xref: /linux/include/net/tcp.h (revision 160b8e75932fd51a49607d32dbfa1d417977b79c)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Definitions for the TCP module.
7  *
8  * Version:	@(#)tcp.h	1.0.5	05/23/93
9  *
10  * Authors:	Ross Biro
11  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *
13  *		This program is free software; you can redistribute it and/or
14  *		modify it under the terms of the GNU General Public License
15  *		as published by the Free Software Foundation; either version
16  *		2 of the License, or (at your option) any later version.
17  */
18 #ifndef _TCP_H
19 #define _TCP_H
20 
21 #define FASTRETRANS_DEBUG 1
22 
23 #include <linux/list.h>
24 #include <linux/tcp.h>
25 #include <linux/bug.h>
26 #include <linux/slab.h>
27 #include <linux/cache.h>
28 #include <linux/percpu.h>
29 #include <linux/skbuff.h>
30 #include <linux/cryptohash.h>
31 #include <linux/kref.h>
32 #include <linux/ktime.h>
33 
34 #include <net/inet_connection_sock.h>
35 #include <net/inet_timewait_sock.h>
36 #include <net/inet_hashtables.h>
37 #include <net/checksum.h>
38 #include <net/request_sock.h>
39 #include <net/sock.h>
40 #include <net/snmp.h>
41 #include <net/ip.h>
42 #include <net/tcp_states.h>
43 #include <net/inet_ecn.h>
44 #include <net/dst.h>
45 
46 #include <linux/seq_file.h>
47 #include <linux/memcontrol.h>
48 #include <linux/bpf-cgroup.h>
49 
50 extern struct inet_hashinfo tcp_hashinfo;
51 
52 extern struct percpu_counter tcp_orphan_count;
53 void tcp_time_wait(struct sock *sk, int state, int timeo);
54 
55 #define MAX_TCP_HEADER	(128 + MAX_HEADER)
56 #define MAX_TCP_OPTION_SPACE 40
57 
58 /*
59  * Never offer a window over 32767 without using window scaling. Some
60  * poor stacks do signed 16bit maths!
61  */
62 #define MAX_TCP_WINDOW		32767U
63 
64 /* Minimal accepted MSS. It is (60+60+8) - (20+20). */
65 #define TCP_MIN_MSS		88U
66 
67 /* The least MTU to use for probing */
68 #define TCP_BASE_MSS		1024
69 
70 /* probing interval, default to 10 minutes as per RFC4821 */
71 #define TCP_PROBE_INTERVAL	600
72 
73 /* Specify interval when tcp mtu probing will stop */
74 #define TCP_PROBE_THRESHOLD	8
75 
76 /* After receiving this amount of duplicate ACKs fast retransmit starts. */
77 #define TCP_FASTRETRANS_THRESH 3
78 
79 /* Maximal number of ACKs sent quickly to accelerate slow-start. */
80 #define TCP_MAX_QUICKACKS	16U
81 
82 /* Maximal number of window scale according to RFC1323 */
83 #define TCP_MAX_WSCALE		14U
84 
85 /* urg_data states */
86 #define TCP_URG_VALID	0x0100
87 #define TCP_URG_NOTYET	0x0200
88 #define TCP_URG_READ	0x0400
89 
90 #define TCP_RETR1	3	/*
91 				 * This is how many retries it does before it
92 				 * tries to figure out if the gateway is
93 				 * down. Minimal RFC value is 3; it corresponds
94 				 * to ~3sec-8min depending on RTO.
95 				 */
96 
97 #define TCP_RETR2	15	/*
98 				 * This should take at least
99 				 * 90 minutes to time out.
100 				 * RFC1122 says that the limit is 100 sec.
101 				 * 15 is ~13-30min depending on RTO.
102 				 */
103 
104 #define TCP_SYN_RETRIES	 6	/* This is how many retries are done
105 				 * when active opening a connection.
106 				 * RFC1122 says the minimum retry MUST
107 				 * be at least 180secs.  Nevertheless
108 				 * this value is corresponding to
109 				 * 63secs of retransmission with the
110 				 * current initial RTO.
111 				 */
112 
113 #define TCP_SYNACK_RETRIES 5	/* This is how may retries are done
114 				 * when passive opening a connection.
115 				 * This is corresponding to 31secs of
116 				 * retransmission with the current
117 				 * initial RTO.
118 				 */
119 
120 #define TCP_TIMEWAIT_LEN (60*HZ) /* how long to wait to destroy TIME-WAIT
121 				  * state, about 60 seconds	*/
122 #define TCP_FIN_TIMEOUT	TCP_TIMEWAIT_LEN
123                                  /* BSD style FIN_WAIT2 deadlock breaker.
124 				  * It used to be 3min, new value is 60sec,
125 				  * to combine FIN-WAIT-2 timeout with
126 				  * TIME-WAIT timer.
127 				  */
128 
129 #define TCP_DELACK_MAX	((unsigned)(HZ/5))	/* maximal time to delay before sending an ACK */
130 #if HZ >= 100
131 #define TCP_DELACK_MIN	((unsigned)(HZ/25))	/* minimal time to delay before sending an ACK */
132 #define TCP_ATO_MIN	((unsigned)(HZ/25))
133 #else
134 #define TCP_DELACK_MIN	4U
135 #define TCP_ATO_MIN	4U
136 #endif
137 #define TCP_RTO_MAX	((unsigned)(120*HZ))
138 #define TCP_RTO_MIN	((unsigned)(HZ/5))
139 #define TCP_TIMEOUT_MIN	(2U) /* Min timeout for TCP timers in jiffies */
140 #define TCP_TIMEOUT_INIT ((unsigned)(1*HZ))	/* RFC6298 2.1 initial RTO value	*/
141 #define TCP_TIMEOUT_FALLBACK ((unsigned)(3*HZ))	/* RFC 1122 initial RTO value, now
142 						 * used as a fallback RTO for the
143 						 * initial data transmission if no
144 						 * valid RTT sample has been acquired,
145 						 * most likely due to retrans in 3WHS.
146 						 */
147 
148 #define TCP_RESOURCE_PROBE_INTERVAL ((unsigned)(HZ/2U)) /* Maximal interval between probes
149 					                 * for local resources.
150 					                 */
151 #define TCP_KEEPALIVE_TIME	(120*60*HZ)	/* two hours */
152 #define TCP_KEEPALIVE_PROBES	9		/* Max of 9 keepalive probes	*/
153 #define TCP_KEEPALIVE_INTVL	(75*HZ)
154 
155 #define MAX_TCP_KEEPIDLE	32767
156 #define MAX_TCP_KEEPINTVL	32767
157 #define MAX_TCP_KEEPCNT		127
158 #define MAX_TCP_SYNCNT		127
159 
160 #define TCP_SYNQ_INTERVAL	(HZ/5)	/* Period of SYNACK timer */
161 
162 #define TCP_PAWS_24DAYS	(60 * 60 * 24 * 24)
163 #define TCP_PAWS_MSL	60		/* Per-host timestamps are invalidated
164 					 * after this time. It should be equal
165 					 * (or greater than) TCP_TIMEWAIT_LEN
166 					 * to provide reliability equal to one
167 					 * provided by timewait state.
168 					 */
169 #define TCP_PAWS_WINDOW	1		/* Replay window for per-host
170 					 * timestamps. It must be less than
171 					 * minimal timewait lifetime.
172 					 */
173 /*
174  *	TCP option
175  */
176 
177 #define TCPOPT_NOP		1	/* Padding */
178 #define TCPOPT_EOL		0	/* End of options */
179 #define TCPOPT_MSS		2	/* Segment size negotiating */
180 #define TCPOPT_WINDOW		3	/* Window scaling */
181 #define TCPOPT_SACK_PERM        4       /* SACK Permitted */
182 #define TCPOPT_SACK             5       /* SACK Block */
183 #define TCPOPT_TIMESTAMP	8	/* Better RTT estimations/PAWS */
184 #define TCPOPT_MD5SIG		19	/* MD5 Signature (RFC2385) */
185 #define TCPOPT_FASTOPEN		34	/* Fast open (RFC7413) */
186 #define TCPOPT_EXP		254	/* Experimental */
187 /* Magic number to be after the option value for sharing TCP
188  * experimental options. See draft-ietf-tcpm-experimental-options-00.txt
189  */
190 #define TCPOPT_FASTOPEN_MAGIC	0xF989
191 #define TCPOPT_SMC_MAGIC	0xE2D4C3D9
192 
193 /*
194  *     TCP option lengths
195  */
196 
197 #define TCPOLEN_MSS            4
198 #define TCPOLEN_WINDOW         3
199 #define TCPOLEN_SACK_PERM      2
200 #define TCPOLEN_TIMESTAMP      10
201 #define TCPOLEN_MD5SIG         18
202 #define TCPOLEN_FASTOPEN_BASE  2
203 #define TCPOLEN_EXP_FASTOPEN_BASE  4
204 #define TCPOLEN_EXP_SMC_BASE   6
205 
206 /* But this is what stacks really send out. */
207 #define TCPOLEN_TSTAMP_ALIGNED		12
208 #define TCPOLEN_WSCALE_ALIGNED		4
209 #define TCPOLEN_SACKPERM_ALIGNED	4
210 #define TCPOLEN_SACK_BASE		2
211 #define TCPOLEN_SACK_BASE_ALIGNED	4
212 #define TCPOLEN_SACK_PERBLOCK		8
213 #define TCPOLEN_MD5SIG_ALIGNED		20
214 #define TCPOLEN_MSS_ALIGNED		4
215 #define TCPOLEN_EXP_SMC_BASE_ALIGNED	8
216 
217 /* Flags in tp->nonagle */
218 #define TCP_NAGLE_OFF		1	/* Nagle's algo is disabled */
219 #define TCP_NAGLE_CORK		2	/* Socket is corked	    */
220 #define TCP_NAGLE_PUSH		4	/* Cork is overridden for already queued data */
221 
222 /* TCP thin-stream limits */
223 #define TCP_THIN_LINEAR_RETRIES 6       /* After 6 linear retries, do exp. backoff */
224 
225 /* TCP initial congestion window as per rfc6928 */
226 #define TCP_INIT_CWND		10
227 
228 /* Bit Flags for sysctl_tcp_fastopen */
229 #define	TFO_CLIENT_ENABLE	1
230 #define	TFO_SERVER_ENABLE	2
231 #define	TFO_CLIENT_NO_COOKIE	4	/* Data in SYN w/o cookie option */
232 
233 /* Accept SYN data w/o any cookie option */
234 #define	TFO_SERVER_COOKIE_NOT_REQD	0x200
235 
236 /* Force enable TFO on all listeners, i.e., not requiring the
237  * TCP_FASTOPEN socket option.
238  */
239 #define	TFO_SERVER_WO_SOCKOPT1	0x400
240 
241 
242 /* sysctl variables for tcp */
243 extern int sysctl_tcp_max_orphans;
244 extern long sysctl_tcp_mem[3];
245 
246 #define TCP_RACK_LOSS_DETECTION  0x1 /* Use RACK to detect losses */
247 #define TCP_RACK_STATIC_REO_WND  0x2 /* Use static RACK reo wnd */
248 
249 extern atomic_long_t tcp_memory_allocated;
250 extern struct percpu_counter tcp_sockets_allocated;
251 extern unsigned long tcp_memory_pressure;
252 
253 /* optimized version of sk_under_memory_pressure() for TCP sockets */
254 static inline bool tcp_under_memory_pressure(const struct sock *sk)
255 {
256 	if (mem_cgroup_sockets_enabled && sk->sk_memcg &&
257 	    mem_cgroup_under_socket_pressure(sk->sk_memcg))
258 		return true;
259 
260 	return tcp_memory_pressure;
261 }
262 /*
263  * The next routines deal with comparing 32 bit unsigned ints
264  * and worry about wraparound (automatic with unsigned arithmetic).
265  */
266 
267 static inline bool before(__u32 seq1, __u32 seq2)
268 {
269         return (__s32)(seq1-seq2) < 0;
270 }
271 #define after(seq2, seq1) 	before(seq1, seq2)
272 
273 /* is s2<=s1<=s3 ? */
274 static inline bool between(__u32 seq1, __u32 seq2, __u32 seq3)
275 {
276 	return seq3 - seq2 >= seq1 - seq2;
277 }
278 
279 static inline bool tcp_out_of_memory(struct sock *sk)
280 {
281 	if (sk->sk_wmem_queued > SOCK_MIN_SNDBUF &&
282 	    sk_memory_allocated(sk) > sk_prot_mem_limits(sk, 2))
283 		return true;
284 	return false;
285 }
286 
287 void sk_forced_mem_schedule(struct sock *sk, int size);
288 
289 static inline bool tcp_too_many_orphans(struct sock *sk, int shift)
290 {
291 	struct percpu_counter *ocp = sk->sk_prot->orphan_count;
292 	int orphans = percpu_counter_read_positive(ocp);
293 
294 	if (orphans << shift > sysctl_tcp_max_orphans) {
295 		orphans = percpu_counter_sum_positive(ocp);
296 		if (orphans << shift > sysctl_tcp_max_orphans)
297 			return true;
298 	}
299 	return false;
300 }
301 
302 bool tcp_check_oom(struct sock *sk, int shift);
303 
304 
305 extern struct proto tcp_prot;
306 
307 #define TCP_INC_STATS(net, field)	SNMP_INC_STATS((net)->mib.tcp_statistics, field)
308 #define __TCP_INC_STATS(net, field)	__SNMP_INC_STATS((net)->mib.tcp_statistics, field)
309 #define TCP_DEC_STATS(net, field)	SNMP_DEC_STATS((net)->mib.tcp_statistics, field)
310 #define TCP_ADD_STATS(net, field, val)	SNMP_ADD_STATS((net)->mib.tcp_statistics, field, val)
311 
312 void tcp_tasklet_init(void);
313 
314 void tcp_v4_err(struct sk_buff *skb, u32);
315 
316 void tcp_shutdown(struct sock *sk, int how);
317 
318 int tcp_v4_early_demux(struct sk_buff *skb);
319 int tcp_v4_rcv(struct sk_buff *skb);
320 
321 int tcp_v4_tw_remember_stamp(struct inet_timewait_sock *tw);
322 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size);
323 int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size);
324 int tcp_sendpage(struct sock *sk, struct page *page, int offset, size_t size,
325 		 int flags);
326 int tcp_sendpage_locked(struct sock *sk, struct page *page, int offset,
327 			size_t size, int flags);
328 ssize_t do_tcp_sendpages(struct sock *sk, struct page *page, int offset,
329 		 size_t size, int flags);
330 void tcp_release_cb(struct sock *sk);
331 void tcp_wfree(struct sk_buff *skb);
332 void tcp_write_timer_handler(struct sock *sk);
333 void tcp_delack_timer_handler(struct sock *sk);
334 int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg);
335 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb);
336 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
337 			 const struct tcphdr *th);
338 void tcp_rcv_space_adjust(struct sock *sk);
339 int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp);
340 void tcp_twsk_destructor(struct sock *sk);
341 ssize_t tcp_splice_read(struct socket *sk, loff_t *ppos,
342 			struct pipe_inode_info *pipe, size_t len,
343 			unsigned int flags);
344 
345 static inline void tcp_dec_quickack_mode(struct sock *sk,
346 					 const unsigned int pkts)
347 {
348 	struct inet_connection_sock *icsk = inet_csk(sk);
349 
350 	if (icsk->icsk_ack.quick) {
351 		if (pkts >= icsk->icsk_ack.quick) {
352 			icsk->icsk_ack.quick = 0;
353 			/* Leaving quickack mode we deflate ATO. */
354 			icsk->icsk_ack.ato   = TCP_ATO_MIN;
355 		} else
356 			icsk->icsk_ack.quick -= pkts;
357 	}
358 }
359 
360 #define	TCP_ECN_OK		1
361 #define	TCP_ECN_QUEUE_CWR	2
362 #define	TCP_ECN_DEMAND_CWR	4
363 #define	TCP_ECN_SEEN		8
364 
365 enum tcp_tw_status {
366 	TCP_TW_SUCCESS = 0,
367 	TCP_TW_RST = 1,
368 	TCP_TW_ACK = 2,
369 	TCP_TW_SYN = 3
370 };
371 
372 
373 enum tcp_tw_status tcp_timewait_state_process(struct inet_timewait_sock *tw,
374 					      struct sk_buff *skb,
375 					      const struct tcphdr *th);
376 struct sock *tcp_check_req(struct sock *sk, struct sk_buff *skb,
377 			   struct request_sock *req, bool fastopen);
378 int tcp_child_process(struct sock *parent, struct sock *child,
379 		      struct sk_buff *skb);
380 void tcp_enter_loss(struct sock *sk);
381 void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int flag);
382 void tcp_clear_retrans(struct tcp_sock *tp);
383 void tcp_update_metrics(struct sock *sk);
384 void tcp_init_metrics(struct sock *sk);
385 void tcp_metrics_init(void);
386 bool tcp_peer_is_proven(struct request_sock *req, struct dst_entry *dst);
387 void tcp_close(struct sock *sk, long timeout);
388 void tcp_init_sock(struct sock *sk);
389 void tcp_init_transfer(struct sock *sk, int bpf_op);
390 __poll_t tcp_poll(struct file *file, struct socket *sock,
391 		      struct poll_table_struct *wait);
392 int tcp_getsockopt(struct sock *sk, int level, int optname,
393 		   char __user *optval, int __user *optlen);
394 int tcp_setsockopt(struct sock *sk, int level, int optname,
395 		   char __user *optval, unsigned int optlen);
396 int compat_tcp_getsockopt(struct sock *sk, int level, int optname,
397 			  char __user *optval, int __user *optlen);
398 int compat_tcp_setsockopt(struct sock *sk, int level, int optname,
399 			  char __user *optval, unsigned int optlen);
400 void tcp_set_keepalive(struct sock *sk, int val);
401 void tcp_syn_ack_timeout(const struct request_sock *req);
402 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int nonblock,
403 		int flags, int *addr_len);
404 void tcp_parse_options(const struct net *net, const struct sk_buff *skb,
405 		       struct tcp_options_received *opt_rx,
406 		       int estab, struct tcp_fastopen_cookie *foc);
407 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th);
408 
409 /*
410  *	TCP v4 functions exported for the inet6 API
411  */
412 
413 void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb);
414 void tcp_v4_mtu_reduced(struct sock *sk);
415 void tcp_req_err(struct sock *sk, u32 seq, bool abort);
416 int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb);
417 struct sock *tcp_create_openreq_child(const struct sock *sk,
418 				      struct request_sock *req,
419 				      struct sk_buff *skb);
420 void tcp_ca_openreq_child(struct sock *sk, const struct dst_entry *dst);
421 struct sock *tcp_v4_syn_recv_sock(const struct sock *sk, struct sk_buff *skb,
422 				  struct request_sock *req,
423 				  struct dst_entry *dst,
424 				  struct request_sock *req_unhash,
425 				  bool *own_req);
426 int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb);
427 int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len);
428 int tcp_connect(struct sock *sk);
429 enum tcp_synack_type {
430 	TCP_SYNACK_NORMAL,
431 	TCP_SYNACK_FASTOPEN,
432 	TCP_SYNACK_COOKIE,
433 };
434 struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst,
435 				struct request_sock *req,
436 				struct tcp_fastopen_cookie *foc,
437 				enum tcp_synack_type synack_type);
438 int tcp_disconnect(struct sock *sk, int flags);
439 
440 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb);
441 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size);
442 void inet_sk_rx_dst_set(struct sock *sk, const struct sk_buff *skb);
443 
444 /* From syncookies.c */
445 struct sock *tcp_get_cookie_sock(struct sock *sk, struct sk_buff *skb,
446 				 struct request_sock *req,
447 				 struct dst_entry *dst, u32 tsoff);
448 int __cookie_v4_check(const struct iphdr *iph, const struct tcphdr *th,
449 		      u32 cookie);
450 struct sock *cookie_v4_check(struct sock *sk, struct sk_buff *skb);
451 #ifdef CONFIG_SYN_COOKIES
452 
453 /* Syncookies use a monotonic timer which increments every 60 seconds.
454  * This counter is used both as a hash input and partially encoded into
455  * the cookie value.  A cookie is only validated further if the delta
456  * between the current counter value and the encoded one is less than this,
457  * i.e. a sent cookie is valid only at most for 2*60 seconds (or less if
458  * the counter advances immediately after a cookie is generated).
459  */
460 #define MAX_SYNCOOKIE_AGE	2
461 #define TCP_SYNCOOKIE_PERIOD	(60 * HZ)
462 #define TCP_SYNCOOKIE_VALID	(MAX_SYNCOOKIE_AGE * TCP_SYNCOOKIE_PERIOD)
463 
464 /* syncookies: remember time of last synqueue overflow
465  * But do not dirty this field too often (once per second is enough)
466  * It is racy as we do not hold a lock, but race is very minor.
467  */
468 static inline void tcp_synq_overflow(const struct sock *sk)
469 {
470 	unsigned long last_overflow = tcp_sk(sk)->rx_opt.ts_recent_stamp;
471 	unsigned long now = jiffies;
472 
473 	if (time_after(now, last_overflow + HZ))
474 		tcp_sk(sk)->rx_opt.ts_recent_stamp = now;
475 }
476 
477 /* syncookies: no recent synqueue overflow on this listening socket? */
478 static inline bool tcp_synq_no_recent_overflow(const struct sock *sk)
479 {
480 	unsigned long last_overflow = tcp_sk(sk)->rx_opt.ts_recent_stamp;
481 
482 	return time_after(jiffies, last_overflow + TCP_SYNCOOKIE_VALID);
483 }
484 
485 static inline u32 tcp_cookie_time(void)
486 {
487 	u64 val = get_jiffies_64();
488 
489 	do_div(val, TCP_SYNCOOKIE_PERIOD);
490 	return val;
491 }
492 
493 u32 __cookie_v4_init_sequence(const struct iphdr *iph, const struct tcphdr *th,
494 			      u16 *mssp);
495 __u32 cookie_v4_init_sequence(const struct sk_buff *skb, __u16 *mss);
496 u64 cookie_init_timestamp(struct request_sock *req);
497 bool cookie_timestamp_decode(const struct net *net,
498 			     struct tcp_options_received *opt);
499 bool cookie_ecn_ok(const struct tcp_options_received *opt,
500 		   const struct net *net, const struct dst_entry *dst);
501 
502 /* From net/ipv6/syncookies.c */
503 int __cookie_v6_check(const struct ipv6hdr *iph, const struct tcphdr *th,
504 		      u32 cookie);
505 struct sock *cookie_v6_check(struct sock *sk, struct sk_buff *skb);
506 
507 u32 __cookie_v6_init_sequence(const struct ipv6hdr *iph,
508 			      const struct tcphdr *th, u16 *mssp);
509 __u32 cookie_v6_init_sequence(const struct sk_buff *skb, __u16 *mss);
510 #endif
511 /* tcp_output.c */
512 
513 u32 tcp_tso_autosize(const struct sock *sk, unsigned int mss_now,
514 		     int min_tso_segs);
515 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
516 			       int nonagle);
517 int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs);
518 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs);
519 void tcp_retransmit_timer(struct sock *sk);
520 void tcp_xmit_retransmit_queue(struct sock *);
521 void tcp_simple_retransmit(struct sock *);
522 void tcp_enter_recovery(struct sock *sk, bool ece_ack);
523 int tcp_trim_head(struct sock *, struct sk_buff *, u32);
524 enum tcp_queue {
525 	TCP_FRAG_IN_WRITE_QUEUE,
526 	TCP_FRAG_IN_RTX_QUEUE,
527 };
528 int tcp_fragment(struct sock *sk, enum tcp_queue tcp_queue,
529 		 struct sk_buff *skb, u32 len,
530 		 unsigned int mss_now, gfp_t gfp);
531 
532 void tcp_send_probe0(struct sock *);
533 void tcp_send_partial(struct sock *);
534 int tcp_write_wakeup(struct sock *, int mib);
535 void tcp_send_fin(struct sock *sk);
536 void tcp_send_active_reset(struct sock *sk, gfp_t priority);
537 int tcp_send_synack(struct sock *);
538 void tcp_push_one(struct sock *, unsigned int mss_now);
539 void tcp_send_ack(struct sock *sk);
540 void tcp_send_delayed_ack(struct sock *sk);
541 void tcp_send_loss_probe(struct sock *sk);
542 bool tcp_schedule_loss_probe(struct sock *sk, bool advancing_rto);
543 void tcp_skb_collapse_tstamp(struct sk_buff *skb,
544 			     const struct sk_buff *next_skb);
545 
546 /* tcp_input.c */
547 void tcp_rearm_rto(struct sock *sk);
548 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req);
549 void tcp_reset(struct sock *sk);
550 void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp, struct sk_buff *skb);
551 void tcp_fin(struct sock *sk);
552 
553 /* tcp_timer.c */
554 void tcp_init_xmit_timers(struct sock *);
555 static inline void tcp_clear_xmit_timers(struct sock *sk)
556 {
557 	hrtimer_cancel(&tcp_sk(sk)->pacing_timer);
558 	inet_csk_clear_xmit_timers(sk);
559 }
560 
561 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu);
562 unsigned int tcp_current_mss(struct sock *sk);
563 
564 /* Bound MSS / TSO packet size with the half of the window */
565 static inline int tcp_bound_to_half_wnd(struct tcp_sock *tp, int pktsize)
566 {
567 	int cutoff;
568 
569 	/* When peer uses tiny windows, there is no use in packetizing
570 	 * to sub-MSS pieces for the sake of SWS or making sure there
571 	 * are enough packets in the pipe for fast recovery.
572 	 *
573 	 * On the other hand, for extremely large MSS devices, handling
574 	 * smaller than MSS windows in this way does make sense.
575 	 */
576 	if (tp->max_window > TCP_MSS_DEFAULT)
577 		cutoff = (tp->max_window >> 1);
578 	else
579 		cutoff = tp->max_window;
580 
581 	if (cutoff && pktsize > cutoff)
582 		return max_t(int, cutoff, 68U - tp->tcp_header_len);
583 	else
584 		return pktsize;
585 }
586 
587 /* tcp.c */
588 void tcp_get_info(struct sock *, struct tcp_info *);
589 
590 /* Read 'sendfile()'-style from a TCP socket */
591 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
592 		  sk_read_actor_t recv_actor);
593 
594 void tcp_initialize_rcv_mss(struct sock *sk);
595 
596 int tcp_mtu_to_mss(struct sock *sk, int pmtu);
597 int tcp_mss_to_mtu(struct sock *sk, int mss);
598 void tcp_mtup_init(struct sock *sk);
599 void tcp_init_buffer_space(struct sock *sk);
600 
601 static inline void tcp_bound_rto(const struct sock *sk)
602 {
603 	if (inet_csk(sk)->icsk_rto > TCP_RTO_MAX)
604 		inet_csk(sk)->icsk_rto = TCP_RTO_MAX;
605 }
606 
607 static inline u32 __tcp_set_rto(const struct tcp_sock *tp)
608 {
609 	return usecs_to_jiffies((tp->srtt_us >> 3) + tp->rttvar_us);
610 }
611 
612 static inline void __tcp_fast_path_on(struct tcp_sock *tp, u32 snd_wnd)
613 {
614 	tp->pred_flags = htonl((tp->tcp_header_len << 26) |
615 			       ntohl(TCP_FLAG_ACK) |
616 			       snd_wnd);
617 }
618 
619 static inline void tcp_fast_path_on(struct tcp_sock *tp)
620 {
621 	__tcp_fast_path_on(tp, tp->snd_wnd >> tp->rx_opt.snd_wscale);
622 }
623 
624 static inline void tcp_fast_path_check(struct sock *sk)
625 {
626 	struct tcp_sock *tp = tcp_sk(sk);
627 
628 	if (RB_EMPTY_ROOT(&tp->out_of_order_queue) &&
629 	    tp->rcv_wnd &&
630 	    atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf &&
631 	    !tp->urg_data)
632 		tcp_fast_path_on(tp);
633 }
634 
635 /* Compute the actual rto_min value */
636 static inline u32 tcp_rto_min(struct sock *sk)
637 {
638 	const struct dst_entry *dst = __sk_dst_get(sk);
639 	u32 rto_min = TCP_RTO_MIN;
640 
641 	if (dst && dst_metric_locked(dst, RTAX_RTO_MIN))
642 		rto_min = dst_metric_rtt(dst, RTAX_RTO_MIN);
643 	return rto_min;
644 }
645 
646 static inline u32 tcp_rto_min_us(struct sock *sk)
647 {
648 	return jiffies_to_usecs(tcp_rto_min(sk));
649 }
650 
651 static inline bool tcp_ca_dst_locked(const struct dst_entry *dst)
652 {
653 	return dst_metric_locked(dst, RTAX_CC_ALGO);
654 }
655 
656 /* Minimum RTT in usec. ~0 means not available. */
657 static inline u32 tcp_min_rtt(const struct tcp_sock *tp)
658 {
659 	return minmax_get(&tp->rtt_min);
660 }
661 
662 /* Compute the actual receive window we are currently advertising.
663  * Rcv_nxt can be after the window if our peer push more data
664  * than the offered window.
665  */
666 static inline u32 tcp_receive_window(const struct tcp_sock *tp)
667 {
668 	s32 win = tp->rcv_wup + tp->rcv_wnd - tp->rcv_nxt;
669 
670 	if (win < 0)
671 		win = 0;
672 	return (u32) win;
673 }
674 
675 /* Choose a new window, without checks for shrinking, and without
676  * scaling applied to the result.  The caller does these things
677  * if necessary.  This is a "raw" window selection.
678  */
679 u32 __tcp_select_window(struct sock *sk);
680 
681 void tcp_send_window_probe(struct sock *sk);
682 
683 /* TCP uses 32bit jiffies to save some space.
684  * Note that this is different from tcp_time_stamp, which
685  * historically has been the same until linux-4.13.
686  */
687 #define tcp_jiffies32 ((u32)jiffies)
688 
689 /*
690  * Deliver a 32bit value for TCP timestamp option (RFC 7323)
691  * It is no longer tied to jiffies, but to 1 ms clock.
692  * Note: double check if you want to use tcp_jiffies32 instead of this.
693  */
694 #define TCP_TS_HZ	1000
695 
696 static inline u64 tcp_clock_ns(void)
697 {
698 	return local_clock();
699 }
700 
701 static inline u64 tcp_clock_us(void)
702 {
703 	return div_u64(tcp_clock_ns(), NSEC_PER_USEC);
704 }
705 
706 /* This should only be used in contexts where tp->tcp_mstamp is up to date */
707 static inline u32 tcp_time_stamp(const struct tcp_sock *tp)
708 {
709 	return div_u64(tp->tcp_mstamp, USEC_PER_SEC / TCP_TS_HZ);
710 }
711 
712 /* Could use tcp_clock_us() / 1000, but this version uses a single divide */
713 static inline u32 tcp_time_stamp_raw(void)
714 {
715 	return div_u64(tcp_clock_ns(), NSEC_PER_SEC / TCP_TS_HZ);
716 }
717 
718 
719 /* Refresh 1us clock of a TCP socket,
720  * ensuring monotically increasing values.
721  */
722 static inline void tcp_mstamp_refresh(struct tcp_sock *tp)
723 {
724 	u64 val = tcp_clock_us();
725 
726 	if (val > tp->tcp_mstamp)
727 		tp->tcp_mstamp = val;
728 }
729 
730 static inline u32 tcp_stamp_us_delta(u64 t1, u64 t0)
731 {
732 	return max_t(s64, t1 - t0, 0);
733 }
734 
735 static inline u32 tcp_skb_timestamp(const struct sk_buff *skb)
736 {
737 	return div_u64(skb->skb_mstamp, USEC_PER_SEC / TCP_TS_HZ);
738 }
739 
740 
741 #define tcp_flag_byte(th) (((u_int8_t *)th)[13])
742 
743 #define TCPHDR_FIN 0x01
744 #define TCPHDR_SYN 0x02
745 #define TCPHDR_RST 0x04
746 #define TCPHDR_PSH 0x08
747 #define TCPHDR_ACK 0x10
748 #define TCPHDR_URG 0x20
749 #define TCPHDR_ECE 0x40
750 #define TCPHDR_CWR 0x80
751 
752 #define TCPHDR_SYN_ECN	(TCPHDR_SYN | TCPHDR_ECE | TCPHDR_CWR)
753 
754 /* This is what the send packet queuing engine uses to pass
755  * TCP per-packet control information to the transmission code.
756  * We also store the host-order sequence numbers in here too.
757  * This is 44 bytes if IPV6 is enabled.
758  * If this grows please adjust skbuff.h:skbuff->cb[xxx] size appropriately.
759  */
760 struct tcp_skb_cb {
761 	__u32		seq;		/* Starting sequence number	*/
762 	__u32		end_seq;	/* SEQ + FIN + SYN + datalen	*/
763 	union {
764 		/* Note : tcp_tw_isn is used in input path only
765 		 *	  (isn chosen by tcp_timewait_state_process())
766 		 *
767 		 * 	  tcp_gso_segs/size are used in write queue only,
768 		 *	  cf tcp_skb_pcount()/tcp_skb_mss()
769 		 */
770 		__u32		tcp_tw_isn;
771 		struct {
772 			u16	tcp_gso_segs;
773 			u16	tcp_gso_size;
774 		};
775 	};
776 	__u8		tcp_flags;	/* TCP header flags. (tcp[13])	*/
777 
778 	__u8		sacked;		/* State flags for SACK.	*/
779 #define TCPCB_SACKED_ACKED	0x01	/* SKB ACK'd by a SACK block	*/
780 #define TCPCB_SACKED_RETRANS	0x02	/* SKB retransmitted		*/
781 #define TCPCB_LOST		0x04	/* SKB is lost			*/
782 #define TCPCB_TAGBITS		0x07	/* All tag bits			*/
783 #define TCPCB_REPAIRED		0x10	/* SKB repaired (no skb_mstamp)	*/
784 #define TCPCB_EVER_RETRANS	0x80	/* Ever retransmitted frame	*/
785 #define TCPCB_RETRANS		(TCPCB_SACKED_RETRANS|TCPCB_EVER_RETRANS| \
786 				TCPCB_REPAIRED)
787 
788 	__u8		ip_dsfield;	/* IPv4 tos or IPv6 dsfield	*/
789 	__u8		txstamp_ack:1,	/* Record TX timestamp for ack? */
790 			eor:1,		/* Is skb MSG_EOR marked? */
791 			has_rxtstamp:1,	/* SKB has a RX timestamp	*/
792 			unused:5;
793 	__u32		ack_seq;	/* Sequence number ACK'd	*/
794 	union {
795 		struct {
796 			/* There is space for up to 24 bytes */
797 			__u32 in_flight:30,/* Bytes in flight at transmit */
798 			      is_app_limited:1, /* cwnd not fully used? */
799 			      unused:1;
800 			/* pkts S/ACKed so far upon tx of skb, incl retrans: */
801 			__u32 delivered;
802 			/* start of send pipeline phase */
803 			u64 first_tx_mstamp;
804 			/* when we reached the "delivered" count */
805 			u64 delivered_mstamp;
806 		} tx;   /* only used for outgoing skbs */
807 		union {
808 			struct inet_skb_parm	h4;
809 #if IS_ENABLED(CONFIG_IPV6)
810 			struct inet6_skb_parm	h6;
811 #endif
812 		} header;	/* For incoming skbs */
813 		struct {
814 			__u32 key;
815 			__u32 flags;
816 			struct bpf_map *map;
817 			void *data_end;
818 		} bpf;
819 	};
820 };
821 
822 #define TCP_SKB_CB(__skb)	((struct tcp_skb_cb *)&((__skb)->cb[0]))
823 
824 
825 #if IS_ENABLED(CONFIG_IPV6)
826 /* This is the variant of inet6_iif() that must be used by TCP,
827  * as TCP moves IP6CB into a different location in skb->cb[]
828  */
829 static inline int tcp_v6_iif(const struct sk_buff *skb)
830 {
831 	bool l3_slave = ipv6_l3mdev_skb(TCP_SKB_CB(skb)->header.h6.flags);
832 
833 	return l3_slave ? skb->skb_iif : TCP_SKB_CB(skb)->header.h6.iif;
834 }
835 
836 /* TCP_SKB_CB reference means this can not be used from early demux */
837 static inline int tcp_v6_sdif(const struct sk_buff *skb)
838 {
839 #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
840 	if (skb && ipv6_l3mdev_skb(TCP_SKB_CB(skb)->header.h6.flags))
841 		return TCP_SKB_CB(skb)->header.h6.iif;
842 #endif
843 	return 0;
844 }
845 #endif
846 
847 static inline bool inet_exact_dif_match(struct net *net, struct sk_buff *skb)
848 {
849 #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
850 	if (!net->ipv4.sysctl_tcp_l3mdev_accept &&
851 	    skb && ipv4_l3mdev_skb(IPCB(skb)->flags))
852 		return true;
853 #endif
854 	return false;
855 }
856 
857 /* TCP_SKB_CB reference means this can not be used from early demux */
858 static inline int tcp_v4_sdif(struct sk_buff *skb)
859 {
860 #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
861 	if (skb && ipv4_l3mdev_skb(TCP_SKB_CB(skb)->header.h4.flags))
862 		return TCP_SKB_CB(skb)->header.h4.iif;
863 #endif
864 	return 0;
865 }
866 
867 /* Due to TSO, an SKB can be composed of multiple actual
868  * packets.  To keep these tracked properly, we use this.
869  */
870 static inline int tcp_skb_pcount(const struct sk_buff *skb)
871 {
872 	return TCP_SKB_CB(skb)->tcp_gso_segs;
873 }
874 
875 static inline void tcp_skb_pcount_set(struct sk_buff *skb, int segs)
876 {
877 	TCP_SKB_CB(skb)->tcp_gso_segs = segs;
878 }
879 
880 static inline void tcp_skb_pcount_add(struct sk_buff *skb, int segs)
881 {
882 	TCP_SKB_CB(skb)->tcp_gso_segs += segs;
883 }
884 
885 /* This is valid iff skb is in write queue and tcp_skb_pcount() > 1. */
886 static inline int tcp_skb_mss(const struct sk_buff *skb)
887 {
888 	return TCP_SKB_CB(skb)->tcp_gso_size;
889 }
890 
891 static inline bool tcp_skb_can_collapse_to(const struct sk_buff *skb)
892 {
893 	return likely(!TCP_SKB_CB(skb)->eor);
894 }
895 
896 /* Events passed to congestion control interface */
897 enum tcp_ca_event {
898 	CA_EVENT_TX_START,	/* first transmit when no packets in flight */
899 	CA_EVENT_CWND_RESTART,	/* congestion window restart */
900 	CA_EVENT_COMPLETE_CWR,	/* end of congestion recovery */
901 	CA_EVENT_LOSS,		/* loss timeout */
902 	CA_EVENT_ECN_NO_CE,	/* ECT set, but not CE marked */
903 	CA_EVENT_ECN_IS_CE,	/* received CE marked IP packet */
904 	CA_EVENT_DELAYED_ACK,	/* Delayed ack is sent */
905 	CA_EVENT_NON_DELAYED_ACK,
906 };
907 
908 /* Information about inbound ACK, passed to cong_ops->in_ack_event() */
909 enum tcp_ca_ack_event_flags {
910 	CA_ACK_SLOWPATH		= (1 << 0),	/* In slow path processing */
911 	CA_ACK_WIN_UPDATE	= (1 << 1),	/* ACK updated window */
912 	CA_ACK_ECE		= (1 << 2),	/* ECE bit is set on ack */
913 };
914 
915 /*
916  * Interface for adding new TCP congestion control handlers
917  */
918 #define TCP_CA_NAME_MAX	16
919 #define TCP_CA_MAX	128
920 #define TCP_CA_BUF_MAX	(TCP_CA_NAME_MAX*TCP_CA_MAX)
921 
922 #define TCP_CA_UNSPEC	0
923 
924 /* Algorithm can be set on socket without CAP_NET_ADMIN privileges */
925 #define TCP_CONG_NON_RESTRICTED 0x1
926 /* Requires ECN/ECT set on all packets */
927 #define TCP_CONG_NEEDS_ECN	0x2
928 
929 union tcp_cc_info;
930 
931 struct ack_sample {
932 	u32 pkts_acked;
933 	s32 rtt_us;
934 	u32 in_flight;
935 };
936 
937 /* A rate sample measures the number of (original/retransmitted) data
938  * packets delivered "delivered" over an interval of time "interval_us".
939  * The tcp_rate.c code fills in the rate sample, and congestion
940  * control modules that define a cong_control function to run at the end
941  * of ACK processing can optionally chose to consult this sample when
942  * setting cwnd and pacing rate.
943  * A sample is invalid if "delivered" or "interval_us" is negative.
944  */
945 struct rate_sample {
946 	u64  prior_mstamp; /* starting timestamp for interval */
947 	u32  prior_delivered;	/* tp->delivered at "prior_mstamp" */
948 	s32  delivered;		/* number of packets delivered over interval */
949 	long interval_us;	/* time for tp->delivered to incr "delivered" */
950 	long rtt_us;		/* RTT of last (S)ACKed packet (or -1) */
951 	int  losses;		/* number of packets marked lost upon ACK */
952 	u32  acked_sacked;	/* number of packets newly (S)ACKed upon ACK */
953 	u32  prior_in_flight;	/* in flight before this ACK */
954 	bool is_app_limited;	/* is sample from packet with bubble in pipe? */
955 	bool is_retrans;	/* is sample from retransmission? */
956 	bool is_ack_delayed;	/* is this (likely) a delayed ACK? */
957 };
958 
959 struct tcp_congestion_ops {
960 	struct list_head	list;
961 	u32 key;
962 	u32 flags;
963 
964 	/* initialize private data (optional) */
965 	void (*init)(struct sock *sk);
966 	/* cleanup private data  (optional) */
967 	void (*release)(struct sock *sk);
968 
969 	/* return slow start threshold (required) */
970 	u32 (*ssthresh)(struct sock *sk);
971 	/* do new cwnd calculation (required) */
972 	void (*cong_avoid)(struct sock *sk, u32 ack, u32 acked);
973 	/* call before changing ca_state (optional) */
974 	void (*set_state)(struct sock *sk, u8 new_state);
975 	/* call when cwnd event occurs (optional) */
976 	void (*cwnd_event)(struct sock *sk, enum tcp_ca_event ev);
977 	/* call when ack arrives (optional) */
978 	void (*in_ack_event)(struct sock *sk, u32 flags);
979 	/* new value of cwnd after loss (required) */
980 	u32  (*undo_cwnd)(struct sock *sk);
981 	/* hook for packet ack accounting (optional) */
982 	void (*pkts_acked)(struct sock *sk, const struct ack_sample *sample);
983 	/* suggest number of segments for each skb to transmit (optional) */
984 	u32 (*tso_segs_goal)(struct sock *sk);
985 	/* returns the multiplier used in tcp_sndbuf_expand (optional) */
986 	u32 (*sndbuf_expand)(struct sock *sk);
987 	/* call when packets are delivered to update cwnd and pacing rate,
988 	 * after all the ca_state processing. (optional)
989 	 */
990 	void (*cong_control)(struct sock *sk, const struct rate_sample *rs);
991 	/* get info for inet_diag (optional) */
992 	size_t (*get_info)(struct sock *sk, u32 ext, int *attr,
993 			   union tcp_cc_info *info);
994 
995 	char 		name[TCP_CA_NAME_MAX];
996 	struct module 	*owner;
997 };
998 
999 int tcp_register_congestion_control(struct tcp_congestion_ops *type);
1000 void tcp_unregister_congestion_control(struct tcp_congestion_ops *type);
1001 
1002 void tcp_assign_congestion_control(struct sock *sk);
1003 void tcp_init_congestion_control(struct sock *sk);
1004 void tcp_cleanup_congestion_control(struct sock *sk);
1005 int tcp_set_default_congestion_control(struct net *net, const char *name);
1006 void tcp_get_default_congestion_control(struct net *net, char *name);
1007 void tcp_get_available_congestion_control(char *buf, size_t len);
1008 void tcp_get_allowed_congestion_control(char *buf, size_t len);
1009 int tcp_set_allowed_congestion_control(char *allowed);
1010 int tcp_set_congestion_control(struct sock *sk, const char *name, bool load, bool reinit);
1011 u32 tcp_slow_start(struct tcp_sock *tp, u32 acked);
1012 void tcp_cong_avoid_ai(struct tcp_sock *tp, u32 w, u32 acked);
1013 
1014 u32 tcp_reno_ssthresh(struct sock *sk);
1015 u32 tcp_reno_undo_cwnd(struct sock *sk);
1016 void tcp_reno_cong_avoid(struct sock *sk, u32 ack, u32 acked);
1017 extern struct tcp_congestion_ops tcp_reno;
1018 
1019 struct tcp_congestion_ops *tcp_ca_find_key(u32 key);
1020 u32 tcp_ca_get_key_by_name(struct net *net, const char *name, bool *ecn_ca);
1021 #ifdef CONFIG_INET
1022 char *tcp_ca_get_name_by_key(u32 key, char *buffer);
1023 #else
1024 static inline char *tcp_ca_get_name_by_key(u32 key, char *buffer)
1025 {
1026 	return NULL;
1027 }
1028 #endif
1029 
1030 static inline bool tcp_ca_needs_ecn(const struct sock *sk)
1031 {
1032 	const struct inet_connection_sock *icsk = inet_csk(sk);
1033 
1034 	return icsk->icsk_ca_ops->flags & TCP_CONG_NEEDS_ECN;
1035 }
1036 
1037 static inline void tcp_set_ca_state(struct sock *sk, const u8 ca_state)
1038 {
1039 	struct inet_connection_sock *icsk = inet_csk(sk);
1040 
1041 	if (icsk->icsk_ca_ops->set_state)
1042 		icsk->icsk_ca_ops->set_state(sk, ca_state);
1043 	icsk->icsk_ca_state = ca_state;
1044 }
1045 
1046 static inline void tcp_ca_event(struct sock *sk, const enum tcp_ca_event event)
1047 {
1048 	const struct inet_connection_sock *icsk = inet_csk(sk);
1049 
1050 	if (icsk->icsk_ca_ops->cwnd_event)
1051 		icsk->icsk_ca_ops->cwnd_event(sk, event);
1052 }
1053 
1054 /* From tcp_rate.c */
1055 void tcp_rate_skb_sent(struct sock *sk, struct sk_buff *skb);
1056 void tcp_rate_skb_delivered(struct sock *sk, struct sk_buff *skb,
1057 			    struct rate_sample *rs);
1058 void tcp_rate_gen(struct sock *sk, u32 delivered, u32 lost,
1059 		  bool is_sack_reneg, struct rate_sample *rs);
1060 void tcp_rate_check_app_limited(struct sock *sk);
1061 
1062 /* These functions determine how the current flow behaves in respect of SACK
1063  * handling. SACK is negotiated with the peer, and therefore it can vary
1064  * between different flows.
1065  *
1066  * tcp_is_sack - SACK enabled
1067  * tcp_is_reno - No SACK
1068  */
1069 static inline int tcp_is_sack(const struct tcp_sock *tp)
1070 {
1071 	return tp->rx_opt.sack_ok;
1072 }
1073 
1074 static inline bool tcp_is_reno(const struct tcp_sock *tp)
1075 {
1076 	return !tcp_is_sack(tp);
1077 }
1078 
1079 static inline unsigned int tcp_left_out(const struct tcp_sock *tp)
1080 {
1081 	return tp->sacked_out + tp->lost_out;
1082 }
1083 
1084 /* This determines how many packets are "in the network" to the best
1085  * of our knowledge.  In many cases it is conservative, but where
1086  * detailed information is available from the receiver (via SACK
1087  * blocks etc.) we can make more aggressive calculations.
1088  *
1089  * Use this for decisions involving congestion control, use just
1090  * tp->packets_out to determine if the send queue is empty or not.
1091  *
1092  * Read this equation as:
1093  *
1094  *	"Packets sent once on transmission queue" MINUS
1095  *	"Packets left network, but not honestly ACKed yet" PLUS
1096  *	"Packets fast retransmitted"
1097  */
1098 static inline unsigned int tcp_packets_in_flight(const struct tcp_sock *tp)
1099 {
1100 	return tp->packets_out - tcp_left_out(tp) + tp->retrans_out;
1101 }
1102 
1103 #define TCP_INFINITE_SSTHRESH	0x7fffffff
1104 
1105 static inline bool tcp_in_slow_start(const struct tcp_sock *tp)
1106 {
1107 	return tp->snd_cwnd < tp->snd_ssthresh;
1108 }
1109 
1110 static inline bool tcp_in_initial_slowstart(const struct tcp_sock *tp)
1111 {
1112 	return tp->snd_ssthresh >= TCP_INFINITE_SSTHRESH;
1113 }
1114 
1115 static inline bool tcp_in_cwnd_reduction(const struct sock *sk)
1116 {
1117 	return (TCPF_CA_CWR | TCPF_CA_Recovery) &
1118 	       (1 << inet_csk(sk)->icsk_ca_state);
1119 }
1120 
1121 /* If cwnd > ssthresh, we may raise ssthresh to be half-way to cwnd.
1122  * The exception is cwnd reduction phase, when cwnd is decreasing towards
1123  * ssthresh.
1124  */
1125 static inline __u32 tcp_current_ssthresh(const struct sock *sk)
1126 {
1127 	const struct tcp_sock *tp = tcp_sk(sk);
1128 
1129 	if (tcp_in_cwnd_reduction(sk))
1130 		return tp->snd_ssthresh;
1131 	else
1132 		return max(tp->snd_ssthresh,
1133 			   ((tp->snd_cwnd >> 1) +
1134 			    (tp->snd_cwnd >> 2)));
1135 }
1136 
1137 /* Use define here intentionally to get WARN_ON location shown at the caller */
1138 #define tcp_verify_left_out(tp)	WARN_ON(tcp_left_out(tp) > tp->packets_out)
1139 
1140 void tcp_enter_cwr(struct sock *sk);
1141 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst);
1142 
1143 /* The maximum number of MSS of available cwnd for which TSO defers
1144  * sending if not using sysctl_tcp_tso_win_divisor.
1145  */
1146 static inline __u32 tcp_max_tso_deferred_mss(const struct tcp_sock *tp)
1147 {
1148 	return 3;
1149 }
1150 
1151 /* Returns end sequence number of the receiver's advertised window */
1152 static inline u32 tcp_wnd_end(const struct tcp_sock *tp)
1153 {
1154 	return tp->snd_una + tp->snd_wnd;
1155 }
1156 
1157 /* We follow the spirit of RFC2861 to validate cwnd but implement a more
1158  * flexible approach. The RFC suggests cwnd should not be raised unless
1159  * it was fully used previously. And that's exactly what we do in
1160  * congestion avoidance mode. But in slow start we allow cwnd to grow
1161  * as long as the application has used half the cwnd.
1162  * Example :
1163  *    cwnd is 10 (IW10), but application sends 9 frames.
1164  *    We allow cwnd to reach 18 when all frames are ACKed.
1165  * This check is safe because it's as aggressive as slow start which already
1166  * risks 100% overshoot. The advantage is that we discourage application to
1167  * either send more filler packets or data to artificially blow up the cwnd
1168  * usage, and allow application-limited process to probe bw more aggressively.
1169  */
1170 static inline bool tcp_is_cwnd_limited(const struct sock *sk)
1171 {
1172 	const struct tcp_sock *tp = tcp_sk(sk);
1173 
1174 	/* If in slow start, ensure cwnd grows to twice what was ACKed. */
1175 	if (tcp_in_slow_start(tp))
1176 		return tp->snd_cwnd < 2 * tp->max_packets_out;
1177 
1178 	return tp->is_cwnd_limited;
1179 }
1180 
1181 /* Something is really bad, we could not queue an additional packet,
1182  * because qdisc is full or receiver sent a 0 window.
1183  * We do not want to add fuel to the fire, or abort too early,
1184  * so make sure the timer we arm now is at least 200ms in the future,
1185  * regardless of current icsk_rto value (as it could be ~2ms)
1186  */
1187 static inline unsigned long tcp_probe0_base(const struct sock *sk)
1188 {
1189 	return max_t(unsigned long, inet_csk(sk)->icsk_rto, TCP_RTO_MIN);
1190 }
1191 
1192 /* Variant of inet_csk_rto_backoff() used for zero window probes */
1193 static inline unsigned long tcp_probe0_when(const struct sock *sk,
1194 					    unsigned long max_when)
1195 {
1196 	u64 when = (u64)tcp_probe0_base(sk) << inet_csk(sk)->icsk_backoff;
1197 
1198 	return (unsigned long)min_t(u64, when, max_when);
1199 }
1200 
1201 static inline void tcp_check_probe_timer(struct sock *sk)
1202 {
1203 	if (!tcp_sk(sk)->packets_out && !inet_csk(sk)->icsk_pending)
1204 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
1205 					  tcp_probe0_base(sk), TCP_RTO_MAX);
1206 }
1207 
1208 static inline void tcp_init_wl(struct tcp_sock *tp, u32 seq)
1209 {
1210 	tp->snd_wl1 = seq;
1211 }
1212 
1213 static inline void tcp_update_wl(struct tcp_sock *tp, u32 seq)
1214 {
1215 	tp->snd_wl1 = seq;
1216 }
1217 
1218 /*
1219  * Calculate(/check) TCP checksum
1220  */
1221 static inline __sum16 tcp_v4_check(int len, __be32 saddr,
1222 				   __be32 daddr, __wsum base)
1223 {
1224 	return csum_tcpudp_magic(saddr,daddr,len,IPPROTO_TCP,base);
1225 }
1226 
1227 static inline __sum16 __tcp_checksum_complete(struct sk_buff *skb)
1228 {
1229 	return __skb_checksum_complete(skb);
1230 }
1231 
1232 static inline bool tcp_checksum_complete(struct sk_buff *skb)
1233 {
1234 	return !skb_csum_unnecessary(skb) &&
1235 		__tcp_checksum_complete(skb);
1236 }
1237 
1238 bool tcp_add_backlog(struct sock *sk, struct sk_buff *skb);
1239 int tcp_filter(struct sock *sk, struct sk_buff *skb);
1240 
1241 #undef STATE_TRACE
1242 
1243 #ifdef STATE_TRACE
1244 static const char *statename[]={
1245 	"Unused","Established","Syn Sent","Syn Recv",
1246 	"Fin Wait 1","Fin Wait 2","Time Wait", "Close",
1247 	"Close Wait","Last ACK","Listen","Closing"
1248 };
1249 #endif
1250 void tcp_set_state(struct sock *sk, int state);
1251 
1252 void tcp_done(struct sock *sk);
1253 
1254 int tcp_abort(struct sock *sk, int err);
1255 
1256 static inline void tcp_sack_reset(struct tcp_options_received *rx_opt)
1257 {
1258 	rx_opt->dsack = 0;
1259 	rx_opt->num_sacks = 0;
1260 }
1261 
1262 u32 tcp_default_init_rwnd(u32 mss);
1263 void tcp_cwnd_restart(struct sock *sk, s32 delta);
1264 
1265 static inline void tcp_slow_start_after_idle_check(struct sock *sk)
1266 {
1267 	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1268 	struct tcp_sock *tp = tcp_sk(sk);
1269 	s32 delta;
1270 
1271 	if (!sock_net(sk)->ipv4.sysctl_tcp_slow_start_after_idle || tp->packets_out ||
1272 	    ca_ops->cong_control)
1273 		return;
1274 	delta = tcp_jiffies32 - tp->lsndtime;
1275 	if (delta > inet_csk(sk)->icsk_rto)
1276 		tcp_cwnd_restart(sk, delta);
1277 }
1278 
1279 /* Determine a window scaling and initial window to offer. */
1280 void tcp_select_initial_window(const struct sock *sk, int __space,
1281 			       __u32 mss, __u32 *rcv_wnd,
1282 			       __u32 *window_clamp, int wscale_ok,
1283 			       __u8 *rcv_wscale, __u32 init_rcv_wnd);
1284 
1285 static inline int tcp_win_from_space(const struct sock *sk, int space)
1286 {
1287 	int tcp_adv_win_scale = sock_net(sk)->ipv4.sysctl_tcp_adv_win_scale;
1288 
1289 	return tcp_adv_win_scale <= 0 ?
1290 		(space>>(-tcp_adv_win_scale)) :
1291 		space - (space>>tcp_adv_win_scale);
1292 }
1293 
1294 /* Note: caller must be prepared to deal with negative returns */
1295 static inline int tcp_space(const struct sock *sk)
1296 {
1297 	return tcp_win_from_space(sk, sk->sk_rcvbuf -
1298 				  atomic_read(&sk->sk_rmem_alloc));
1299 }
1300 
1301 static inline int tcp_full_space(const struct sock *sk)
1302 {
1303 	return tcp_win_from_space(sk, sk->sk_rcvbuf);
1304 }
1305 
1306 extern void tcp_openreq_init_rwin(struct request_sock *req,
1307 				  const struct sock *sk_listener,
1308 				  const struct dst_entry *dst);
1309 
1310 void tcp_enter_memory_pressure(struct sock *sk);
1311 void tcp_leave_memory_pressure(struct sock *sk);
1312 
1313 static inline int keepalive_intvl_when(const struct tcp_sock *tp)
1314 {
1315 	struct net *net = sock_net((struct sock *)tp);
1316 
1317 	return tp->keepalive_intvl ? : net->ipv4.sysctl_tcp_keepalive_intvl;
1318 }
1319 
1320 static inline int keepalive_time_when(const struct tcp_sock *tp)
1321 {
1322 	struct net *net = sock_net((struct sock *)tp);
1323 
1324 	return tp->keepalive_time ? : net->ipv4.sysctl_tcp_keepalive_time;
1325 }
1326 
1327 static inline int keepalive_probes(const struct tcp_sock *tp)
1328 {
1329 	struct net *net = sock_net((struct sock *)tp);
1330 
1331 	return tp->keepalive_probes ? : net->ipv4.sysctl_tcp_keepalive_probes;
1332 }
1333 
1334 static inline u32 keepalive_time_elapsed(const struct tcp_sock *tp)
1335 {
1336 	const struct inet_connection_sock *icsk = &tp->inet_conn;
1337 
1338 	return min_t(u32, tcp_jiffies32 - icsk->icsk_ack.lrcvtime,
1339 			  tcp_jiffies32 - tp->rcv_tstamp);
1340 }
1341 
1342 static inline int tcp_fin_time(const struct sock *sk)
1343 {
1344 	int fin_timeout = tcp_sk(sk)->linger2 ? : sock_net(sk)->ipv4.sysctl_tcp_fin_timeout;
1345 	const int rto = inet_csk(sk)->icsk_rto;
1346 
1347 	if (fin_timeout < (rto << 2) - (rto >> 1))
1348 		fin_timeout = (rto << 2) - (rto >> 1);
1349 
1350 	return fin_timeout;
1351 }
1352 
1353 static inline bool tcp_paws_check(const struct tcp_options_received *rx_opt,
1354 				  int paws_win)
1355 {
1356 	if ((s32)(rx_opt->ts_recent - rx_opt->rcv_tsval) <= paws_win)
1357 		return true;
1358 	if (unlikely(get_seconds() >= rx_opt->ts_recent_stamp + TCP_PAWS_24DAYS))
1359 		return true;
1360 	/*
1361 	 * Some OSes send SYN and SYNACK messages with tsval=0 tsecr=0,
1362 	 * then following tcp messages have valid values. Ignore 0 value,
1363 	 * or else 'negative' tsval might forbid us to accept their packets.
1364 	 */
1365 	if (!rx_opt->ts_recent)
1366 		return true;
1367 	return false;
1368 }
1369 
1370 static inline bool tcp_paws_reject(const struct tcp_options_received *rx_opt,
1371 				   int rst)
1372 {
1373 	if (tcp_paws_check(rx_opt, 0))
1374 		return false;
1375 
1376 	/* RST segments are not recommended to carry timestamp,
1377 	   and, if they do, it is recommended to ignore PAWS because
1378 	   "their cleanup function should take precedence over timestamps."
1379 	   Certainly, it is mistake. It is necessary to understand the reasons
1380 	   of this constraint to relax it: if peer reboots, clock may go
1381 	   out-of-sync and half-open connections will not be reset.
1382 	   Actually, the problem would be not existing if all
1383 	   the implementations followed draft about maintaining clock
1384 	   via reboots. Linux-2.2 DOES NOT!
1385 
1386 	   However, we can relax time bounds for RST segments to MSL.
1387 	 */
1388 	if (rst && get_seconds() >= rx_opt->ts_recent_stamp + TCP_PAWS_MSL)
1389 		return false;
1390 	return true;
1391 }
1392 
1393 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
1394 			  int mib_idx, u32 *last_oow_ack_time);
1395 
1396 static inline void tcp_mib_init(struct net *net)
1397 {
1398 	/* See RFC 2012 */
1399 	TCP_ADD_STATS(net, TCP_MIB_RTOALGORITHM, 1);
1400 	TCP_ADD_STATS(net, TCP_MIB_RTOMIN, TCP_RTO_MIN*1000/HZ);
1401 	TCP_ADD_STATS(net, TCP_MIB_RTOMAX, TCP_RTO_MAX*1000/HZ);
1402 	TCP_ADD_STATS(net, TCP_MIB_MAXCONN, -1);
1403 }
1404 
1405 /* from STCP */
1406 static inline void tcp_clear_retrans_hints_partial(struct tcp_sock *tp)
1407 {
1408 	tp->lost_skb_hint = NULL;
1409 }
1410 
1411 static inline void tcp_clear_all_retrans_hints(struct tcp_sock *tp)
1412 {
1413 	tcp_clear_retrans_hints_partial(tp);
1414 	tp->retransmit_skb_hint = NULL;
1415 }
1416 
1417 union tcp_md5_addr {
1418 	struct in_addr  a4;
1419 #if IS_ENABLED(CONFIG_IPV6)
1420 	struct in6_addr	a6;
1421 #endif
1422 };
1423 
1424 /* - key database */
1425 struct tcp_md5sig_key {
1426 	struct hlist_node	node;
1427 	u8			keylen;
1428 	u8			family; /* AF_INET or AF_INET6 */
1429 	union tcp_md5_addr	addr;
1430 	u8			prefixlen;
1431 	u8			key[TCP_MD5SIG_MAXKEYLEN];
1432 	struct rcu_head		rcu;
1433 };
1434 
1435 /* - sock block */
1436 struct tcp_md5sig_info {
1437 	struct hlist_head	head;
1438 	struct rcu_head		rcu;
1439 };
1440 
1441 /* - pseudo header */
1442 struct tcp4_pseudohdr {
1443 	__be32		saddr;
1444 	__be32		daddr;
1445 	__u8		pad;
1446 	__u8		protocol;
1447 	__be16		len;
1448 };
1449 
1450 struct tcp6_pseudohdr {
1451 	struct in6_addr	saddr;
1452 	struct in6_addr daddr;
1453 	__be32		len;
1454 	__be32		protocol;	/* including padding */
1455 };
1456 
1457 union tcp_md5sum_block {
1458 	struct tcp4_pseudohdr ip4;
1459 #if IS_ENABLED(CONFIG_IPV6)
1460 	struct tcp6_pseudohdr ip6;
1461 #endif
1462 };
1463 
1464 /* - pool: digest algorithm, hash description and scratch buffer */
1465 struct tcp_md5sig_pool {
1466 	struct ahash_request	*md5_req;
1467 	void			*scratch;
1468 };
1469 
1470 /* - functions */
1471 int tcp_v4_md5_hash_skb(char *md5_hash, const struct tcp_md5sig_key *key,
1472 			const struct sock *sk, const struct sk_buff *skb);
1473 int tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr,
1474 		   int family, u8 prefixlen, const u8 *newkey, u8 newkeylen,
1475 		   gfp_t gfp);
1476 int tcp_md5_do_del(struct sock *sk, const union tcp_md5_addr *addr,
1477 		   int family, u8 prefixlen);
1478 struct tcp_md5sig_key *tcp_v4_md5_lookup(const struct sock *sk,
1479 					 const struct sock *addr_sk);
1480 
1481 #ifdef CONFIG_TCP_MD5SIG
1482 struct tcp_md5sig_key *tcp_md5_do_lookup(const struct sock *sk,
1483 					 const union tcp_md5_addr *addr,
1484 					 int family);
1485 #define tcp_twsk_md5_key(twsk)	((twsk)->tw_md5_key)
1486 #else
1487 static inline struct tcp_md5sig_key *tcp_md5_do_lookup(const struct sock *sk,
1488 					 const union tcp_md5_addr *addr,
1489 					 int family)
1490 {
1491 	return NULL;
1492 }
1493 #define tcp_twsk_md5_key(twsk)	NULL
1494 #endif
1495 
1496 bool tcp_alloc_md5sig_pool(void);
1497 
1498 struct tcp_md5sig_pool *tcp_get_md5sig_pool(void);
1499 static inline void tcp_put_md5sig_pool(void)
1500 {
1501 	local_bh_enable();
1502 }
1503 
1504 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *, const struct sk_buff *,
1505 			  unsigned int header_len);
1506 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp,
1507 		     const struct tcp_md5sig_key *key);
1508 
1509 /* From tcp_fastopen.c */
1510 void tcp_fastopen_cache_get(struct sock *sk, u16 *mss,
1511 			    struct tcp_fastopen_cookie *cookie);
1512 void tcp_fastopen_cache_set(struct sock *sk, u16 mss,
1513 			    struct tcp_fastopen_cookie *cookie, bool syn_lost,
1514 			    u16 try_exp);
1515 struct tcp_fastopen_request {
1516 	/* Fast Open cookie. Size 0 means a cookie request */
1517 	struct tcp_fastopen_cookie	cookie;
1518 	struct msghdr			*data;  /* data in MSG_FASTOPEN */
1519 	size_t				size;
1520 	int				copied;	/* queued in tcp_connect() */
1521 };
1522 void tcp_free_fastopen_req(struct tcp_sock *tp);
1523 void tcp_fastopen_destroy_cipher(struct sock *sk);
1524 void tcp_fastopen_ctx_destroy(struct net *net);
1525 int tcp_fastopen_reset_cipher(struct net *net, struct sock *sk,
1526 			      void *key, unsigned int len);
1527 void tcp_fastopen_add_skb(struct sock *sk, struct sk_buff *skb);
1528 struct sock *tcp_try_fastopen(struct sock *sk, struct sk_buff *skb,
1529 			      struct request_sock *req,
1530 			      struct tcp_fastopen_cookie *foc,
1531 			      const struct dst_entry *dst);
1532 void tcp_fastopen_init_key_once(struct net *net);
1533 bool tcp_fastopen_cookie_check(struct sock *sk, u16 *mss,
1534 			     struct tcp_fastopen_cookie *cookie);
1535 bool tcp_fastopen_defer_connect(struct sock *sk, int *err);
1536 #define TCP_FASTOPEN_KEY_LENGTH 16
1537 
1538 /* Fastopen key context */
1539 struct tcp_fastopen_context {
1540 	struct crypto_cipher	*tfm;
1541 	__u8			key[TCP_FASTOPEN_KEY_LENGTH];
1542 	struct rcu_head		rcu;
1543 };
1544 
1545 extern unsigned int sysctl_tcp_fastopen_blackhole_timeout;
1546 void tcp_fastopen_active_disable(struct sock *sk);
1547 bool tcp_fastopen_active_should_disable(struct sock *sk);
1548 void tcp_fastopen_active_disable_ofo_check(struct sock *sk);
1549 void tcp_fastopen_active_detect_blackhole(struct sock *sk, bool expired);
1550 
1551 /* Latencies incurred by various limits for a sender. They are
1552  * chronograph-like stats that are mutually exclusive.
1553  */
1554 enum tcp_chrono {
1555 	TCP_CHRONO_UNSPEC,
1556 	TCP_CHRONO_BUSY, /* Actively sending data (non-empty write queue) */
1557 	TCP_CHRONO_RWND_LIMITED, /* Stalled by insufficient receive window */
1558 	TCP_CHRONO_SNDBUF_LIMITED, /* Stalled by insufficient send buffer */
1559 	__TCP_CHRONO_MAX,
1560 };
1561 
1562 void tcp_chrono_start(struct sock *sk, const enum tcp_chrono type);
1563 void tcp_chrono_stop(struct sock *sk, const enum tcp_chrono type);
1564 
1565 /* This helper is needed, because skb->tcp_tsorted_anchor uses
1566  * the same memory storage than skb->destructor/_skb_refdst
1567  */
1568 static inline void tcp_skb_tsorted_anchor_cleanup(struct sk_buff *skb)
1569 {
1570 	skb->destructor = NULL;
1571 	skb->_skb_refdst = 0UL;
1572 }
1573 
1574 #define tcp_skb_tsorted_save(skb) {		\
1575 	unsigned long _save = skb->_skb_refdst;	\
1576 	skb->_skb_refdst = 0UL;
1577 
1578 #define tcp_skb_tsorted_restore(skb)		\
1579 	skb->_skb_refdst = _save;		\
1580 }
1581 
1582 void tcp_write_queue_purge(struct sock *sk);
1583 
1584 static inline struct sk_buff *tcp_rtx_queue_head(const struct sock *sk)
1585 {
1586 	return skb_rb_first(&sk->tcp_rtx_queue);
1587 }
1588 
1589 static inline struct sk_buff *tcp_write_queue_head(const struct sock *sk)
1590 {
1591 	return skb_peek(&sk->sk_write_queue);
1592 }
1593 
1594 static inline struct sk_buff *tcp_write_queue_tail(const struct sock *sk)
1595 {
1596 	return skb_peek_tail(&sk->sk_write_queue);
1597 }
1598 
1599 #define tcp_for_write_queue_from_safe(skb, tmp, sk)			\
1600 	skb_queue_walk_from_safe(&(sk)->sk_write_queue, skb, tmp)
1601 
1602 static inline struct sk_buff *tcp_send_head(const struct sock *sk)
1603 {
1604 	return skb_peek(&sk->sk_write_queue);
1605 }
1606 
1607 static inline bool tcp_skb_is_last(const struct sock *sk,
1608 				   const struct sk_buff *skb)
1609 {
1610 	return skb_queue_is_last(&sk->sk_write_queue, skb);
1611 }
1612 
1613 static inline bool tcp_write_queue_empty(const struct sock *sk)
1614 {
1615 	return skb_queue_empty(&sk->sk_write_queue);
1616 }
1617 
1618 static inline bool tcp_rtx_queue_empty(const struct sock *sk)
1619 {
1620 	return RB_EMPTY_ROOT(&sk->tcp_rtx_queue);
1621 }
1622 
1623 static inline bool tcp_rtx_and_write_queues_empty(const struct sock *sk)
1624 {
1625 	return tcp_rtx_queue_empty(sk) && tcp_write_queue_empty(sk);
1626 }
1627 
1628 static inline void tcp_check_send_head(struct sock *sk, struct sk_buff *skb_unlinked)
1629 {
1630 	if (tcp_write_queue_empty(sk))
1631 		tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
1632 }
1633 
1634 static inline void __tcp_add_write_queue_tail(struct sock *sk, struct sk_buff *skb)
1635 {
1636 	__skb_queue_tail(&sk->sk_write_queue, skb);
1637 }
1638 
1639 static inline void tcp_add_write_queue_tail(struct sock *sk, struct sk_buff *skb)
1640 {
1641 	__tcp_add_write_queue_tail(sk, skb);
1642 
1643 	/* Queue it, remembering where we must start sending. */
1644 	if (sk->sk_write_queue.next == skb)
1645 		tcp_chrono_start(sk, TCP_CHRONO_BUSY);
1646 }
1647 
1648 /* Insert new before skb on the write queue of sk.  */
1649 static inline void tcp_insert_write_queue_before(struct sk_buff *new,
1650 						  struct sk_buff *skb,
1651 						  struct sock *sk)
1652 {
1653 	__skb_queue_before(&sk->sk_write_queue, skb, new);
1654 }
1655 
1656 static inline void tcp_unlink_write_queue(struct sk_buff *skb, struct sock *sk)
1657 {
1658 	tcp_skb_tsorted_anchor_cleanup(skb);
1659 	__skb_unlink(skb, &sk->sk_write_queue);
1660 }
1661 
1662 void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb);
1663 
1664 static inline void tcp_rtx_queue_unlink(struct sk_buff *skb, struct sock *sk)
1665 {
1666 	tcp_skb_tsorted_anchor_cleanup(skb);
1667 	rb_erase(&skb->rbnode, &sk->tcp_rtx_queue);
1668 }
1669 
1670 static inline void tcp_rtx_queue_unlink_and_free(struct sk_buff *skb, struct sock *sk)
1671 {
1672 	list_del(&skb->tcp_tsorted_anchor);
1673 	tcp_rtx_queue_unlink(skb, sk);
1674 	sk_wmem_free_skb(sk, skb);
1675 }
1676 
1677 static inline void tcp_push_pending_frames(struct sock *sk)
1678 {
1679 	if (tcp_send_head(sk)) {
1680 		struct tcp_sock *tp = tcp_sk(sk);
1681 
1682 		__tcp_push_pending_frames(sk, tcp_current_mss(sk), tp->nonagle);
1683 	}
1684 }
1685 
1686 /* Start sequence of the skb just after the highest skb with SACKed
1687  * bit, valid only if sacked_out > 0 or when the caller has ensured
1688  * validity by itself.
1689  */
1690 static inline u32 tcp_highest_sack_seq(struct tcp_sock *tp)
1691 {
1692 	if (!tp->sacked_out)
1693 		return tp->snd_una;
1694 
1695 	if (tp->highest_sack == NULL)
1696 		return tp->snd_nxt;
1697 
1698 	return TCP_SKB_CB(tp->highest_sack)->seq;
1699 }
1700 
1701 static inline void tcp_advance_highest_sack(struct sock *sk, struct sk_buff *skb)
1702 {
1703 	tcp_sk(sk)->highest_sack = skb_rb_next(skb);
1704 }
1705 
1706 static inline struct sk_buff *tcp_highest_sack(struct sock *sk)
1707 {
1708 	return tcp_sk(sk)->highest_sack;
1709 }
1710 
1711 static inline void tcp_highest_sack_reset(struct sock *sk)
1712 {
1713 	tcp_sk(sk)->highest_sack = tcp_rtx_queue_head(sk);
1714 }
1715 
1716 /* Called when old skb is about to be deleted and replaced by new skb */
1717 static inline void tcp_highest_sack_replace(struct sock *sk,
1718 					    struct sk_buff *old,
1719 					    struct sk_buff *new)
1720 {
1721 	if (old == tcp_highest_sack(sk))
1722 		tcp_sk(sk)->highest_sack = new;
1723 }
1724 
1725 /* This helper checks if socket has IP_TRANSPARENT set */
1726 static inline bool inet_sk_transparent(const struct sock *sk)
1727 {
1728 	switch (sk->sk_state) {
1729 	case TCP_TIME_WAIT:
1730 		return inet_twsk(sk)->tw_transparent;
1731 	case TCP_NEW_SYN_RECV:
1732 		return inet_rsk(inet_reqsk(sk))->no_srccheck;
1733 	}
1734 	return inet_sk(sk)->transparent;
1735 }
1736 
1737 /* Determines whether this is a thin stream (which may suffer from
1738  * increased latency). Used to trigger latency-reducing mechanisms.
1739  */
1740 static inline bool tcp_stream_is_thin(struct tcp_sock *tp)
1741 {
1742 	return tp->packets_out < 4 && !tcp_in_initial_slowstart(tp);
1743 }
1744 
1745 /* /proc */
1746 enum tcp_seq_states {
1747 	TCP_SEQ_STATE_LISTENING,
1748 	TCP_SEQ_STATE_ESTABLISHED,
1749 };
1750 
1751 int tcp_seq_open(struct inode *inode, struct file *file);
1752 
1753 struct tcp_seq_afinfo {
1754 	char				*name;
1755 	sa_family_t			family;
1756 	const struct file_operations	*seq_fops;
1757 	struct seq_operations		seq_ops;
1758 };
1759 
1760 struct tcp_iter_state {
1761 	struct seq_net_private	p;
1762 	sa_family_t		family;
1763 	enum tcp_seq_states	state;
1764 	struct sock		*syn_wait_sk;
1765 	int			bucket, offset, sbucket, num;
1766 	loff_t			last_pos;
1767 };
1768 
1769 int tcp_proc_register(struct net *net, struct tcp_seq_afinfo *afinfo);
1770 void tcp_proc_unregister(struct net *net, struct tcp_seq_afinfo *afinfo);
1771 
1772 extern struct request_sock_ops tcp_request_sock_ops;
1773 extern struct request_sock_ops tcp6_request_sock_ops;
1774 
1775 void tcp_v4_destroy_sock(struct sock *sk);
1776 
1777 struct sk_buff *tcp_gso_segment(struct sk_buff *skb,
1778 				netdev_features_t features);
1779 struct sk_buff **tcp_gro_receive(struct sk_buff **head, struct sk_buff *skb);
1780 int tcp_gro_complete(struct sk_buff *skb);
1781 
1782 void __tcp_v4_send_check(struct sk_buff *skb, __be32 saddr, __be32 daddr);
1783 
1784 static inline u32 tcp_notsent_lowat(const struct tcp_sock *tp)
1785 {
1786 	struct net *net = sock_net((struct sock *)tp);
1787 	return tp->notsent_lowat ?: net->ipv4.sysctl_tcp_notsent_lowat;
1788 }
1789 
1790 static inline bool tcp_stream_memory_free(const struct sock *sk)
1791 {
1792 	const struct tcp_sock *tp = tcp_sk(sk);
1793 	u32 notsent_bytes = tp->write_seq - tp->snd_nxt;
1794 
1795 	return notsent_bytes < tcp_notsent_lowat(tp);
1796 }
1797 
1798 #ifdef CONFIG_PROC_FS
1799 int tcp4_proc_init(void);
1800 void tcp4_proc_exit(void);
1801 #endif
1802 
1803 int tcp_rtx_synack(const struct sock *sk, struct request_sock *req);
1804 int tcp_conn_request(struct request_sock_ops *rsk_ops,
1805 		     const struct tcp_request_sock_ops *af_ops,
1806 		     struct sock *sk, struct sk_buff *skb);
1807 
1808 /* TCP af-specific functions */
1809 struct tcp_sock_af_ops {
1810 #ifdef CONFIG_TCP_MD5SIG
1811 	struct tcp_md5sig_key	*(*md5_lookup) (const struct sock *sk,
1812 						const struct sock *addr_sk);
1813 	int		(*calc_md5_hash)(char *location,
1814 					 const struct tcp_md5sig_key *md5,
1815 					 const struct sock *sk,
1816 					 const struct sk_buff *skb);
1817 	int		(*md5_parse)(struct sock *sk,
1818 				     int optname,
1819 				     char __user *optval,
1820 				     int optlen);
1821 #endif
1822 };
1823 
1824 struct tcp_request_sock_ops {
1825 	u16 mss_clamp;
1826 #ifdef CONFIG_TCP_MD5SIG
1827 	struct tcp_md5sig_key *(*req_md5_lookup)(const struct sock *sk,
1828 						 const struct sock *addr_sk);
1829 	int		(*calc_md5_hash) (char *location,
1830 					  const struct tcp_md5sig_key *md5,
1831 					  const struct sock *sk,
1832 					  const struct sk_buff *skb);
1833 #endif
1834 	void (*init_req)(struct request_sock *req,
1835 			 const struct sock *sk_listener,
1836 			 struct sk_buff *skb);
1837 #ifdef CONFIG_SYN_COOKIES
1838 	__u32 (*cookie_init_seq)(const struct sk_buff *skb,
1839 				 __u16 *mss);
1840 #endif
1841 	struct dst_entry *(*route_req)(const struct sock *sk, struct flowi *fl,
1842 				       const struct request_sock *req);
1843 	u32 (*init_seq)(const struct sk_buff *skb);
1844 	u32 (*init_ts_off)(const struct net *net, const struct sk_buff *skb);
1845 	int (*send_synack)(const struct sock *sk, struct dst_entry *dst,
1846 			   struct flowi *fl, struct request_sock *req,
1847 			   struct tcp_fastopen_cookie *foc,
1848 			   enum tcp_synack_type synack_type);
1849 };
1850 
1851 #ifdef CONFIG_SYN_COOKIES
1852 static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops,
1853 					 const struct sock *sk, struct sk_buff *skb,
1854 					 __u16 *mss)
1855 {
1856 	tcp_synq_overflow(sk);
1857 	__NET_INC_STATS(sock_net(sk), LINUX_MIB_SYNCOOKIESSENT);
1858 	return ops->cookie_init_seq(skb, mss);
1859 }
1860 #else
1861 static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops,
1862 					 const struct sock *sk, struct sk_buff *skb,
1863 					 __u16 *mss)
1864 {
1865 	return 0;
1866 }
1867 #endif
1868 
1869 int tcpv4_offload_init(void);
1870 
1871 void tcp_v4_init(void);
1872 void tcp_init(void);
1873 
1874 /* tcp_recovery.c */
1875 extern void tcp_rack_mark_lost(struct sock *sk);
1876 extern void tcp_rack_advance(struct tcp_sock *tp, u8 sacked, u32 end_seq,
1877 			     u64 xmit_time);
1878 extern void tcp_rack_reo_timeout(struct sock *sk);
1879 extern void tcp_rack_update_reo_wnd(struct sock *sk, struct rate_sample *rs);
1880 
1881 /* At how many usecs into the future should the RTO fire? */
1882 static inline s64 tcp_rto_delta_us(const struct sock *sk)
1883 {
1884 	const struct sk_buff *skb = tcp_rtx_queue_head(sk);
1885 	u32 rto = inet_csk(sk)->icsk_rto;
1886 	u64 rto_time_stamp_us = skb->skb_mstamp + jiffies_to_usecs(rto);
1887 
1888 	return rto_time_stamp_us - tcp_sk(sk)->tcp_mstamp;
1889 }
1890 
1891 /*
1892  * Save and compile IPv4 options, return a pointer to it
1893  */
1894 static inline struct ip_options_rcu *tcp_v4_save_options(struct net *net,
1895 							 struct sk_buff *skb)
1896 {
1897 	const struct ip_options *opt = &TCP_SKB_CB(skb)->header.h4.opt;
1898 	struct ip_options_rcu *dopt = NULL;
1899 
1900 	if (opt->optlen) {
1901 		int opt_size = sizeof(*dopt) + opt->optlen;
1902 
1903 		dopt = kmalloc(opt_size, GFP_ATOMIC);
1904 		if (dopt && __ip_options_echo(net, &dopt->opt, skb, opt)) {
1905 			kfree(dopt);
1906 			dopt = NULL;
1907 		}
1908 	}
1909 	return dopt;
1910 }
1911 
1912 /* locally generated TCP pure ACKs have skb->truesize == 2
1913  * (check tcp_send_ack() in net/ipv4/tcp_output.c )
1914  * This is much faster than dissecting the packet to find out.
1915  * (Think of GRE encapsulations, IPv4, IPv6, ...)
1916  */
1917 static inline bool skb_is_tcp_pure_ack(const struct sk_buff *skb)
1918 {
1919 	return skb->truesize == 2;
1920 }
1921 
1922 static inline void skb_set_tcp_pure_ack(struct sk_buff *skb)
1923 {
1924 	skb->truesize = 2;
1925 }
1926 
1927 static inline int tcp_inq(struct sock *sk)
1928 {
1929 	struct tcp_sock *tp = tcp_sk(sk);
1930 	int answ;
1931 
1932 	if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) {
1933 		answ = 0;
1934 	} else if (sock_flag(sk, SOCK_URGINLINE) ||
1935 		   !tp->urg_data ||
1936 		   before(tp->urg_seq, tp->copied_seq) ||
1937 		   !before(tp->urg_seq, tp->rcv_nxt)) {
1938 
1939 		answ = tp->rcv_nxt - tp->copied_seq;
1940 
1941 		/* Subtract 1, if FIN was received */
1942 		if (answ && sock_flag(sk, SOCK_DONE))
1943 			answ--;
1944 	} else {
1945 		answ = tp->urg_seq - tp->copied_seq;
1946 	}
1947 
1948 	return answ;
1949 }
1950 
1951 int tcp_peek_len(struct socket *sock);
1952 
1953 static inline void tcp_segs_in(struct tcp_sock *tp, const struct sk_buff *skb)
1954 {
1955 	u16 segs_in;
1956 
1957 	segs_in = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
1958 	tp->segs_in += segs_in;
1959 	if (skb->len > tcp_hdrlen(skb))
1960 		tp->data_segs_in += segs_in;
1961 }
1962 
1963 /*
1964  * TCP listen path runs lockless.
1965  * We forced "struct sock" to be const qualified to make sure
1966  * we don't modify one of its field by mistake.
1967  * Here, we increment sk_drops which is an atomic_t, so we can safely
1968  * make sock writable again.
1969  */
1970 static inline void tcp_listendrop(const struct sock *sk)
1971 {
1972 	atomic_inc(&((struct sock *)sk)->sk_drops);
1973 	__NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENDROPS);
1974 }
1975 
1976 enum hrtimer_restart tcp_pace_kick(struct hrtimer *timer);
1977 
1978 /*
1979  * Interface for adding Upper Level Protocols over TCP
1980  */
1981 
1982 #define TCP_ULP_NAME_MAX	16
1983 #define TCP_ULP_MAX		128
1984 #define TCP_ULP_BUF_MAX		(TCP_ULP_NAME_MAX*TCP_ULP_MAX)
1985 
1986 enum {
1987 	TCP_ULP_TLS,
1988 	TCP_ULP_BPF,
1989 };
1990 
1991 struct tcp_ulp_ops {
1992 	struct list_head	list;
1993 
1994 	/* initialize ulp */
1995 	int (*init)(struct sock *sk);
1996 	/* cleanup ulp */
1997 	void (*release)(struct sock *sk);
1998 
1999 	int		uid;
2000 	char		name[TCP_ULP_NAME_MAX];
2001 	bool		user_visible;
2002 	struct module	*owner;
2003 };
2004 int tcp_register_ulp(struct tcp_ulp_ops *type);
2005 void tcp_unregister_ulp(struct tcp_ulp_ops *type);
2006 int tcp_set_ulp(struct sock *sk, const char *name);
2007 int tcp_set_ulp_id(struct sock *sk, const int ulp);
2008 void tcp_get_available_ulp(char *buf, size_t len);
2009 void tcp_cleanup_ulp(struct sock *sk);
2010 
2011 /* Call BPF_SOCK_OPS program that returns an int. If the return value
2012  * is < 0, then the BPF op failed (for example if the loaded BPF
2013  * program does not support the chosen operation or there is no BPF
2014  * program loaded).
2015  */
2016 #ifdef CONFIG_BPF
2017 static inline int tcp_call_bpf(struct sock *sk, int op, u32 nargs, u32 *args)
2018 {
2019 	struct bpf_sock_ops_kern sock_ops;
2020 	int ret;
2021 
2022 	memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
2023 	if (sk_fullsock(sk)) {
2024 		sock_ops.is_fullsock = 1;
2025 		sock_owned_by_me(sk);
2026 	}
2027 
2028 	sock_ops.sk = sk;
2029 	sock_ops.op = op;
2030 	if (nargs > 0)
2031 		memcpy(sock_ops.args, args, nargs * sizeof(*args));
2032 
2033 	ret = BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops);
2034 	if (ret == 0)
2035 		ret = sock_ops.reply;
2036 	else
2037 		ret = -1;
2038 	return ret;
2039 }
2040 
2041 static inline int tcp_call_bpf_2arg(struct sock *sk, int op, u32 arg1, u32 arg2)
2042 {
2043 	u32 args[2] = {arg1, arg2};
2044 
2045 	return tcp_call_bpf(sk, op, 2, args);
2046 }
2047 
2048 static inline int tcp_call_bpf_3arg(struct sock *sk, int op, u32 arg1, u32 arg2,
2049 				    u32 arg3)
2050 {
2051 	u32 args[3] = {arg1, arg2, arg3};
2052 
2053 	return tcp_call_bpf(sk, op, 3, args);
2054 }
2055 
2056 #else
2057 static inline int tcp_call_bpf(struct sock *sk, int op, u32 nargs, u32 *args)
2058 {
2059 	return -EPERM;
2060 }
2061 
2062 static inline int tcp_call_bpf_2arg(struct sock *sk, int op, u32 arg1, u32 arg2)
2063 {
2064 	return -EPERM;
2065 }
2066 
2067 static inline int tcp_call_bpf_3arg(struct sock *sk, int op, u32 arg1, u32 arg2,
2068 				    u32 arg3)
2069 {
2070 	return -EPERM;
2071 }
2072 
2073 #endif
2074 
2075 static inline u32 tcp_timeout_init(struct sock *sk)
2076 {
2077 	int timeout;
2078 
2079 	timeout = tcp_call_bpf(sk, BPF_SOCK_OPS_TIMEOUT_INIT, 0, NULL);
2080 
2081 	if (timeout <= 0)
2082 		timeout = TCP_TIMEOUT_INIT;
2083 	return timeout;
2084 }
2085 
2086 static inline u32 tcp_rwnd_init_bpf(struct sock *sk)
2087 {
2088 	int rwnd;
2089 
2090 	rwnd = tcp_call_bpf(sk, BPF_SOCK_OPS_RWND_INIT, 0, NULL);
2091 
2092 	if (rwnd < 0)
2093 		rwnd = 0;
2094 	return rwnd;
2095 }
2096 
2097 static inline bool tcp_bpf_ca_needs_ecn(struct sock *sk)
2098 {
2099 	return (tcp_call_bpf(sk, BPF_SOCK_OPS_NEEDS_ECN, 0, NULL) == 1);
2100 }
2101 
2102 #if IS_ENABLED(CONFIG_SMC)
2103 extern struct static_key_false tcp_have_smc;
2104 #endif
2105 #endif	/* _TCP_H */
2106