
1877 static inline bool tcp_write_queue_empty(const struct sock *sk)
1878 {
1879 	const struct tcp_sock *tp = tcp_sk(sk);
1880 
1881 	return tp->write_seq == tp->snd_nxt;
1882 }
1883 
1884 static inline bool tcp_rtx_queue_empty(const struct sock *sk)
1885 {
1886 	return RB_EMPTY_ROOT(&sk->tcp_rtx_queue);
1887 }
1888 
1889 static inline bool tcp_rtx_and_write_queues_empty(const struct sock *sk)
1890 {
1891 	return tcp_rtx_queue_empty(sk) && tcp_write_queue_empty(sk);
1892 }
1893 
1894 static inline void tcp_add_write_queue_tail(struct sock *sk, struct sk_buff *skb)
1895 {
1896 	__skb_queue_tail(&sk->sk_write_queue, skb);
1897 
1898 	/* Queue it, remembering where we must start sending. */
1899 	if (sk->sk_write_queue.next == skb)
1900 		tcp_chrono_start(sk, TCP_CHRONO_BUSY);
1901 }
1902 
1903 /* Insert new before skb on the write queue of sk.  */
1904 static inline void tcp_insert_write_queue_before(struct sk_buff *new,
1905 						  struct sk_buff *skb,
1906 						  struct sock *sk)
1907 {
1908 	__skb_queue_before(&sk->sk_write_queue, skb, new);
1909 }
1910 
1911 static inline void tcp_unlink_write_queue(struct sk_buff *skb, struct sock *sk)
1912 {
1913 	tcp_skb_tsorted_anchor_cleanup(skb);
1914 	__skb_unlink(skb, &sk->sk_write_queue);
1915 }
1916 
1917 void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb);
1918 
1919 static inline void tcp_rtx_queue_unlink(struct sk_buff *skb, struct sock *sk)
1920 {
1921 	tcp_skb_tsorted_anchor_cleanup(skb);
1922 	rb_erase(&skb->rbnode, &sk->tcp_rtx_queue);
1923 }
1924 
1925 static inline void tcp_rtx_queue_unlink_and_free(struct sk_buff *skb, struct sock *sk)
1926 {
1927 	list_del(&skb->tcp_tsorted_anchor);
1928 	tcp_rtx_queue_unlink(skb, sk);
1929 	tcp_wmem_free_skb(sk, skb);
1930 }
1931 
1932 static inline void tcp_push_pending_frames(struct sock *sk)
1933 {
1934 	if (tcp_send_head(sk)) {
1935 		struct tcp_sock *tp = tcp_sk(sk);
1936 
1937 		__tcp_push_pending_frames(sk, tcp_current_mss(sk), tp->nonagle);
1938 	}
1939 }
1940 
1941 /* Start sequence of the skb just after the highest skb with SACKed
1942  * bit, valid only if sacked_out > 0 or when the caller has ensured
1943  * validity by itself.
1944  */
1945 static inline u32 tcp_highest_sack_seq(struct tcp_sock *tp)
1946 {
1947 	if (!tp->sacked_out)
1948 		return tp->snd_una;
1949 
1950 	if (tp->highest_sack == NULL)
1951 		return tp->snd_nxt;
1952 
1953 	return TCP_SKB_CB(tp->highest_sack)->seq;
1954 }
1955 
1956 static inline void tcp_advance_highest_sack(struct sock *sk, struct sk_buff *skb)
1957 {
1958 	tcp_sk(sk)->highest_sack = skb_rb_next(skb);
1959 }
1960 
1961 static inline struct sk_buff *tcp_highest_sack(struct sock *sk)
1962 {
1963 	return tcp_sk(sk)->highest_sack;
1964 }
1965 
1966 static inline void tcp_highest_sack_reset(struct sock *sk)
1967 {
1968 	tcp_sk(sk)->highest_sack = tcp_rtx_queue_head(sk);
1969 }
1970 
1971 /* Called when old skb is about to be deleted and replaced by new skb */
1972 static inline void tcp_highest_sack_replace(struct sock *sk,
1973 					    struct sk_buff *old,
1974 					    struct sk_buff *new)
1975 {
1976 	if (old == tcp_highest_sack(sk))
1977 		tcp_sk(sk)->highest_sack = new;
1978 }
1979 
1980 /* This helper checks if socket has IP_TRANSPARENT set */
1981 static inline bool inet_sk_transparent(const struct sock *sk)
1982 {
1983 	switch (sk->sk_state) {
1984 	case TCP_TIME_WAIT:
1985 		return inet_twsk(sk)->tw_transparent;
1986 	case TCP_NEW_SYN_RECV:
1987 		return inet_rsk(inet_reqsk(sk))->no_srccheck;
1988 	}
1989 	return inet_sk(sk)->transparent;
1990 }
1991 
1992 /* Determines whether this is a thin stream (which may suffer from
1993  * increased latency). Used to trigger latency-reducing mechanisms.
1994  */
1995 static inline bool tcp_stream_is_thin(struct tcp_sock *tp)
1996 {
1997 	return tp->packets_out < 4 && !tcp_in_initial_slowstart(tp);
1998 }
1999 
2000 /* /proc */
2001 enum tcp_seq_states {
2002 	TCP_SEQ_STATE_LISTENING,
2003 	TCP_SEQ_STATE_ESTABLISHED,
2004 };
2005 
2006 void *tcp_seq_start(struct seq_file *seq, loff_t *pos);
2007 void *tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos);
2008 void tcp_seq_stop(struct seq_file *seq, void *v);
2009 
2010 struct tcp_seq_afinfo {
2011 	sa_family_t			family;
2012 };
2013 
2014 struct tcp_iter_state {
2015 	struct seq_net_private	p;
2016 	enum tcp_seq_states	state;
2017 	struct sock		*syn_wait_sk;
2018 	int			bucket, offset, sbucket, num;
2019 	loff_t			last_pos;
2020 };
2021 
2022 extern struct request_sock_ops tcp_request_sock_ops;
2023 extern struct request_sock_ops tcp6_request_sock_ops;
2024 
2025 void tcp_v4_destroy_sock(struct sock *sk);
2026 
2027 struct sk_buff *tcp_gso_segment(struct sk_buff *skb,
2028 				netdev_features_t features);
2029 struct sk_buff *tcp_gro_receive(struct list_head *head, struct sk_buff *skb);
2030 INDIRECT_CALLABLE_DECLARE(int tcp4_gro_complete(struct sk_buff *skb, int thoff));
2031 INDIRECT_CALLABLE_DECLARE(struct sk_buff *tcp4_gro_receive(struct list_head *head, struct sk_buff *skb));
2032 INDIRECT_CALLABLE_DECLARE(int tcp6_gro_complete(struct sk_buff *skb, int thoff));
2033 INDIRECT_CALLABLE_DECLARE(struct sk_buff *tcp6_gro_receive(struct list_head *head, struct sk_buff *skb));
2034 int tcp_gro_complete(struct sk_buff *skb);
2035 
2036 void __tcp_v4_send_check(struct sk_buff *skb, __be32 saddr, __be32 daddr);
2037 
2038 static inline u32 tcp_notsent_lowat(const struct tcp_sock *tp)
2039 {
2040 	struct net *net = sock_net((struct sock *)tp);
2041 	return tp->notsent_lowat ?: READ_ONCE(net->ipv4.sysctl_tcp_notsent_lowat);
2042 }
2043 
2044 bool tcp_stream_memory_free(const struct sock *sk, int wake);
2045 
2046 #ifdef CONFIG_PROC_FS
2047 int tcp4_proc_init(void);
2048 void tcp4_proc_exit(void);
2049 #endif
2050 
2051 int tcp_rtx_synack(const struct sock *sk, struct request_sock *req);
2052 int tcp_conn_request(struct request_sock_ops *rsk_ops,
2053 		     const struct tcp_request_sock_ops *af_ops,
2054 		     struct sock *sk, struct sk_buff *skb);
2055 
2056 /* TCP af-specific functions */
2057 struct tcp_sock_af_ops {
2058 #ifdef CONFIG_TCP_MD5SIG
2059 	struct tcp_md5sig_key	*(*md5_lookup) (const struct sock *sk,
2060 						const struct sock *addr_sk);
2061 	int		(*calc_md5_hash)(char *location,
2062 					 const struct tcp_md5sig_key *md5,
2063 					 const struct sock *sk,
2064 					 const struct sk_buff *skb);
2065 	int		(*md5_parse)(struct sock *sk,
2066 				     int optname,
2067 				     sockptr_t optval,
2068 				     int optlen);
2069 #endif
2070 };
2071 
2072 struct tcp_request_sock_ops {
2073 	u16 mss_clamp;
2074 #ifdef CONFIG_TCP_MD5SIG
2075 	struct tcp_md5sig_key *(*req_md5_lookup)(const struct sock *sk,
2076 						 const struct sock *addr_sk);
2077 	int		(*calc_md5_hash) (char *location,
2078 					  const struct tcp_md5sig_key *md5,
2079 					  const struct sock *sk,
2080 					  const struct sk_buff *skb);
2081 #endif
2082 #ifdef CONFIG_SYN_COOKIES
2083 	__u32 (*cookie_init_seq)(const struct sk_buff *skb,
2084 				 __u16 *mss);
2085 #endif
2086 	struct dst_entry *(*route_req)(const struct sock *sk,
2087 				       struct sk_buff *skb,
2088 				       struct flowi *fl,
2089 				       struct request_sock *req);
2090 	u32 (*init_seq)(const struct sk_buff *skb);
2091 	u32 (*init_ts_off)(const struct net *net, const struct sk_buff *skb);
2092 	int (*send_synack)(const struct sock *sk, struct dst_entry *dst,
2093 			   struct flowi *fl, struct request_sock *req,
2094 			   struct tcp_fastopen_cookie *foc,
2095 			   enum tcp_synack_type synack_type,
2096 			   struct sk_buff *syn_skb);
2097 };
2098 
2099 extern const struct tcp_request_sock_ops tcp_request_sock_ipv4_ops;
2100 #if IS_ENABLED(CONFIG_IPV6)
2101 extern const struct tcp_request_sock_ops tcp_request_sock_ipv6_ops;
2102 #endif
2103 
2104 #ifdef CONFIG_SYN_COOKIES
2105 static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops,
2106 					 const struct sock *sk, struct sk_buff *skb,
2107 					 __u16 *mss)
2108 {
2109 	tcp_synq_overflow(sk);
2110 	__NET_INC_STATS(sock_net(sk), LINUX_MIB_SYNCOOKIESSENT);
2111 	return ops->cookie_init_seq(skb, mss);
2112 }
2113 #else
2114 static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops,
2115 					 const struct sock *sk, struct sk_buff *skb,
2116 					 __u16 *mss)
2117 {
2118 	return 0;
2119 }
2120 #endif
2121 
2122 int tcpv4_offload_init(void);
2123 
2124 void tcp_v4_init(void);
2125 void tcp_init(void);
2126 
2127 /* tcp_recovery.c */
2128 void tcp_mark_skb_lost(struct sock *sk, struct sk_buff *skb);
2129 void tcp_newreno_mark_lost(struct sock *sk, bool snd_una_advanced);
2130 extern s32 tcp_rack_skb_timeout(struct tcp_sock *tp, struct sk_buff *skb,
2131 				u32 reo_wnd);
2132 extern bool tcp_rack_mark_lost(struct sock *sk);
2133 extern void tcp_rack_advance(struct tcp_sock *tp, u8 sacked, u32 end_seq,
2134 			     u64 xmit_time);
2135 extern void tcp_rack_reo_timeout(struct sock *sk);
2136 extern void tcp_rack_update_reo_wnd(struct sock *sk, struct rate_sample *rs);
2137 
2138 /* At how many usecs into the future should the RTO fire? */
2139 static inline s64 tcp_rto_delta_us(const struct sock *sk)
2140 {
2141 	const struct sk_buff *skb = tcp_rtx_queue_head(sk);
2142 	u32 rto = inet_csk(sk)->icsk_rto;
2143 	u64 rto_time_stamp_us = tcp_skb_timestamp_us(skb) + jiffies_to_usecs(rto);
2144 
2145 	return rto_time_stamp_us - tcp_sk(sk)->tcp_mstamp;
2146 }
2147 
2148 /*
2149  * Save and compile IPv4 options, return a pointer to it
2150  */
2151 static inline struct ip_options_rcu *tcp_v4_save_options(struct net *net,
2152 							 struct sk_buff *skb)
2153 {
2154 	const struct ip_options *opt = &TCP_SKB_CB(skb)->header.h4.opt;
2155 	struct ip_options_rcu *dopt = NULL;
2156 
2157 	if (opt->optlen) {
2158 		int opt_size = sizeof(*dopt) + opt->optlen;
2159 
2160 		dopt = kmalloc(opt_size, GFP_ATOMIC);
2161 		if (dopt && __ip_options_echo(net, &dopt->opt, skb, opt)) {
2162 			kfree(dopt);
2163 			dopt = NULL;
2164 		}
2165 	}
2166 	return dopt;
2167 }
2168 
2169 /* locally generated TCP pure ACKs have skb->truesize == 2
2170  * (check tcp_send_ack() in net/ipv4/tcp_output.c )
2171  * This is much faster than dissecting the packet to find out.
2172  * (Think of GRE encapsulations, IPv4, IPv6, ...)
2173  */
2174 static inline bool skb_is_tcp_pure_ack(const struct sk_buff *skb)
2175 {
2176 	return skb->truesize == 2;
2177 }
2178 
2179 static inline void skb_set_tcp_pure_ack(struct sk_buff *skb)
2180 {
2181 	skb->truesize = 2;
2182 }
2183 
2184 static inline int tcp_inq(struct sock *sk)
2185 {
2186 	struct tcp_sock *tp = tcp_sk(sk);
2187 	int answ;
2188 
2189 	if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) {
2190 		answ = 0;
2191 	} else if (sock_flag(sk, SOCK_URGINLINE) ||
2192 		   !tp->urg_data ||
2193 		   before(tp->urg_seq, tp->copied_seq) ||
2194 		   !before(tp->urg_seq, tp->rcv_nxt)) {
2195 
2196 		answ = tp->rcv_nxt - tp->copied_seq;
2197 
2198 		/* Subtract 1, if FIN was received */
2199 		if (answ && sock_flag(sk, SOCK_DONE))
2200 			answ--;
2201 	} else {
2202 		answ = tp->urg_seq - tp->copied_seq;
2203 	}
2204 
2205 	return answ;
2206 }
2207 
2208 int tcp_peek_len(struct socket *sock);
2209 
2210 static inline void tcp_segs_in(struct tcp_sock *tp, const struct sk_buff *skb)
2211 {
2212 	u16 segs_in;
2213 
2214 	segs_in = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
2215 
2216 	/* We update these fields while other threads might
2217 	 * read them from tcp_get_info()
2218 	 */
2219 	WRITE_ONCE(tp->segs_in, tp->segs_in + segs_in);
2220 	if (skb->len > tcp_hdrlen(skb))
2221 		WRITE_ONCE(tp->data_segs_in, tp->data_segs_in + segs_in);
2222 }
2223 
2224 /*
2225  * TCP listen path runs lockless.
2226  * We forced "struct sock" to be const qualified to make sure
2227  * we don't modify one of its field by mistake.
2228  * Here, we increment sk_drops which is an atomic_t, so we can safely
2229  * make sock writable again.
2230  */
2231 static inline void tcp_listendrop(const struct sock *sk)
2232 {
2233 	atomic_inc(&((struct sock *)sk)->sk_drops);
2234 	__NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENDROPS);
2235 }
2236 
2237 enum hrtimer_restart tcp_pace_kick(struct hrtimer *timer);
2238 
2239 /*
2240  * Interface for adding Upper Level Protocols over TCP
2241  */
2242 
2243 #define TCP_ULP_NAME_MAX	16
2244 #define TCP_ULP_MAX		128
2245 #define TCP_ULP_BUF_MAX		(TCP_ULP_NAME_MAX*TCP_ULP_MAX)
2246 
2247 struct tcp_ulp_ops {
2248 	struct list_head	list;
2249 
2250 	/* initialize ulp */
2251 	int (*init)(struct sock *sk);
2252 	/* update ulp */
2253 	void (*update)(struct sock *sk, struct proto *p,
2254 		       void (*write_space)(struct sock *sk));
2255 	/* cleanup ulp */
2256 	void (*release)(struct sock *sk);
2257 	/* diagnostic */
2258 	int (*get_info)(const struct sock *sk, struct sk_buff *skb);
2259 	size_t (*get_info_size)(const struct sock *sk);
2260 	/* clone ulp */
2261 	void (*clone)(const struct request_sock *req, struct sock *newsk,
2262 		      const gfp_t priority);
2263 
2264 	char		name[TCP_ULP_NAME_MAX];
2265 	struct module	*owner;
2266 };
2267 int tcp_register_ulp(struct tcp_ulp_ops *type);
2268 void tcp_unregister_ulp(struct tcp_ulp_ops *type);
2269 int tcp_set_ulp(struct sock *sk, const char *name);
2270 void tcp_get_available_ulp(char *buf, size_t len);
2271 void tcp_cleanup_ulp(struct sock *sk);
2272 void tcp_update_ulp(struct sock *sk, struct proto *p,
2273 		    void (*write_space)(struct sock *sk));
2274 
2275 #define MODULE_ALIAS_TCP_ULP(name)				\
2276 	__MODULE_INFO(alias, alias_userspace, name);		\
2277 	__MODULE_INFO(alias, alias_tcp_ulp, "tcp-ulp-" name)
2278 
2279 #ifdef CONFIG_NET_SOCK_MSG
2280 struct sk_msg;
2281 struct sk_psock;
2282 
2283 #ifdef CONFIG_BPF_SYSCALL
2284 struct proto *tcp_bpf_get_proto(struct sock *sk, struct sk_psock *psock);
2285 int tcp_bpf_update_proto(struct sock *sk, struct sk_psock *psock, bool restore);
2286 void tcp_bpf_clone(const struct sock *sk, struct sock *newsk);
2287 #endif /* CONFIG_BPF_SYSCALL */
2288 
2289 int tcp_bpf_sendmsg_redir(struct sock *sk, struct sk_msg *msg, u32 bytes,
2290 			  int flags);
2291 #endif /* CONFIG_NET_SOCK_MSG */
2292 
2293 #if !defined(CONFIG_BPF_SYSCALL) || !defined(CONFIG_NET_SOCK_MSG)
2294 static inline void tcp_bpf_clone(const struct sock *sk, struct sock *newsk)
2295 {
2296 }
2297 #endif
2298 
2299 #ifdef CONFIG_CGROUP_BPF
2300 static inline void bpf_skops_init_skb(struct bpf_sock_ops_kern *skops,
2301 				      struct sk_buff *skb,
2302 				      unsigned int end_offset)
2303 {
2304 	skops->skb = skb;
2305 	skops->skb_data_end = skb->data + end_offset;
2306 }
2307 #else
2308 static inline void bpf_skops_init_skb(struct bpf_sock_ops_kern *skops,
2309 				      struct sk_buff *skb,
2310 				      unsigned int end_offset)
2311 {
2312 }
2313 #endif
2314 
2315 /* Call BPF_SOCK_OPS program that returns an int. If the return value
2316  * is < 0, then the BPF op failed (for example if the loaded BPF
2317  * program does not support the chosen operation or there is no BPF
2318  * program loaded).
2319  */
2320 #ifdef CONFIG_BPF
2321 static inline int tcp_call_bpf(struct sock *sk, int op, u32 nargs, u32 *args)
2322 {
2323 	struct bpf_sock_ops_kern sock_ops;
2324 	int ret;
2325 
2326 	memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
2327 	if (sk_fullsock(sk)) {
2328 		sock_ops.is_fullsock = 1;
2329 		sock_owned_by_me(sk);
2330 	}
2331 
2332 	sock_ops.sk = sk;
2333 	sock_ops.op = op;
2334 	if (nargs > 0)
2335 		memcpy(sock_ops.args, args, nargs * sizeof(*args));
2336 
2337 	ret = BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops);
2338 	if (ret == 0)
2339 		ret = sock_ops.reply;
2340 	else
2341 		ret = -1;
2342 	return ret;
2343 }
2344 
2345 static inline int tcp_call_bpf_2arg(struct sock *sk, int op, u32 arg1, u32 arg2)
2346 {
2347 	u32 args[2] = {arg1, arg2};
2348 
2349 	return tcp_call_bpf(sk, op, 2, args);
2350 }
2351 
2352 static inline int tcp_call_bpf_3arg(struct sock *sk, int op, u32 arg1, u32 arg2,
2353 				    u32 arg3)
2354 {
2355 	u32 args[3] = {arg1, arg2, arg3};
2356 
2357 	return tcp_call_bpf(sk, op, 3, args);
2358 }
2359 
2360 #else
2361 static inline int tcp_call_bpf(struct sock *sk, int op, u32 nargs, u32 *args)
2362 {
2363 	return -EPERM;
2364 }
2365 
2366 static inline int tcp_call_bpf_2arg(struct sock *sk, int op, u32 arg1, u32 arg2)
2367 {
2368 	return -EPERM;
2369 }
2370 
2371 static inline int tcp_call_bpf_3arg(struct sock *sk, int op, u32 arg1, u32 arg2,
2372 				    u32 arg3)
2373 {
2374 	return -EPERM;
2375 }
2376 
2377 #endif
2378 
2379 static inline u32 tcp_timeout_init(struct sock *sk)
2380 {
2381 	int timeout;
2382 
2383 	timeout = tcp_call_bpf(sk, BPF_SOCK_OPS_TIMEOUT_INIT, 0, NULL);
2384 
2385 	if (timeout <= 0)
2386 		timeout = TCP_TIMEOUT_INIT;
2387 	return min_t(int, timeout, TCP_RTO_MAX);
2388 }
2389 
2390 static inline u32 tcp_rwnd_init_bpf(struct sock *sk)
2391 {
2392 	int rwnd;
2393 
2394 	rwnd = tcp_call_bpf(sk, BPF_SOCK_OPS_RWND_INIT, 0, NULL);
2395 
2396 	if (rwnd < 0)
2397 		rwnd = 0;
2398 	return rwnd;
2399 }
2400 
2401 static inline bool tcp_bpf_ca_needs_ecn(struct sock *sk)
2402 {
2403 	return (tcp_call_bpf(sk, BPF_SOCK_OPS_NEEDS_ECN, 0, NULL) == 1);
2404 }
2405 
2406 static inline void tcp_bpf_rtt(struct sock *sk)
2407 {
2408 	if (BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), BPF_SOCK_OPS_RTT_CB_FLAG))
2409 		tcp_call_bpf(sk, BPF_SOCK_OPS_RTT_CB, 0, NULL);
2410 }
2411 
2412 #if IS_ENABLED(CONFIG_SMC)
2413 extern struct static_key_false tcp_have_smc;
2414 #endif
2415 
2416 #if IS_ENABLED(CONFIG_TLS_DEVICE)
2417 void clean_acked_data_enable(struct inet_connection_sock *icsk,
2418 			     void (*cad)(struct sock *sk, u32 ack_seq));
2419 void clean_acked_data_disable(struct inet_connection_sock *icsk);
2420 void clean_acked_data_flush(void);
2421 #endif
2422 
2423 DECLARE_STATIC_KEY_FALSE(tcp_tx_delay_enabled);
2424 static inline void tcp_add_tx_delay(struct sk_buff *skb,
2425 				    const struct tcp_sock *tp)
2426 {
2427 	if (static_branch_unlikely(&tcp_tx_delay_enabled))
2428 		skb->skb_mstamp_ns += (u64)tp->tcp_tx_delay * NSEC_PER_USEC;
2429 }
2430 
2431 /* Compute Earliest Departure Time for some control packets
2432  * like ACK or RST for TIME_WAIT or non ESTABLISHED sockets.
2433  */
2434 static inline u64 tcp_transmit_time(const struct sock *sk)
2435 {
2436 	if (static_branch_unlikely(&tcp_tx_delay_enabled)) {
2437 		u32 delay = (sk->sk_state == TCP_TIME_WAIT) ?
2438 			tcp_twsk(sk)->tw_tx_delay : tcp_sk(sk)->tcp_tx_delay;
2439 
2440 		return tcp_clock_ns() + (u64)delay * NSEC_PER_USEC;
2441 	}
2442 	return 0;
2443 }
2444 
2445 #endif	/* _TCP_H */
2446