xref: /linux/include/net/tcp.h (revision 20d0021394c1b070bf04b22c5bc8fdb437edd4c5)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Definitions for the TCP module.
7  *
8  * Version:	@(#)tcp.h	1.0.5	05/23/93
9  *
10  * Authors:	Ross Biro
11  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *
13  *		This program is free software; you can redistribute it and/or
14  *		modify it under the terms of the GNU General Public License
15  *		as published by the Free Software Foundation; either version
16  *		2 of the License, or (at your option) any later version.
17  */
18 #ifndef _TCP_H
19 #define _TCP_H
20 
21 #define TCP_DEBUG 1
22 #define FASTRETRANS_DEBUG 1
23 
24 /* Cancel timers, when they are not required. */
25 #undef TCP_CLEAR_TIMERS
26 
27 #include <linux/config.h>
28 #include <linux/list.h>
29 #include <linux/tcp.h>
30 #include <linux/slab.h>
31 #include <linux/cache.h>
32 #include <linux/percpu.h>
33 #include <net/checksum.h>
34 #include <net/request_sock.h>
35 #include <net/sock.h>
36 #include <net/snmp.h>
37 #include <net/ip.h>
38 #if defined(CONFIG_IPV6) || defined (CONFIG_IPV6_MODULE)
39 #include <linux/ipv6.h>
40 #endif
41 #include <linux/seq_file.h>
42 
43 /* This is for all connections with a full identity, no wildcards.
44  * New scheme, half the table is for TIME_WAIT, the other half is
45  * for the rest.  I'll experiment with dynamic table growth later.
46  */
47 struct tcp_ehash_bucket {
48 	rwlock_t	  lock;
49 	struct hlist_head chain;
50 } __attribute__((__aligned__(8)));
51 
52 /* This is for listening sockets, thus all sockets which possess wildcards. */
53 #define TCP_LHTABLE_SIZE	32	/* Yes, really, this is all you need. */
54 
55 /* There are a few simple rules, which allow for local port reuse by
56  * an application.  In essence:
57  *
58  *	1) Sockets bound to different interfaces may share a local port.
59  *	   Failing that, goto test 2.
60  *	2) If all sockets have sk->sk_reuse set, and none of them are in
61  *	   TCP_LISTEN state, the port may be shared.
62  *	   Failing that, goto test 3.
63  *	3) If all sockets are bound to a specific inet_sk(sk)->rcv_saddr local
64  *	   address, and none of them are the same, the port may be
65  *	   shared.
66  *	   Failing this, the port cannot be shared.
67  *
68  * The interesting point, is test #2.  This is what an FTP server does
69  * all day.  To optimize this case we use a specific flag bit defined
70  * below.  As we add sockets to a bind bucket list, we perform a
71  * check of: (newsk->sk_reuse && (newsk->sk_state != TCP_LISTEN))
72  * As long as all sockets added to a bind bucket pass this test,
73  * the flag bit will be set.
74  * The resulting situation is that tcp_v[46]_verify_bind() can just check
75  * for this flag bit, if it is set and the socket trying to bind has
76  * sk->sk_reuse set, we don't even have to walk the owners list at all,
77  * we return that it is ok to bind this socket to the requested local port.
78  *
79  * Sounds like a lot of work, but it is worth it.  In a more naive
80  * implementation (ie. current FreeBSD etc.) the entire list of ports
81  * must be walked for each data port opened by an ftp server.  Needless
82  * to say, this does not scale at all.  With a couple thousand FTP
83  * users logged onto your box, isn't it nice to know that new data
84  * ports are created in O(1) time?  I thought so. ;-)	-DaveM
85  */
86 struct tcp_bind_bucket {
87 	unsigned short		port;
88 	signed short		fastreuse;
89 	struct hlist_node	node;
90 	struct hlist_head	owners;
91 };
92 
93 #define tb_for_each(tb, node, head) hlist_for_each_entry(tb, node, head, node)
94 
95 struct tcp_bind_hashbucket {
96 	spinlock_t		lock;
97 	struct hlist_head	chain;
98 };
99 
100 static inline struct tcp_bind_bucket *__tb_head(struct tcp_bind_hashbucket *head)
101 {
102 	return hlist_entry(head->chain.first, struct tcp_bind_bucket, node);
103 }
104 
105 static inline struct tcp_bind_bucket *tb_head(struct tcp_bind_hashbucket *head)
106 {
107 	return hlist_empty(&head->chain) ? NULL : __tb_head(head);
108 }
109 
110 extern struct tcp_hashinfo {
111 	/* This is for sockets with full identity only.  Sockets here will
112 	 * always be without wildcards and will have the following invariant:
113 	 *
114 	 *          TCP_ESTABLISHED <= sk->sk_state < TCP_CLOSE
115 	 *
116 	 * First half of the table is for sockets not in TIME_WAIT, second half
117 	 * is for TIME_WAIT sockets only.
118 	 */
119 	struct tcp_ehash_bucket *__tcp_ehash;
120 
121 	/* Ok, let's try this, I give up, we do need a local binding
122 	 * TCP hash as well as the others for fast bind/connect.
123 	 */
124 	struct tcp_bind_hashbucket *__tcp_bhash;
125 
126 	int __tcp_bhash_size;
127 	int __tcp_ehash_size;
128 
129 	/* All sockets in TCP_LISTEN state will be in here.  This is the only
130 	 * table where wildcard'd TCP sockets can exist.  Hash function here
131 	 * is just local port number.
132 	 */
133 	struct hlist_head __tcp_listening_hash[TCP_LHTABLE_SIZE];
134 
135 	/* All the above members are written once at bootup and
136 	 * never written again _or_ are predominantly read-access.
137 	 *
138 	 * Now align to a new cache line as all the following members
139 	 * are often dirty.
140 	 */
141 	rwlock_t __tcp_lhash_lock ____cacheline_aligned;
142 	atomic_t __tcp_lhash_users;
143 	wait_queue_head_t __tcp_lhash_wait;
144 	spinlock_t __tcp_portalloc_lock;
145 } tcp_hashinfo;
146 
147 #define tcp_ehash	(tcp_hashinfo.__tcp_ehash)
148 #define tcp_bhash	(tcp_hashinfo.__tcp_bhash)
149 #define tcp_ehash_size	(tcp_hashinfo.__tcp_ehash_size)
150 #define tcp_bhash_size	(tcp_hashinfo.__tcp_bhash_size)
151 #define tcp_listening_hash (tcp_hashinfo.__tcp_listening_hash)
152 #define tcp_lhash_lock	(tcp_hashinfo.__tcp_lhash_lock)
153 #define tcp_lhash_users	(tcp_hashinfo.__tcp_lhash_users)
154 #define tcp_lhash_wait	(tcp_hashinfo.__tcp_lhash_wait)
155 #define tcp_portalloc_lock (tcp_hashinfo.__tcp_portalloc_lock)
156 
157 extern kmem_cache_t *tcp_bucket_cachep;
158 extern struct tcp_bind_bucket *tcp_bucket_create(struct tcp_bind_hashbucket *head,
159 						 unsigned short snum);
160 extern void tcp_bucket_destroy(struct tcp_bind_bucket *tb);
161 extern void tcp_bucket_unlock(struct sock *sk);
162 extern int tcp_port_rover;
163 
164 /* These are AF independent. */
165 static __inline__ int tcp_bhashfn(__u16 lport)
166 {
167 	return (lport & (tcp_bhash_size - 1));
168 }
169 
170 extern void tcp_bind_hash(struct sock *sk, struct tcp_bind_bucket *tb,
171 			  unsigned short snum);
172 
173 #if (BITS_PER_LONG == 64)
174 #define TCP_ADDRCMP_ALIGN_BYTES 8
175 #else
176 #define TCP_ADDRCMP_ALIGN_BYTES 4
177 #endif
178 
179 /* This is a TIME_WAIT bucket.  It works around the memory consumption
180  * problems of sockets in such a state on heavily loaded servers, but
181  * without violating the protocol specification.
182  */
183 struct tcp_tw_bucket {
184 	/*
185 	 * Now struct sock also uses sock_common, so please just
186 	 * don't add nothing before this first member (__tw_common) --acme
187 	 */
188 	struct sock_common	__tw_common;
189 #define tw_family		__tw_common.skc_family
190 #define tw_state		__tw_common.skc_state
191 #define tw_reuse		__tw_common.skc_reuse
192 #define tw_bound_dev_if		__tw_common.skc_bound_dev_if
193 #define tw_node			__tw_common.skc_node
194 #define tw_bind_node		__tw_common.skc_bind_node
195 #define tw_refcnt		__tw_common.skc_refcnt
196 	volatile unsigned char	tw_substate;
197 	unsigned char		tw_rcv_wscale;
198 	__u16			tw_sport;
199 	/* Socket demultiplex comparisons on incoming packets. */
200 	/* these five are in inet_sock */
201 	__u32			tw_daddr
202 		__attribute__((aligned(TCP_ADDRCMP_ALIGN_BYTES)));
203 	__u32			tw_rcv_saddr;
204 	__u16			tw_dport;
205 	__u16			tw_num;
206 	/* And these are ours. */
207 	int			tw_hashent;
208 	int			tw_timeout;
209 	__u32			tw_rcv_nxt;
210 	__u32			tw_snd_nxt;
211 	__u32			tw_rcv_wnd;
212 	__u32			tw_ts_recent;
213 	long			tw_ts_recent_stamp;
214 	unsigned long		tw_ttd;
215 	struct tcp_bind_bucket	*tw_tb;
216 	struct hlist_node	tw_death_node;
217 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
218 	struct in6_addr		tw_v6_daddr;
219 	struct in6_addr		tw_v6_rcv_saddr;
220 	int			tw_v6_ipv6only;
221 #endif
222 };
223 
224 static __inline__ void tw_add_node(struct tcp_tw_bucket *tw,
225 				   struct hlist_head *list)
226 {
227 	hlist_add_head(&tw->tw_node, list);
228 }
229 
230 static __inline__ void tw_add_bind_node(struct tcp_tw_bucket *tw,
231 					struct hlist_head *list)
232 {
233 	hlist_add_head(&tw->tw_bind_node, list);
234 }
235 
236 static inline int tw_dead_hashed(struct tcp_tw_bucket *tw)
237 {
238 	return tw->tw_death_node.pprev != NULL;
239 }
240 
241 static __inline__ void tw_dead_node_init(struct tcp_tw_bucket *tw)
242 {
243 	tw->tw_death_node.pprev = NULL;
244 }
245 
246 static __inline__ void __tw_del_dead_node(struct tcp_tw_bucket *tw)
247 {
248 	__hlist_del(&tw->tw_death_node);
249 	tw_dead_node_init(tw);
250 }
251 
252 static __inline__ int tw_del_dead_node(struct tcp_tw_bucket *tw)
253 {
254 	if (tw_dead_hashed(tw)) {
255 		__tw_del_dead_node(tw);
256 		return 1;
257 	}
258 	return 0;
259 }
260 
261 #define tw_for_each(tw, node, head) \
262 	hlist_for_each_entry(tw, node, head, tw_node)
263 
264 #define tw_for_each_inmate(tw, node, jail) \
265 	hlist_for_each_entry(tw, node, jail, tw_death_node)
266 
267 #define tw_for_each_inmate_safe(tw, node, safe, jail) \
268 	hlist_for_each_entry_safe(tw, node, safe, jail, tw_death_node)
269 
270 #define tcptw_sk(__sk)	((struct tcp_tw_bucket *)(__sk))
271 
272 static inline u32 tcp_v4_rcv_saddr(const struct sock *sk)
273 {
274 	return likely(sk->sk_state != TCP_TIME_WAIT) ?
275 		inet_sk(sk)->rcv_saddr : tcptw_sk(sk)->tw_rcv_saddr;
276 }
277 
278 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
279 static inline struct in6_addr *__tcp_v6_rcv_saddr(const struct sock *sk)
280 {
281 	return likely(sk->sk_state != TCP_TIME_WAIT) ?
282 		&inet6_sk(sk)->rcv_saddr : &tcptw_sk(sk)->tw_v6_rcv_saddr;
283 }
284 
285 static inline struct in6_addr *tcp_v6_rcv_saddr(const struct sock *sk)
286 {
287 	return sk->sk_family == AF_INET6 ? __tcp_v6_rcv_saddr(sk) : NULL;
288 }
289 
290 #define tcptw_sk_ipv6only(__sk)	(tcptw_sk(__sk)->tw_v6_ipv6only)
291 
292 static inline int tcp_v6_ipv6only(const struct sock *sk)
293 {
294 	return likely(sk->sk_state != TCP_TIME_WAIT) ?
295 		ipv6_only_sock(sk) : tcptw_sk_ipv6only(sk);
296 }
297 #else
298 # define __tcp_v6_rcv_saddr(__sk)	NULL
299 # define tcp_v6_rcv_saddr(__sk)		NULL
300 # define tcptw_sk_ipv6only(__sk)	0
301 # define tcp_v6_ipv6only(__sk)		0
302 #endif
303 
304 extern kmem_cache_t *tcp_timewait_cachep;
305 
306 static inline void tcp_tw_put(struct tcp_tw_bucket *tw)
307 {
308 	if (atomic_dec_and_test(&tw->tw_refcnt)) {
309 #ifdef INET_REFCNT_DEBUG
310 		printk(KERN_DEBUG "tw_bucket %p released\n", tw);
311 #endif
312 		kmem_cache_free(tcp_timewait_cachep, tw);
313 	}
314 }
315 
316 extern atomic_t tcp_orphan_count;
317 extern int tcp_tw_count;
318 extern void tcp_time_wait(struct sock *sk, int state, int timeo);
319 extern void tcp_tw_deschedule(struct tcp_tw_bucket *tw);
320 
321 
322 /* Socket demux engine toys. */
323 #ifdef __BIG_ENDIAN
324 #define TCP_COMBINED_PORTS(__sport, __dport) \
325 	(((__u32)(__sport)<<16) | (__u32)(__dport))
326 #else /* __LITTLE_ENDIAN */
327 #define TCP_COMBINED_PORTS(__sport, __dport) \
328 	(((__u32)(__dport)<<16) | (__u32)(__sport))
329 #endif
330 
331 #if (BITS_PER_LONG == 64)
332 #ifdef __BIG_ENDIAN
333 #define TCP_V4_ADDR_COOKIE(__name, __saddr, __daddr) \
334 	__u64 __name = (((__u64)(__saddr))<<32)|((__u64)(__daddr));
335 #else /* __LITTLE_ENDIAN */
336 #define TCP_V4_ADDR_COOKIE(__name, __saddr, __daddr) \
337 	__u64 __name = (((__u64)(__daddr))<<32)|((__u64)(__saddr));
338 #endif /* __BIG_ENDIAN */
339 #define TCP_IPV4_MATCH(__sk, __cookie, __saddr, __daddr, __ports, __dif)\
340 	(((*((__u64 *)&(inet_sk(__sk)->daddr)))== (__cookie))	&&	\
341 	 ((*((__u32 *)&(inet_sk(__sk)->dport)))== (__ports))	&&	\
342 	 (!((__sk)->sk_bound_dev_if) || ((__sk)->sk_bound_dev_if == (__dif))))
343 #define TCP_IPV4_TW_MATCH(__sk, __cookie, __saddr, __daddr, __ports, __dif)\
344 	(((*((__u64 *)&(tcptw_sk(__sk)->tw_daddr))) == (__cookie)) &&	\
345 	 ((*((__u32 *)&(tcptw_sk(__sk)->tw_dport))) == (__ports)) &&	\
346 	 (!((__sk)->sk_bound_dev_if) || ((__sk)->sk_bound_dev_if == (__dif))))
347 #else /* 32-bit arch */
348 #define TCP_V4_ADDR_COOKIE(__name, __saddr, __daddr)
349 #define TCP_IPV4_MATCH(__sk, __cookie, __saddr, __daddr, __ports, __dif)\
350 	((inet_sk(__sk)->daddr			== (__saddr))	&&	\
351 	 (inet_sk(__sk)->rcv_saddr		== (__daddr))	&&	\
352 	 ((*((__u32 *)&(inet_sk(__sk)->dport)))== (__ports))	&&	\
353 	 (!((__sk)->sk_bound_dev_if) || ((__sk)->sk_bound_dev_if == (__dif))))
354 #define TCP_IPV4_TW_MATCH(__sk, __cookie, __saddr, __daddr, __ports, __dif)\
355 	((tcptw_sk(__sk)->tw_daddr		== (__saddr))	&&	\
356 	 (tcptw_sk(__sk)->tw_rcv_saddr		== (__daddr))	&&	\
357 	 ((*((__u32 *)&(tcptw_sk(__sk)->tw_dport))) == (__ports)) &&	\
358 	 (!((__sk)->sk_bound_dev_if) || ((__sk)->sk_bound_dev_if == (__dif))))
359 #endif /* 64-bit arch */
360 
361 #define TCP_IPV6_MATCH(__sk, __saddr, __daddr, __ports, __dif)	   \
362 	(((*((__u32 *)&(inet_sk(__sk)->dport)))== (__ports))   	&& \
363 	 ((__sk)->sk_family		== AF_INET6)		&& \
364 	 ipv6_addr_equal(&inet6_sk(__sk)->daddr, (__saddr))	&& \
365 	 ipv6_addr_equal(&inet6_sk(__sk)->rcv_saddr, (__daddr))	&& \
366 	 (!((__sk)->sk_bound_dev_if) || ((__sk)->sk_bound_dev_if == (__dif))))
367 
368 /* These can have wildcards, don't try too hard. */
369 static __inline__ int tcp_lhashfn(unsigned short num)
370 {
371 	return num & (TCP_LHTABLE_SIZE - 1);
372 }
373 
374 static __inline__ int tcp_sk_listen_hashfn(struct sock *sk)
375 {
376 	return tcp_lhashfn(inet_sk(sk)->num);
377 }
378 
379 #define MAX_TCP_HEADER	(128 + MAX_HEADER)
380 
381 /*
382  * Never offer a window over 32767 without using window scaling. Some
383  * poor stacks do signed 16bit maths!
384  */
385 #define MAX_TCP_WINDOW		32767U
386 
387 /* Minimal accepted MSS. It is (60+60+8) - (20+20). */
388 #define TCP_MIN_MSS		88U
389 
390 /* Minimal RCV_MSS. */
391 #define TCP_MIN_RCVMSS		536U
392 
393 /* After receiving this amount of duplicate ACKs fast retransmit starts. */
394 #define TCP_FASTRETRANS_THRESH 3
395 
396 /* Maximal reordering. */
397 #define TCP_MAX_REORDERING	127
398 
399 /* Maximal number of ACKs sent quickly to accelerate slow-start. */
400 #define TCP_MAX_QUICKACKS	16U
401 
402 /* urg_data states */
403 #define TCP_URG_VALID	0x0100
404 #define TCP_URG_NOTYET	0x0200
405 #define TCP_URG_READ	0x0400
406 
407 #define TCP_RETR1	3	/*
408 				 * This is how many retries it does before it
409 				 * tries to figure out if the gateway is
410 				 * down. Minimal RFC value is 3; it corresponds
411 				 * to ~3sec-8min depending on RTO.
412 				 */
413 
414 #define TCP_RETR2	15	/*
415 				 * This should take at least
416 				 * 90 minutes to time out.
417 				 * RFC1122 says that the limit is 100 sec.
418 				 * 15 is ~13-30min depending on RTO.
419 				 */
420 
421 #define TCP_SYN_RETRIES	 5	/* number of times to retry active opening a
422 				 * connection: ~180sec is RFC minumum	*/
423 
424 #define TCP_SYNACK_RETRIES 5	/* number of times to retry passive opening a
425 				 * connection: ~180sec is RFC minumum	*/
426 
427 
428 #define TCP_ORPHAN_RETRIES 7	/* number of times to retry on an orphaned
429 				 * socket. 7 is ~50sec-16min.
430 				 */
431 
432 
433 #define TCP_TIMEWAIT_LEN (60*HZ) /* how long to wait to destroy TIME-WAIT
434 				  * state, about 60 seconds	*/
435 #define TCP_FIN_TIMEOUT	TCP_TIMEWAIT_LEN
436                                  /* BSD style FIN_WAIT2 deadlock breaker.
437 				  * It used to be 3min, new value is 60sec,
438 				  * to combine FIN-WAIT-2 timeout with
439 				  * TIME-WAIT timer.
440 				  */
441 
442 #define TCP_DELACK_MAX	((unsigned)(HZ/5))	/* maximal time to delay before sending an ACK */
443 #if HZ >= 100
444 #define TCP_DELACK_MIN	((unsigned)(HZ/25))	/* minimal time to delay before sending an ACK */
445 #define TCP_ATO_MIN	((unsigned)(HZ/25))
446 #else
447 #define TCP_DELACK_MIN	4U
448 #define TCP_ATO_MIN	4U
449 #endif
450 #define TCP_RTO_MAX	((unsigned)(120*HZ))
451 #define TCP_RTO_MIN	((unsigned)(HZ/5))
452 #define TCP_TIMEOUT_INIT ((unsigned)(3*HZ))	/* RFC 1122 initial RTO value	*/
453 
454 #define TCP_RESOURCE_PROBE_INTERVAL ((unsigned)(HZ/2U)) /* Maximal interval between probes
455 					                 * for local resources.
456 					                 */
457 
458 #define TCP_KEEPALIVE_TIME	(120*60*HZ)	/* two hours */
459 #define TCP_KEEPALIVE_PROBES	9		/* Max of 9 keepalive probes	*/
460 #define TCP_KEEPALIVE_INTVL	(75*HZ)
461 
462 #define MAX_TCP_KEEPIDLE	32767
463 #define MAX_TCP_KEEPINTVL	32767
464 #define MAX_TCP_KEEPCNT		127
465 #define MAX_TCP_SYNCNT		127
466 
467 #define TCP_SYNQ_INTERVAL	(HZ/5)	/* Period of SYNACK timer */
468 #define TCP_SYNQ_HSIZE		512	/* Size of SYNACK hash table */
469 
470 #define TCP_PAWS_24DAYS	(60 * 60 * 24 * 24)
471 #define TCP_PAWS_MSL	60		/* Per-host timestamps are invalidated
472 					 * after this time. It should be equal
473 					 * (or greater than) TCP_TIMEWAIT_LEN
474 					 * to provide reliability equal to one
475 					 * provided by timewait state.
476 					 */
477 #define TCP_PAWS_WINDOW	1		/* Replay window for per-host
478 					 * timestamps. It must be less than
479 					 * minimal timewait lifetime.
480 					 */
481 
482 #define TCP_TW_RECYCLE_SLOTS_LOG	5
483 #define TCP_TW_RECYCLE_SLOTS		(1<<TCP_TW_RECYCLE_SLOTS_LOG)
484 
485 /* If time > 4sec, it is "slow" path, no recycling is required,
486    so that we select tick to get range about 4 seconds.
487  */
488 
489 #if HZ <= 16 || HZ > 4096
490 # error Unsupported: HZ <= 16 or HZ > 4096
491 #elif HZ <= 32
492 # define TCP_TW_RECYCLE_TICK (5+2-TCP_TW_RECYCLE_SLOTS_LOG)
493 #elif HZ <= 64
494 # define TCP_TW_RECYCLE_TICK (6+2-TCP_TW_RECYCLE_SLOTS_LOG)
495 #elif HZ <= 128
496 # define TCP_TW_RECYCLE_TICK (7+2-TCP_TW_RECYCLE_SLOTS_LOG)
497 #elif HZ <= 256
498 # define TCP_TW_RECYCLE_TICK (8+2-TCP_TW_RECYCLE_SLOTS_LOG)
499 #elif HZ <= 512
500 # define TCP_TW_RECYCLE_TICK (9+2-TCP_TW_RECYCLE_SLOTS_LOG)
501 #elif HZ <= 1024
502 # define TCP_TW_RECYCLE_TICK (10+2-TCP_TW_RECYCLE_SLOTS_LOG)
503 #elif HZ <= 2048
504 # define TCP_TW_RECYCLE_TICK (11+2-TCP_TW_RECYCLE_SLOTS_LOG)
505 #else
506 # define TCP_TW_RECYCLE_TICK (12+2-TCP_TW_RECYCLE_SLOTS_LOG)
507 #endif
508 /*
509  *	TCP option
510  */
511 
512 #define TCPOPT_NOP		1	/* Padding */
513 #define TCPOPT_EOL		0	/* End of options */
514 #define TCPOPT_MSS		2	/* Segment size negotiating */
515 #define TCPOPT_WINDOW		3	/* Window scaling */
516 #define TCPOPT_SACK_PERM        4       /* SACK Permitted */
517 #define TCPOPT_SACK             5       /* SACK Block */
518 #define TCPOPT_TIMESTAMP	8	/* Better RTT estimations/PAWS */
519 
520 /*
521  *     TCP option lengths
522  */
523 
524 #define TCPOLEN_MSS            4
525 #define TCPOLEN_WINDOW         3
526 #define TCPOLEN_SACK_PERM      2
527 #define TCPOLEN_TIMESTAMP      10
528 
529 /* But this is what stacks really send out. */
530 #define TCPOLEN_TSTAMP_ALIGNED		12
531 #define TCPOLEN_WSCALE_ALIGNED		4
532 #define TCPOLEN_SACKPERM_ALIGNED	4
533 #define TCPOLEN_SACK_BASE		2
534 #define TCPOLEN_SACK_BASE_ALIGNED	4
535 #define TCPOLEN_SACK_PERBLOCK		8
536 
537 #define TCP_TIME_RETRANS	1	/* Retransmit timer */
538 #define TCP_TIME_DACK		2	/* Delayed ack timer */
539 #define TCP_TIME_PROBE0		3	/* Zero window probe timer */
540 #define TCP_TIME_KEEPOPEN	4	/* Keepalive timer */
541 
542 /* Flags in tp->nonagle */
543 #define TCP_NAGLE_OFF		1	/* Nagle's algo is disabled */
544 #define TCP_NAGLE_CORK		2	/* Socket is corked	    */
545 #define TCP_NAGLE_PUSH		4	/* Cork is overriden for already queued data */
546 
547 /* sysctl variables for tcp */
548 extern int sysctl_tcp_timestamps;
549 extern int sysctl_tcp_window_scaling;
550 extern int sysctl_tcp_sack;
551 extern int sysctl_tcp_fin_timeout;
552 extern int sysctl_tcp_tw_recycle;
553 extern int sysctl_tcp_keepalive_time;
554 extern int sysctl_tcp_keepalive_probes;
555 extern int sysctl_tcp_keepalive_intvl;
556 extern int sysctl_tcp_syn_retries;
557 extern int sysctl_tcp_synack_retries;
558 extern int sysctl_tcp_retries1;
559 extern int sysctl_tcp_retries2;
560 extern int sysctl_tcp_orphan_retries;
561 extern int sysctl_tcp_syncookies;
562 extern int sysctl_tcp_retrans_collapse;
563 extern int sysctl_tcp_stdurg;
564 extern int sysctl_tcp_rfc1337;
565 extern int sysctl_tcp_abort_on_overflow;
566 extern int sysctl_tcp_max_orphans;
567 extern int sysctl_tcp_max_tw_buckets;
568 extern int sysctl_tcp_fack;
569 extern int sysctl_tcp_reordering;
570 extern int sysctl_tcp_ecn;
571 extern int sysctl_tcp_dsack;
572 extern int sysctl_tcp_mem[3];
573 extern int sysctl_tcp_wmem[3];
574 extern int sysctl_tcp_rmem[3];
575 extern int sysctl_tcp_app_win;
576 extern int sysctl_tcp_adv_win_scale;
577 extern int sysctl_tcp_tw_reuse;
578 extern int sysctl_tcp_frto;
579 extern int sysctl_tcp_low_latency;
580 extern int sysctl_tcp_nometrics_save;
581 extern int sysctl_tcp_moderate_rcvbuf;
582 extern int sysctl_tcp_tso_win_divisor;
583 
584 extern atomic_t tcp_memory_allocated;
585 extern atomic_t tcp_sockets_allocated;
586 extern int tcp_memory_pressure;
587 
588 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
589 #define TCP_INET_FAMILY(fam) ((fam) == AF_INET)
590 #else
591 #define TCP_INET_FAMILY(fam) 1
592 #endif
593 
594 /*
595  *	Pointers to address related TCP functions
596  *	(i.e. things that depend on the address family)
597  */
598 
599 struct tcp_func {
600 	int			(*queue_xmit)		(struct sk_buff *skb,
601 							 int ipfragok);
602 
603 	void			(*send_check)		(struct sock *sk,
604 							 struct tcphdr *th,
605 							 int len,
606 							 struct sk_buff *skb);
607 
608 	int			(*rebuild_header)	(struct sock *sk);
609 
610 	int			(*conn_request)		(struct sock *sk,
611 							 struct sk_buff *skb);
612 
613 	struct sock *		(*syn_recv_sock)	(struct sock *sk,
614 							 struct sk_buff *skb,
615 							 struct request_sock *req,
616 							 struct dst_entry *dst);
617 
618 	int			(*remember_stamp)	(struct sock *sk);
619 
620 	__u16			net_header_len;
621 
622 	int			(*setsockopt)		(struct sock *sk,
623 							 int level,
624 							 int optname,
625 							 char __user *optval,
626 							 int optlen);
627 
628 	int			(*getsockopt)		(struct sock *sk,
629 							 int level,
630 							 int optname,
631 							 char __user *optval,
632 							 int __user *optlen);
633 
634 
635 	void			(*addr2sockaddr)	(struct sock *sk,
636 							 struct sockaddr *);
637 
638 	int sockaddr_len;
639 };
640 
641 /*
642  * The next routines deal with comparing 32 bit unsigned ints
643  * and worry about wraparound (automatic with unsigned arithmetic).
644  */
645 
646 static inline int before(__u32 seq1, __u32 seq2)
647 {
648         return (__s32)(seq1-seq2) < 0;
649 }
650 
651 static inline int after(__u32 seq1, __u32 seq2)
652 {
653 	return (__s32)(seq2-seq1) < 0;
654 }
655 
656 
657 /* is s2<=s1<=s3 ? */
658 static inline int between(__u32 seq1, __u32 seq2, __u32 seq3)
659 {
660 	return seq3 - seq2 >= seq1 - seq2;
661 }
662 
663 
664 extern struct proto tcp_prot;
665 
666 DECLARE_SNMP_STAT(struct tcp_mib, tcp_statistics);
667 #define TCP_INC_STATS(field)		SNMP_INC_STATS(tcp_statistics, field)
668 #define TCP_INC_STATS_BH(field)		SNMP_INC_STATS_BH(tcp_statistics, field)
669 #define TCP_INC_STATS_USER(field) 	SNMP_INC_STATS_USER(tcp_statistics, field)
670 #define TCP_DEC_STATS(field)		SNMP_DEC_STATS(tcp_statistics, field)
671 #define TCP_ADD_STATS_BH(field, val)	SNMP_ADD_STATS_BH(tcp_statistics, field, val)
672 #define TCP_ADD_STATS_USER(field, val)	SNMP_ADD_STATS_USER(tcp_statistics, field, val)
673 
674 extern void			tcp_put_port(struct sock *sk);
675 extern void			tcp_inherit_port(struct sock *sk, struct sock *child);
676 
677 extern void			tcp_v4_err(struct sk_buff *skb, u32);
678 
679 extern void			tcp_shutdown (struct sock *sk, int how);
680 
681 extern int			tcp_v4_rcv(struct sk_buff *skb);
682 
683 extern int			tcp_v4_remember_stamp(struct sock *sk);
684 
685 extern int		    	tcp_v4_tw_remember_stamp(struct tcp_tw_bucket *tw);
686 
687 extern int			tcp_sendmsg(struct kiocb *iocb, struct sock *sk,
688 					    struct msghdr *msg, size_t size);
689 extern ssize_t			tcp_sendpage(struct socket *sock, struct page *page, int offset, size_t size, int flags);
690 
691 extern int			tcp_ioctl(struct sock *sk,
692 					  int cmd,
693 					  unsigned long arg);
694 
695 extern int			tcp_rcv_state_process(struct sock *sk,
696 						      struct sk_buff *skb,
697 						      struct tcphdr *th,
698 						      unsigned len);
699 
700 extern int			tcp_rcv_established(struct sock *sk,
701 						    struct sk_buff *skb,
702 						    struct tcphdr *th,
703 						    unsigned len);
704 
705 extern void			tcp_rcv_space_adjust(struct sock *sk);
706 
707 enum tcp_ack_state_t
708 {
709 	TCP_ACK_SCHED = 1,
710 	TCP_ACK_TIMER = 2,
711 	TCP_ACK_PUSHED= 4
712 };
713 
714 static inline void tcp_schedule_ack(struct tcp_sock *tp)
715 {
716 	tp->ack.pending |= TCP_ACK_SCHED;
717 }
718 
719 static inline int tcp_ack_scheduled(struct tcp_sock *tp)
720 {
721 	return tp->ack.pending&TCP_ACK_SCHED;
722 }
723 
724 static __inline__ void tcp_dec_quickack_mode(struct tcp_sock *tp, unsigned int pkts)
725 {
726 	if (tp->ack.quick) {
727 		if (pkts >= tp->ack.quick) {
728 			tp->ack.quick = 0;
729 
730 			/* Leaving quickack mode we deflate ATO. */
731 			tp->ack.ato = TCP_ATO_MIN;
732 		} else
733 			tp->ack.quick -= pkts;
734 	}
735 }
736 
737 extern void tcp_enter_quickack_mode(struct tcp_sock *tp);
738 
739 static __inline__ void tcp_delack_init(struct tcp_sock *tp)
740 {
741 	memset(&tp->ack, 0, sizeof(tp->ack));
742 }
743 
744 static inline void tcp_clear_options(struct tcp_options_received *rx_opt)
745 {
746  	rx_opt->tstamp_ok = rx_opt->sack_ok = rx_opt->wscale_ok = rx_opt->snd_wscale = 0;
747 }
748 
749 enum tcp_tw_status
750 {
751 	TCP_TW_SUCCESS = 0,
752 	TCP_TW_RST = 1,
753 	TCP_TW_ACK = 2,
754 	TCP_TW_SYN = 3
755 };
756 
757 
758 extern enum tcp_tw_status	tcp_timewait_state_process(struct tcp_tw_bucket *tw,
759 							   struct sk_buff *skb,
760 							   struct tcphdr *th,
761 							   unsigned len);
762 
763 extern struct sock *		tcp_check_req(struct sock *sk,struct sk_buff *skb,
764 					      struct request_sock *req,
765 					      struct request_sock **prev);
766 extern int			tcp_child_process(struct sock *parent,
767 						  struct sock *child,
768 						  struct sk_buff *skb);
769 extern void			tcp_enter_frto(struct sock *sk);
770 extern void			tcp_enter_loss(struct sock *sk, int how);
771 extern void			tcp_clear_retrans(struct tcp_sock *tp);
772 extern void			tcp_update_metrics(struct sock *sk);
773 
774 extern void			tcp_close(struct sock *sk,
775 					  long timeout);
776 extern struct sock *		tcp_accept(struct sock *sk, int flags, int *err);
777 extern unsigned int		tcp_poll(struct file * file, struct socket *sock, struct poll_table_struct *wait);
778 
779 extern int			tcp_getsockopt(struct sock *sk, int level,
780 					       int optname,
781 					       char __user *optval,
782 					       int __user *optlen);
783 extern int			tcp_setsockopt(struct sock *sk, int level,
784 					       int optname, char __user *optval,
785 					       int optlen);
786 extern void			tcp_set_keepalive(struct sock *sk, int val);
787 extern int			tcp_recvmsg(struct kiocb *iocb, struct sock *sk,
788 					    struct msghdr *msg,
789 					    size_t len, int nonblock,
790 					    int flags, int *addr_len);
791 
792 extern int			tcp_listen_start(struct sock *sk);
793 
794 extern void			tcp_parse_options(struct sk_buff *skb,
795 						  struct tcp_options_received *opt_rx,
796 						  int estab);
797 
798 /*
799  *	TCP v4 functions exported for the inet6 API
800  */
801 
802 extern int		       	tcp_v4_rebuild_header(struct sock *sk);
803 
804 extern int		       	tcp_v4_build_header(struct sock *sk,
805 						    struct sk_buff *skb);
806 
807 extern void		       	tcp_v4_send_check(struct sock *sk,
808 						  struct tcphdr *th, int len,
809 						  struct sk_buff *skb);
810 
811 extern int			tcp_v4_conn_request(struct sock *sk,
812 						    struct sk_buff *skb);
813 
814 extern struct sock *		tcp_create_openreq_child(struct sock *sk,
815 							 struct request_sock *req,
816 							 struct sk_buff *skb);
817 
818 extern struct sock *		tcp_v4_syn_recv_sock(struct sock *sk,
819 						     struct sk_buff *skb,
820 						     struct request_sock *req,
821 							struct dst_entry *dst);
822 
823 extern int			tcp_v4_do_rcv(struct sock *sk,
824 					      struct sk_buff *skb);
825 
826 extern int			tcp_v4_connect(struct sock *sk,
827 					       struct sockaddr *uaddr,
828 					       int addr_len);
829 
830 extern int			tcp_connect(struct sock *sk);
831 
832 extern struct sk_buff *		tcp_make_synack(struct sock *sk,
833 						struct dst_entry *dst,
834 						struct request_sock *req);
835 
836 extern int			tcp_disconnect(struct sock *sk, int flags);
837 
838 extern void			tcp_unhash(struct sock *sk);
839 
840 extern int			tcp_v4_hash_connecting(struct sock *sk);
841 
842 
843 /* From syncookies.c */
844 extern struct sock *cookie_v4_check(struct sock *sk, struct sk_buff *skb,
845 				    struct ip_options *opt);
846 extern __u32 cookie_v4_init_sequence(struct sock *sk, struct sk_buff *skb,
847 				     __u16 *mss);
848 
849 /* tcp_output.c */
850 
851 extern void __tcp_push_pending_frames(struct sock *sk, struct tcp_sock *tp,
852 				      unsigned int cur_mss, int nonagle);
853 extern int tcp_may_send_now(struct sock *sk, struct tcp_sock *tp);
854 extern int tcp_retransmit_skb(struct sock *, struct sk_buff *);
855 extern void tcp_xmit_retransmit_queue(struct sock *);
856 extern void tcp_simple_retransmit(struct sock *);
857 extern int tcp_trim_head(struct sock *, struct sk_buff *, u32);
858 
859 extern void tcp_send_probe0(struct sock *);
860 extern void tcp_send_partial(struct sock *);
861 extern int  tcp_write_wakeup(struct sock *);
862 extern void tcp_send_fin(struct sock *sk);
863 extern void tcp_send_active_reset(struct sock *sk,
864                                   unsigned int __nocast priority);
865 extern int  tcp_send_synack(struct sock *);
866 extern void tcp_push_one(struct sock *, unsigned int mss_now);
867 extern void tcp_send_ack(struct sock *sk);
868 extern void tcp_send_delayed_ack(struct sock *sk);
869 
870 /* tcp_input.c */
871 extern void tcp_cwnd_application_limited(struct sock *sk);
872 
873 /* tcp_timer.c */
874 extern void tcp_init_xmit_timers(struct sock *);
875 extern void tcp_clear_xmit_timers(struct sock *);
876 
877 extern void tcp_delete_keepalive_timer(struct sock *);
878 extern void tcp_reset_keepalive_timer(struct sock *, unsigned long);
879 extern unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu);
880 extern unsigned int tcp_current_mss(struct sock *sk, int large);
881 
882 #ifdef TCP_DEBUG
883 extern const char tcp_timer_bug_msg[];
884 #endif
885 
886 /* tcp_diag.c */
887 extern void tcp_get_info(struct sock *, struct tcp_info *);
888 
889 /* Read 'sendfile()'-style from a TCP socket */
890 typedef int (*sk_read_actor_t)(read_descriptor_t *, struct sk_buff *,
891 				unsigned int, size_t);
892 extern int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
893 			 sk_read_actor_t recv_actor);
894 
895 static inline void tcp_clear_xmit_timer(struct sock *sk, int what)
896 {
897 	struct tcp_sock *tp = tcp_sk(sk);
898 
899 	switch (what) {
900 	case TCP_TIME_RETRANS:
901 	case TCP_TIME_PROBE0:
902 		tp->pending = 0;
903 
904 #ifdef TCP_CLEAR_TIMERS
905 		sk_stop_timer(sk, &tp->retransmit_timer);
906 #endif
907 		break;
908 	case TCP_TIME_DACK:
909 		tp->ack.blocked = 0;
910 		tp->ack.pending = 0;
911 
912 #ifdef TCP_CLEAR_TIMERS
913 		sk_stop_timer(sk, &tp->delack_timer);
914 #endif
915 		break;
916 	default:
917 #ifdef TCP_DEBUG
918 		printk(tcp_timer_bug_msg);
919 #endif
920 		return;
921 	};
922 
923 }
924 
925 /*
926  *	Reset the retransmission timer
927  */
928 static inline void tcp_reset_xmit_timer(struct sock *sk, int what, unsigned long when)
929 {
930 	struct tcp_sock *tp = tcp_sk(sk);
931 
932 	if (when > TCP_RTO_MAX) {
933 #ifdef TCP_DEBUG
934 		printk(KERN_DEBUG "reset_xmit_timer sk=%p %d when=0x%lx, caller=%p\n", sk, what, when, current_text_addr());
935 #endif
936 		when = TCP_RTO_MAX;
937 	}
938 
939 	switch (what) {
940 	case TCP_TIME_RETRANS:
941 	case TCP_TIME_PROBE0:
942 		tp->pending = what;
943 		tp->timeout = jiffies+when;
944 		sk_reset_timer(sk, &tp->retransmit_timer, tp->timeout);
945 		break;
946 
947 	case TCP_TIME_DACK:
948 		tp->ack.pending |= TCP_ACK_TIMER;
949 		tp->ack.timeout = jiffies+when;
950 		sk_reset_timer(sk, &tp->delack_timer, tp->ack.timeout);
951 		break;
952 
953 	default:
954 #ifdef TCP_DEBUG
955 		printk(tcp_timer_bug_msg);
956 #endif
957 		return;
958 	};
959 }
960 
961 /* Initialize RCV_MSS value.
962  * RCV_MSS is an our guess about MSS used by the peer.
963  * We haven't any direct information about the MSS.
964  * It's better to underestimate the RCV_MSS rather than overestimate.
965  * Overestimations make us ACKing less frequently than needed.
966  * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
967  */
968 
969 static inline void tcp_initialize_rcv_mss(struct sock *sk)
970 {
971 	struct tcp_sock *tp = tcp_sk(sk);
972 	unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
973 
974 	hint = min(hint, tp->rcv_wnd/2);
975 	hint = min(hint, TCP_MIN_RCVMSS);
976 	hint = max(hint, TCP_MIN_MSS);
977 
978 	tp->ack.rcv_mss = hint;
979 }
980 
981 static __inline__ void __tcp_fast_path_on(struct tcp_sock *tp, u32 snd_wnd)
982 {
983 	tp->pred_flags = htonl((tp->tcp_header_len << 26) |
984 			       ntohl(TCP_FLAG_ACK) |
985 			       snd_wnd);
986 }
987 
988 static __inline__ void tcp_fast_path_on(struct tcp_sock *tp)
989 {
990 	__tcp_fast_path_on(tp, tp->snd_wnd >> tp->rx_opt.snd_wscale);
991 }
992 
993 static inline void tcp_fast_path_check(struct sock *sk, struct tcp_sock *tp)
994 {
995 	if (skb_queue_empty(&tp->out_of_order_queue) &&
996 	    tp->rcv_wnd &&
997 	    atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf &&
998 	    !tp->urg_data)
999 		tcp_fast_path_on(tp);
1000 }
1001 
1002 /* Compute the actual receive window we are currently advertising.
1003  * Rcv_nxt can be after the window if our peer push more data
1004  * than the offered window.
1005  */
1006 static __inline__ u32 tcp_receive_window(const struct tcp_sock *tp)
1007 {
1008 	s32 win = tp->rcv_wup + tp->rcv_wnd - tp->rcv_nxt;
1009 
1010 	if (win < 0)
1011 		win = 0;
1012 	return (u32) win;
1013 }
1014 
1015 /* Choose a new window, without checks for shrinking, and without
1016  * scaling applied to the result.  The caller does these things
1017  * if necessary.  This is a "raw" window selection.
1018  */
1019 extern u32	__tcp_select_window(struct sock *sk);
1020 
1021 /* TCP timestamps are only 32-bits, this causes a slight
1022  * complication on 64-bit systems since we store a snapshot
1023  * of jiffies in the buffer control blocks below.  We decidely
1024  * only use of the low 32-bits of jiffies and hide the ugly
1025  * casts with the following macro.
1026  */
1027 #define tcp_time_stamp		((__u32)(jiffies))
1028 
1029 /* This is what the send packet queueing engine uses to pass
1030  * TCP per-packet control information to the transmission
1031  * code.  We also store the host-order sequence numbers in
1032  * here too.  This is 36 bytes on 32-bit architectures,
1033  * 40 bytes on 64-bit machines, if this grows please adjust
1034  * skbuff.h:skbuff->cb[xxx] size appropriately.
1035  */
1036 struct tcp_skb_cb {
1037 	union {
1038 		struct inet_skb_parm	h4;
1039 #if defined(CONFIG_IPV6) || defined (CONFIG_IPV6_MODULE)
1040 		struct inet6_skb_parm	h6;
1041 #endif
1042 	} header;	/* For incoming frames		*/
1043 	__u32		seq;		/* Starting sequence number	*/
1044 	__u32		end_seq;	/* SEQ + FIN + SYN + datalen	*/
1045 	__u32		when;		/* used to compute rtt's	*/
1046 	__u8		flags;		/* TCP header flags.		*/
1047 
1048 	/* NOTE: These must match up to the flags byte in a
1049 	 *       real TCP header.
1050 	 */
1051 #define TCPCB_FLAG_FIN		0x01
1052 #define TCPCB_FLAG_SYN		0x02
1053 #define TCPCB_FLAG_RST		0x04
1054 #define TCPCB_FLAG_PSH		0x08
1055 #define TCPCB_FLAG_ACK		0x10
1056 #define TCPCB_FLAG_URG		0x20
1057 #define TCPCB_FLAG_ECE		0x40
1058 #define TCPCB_FLAG_CWR		0x80
1059 
1060 	__u8		sacked;		/* State flags for SACK/FACK.	*/
1061 #define TCPCB_SACKED_ACKED	0x01	/* SKB ACK'd by a SACK block	*/
1062 #define TCPCB_SACKED_RETRANS	0x02	/* SKB retransmitted		*/
1063 #define TCPCB_LOST		0x04	/* SKB is lost			*/
1064 #define TCPCB_TAGBITS		0x07	/* All tag bits			*/
1065 
1066 #define TCPCB_EVER_RETRANS	0x80	/* Ever retransmitted frame	*/
1067 #define TCPCB_RETRANS		(TCPCB_SACKED_RETRANS|TCPCB_EVER_RETRANS)
1068 
1069 #define TCPCB_URG		0x20	/* Urgent pointer advenced here	*/
1070 
1071 #define TCPCB_AT_TAIL		(TCPCB_URG)
1072 
1073 	__u16		urg_ptr;	/* Valid w/URG flags is set.	*/
1074 	__u32		ack_seq;	/* Sequence number ACK'd	*/
1075 };
1076 
1077 #define TCP_SKB_CB(__skb)	((struct tcp_skb_cb *)&((__skb)->cb[0]))
1078 
1079 #include <net/tcp_ecn.h>
1080 
1081 /* Due to TSO, an SKB can be composed of multiple actual
1082  * packets.  To keep these tracked properly, we use this.
1083  */
1084 static inline int tcp_skb_pcount(const struct sk_buff *skb)
1085 {
1086 	return skb_shinfo(skb)->tso_segs;
1087 }
1088 
1089 /* This is valid iff tcp_skb_pcount() > 1. */
1090 static inline int tcp_skb_mss(const struct sk_buff *skb)
1091 {
1092 	return skb_shinfo(skb)->tso_size;
1093 }
1094 
1095 static inline void tcp_dec_pcount_approx(__u32 *count,
1096 					 const struct sk_buff *skb)
1097 {
1098 	if (*count) {
1099 		*count -= tcp_skb_pcount(skb);
1100 		if ((int)*count < 0)
1101 			*count = 0;
1102 	}
1103 }
1104 
1105 static inline void tcp_packets_out_inc(struct sock *sk,
1106 				       struct tcp_sock *tp,
1107 				       const struct sk_buff *skb)
1108 {
1109 	int orig = tp->packets_out;
1110 
1111 	tp->packets_out += tcp_skb_pcount(skb);
1112 	if (!orig)
1113 		tcp_reset_xmit_timer(sk, TCP_TIME_RETRANS, tp->rto);
1114 }
1115 
1116 static inline void tcp_packets_out_dec(struct tcp_sock *tp,
1117 				       const struct sk_buff *skb)
1118 {
1119 	tp->packets_out -= tcp_skb_pcount(skb);
1120 }
1121 
1122 /* Events passed to congestion control interface */
1123 enum tcp_ca_event {
1124 	CA_EVENT_TX_START,	/* first transmit when no packets in flight */
1125 	CA_EVENT_CWND_RESTART,	/* congestion window restart */
1126 	CA_EVENT_COMPLETE_CWR,	/* end of congestion recovery */
1127 	CA_EVENT_FRTO,		/* fast recovery timeout */
1128 	CA_EVENT_LOSS,		/* loss timeout */
1129 	CA_EVENT_FAST_ACK,	/* in sequence ack */
1130 	CA_EVENT_SLOW_ACK,	/* other ack */
1131 };
1132 
1133 /*
1134  * Interface for adding new TCP congestion control handlers
1135  */
1136 #define TCP_CA_NAME_MAX	16
1137 struct tcp_congestion_ops {
1138 	struct list_head	list;
1139 
1140 	/* initialize private data (optional) */
1141 	void (*init)(struct tcp_sock *tp);
1142 	/* cleanup private data  (optional) */
1143 	void (*release)(struct tcp_sock *tp);
1144 
1145 	/* return slow start threshold (required) */
1146 	u32 (*ssthresh)(struct tcp_sock *tp);
1147 	/* lower bound for congestion window (optional) */
1148 	u32 (*min_cwnd)(struct tcp_sock *tp);
1149 	/* do new cwnd calculation (required) */
1150 	void (*cong_avoid)(struct tcp_sock *tp, u32 ack,
1151 			   u32 rtt, u32 in_flight, int good_ack);
1152 	/* round trip time sample per acked packet (optional) */
1153 	void (*rtt_sample)(struct tcp_sock *tp, u32 usrtt);
1154 	/* call before changing ca_state (optional) */
1155 	void (*set_state)(struct tcp_sock *tp, u8 new_state);
1156 	/* call when cwnd event occurs (optional) */
1157 	void (*cwnd_event)(struct tcp_sock *tp, enum tcp_ca_event ev);
1158 	/* new value of cwnd after loss (optional) */
1159 	u32  (*undo_cwnd)(struct tcp_sock *tp);
1160 	/* hook for packet ack accounting (optional) */
1161 	void (*pkts_acked)(struct tcp_sock *tp, u32 num_acked);
1162 	/* get info for tcp_diag (optional) */
1163 	void (*get_info)(struct tcp_sock *tp, u32 ext, struct sk_buff *skb);
1164 
1165 	char 		name[TCP_CA_NAME_MAX];
1166 	struct module 	*owner;
1167 };
1168 
1169 extern int tcp_register_congestion_control(struct tcp_congestion_ops *type);
1170 extern void tcp_unregister_congestion_control(struct tcp_congestion_ops *type);
1171 
1172 extern void tcp_init_congestion_control(struct tcp_sock *tp);
1173 extern void tcp_cleanup_congestion_control(struct tcp_sock *tp);
1174 extern int tcp_set_default_congestion_control(const char *name);
1175 extern void tcp_get_default_congestion_control(char *name);
1176 extern int tcp_set_congestion_control(struct tcp_sock *tp, const char *name);
1177 
1178 extern struct tcp_congestion_ops tcp_init_congestion_ops;
1179 extern u32 tcp_reno_ssthresh(struct tcp_sock *tp);
1180 extern void tcp_reno_cong_avoid(struct tcp_sock *tp, u32 ack,
1181 				u32 rtt, u32 in_flight, int flag);
1182 extern u32 tcp_reno_min_cwnd(struct tcp_sock *tp);
1183 extern struct tcp_congestion_ops tcp_reno;
1184 
1185 static inline void tcp_set_ca_state(struct tcp_sock *tp, u8 ca_state)
1186 {
1187 	if (tp->ca_ops->set_state)
1188 		tp->ca_ops->set_state(tp, ca_state);
1189 	tp->ca_state = ca_state;
1190 }
1191 
1192 static inline void tcp_ca_event(struct tcp_sock *tp, enum tcp_ca_event event)
1193 {
1194 	if (tp->ca_ops->cwnd_event)
1195 		tp->ca_ops->cwnd_event(tp, event);
1196 }
1197 
1198 /* This determines how many packets are "in the network" to the best
1199  * of our knowledge.  In many cases it is conservative, but where
1200  * detailed information is available from the receiver (via SACK
1201  * blocks etc.) we can make more aggressive calculations.
1202  *
1203  * Use this for decisions involving congestion control, use just
1204  * tp->packets_out to determine if the send queue is empty or not.
1205  *
1206  * Read this equation as:
1207  *
1208  *	"Packets sent once on transmission queue" MINUS
1209  *	"Packets left network, but not honestly ACKed yet" PLUS
1210  *	"Packets fast retransmitted"
1211  */
1212 static __inline__ unsigned int tcp_packets_in_flight(const struct tcp_sock *tp)
1213 {
1214 	return (tp->packets_out - tp->left_out + tp->retrans_out);
1215 }
1216 
1217 /* If cwnd > ssthresh, we may raise ssthresh to be half-way to cwnd.
1218  * The exception is rate halving phase, when cwnd is decreasing towards
1219  * ssthresh.
1220  */
1221 static inline __u32 tcp_current_ssthresh(struct tcp_sock *tp)
1222 {
1223 	if ((1<<tp->ca_state)&(TCPF_CA_CWR|TCPF_CA_Recovery))
1224 		return tp->snd_ssthresh;
1225 	else
1226 		return max(tp->snd_ssthresh,
1227 			   ((tp->snd_cwnd >> 1) +
1228 			    (tp->snd_cwnd >> 2)));
1229 }
1230 
1231 static inline void tcp_sync_left_out(struct tcp_sock *tp)
1232 {
1233 	if (tp->rx_opt.sack_ok &&
1234 	    (tp->sacked_out >= tp->packets_out - tp->lost_out))
1235 		tp->sacked_out = tp->packets_out - tp->lost_out;
1236 	tp->left_out = tp->sacked_out + tp->lost_out;
1237 }
1238 
1239 /* Set slow start threshould and cwnd not falling to slow start */
1240 static inline void __tcp_enter_cwr(struct tcp_sock *tp)
1241 {
1242 	tp->undo_marker = 0;
1243 	tp->snd_ssthresh = tp->ca_ops->ssthresh(tp);
1244 	tp->snd_cwnd = min(tp->snd_cwnd,
1245 			   tcp_packets_in_flight(tp) + 1U);
1246 	tp->snd_cwnd_cnt = 0;
1247 	tp->high_seq = tp->snd_nxt;
1248 	tp->snd_cwnd_stamp = tcp_time_stamp;
1249 	TCP_ECN_queue_cwr(tp);
1250 }
1251 
1252 static inline void tcp_enter_cwr(struct tcp_sock *tp)
1253 {
1254 	tp->prior_ssthresh = 0;
1255 	if (tp->ca_state < TCP_CA_CWR) {
1256 		__tcp_enter_cwr(tp);
1257 		tcp_set_ca_state(tp, TCP_CA_CWR);
1258 	}
1259 }
1260 
1261 extern __u32 tcp_init_cwnd(struct tcp_sock *tp, struct dst_entry *dst);
1262 
1263 /* Slow start with delack produces 3 packets of burst, so that
1264  * it is safe "de facto".
1265  */
1266 static __inline__ __u32 tcp_max_burst(const struct tcp_sock *tp)
1267 {
1268 	return 3;
1269 }
1270 
1271 static __inline__ void tcp_minshall_update(struct tcp_sock *tp, int mss,
1272 					   const struct sk_buff *skb)
1273 {
1274 	if (skb->len < mss)
1275 		tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
1276 }
1277 
1278 static __inline__ void tcp_check_probe_timer(struct sock *sk, struct tcp_sock *tp)
1279 {
1280 	if (!tp->packets_out && !tp->pending)
1281 		tcp_reset_xmit_timer(sk, TCP_TIME_PROBE0, tp->rto);
1282 }
1283 
1284 static __inline__ void tcp_push_pending_frames(struct sock *sk,
1285 					       struct tcp_sock *tp)
1286 {
1287 	__tcp_push_pending_frames(sk, tp, tcp_current_mss(sk, 1), tp->nonagle);
1288 }
1289 
1290 static __inline__ void tcp_init_wl(struct tcp_sock *tp, u32 ack, u32 seq)
1291 {
1292 	tp->snd_wl1 = seq;
1293 }
1294 
1295 static __inline__ void tcp_update_wl(struct tcp_sock *tp, u32 ack, u32 seq)
1296 {
1297 	tp->snd_wl1 = seq;
1298 }
1299 
1300 extern void tcp_destroy_sock(struct sock *sk);
1301 
1302 
1303 /*
1304  * Calculate(/check) TCP checksum
1305  */
1306 static __inline__ u16 tcp_v4_check(struct tcphdr *th, int len,
1307 				   unsigned long saddr, unsigned long daddr,
1308 				   unsigned long base)
1309 {
1310 	return csum_tcpudp_magic(saddr,daddr,len,IPPROTO_TCP,base);
1311 }
1312 
1313 static __inline__ int __tcp_checksum_complete(struct sk_buff *skb)
1314 {
1315 	return (unsigned short)csum_fold(skb_checksum(skb, 0, skb->len, skb->csum));
1316 }
1317 
1318 static __inline__ int tcp_checksum_complete(struct sk_buff *skb)
1319 {
1320 	return skb->ip_summed != CHECKSUM_UNNECESSARY &&
1321 		__tcp_checksum_complete(skb);
1322 }
1323 
1324 /* Prequeue for VJ style copy to user, combined with checksumming. */
1325 
1326 static __inline__ void tcp_prequeue_init(struct tcp_sock *tp)
1327 {
1328 	tp->ucopy.task = NULL;
1329 	tp->ucopy.len = 0;
1330 	tp->ucopy.memory = 0;
1331 	skb_queue_head_init(&tp->ucopy.prequeue);
1332 }
1333 
1334 /* Packet is added to VJ-style prequeue for processing in process
1335  * context, if a reader task is waiting. Apparently, this exciting
1336  * idea (VJ's mail "Re: query about TCP header on tcp-ip" of 07 Sep 93)
1337  * failed somewhere. Latency? Burstiness? Well, at least now we will
1338  * see, why it failed. 8)8)				  --ANK
1339  *
1340  * NOTE: is this not too big to inline?
1341  */
1342 static __inline__ int tcp_prequeue(struct sock *sk, struct sk_buff *skb)
1343 {
1344 	struct tcp_sock *tp = tcp_sk(sk);
1345 
1346 	if (!sysctl_tcp_low_latency && tp->ucopy.task) {
1347 		__skb_queue_tail(&tp->ucopy.prequeue, skb);
1348 		tp->ucopy.memory += skb->truesize;
1349 		if (tp->ucopy.memory > sk->sk_rcvbuf) {
1350 			struct sk_buff *skb1;
1351 
1352 			BUG_ON(sock_owned_by_user(sk));
1353 
1354 			while ((skb1 = __skb_dequeue(&tp->ucopy.prequeue)) != NULL) {
1355 				sk->sk_backlog_rcv(sk, skb1);
1356 				NET_INC_STATS_BH(LINUX_MIB_TCPPREQUEUEDROPPED);
1357 			}
1358 
1359 			tp->ucopy.memory = 0;
1360 		} else if (skb_queue_len(&tp->ucopy.prequeue) == 1) {
1361 			wake_up_interruptible(sk->sk_sleep);
1362 			if (!tcp_ack_scheduled(tp))
1363 				tcp_reset_xmit_timer(sk, TCP_TIME_DACK, (3*TCP_RTO_MIN)/4);
1364 		}
1365 		return 1;
1366 	}
1367 	return 0;
1368 }
1369 
1370 
1371 #undef STATE_TRACE
1372 
1373 #ifdef STATE_TRACE
1374 static const char *statename[]={
1375 	"Unused","Established","Syn Sent","Syn Recv",
1376 	"Fin Wait 1","Fin Wait 2","Time Wait", "Close",
1377 	"Close Wait","Last ACK","Listen","Closing"
1378 };
1379 #endif
1380 
1381 static __inline__ void tcp_set_state(struct sock *sk, int state)
1382 {
1383 	int oldstate = sk->sk_state;
1384 
1385 	switch (state) {
1386 	case TCP_ESTABLISHED:
1387 		if (oldstate != TCP_ESTABLISHED)
1388 			TCP_INC_STATS(TCP_MIB_CURRESTAB);
1389 		break;
1390 
1391 	case TCP_CLOSE:
1392 		if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED)
1393 			TCP_INC_STATS(TCP_MIB_ESTABRESETS);
1394 
1395 		sk->sk_prot->unhash(sk);
1396 		if (tcp_sk(sk)->bind_hash &&
1397 		    !(sk->sk_userlocks & SOCK_BINDPORT_LOCK))
1398 			tcp_put_port(sk);
1399 		/* fall through */
1400 	default:
1401 		if (oldstate==TCP_ESTABLISHED)
1402 			TCP_DEC_STATS(TCP_MIB_CURRESTAB);
1403 	}
1404 
1405 	/* Change state AFTER socket is unhashed to avoid closed
1406 	 * socket sitting in hash tables.
1407 	 */
1408 	sk->sk_state = state;
1409 
1410 #ifdef STATE_TRACE
1411 	SOCK_DEBUG(sk, "TCP sk=%p, State %s -> %s\n",sk, statename[oldstate],statename[state]);
1412 #endif
1413 }
1414 
1415 static __inline__ void tcp_done(struct sock *sk)
1416 {
1417 	tcp_set_state(sk, TCP_CLOSE);
1418 	tcp_clear_xmit_timers(sk);
1419 
1420 	sk->sk_shutdown = SHUTDOWN_MASK;
1421 
1422 	if (!sock_flag(sk, SOCK_DEAD))
1423 		sk->sk_state_change(sk);
1424 	else
1425 		tcp_destroy_sock(sk);
1426 }
1427 
1428 static __inline__ void tcp_sack_reset(struct tcp_options_received *rx_opt)
1429 {
1430 	rx_opt->dsack = 0;
1431 	rx_opt->eff_sacks = 0;
1432 	rx_opt->num_sacks = 0;
1433 }
1434 
1435 static __inline__ void tcp_build_and_update_options(__u32 *ptr, struct tcp_sock *tp, __u32 tstamp)
1436 {
1437 	if (tp->rx_opt.tstamp_ok) {
1438 		*ptr++ = __constant_htonl((TCPOPT_NOP << 24) |
1439 					  (TCPOPT_NOP << 16) |
1440 					  (TCPOPT_TIMESTAMP << 8) |
1441 					  TCPOLEN_TIMESTAMP);
1442 		*ptr++ = htonl(tstamp);
1443 		*ptr++ = htonl(tp->rx_opt.ts_recent);
1444 	}
1445 	if (tp->rx_opt.eff_sacks) {
1446 		struct tcp_sack_block *sp = tp->rx_opt.dsack ? tp->duplicate_sack : tp->selective_acks;
1447 		int this_sack;
1448 
1449 		*ptr++ = __constant_htonl((TCPOPT_NOP << 24) |
1450 					  (TCPOPT_NOP << 16) |
1451 					  (TCPOPT_SACK << 8) |
1452 					  (TCPOLEN_SACK_BASE +
1453 					   (tp->rx_opt.eff_sacks * TCPOLEN_SACK_PERBLOCK)));
1454 		for(this_sack = 0; this_sack < tp->rx_opt.eff_sacks; this_sack++) {
1455 			*ptr++ = htonl(sp[this_sack].start_seq);
1456 			*ptr++ = htonl(sp[this_sack].end_seq);
1457 		}
1458 		if (tp->rx_opt.dsack) {
1459 			tp->rx_opt.dsack = 0;
1460 			tp->rx_opt.eff_sacks--;
1461 		}
1462 	}
1463 }
1464 
1465 /* Construct a tcp options header for a SYN or SYN_ACK packet.
1466  * If this is every changed make sure to change the definition of
1467  * MAX_SYN_SIZE to match the new maximum number of options that you
1468  * can generate.
1469  */
1470 static inline void tcp_syn_build_options(__u32 *ptr, int mss, int ts, int sack,
1471 					     int offer_wscale, int wscale, __u32 tstamp, __u32 ts_recent)
1472 {
1473 	/* We always get an MSS option.
1474 	 * The option bytes which will be seen in normal data
1475 	 * packets should timestamps be used, must be in the MSS
1476 	 * advertised.  But we subtract them from tp->mss_cache so
1477 	 * that calculations in tcp_sendmsg are simpler etc.
1478 	 * So account for this fact here if necessary.  If we
1479 	 * don't do this correctly, as a receiver we won't
1480 	 * recognize data packets as being full sized when we
1481 	 * should, and thus we won't abide by the delayed ACK
1482 	 * rules correctly.
1483 	 * SACKs don't matter, we never delay an ACK when we
1484 	 * have any of those going out.
1485 	 */
1486 	*ptr++ = htonl((TCPOPT_MSS << 24) | (TCPOLEN_MSS << 16) | mss);
1487 	if (ts) {
1488 		if(sack)
1489 			*ptr++ = __constant_htonl((TCPOPT_SACK_PERM << 24) | (TCPOLEN_SACK_PERM << 16) |
1490 						  (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP);
1491 		else
1492 			*ptr++ = __constant_htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
1493 						  (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP);
1494 		*ptr++ = htonl(tstamp);		/* TSVAL */
1495 		*ptr++ = htonl(ts_recent);	/* TSECR */
1496 	} else if(sack)
1497 		*ptr++ = __constant_htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
1498 					  (TCPOPT_SACK_PERM << 8) | TCPOLEN_SACK_PERM);
1499 	if (offer_wscale)
1500 		*ptr++ = htonl((TCPOPT_NOP << 24) | (TCPOPT_WINDOW << 16) | (TCPOLEN_WINDOW << 8) | (wscale));
1501 }
1502 
1503 /* Determine a window scaling and initial window to offer. */
1504 extern void tcp_select_initial_window(int __space, __u32 mss,
1505 				      __u32 *rcv_wnd, __u32 *window_clamp,
1506 				      int wscale_ok, __u8 *rcv_wscale);
1507 
1508 static inline int tcp_win_from_space(int space)
1509 {
1510 	return sysctl_tcp_adv_win_scale<=0 ?
1511 		(space>>(-sysctl_tcp_adv_win_scale)) :
1512 		space - (space>>sysctl_tcp_adv_win_scale);
1513 }
1514 
1515 /* Note: caller must be prepared to deal with negative returns */
1516 static inline int tcp_space(const struct sock *sk)
1517 {
1518 	return tcp_win_from_space(sk->sk_rcvbuf -
1519 				  atomic_read(&sk->sk_rmem_alloc));
1520 }
1521 
1522 static inline int tcp_full_space(const struct sock *sk)
1523 {
1524 	return tcp_win_from_space(sk->sk_rcvbuf);
1525 }
1526 
1527 static inline void tcp_acceptq_queue(struct sock *sk, struct request_sock *req,
1528 					 struct sock *child)
1529 {
1530 	reqsk_queue_add(&tcp_sk(sk)->accept_queue, req, sk, child);
1531 }
1532 
1533 static inline void
1534 tcp_synq_removed(struct sock *sk, struct request_sock *req)
1535 {
1536 	if (reqsk_queue_removed(&tcp_sk(sk)->accept_queue, req) == 0)
1537 		tcp_delete_keepalive_timer(sk);
1538 }
1539 
1540 static inline void tcp_synq_added(struct sock *sk)
1541 {
1542 	if (reqsk_queue_added(&tcp_sk(sk)->accept_queue) == 0)
1543 		tcp_reset_keepalive_timer(sk, TCP_TIMEOUT_INIT);
1544 }
1545 
1546 static inline int tcp_synq_len(struct sock *sk)
1547 {
1548 	return reqsk_queue_len(&tcp_sk(sk)->accept_queue);
1549 }
1550 
1551 static inline int tcp_synq_young(struct sock *sk)
1552 {
1553 	return reqsk_queue_len_young(&tcp_sk(sk)->accept_queue);
1554 }
1555 
1556 static inline int tcp_synq_is_full(struct sock *sk)
1557 {
1558 	return reqsk_queue_is_full(&tcp_sk(sk)->accept_queue);
1559 }
1560 
1561 static inline void tcp_synq_unlink(struct tcp_sock *tp, struct request_sock *req,
1562 				   struct request_sock **prev)
1563 {
1564 	reqsk_queue_unlink(&tp->accept_queue, req, prev);
1565 }
1566 
1567 static inline void tcp_synq_drop(struct sock *sk, struct request_sock *req,
1568 				     struct request_sock **prev)
1569 {
1570 	tcp_synq_unlink(tcp_sk(sk), req, prev);
1571 	tcp_synq_removed(sk, req);
1572 	reqsk_free(req);
1573 }
1574 
1575 static __inline__ void tcp_openreq_init(struct request_sock *req,
1576 					struct tcp_options_received *rx_opt,
1577 					struct sk_buff *skb)
1578 {
1579 	struct inet_request_sock *ireq = inet_rsk(req);
1580 
1581 	req->rcv_wnd = 0;		/* So that tcp_send_synack() knows! */
1582 	tcp_rsk(req)->rcv_isn = TCP_SKB_CB(skb)->seq;
1583 	req->mss = rx_opt->mss_clamp;
1584 	req->ts_recent = rx_opt->saw_tstamp ? rx_opt->rcv_tsval : 0;
1585 	ireq->tstamp_ok = rx_opt->tstamp_ok;
1586 	ireq->sack_ok = rx_opt->sack_ok;
1587 	ireq->snd_wscale = rx_opt->snd_wscale;
1588 	ireq->wscale_ok = rx_opt->wscale_ok;
1589 	ireq->acked = 0;
1590 	ireq->ecn_ok = 0;
1591 	ireq->rmt_port = skb->h.th->source;
1592 }
1593 
1594 extern void tcp_enter_memory_pressure(void);
1595 
1596 extern void tcp_listen_wlock(void);
1597 
1598 /* - We may sleep inside this lock.
1599  * - If sleeping is not required (or called from BH),
1600  *   use plain read_(un)lock(&tcp_lhash_lock).
1601  */
1602 
1603 static inline void tcp_listen_lock(void)
1604 {
1605 	/* read_lock synchronizes to candidates to writers */
1606 	read_lock(&tcp_lhash_lock);
1607 	atomic_inc(&tcp_lhash_users);
1608 	read_unlock(&tcp_lhash_lock);
1609 }
1610 
1611 static inline void tcp_listen_unlock(void)
1612 {
1613 	if (atomic_dec_and_test(&tcp_lhash_users))
1614 		wake_up(&tcp_lhash_wait);
1615 }
1616 
1617 static inline int keepalive_intvl_when(const struct tcp_sock *tp)
1618 {
1619 	return tp->keepalive_intvl ? : sysctl_tcp_keepalive_intvl;
1620 }
1621 
1622 static inline int keepalive_time_when(const struct tcp_sock *tp)
1623 {
1624 	return tp->keepalive_time ? : sysctl_tcp_keepalive_time;
1625 }
1626 
1627 static inline int tcp_fin_time(const struct tcp_sock *tp)
1628 {
1629 	int fin_timeout = tp->linger2 ? : sysctl_tcp_fin_timeout;
1630 
1631 	if (fin_timeout < (tp->rto<<2) - (tp->rto>>1))
1632 		fin_timeout = (tp->rto<<2) - (tp->rto>>1);
1633 
1634 	return fin_timeout;
1635 }
1636 
1637 static inline int tcp_paws_check(const struct tcp_options_received *rx_opt, int rst)
1638 {
1639 	if ((s32)(rx_opt->rcv_tsval - rx_opt->ts_recent) >= 0)
1640 		return 0;
1641 	if (xtime.tv_sec >= rx_opt->ts_recent_stamp + TCP_PAWS_24DAYS)
1642 		return 0;
1643 
1644 	/* RST segments are not recommended to carry timestamp,
1645 	   and, if they do, it is recommended to ignore PAWS because
1646 	   "their cleanup function should take precedence over timestamps."
1647 	   Certainly, it is mistake. It is necessary to understand the reasons
1648 	   of this constraint to relax it: if peer reboots, clock may go
1649 	   out-of-sync and half-open connections will not be reset.
1650 	   Actually, the problem would be not existing if all
1651 	   the implementations followed draft about maintaining clock
1652 	   via reboots. Linux-2.2 DOES NOT!
1653 
1654 	   However, we can relax time bounds for RST segments to MSL.
1655 	 */
1656 	if (rst && xtime.tv_sec >= rx_opt->ts_recent_stamp + TCP_PAWS_MSL)
1657 		return 0;
1658 	return 1;
1659 }
1660 
1661 static inline void tcp_v4_setup_caps(struct sock *sk, struct dst_entry *dst)
1662 {
1663 	sk->sk_route_caps = dst->dev->features;
1664 	if (sk->sk_route_caps & NETIF_F_TSO) {
1665 		if (sock_flag(sk, SOCK_NO_LARGESEND) || dst->header_len)
1666 			sk->sk_route_caps &= ~NETIF_F_TSO;
1667 	}
1668 }
1669 
1670 #define TCP_CHECK_TIMER(sk) do { } while (0)
1671 
1672 static inline int tcp_use_frto(const struct sock *sk)
1673 {
1674 	const struct tcp_sock *tp = tcp_sk(sk);
1675 
1676 	/* F-RTO must be activated in sysctl and there must be some
1677 	 * unsent new data, and the advertised window should allow
1678 	 * sending it.
1679 	 */
1680 	return (sysctl_tcp_frto && sk->sk_send_head &&
1681 		!after(TCP_SKB_CB(sk->sk_send_head)->end_seq,
1682 		       tp->snd_una + tp->snd_wnd));
1683 }
1684 
1685 static inline void tcp_mib_init(void)
1686 {
1687 	/* See RFC 2012 */
1688 	TCP_ADD_STATS_USER(TCP_MIB_RTOALGORITHM, 1);
1689 	TCP_ADD_STATS_USER(TCP_MIB_RTOMIN, TCP_RTO_MIN*1000/HZ);
1690 	TCP_ADD_STATS_USER(TCP_MIB_RTOMAX, TCP_RTO_MAX*1000/HZ);
1691 	TCP_ADD_STATS_USER(TCP_MIB_MAXCONN, -1);
1692 }
1693 
1694 /* /proc */
1695 enum tcp_seq_states {
1696 	TCP_SEQ_STATE_LISTENING,
1697 	TCP_SEQ_STATE_OPENREQ,
1698 	TCP_SEQ_STATE_ESTABLISHED,
1699 	TCP_SEQ_STATE_TIME_WAIT,
1700 };
1701 
1702 struct tcp_seq_afinfo {
1703 	struct module		*owner;
1704 	char			*name;
1705 	sa_family_t		family;
1706 	int			(*seq_show) (struct seq_file *m, void *v);
1707 	struct file_operations	*seq_fops;
1708 };
1709 
1710 struct tcp_iter_state {
1711 	sa_family_t		family;
1712 	enum tcp_seq_states	state;
1713 	struct sock		*syn_wait_sk;
1714 	int			bucket, sbucket, num, uid;
1715 	struct seq_operations	seq_ops;
1716 };
1717 
1718 extern int tcp_proc_register(struct tcp_seq_afinfo *afinfo);
1719 extern void tcp_proc_unregister(struct tcp_seq_afinfo *afinfo);
1720 
1721 #endif	/* _TCP_H */
1722