xref: /linux/include/net/tcp.h (revision 110e6f26af80dfd90b6e5c645b1aed7228aa580d)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Definitions for the TCP module.
7  *
8  * Version:	@(#)tcp.h	1.0.5	05/23/93
9  *
10  * Authors:	Ross Biro
11  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *
13  *		This program is free software; you can redistribute it and/or
14  *		modify it under the terms of the GNU General Public License
15  *		as published by the Free Software Foundation; either version
16  *		2 of the License, or (at your option) any later version.
17  */
18 #ifndef _TCP_H
19 #define _TCP_H
20 
21 #define FASTRETRANS_DEBUG 1
22 
23 #include <linux/list.h>
24 #include <linux/tcp.h>
25 #include <linux/bug.h>
26 #include <linux/slab.h>
27 #include <linux/cache.h>
28 #include <linux/percpu.h>
29 #include <linux/skbuff.h>
30 #include <linux/cryptohash.h>
31 #include <linux/kref.h>
32 #include <linux/ktime.h>
33 
34 #include <net/inet_connection_sock.h>
35 #include <net/inet_timewait_sock.h>
36 #include <net/inet_hashtables.h>
37 #include <net/checksum.h>
38 #include <net/request_sock.h>
39 #include <net/sock.h>
40 #include <net/snmp.h>
41 #include <net/ip.h>
42 #include <net/tcp_states.h>
43 #include <net/inet_ecn.h>
44 #include <net/dst.h>
45 
46 #include <linux/seq_file.h>
47 #include <linux/memcontrol.h>
48 
49 extern struct inet_hashinfo tcp_hashinfo;
50 
51 extern struct percpu_counter tcp_orphan_count;
52 void tcp_time_wait(struct sock *sk, int state, int timeo);
53 
54 #define MAX_TCP_HEADER	(128 + MAX_HEADER)
55 #define MAX_TCP_OPTION_SPACE 40
56 
57 /*
58  * Never offer a window over 32767 without using window scaling. Some
59  * poor stacks do signed 16bit maths!
60  */
61 #define MAX_TCP_WINDOW		32767U
62 
63 /* Minimal accepted MSS. It is (60+60+8) - (20+20). */
64 #define TCP_MIN_MSS		88U
65 
66 /* The least MTU to use for probing */
67 #define TCP_BASE_MSS		1024
68 
69 /* probing interval, default to 10 minutes as per RFC4821 */
70 #define TCP_PROBE_INTERVAL	600
71 
72 /* Specify interval when tcp mtu probing will stop */
73 #define TCP_PROBE_THRESHOLD	8
74 
75 /* After receiving this amount of duplicate ACKs fast retransmit starts. */
76 #define TCP_FASTRETRANS_THRESH 3
77 
78 /* Maximal number of ACKs sent quickly to accelerate slow-start. */
79 #define TCP_MAX_QUICKACKS	16U
80 
81 /* urg_data states */
82 #define TCP_URG_VALID	0x0100
83 #define TCP_URG_NOTYET	0x0200
84 #define TCP_URG_READ	0x0400
85 
86 #define TCP_RETR1	3	/*
87 				 * This is how many retries it does before it
88 				 * tries to figure out if the gateway is
89 				 * down. Minimal RFC value is 3; it corresponds
90 				 * to ~3sec-8min depending on RTO.
91 				 */
92 
93 #define TCP_RETR2	15	/*
94 				 * This should take at least
95 				 * 90 minutes to time out.
96 				 * RFC1122 says that the limit is 100 sec.
97 				 * 15 is ~13-30min depending on RTO.
98 				 */
99 
100 #define TCP_SYN_RETRIES	 6	/* This is how many retries are done
101 				 * when active opening a connection.
102 				 * RFC1122 says the minimum retry MUST
103 				 * be at least 180secs.  Nevertheless
104 				 * this value is corresponding to
105 				 * 63secs of retransmission with the
106 				 * current initial RTO.
107 				 */
108 
109 #define TCP_SYNACK_RETRIES 5	/* This is how may retries are done
110 				 * when passive opening a connection.
111 				 * This is corresponding to 31secs of
112 				 * retransmission with the current
113 				 * initial RTO.
114 				 */
115 
116 #define TCP_TIMEWAIT_LEN (60*HZ) /* how long to wait to destroy TIME-WAIT
117 				  * state, about 60 seconds	*/
118 #define TCP_FIN_TIMEOUT	TCP_TIMEWAIT_LEN
119                                  /* BSD style FIN_WAIT2 deadlock breaker.
120 				  * It used to be 3min, new value is 60sec,
121 				  * to combine FIN-WAIT-2 timeout with
122 				  * TIME-WAIT timer.
123 				  */
124 
125 #define TCP_DELACK_MAX	((unsigned)(HZ/5))	/* maximal time to delay before sending an ACK */
126 #if HZ >= 100
127 #define TCP_DELACK_MIN	((unsigned)(HZ/25))	/* minimal time to delay before sending an ACK */
128 #define TCP_ATO_MIN	((unsigned)(HZ/25))
129 #else
130 #define TCP_DELACK_MIN	4U
131 #define TCP_ATO_MIN	4U
132 #endif
133 #define TCP_RTO_MAX	((unsigned)(120*HZ))
134 #define TCP_RTO_MIN	((unsigned)(HZ/5))
135 #define TCP_TIMEOUT_INIT ((unsigned)(1*HZ))	/* RFC6298 2.1 initial RTO value	*/
136 #define TCP_TIMEOUT_FALLBACK ((unsigned)(3*HZ))	/* RFC 1122 initial RTO value, now
137 						 * used as a fallback RTO for the
138 						 * initial data transmission if no
139 						 * valid RTT sample has been acquired,
140 						 * most likely due to retrans in 3WHS.
141 						 */
142 
143 #define TCP_RESOURCE_PROBE_INTERVAL ((unsigned)(HZ/2U)) /* Maximal interval between probes
144 					                 * for local resources.
145 					                 */
146 
147 #define TCP_KEEPALIVE_TIME	(120*60*HZ)	/* two hours */
148 #define TCP_KEEPALIVE_PROBES	9		/* Max of 9 keepalive probes	*/
149 #define TCP_KEEPALIVE_INTVL	(75*HZ)
150 
151 #define MAX_TCP_KEEPIDLE	32767
152 #define MAX_TCP_KEEPINTVL	32767
153 #define MAX_TCP_KEEPCNT		127
154 #define MAX_TCP_SYNCNT		127
155 
156 #define TCP_SYNQ_INTERVAL	(HZ/5)	/* Period of SYNACK timer */
157 
158 #define TCP_PAWS_24DAYS	(60 * 60 * 24 * 24)
159 #define TCP_PAWS_MSL	60		/* Per-host timestamps are invalidated
160 					 * after this time. It should be equal
161 					 * (or greater than) TCP_TIMEWAIT_LEN
162 					 * to provide reliability equal to one
163 					 * provided by timewait state.
164 					 */
165 #define TCP_PAWS_WINDOW	1		/* Replay window for per-host
166 					 * timestamps. It must be less than
167 					 * minimal timewait lifetime.
168 					 */
169 /*
170  *	TCP option
171  */
172 
173 #define TCPOPT_NOP		1	/* Padding */
174 #define TCPOPT_EOL		0	/* End of options */
175 #define TCPOPT_MSS		2	/* Segment size negotiating */
176 #define TCPOPT_WINDOW		3	/* Window scaling */
177 #define TCPOPT_SACK_PERM        4       /* SACK Permitted */
178 #define TCPOPT_SACK             5       /* SACK Block */
179 #define TCPOPT_TIMESTAMP	8	/* Better RTT estimations/PAWS */
180 #define TCPOPT_MD5SIG		19	/* MD5 Signature (RFC2385) */
181 #define TCPOPT_FASTOPEN		34	/* Fast open (RFC7413) */
182 #define TCPOPT_EXP		254	/* Experimental */
183 /* Magic number to be after the option value for sharing TCP
184  * experimental options. See draft-ietf-tcpm-experimental-options-00.txt
185  */
186 #define TCPOPT_FASTOPEN_MAGIC	0xF989
187 
188 /*
189  *     TCP option lengths
190  */
191 
192 #define TCPOLEN_MSS            4
193 #define TCPOLEN_WINDOW         3
194 #define TCPOLEN_SACK_PERM      2
195 #define TCPOLEN_TIMESTAMP      10
196 #define TCPOLEN_MD5SIG         18
197 #define TCPOLEN_FASTOPEN_BASE  2
198 #define TCPOLEN_EXP_FASTOPEN_BASE  4
199 
200 /* But this is what stacks really send out. */
201 #define TCPOLEN_TSTAMP_ALIGNED		12
202 #define TCPOLEN_WSCALE_ALIGNED		4
203 #define TCPOLEN_SACKPERM_ALIGNED	4
204 #define TCPOLEN_SACK_BASE		2
205 #define TCPOLEN_SACK_BASE_ALIGNED	4
206 #define TCPOLEN_SACK_PERBLOCK		8
207 #define TCPOLEN_MD5SIG_ALIGNED		20
208 #define TCPOLEN_MSS_ALIGNED		4
209 
210 /* Flags in tp->nonagle */
211 #define TCP_NAGLE_OFF		1	/* Nagle's algo is disabled */
212 #define TCP_NAGLE_CORK		2	/* Socket is corked	    */
213 #define TCP_NAGLE_PUSH		4	/* Cork is overridden for already queued data */
214 
215 /* TCP thin-stream limits */
216 #define TCP_THIN_LINEAR_RETRIES 6       /* After 6 linear retries, do exp. backoff */
217 
218 /* TCP initial congestion window as per rfc6928 */
219 #define TCP_INIT_CWND		10
220 
221 /* Bit Flags for sysctl_tcp_fastopen */
222 #define	TFO_CLIENT_ENABLE	1
223 #define	TFO_SERVER_ENABLE	2
224 #define	TFO_CLIENT_NO_COOKIE	4	/* Data in SYN w/o cookie option */
225 
226 /* Accept SYN data w/o any cookie option */
227 #define	TFO_SERVER_COOKIE_NOT_REQD	0x200
228 
229 /* Force enable TFO on all listeners, i.e., not requiring the
230  * TCP_FASTOPEN socket option. SOCKOPT1/2 determine how to set max_qlen.
231  */
232 #define	TFO_SERVER_WO_SOCKOPT1	0x400
233 #define	TFO_SERVER_WO_SOCKOPT2	0x800
234 
235 extern struct inet_timewait_death_row tcp_death_row;
236 
237 /* sysctl variables for tcp */
238 extern int sysctl_tcp_timestamps;
239 extern int sysctl_tcp_window_scaling;
240 extern int sysctl_tcp_sack;
241 extern int sysctl_tcp_fastopen;
242 extern int sysctl_tcp_retrans_collapse;
243 extern int sysctl_tcp_stdurg;
244 extern int sysctl_tcp_rfc1337;
245 extern int sysctl_tcp_abort_on_overflow;
246 extern int sysctl_tcp_max_orphans;
247 extern int sysctl_tcp_fack;
248 extern int sysctl_tcp_reordering;
249 extern int sysctl_tcp_max_reordering;
250 extern int sysctl_tcp_dsack;
251 extern long sysctl_tcp_mem[3];
252 extern int sysctl_tcp_wmem[3];
253 extern int sysctl_tcp_rmem[3];
254 extern int sysctl_tcp_app_win;
255 extern int sysctl_tcp_adv_win_scale;
256 extern int sysctl_tcp_tw_reuse;
257 extern int sysctl_tcp_frto;
258 extern int sysctl_tcp_low_latency;
259 extern int sysctl_tcp_nometrics_save;
260 extern int sysctl_tcp_moderate_rcvbuf;
261 extern int sysctl_tcp_tso_win_divisor;
262 extern int sysctl_tcp_workaround_signed_windows;
263 extern int sysctl_tcp_slow_start_after_idle;
264 extern int sysctl_tcp_thin_linear_timeouts;
265 extern int sysctl_tcp_thin_dupack;
266 extern int sysctl_tcp_early_retrans;
267 extern int sysctl_tcp_limit_output_bytes;
268 extern int sysctl_tcp_challenge_ack_limit;
269 extern int sysctl_tcp_min_tso_segs;
270 extern int sysctl_tcp_min_rtt_wlen;
271 extern int sysctl_tcp_autocorking;
272 extern int sysctl_tcp_invalid_ratelimit;
273 extern int sysctl_tcp_pacing_ss_ratio;
274 extern int sysctl_tcp_pacing_ca_ratio;
275 
276 extern atomic_long_t tcp_memory_allocated;
277 extern struct percpu_counter tcp_sockets_allocated;
278 extern int tcp_memory_pressure;
279 
280 /* optimized version of sk_under_memory_pressure() for TCP sockets */
281 static inline bool tcp_under_memory_pressure(const struct sock *sk)
282 {
283 	if (mem_cgroup_sockets_enabled && sk->sk_memcg &&
284 	    mem_cgroup_under_socket_pressure(sk->sk_memcg))
285 		return true;
286 
287 	return tcp_memory_pressure;
288 }
289 /*
290  * The next routines deal with comparing 32 bit unsigned ints
291  * and worry about wraparound (automatic with unsigned arithmetic).
292  */
293 
294 static inline bool before(__u32 seq1, __u32 seq2)
295 {
296         return (__s32)(seq1-seq2) < 0;
297 }
298 #define after(seq2, seq1) 	before(seq1, seq2)
299 
300 /* is s2<=s1<=s3 ? */
301 static inline bool between(__u32 seq1, __u32 seq2, __u32 seq3)
302 {
303 	return seq3 - seq2 >= seq1 - seq2;
304 }
305 
306 static inline bool tcp_out_of_memory(struct sock *sk)
307 {
308 	if (sk->sk_wmem_queued > SOCK_MIN_SNDBUF &&
309 	    sk_memory_allocated(sk) > sk_prot_mem_limits(sk, 2))
310 		return true;
311 	return false;
312 }
313 
314 void sk_forced_mem_schedule(struct sock *sk, int size);
315 
316 static inline bool tcp_too_many_orphans(struct sock *sk, int shift)
317 {
318 	struct percpu_counter *ocp = sk->sk_prot->orphan_count;
319 	int orphans = percpu_counter_read_positive(ocp);
320 
321 	if (orphans << shift > sysctl_tcp_max_orphans) {
322 		orphans = percpu_counter_sum_positive(ocp);
323 		if (orphans << shift > sysctl_tcp_max_orphans)
324 			return true;
325 	}
326 	return false;
327 }
328 
329 bool tcp_check_oom(struct sock *sk, int shift);
330 
331 
332 extern struct proto tcp_prot;
333 
334 #define TCP_INC_STATS(net, field)	SNMP_INC_STATS((net)->mib.tcp_statistics, field)
335 #define TCP_INC_STATS_BH(net, field)	SNMP_INC_STATS_BH((net)->mib.tcp_statistics, field)
336 #define TCP_DEC_STATS(net, field)	SNMP_DEC_STATS((net)->mib.tcp_statistics, field)
337 #define TCP_ADD_STATS_USER(net, field, val) SNMP_ADD_STATS_USER((net)->mib.tcp_statistics, field, val)
338 #define TCP_ADD_STATS(net, field, val)	SNMP_ADD_STATS((net)->mib.tcp_statistics, field, val)
339 
340 void tcp_tasklet_init(void);
341 
342 void tcp_v4_err(struct sk_buff *skb, u32);
343 
344 void tcp_shutdown(struct sock *sk, int how);
345 
346 void tcp_v4_early_demux(struct sk_buff *skb);
347 int tcp_v4_rcv(struct sk_buff *skb);
348 
349 int tcp_v4_tw_remember_stamp(struct inet_timewait_sock *tw);
350 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size);
351 int tcp_sendpage(struct sock *sk, struct page *page, int offset, size_t size,
352 		 int flags);
353 void tcp_release_cb(struct sock *sk);
354 void tcp_wfree(struct sk_buff *skb);
355 void tcp_write_timer_handler(struct sock *sk);
356 void tcp_delack_timer_handler(struct sock *sk);
357 int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg);
358 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb);
359 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
360 			 const struct tcphdr *th, unsigned int len);
361 void tcp_rcv_space_adjust(struct sock *sk);
362 int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp);
363 void tcp_twsk_destructor(struct sock *sk);
364 ssize_t tcp_splice_read(struct socket *sk, loff_t *ppos,
365 			struct pipe_inode_info *pipe, size_t len,
366 			unsigned int flags);
367 
368 static inline void tcp_dec_quickack_mode(struct sock *sk,
369 					 const unsigned int pkts)
370 {
371 	struct inet_connection_sock *icsk = inet_csk(sk);
372 
373 	if (icsk->icsk_ack.quick) {
374 		if (pkts >= icsk->icsk_ack.quick) {
375 			icsk->icsk_ack.quick = 0;
376 			/* Leaving quickack mode we deflate ATO. */
377 			icsk->icsk_ack.ato   = TCP_ATO_MIN;
378 		} else
379 			icsk->icsk_ack.quick -= pkts;
380 	}
381 }
382 
383 #define	TCP_ECN_OK		1
384 #define	TCP_ECN_QUEUE_CWR	2
385 #define	TCP_ECN_DEMAND_CWR	4
386 #define	TCP_ECN_SEEN		8
387 
388 enum tcp_tw_status {
389 	TCP_TW_SUCCESS = 0,
390 	TCP_TW_RST = 1,
391 	TCP_TW_ACK = 2,
392 	TCP_TW_SYN = 3
393 };
394 
395 
396 enum tcp_tw_status tcp_timewait_state_process(struct inet_timewait_sock *tw,
397 					      struct sk_buff *skb,
398 					      const struct tcphdr *th);
399 struct sock *tcp_check_req(struct sock *sk, struct sk_buff *skb,
400 			   struct request_sock *req, bool fastopen);
401 int tcp_child_process(struct sock *parent, struct sock *child,
402 		      struct sk_buff *skb);
403 void tcp_enter_loss(struct sock *sk);
404 void tcp_clear_retrans(struct tcp_sock *tp);
405 void tcp_update_metrics(struct sock *sk);
406 void tcp_init_metrics(struct sock *sk);
407 void tcp_metrics_init(void);
408 bool tcp_peer_is_proven(struct request_sock *req, struct dst_entry *dst,
409 			bool paws_check, bool timestamps);
410 bool tcp_remember_stamp(struct sock *sk);
411 bool tcp_tw_remember_stamp(struct inet_timewait_sock *tw);
412 void tcp_fetch_timewait_stamp(struct sock *sk, struct dst_entry *dst);
413 void tcp_disable_fack(struct tcp_sock *tp);
414 void tcp_close(struct sock *sk, long timeout);
415 void tcp_init_sock(struct sock *sk);
416 unsigned int tcp_poll(struct file *file, struct socket *sock,
417 		      struct poll_table_struct *wait);
418 int tcp_getsockopt(struct sock *sk, int level, int optname,
419 		   char __user *optval, int __user *optlen);
420 int tcp_setsockopt(struct sock *sk, int level, int optname,
421 		   char __user *optval, unsigned int optlen);
422 int compat_tcp_getsockopt(struct sock *sk, int level, int optname,
423 			  char __user *optval, int __user *optlen);
424 int compat_tcp_setsockopt(struct sock *sk, int level, int optname,
425 			  char __user *optval, unsigned int optlen);
426 void tcp_set_keepalive(struct sock *sk, int val);
427 void tcp_syn_ack_timeout(const struct request_sock *req);
428 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int nonblock,
429 		int flags, int *addr_len);
430 void tcp_parse_options(const struct sk_buff *skb,
431 		       struct tcp_options_received *opt_rx,
432 		       int estab, struct tcp_fastopen_cookie *foc);
433 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th);
434 
435 /*
436  *	TCP v4 functions exported for the inet6 API
437  */
438 
439 void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb);
440 void tcp_v4_mtu_reduced(struct sock *sk);
441 void tcp_req_err(struct sock *sk, u32 seq, bool abort);
442 int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb);
443 struct sock *tcp_create_openreq_child(const struct sock *sk,
444 				      struct request_sock *req,
445 				      struct sk_buff *skb);
446 void tcp_ca_openreq_child(struct sock *sk, const struct dst_entry *dst);
447 struct sock *tcp_v4_syn_recv_sock(const struct sock *sk, struct sk_buff *skb,
448 				  struct request_sock *req,
449 				  struct dst_entry *dst,
450 				  struct request_sock *req_unhash,
451 				  bool *own_req);
452 int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb);
453 int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len);
454 int tcp_connect(struct sock *sk);
455 struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst,
456 				struct request_sock *req,
457 				struct tcp_fastopen_cookie *foc,
458 				bool attach_req);
459 int tcp_disconnect(struct sock *sk, int flags);
460 
461 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb);
462 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size);
463 void inet_sk_rx_dst_set(struct sock *sk, const struct sk_buff *skb);
464 
465 /* From syncookies.c */
466 struct sock *tcp_get_cookie_sock(struct sock *sk, struct sk_buff *skb,
467 				 struct request_sock *req,
468 				 struct dst_entry *dst);
469 int __cookie_v4_check(const struct iphdr *iph, const struct tcphdr *th,
470 		      u32 cookie);
471 struct sock *cookie_v4_check(struct sock *sk, struct sk_buff *skb);
472 #ifdef CONFIG_SYN_COOKIES
473 
474 /* Syncookies use a monotonic timer which increments every 60 seconds.
475  * This counter is used both as a hash input and partially encoded into
476  * the cookie value.  A cookie is only validated further if the delta
477  * between the current counter value and the encoded one is less than this,
478  * i.e. a sent cookie is valid only at most for 2*60 seconds (or less if
479  * the counter advances immediately after a cookie is generated).
480  */
481 #define MAX_SYNCOOKIE_AGE	2
482 #define TCP_SYNCOOKIE_PERIOD	(60 * HZ)
483 #define TCP_SYNCOOKIE_VALID	(MAX_SYNCOOKIE_AGE * TCP_SYNCOOKIE_PERIOD)
484 
485 /* syncookies: remember time of last synqueue overflow
486  * But do not dirty this field too often (once per second is enough)
487  * It is racy as we do not hold a lock, but race is very minor.
488  */
489 static inline void tcp_synq_overflow(const struct sock *sk)
490 {
491 	unsigned long last_overflow = tcp_sk(sk)->rx_opt.ts_recent_stamp;
492 	unsigned long now = jiffies;
493 
494 	if (time_after(now, last_overflow + HZ))
495 		tcp_sk(sk)->rx_opt.ts_recent_stamp = now;
496 }
497 
498 /* syncookies: no recent synqueue overflow on this listening socket? */
499 static inline bool tcp_synq_no_recent_overflow(const struct sock *sk)
500 {
501 	unsigned long last_overflow = tcp_sk(sk)->rx_opt.ts_recent_stamp;
502 
503 	return time_after(jiffies, last_overflow + TCP_SYNCOOKIE_VALID);
504 }
505 
506 static inline u32 tcp_cookie_time(void)
507 {
508 	u64 val = get_jiffies_64();
509 
510 	do_div(val, TCP_SYNCOOKIE_PERIOD);
511 	return val;
512 }
513 
514 u32 __cookie_v4_init_sequence(const struct iphdr *iph, const struct tcphdr *th,
515 			      u16 *mssp);
516 __u32 cookie_v4_init_sequence(const struct sk_buff *skb, __u16 *mss);
517 __u32 cookie_init_timestamp(struct request_sock *req);
518 bool cookie_timestamp_decode(struct tcp_options_received *opt);
519 bool cookie_ecn_ok(const struct tcp_options_received *opt,
520 		   const struct net *net, const struct dst_entry *dst);
521 
522 /* From net/ipv6/syncookies.c */
523 int __cookie_v6_check(const struct ipv6hdr *iph, const struct tcphdr *th,
524 		      u32 cookie);
525 struct sock *cookie_v6_check(struct sock *sk, struct sk_buff *skb);
526 
527 u32 __cookie_v6_init_sequence(const struct ipv6hdr *iph,
528 			      const struct tcphdr *th, u16 *mssp);
529 __u32 cookie_v6_init_sequence(const struct sk_buff *skb, __u16 *mss);
530 #endif
531 /* tcp_output.c */
532 
533 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
534 			       int nonagle);
535 bool tcp_may_send_now(struct sock *sk);
536 int __tcp_retransmit_skb(struct sock *, struct sk_buff *);
537 int tcp_retransmit_skb(struct sock *, struct sk_buff *);
538 void tcp_retransmit_timer(struct sock *sk);
539 void tcp_xmit_retransmit_queue(struct sock *);
540 void tcp_simple_retransmit(struct sock *);
541 int tcp_trim_head(struct sock *, struct sk_buff *, u32);
542 int tcp_fragment(struct sock *, struct sk_buff *, u32, unsigned int, gfp_t);
543 
544 void tcp_send_probe0(struct sock *);
545 void tcp_send_partial(struct sock *);
546 int tcp_write_wakeup(struct sock *, int mib);
547 void tcp_send_fin(struct sock *sk);
548 void tcp_send_active_reset(struct sock *sk, gfp_t priority);
549 int tcp_send_synack(struct sock *);
550 void tcp_push_one(struct sock *, unsigned int mss_now);
551 void tcp_send_ack(struct sock *sk);
552 void tcp_send_delayed_ack(struct sock *sk);
553 void tcp_send_loss_probe(struct sock *sk);
554 bool tcp_schedule_loss_probe(struct sock *sk);
555 
556 /* tcp_input.c */
557 void tcp_resume_early_retransmit(struct sock *sk);
558 void tcp_rearm_rto(struct sock *sk);
559 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req);
560 void tcp_reset(struct sock *sk);
561 void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp, struct sk_buff *skb);
562 void tcp_fin(struct sock *sk);
563 
564 /* tcp_timer.c */
565 void tcp_init_xmit_timers(struct sock *);
566 static inline void tcp_clear_xmit_timers(struct sock *sk)
567 {
568 	inet_csk_clear_xmit_timers(sk);
569 }
570 
571 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu);
572 unsigned int tcp_current_mss(struct sock *sk);
573 
574 /* Bound MSS / TSO packet size with the half of the window */
575 static inline int tcp_bound_to_half_wnd(struct tcp_sock *tp, int pktsize)
576 {
577 	int cutoff;
578 
579 	/* When peer uses tiny windows, there is no use in packetizing
580 	 * to sub-MSS pieces for the sake of SWS or making sure there
581 	 * are enough packets in the pipe for fast recovery.
582 	 *
583 	 * On the other hand, for extremely large MSS devices, handling
584 	 * smaller than MSS windows in this way does make sense.
585 	 */
586 	if (tp->max_window >= 512)
587 		cutoff = (tp->max_window >> 1);
588 	else
589 		cutoff = tp->max_window;
590 
591 	if (cutoff && pktsize > cutoff)
592 		return max_t(int, cutoff, 68U - tp->tcp_header_len);
593 	else
594 		return pktsize;
595 }
596 
597 /* tcp.c */
598 void tcp_get_info(struct sock *, struct tcp_info *);
599 
600 /* Read 'sendfile()'-style from a TCP socket */
601 typedef int (*sk_read_actor_t)(read_descriptor_t *, struct sk_buff *,
602 				unsigned int, size_t);
603 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
604 		  sk_read_actor_t recv_actor);
605 
606 void tcp_initialize_rcv_mss(struct sock *sk);
607 
608 int tcp_mtu_to_mss(struct sock *sk, int pmtu);
609 int tcp_mss_to_mtu(struct sock *sk, int mss);
610 void tcp_mtup_init(struct sock *sk);
611 void tcp_init_buffer_space(struct sock *sk);
612 
613 static inline void tcp_bound_rto(const struct sock *sk)
614 {
615 	if (inet_csk(sk)->icsk_rto > TCP_RTO_MAX)
616 		inet_csk(sk)->icsk_rto = TCP_RTO_MAX;
617 }
618 
619 static inline u32 __tcp_set_rto(const struct tcp_sock *tp)
620 {
621 	return usecs_to_jiffies((tp->srtt_us >> 3) + tp->rttvar_us);
622 }
623 
624 static inline void __tcp_fast_path_on(struct tcp_sock *tp, u32 snd_wnd)
625 {
626 	tp->pred_flags = htonl((tp->tcp_header_len << 26) |
627 			       ntohl(TCP_FLAG_ACK) |
628 			       snd_wnd);
629 }
630 
631 static inline void tcp_fast_path_on(struct tcp_sock *tp)
632 {
633 	__tcp_fast_path_on(tp, tp->snd_wnd >> tp->rx_opt.snd_wscale);
634 }
635 
636 static inline void tcp_fast_path_check(struct sock *sk)
637 {
638 	struct tcp_sock *tp = tcp_sk(sk);
639 
640 	if (skb_queue_empty(&tp->out_of_order_queue) &&
641 	    tp->rcv_wnd &&
642 	    atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf &&
643 	    !tp->urg_data)
644 		tcp_fast_path_on(tp);
645 }
646 
647 /* Compute the actual rto_min value */
648 static inline u32 tcp_rto_min(struct sock *sk)
649 {
650 	const struct dst_entry *dst = __sk_dst_get(sk);
651 	u32 rto_min = TCP_RTO_MIN;
652 
653 	if (dst && dst_metric_locked(dst, RTAX_RTO_MIN))
654 		rto_min = dst_metric_rtt(dst, RTAX_RTO_MIN);
655 	return rto_min;
656 }
657 
658 static inline u32 tcp_rto_min_us(struct sock *sk)
659 {
660 	return jiffies_to_usecs(tcp_rto_min(sk));
661 }
662 
663 static inline bool tcp_ca_dst_locked(const struct dst_entry *dst)
664 {
665 	return dst_metric_locked(dst, RTAX_CC_ALGO);
666 }
667 
668 /* Minimum RTT in usec. ~0 means not available. */
669 static inline u32 tcp_min_rtt(const struct tcp_sock *tp)
670 {
671 	return tp->rtt_min[0].rtt;
672 }
673 
674 /* Compute the actual receive window we are currently advertising.
675  * Rcv_nxt can be after the window if our peer push more data
676  * than the offered window.
677  */
678 static inline u32 tcp_receive_window(const struct tcp_sock *tp)
679 {
680 	s32 win = tp->rcv_wup + tp->rcv_wnd - tp->rcv_nxt;
681 
682 	if (win < 0)
683 		win = 0;
684 	return (u32) win;
685 }
686 
687 /* Choose a new window, without checks for shrinking, and without
688  * scaling applied to the result.  The caller does these things
689  * if necessary.  This is a "raw" window selection.
690  */
691 u32 __tcp_select_window(struct sock *sk);
692 
693 void tcp_send_window_probe(struct sock *sk);
694 
695 /* TCP timestamps are only 32-bits, this causes a slight
696  * complication on 64-bit systems since we store a snapshot
697  * of jiffies in the buffer control blocks below.  We decided
698  * to use only the low 32-bits of jiffies and hide the ugly
699  * casts with the following macro.
700  */
701 #define tcp_time_stamp		((__u32)(jiffies))
702 
703 static inline u32 tcp_skb_timestamp(const struct sk_buff *skb)
704 {
705 	return skb->skb_mstamp.stamp_jiffies;
706 }
707 
708 
709 #define tcp_flag_byte(th) (((u_int8_t *)th)[13])
710 
711 #define TCPHDR_FIN 0x01
712 #define TCPHDR_SYN 0x02
713 #define TCPHDR_RST 0x04
714 #define TCPHDR_PSH 0x08
715 #define TCPHDR_ACK 0x10
716 #define TCPHDR_URG 0x20
717 #define TCPHDR_ECE 0x40
718 #define TCPHDR_CWR 0x80
719 
720 #define TCPHDR_SYN_ECN	(TCPHDR_SYN | TCPHDR_ECE | TCPHDR_CWR)
721 
722 /* This is what the send packet queuing engine uses to pass
723  * TCP per-packet control information to the transmission code.
724  * We also store the host-order sequence numbers in here too.
725  * This is 44 bytes if IPV6 is enabled.
726  * If this grows please adjust skbuff.h:skbuff->cb[xxx] size appropriately.
727  */
728 struct tcp_skb_cb {
729 	__u32		seq;		/* Starting sequence number	*/
730 	__u32		end_seq;	/* SEQ + FIN + SYN + datalen	*/
731 	union {
732 		/* Note : tcp_tw_isn is used in input path only
733 		 *	  (isn chosen by tcp_timewait_state_process())
734 		 *
735 		 * 	  tcp_gso_segs/size are used in write queue only,
736 		 *	  cf tcp_skb_pcount()/tcp_skb_mss()
737 		 */
738 		__u32		tcp_tw_isn;
739 		struct {
740 			u16	tcp_gso_segs;
741 			u16	tcp_gso_size;
742 		};
743 	};
744 	__u8		tcp_flags;	/* TCP header flags. (tcp[13])	*/
745 
746 	__u8		sacked;		/* State flags for SACK/FACK.	*/
747 #define TCPCB_SACKED_ACKED	0x01	/* SKB ACK'd by a SACK block	*/
748 #define TCPCB_SACKED_RETRANS	0x02	/* SKB retransmitted		*/
749 #define TCPCB_LOST		0x04	/* SKB is lost			*/
750 #define TCPCB_TAGBITS		0x07	/* All tag bits			*/
751 #define TCPCB_REPAIRED		0x10	/* SKB repaired (no skb_mstamp)	*/
752 #define TCPCB_EVER_RETRANS	0x80	/* Ever retransmitted frame	*/
753 #define TCPCB_RETRANS		(TCPCB_SACKED_RETRANS|TCPCB_EVER_RETRANS| \
754 				TCPCB_REPAIRED)
755 
756 	__u8		ip_dsfield;	/* IPv4 tos or IPv6 dsfield	*/
757 	/* 1 byte hole */
758 	__u32		ack_seq;	/* Sequence number ACK'd	*/
759 	union {
760 		struct inet_skb_parm	h4;
761 #if IS_ENABLED(CONFIG_IPV6)
762 		struct inet6_skb_parm	h6;
763 #endif
764 	} header;	/* For incoming frames		*/
765 };
766 
767 #define TCP_SKB_CB(__skb)	((struct tcp_skb_cb *)&((__skb)->cb[0]))
768 
769 
770 #if IS_ENABLED(CONFIG_IPV6)
771 /* This is the variant of inet6_iif() that must be used by TCP,
772  * as TCP moves IP6CB into a different location in skb->cb[]
773  */
774 static inline int tcp_v6_iif(const struct sk_buff *skb)
775 {
776 	return TCP_SKB_CB(skb)->header.h6.iif;
777 }
778 #endif
779 
780 /* Due to TSO, an SKB can be composed of multiple actual
781  * packets.  To keep these tracked properly, we use this.
782  */
783 static inline int tcp_skb_pcount(const struct sk_buff *skb)
784 {
785 	return TCP_SKB_CB(skb)->tcp_gso_segs;
786 }
787 
788 static inline void tcp_skb_pcount_set(struct sk_buff *skb, int segs)
789 {
790 	TCP_SKB_CB(skb)->tcp_gso_segs = segs;
791 }
792 
793 static inline void tcp_skb_pcount_add(struct sk_buff *skb, int segs)
794 {
795 	TCP_SKB_CB(skb)->tcp_gso_segs += segs;
796 }
797 
798 /* This is valid iff skb is in write queue and tcp_skb_pcount() > 1. */
799 static inline int tcp_skb_mss(const struct sk_buff *skb)
800 {
801 	return TCP_SKB_CB(skb)->tcp_gso_size;
802 }
803 
804 /* Events passed to congestion control interface */
805 enum tcp_ca_event {
806 	CA_EVENT_TX_START,	/* first transmit when no packets in flight */
807 	CA_EVENT_CWND_RESTART,	/* congestion window restart */
808 	CA_EVENT_COMPLETE_CWR,	/* end of congestion recovery */
809 	CA_EVENT_LOSS,		/* loss timeout */
810 	CA_EVENT_ECN_NO_CE,	/* ECT set, but not CE marked */
811 	CA_EVENT_ECN_IS_CE,	/* received CE marked IP packet */
812 	CA_EVENT_DELAYED_ACK,	/* Delayed ack is sent */
813 	CA_EVENT_NON_DELAYED_ACK,
814 };
815 
816 /* Information about inbound ACK, passed to cong_ops->in_ack_event() */
817 enum tcp_ca_ack_event_flags {
818 	CA_ACK_SLOWPATH		= (1 << 0),	/* In slow path processing */
819 	CA_ACK_WIN_UPDATE	= (1 << 1),	/* ACK updated window */
820 	CA_ACK_ECE		= (1 << 2),	/* ECE bit is set on ack */
821 };
822 
823 /*
824  * Interface for adding new TCP congestion control handlers
825  */
826 #define TCP_CA_NAME_MAX	16
827 #define TCP_CA_MAX	128
828 #define TCP_CA_BUF_MAX	(TCP_CA_NAME_MAX*TCP_CA_MAX)
829 
830 #define TCP_CA_UNSPEC	0
831 
832 /* Algorithm can be set on socket without CAP_NET_ADMIN privileges */
833 #define TCP_CONG_NON_RESTRICTED 0x1
834 /* Requires ECN/ECT set on all packets */
835 #define TCP_CONG_NEEDS_ECN	0x2
836 
837 union tcp_cc_info;
838 
839 struct tcp_congestion_ops {
840 	struct list_head	list;
841 	u32 key;
842 	u32 flags;
843 
844 	/* initialize private data (optional) */
845 	void (*init)(struct sock *sk);
846 	/* cleanup private data  (optional) */
847 	void (*release)(struct sock *sk);
848 
849 	/* return slow start threshold (required) */
850 	u32 (*ssthresh)(struct sock *sk);
851 	/* do new cwnd calculation (required) */
852 	void (*cong_avoid)(struct sock *sk, u32 ack, u32 acked);
853 	/* call before changing ca_state (optional) */
854 	void (*set_state)(struct sock *sk, u8 new_state);
855 	/* call when cwnd event occurs (optional) */
856 	void (*cwnd_event)(struct sock *sk, enum tcp_ca_event ev);
857 	/* call when ack arrives (optional) */
858 	void (*in_ack_event)(struct sock *sk, u32 flags);
859 	/* new value of cwnd after loss (optional) */
860 	u32  (*undo_cwnd)(struct sock *sk);
861 	/* hook for packet ack accounting (optional) */
862 	void (*pkts_acked)(struct sock *sk, u32 num_acked, s32 rtt_us);
863 	/* get info for inet_diag (optional) */
864 	size_t (*get_info)(struct sock *sk, u32 ext, int *attr,
865 			   union tcp_cc_info *info);
866 
867 	char 		name[TCP_CA_NAME_MAX];
868 	struct module 	*owner;
869 };
870 
871 int tcp_register_congestion_control(struct tcp_congestion_ops *type);
872 void tcp_unregister_congestion_control(struct tcp_congestion_ops *type);
873 
874 void tcp_assign_congestion_control(struct sock *sk);
875 void tcp_init_congestion_control(struct sock *sk);
876 void tcp_cleanup_congestion_control(struct sock *sk);
877 int tcp_set_default_congestion_control(const char *name);
878 void tcp_get_default_congestion_control(char *name);
879 void tcp_get_available_congestion_control(char *buf, size_t len);
880 void tcp_get_allowed_congestion_control(char *buf, size_t len);
881 int tcp_set_allowed_congestion_control(char *allowed);
882 int tcp_set_congestion_control(struct sock *sk, const char *name);
883 u32 tcp_slow_start(struct tcp_sock *tp, u32 acked);
884 void tcp_cong_avoid_ai(struct tcp_sock *tp, u32 w, u32 acked);
885 
886 u32 tcp_reno_ssthresh(struct sock *sk);
887 void tcp_reno_cong_avoid(struct sock *sk, u32 ack, u32 acked);
888 extern struct tcp_congestion_ops tcp_reno;
889 
890 struct tcp_congestion_ops *tcp_ca_find_key(u32 key);
891 u32 tcp_ca_get_key_by_name(const char *name, bool *ecn_ca);
892 #ifdef CONFIG_INET
893 char *tcp_ca_get_name_by_key(u32 key, char *buffer);
894 #else
895 static inline char *tcp_ca_get_name_by_key(u32 key, char *buffer)
896 {
897 	return NULL;
898 }
899 #endif
900 
901 static inline bool tcp_ca_needs_ecn(const struct sock *sk)
902 {
903 	const struct inet_connection_sock *icsk = inet_csk(sk);
904 
905 	return icsk->icsk_ca_ops->flags & TCP_CONG_NEEDS_ECN;
906 }
907 
908 static inline void tcp_set_ca_state(struct sock *sk, const u8 ca_state)
909 {
910 	struct inet_connection_sock *icsk = inet_csk(sk);
911 
912 	if (icsk->icsk_ca_ops->set_state)
913 		icsk->icsk_ca_ops->set_state(sk, ca_state);
914 	icsk->icsk_ca_state = ca_state;
915 }
916 
917 static inline void tcp_ca_event(struct sock *sk, const enum tcp_ca_event event)
918 {
919 	const struct inet_connection_sock *icsk = inet_csk(sk);
920 
921 	if (icsk->icsk_ca_ops->cwnd_event)
922 		icsk->icsk_ca_ops->cwnd_event(sk, event);
923 }
924 
925 /* These functions determine how the current flow behaves in respect of SACK
926  * handling. SACK is negotiated with the peer, and therefore it can vary
927  * between different flows.
928  *
929  * tcp_is_sack - SACK enabled
930  * tcp_is_reno - No SACK
931  * tcp_is_fack - FACK enabled, implies SACK enabled
932  */
933 static inline int tcp_is_sack(const struct tcp_sock *tp)
934 {
935 	return tp->rx_opt.sack_ok;
936 }
937 
938 static inline bool tcp_is_reno(const struct tcp_sock *tp)
939 {
940 	return !tcp_is_sack(tp);
941 }
942 
943 static inline bool tcp_is_fack(const struct tcp_sock *tp)
944 {
945 	return tp->rx_opt.sack_ok & TCP_FACK_ENABLED;
946 }
947 
948 static inline void tcp_enable_fack(struct tcp_sock *tp)
949 {
950 	tp->rx_opt.sack_ok |= TCP_FACK_ENABLED;
951 }
952 
953 /* TCP early-retransmit (ER) is similar to but more conservative than
954  * the thin-dupack feature.  Enable ER only if thin-dupack is disabled.
955  */
956 static inline void tcp_enable_early_retrans(struct tcp_sock *tp)
957 {
958 	struct net *net = sock_net((struct sock *)tp);
959 
960 	tp->do_early_retrans = sysctl_tcp_early_retrans &&
961 		sysctl_tcp_early_retrans < 4 && !sysctl_tcp_thin_dupack &&
962 		net->ipv4.sysctl_tcp_reordering == 3;
963 }
964 
965 static inline void tcp_disable_early_retrans(struct tcp_sock *tp)
966 {
967 	tp->do_early_retrans = 0;
968 }
969 
970 static inline unsigned int tcp_left_out(const struct tcp_sock *tp)
971 {
972 	return tp->sacked_out + tp->lost_out;
973 }
974 
975 /* This determines how many packets are "in the network" to the best
976  * of our knowledge.  In many cases it is conservative, but where
977  * detailed information is available from the receiver (via SACK
978  * blocks etc.) we can make more aggressive calculations.
979  *
980  * Use this for decisions involving congestion control, use just
981  * tp->packets_out to determine if the send queue is empty or not.
982  *
983  * Read this equation as:
984  *
985  *	"Packets sent once on transmission queue" MINUS
986  *	"Packets left network, but not honestly ACKed yet" PLUS
987  *	"Packets fast retransmitted"
988  */
989 static inline unsigned int tcp_packets_in_flight(const struct tcp_sock *tp)
990 {
991 	return tp->packets_out - tcp_left_out(tp) + tp->retrans_out;
992 }
993 
994 #define TCP_INFINITE_SSTHRESH	0x7fffffff
995 
996 static inline bool tcp_in_slow_start(const struct tcp_sock *tp)
997 {
998 	return tp->snd_cwnd < tp->snd_ssthresh;
999 }
1000 
1001 static inline bool tcp_in_initial_slowstart(const struct tcp_sock *tp)
1002 {
1003 	return tp->snd_ssthresh >= TCP_INFINITE_SSTHRESH;
1004 }
1005 
1006 static inline bool tcp_in_cwnd_reduction(const struct sock *sk)
1007 {
1008 	return (TCPF_CA_CWR | TCPF_CA_Recovery) &
1009 	       (1 << inet_csk(sk)->icsk_ca_state);
1010 }
1011 
1012 /* If cwnd > ssthresh, we may raise ssthresh to be half-way to cwnd.
1013  * The exception is cwnd reduction phase, when cwnd is decreasing towards
1014  * ssthresh.
1015  */
1016 static inline __u32 tcp_current_ssthresh(const struct sock *sk)
1017 {
1018 	const struct tcp_sock *tp = tcp_sk(sk);
1019 
1020 	if (tcp_in_cwnd_reduction(sk))
1021 		return tp->snd_ssthresh;
1022 	else
1023 		return max(tp->snd_ssthresh,
1024 			   ((tp->snd_cwnd >> 1) +
1025 			    (tp->snd_cwnd >> 2)));
1026 }
1027 
1028 /* Use define here intentionally to get WARN_ON location shown at the caller */
1029 #define tcp_verify_left_out(tp)	WARN_ON(tcp_left_out(tp) > tp->packets_out)
1030 
1031 void tcp_enter_cwr(struct sock *sk);
1032 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst);
1033 
1034 /* The maximum number of MSS of available cwnd for which TSO defers
1035  * sending if not using sysctl_tcp_tso_win_divisor.
1036  */
1037 static inline __u32 tcp_max_tso_deferred_mss(const struct tcp_sock *tp)
1038 {
1039 	return 3;
1040 }
1041 
1042 /* Slow start with delack produces 3 packets of burst, so that
1043  * it is safe "de facto".  This will be the default - same as
1044  * the default reordering threshold - but if reordering increases,
1045  * we must be able to allow cwnd to burst at least this much in order
1046  * to not pull it back when holes are filled.
1047  */
1048 static __inline__ __u32 tcp_max_burst(const struct tcp_sock *tp)
1049 {
1050 	return tp->reordering;
1051 }
1052 
1053 /* Returns end sequence number of the receiver's advertised window */
1054 static inline u32 tcp_wnd_end(const struct tcp_sock *tp)
1055 {
1056 	return tp->snd_una + tp->snd_wnd;
1057 }
1058 
1059 /* We follow the spirit of RFC2861 to validate cwnd but implement a more
1060  * flexible approach. The RFC suggests cwnd should not be raised unless
1061  * it was fully used previously. And that's exactly what we do in
1062  * congestion avoidance mode. But in slow start we allow cwnd to grow
1063  * as long as the application has used half the cwnd.
1064  * Example :
1065  *    cwnd is 10 (IW10), but application sends 9 frames.
1066  *    We allow cwnd to reach 18 when all frames are ACKed.
1067  * This check is safe because it's as aggressive as slow start which already
1068  * risks 100% overshoot. The advantage is that we discourage application to
1069  * either send more filler packets or data to artificially blow up the cwnd
1070  * usage, and allow application-limited process to probe bw more aggressively.
1071  */
1072 static inline bool tcp_is_cwnd_limited(const struct sock *sk)
1073 {
1074 	const struct tcp_sock *tp = tcp_sk(sk);
1075 
1076 	/* If in slow start, ensure cwnd grows to twice what was ACKed. */
1077 	if (tcp_in_slow_start(tp))
1078 		return tp->snd_cwnd < 2 * tp->max_packets_out;
1079 
1080 	return tp->is_cwnd_limited;
1081 }
1082 
1083 /* Something is really bad, we could not queue an additional packet,
1084  * because qdisc is full or receiver sent a 0 window.
1085  * We do not want to add fuel to the fire, or abort too early,
1086  * so make sure the timer we arm now is at least 200ms in the future,
1087  * regardless of current icsk_rto value (as it could be ~2ms)
1088  */
1089 static inline unsigned long tcp_probe0_base(const struct sock *sk)
1090 {
1091 	return max_t(unsigned long, inet_csk(sk)->icsk_rto, TCP_RTO_MIN);
1092 }
1093 
1094 /* Variant of inet_csk_rto_backoff() used for zero window probes */
1095 static inline unsigned long tcp_probe0_when(const struct sock *sk,
1096 					    unsigned long max_when)
1097 {
1098 	u64 when = (u64)tcp_probe0_base(sk) << inet_csk(sk)->icsk_backoff;
1099 
1100 	return (unsigned long)min_t(u64, when, max_when);
1101 }
1102 
1103 static inline void tcp_check_probe_timer(struct sock *sk)
1104 {
1105 	if (!tcp_sk(sk)->packets_out && !inet_csk(sk)->icsk_pending)
1106 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
1107 					  tcp_probe0_base(sk), TCP_RTO_MAX);
1108 }
1109 
1110 static inline void tcp_init_wl(struct tcp_sock *tp, u32 seq)
1111 {
1112 	tp->snd_wl1 = seq;
1113 }
1114 
1115 static inline void tcp_update_wl(struct tcp_sock *tp, u32 seq)
1116 {
1117 	tp->snd_wl1 = seq;
1118 }
1119 
1120 /*
1121  * Calculate(/check) TCP checksum
1122  */
1123 static inline __sum16 tcp_v4_check(int len, __be32 saddr,
1124 				   __be32 daddr, __wsum base)
1125 {
1126 	return csum_tcpudp_magic(saddr,daddr,len,IPPROTO_TCP,base);
1127 }
1128 
1129 static inline __sum16 __tcp_checksum_complete(struct sk_buff *skb)
1130 {
1131 	return __skb_checksum_complete(skb);
1132 }
1133 
1134 static inline bool tcp_checksum_complete(struct sk_buff *skb)
1135 {
1136 	return !skb_csum_unnecessary(skb) &&
1137 		__tcp_checksum_complete(skb);
1138 }
1139 
1140 /* Prequeue for VJ style copy to user, combined with checksumming. */
1141 
1142 static inline void tcp_prequeue_init(struct tcp_sock *tp)
1143 {
1144 	tp->ucopy.task = NULL;
1145 	tp->ucopy.len = 0;
1146 	tp->ucopy.memory = 0;
1147 	skb_queue_head_init(&tp->ucopy.prequeue);
1148 }
1149 
1150 bool tcp_prequeue(struct sock *sk, struct sk_buff *skb);
1151 
1152 #undef STATE_TRACE
1153 
1154 #ifdef STATE_TRACE
1155 static const char *statename[]={
1156 	"Unused","Established","Syn Sent","Syn Recv",
1157 	"Fin Wait 1","Fin Wait 2","Time Wait", "Close",
1158 	"Close Wait","Last ACK","Listen","Closing"
1159 };
1160 #endif
1161 void tcp_set_state(struct sock *sk, int state);
1162 
1163 void tcp_done(struct sock *sk);
1164 
1165 int tcp_abort(struct sock *sk, int err);
1166 
1167 static inline void tcp_sack_reset(struct tcp_options_received *rx_opt)
1168 {
1169 	rx_opt->dsack = 0;
1170 	rx_opt->num_sacks = 0;
1171 }
1172 
1173 u32 tcp_default_init_rwnd(u32 mss);
1174 void tcp_cwnd_restart(struct sock *sk, s32 delta);
1175 
1176 static inline void tcp_slow_start_after_idle_check(struct sock *sk)
1177 {
1178 	struct tcp_sock *tp = tcp_sk(sk);
1179 	s32 delta;
1180 
1181 	if (!sysctl_tcp_slow_start_after_idle || tp->packets_out)
1182 		return;
1183 	delta = tcp_time_stamp - tp->lsndtime;
1184 	if (delta > inet_csk(sk)->icsk_rto)
1185 		tcp_cwnd_restart(sk, delta);
1186 }
1187 
1188 /* Determine a window scaling and initial window to offer. */
1189 void tcp_select_initial_window(int __space, __u32 mss, __u32 *rcv_wnd,
1190 			       __u32 *window_clamp, int wscale_ok,
1191 			       __u8 *rcv_wscale, __u32 init_rcv_wnd);
1192 
1193 static inline int tcp_win_from_space(int space)
1194 {
1195 	return sysctl_tcp_adv_win_scale<=0 ?
1196 		(space>>(-sysctl_tcp_adv_win_scale)) :
1197 		space - (space>>sysctl_tcp_adv_win_scale);
1198 }
1199 
1200 /* Note: caller must be prepared to deal with negative returns */
1201 static inline int tcp_space(const struct sock *sk)
1202 {
1203 	return tcp_win_from_space(sk->sk_rcvbuf -
1204 				  atomic_read(&sk->sk_rmem_alloc));
1205 }
1206 
1207 static inline int tcp_full_space(const struct sock *sk)
1208 {
1209 	return tcp_win_from_space(sk->sk_rcvbuf);
1210 }
1211 
1212 extern void tcp_openreq_init_rwin(struct request_sock *req,
1213 				  const struct sock *sk_listener,
1214 				  const struct dst_entry *dst);
1215 
1216 void tcp_enter_memory_pressure(struct sock *sk);
1217 
1218 static inline int keepalive_intvl_when(const struct tcp_sock *tp)
1219 {
1220 	struct net *net = sock_net((struct sock *)tp);
1221 
1222 	return tp->keepalive_intvl ? : net->ipv4.sysctl_tcp_keepalive_intvl;
1223 }
1224 
1225 static inline int keepalive_time_when(const struct tcp_sock *tp)
1226 {
1227 	struct net *net = sock_net((struct sock *)tp);
1228 
1229 	return tp->keepalive_time ? : net->ipv4.sysctl_tcp_keepalive_time;
1230 }
1231 
1232 static inline int keepalive_probes(const struct tcp_sock *tp)
1233 {
1234 	struct net *net = sock_net((struct sock *)tp);
1235 
1236 	return tp->keepalive_probes ? : net->ipv4.sysctl_tcp_keepalive_probes;
1237 }
1238 
1239 static inline u32 keepalive_time_elapsed(const struct tcp_sock *tp)
1240 {
1241 	const struct inet_connection_sock *icsk = &tp->inet_conn;
1242 
1243 	return min_t(u32, tcp_time_stamp - icsk->icsk_ack.lrcvtime,
1244 			  tcp_time_stamp - tp->rcv_tstamp);
1245 }
1246 
1247 static inline int tcp_fin_time(const struct sock *sk)
1248 {
1249 	int fin_timeout = tcp_sk(sk)->linger2 ? : sock_net(sk)->ipv4.sysctl_tcp_fin_timeout;
1250 	const int rto = inet_csk(sk)->icsk_rto;
1251 
1252 	if (fin_timeout < (rto << 2) - (rto >> 1))
1253 		fin_timeout = (rto << 2) - (rto >> 1);
1254 
1255 	return fin_timeout;
1256 }
1257 
1258 static inline bool tcp_paws_check(const struct tcp_options_received *rx_opt,
1259 				  int paws_win)
1260 {
1261 	if ((s32)(rx_opt->ts_recent - rx_opt->rcv_tsval) <= paws_win)
1262 		return true;
1263 	if (unlikely(get_seconds() >= rx_opt->ts_recent_stamp + TCP_PAWS_24DAYS))
1264 		return true;
1265 	/*
1266 	 * Some OSes send SYN and SYNACK messages with tsval=0 tsecr=0,
1267 	 * then following tcp messages have valid values. Ignore 0 value,
1268 	 * or else 'negative' tsval might forbid us to accept their packets.
1269 	 */
1270 	if (!rx_opt->ts_recent)
1271 		return true;
1272 	return false;
1273 }
1274 
1275 static inline bool tcp_paws_reject(const struct tcp_options_received *rx_opt,
1276 				   int rst)
1277 {
1278 	if (tcp_paws_check(rx_opt, 0))
1279 		return false;
1280 
1281 	/* RST segments are not recommended to carry timestamp,
1282 	   and, if they do, it is recommended to ignore PAWS because
1283 	   "their cleanup function should take precedence over timestamps."
1284 	   Certainly, it is mistake. It is necessary to understand the reasons
1285 	   of this constraint to relax it: if peer reboots, clock may go
1286 	   out-of-sync and half-open connections will not be reset.
1287 	   Actually, the problem would be not existing if all
1288 	   the implementations followed draft about maintaining clock
1289 	   via reboots. Linux-2.2 DOES NOT!
1290 
1291 	   However, we can relax time bounds for RST segments to MSL.
1292 	 */
1293 	if (rst && get_seconds() >= rx_opt->ts_recent_stamp + TCP_PAWS_MSL)
1294 		return false;
1295 	return true;
1296 }
1297 
1298 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
1299 			  int mib_idx, u32 *last_oow_ack_time);
1300 
1301 static inline void tcp_mib_init(struct net *net)
1302 {
1303 	/* See RFC 2012 */
1304 	TCP_ADD_STATS_USER(net, TCP_MIB_RTOALGORITHM, 1);
1305 	TCP_ADD_STATS_USER(net, TCP_MIB_RTOMIN, TCP_RTO_MIN*1000/HZ);
1306 	TCP_ADD_STATS_USER(net, TCP_MIB_RTOMAX, TCP_RTO_MAX*1000/HZ);
1307 	TCP_ADD_STATS_USER(net, TCP_MIB_MAXCONN, -1);
1308 }
1309 
1310 /* from STCP */
1311 static inline void tcp_clear_retrans_hints_partial(struct tcp_sock *tp)
1312 {
1313 	tp->lost_skb_hint = NULL;
1314 }
1315 
1316 static inline void tcp_clear_all_retrans_hints(struct tcp_sock *tp)
1317 {
1318 	tcp_clear_retrans_hints_partial(tp);
1319 	tp->retransmit_skb_hint = NULL;
1320 }
1321 
1322 union tcp_md5_addr {
1323 	struct in_addr  a4;
1324 #if IS_ENABLED(CONFIG_IPV6)
1325 	struct in6_addr	a6;
1326 #endif
1327 };
1328 
1329 /* - key database */
1330 struct tcp_md5sig_key {
1331 	struct hlist_node	node;
1332 	u8			keylen;
1333 	u8			family; /* AF_INET or AF_INET6 */
1334 	union tcp_md5_addr	addr;
1335 	u8			key[TCP_MD5SIG_MAXKEYLEN];
1336 	struct rcu_head		rcu;
1337 };
1338 
1339 /* - sock block */
1340 struct tcp_md5sig_info {
1341 	struct hlist_head	head;
1342 	struct rcu_head		rcu;
1343 };
1344 
1345 /* - pseudo header */
1346 struct tcp4_pseudohdr {
1347 	__be32		saddr;
1348 	__be32		daddr;
1349 	__u8		pad;
1350 	__u8		protocol;
1351 	__be16		len;
1352 };
1353 
1354 struct tcp6_pseudohdr {
1355 	struct in6_addr	saddr;
1356 	struct in6_addr daddr;
1357 	__be32		len;
1358 	__be32		protocol;	/* including padding */
1359 };
1360 
1361 union tcp_md5sum_block {
1362 	struct tcp4_pseudohdr ip4;
1363 #if IS_ENABLED(CONFIG_IPV6)
1364 	struct tcp6_pseudohdr ip6;
1365 #endif
1366 };
1367 
1368 /* - pool: digest algorithm, hash description and scratch buffer */
1369 struct tcp_md5sig_pool {
1370 	struct ahash_request	*md5_req;
1371 	union tcp_md5sum_block	md5_blk;
1372 };
1373 
1374 /* - functions */
1375 int tcp_v4_md5_hash_skb(char *md5_hash, const struct tcp_md5sig_key *key,
1376 			const struct sock *sk, const struct sk_buff *skb);
1377 int tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr,
1378 		   int family, const u8 *newkey, u8 newkeylen, gfp_t gfp);
1379 int tcp_md5_do_del(struct sock *sk, const union tcp_md5_addr *addr,
1380 		   int family);
1381 struct tcp_md5sig_key *tcp_v4_md5_lookup(const struct sock *sk,
1382 					 const struct sock *addr_sk);
1383 
1384 #ifdef CONFIG_TCP_MD5SIG
1385 struct tcp_md5sig_key *tcp_md5_do_lookup(const struct sock *sk,
1386 					 const union tcp_md5_addr *addr,
1387 					 int family);
1388 #define tcp_twsk_md5_key(twsk)	((twsk)->tw_md5_key)
1389 #else
1390 static inline struct tcp_md5sig_key *tcp_md5_do_lookup(const struct sock *sk,
1391 					 const union tcp_md5_addr *addr,
1392 					 int family)
1393 {
1394 	return NULL;
1395 }
1396 #define tcp_twsk_md5_key(twsk)	NULL
1397 #endif
1398 
1399 bool tcp_alloc_md5sig_pool(void);
1400 
1401 struct tcp_md5sig_pool *tcp_get_md5sig_pool(void);
1402 static inline void tcp_put_md5sig_pool(void)
1403 {
1404 	local_bh_enable();
1405 }
1406 
1407 int tcp_md5_hash_header(struct tcp_md5sig_pool *, const struct tcphdr *);
1408 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *, const struct sk_buff *,
1409 			  unsigned int header_len);
1410 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp,
1411 		     const struct tcp_md5sig_key *key);
1412 
1413 /* From tcp_fastopen.c */
1414 void tcp_fastopen_cache_get(struct sock *sk, u16 *mss,
1415 			    struct tcp_fastopen_cookie *cookie, int *syn_loss,
1416 			    unsigned long *last_syn_loss);
1417 void tcp_fastopen_cache_set(struct sock *sk, u16 mss,
1418 			    struct tcp_fastopen_cookie *cookie, bool syn_lost,
1419 			    u16 try_exp);
1420 struct tcp_fastopen_request {
1421 	/* Fast Open cookie. Size 0 means a cookie request */
1422 	struct tcp_fastopen_cookie	cookie;
1423 	struct msghdr			*data;  /* data in MSG_FASTOPEN */
1424 	size_t				size;
1425 	int				copied;	/* queued in tcp_connect() */
1426 };
1427 void tcp_free_fastopen_req(struct tcp_sock *tp);
1428 
1429 extern struct tcp_fastopen_context __rcu *tcp_fastopen_ctx;
1430 int tcp_fastopen_reset_cipher(void *key, unsigned int len);
1431 void tcp_fastopen_add_skb(struct sock *sk, struct sk_buff *skb);
1432 struct sock *tcp_try_fastopen(struct sock *sk, struct sk_buff *skb,
1433 			      struct request_sock *req,
1434 			      struct tcp_fastopen_cookie *foc,
1435 			      struct dst_entry *dst);
1436 void tcp_fastopen_init_key_once(bool publish);
1437 #define TCP_FASTOPEN_KEY_LENGTH 16
1438 
1439 /* Fastopen key context */
1440 struct tcp_fastopen_context {
1441 	struct crypto_cipher	*tfm;
1442 	__u8			key[TCP_FASTOPEN_KEY_LENGTH];
1443 	struct rcu_head		rcu;
1444 };
1445 
1446 /* write queue abstraction */
1447 static inline void tcp_write_queue_purge(struct sock *sk)
1448 {
1449 	struct sk_buff *skb;
1450 
1451 	while ((skb = __skb_dequeue(&sk->sk_write_queue)) != NULL)
1452 		sk_wmem_free_skb(sk, skb);
1453 	sk_mem_reclaim(sk);
1454 	tcp_clear_all_retrans_hints(tcp_sk(sk));
1455 }
1456 
1457 static inline struct sk_buff *tcp_write_queue_head(const struct sock *sk)
1458 {
1459 	return skb_peek(&sk->sk_write_queue);
1460 }
1461 
1462 static inline struct sk_buff *tcp_write_queue_tail(const struct sock *sk)
1463 {
1464 	return skb_peek_tail(&sk->sk_write_queue);
1465 }
1466 
1467 static inline struct sk_buff *tcp_write_queue_next(const struct sock *sk,
1468 						   const struct sk_buff *skb)
1469 {
1470 	return skb_queue_next(&sk->sk_write_queue, skb);
1471 }
1472 
1473 static inline struct sk_buff *tcp_write_queue_prev(const struct sock *sk,
1474 						   const struct sk_buff *skb)
1475 {
1476 	return skb_queue_prev(&sk->sk_write_queue, skb);
1477 }
1478 
1479 #define tcp_for_write_queue(skb, sk)					\
1480 	skb_queue_walk(&(sk)->sk_write_queue, skb)
1481 
1482 #define tcp_for_write_queue_from(skb, sk)				\
1483 	skb_queue_walk_from(&(sk)->sk_write_queue, skb)
1484 
1485 #define tcp_for_write_queue_from_safe(skb, tmp, sk)			\
1486 	skb_queue_walk_from_safe(&(sk)->sk_write_queue, skb, tmp)
1487 
1488 static inline struct sk_buff *tcp_send_head(const struct sock *sk)
1489 {
1490 	return sk->sk_send_head;
1491 }
1492 
1493 static inline bool tcp_skb_is_last(const struct sock *sk,
1494 				   const struct sk_buff *skb)
1495 {
1496 	return skb_queue_is_last(&sk->sk_write_queue, skb);
1497 }
1498 
1499 static inline void tcp_advance_send_head(struct sock *sk, const struct sk_buff *skb)
1500 {
1501 	if (tcp_skb_is_last(sk, skb))
1502 		sk->sk_send_head = NULL;
1503 	else
1504 		sk->sk_send_head = tcp_write_queue_next(sk, skb);
1505 }
1506 
1507 static inline void tcp_check_send_head(struct sock *sk, struct sk_buff *skb_unlinked)
1508 {
1509 	if (sk->sk_send_head == skb_unlinked)
1510 		sk->sk_send_head = NULL;
1511 }
1512 
1513 static inline void tcp_init_send_head(struct sock *sk)
1514 {
1515 	sk->sk_send_head = NULL;
1516 }
1517 
1518 static inline void __tcp_add_write_queue_tail(struct sock *sk, struct sk_buff *skb)
1519 {
1520 	__skb_queue_tail(&sk->sk_write_queue, skb);
1521 }
1522 
1523 static inline void tcp_add_write_queue_tail(struct sock *sk, struct sk_buff *skb)
1524 {
1525 	__tcp_add_write_queue_tail(sk, skb);
1526 
1527 	/* Queue it, remembering where we must start sending. */
1528 	if (sk->sk_send_head == NULL) {
1529 		sk->sk_send_head = skb;
1530 
1531 		if (tcp_sk(sk)->highest_sack == NULL)
1532 			tcp_sk(sk)->highest_sack = skb;
1533 	}
1534 }
1535 
1536 static inline void __tcp_add_write_queue_head(struct sock *sk, struct sk_buff *skb)
1537 {
1538 	__skb_queue_head(&sk->sk_write_queue, skb);
1539 }
1540 
1541 /* Insert buff after skb on the write queue of sk.  */
1542 static inline void tcp_insert_write_queue_after(struct sk_buff *skb,
1543 						struct sk_buff *buff,
1544 						struct sock *sk)
1545 {
1546 	__skb_queue_after(&sk->sk_write_queue, skb, buff);
1547 }
1548 
1549 /* Insert new before skb on the write queue of sk.  */
1550 static inline void tcp_insert_write_queue_before(struct sk_buff *new,
1551 						  struct sk_buff *skb,
1552 						  struct sock *sk)
1553 {
1554 	__skb_queue_before(&sk->sk_write_queue, skb, new);
1555 
1556 	if (sk->sk_send_head == skb)
1557 		sk->sk_send_head = new;
1558 }
1559 
1560 static inline void tcp_unlink_write_queue(struct sk_buff *skb, struct sock *sk)
1561 {
1562 	__skb_unlink(skb, &sk->sk_write_queue);
1563 }
1564 
1565 static inline bool tcp_write_queue_empty(struct sock *sk)
1566 {
1567 	return skb_queue_empty(&sk->sk_write_queue);
1568 }
1569 
1570 static inline void tcp_push_pending_frames(struct sock *sk)
1571 {
1572 	if (tcp_send_head(sk)) {
1573 		struct tcp_sock *tp = tcp_sk(sk);
1574 
1575 		__tcp_push_pending_frames(sk, tcp_current_mss(sk), tp->nonagle);
1576 	}
1577 }
1578 
1579 /* Start sequence of the skb just after the highest skb with SACKed
1580  * bit, valid only if sacked_out > 0 or when the caller has ensured
1581  * validity by itself.
1582  */
1583 static inline u32 tcp_highest_sack_seq(struct tcp_sock *tp)
1584 {
1585 	if (!tp->sacked_out)
1586 		return tp->snd_una;
1587 
1588 	if (tp->highest_sack == NULL)
1589 		return tp->snd_nxt;
1590 
1591 	return TCP_SKB_CB(tp->highest_sack)->seq;
1592 }
1593 
1594 static inline void tcp_advance_highest_sack(struct sock *sk, struct sk_buff *skb)
1595 {
1596 	tcp_sk(sk)->highest_sack = tcp_skb_is_last(sk, skb) ? NULL :
1597 						tcp_write_queue_next(sk, skb);
1598 }
1599 
1600 static inline struct sk_buff *tcp_highest_sack(struct sock *sk)
1601 {
1602 	return tcp_sk(sk)->highest_sack;
1603 }
1604 
1605 static inline void tcp_highest_sack_reset(struct sock *sk)
1606 {
1607 	tcp_sk(sk)->highest_sack = tcp_write_queue_head(sk);
1608 }
1609 
1610 /* Called when old skb is about to be deleted (to be combined with new skb) */
1611 static inline void tcp_highest_sack_combine(struct sock *sk,
1612 					    struct sk_buff *old,
1613 					    struct sk_buff *new)
1614 {
1615 	if (tcp_sk(sk)->sacked_out && (old == tcp_sk(sk)->highest_sack))
1616 		tcp_sk(sk)->highest_sack = new;
1617 }
1618 
1619 /* This helper checks if socket has IP_TRANSPARENT set */
1620 static inline bool inet_sk_transparent(const struct sock *sk)
1621 {
1622 	switch (sk->sk_state) {
1623 	case TCP_TIME_WAIT:
1624 		return inet_twsk(sk)->tw_transparent;
1625 	case TCP_NEW_SYN_RECV:
1626 		return inet_rsk(inet_reqsk(sk))->no_srccheck;
1627 	}
1628 	return inet_sk(sk)->transparent;
1629 }
1630 
1631 /* Determines whether this is a thin stream (which may suffer from
1632  * increased latency). Used to trigger latency-reducing mechanisms.
1633  */
1634 static inline bool tcp_stream_is_thin(struct tcp_sock *tp)
1635 {
1636 	return tp->packets_out < 4 && !tcp_in_initial_slowstart(tp);
1637 }
1638 
1639 /* /proc */
1640 enum tcp_seq_states {
1641 	TCP_SEQ_STATE_LISTENING,
1642 	TCP_SEQ_STATE_ESTABLISHED,
1643 };
1644 
1645 int tcp_seq_open(struct inode *inode, struct file *file);
1646 
1647 struct tcp_seq_afinfo {
1648 	char				*name;
1649 	sa_family_t			family;
1650 	const struct file_operations	*seq_fops;
1651 	struct seq_operations		seq_ops;
1652 };
1653 
1654 struct tcp_iter_state {
1655 	struct seq_net_private	p;
1656 	sa_family_t		family;
1657 	enum tcp_seq_states	state;
1658 	struct sock		*syn_wait_sk;
1659 	int			bucket, offset, sbucket, num;
1660 	loff_t			last_pos;
1661 };
1662 
1663 int tcp_proc_register(struct net *net, struct tcp_seq_afinfo *afinfo);
1664 void tcp_proc_unregister(struct net *net, struct tcp_seq_afinfo *afinfo);
1665 
1666 extern struct request_sock_ops tcp_request_sock_ops;
1667 extern struct request_sock_ops tcp6_request_sock_ops;
1668 
1669 void tcp_v4_destroy_sock(struct sock *sk);
1670 
1671 struct sk_buff *tcp_gso_segment(struct sk_buff *skb,
1672 				netdev_features_t features);
1673 struct sk_buff **tcp_gro_receive(struct sk_buff **head, struct sk_buff *skb);
1674 int tcp_gro_complete(struct sk_buff *skb);
1675 
1676 void __tcp_v4_send_check(struct sk_buff *skb, __be32 saddr, __be32 daddr);
1677 
1678 static inline u32 tcp_notsent_lowat(const struct tcp_sock *tp)
1679 {
1680 	struct net *net = sock_net((struct sock *)tp);
1681 	return tp->notsent_lowat ?: net->ipv4.sysctl_tcp_notsent_lowat;
1682 }
1683 
1684 static inline bool tcp_stream_memory_free(const struct sock *sk)
1685 {
1686 	const struct tcp_sock *tp = tcp_sk(sk);
1687 	u32 notsent_bytes = tp->write_seq - tp->snd_nxt;
1688 
1689 	return notsent_bytes < tcp_notsent_lowat(tp);
1690 }
1691 
1692 #ifdef CONFIG_PROC_FS
1693 int tcp4_proc_init(void);
1694 void tcp4_proc_exit(void);
1695 #endif
1696 
1697 int tcp_rtx_synack(const struct sock *sk, struct request_sock *req);
1698 int tcp_conn_request(struct request_sock_ops *rsk_ops,
1699 		     const struct tcp_request_sock_ops *af_ops,
1700 		     struct sock *sk, struct sk_buff *skb);
1701 
1702 /* TCP af-specific functions */
1703 struct tcp_sock_af_ops {
1704 #ifdef CONFIG_TCP_MD5SIG
1705 	struct tcp_md5sig_key	*(*md5_lookup) (const struct sock *sk,
1706 						const struct sock *addr_sk);
1707 	int		(*calc_md5_hash)(char *location,
1708 					 const struct tcp_md5sig_key *md5,
1709 					 const struct sock *sk,
1710 					 const struct sk_buff *skb);
1711 	int		(*md5_parse)(struct sock *sk,
1712 				     char __user *optval,
1713 				     int optlen);
1714 #endif
1715 };
1716 
1717 struct tcp_request_sock_ops {
1718 	u16 mss_clamp;
1719 #ifdef CONFIG_TCP_MD5SIG
1720 	struct tcp_md5sig_key *(*req_md5_lookup)(const struct sock *sk,
1721 						 const struct sock *addr_sk);
1722 	int		(*calc_md5_hash) (char *location,
1723 					  const struct tcp_md5sig_key *md5,
1724 					  const struct sock *sk,
1725 					  const struct sk_buff *skb);
1726 #endif
1727 	void (*init_req)(struct request_sock *req,
1728 			 const struct sock *sk_listener,
1729 			 struct sk_buff *skb);
1730 #ifdef CONFIG_SYN_COOKIES
1731 	__u32 (*cookie_init_seq)(const struct sk_buff *skb,
1732 				 __u16 *mss);
1733 #endif
1734 	struct dst_entry *(*route_req)(const struct sock *sk, struct flowi *fl,
1735 				       const struct request_sock *req,
1736 				       bool *strict);
1737 	__u32 (*init_seq)(const struct sk_buff *skb);
1738 	int (*send_synack)(const struct sock *sk, struct dst_entry *dst,
1739 			   struct flowi *fl, struct request_sock *req,
1740 			   struct tcp_fastopen_cookie *foc,
1741 			   bool attach_req);
1742 };
1743 
1744 #ifdef CONFIG_SYN_COOKIES
1745 static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops,
1746 					 const struct sock *sk, struct sk_buff *skb,
1747 					 __u16 *mss)
1748 {
1749 	tcp_synq_overflow(sk);
1750 	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SYNCOOKIESSENT);
1751 	return ops->cookie_init_seq(skb, mss);
1752 }
1753 #else
1754 static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops,
1755 					 const struct sock *sk, struct sk_buff *skb,
1756 					 __u16 *mss)
1757 {
1758 	return 0;
1759 }
1760 #endif
1761 
1762 int tcpv4_offload_init(void);
1763 
1764 void tcp_v4_init(void);
1765 void tcp_init(void);
1766 
1767 /* tcp_recovery.c */
1768 
1769 /* Flags to enable various loss recovery features. See below */
1770 extern int sysctl_tcp_recovery;
1771 
1772 /* Use TCP RACK to detect (some) tail and retransmit losses */
1773 #define TCP_RACK_LOST_RETRANS  0x1
1774 
1775 extern int tcp_rack_mark_lost(struct sock *sk);
1776 
1777 extern void tcp_rack_advance(struct tcp_sock *tp,
1778 			     const struct skb_mstamp *xmit_time, u8 sacked);
1779 
1780 /*
1781  * Save and compile IPv4 options, return a pointer to it
1782  */
1783 static inline struct ip_options_rcu *tcp_v4_save_options(struct sk_buff *skb)
1784 {
1785 	const struct ip_options *opt = &TCP_SKB_CB(skb)->header.h4.opt;
1786 	struct ip_options_rcu *dopt = NULL;
1787 
1788 	if (opt->optlen) {
1789 		int opt_size = sizeof(*dopt) + opt->optlen;
1790 
1791 		dopt = kmalloc(opt_size, GFP_ATOMIC);
1792 		if (dopt && __ip_options_echo(&dopt->opt, skb, opt)) {
1793 			kfree(dopt);
1794 			dopt = NULL;
1795 		}
1796 	}
1797 	return dopt;
1798 }
1799 
1800 /* locally generated TCP pure ACKs have skb->truesize == 2
1801  * (check tcp_send_ack() in net/ipv4/tcp_output.c )
1802  * This is much faster than dissecting the packet to find out.
1803  * (Think of GRE encapsulations, IPv4, IPv6, ...)
1804  */
1805 static inline bool skb_is_tcp_pure_ack(const struct sk_buff *skb)
1806 {
1807 	return skb->truesize == 2;
1808 }
1809 
1810 static inline void skb_set_tcp_pure_ack(struct sk_buff *skb)
1811 {
1812 	skb->truesize = 2;
1813 }
1814 
1815 static inline int tcp_inq(struct sock *sk)
1816 {
1817 	struct tcp_sock *tp = tcp_sk(sk);
1818 	int answ;
1819 
1820 	if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) {
1821 		answ = 0;
1822 	} else if (sock_flag(sk, SOCK_URGINLINE) ||
1823 		   !tp->urg_data ||
1824 		   before(tp->urg_seq, tp->copied_seq) ||
1825 		   !before(tp->urg_seq, tp->rcv_nxt)) {
1826 
1827 		answ = tp->rcv_nxt - tp->copied_seq;
1828 
1829 		/* Subtract 1, if FIN was received */
1830 		if (answ && sock_flag(sk, SOCK_DONE))
1831 			answ--;
1832 	} else {
1833 		answ = tp->urg_seq - tp->copied_seq;
1834 	}
1835 
1836 	return answ;
1837 }
1838 
1839 static inline void tcp_segs_in(struct tcp_sock *tp, const struct sk_buff *skb)
1840 {
1841 	u16 segs_in;
1842 
1843 	segs_in = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
1844 	tp->segs_in += segs_in;
1845 	if (skb->len > tcp_hdrlen(skb))
1846 		tp->data_segs_in += segs_in;
1847 }
1848 
1849 #endif	/* _TCP_H */
1850