1 /* SPDX-License-Identifier: GPL-2.0-or-later */ 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * Definitions for the TCP module. 8 * 9 * Version: @(#)tcp.h 1.0.5 05/23/93 10 * 11 * Authors: Ross Biro 12 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 13 */ 14 #ifndef _TCP_H 15 #define _TCP_H 16 17 #define FASTRETRANS_DEBUG 1 18 19 #include <linux/list.h> 20 #include <linux/tcp.h> 21 #include <linux/bug.h> 22 #include <linux/slab.h> 23 #include <linux/cache.h> 24 #include <linux/percpu.h> 25 #include <linux/skbuff.h> 26 #include <linux/kref.h> 27 #include <linux/ktime.h> 28 #include <linux/indirect_call_wrapper.h> 29 #include <linux/bits.h> 30 31 #include <net/inet_connection_sock.h> 32 #include <net/inet_timewait_sock.h> 33 #include <net/inet_hashtables.h> 34 #include <net/checksum.h> 35 #include <net/request_sock.h> 36 #include <net/sock_reuseport.h> 37 #include <net/sock.h> 38 #include <net/snmp.h> 39 #include <net/ip.h> 40 #include <net/tcp_states.h> 41 #include <net/tcp_ao.h> 42 #include <net/inet_ecn.h> 43 #include <net/dst.h> 44 #include <net/mptcp.h> 45 #include <net/xfrm.h> 46 47 #include <linux/seq_file.h> 48 #include <linux/memcontrol.h> 49 #include <linux/bpf-cgroup.h> 50 #include <linux/siphash.h> 51 52 extern struct inet_hashinfo tcp_hashinfo; 53 54 DECLARE_PER_CPU(unsigned int, tcp_orphan_count); 55 int tcp_orphan_count_sum(void); 56 57 static inline void tcp_orphan_count_inc(void) 58 { 59 this_cpu_inc(tcp_orphan_count); 60 } 61 62 static inline void tcp_orphan_count_dec(void) 63 { 64 this_cpu_dec(tcp_orphan_count); 65 } 66 67 DECLARE_PER_CPU(u32, tcp_tw_isn); 68 69 void tcp_time_wait(struct sock *sk, int state, int timeo); 70 71 #define MAX_TCP_HEADER L1_CACHE_ALIGN(128 + MAX_HEADER) 72 #define MAX_TCP_OPTION_SPACE 40 73 #define TCP_MIN_SND_MSS 48 74 #define TCP_MIN_GSO_SIZE (TCP_MIN_SND_MSS - MAX_TCP_OPTION_SPACE) 75 76 /* 77 * Never offer a window over 32767 without using window scaling. Some 78 * poor stacks do signed 16bit maths! 79 */ 80 #define MAX_TCP_WINDOW 32767U 81 82 /* Minimal accepted MSS. It is (60+60+8) - (20+20). */ 83 #define TCP_MIN_MSS 88U 84 85 /* The initial MTU to use for probing */ 86 #define TCP_BASE_MSS 1024 87 88 /* probing interval, default to 10 minutes as per RFC4821 */ 89 #define TCP_PROBE_INTERVAL 600 90 91 /* Specify interval when tcp mtu probing will stop */ 92 #define TCP_PROBE_THRESHOLD 8 93 94 /* After receiving this amount of duplicate ACKs fast retransmit starts. */ 95 #define TCP_FASTRETRANS_THRESH 3 96 97 /* Maximal number of ACKs sent quickly to accelerate slow-start. */ 98 #define TCP_MAX_QUICKACKS 16U 99 100 /* Maximal number of window scale according to RFC1323 */ 101 #define TCP_MAX_WSCALE 14U 102 103 /* Default sending frequency of accurate ECN option per RTT */ 104 #define TCP_ACCECN_OPTION_BEACON 3 105 106 /* urg_data states */ 107 #define TCP_URG_VALID 0x0100 108 #define TCP_URG_NOTYET 0x0200 109 #define TCP_URG_READ 0x0400 110 111 #define TCP_RETR1 3 /* 112 * This is how many retries it does before it 113 * tries to figure out if the gateway is 114 * down. Minimal RFC value is 3; it corresponds 115 * to ~3sec-8min depending on RTO. 116 */ 117 118 #define TCP_RETR2 15 /* 119 * This should take at least 120 * 90 minutes to time out. 121 * RFC1122 says that the limit is 100 sec. 122 * 15 is ~13-30min depending on RTO. 123 */ 124 125 #define TCP_SYN_RETRIES 6 /* This is how many retries are done 126 * when active opening a connection. 127 * RFC1122 says the minimum retry MUST 128 * be at least 180secs. Nevertheless 129 * this value is corresponding to 130 * 63secs of retransmission with the 131 * current initial RTO. 132 */ 133 134 #define TCP_SYNACK_RETRIES 5 /* This is how may retries are done 135 * when passive opening a connection. 136 * This is corresponding to 31secs of 137 * retransmission with the current 138 * initial RTO. 139 */ 140 141 #define TCP_TIMEWAIT_LEN (60*HZ) /* how long to wait to destroy TIME-WAIT 142 * state, about 60 seconds */ 143 #define TCP_FIN_TIMEOUT TCP_TIMEWAIT_LEN 144 /* BSD style FIN_WAIT2 deadlock breaker. 145 * It used to be 3min, new value is 60sec, 146 * to combine FIN-WAIT-2 timeout with 147 * TIME-WAIT timer. 148 */ 149 #define TCP_FIN_TIMEOUT_MAX (120 * HZ) /* max TCP_LINGER2 value (two minutes) */ 150 151 #define TCP_DELACK_MAX ((unsigned)(HZ/5)) /* maximal time to delay before sending an ACK */ 152 static_assert((1 << ATO_BITS) > TCP_DELACK_MAX); 153 154 #if HZ >= 100 155 #define TCP_DELACK_MIN ((unsigned)(HZ/25)) /* minimal time to delay before sending an ACK */ 156 #define TCP_ATO_MIN ((unsigned)(HZ/25)) 157 #else 158 #define TCP_DELACK_MIN 4U 159 #define TCP_ATO_MIN 4U 160 #endif 161 #define TCP_RTO_MAX_SEC 120 162 #define TCP_RTO_MAX ((unsigned)(TCP_RTO_MAX_SEC * HZ)) 163 #define TCP_RTO_MIN ((unsigned)(HZ / 5)) 164 #define TCP_TIMEOUT_MIN (2U) /* Min timeout for TCP timers in jiffies */ 165 166 #define TCP_TIMEOUT_MIN_US (2*USEC_PER_MSEC) /* Min TCP timeout in microsecs */ 167 168 #define TCP_TIMEOUT_INIT ((unsigned)(1*HZ)) /* RFC6298 2.1 initial RTO value */ 169 #define TCP_TIMEOUT_FALLBACK ((unsigned)(3*HZ)) /* RFC 1122 initial RTO value, now 170 * used as a fallback RTO for the 171 * initial data transmission if no 172 * valid RTT sample has been acquired, 173 * most likely due to retrans in 3WHS. 174 */ 175 176 #define TCP_RESOURCE_PROBE_INTERVAL ((unsigned)(HZ/2U)) /* Maximal interval between probes 177 * for local resources. 178 */ 179 #define TCP_KEEPALIVE_TIME (120*60*HZ) /* two hours */ 180 #define TCP_KEEPALIVE_PROBES 9 /* Max of 9 keepalive probes */ 181 #define TCP_KEEPALIVE_INTVL (75*HZ) 182 183 #define MAX_TCP_KEEPIDLE 32767 184 #define MAX_TCP_KEEPINTVL 32767 185 #define MAX_TCP_KEEPCNT 127 186 #define MAX_TCP_SYNCNT 127 187 188 /* Ensure that TCP PAWS checks are relaxed after ~2147 seconds 189 * to avoid overflows. This assumes a clock smaller than 1 Mhz. 190 * Default clock is 1 Khz, tcp_usec_ts uses 1 Mhz. 191 */ 192 #define TCP_PAWS_WRAP (INT_MAX / USEC_PER_SEC) 193 194 #define TCP_PAWS_MSL 60 /* Per-host timestamps are invalidated 195 * after this time. It should be equal 196 * (or greater than) TCP_TIMEWAIT_LEN 197 * to provide reliability equal to one 198 * provided by timewait state. 199 */ 200 #define TCP_PAWS_WINDOW 1 /* Replay window for per-host 201 * timestamps. It must be less than 202 * minimal timewait lifetime. 203 */ 204 /* 205 * TCP option 206 */ 207 208 #define TCPOPT_NOP 1 /* Padding */ 209 #define TCPOPT_EOL 0 /* End of options */ 210 #define TCPOPT_MSS 2 /* Segment size negotiating */ 211 #define TCPOPT_WINDOW 3 /* Window scaling */ 212 #define TCPOPT_SACK_PERM 4 /* SACK Permitted */ 213 #define TCPOPT_SACK 5 /* SACK Block */ 214 #define TCPOPT_TIMESTAMP 8 /* Better RTT estimations/PAWS */ 215 #define TCPOPT_MD5SIG 19 /* MD5 Signature (RFC2385) */ 216 #define TCPOPT_AO 29 /* Authentication Option (RFC5925) */ 217 #define TCPOPT_MPTCP 30 /* Multipath TCP (RFC6824) */ 218 #define TCPOPT_FASTOPEN 34 /* Fast open (RFC7413) */ 219 #define TCPOPT_ACCECN0 172 /* 0xAC: Accurate ECN Order 0 */ 220 #define TCPOPT_ACCECN1 174 /* 0xAE: Accurate ECN Order 1 */ 221 #define TCPOPT_EXP 254 /* Experimental */ 222 /* Magic number to be after the option value for sharing TCP 223 * experimental options. See draft-ietf-tcpm-experimental-options-00.txt 224 */ 225 #define TCPOPT_FASTOPEN_MAGIC 0xF989 226 #define TCPOPT_SMC_MAGIC 0xE2D4C3D9 227 228 /* 229 * TCP option lengths 230 */ 231 232 #define TCPOLEN_MSS 4 233 #define TCPOLEN_WINDOW 3 234 #define TCPOLEN_SACK_PERM 2 235 #define TCPOLEN_TIMESTAMP 10 236 #define TCPOLEN_MD5SIG 18 237 #define TCPOLEN_FASTOPEN_BASE 2 238 #define TCPOLEN_ACCECN_BASE 2 239 #define TCPOLEN_EXP_FASTOPEN_BASE 4 240 #define TCPOLEN_EXP_SMC_BASE 6 241 242 /* But this is what stacks really send out. */ 243 #define TCPOLEN_TSTAMP_ALIGNED 12 244 #define TCPOLEN_WSCALE_ALIGNED 4 245 #define TCPOLEN_SACKPERM_ALIGNED 4 246 #define TCPOLEN_SACK_BASE 2 247 #define TCPOLEN_SACK_BASE_ALIGNED 4 248 #define TCPOLEN_SACK_PERBLOCK 8 249 #define TCPOLEN_MD5SIG_ALIGNED 20 250 #define TCPOLEN_MSS_ALIGNED 4 251 #define TCPOLEN_EXP_SMC_BASE_ALIGNED 8 252 #define TCPOLEN_ACCECN_PERFIELD 3 253 254 /* Maximum number of byte counters in AccECN option + size */ 255 #define TCP_ACCECN_NUMFIELDS 3 256 #define TCP_ACCECN_MAXSIZE (TCPOLEN_ACCECN_BASE + \ 257 TCPOLEN_ACCECN_PERFIELD * \ 258 TCP_ACCECN_NUMFIELDS) 259 #define TCP_ACCECN_SAFETY_SHIFT 1 /* SAFETY_FACTOR in accecn draft */ 260 261 /* Flags in tp->nonagle */ 262 #define TCP_NAGLE_OFF 1 /* Nagle's algo is disabled */ 263 #define TCP_NAGLE_CORK 2 /* Socket is corked */ 264 #define TCP_NAGLE_PUSH 4 /* Cork is overridden for already queued data */ 265 266 /* TCP thin-stream limits */ 267 #define TCP_THIN_LINEAR_RETRIES 6 /* After 6 linear retries, do exp. backoff */ 268 269 /* TCP initial congestion window as per rfc6928 */ 270 #define TCP_INIT_CWND 10 271 272 /* Bit Flags for sysctl_tcp_fastopen */ 273 #define TFO_CLIENT_ENABLE 1 274 #define TFO_SERVER_ENABLE 2 275 #define TFO_CLIENT_NO_COOKIE 4 /* Data in SYN w/o cookie option */ 276 277 /* Accept SYN data w/o any cookie option */ 278 #define TFO_SERVER_COOKIE_NOT_REQD 0x200 279 280 /* Force enable TFO on all listeners, i.e., not requiring the 281 * TCP_FASTOPEN socket option. 282 */ 283 #define TFO_SERVER_WO_SOCKOPT1 0x400 284 285 286 /* sysctl variables for tcp */ 287 extern int sysctl_tcp_max_orphans; 288 extern long sysctl_tcp_mem[3]; 289 290 #define TCP_RACK_LOSS_DETECTION 0x1 /* Use RACK to detect losses */ 291 #define TCP_RACK_STATIC_REO_WND 0x2 /* Use static RACK reo wnd */ 292 #define TCP_RACK_NO_DUPTHRESH 0x4 /* Do not use DUPACK threshold in RACK */ 293 294 DECLARE_PER_CPU(int, tcp_memory_per_cpu_fw_alloc); 295 296 extern struct percpu_counter tcp_sockets_allocated; 297 extern unsigned long tcp_memory_pressure; 298 299 /* optimized version of sk_under_memory_pressure() for TCP sockets */ 300 static inline bool tcp_under_memory_pressure(const struct sock *sk) 301 { 302 if (mem_cgroup_sk_enabled(sk) && 303 mem_cgroup_sk_under_memory_pressure(sk)) 304 return true; 305 306 if (sk->sk_bypass_prot_mem) 307 return false; 308 309 return READ_ONCE(tcp_memory_pressure); 310 } 311 /* 312 * The next routines deal with comparing 32 bit unsigned ints 313 * and worry about wraparound (automatic with unsigned arithmetic). 314 */ 315 316 static inline bool before(__u32 seq1, __u32 seq2) 317 { 318 return (__s32)(seq1-seq2) < 0; 319 } 320 #define after(seq2, seq1) before(seq1, seq2) 321 322 /* is s2<=s1<=s3 ? */ 323 static inline bool between(__u32 seq1, __u32 seq2, __u32 seq3) 324 { 325 return seq3 - seq2 >= seq1 - seq2; 326 } 327 328 static inline void tcp_wmem_free_skb(struct sock *sk, struct sk_buff *skb) 329 { 330 sk_wmem_queued_add(sk, -skb->truesize); 331 if (!skb_zcopy_pure(skb)) 332 sk_mem_uncharge(sk, skb->truesize); 333 else 334 sk_mem_uncharge(sk, SKB_TRUESIZE(skb_end_offset(skb))); 335 __kfree_skb(skb); 336 } 337 338 void sk_forced_mem_schedule(struct sock *sk, int size); 339 340 bool tcp_check_oom(const struct sock *sk, int shift); 341 342 343 extern struct proto tcp_prot; 344 345 #define TCP_INC_STATS(net, field) SNMP_INC_STATS((net)->mib.tcp_statistics, field) 346 #define __TCP_INC_STATS(net, field) __SNMP_INC_STATS((net)->mib.tcp_statistics, field) 347 #define TCP_DEC_STATS(net, field) SNMP_DEC_STATS((net)->mib.tcp_statistics, field) 348 #define TCP_ADD_STATS(net, field, val) SNMP_ADD_STATS((net)->mib.tcp_statistics, field, val) 349 350 void tcp_tsq_work_init(void); 351 352 int tcp_v4_err(struct sk_buff *skb, u32); 353 354 void tcp_shutdown(struct sock *sk, int how); 355 356 int tcp_v4_early_demux(struct sk_buff *skb); 357 int tcp_v4_rcv(struct sk_buff *skb); 358 359 void tcp_remove_empty_skb(struct sock *sk); 360 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size); 361 int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size); 362 int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg, int *copied, 363 size_t size, struct ubuf_info *uarg); 364 void tcp_splice_eof(struct socket *sock); 365 int tcp_send_mss(struct sock *sk, int *size_goal, int flags); 366 int tcp_wmem_schedule(struct sock *sk, int copy); 367 void tcp_push(struct sock *sk, int flags, int mss_now, int nonagle, 368 int size_goal); 369 void tcp_release_cb(struct sock *sk); 370 void tcp_wfree(struct sk_buff *skb); 371 void tcp_write_timer_handler(struct sock *sk); 372 void tcp_delack_timer_handler(struct sock *sk); 373 int tcp_ioctl(struct sock *sk, int cmd, int *karg); 374 enum skb_drop_reason tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb); 375 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb); 376 void tcp_rcvbuf_grow(struct sock *sk, u32 newval); 377 void tcp_rcv_space_adjust(struct sock *sk); 378 int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp); 379 void tcp_twsk_destructor(struct sock *sk); 380 void tcp_twsk_purge(struct list_head *net_exit_list); 381 ssize_t tcp_splice_read(struct socket *sk, loff_t *ppos, 382 struct pipe_inode_info *pipe, size_t len, 383 unsigned int flags); 384 struct sk_buff *tcp_stream_alloc_skb(struct sock *sk, gfp_t gfp, 385 bool force_schedule); 386 387 static inline void tcp_dec_quickack_mode(struct sock *sk) 388 { 389 struct inet_connection_sock *icsk = inet_csk(sk); 390 391 if (icsk->icsk_ack.quick) { 392 /* How many ACKs S/ACKing new data have we sent? */ 393 const unsigned int pkts = inet_csk_ack_scheduled(sk) ? 1 : 0; 394 395 if (pkts >= icsk->icsk_ack.quick) { 396 icsk->icsk_ack.quick = 0; 397 /* Leaving quickack mode we deflate ATO. */ 398 icsk->icsk_ack.ato = TCP_ATO_MIN; 399 } else 400 icsk->icsk_ack.quick -= pkts; 401 } 402 } 403 404 #define TCP_ECN_MODE_RFC3168 BIT(0) 405 #define TCP_ECN_QUEUE_CWR BIT(1) 406 #define TCP_ECN_DEMAND_CWR BIT(2) 407 #define TCP_ECN_SEEN BIT(3) 408 #define TCP_ECN_MODE_ACCECN BIT(4) 409 410 #define TCP_ECN_DISABLED 0 411 #define TCP_ECN_MODE_PENDING (TCP_ECN_MODE_RFC3168 | TCP_ECN_MODE_ACCECN) 412 #define TCP_ECN_MODE_ANY (TCP_ECN_MODE_RFC3168 | TCP_ECN_MODE_ACCECN) 413 414 static inline bool tcp_ecn_mode_any(const struct tcp_sock *tp) 415 { 416 return tp->ecn_flags & TCP_ECN_MODE_ANY; 417 } 418 419 static inline bool tcp_ecn_mode_rfc3168(const struct tcp_sock *tp) 420 { 421 return (tp->ecn_flags & TCP_ECN_MODE_ANY) == TCP_ECN_MODE_RFC3168; 422 } 423 424 static inline bool tcp_ecn_mode_accecn(const struct tcp_sock *tp) 425 { 426 return (tp->ecn_flags & TCP_ECN_MODE_ANY) == TCP_ECN_MODE_ACCECN; 427 } 428 429 static inline bool tcp_ecn_disabled(const struct tcp_sock *tp) 430 { 431 return !tcp_ecn_mode_any(tp); 432 } 433 434 static inline bool tcp_ecn_mode_pending(const struct tcp_sock *tp) 435 { 436 return (tp->ecn_flags & TCP_ECN_MODE_PENDING) == TCP_ECN_MODE_PENDING; 437 } 438 439 static inline void tcp_ecn_mode_set(struct tcp_sock *tp, u8 mode) 440 { 441 tp->ecn_flags &= ~TCP_ECN_MODE_ANY; 442 tp->ecn_flags |= mode; 443 } 444 445 enum tcp_tw_status { 446 TCP_TW_SUCCESS = 0, 447 TCP_TW_RST = 1, 448 TCP_TW_ACK = 2, 449 TCP_TW_SYN = 3, 450 TCP_TW_ACK_OOW = 4 451 }; 452 453 454 enum tcp_tw_status tcp_timewait_state_process(struct inet_timewait_sock *tw, 455 struct sk_buff *skb, 456 const struct tcphdr *th, 457 u32 *tw_isn, 458 enum skb_drop_reason *drop_reason); 459 struct sock *tcp_check_req(struct sock *sk, struct sk_buff *skb, 460 struct request_sock *req, bool fastopen, 461 bool *lost_race, enum skb_drop_reason *drop_reason); 462 enum skb_drop_reason tcp_child_process(struct sock *parent, struct sock *child, 463 struct sk_buff *skb); 464 void tcp_enter_loss(struct sock *sk); 465 void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int newly_lost, int flag); 466 void tcp_clear_retrans(struct tcp_sock *tp); 467 void tcp_update_pacing_rate(struct sock *sk); 468 void tcp_set_rto(struct sock *sk); 469 void tcp_update_metrics(struct sock *sk); 470 void tcp_init_metrics(struct sock *sk); 471 void tcp_metrics_init(void); 472 bool tcp_peer_is_proven(struct request_sock *req, struct dst_entry *dst); 473 void __tcp_close(struct sock *sk, long timeout); 474 void tcp_close(struct sock *sk, long timeout); 475 void tcp_init_sock(struct sock *sk); 476 void tcp_init_transfer(struct sock *sk, int bpf_op, struct sk_buff *skb); 477 __poll_t tcp_poll(struct file *file, struct socket *sock, 478 struct poll_table_struct *wait); 479 int do_tcp_getsockopt(struct sock *sk, int level, 480 int optname, sockptr_t optval, sockptr_t optlen); 481 int tcp_getsockopt(struct sock *sk, int level, int optname, 482 char __user *optval, int __user *optlen); 483 bool tcp_bpf_bypass_getsockopt(int level, int optname); 484 int do_tcp_setsockopt(struct sock *sk, int level, int optname, 485 sockptr_t optval, unsigned int optlen); 486 int tcp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval, 487 unsigned int optlen); 488 void tcp_reset_keepalive_timer(struct sock *sk, unsigned long timeout); 489 void tcp_set_keepalive(struct sock *sk, int val); 490 void tcp_syn_ack_timeout(const struct request_sock *req); 491 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, 492 int flags, int *addr_len); 493 int tcp_set_rcvlowat(struct sock *sk, int val); 494 int tcp_set_window_clamp(struct sock *sk, int val); 495 void tcp_update_recv_tstamps(struct sk_buff *skb, 496 struct scm_timestamping_internal *tss); 497 void tcp_recv_timestamp(struct msghdr *msg, const struct sock *sk, 498 struct scm_timestamping_internal *tss); 499 void tcp_data_ready(struct sock *sk); 500 #ifdef CONFIG_MMU 501 int tcp_mmap(struct file *file, struct socket *sock, 502 struct vm_area_struct *vma); 503 #endif 504 void tcp_parse_options(const struct net *net, const struct sk_buff *skb, 505 struct tcp_options_received *opt_rx, 506 int estab, struct tcp_fastopen_cookie *foc); 507 508 /* 509 * BPF SKB-less helpers 510 */ 511 u16 tcp_v4_get_syncookie(struct sock *sk, struct iphdr *iph, 512 struct tcphdr *th, u32 *cookie); 513 u16 tcp_v6_get_syncookie(struct sock *sk, struct ipv6hdr *iph, 514 struct tcphdr *th, u32 *cookie); 515 u16 tcp_parse_mss_option(const struct tcphdr *th, u16 user_mss); 516 u16 tcp_get_syncookie_mss(struct request_sock_ops *rsk_ops, 517 const struct tcp_request_sock_ops *af_ops, 518 struct sock *sk, struct tcphdr *th); 519 /* 520 * TCP v4 functions exported for the inet6 API 521 */ 522 523 void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb); 524 void tcp_v4_mtu_reduced(struct sock *sk); 525 void tcp_req_err(struct sock *sk, u32 seq, bool abort); 526 void tcp_ld_RTO_revert(struct sock *sk, u32 seq); 527 int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb); 528 struct sock *tcp_create_openreq_child(const struct sock *sk, 529 struct request_sock *req, 530 struct sk_buff *skb); 531 void tcp_ca_openreq_child(struct sock *sk, const struct dst_entry *dst); 532 struct sock *tcp_v4_syn_recv_sock(const struct sock *sk, struct sk_buff *skb, 533 struct request_sock *req, 534 struct dst_entry *dst, 535 struct request_sock *req_unhash, 536 bool *own_req); 537 int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb); 538 int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len); 539 int tcp_connect(struct sock *sk); 540 enum tcp_synack_type { 541 TCP_SYNACK_NORMAL, 542 TCP_SYNACK_FASTOPEN, 543 TCP_SYNACK_COOKIE, 544 }; 545 struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst, 546 struct request_sock *req, 547 struct tcp_fastopen_cookie *foc, 548 enum tcp_synack_type synack_type, 549 struct sk_buff *syn_skb); 550 int tcp_disconnect(struct sock *sk, int flags); 551 552 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb); 553 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size); 554 void inet_sk_rx_dst_set(struct sock *sk, const struct sk_buff *skb); 555 556 /* From syncookies.c */ 557 struct sock *tcp_get_cookie_sock(struct sock *sk, struct sk_buff *skb, 558 struct request_sock *req, 559 struct dst_entry *dst); 560 int __cookie_v4_check(const struct iphdr *iph, const struct tcphdr *th); 561 struct sock *cookie_v4_check(struct sock *sk, struct sk_buff *skb); 562 struct request_sock *cookie_tcp_reqsk_alloc(const struct request_sock_ops *ops, 563 struct sock *sk, struct sk_buff *skb, 564 struct tcp_options_received *tcp_opt, 565 int mss, u32 tsoff); 566 567 #if IS_ENABLED(CONFIG_BPF) 568 struct bpf_tcp_req_attrs { 569 u32 rcv_tsval; 570 u32 rcv_tsecr; 571 u16 mss; 572 u8 rcv_wscale; 573 u8 snd_wscale; 574 u8 ecn_ok; 575 u8 wscale_ok; 576 u8 sack_ok; 577 u8 tstamp_ok; 578 u8 usec_ts_ok; 579 u8 reserved[3]; 580 }; 581 #endif 582 583 #ifdef CONFIG_SYN_COOKIES 584 585 /* Syncookies use a monotonic timer which increments every 60 seconds. 586 * This counter is used both as a hash input and partially encoded into 587 * the cookie value. A cookie is only validated further if the delta 588 * between the current counter value and the encoded one is less than this, 589 * i.e. a sent cookie is valid only at most for 2*60 seconds (or less if 590 * the counter advances immediately after a cookie is generated). 591 */ 592 #define MAX_SYNCOOKIE_AGE 2 593 #define TCP_SYNCOOKIE_PERIOD (60 * HZ) 594 #define TCP_SYNCOOKIE_VALID (MAX_SYNCOOKIE_AGE * TCP_SYNCOOKIE_PERIOD) 595 596 /* syncookies: remember time of last synqueue overflow 597 * But do not dirty this field too often (once per second is enough) 598 * It is racy as we do not hold a lock, but race is very minor. 599 */ 600 static inline void tcp_synq_overflow(const struct sock *sk) 601 { 602 unsigned int last_overflow; 603 unsigned int now = jiffies; 604 605 if (sk->sk_reuseport) { 606 struct sock_reuseport *reuse; 607 608 reuse = rcu_dereference(sk->sk_reuseport_cb); 609 if (likely(reuse)) { 610 last_overflow = READ_ONCE(reuse->synq_overflow_ts); 611 if (!time_between32(now, last_overflow, 612 last_overflow + HZ)) 613 WRITE_ONCE(reuse->synq_overflow_ts, now); 614 return; 615 } 616 } 617 618 last_overflow = READ_ONCE(tcp_sk(sk)->rx_opt.ts_recent_stamp); 619 if (!time_between32(now, last_overflow, last_overflow + HZ)) 620 WRITE_ONCE(tcp_sk_rw(sk)->rx_opt.ts_recent_stamp, now); 621 } 622 623 /* syncookies: no recent synqueue overflow on this listening socket? */ 624 static inline bool tcp_synq_no_recent_overflow(const struct sock *sk) 625 { 626 unsigned int last_overflow; 627 unsigned int now = jiffies; 628 629 if (sk->sk_reuseport) { 630 struct sock_reuseport *reuse; 631 632 reuse = rcu_dereference(sk->sk_reuseport_cb); 633 if (likely(reuse)) { 634 last_overflow = READ_ONCE(reuse->synq_overflow_ts); 635 return !time_between32(now, last_overflow - HZ, 636 last_overflow + 637 TCP_SYNCOOKIE_VALID); 638 } 639 } 640 641 last_overflow = READ_ONCE(tcp_sk(sk)->rx_opt.ts_recent_stamp); 642 643 /* If last_overflow <= jiffies <= last_overflow + TCP_SYNCOOKIE_VALID, 644 * then we're under synflood. However, we have to use 645 * 'last_overflow - HZ' as lower bound. That's because a concurrent 646 * tcp_synq_overflow() could update .ts_recent_stamp after we read 647 * jiffies but before we store .ts_recent_stamp into last_overflow, 648 * which could lead to rejecting a valid syncookie. 649 */ 650 return !time_between32(now, last_overflow - HZ, 651 last_overflow + TCP_SYNCOOKIE_VALID); 652 } 653 654 static inline u32 tcp_cookie_time(void) 655 { 656 u64 val = get_jiffies_64(); 657 658 do_div(val, TCP_SYNCOOKIE_PERIOD); 659 return val; 660 } 661 662 /* Convert one nsec 64bit timestamp to ts (ms or usec resolution) */ 663 static inline u64 tcp_ns_to_ts(bool usec_ts, u64 val) 664 { 665 if (usec_ts) 666 return div_u64(val, NSEC_PER_USEC); 667 668 return div_u64(val, NSEC_PER_MSEC); 669 } 670 671 u32 __cookie_v4_init_sequence(const struct iphdr *iph, const struct tcphdr *th, 672 u16 *mssp); 673 __u32 cookie_v4_init_sequence(const struct sk_buff *skb, __u16 *mss); 674 u64 cookie_init_timestamp(struct request_sock *req, u64 now); 675 bool cookie_timestamp_decode(const struct net *net, 676 struct tcp_options_received *opt); 677 678 static inline bool cookie_ecn_ok(const struct net *net, const struct dst_entry *dst) 679 { 680 return READ_ONCE(net->ipv4.sysctl_tcp_ecn) || 681 dst_feature(dst, RTAX_FEATURE_ECN); 682 } 683 684 #if IS_ENABLED(CONFIG_BPF) 685 static inline bool cookie_bpf_ok(struct sk_buff *skb) 686 { 687 return skb->sk; 688 } 689 690 struct request_sock *cookie_bpf_check(struct sock *sk, struct sk_buff *skb); 691 #else 692 static inline bool cookie_bpf_ok(struct sk_buff *skb) 693 { 694 return false; 695 } 696 697 static inline struct request_sock *cookie_bpf_check(struct net *net, struct sock *sk, 698 struct sk_buff *skb) 699 { 700 return NULL; 701 } 702 #endif 703 704 /* From net/ipv6/syncookies.c */ 705 int __cookie_v6_check(const struct ipv6hdr *iph, const struct tcphdr *th); 706 struct sock *cookie_v6_check(struct sock *sk, struct sk_buff *skb); 707 708 u32 __cookie_v6_init_sequence(const struct ipv6hdr *iph, 709 const struct tcphdr *th, u16 *mssp); 710 __u32 cookie_v6_init_sequence(const struct sk_buff *skb, __u16 *mss); 711 #endif 712 /* tcp_output.c */ 713 714 void tcp_skb_entail(struct sock *sk, struct sk_buff *skb); 715 void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb); 716 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss, 717 int nonagle); 718 int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs); 719 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs); 720 void tcp_retransmit_timer(struct sock *sk); 721 void tcp_xmit_retransmit_queue(struct sock *); 722 void tcp_simple_retransmit(struct sock *); 723 void tcp_enter_recovery(struct sock *sk, bool ece_ack); 724 int tcp_trim_head(struct sock *, struct sk_buff *, u32); 725 enum tcp_queue { 726 TCP_FRAG_IN_WRITE_QUEUE, 727 TCP_FRAG_IN_RTX_QUEUE, 728 }; 729 int tcp_fragment(struct sock *sk, enum tcp_queue tcp_queue, 730 struct sk_buff *skb, u32 len, 731 unsigned int mss_now, gfp_t gfp); 732 733 void tcp_send_probe0(struct sock *); 734 int tcp_write_wakeup(struct sock *, int mib); 735 void tcp_send_fin(struct sock *sk); 736 void tcp_send_active_reset(struct sock *sk, gfp_t priority, 737 enum sk_rst_reason reason); 738 int tcp_send_synack(struct sock *); 739 void tcp_push_one(struct sock *, unsigned int mss_now); 740 void __tcp_send_ack(struct sock *sk, u32 rcv_nxt, u16 flags); 741 void tcp_send_ack(struct sock *sk); 742 void tcp_send_delayed_ack(struct sock *sk); 743 void tcp_send_loss_probe(struct sock *sk); 744 bool tcp_schedule_loss_probe(struct sock *sk, bool advancing_rto); 745 void tcp_skb_collapse_tstamp(struct sk_buff *skb, 746 const struct sk_buff *next_skb); 747 748 /* tcp_input.c */ 749 void tcp_rearm_rto(struct sock *sk); 750 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req); 751 void tcp_done_with_error(struct sock *sk, int err); 752 void tcp_reset(struct sock *sk, struct sk_buff *skb); 753 void tcp_fin(struct sock *sk); 754 void tcp_check_space(struct sock *sk); 755 void tcp_sack_compress_send_ack(struct sock *sk); 756 757 static inline void tcp_cleanup_skb(struct sk_buff *skb) 758 { 759 skb_dst_drop(skb); 760 secpath_reset(skb); 761 } 762 763 static inline void tcp_add_receive_queue(struct sock *sk, struct sk_buff *skb) 764 { 765 DEBUG_NET_WARN_ON_ONCE(skb_dst(skb)); 766 DEBUG_NET_WARN_ON_ONCE(secpath_exists(skb)); 767 __skb_queue_tail(&sk->sk_receive_queue, skb); 768 } 769 770 /* tcp_timer.c */ 771 void tcp_init_xmit_timers(struct sock *); 772 static inline void tcp_clear_xmit_timers(struct sock *sk) 773 { 774 if (hrtimer_try_to_cancel(&tcp_sk(sk)->pacing_timer) == 1) 775 __sock_put(sk); 776 777 if (hrtimer_try_to_cancel(&tcp_sk(sk)->compressed_ack_timer) == 1) 778 __sock_put(sk); 779 780 inet_csk_clear_xmit_timers(sk); 781 } 782 783 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu); 784 unsigned int tcp_current_mss(struct sock *sk); 785 u32 tcp_clamp_probe0_to_user_timeout(const struct sock *sk, u32 when); 786 787 /* Bound MSS / TSO packet size with the half of the window */ 788 static inline int tcp_bound_to_half_wnd(struct tcp_sock *tp, int pktsize) 789 { 790 int cutoff; 791 792 /* When peer uses tiny windows, there is no use in packetizing 793 * to sub-MSS pieces for the sake of SWS or making sure there 794 * are enough packets in the pipe for fast recovery. 795 * 796 * On the other hand, for extremely large MSS devices, handling 797 * smaller than MSS windows in this way does make sense. 798 */ 799 if (tp->max_window > TCP_MSS_DEFAULT) 800 cutoff = (tp->max_window >> 1); 801 else 802 cutoff = tp->max_window; 803 804 if (cutoff && pktsize > cutoff) 805 return max_t(int, cutoff, 68U - tp->tcp_header_len); 806 else 807 return pktsize; 808 } 809 810 /* tcp.c */ 811 void tcp_get_info(struct sock *, struct tcp_info *); 812 813 /* Read 'sendfile()'-style from a TCP socket */ 814 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc, 815 sk_read_actor_t recv_actor); 816 int tcp_read_sock_noack(struct sock *sk, read_descriptor_t *desc, 817 sk_read_actor_t recv_actor, bool noack, 818 u32 *copied_seq); 819 int tcp_read_skb(struct sock *sk, skb_read_actor_t recv_actor); 820 struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off); 821 void tcp_read_done(struct sock *sk, size_t len); 822 823 void tcp_initialize_rcv_mss(struct sock *sk); 824 825 int tcp_mtu_to_mss(struct sock *sk, int pmtu); 826 int tcp_mss_to_mtu(struct sock *sk, int mss); 827 void tcp_mtup_init(struct sock *sk); 828 829 static inline unsigned int tcp_rto_max(const struct sock *sk) 830 { 831 return READ_ONCE(inet_csk(sk)->icsk_rto_max); 832 } 833 834 static inline void tcp_bound_rto(struct sock *sk) 835 { 836 inet_csk(sk)->icsk_rto = min(inet_csk(sk)->icsk_rto, tcp_rto_max(sk)); 837 } 838 839 static inline u32 __tcp_set_rto(const struct tcp_sock *tp) 840 { 841 return usecs_to_jiffies((tp->srtt_us >> 3) + tp->rttvar_us); 842 } 843 844 u32 tcp_delack_max(const struct sock *sk); 845 846 /* Compute the actual rto_min value */ 847 static inline u32 tcp_rto_min(const struct sock *sk) 848 { 849 const struct dst_entry *dst = __sk_dst_get(sk); 850 u32 rto_min = READ_ONCE(inet_csk(sk)->icsk_rto_min); 851 852 if (dst && dst_metric_locked(dst, RTAX_RTO_MIN)) 853 rto_min = dst_metric_rtt(dst, RTAX_RTO_MIN); 854 return rto_min; 855 } 856 857 static inline u32 tcp_rto_min_us(const struct sock *sk) 858 { 859 return jiffies_to_usecs(tcp_rto_min(sk)); 860 } 861 862 static inline bool tcp_ca_dst_locked(const struct dst_entry *dst) 863 { 864 return dst_metric_locked(dst, RTAX_CC_ALGO); 865 } 866 867 /* Minimum RTT in usec. ~0 means not available. */ 868 static inline u32 tcp_min_rtt(const struct tcp_sock *tp) 869 { 870 return minmax_get(&tp->rtt_min); 871 } 872 873 /* Compute the actual receive window we are currently advertising. 874 * Rcv_nxt can be after the window if our peer push more data 875 * than the offered window. 876 */ 877 static inline u32 tcp_receive_window(const struct tcp_sock *tp) 878 { 879 s32 win = tp->rcv_wup + tp->rcv_wnd - tp->rcv_nxt; 880 881 if (win < 0) 882 win = 0; 883 return (u32) win; 884 } 885 886 /* Choose a new window, without checks for shrinking, and without 887 * scaling applied to the result. The caller does these things 888 * if necessary. This is a "raw" window selection. 889 */ 890 u32 __tcp_select_window(struct sock *sk); 891 892 void tcp_send_window_probe(struct sock *sk); 893 894 /* TCP uses 32bit jiffies to save some space. 895 * Note that this is different from tcp_time_stamp, which 896 * historically has been the same until linux-4.13. 897 */ 898 #define tcp_jiffies32 ((u32)jiffies) 899 900 /* 901 * Deliver a 32bit value for TCP timestamp option (RFC 7323) 902 * It is no longer tied to jiffies, but to 1 ms clock. 903 * Note: double check if you want to use tcp_jiffies32 instead of this. 904 */ 905 #define TCP_TS_HZ 1000 906 907 static inline u64 tcp_clock_ns(void) 908 { 909 return ktime_get_ns(); 910 } 911 912 static inline u64 tcp_clock_us(void) 913 { 914 return div_u64(tcp_clock_ns(), NSEC_PER_USEC); 915 } 916 917 static inline u64 tcp_clock_ms(void) 918 { 919 return div_u64(tcp_clock_ns(), NSEC_PER_MSEC); 920 } 921 922 /* TCP Timestamp included in TS option (RFC 1323) can either use ms 923 * or usec resolution. Each socket carries a flag to select one or other 924 * resolution, as the route attribute could change anytime. 925 * Each flow must stick to initial resolution. 926 */ 927 static inline u32 tcp_clock_ts(bool usec_ts) 928 { 929 return usec_ts ? tcp_clock_us() : tcp_clock_ms(); 930 } 931 932 static inline u32 tcp_time_stamp_ms(const struct tcp_sock *tp) 933 { 934 return div_u64(tp->tcp_mstamp, USEC_PER_MSEC); 935 } 936 937 static inline u32 tcp_time_stamp_ts(const struct tcp_sock *tp) 938 { 939 if (tp->tcp_usec_ts) 940 return tp->tcp_mstamp; 941 return tcp_time_stamp_ms(tp); 942 } 943 944 void tcp_mstamp_refresh(struct tcp_sock *tp); 945 946 static inline u32 tcp_stamp_us_delta(u64 t1, u64 t0) 947 { 948 return max_t(s64, t1 - t0, 0); 949 } 950 951 /* provide the departure time in us unit */ 952 static inline u64 tcp_skb_timestamp_us(const struct sk_buff *skb) 953 { 954 return div_u64(skb->skb_mstamp_ns, NSEC_PER_USEC); 955 } 956 957 /* Provide skb TSval in usec or ms unit */ 958 static inline u32 tcp_skb_timestamp_ts(bool usec_ts, const struct sk_buff *skb) 959 { 960 if (usec_ts) 961 return tcp_skb_timestamp_us(skb); 962 963 return div_u64(skb->skb_mstamp_ns, NSEC_PER_MSEC); 964 } 965 966 static inline u32 tcp_tw_tsval(const struct tcp_timewait_sock *tcptw) 967 { 968 return tcp_clock_ts(tcptw->tw_sk.tw_usec_ts) + tcptw->tw_ts_offset; 969 } 970 971 static inline u32 tcp_rsk_tsval(const struct tcp_request_sock *treq) 972 { 973 return tcp_clock_ts(treq->req_usec_ts) + treq->ts_off; 974 } 975 976 #define tcp_flag_byte(th) (((u_int8_t *)th)[13]) 977 978 #define TCPHDR_FIN BIT(0) 979 #define TCPHDR_SYN BIT(1) 980 #define TCPHDR_RST BIT(2) 981 #define TCPHDR_PSH BIT(3) 982 #define TCPHDR_ACK BIT(4) 983 #define TCPHDR_URG BIT(5) 984 #define TCPHDR_ECE BIT(6) 985 #define TCPHDR_CWR BIT(7) 986 #define TCPHDR_AE BIT(8) 987 #define TCPHDR_FLAGS_MASK (TCPHDR_FIN | TCPHDR_SYN | TCPHDR_RST | \ 988 TCPHDR_PSH | TCPHDR_ACK | TCPHDR_URG | \ 989 TCPHDR_ECE | TCPHDR_CWR | TCPHDR_AE) 990 #define tcp_flags_ntohs(th) (ntohs(*(__be16 *)&tcp_flag_word(th)) & \ 991 TCPHDR_FLAGS_MASK) 992 993 #define TCPHDR_ACE (TCPHDR_ECE | TCPHDR_CWR | TCPHDR_AE) 994 #define TCPHDR_SYN_ECN (TCPHDR_SYN | TCPHDR_ECE | TCPHDR_CWR) 995 #define TCPHDR_SYNACK_ACCECN (TCPHDR_SYN | TCPHDR_ACK | TCPHDR_CWR) 996 997 #define TCP_ACCECN_CEP_ACE_MASK 0x7 998 #define TCP_ACCECN_ACE_MAX_DELTA 6 999 1000 /* To avoid/detect middlebox interference, not all counters start at 0. 1001 * See draft-ietf-tcpm-accurate-ecn for the latest values. 1002 */ 1003 #define TCP_ACCECN_CEP_INIT_OFFSET 5 1004 #define TCP_ACCECN_E1B_INIT_OFFSET 1 1005 #define TCP_ACCECN_E0B_INIT_OFFSET 1 1006 #define TCP_ACCECN_CEB_INIT_OFFSET 0 1007 1008 /* State flags for sacked in struct tcp_skb_cb */ 1009 enum tcp_skb_cb_sacked_flags { 1010 TCPCB_SACKED_ACKED = (1 << 0), /* SKB ACK'd by a SACK block */ 1011 TCPCB_SACKED_RETRANS = (1 << 1), /* SKB retransmitted */ 1012 TCPCB_LOST = (1 << 2), /* SKB is lost */ 1013 TCPCB_TAGBITS = (TCPCB_SACKED_ACKED | TCPCB_SACKED_RETRANS | 1014 TCPCB_LOST), /* All tag bits */ 1015 TCPCB_REPAIRED = (1 << 4), /* SKB repaired (no skb_mstamp_ns) */ 1016 TCPCB_EVER_RETRANS = (1 << 7), /* Ever retransmitted frame */ 1017 TCPCB_RETRANS = (TCPCB_SACKED_RETRANS | TCPCB_EVER_RETRANS | 1018 TCPCB_REPAIRED), 1019 }; 1020 1021 /* This is what the send packet queuing engine uses to pass 1022 * TCP per-packet control information to the transmission code. 1023 * We also store the host-order sequence numbers in here too. 1024 * This is 44 bytes if IPV6 is enabled. 1025 * If this grows please adjust skbuff.h:skbuff->cb[xxx] size appropriately. 1026 */ 1027 struct tcp_skb_cb { 1028 __u32 seq; /* Starting sequence number */ 1029 __u32 end_seq; /* SEQ + FIN + SYN + datalen */ 1030 union { 1031 /* Note : 1032 * tcp_gso_segs/size are used in write queue only, 1033 * cf tcp_skb_pcount()/tcp_skb_mss() 1034 */ 1035 struct { 1036 u16 tcp_gso_segs; 1037 u16 tcp_gso_size; 1038 }; 1039 }; 1040 __u16 tcp_flags; /* TCP header flags (tcp[12-13])*/ 1041 1042 __u8 sacked; /* State flags for SACK. */ 1043 __u8 ip_dsfield; /* IPv4 tos or IPv6 dsfield */ 1044 #define TSTAMP_ACK_SK 0x1 1045 #define TSTAMP_ACK_BPF 0x2 1046 __u8 txstamp_ack:2, /* Record TX timestamp for ack? */ 1047 eor:1, /* Is skb MSG_EOR marked? */ 1048 has_rxtstamp:1, /* SKB has a RX timestamp */ 1049 unused:4; 1050 __u32 ack_seq; /* Sequence number ACK'd */ 1051 union { 1052 struct { 1053 #define TCPCB_DELIVERED_CE_MASK ((1U<<20) - 1) 1054 /* There is space for up to 24 bytes */ 1055 __u32 is_app_limited:1, /* cwnd not fully used? */ 1056 delivered_ce:20, 1057 unused:11; 1058 /* pkts S/ACKed so far upon tx of skb, incl retrans: */ 1059 __u32 delivered; 1060 /* start of send pipeline phase */ 1061 u64 first_tx_mstamp; 1062 /* when we reached the "delivered" count */ 1063 u64 delivered_mstamp; 1064 } tx; /* only used for outgoing skbs */ 1065 union { 1066 struct inet_skb_parm h4; 1067 #if IS_ENABLED(CONFIG_IPV6) 1068 struct inet6_skb_parm h6; 1069 #endif 1070 } header; /* For incoming skbs */ 1071 }; 1072 }; 1073 1074 #define TCP_SKB_CB(__skb) ((struct tcp_skb_cb *)&((__skb)->cb[0])) 1075 1076 extern const struct inet_connection_sock_af_ops ipv4_specific; 1077 1078 #if IS_ENABLED(CONFIG_IPV6) 1079 /* This is the variant of inet6_iif() that must be used by TCP, 1080 * as TCP moves IP6CB into a different location in skb->cb[] 1081 */ 1082 static inline int tcp_v6_iif(const struct sk_buff *skb) 1083 { 1084 return TCP_SKB_CB(skb)->header.h6.iif; 1085 } 1086 1087 static inline int tcp_v6_iif_l3_slave(const struct sk_buff *skb) 1088 { 1089 bool l3_slave = ipv6_l3mdev_skb(TCP_SKB_CB(skb)->header.h6.flags); 1090 1091 return l3_slave ? skb->skb_iif : TCP_SKB_CB(skb)->header.h6.iif; 1092 } 1093 1094 /* TCP_SKB_CB reference means this can not be used from early demux */ 1095 static inline int tcp_v6_sdif(const struct sk_buff *skb) 1096 { 1097 #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV) 1098 if (skb && ipv6_l3mdev_skb(TCP_SKB_CB(skb)->header.h6.flags)) 1099 return TCP_SKB_CB(skb)->header.h6.iif; 1100 #endif 1101 return 0; 1102 } 1103 1104 extern const struct inet_connection_sock_af_ops ipv6_specific; 1105 1106 INDIRECT_CALLABLE_DECLARE(void tcp_v6_send_check(struct sock *sk, struct sk_buff *skb)); 1107 INDIRECT_CALLABLE_DECLARE(int tcp_v6_rcv(struct sk_buff *skb)); 1108 void tcp_v6_early_demux(struct sk_buff *skb); 1109 1110 #endif 1111 1112 /* TCP_SKB_CB reference means this can not be used from early demux */ 1113 static inline int tcp_v4_sdif(struct sk_buff *skb) 1114 { 1115 #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV) 1116 if (skb && ipv4_l3mdev_skb(TCP_SKB_CB(skb)->header.h4.flags)) 1117 return TCP_SKB_CB(skb)->header.h4.iif; 1118 #endif 1119 return 0; 1120 } 1121 1122 /* Due to TSO, an SKB can be composed of multiple actual 1123 * packets. To keep these tracked properly, we use this. 1124 */ 1125 static inline int tcp_skb_pcount(const struct sk_buff *skb) 1126 { 1127 return TCP_SKB_CB(skb)->tcp_gso_segs; 1128 } 1129 1130 static inline void tcp_skb_pcount_set(struct sk_buff *skb, int segs) 1131 { 1132 TCP_SKB_CB(skb)->tcp_gso_segs = segs; 1133 } 1134 1135 static inline void tcp_skb_pcount_add(struct sk_buff *skb, int segs) 1136 { 1137 TCP_SKB_CB(skb)->tcp_gso_segs += segs; 1138 } 1139 1140 /* This is valid iff skb is in write queue and tcp_skb_pcount() > 1. */ 1141 static inline int tcp_skb_mss(const struct sk_buff *skb) 1142 { 1143 return TCP_SKB_CB(skb)->tcp_gso_size; 1144 } 1145 1146 static inline bool tcp_skb_can_collapse_to(const struct sk_buff *skb) 1147 { 1148 return likely(!TCP_SKB_CB(skb)->eor); 1149 } 1150 1151 static inline bool tcp_skb_can_collapse(const struct sk_buff *to, 1152 const struct sk_buff *from) 1153 { 1154 /* skb_cmp_decrypted() not needed, use tcp_write_collapse_fence() */ 1155 return likely(tcp_skb_can_collapse_to(to) && 1156 mptcp_skb_can_collapse(to, from) && 1157 skb_pure_zcopy_same(to, from) && 1158 skb_frags_readable(to) == skb_frags_readable(from)); 1159 } 1160 1161 static inline bool tcp_skb_can_collapse_rx(const struct sk_buff *to, 1162 const struct sk_buff *from) 1163 { 1164 return likely(mptcp_skb_can_collapse(to, from) && 1165 !skb_cmp_decrypted(to, from)); 1166 } 1167 1168 /* Events passed to congestion control interface */ 1169 enum tcp_ca_event { 1170 CA_EVENT_TX_START, /* first transmit when no packets in flight */ 1171 CA_EVENT_CWND_RESTART, /* congestion window restart */ 1172 CA_EVENT_COMPLETE_CWR, /* end of congestion recovery */ 1173 CA_EVENT_LOSS, /* loss timeout */ 1174 CA_EVENT_ECN_NO_CE, /* ECT set, but not CE marked */ 1175 CA_EVENT_ECN_IS_CE, /* received CE marked IP packet */ 1176 }; 1177 1178 /* Information about inbound ACK, passed to cong_ops->in_ack_event() */ 1179 enum tcp_ca_ack_event_flags { 1180 CA_ACK_SLOWPATH = (1 << 0), /* In slow path processing */ 1181 CA_ACK_WIN_UPDATE = (1 << 1), /* ACK updated window */ 1182 CA_ACK_ECE = (1 << 2), /* ECE bit is set on ack */ 1183 }; 1184 1185 /* 1186 * Interface for adding new TCP congestion control handlers 1187 */ 1188 #define TCP_CA_NAME_MAX 16 1189 #define TCP_CA_MAX 128 1190 #define TCP_CA_BUF_MAX (TCP_CA_NAME_MAX*TCP_CA_MAX) 1191 1192 #define TCP_CA_UNSPEC 0 1193 1194 /* Algorithm can be set on socket without CAP_NET_ADMIN privileges */ 1195 #define TCP_CONG_NON_RESTRICTED BIT(0) 1196 /* Requires ECN/ECT set on all packets */ 1197 #define TCP_CONG_NEEDS_ECN BIT(1) 1198 #define TCP_CONG_MASK (TCP_CONG_NON_RESTRICTED | TCP_CONG_NEEDS_ECN) 1199 1200 union tcp_cc_info; 1201 1202 struct ack_sample { 1203 u32 pkts_acked; 1204 s32 rtt_us; 1205 u32 in_flight; 1206 }; 1207 1208 /* A rate sample measures the number of (original/retransmitted) data 1209 * packets delivered "delivered" over an interval of time "interval_us". 1210 * The tcp_rate.c code fills in the rate sample, and congestion 1211 * control modules that define a cong_control function to run at the end 1212 * of ACK processing can optionally chose to consult this sample when 1213 * setting cwnd and pacing rate. 1214 * A sample is invalid if "delivered" or "interval_us" is negative. 1215 */ 1216 struct rate_sample { 1217 u64 prior_mstamp; /* starting timestamp for interval */ 1218 u32 prior_delivered; /* tp->delivered at "prior_mstamp" */ 1219 u32 prior_delivered_ce;/* tp->delivered_ce at "prior_mstamp" */ 1220 s32 delivered; /* number of packets delivered over interval */ 1221 s32 delivered_ce; /* number of packets delivered w/ CE marks*/ 1222 long interval_us; /* time for tp->delivered to incr "delivered" */ 1223 u32 snd_interval_us; /* snd interval for delivered packets */ 1224 u32 rcv_interval_us; /* rcv interval for delivered packets */ 1225 long rtt_us; /* RTT of last (S)ACKed packet (or -1) */ 1226 int losses; /* number of packets marked lost upon ACK */ 1227 u32 acked_sacked; /* number of packets newly (S)ACKed upon ACK */ 1228 u32 prior_in_flight; /* in flight before this ACK */ 1229 u32 last_end_seq; /* end_seq of most recently ACKed packet */ 1230 bool is_app_limited; /* is sample from packet with bubble in pipe? */ 1231 bool is_retrans; /* is sample from retransmission? */ 1232 bool is_ack_delayed; /* is this (likely) a delayed ACK? */ 1233 }; 1234 1235 struct tcp_congestion_ops { 1236 /* fast path fields are put first to fill one cache line */ 1237 1238 /* return slow start threshold (required) */ 1239 u32 (*ssthresh)(struct sock *sk); 1240 1241 /* do new cwnd calculation (required) */ 1242 void (*cong_avoid)(struct sock *sk, u32 ack, u32 acked); 1243 1244 /* call before changing ca_state (optional) */ 1245 void (*set_state)(struct sock *sk, u8 new_state); 1246 1247 /* call when cwnd event occurs (optional) */ 1248 void (*cwnd_event)(struct sock *sk, enum tcp_ca_event ev); 1249 1250 /* call when ack arrives (optional) */ 1251 void (*in_ack_event)(struct sock *sk, u32 flags); 1252 1253 /* hook for packet ack accounting (optional) */ 1254 void (*pkts_acked)(struct sock *sk, const struct ack_sample *sample); 1255 1256 /* override sysctl_tcp_min_tso_segs */ 1257 u32 (*min_tso_segs)(struct sock *sk); 1258 1259 /* call when packets are delivered to update cwnd and pacing rate, 1260 * after all the ca_state processing. (optional) 1261 */ 1262 void (*cong_control)(struct sock *sk, u32 ack, int flag, const struct rate_sample *rs); 1263 1264 1265 /* new value of cwnd after loss (required) */ 1266 u32 (*undo_cwnd)(struct sock *sk); 1267 /* returns the multiplier used in tcp_sndbuf_expand (optional) */ 1268 u32 (*sndbuf_expand)(struct sock *sk); 1269 1270 /* control/slow paths put last */ 1271 /* get info for inet_diag (optional) */ 1272 size_t (*get_info)(struct sock *sk, u32 ext, int *attr, 1273 union tcp_cc_info *info); 1274 1275 char name[TCP_CA_NAME_MAX]; 1276 struct module *owner; 1277 struct list_head list; 1278 u32 key; 1279 u32 flags; 1280 1281 /* initialize private data (optional) */ 1282 void (*init)(struct sock *sk); 1283 /* cleanup private data (optional) */ 1284 void (*release)(struct sock *sk); 1285 } ____cacheline_aligned_in_smp; 1286 1287 int tcp_register_congestion_control(struct tcp_congestion_ops *type); 1288 void tcp_unregister_congestion_control(struct tcp_congestion_ops *type); 1289 int tcp_update_congestion_control(struct tcp_congestion_ops *type, 1290 struct tcp_congestion_ops *old_type); 1291 int tcp_validate_congestion_control(struct tcp_congestion_ops *ca); 1292 1293 void tcp_assign_congestion_control(struct sock *sk); 1294 void tcp_init_congestion_control(struct sock *sk); 1295 void tcp_cleanup_congestion_control(struct sock *sk); 1296 int tcp_set_default_congestion_control(struct net *net, const char *name); 1297 void tcp_get_default_congestion_control(struct net *net, char *name); 1298 void tcp_get_available_congestion_control(char *buf, size_t len); 1299 void tcp_get_allowed_congestion_control(char *buf, size_t len); 1300 int tcp_set_allowed_congestion_control(char *allowed); 1301 int tcp_set_congestion_control(struct sock *sk, const char *name, bool load, 1302 bool cap_net_admin); 1303 u32 tcp_slow_start(struct tcp_sock *tp, u32 acked); 1304 void tcp_cong_avoid_ai(struct tcp_sock *tp, u32 w, u32 acked); 1305 1306 u32 tcp_reno_ssthresh(struct sock *sk); 1307 u32 tcp_reno_undo_cwnd(struct sock *sk); 1308 void tcp_reno_cong_avoid(struct sock *sk, u32 ack, u32 acked); 1309 extern struct tcp_congestion_ops tcp_reno; 1310 1311 struct tcp_congestion_ops *tcp_ca_find(const char *name); 1312 struct tcp_congestion_ops *tcp_ca_find_key(u32 key); 1313 u32 tcp_ca_get_key_by_name(const char *name, bool *ecn_ca); 1314 #ifdef CONFIG_INET 1315 char *tcp_ca_get_name_by_key(u32 key, char *buffer); 1316 #else 1317 static inline char *tcp_ca_get_name_by_key(u32 key, char *buffer) 1318 { 1319 return NULL; 1320 } 1321 #endif 1322 1323 static inline bool tcp_ca_needs_ecn(const struct sock *sk) 1324 { 1325 const struct inet_connection_sock *icsk = inet_csk(sk); 1326 1327 return icsk->icsk_ca_ops->flags & TCP_CONG_NEEDS_ECN; 1328 } 1329 1330 static inline void tcp_ca_event(struct sock *sk, const enum tcp_ca_event event) 1331 { 1332 const struct inet_connection_sock *icsk = inet_csk(sk); 1333 1334 if (icsk->icsk_ca_ops->cwnd_event) 1335 icsk->icsk_ca_ops->cwnd_event(sk, event); 1336 } 1337 1338 /* From tcp_cong.c */ 1339 void tcp_set_ca_state(struct sock *sk, const u8 ca_state); 1340 1341 /* From tcp_rate.c */ 1342 void tcp_rate_skb_sent(struct sock *sk, struct sk_buff *skb); 1343 void tcp_rate_skb_delivered(struct sock *sk, struct sk_buff *skb, 1344 struct rate_sample *rs); 1345 void tcp_rate_gen(struct sock *sk, u32 delivered, u32 lost, 1346 bool is_sack_reneg, struct rate_sample *rs); 1347 void tcp_rate_check_app_limited(struct sock *sk); 1348 1349 static inline bool tcp_skb_sent_after(u64 t1, u64 t2, u32 seq1, u32 seq2) 1350 { 1351 return t1 > t2 || (t1 == t2 && after(seq1, seq2)); 1352 } 1353 1354 /* These functions determine how the current flow behaves in respect of SACK 1355 * handling. SACK is negotiated with the peer, and therefore it can vary 1356 * between different flows. 1357 * 1358 * tcp_is_sack - SACK enabled 1359 * tcp_is_reno - No SACK 1360 */ 1361 static inline int tcp_is_sack(const struct tcp_sock *tp) 1362 { 1363 return likely(tp->rx_opt.sack_ok); 1364 } 1365 1366 static inline bool tcp_is_reno(const struct tcp_sock *tp) 1367 { 1368 return !tcp_is_sack(tp); 1369 } 1370 1371 static inline unsigned int tcp_left_out(const struct tcp_sock *tp) 1372 { 1373 return tp->sacked_out + tp->lost_out; 1374 } 1375 1376 /* This determines how many packets are "in the network" to the best 1377 * of our knowledge. In many cases it is conservative, but where 1378 * detailed information is available from the receiver (via SACK 1379 * blocks etc.) we can make more aggressive calculations. 1380 * 1381 * Use this for decisions involving congestion control, use just 1382 * tp->packets_out to determine if the send queue is empty or not. 1383 * 1384 * Read this equation as: 1385 * 1386 * "Packets sent once on transmission queue" MINUS 1387 * "Packets left network, but not honestly ACKed yet" PLUS 1388 * "Packets fast retransmitted" 1389 */ 1390 static inline unsigned int tcp_packets_in_flight(const struct tcp_sock *tp) 1391 { 1392 return tp->packets_out - tcp_left_out(tp) + tp->retrans_out; 1393 } 1394 1395 #define TCP_INFINITE_SSTHRESH 0x7fffffff 1396 1397 static inline u32 tcp_snd_cwnd(const struct tcp_sock *tp) 1398 { 1399 return tp->snd_cwnd; 1400 } 1401 1402 static inline void tcp_snd_cwnd_set(struct tcp_sock *tp, u32 val) 1403 { 1404 WARN_ON_ONCE((int)val <= 0); 1405 tp->snd_cwnd = val; 1406 } 1407 1408 static inline bool tcp_in_slow_start(const struct tcp_sock *tp) 1409 { 1410 return tcp_snd_cwnd(tp) < tp->snd_ssthresh; 1411 } 1412 1413 static inline bool tcp_in_initial_slowstart(const struct tcp_sock *tp) 1414 { 1415 return tp->snd_ssthresh >= TCP_INFINITE_SSTHRESH; 1416 } 1417 1418 static inline bool tcp_in_cwnd_reduction(const struct sock *sk) 1419 { 1420 return (TCPF_CA_CWR | TCPF_CA_Recovery) & 1421 (1 << inet_csk(sk)->icsk_ca_state); 1422 } 1423 1424 /* If cwnd > ssthresh, we may raise ssthresh to be half-way to cwnd. 1425 * The exception is cwnd reduction phase, when cwnd is decreasing towards 1426 * ssthresh. 1427 */ 1428 static inline __u32 tcp_current_ssthresh(const struct sock *sk) 1429 { 1430 const struct tcp_sock *tp = tcp_sk(sk); 1431 1432 if (tcp_in_cwnd_reduction(sk)) 1433 return tp->snd_ssthresh; 1434 else 1435 return max(tp->snd_ssthresh, 1436 ((tcp_snd_cwnd(tp) >> 1) + 1437 (tcp_snd_cwnd(tp) >> 2))); 1438 } 1439 1440 /* Use define here intentionally to get WARN_ON location shown at the caller */ 1441 #define tcp_verify_left_out(tp) WARN_ON(tcp_left_out(tp) > tp->packets_out) 1442 1443 void tcp_enter_cwr(struct sock *sk); 1444 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst); 1445 1446 /* The maximum number of MSS of available cwnd for which TSO defers 1447 * sending if not using sysctl_tcp_tso_win_divisor. 1448 */ 1449 static inline __u32 tcp_max_tso_deferred_mss(const struct tcp_sock *tp) 1450 { 1451 return 3; 1452 } 1453 1454 /* Returns end sequence number of the receiver's advertised window */ 1455 static inline u32 tcp_wnd_end(const struct tcp_sock *tp) 1456 { 1457 return tp->snd_una + tp->snd_wnd; 1458 } 1459 1460 /* We follow the spirit of RFC2861 to validate cwnd but implement a more 1461 * flexible approach. The RFC suggests cwnd should not be raised unless 1462 * it was fully used previously. And that's exactly what we do in 1463 * congestion avoidance mode. But in slow start we allow cwnd to grow 1464 * as long as the application has used half the cwnd. 1465 * Example : 1466 * cwnd is 10 (IW10), but application sends 9 frames. 1467 * We allow cwnd to reach 18 when all frames are ACKed. 1468 * This check is safe because it's as aggressive as slow start which already 1469 * risks 100% overshoot. The advantage is that we discourage application to 1470 * either send more filler packets or data to artificially blow up the cwnd 1471 * usage, and allow application-limited process to probe bw more aggressively. 1472 */ 1473 static inline bool tcp_is_cwnd_limited(const struct sock *sk) 1474 { 1475 const struct tcp_sock *tp = tcp_sk(sk); 1476 1477 if (tp->is_cwnd_limited) 1478 return true; 1479 1480 /* If in slow start, ensure cwnd grows to twice what was ACKed. */ 1481 if (tcp_in_slow_start(tp)) 1482 return tcp_snd_cwnd(tp) < 2 * tp->max_packets_out; 1483 1484 return false; 1485 } 1486 1487 /* BBR congestion control needs pacing. 1488 * Same remark for SO_MAX_PACING_RATE. 1489 * sch_fq packet scheduler is efficiently handling pacing, 1490 * but is not always installed/used. 1491 * Return true if TCP stack should pace packets itself. 1492 */ 1493 static inline bool tcp_needs_internal_pacing(const struct sock *sk) 1494 { 1495 return smp_load_acquire(&sk->sk_pacing_status) == SK_PACING_NEEDED; 1496 } 1497 1498 /* Estimates in how many jiffies next packet for this flow can be sent. 1499 * Scheduling a retransmit timer too early would be silly. 1500 */ 1501 static inline unsigned long tcp_pacing_delay(const struct sock *sk) 1502 { 1503 s64 delay = tcp_sk(sk)->tcp_wstamp_ns - tcp_sk(sk)->tcp_clock_cache; 1504 1505 return delay > 0 ? nsecs_to_jiffies(delay) : 0; 1506 } 1507 1508 static inline void tcp_reset_xmit_timer(struct sock *sk, 1509 const int what, 1510 unsigned long when, 1511 bool pace_delay) 1512 { 1513 if (pace_delay) 1514 when += tcp_pacing_delay(sk); 1515 inet_csk_reset_xmit_timer(sk, what, when, 1516 tcp_rto_max(sk)); 1517 } 1518 1519 /* Something is really bad, we could not queue an additional packet, 1520 * because qdisc is full or receiver sent a 0 window, or we are paced. 1521 * We do not want to add fuel to the fire, or abort too early, 1522 * so make sure the timer we arm now is at least 200ms in the future, 1523 * regardless of current icsk_rto value (as it could be ~2ms) 1524 */ 1525 static inline unsigned long tcp_probe0_base(const struct sock *sk) 1526 { 1527 return max_t(unsigned long, inet_csk(sk)->icsk_rto, TCP_RTO_MIN); 1528 } 1529 1530 /* Variant of inet_csk_rto_backoff() used for zero window probes */ 1531 static inline unsigned long tcp_probe0_when(const struct sock *sk, 1532 unsigned long max_when) 1533 { 1534 u8 backoff = min_t(u8, ilog2(TCP_RTO_MAX / TCP_RTO_MIN) + 1, 1535 inet_csk(sk)->icsk_backoff); 1536 u64 when = (u64)tcp_probe0_base(sk) << backoff; 1537 1538 return (unsigned long)min_t(u64, when, max_when); 1539 } 1540 1541 static inline void tcp_check_probe_timer(struct sock *sk) 1542 { 1543 if (!tcp_sk(sk)->packets_out && !inet_csk(sk)->icsk_pending) 1544 tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0, 1545 tcp_probe0_base(sk), true); 1546 } 1547 1548 static inline void tcp_init_wl(struct tcp_sock *tp, u32 seq) 1549 { 1550 tp->snd_wl1 = seq; 1551 } 1552 1553 static inline void tcp_update_wl(struct tcp_sock *tp, u32 seq) 1554 { 1555 tp->snd_wl1 = seq; 1556 } 1557 1558 /* 1559 * Calculate(/check) TCP checksum 1560 */ 1561 static inline __sum16 tcp_v4_check(int len, __be32 saddr, 1562 __be32 daddr, __wsum base) 1563 { 1564 return csum_tcpudp_magic(saddr, daddr, len, IPPROTO_TCP, base); 1565 } 1566 1567 static inline bool tcp_checksum_complete(struct sk_buff *skb) 1568 { 1569 return !skb_csum_unnecessary(skb) && 1570 __skb_checksum_complete(skb); 1571 } 1572 1573 bool tcp_add_backlog(struct sock *sk, struct sk_buff *skb, 1574 enum skb_drop_reason *reason); 1575 1576 1577 int tcp_filter(struct sock *sk, struct sk_buff *skb, enum skb_drop_reason *reason); 1578 void tcp_set_state(struct sock *sk, int state); 1579 void tcp_done(struct sock *sk); 1580 int tcp_abort(struct sock *sk, int err); 1581 1582 static inline void tcp_sack_reset(struct tcp_options_received *rx_opt) 1583 { 1584 rx_opt->dsack = 0; 1585 rx_opt->num_sacks = 0; 1586 } 1587 1588 void tcp_cwnd_restart(struct sock *sk, s32 delta); 1589 1590 static inline void tcp_slow_start_after_idle_check(struct sock *sk) 1591 { 1592 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops; 1593 struct tcp_sock *tp = tcp_sk(sk); 1594 s32 delta; 1595 1596 if (!READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_slow_start_after_idle) || 1597 tp->packets_out || ca_ops->cong_control) 1598 return; 1599 delta = tcp_jiffies32 - tp->lsndtime; 1600 if (delta > inet_csk(sk)->icsk_rto) 1601 tcp_cwnd_restart(sk, delta); 1602 } 1603 1604 /* Determine a window scaling and initial window to offer. */ 1605 void tcp_select_initial_window(const struct sock *sk, int __space, 1606 __u32 mss, __u32 *rcv_wnd, 1607 __u32 *window_clamp, int wscale_ok, 1608 __u8 *rcv_wscale, __u32 init_rcv_wnd); 1609 1610 static inline int __tcp_win_from_space(u8 scaling_ratio, int space) 1611 { 1612 s64 scaled_space = (s64)space * scaling_ratio; 1613 1614 return scaled_space >> TCP_RMEM_TO_WIN_SCALE; 1615 } 1616 1617 static inline int tcp_win_from_space(const struct sock *sk, int space) 1618 { 1619 return __tcp_win_from_space(tcp_sk(sk)->scaling_ratio, space); 1620 } 1621 1622 /* inverse of __tcp_win_from_space() */ 1623 static inline int __tcp_space_from_win(u8 scaling_ratio, int win) 1624 { 1625 u64 val = (u64)win << TCP_RMEM_TO_WIN_SCALE; 1626 1627 do_div(val, scaling_ratio); 1628 return val; 1629 } 1630 1631 static inline int tcp_space_from_win(const struct sock *sk, int win) 1632 { 1633 return __tcp_space_from_win(tcp_sk(sk)->scaling_ratio, win); 1634 } 1635 1636 /* Assume a 50% default for skb->len/skb->truesize ratio. 1637 * This may be adjusted later in tcp_measure_rcv_mss(). 1638 */ 1639 #define TCP_DEFAULT_SCALING_RATIO (1 << (TCP_RMEM_TO_WIN_SCALE - 1)) 1640 1641 static inline void tcp_scaling_ratio_init(struct sock *sk) 1642 { 1643 tcp_sk(sk)->scaling_ratio = TCP_DEFAULT_SCALING_RATIO; 1644 } 1645 1646 /* Note: caller must be prepared to deal with negative returns */ 1647 static inline int tcp_space(const struct sock *sk) 1648 { 1649 return tcp_win_from_space(sk, READ_ONCE(sk->sk_rcvbuf) - 1650 READ_ONCE(sk->sk_backlog.len) - 1651 atomic_read(&sk->sk_rmem_alloc)); 1652 } 1653 1654 static inline int tcp_full_space(const struct sock *sk) 1655 { 1656 return tcp_win_from_space(sk, READ_ONCE(sk->sk_rcvbuf)); 1657 } 1658 1659 static inline void __tcp_adjust_rcv_ssthresh(struct sock *sk, u32 new_ssthresh) 1660 { 1661 int unused_mem = sk_unused_reserved_mem(sk); 1662 struct tcp_sock *tp = tcp_sk(sk); 1663 1664 tp->rcv_ssthresh = min(tp->rcv_ssthresh, new_ssthresh); 1665 if (unused_mem) 1666 tp->rcv_ssthresh = max_t(u32, tp->rcv_ssthresh, 1667 tcp_win_from_space(sk, unused_mem)); 1668 } 1669 1670 static inline void tcp_adjust_rcv_ssthresh(struct sock *sk) 1671 { 1672 __tcp_adjust_rcv_ssthresh(sk, 4U * tcp_sk(sk)->advmss); 1673 } 1674 1675 void tcp_cleanup_rbuf(struct sock *sk, int copied); 1676 void __tcp_cleanup_rbuf(struct sock *sk, int copied); 1677 1678 1679 /* We provision sk_rcvbuf around 200% of sk_rcvlowat. 1680 * If 87.5 % (7/8) of the space has been consumed, we want to override 1681 * SO_RCVLOWAT constraint, since we are receiving skbs with too small 1682 * len/truesize ratio. 1683 */ 1684 static inline bool tcp_rmem_pressure(const struct sock *sk) 1685 { 1686 int rcvbuf, threshold; 1687 1688 if (tcp_under_memory_pressure(sk)) 1689 return true; 1690 1691 rcvbuf = READ_ONCE(sk->sk_rcvbuf); 1692 threshold = rcvbuf - (rcvbuf >> 3); 1693 1694 return atomic_read(&sk->sk_rmem_alloc) > threshold; 1695 } 1696 1697 static inline bool tcp_epollin_ready(const struct sock *sk, int target) 1698 { 1699 const struct tcp_sock *tp = tcp_sk(sk); 1700 int avail = READ_ONCE(tp->rcv_nxt) - READ_ONCE(tp->copied_seq); 1701 1702 if (avail <= 0) 1703 return false; 1704 1705 return (avail >= target) || tcp_rmem_pressure(sk) || 1706 (tcp_receive_window(tp) <= inet_csk(sk)->icsk_ack.rcv_mss); 1707 } 1708 1709 extern void tcp_openreq_init_rwin(struct request_sock *req, 1710 const struct sock *sk_listener, 1711 const struct dst_entry *dst); 1712 1713 void tcp_enter_memory_pressure(struct sock *sk); 1714 void tcp_leave_memory_pressure(struct sock *sk); 1715 1716 static inline int keepalive_intvl_when(const struct tcp_sock *tp) 1717 { 1718 struct net *net = sock_net((struct sock *)tp); 1719 int val; 1720 1721 /* Paired with WRITE_ONCE() in tcp_sock_set_keepintvl() 1722 * and do_tcp_setsockopt(). 1723 */ 1724 val = READ_ONCE(tp->keepalive_intvl); 1725 1726 return val ? : READ_ONCE(net->ipv4.sysctl_tcp_keepalive_intvl); 1727 } 1728 1729 static inline int keepalive_time_when(const struct tcp_sock *tp) 1730 { 1731 struct net *net = sock_net((struct sock *)tp); 1732 int val; 1733 1734 /* Paired with WRITE_ONCE() in tcp_sock_set_keepidle_locked() */ 1735 val = READ_ONCE(tp->keepalive_time); 1736 1737 return val ? : READ_ONCE(net->ipv4.sysctl_tcp_keepalive_time); 1738 } 1739 1740 static inline int keepalive_probes(const struct tcp_sock *tp) 1741 { 1742 struct net *net = sock_net((struct sock *)tp); 1743 int val; 1744 1745 /* Paired with WRITE_ONCE() in tcp_sock_set_keepcnt() 1746 * and do_tcp_setsockopt(). 1747 */ 1748 val = READ_ONCE(tp->keepalive_probes); 1749 1750 return val ? : READ_ONCE(net->ipv4.sysctl_tcp_keepalive_probes); 1751 } 1752 1753 static inline u32 keepalive_time_elapsed(const struct tcp_sock *tp) 1754 { 1755 const struct inet_connection_sock *icsk = &tp->inet_conn; 1756 1757 return min_t(u32, tcp_jiffies32 - icsk->icsk_ack.lrcvtime, 1758 tcp_jiffies32 - tp->rcv_tstamp); 1759 } 1760 1761 static inline int tcp_fin_time(const struct sock *sk) 1762 { 1763 int fin_timeout = tcp_sk(sk)->linger2 ? : 1764 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_fin_timeout); 1765 const int rto = inet_csk(sk)->icsk_rto; 1766 1767 if (fin_timeout < (rto << 2) - (rto >> 1)) 1768 fin_timeout = (rto << 2) - (rto >> 1); 1769 1770 return fin_timeout; 1771 } 1772 1773 static inline bool tcp_paws_check(const struct tcp_options_received *rx_opt, 1774 int paws_win) 1775 { 1776 if ((s32)(rx_opt->ts_recent - rx_opt->rcv_tsval) <= paws_win) 1777 return true; 1778 if (unlikely(!time_before32(ktime_get_seconds(), 1779 rx_opt->ts_recent_stamp + TCP_PAWS_WRAP))) 1780 return true; 1781 /* 1782 * Some OSes send SYN and SYNACK messages with tsval=0 tsecr=0, 1783 * then following tcp messages have valid values. Ignore 0 value, 1784 * or else 'negative' tsval might forbid us to accept their packets. 1785 */ 1786 if (!rx_opt->ts_recent) 1787 return true; 1788 return false; 1789 } 1790 1791 static inline bool tcp_paws_reject(const struct tcp_options_received *rx_opt, 1792 int rst) 1793 { 1794 if (tcp_paws_check(rx_opt, 0)) 1795 return false; 1796 1797 /* RST segments are not recommended to carry timestamp, 1798 and, if they do, it is recommended to ignore PAWS because 1799 "their cleanup function should take precedence over timestamps." 1800 Certainly, it is mistake. It is necessary to understand the reasons 1801 of this constraint to relax it: if peer reboots, clock may go 1802 out-of-sync and half-open connections will not be reset. 1803 Actually, the problem would be not existing if all 1804 the implementations followed draft about maintaining clock 1805 via reboots. Linux-2.2 DOES NOT! 1806 1807 However, we can relax time bounds for RST segments to MSL. 1808 */ 1809 if (rst && !time_before32(ktime_get_seconds(), 1810 rx_opt->ts_recent_stamp + TCP_PAWS_MSL)) 1811 return false; 1812 return true; 1813 } 1814 1815 static inline void __tcp_fast_path_on(struct tcp_sock *tp, u32 snd_wnd) 1816 { 1817 u32 ace; 1818 1819 /* mptcp hooks are only on the slow path */ 1820 if (sk_is_mptcp((struct sock *)tp)) 1821 return; 1822 1823 ace = tcp_ecn_mode_accecn(tp) ? 1824 ((tp->delivered_ce + TCP_ACCECN_CEP_INIT_OFFSET) & 1825 TCP_ACCECN_CEP_ACE_MASK) : 0; 1826 1827 tp->pred_flags = htonl((tp->tcp_header_len << 26) | 1828 (ace << 22) | 1829 ntohl(TCP_FLAG_ACK) | 1830 snd_wnd); 1831 } 1832 1833 static inline void tcp_fast_path_on(struct tcp_sock *tp) 1834 { 1835 __tcp_fast_path_on(tp, tp->snd_wnd >> tp->rx_opt.snd_wscale); 1836 } 1837 1838 static inline void tcp_fast_path_check(struct sock *sk) 1839 { 1840 struct tcp_sock *tp = tcp_sk(sk); 1841 1842 if (RB_EMPTY_ROOT(&tp->out_of_order_queue) && 1843 tp->rcv_wnd && 1844 atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf && 1845 !tp->urg_data) 1846 tcp_fast_path_on(tp); 1847 } 1848 1849 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb, 1850 int mib_idx, u32 *last_oow_ack_time); 1851 1852 static inline void tcp_mib_init(struct net *net) 1853 { 1854 /* See RFC 2012 */ 1855 TCP_ADD_STATS(net, TCP_MIB_RTOALGORITHM, 1); 1856 TCP_ADD_STATS(net, TCP_MIB_RTOMIN, TCP_RTO_MIN*1000/HZ); 1857 TCP_ADD_STATS(net, TCP_MIB_RTOMAX, TCP_RTO_MAX*1000/HZ); 1858 TCP_ADD_STATS(net, TCP_MIB_MAXCONN, -1); 1859 } 1860 1861 /* from STCP */ 1862 static inline void tcp_clear_all_retrans_hints(struct tcp_sock *tp) 1863 { 1864 tp->retransmit_skb_hint = NULL; 1865 } 1866 1867 #define tcp_md5_addr tcp_ao_addr 1868 1869 /* - key database */ 1870 struct tcp_md5sig_key { 1871 struct hlist_node node; 1872 u8 keylen; 1873 u8 family; /* AF_INET or AF_INET6 */ 1874 u8 prefixlen; 1875 u8 flags; 1876 union tcp_md5_addr addr; 1877 int l3index; /* set if key added with L3 scope */ 1878 u8 key[TCP_MD5SIG_MAXKEYLEN]; 1879 struct rcu_head rcu; 1880 }; 1881 1882 /* - sock block */ 1883 struct tcp_md5sig_info { 1884 struct hlist_head head; 1885 struct rcu_head rcu; 1886 }; 1887 1888 /* - pseudo header */ 1889 struct tcp4_pseudohdr { 1890 __be32 saddr; 1891 __be32 daddr; 1892 __u8 pad; 1893 __u8 protocol; 1894 __be16 len; 1895 }; 1896 1897 struct tcp6_pseudohdr { 1898 struct in6_addr saddr; 1899 struct in6_addr daddr; 1900 __be32 len; 1901 __be32 protocol; /* including padding */ 1902 }; 1903 1904 /* 1905 * struct tcp_sigpool - per-CPU pool of ahash_requests 1906 * @scratch: per-CPU temporary area, that can be used between 1907 * tcp_sigpool_start() and tcp_sigpool_end() to perform 1908 * crypto request 1909 * @req: pre-allocated ahash request 1910 */ 1911 struct tcp_sigpool { 1912 void *scratch; 1913 struct ahash_request *req; 1914 }; 1915 1916 int tcp_sigpool_alloc_ahash(const char *alg, size_t scratch_size); 1917 void tcp_sigpool_get(unsigned int id); 1918 void tcp_sigpool_release(unsigned int id); 1919 int tcp_sigpool_hash_skb_data(struct tcp_sigpool *hp, 1920 const struct sk_buff *skb, 1921 unsigned int header_len); 1922 1923 /** 1924 * tcp_sigpool_start - disable bh and start using tcp_sigpool_ahash 1925 * @id: tcp_sigpool that was previously allocated by tcp_sigpool_alloc_ahash() 1926 * @c: returned tcp_sigpool for usage (uninitialized on failure) 1927 * 1928 * Returns: 0 on success, error otherwise. 1929 */ 1930 int tcp_sigpool_start(unsigned int id, struct tcp_sigpool *c); 1931 /** 1932 * tcp_sigpool_end - enable bh and stop using tcp_sigpool 1933 * @c: tcp_sigpool context that was returned by tcp_sigpool_start() 1934 */ 1935 void tcp_sigpool_end(struct tcp_sigpool *c); 1936 size_t tcp_sigpool_algo(unsigned int id, char *buf, size_t buf_len); 1937 /* - functions */ 1938 void tcp_v4_md5_hash_skb(char *md5_hash, const struct tcp_md5sig_key *key, 1939 const struct sock *sk, const struct sk_buff *skb); 1940 int tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr, 1941 int family, u8 prefixlen, int l3index, u8 flags, 1942 const u8 *newkey, u8 newkeylen); 1943 int tcp_md5_key_copy(struct sock *sk, const union tcp_md5_addr *addr, 1944 int family, u8 prefixlen, int l3index, 1945 struct tcp_md5sig_key *key); 1946 1947 int tcp_md5_do_del(struct sock *sk, const union tcp_md5_addr *addr, 1948 int family, u8 prefixlen, int l3index, u8 flags); 1949 void tcp_clear_md5_list(struct sock *sk); 1950 struct tcp_md5sig_key *tcp_v4_md5_lookup(const struct sock *sk, 1951 const struct sock *addr_sk); 1952 1953 #ifdef CONFIG_TCP_MD5SIG 1954 struct tcp_md5sig_key *__tcp_md5_do_lookup(const struct sock *sk, int l3index, 1955 const union tcp_md5_addr *addr, 1956 int family, bool any_l3index); 1957 static inline struct tcp_md5sig_key * 1958 tcp_md5_do_lookup(const struct sock *sk, int l3index, 1959 const union tcp_md5_addr *addr, int family) 1960 { 1961 if (!static_branch_unlikely(&tcp_md5_needed.key)) 1962 return NULL; 1963 return __tcp_md5_do_lookup(sk, l3index, addr, family, false); 1964 } 1965 1966 static inline struct tcp_md5sig_key * 1967 tcp_md5_do_lookup_any_l3index(const struct sock *sk, 1968 const union tcp_md5_addr *addr, int family) 1969 { 1970 if (!static_branch_unlikely(&tcp_md5_needed.key)) 1971 return NULL; 1972 return __tcp_md5_do_lookup(sk, 0, addr, family, true); 1973 } 1974 1975 #define tcp_twsk_md5_key(twsk) ((twsk)->tw_md5_key) 1976 void tcp_md5_destruct_sock(struct sock *sk); 1977 #else 1978 static inline struct tcp_md5sig_key * 1979 tcp_md5_do_lookup(const struct sock *sk, int l3index, 1980 const union tcp_md5_addr *addr, int family) 1981 { 1982 return NULL; 1983 } 1984 1985 static inline struct tcp_md5sig_key * 1986 tcp_md5_do_lookup_any_l3index(const struct sock *sk, 1987 const union tcp_md5_addr *addr, int family) 1988 { 1989 return NULL; 1990 } 1991 1992 #define tcp_twsk_md5_key(twsk) NULL 1993 static inline void tcp_md5_destruct_sock(struct sock *sk) 1994 { 1995 } 1996 #endif 1997 1998 struct md5_ctx; 1999 void tcp_md5_hash_skb_data(struct md5_ctx *ctx, const struct sk_buff *skb, 2000 unsigned int header_len); 2001 void tcp_md5_hash_key(struct md5_ctx *ctx, const struct tcp_md5sig_key *key); 2002 2003 /* From tcp_fastopen.c */ 2004 void tcp_fastopen_cache_get(struct sock *sk, u16 *mss, 2005 struct tcp_fastopen_cookie *cookie); 2006 void tcp_fastopen_cache_set(struct sock *sk, u16 mss, 2007 struct tcp_fastopen_cookie *cookie, bool syn_lost, 2008 u16 try_exp); 2009 struct tcp_fastopen_request { 2010 /* Fast Open cookie. Size 0 means a cookie request */ 2011 struct tcp_fastopen_cookie cookie; 2012 struct msghdr *data; /* data in MSG_FASTOPEN */ 2013 size_t size; 2014 int copied; /* queued in tcp_connect() */ 2015 struct ubuf_info *uarg; 2016 }; 2017 void tcp_free_fastopen_req(struct tcp_sock *tp); 2018 void tcp_fastopen_destroy_cipher(struct sock *sk); 2019 void tcp_fastopen_ctx_destroy(struct net *net); 2020 int tcp_fastopen_reset_cipher(struct net *net, struct sock *sk, 2021 void *primary_key, void *backup_key); 2022 int tcp_fastopen_get_cipher(struct net *net, struct inet_connection_sock *icsk, 2023 u64 *key); 2024 void tcp_fastopen_add_skb(struct sock *sk, struct sk_buff *skb); 2025 struct sock *tcp_try_fastopen(struct sock *sk, struct sk_buff *skb, 2026 struct request_sock *req, 2027 struct tcp_fastopen_cookie *foc, 2028 const struct dst_entry *dst); 2029 void tcp_fastopen_init_key_once(struct net *net); 2030 bool tcp_fastopen_cookie_check(struct sock *sk, u16 *mss, 2031 struct tcp_fastopen_cookie *cookie); 2032 bool tcp_fastopen_defer_connect(struct sock *sk, int *err); 2033 #define TCP_FASTOPEN_KEY_LENGTH sizeof(siphash_key_t) 2034 #define TCP_FASTOPEN_KEY_MAX 2 2035 #define TCP_FASTOPEN_KEY_BUF_LENGTH \ 2036 (TCP_FASTOPEN_KEY_LENGTH * TCP_FASTOPEN_KEY_MAX) 2037 2038 /* Fastopen key context */ 2039 struct tcp_fastopen_context { 2040 siphash_key_t key[TCP_FASTOPEN_KEY_MAX]; 2041 int num; 2042 struct rcu_head rcu; 2043 }; 2044 2045 void tcp_fastopen_active_disable(struct sock *sk); 2046 bool tcp_fastopen_active_should_disable(struct sock *sk); 2047 void tcp_fastopen_active_disable_ofo_check(struct sock *sk); 2048 void tcp_fastopen_active_detect_blackhole(struct sock *sk, bool expired); 2049 2050 /* Caller needs to wrap with rcu_read_(un)lock() */ 2051 static inline 2052 struct tcp_fastopen_context *tcp_fastopen_get_ctx(const struct sock *sk) 2053 { 2054 struct tcp_fastopen_context *ctx; 2055 2056 ctx = rcu_dereference(inet_csk(sk)->icsk_accept_queue.fastopenq.ctx); 2057 if (!ctx) 2058 ctx = rcu_dereference(sock_net(sk)->ipv4.tcp_fastopen_ctx); 2059 return ctx; 2060 } 2061 2062 static inline 2063 bool tcp_fastopen_cookie_match(const struct tcp_fastopen_cookie *foc, 2064 const struct tcp_fastopen_cookie *orig) 2065 { 2066 if (orig->len == TCP_FASTOPEN_COOKIE_SIZE && 2067 orig->len == foc->len && 2068 !memcmp(orig->val, foc->val, foc->len)) 2069 return true; 2070 return false; 2071 } 2072 2073 static inline 2074 int tcp_fastopen_context_len(const struct tcp_fastopen_context *ctx) 2075 { 2076 return ctx->num; 2077 } 2078 2079 /* Latencies incurred by various limits for a sender. They are 2080 * chronograph-like stats that are mutually exclusive. 2081 */ 2082 enum tcp_chrono { 2083 TCP_CHRONO_UNSPEC, 2084 TCP_CHRONO_BUSY, /* Actively sending data (non-empty write queue) */ 2085 TCP_CHRONO_RWND_LIMITED, /* Stalled by insufficient receive window */ 2086 TCP_CHRONO_SNDBUF_LIMITED, /* Stalled by insufficient send buffer */ 2087 __TCP_CHRONO_MAX, 2088 }; 2089 2090 void tcp_chrono_start(struct sock *sk, const enum tcp_chrono type); 2091 void tcp_chrono_stop(struct sock *sk, const enum tcp_chrono type); 2092 2093 /* This helper is needed, because skb->tcp_tsorted_anchor uses 2094 * the same memory storage than skb->destructor/_skb_refdst 2095 */ 2096 static inline void tcp_skb_tsorted_anchor_cleanup(struct sk_buff *skb) 2097 { 2098 skb->destructor = NULL; 2099 skb->_skb_refdst = 0UL; 2100 } 2101 2102 #define tcp_skb_tsorted_save(skb) { \ 2103 unsigned long _save = skb->_skb_refdst; \ 2104 skb->_skb_refdst = 0UL; 2105 2106 #define tcp_skb_tsorted_restore(skb) \ 2107 skb->_skb_refdst = _save; \ 2108 } 2109 2110 void tcp_write_queue_purge(struct sock *sk); 2111 2112 static inline struct sk_buff *tcp_rtx_queue_head(const struct sock *sk) 2113 { 2114 return skb_rb_first(&sk->tcp_rtx_queue); 2115 } 2116 2117 static inline struct sk_buff *tcp_rtx_queue_tail(const struct sock *sk) 2118 { 2119 return skb_rb_last(&sk->tcp_rtx_queue); 2120 } 2121 2122 static inline struct sk_buff *tcp_write_queue_tail(const struct sock *sk) 2123 { 2124 return skb_peek_tail(&sk->sk_write_queue); 2125 } 2126 2127 #define tcp_for_write_queue_from_safe(skb, tmp, sk) \ 2128 skb_queue_walk_from_safe(&(sk)->sk_write_queue, skb, tmp) 2129 2130 static inline struct sk_buff *tcp_send_head(const struct sock *sk) 2131 { 2132 return skb_peek(&sk->sk_write_queue); 2133 } 2134 2135 static inline bool tcp_skb_is_last(const struct sock *sk, 2136 const struct sk_buff *skb) 2137 { 2138 return skb_queue_is_last(&sk->sk_write_queue, skb); 2139 } 2140 2141 /** 2142 * tcp_write_queue_empty - test if any payload (or FIN) is available in write queue 2143 * @sk: socket 2144 * 2145 * Since the write queue can have a temporary empty skb in it, 2146 * we must not use "return skb_queue_empty(&sk->sk_write_queue)" 2147 */ 2148 static inline bool tcp_write_queue_empty(const struct sock *sk) 2149 { 2150 const struct tcp_sock *tp = tcp_sk(sk); 2151 2152 return tp->write_seq == tp->snd_nxt; 2153 } 2154 2155 static inline bool tcp_rtx_queue_empty(const struct sock *sk) 2156 { 2157 return RB_EMPTY_ROOT(&sk->tcp_rtx_queue); 2158 } 2159 2160 static inline bool tcp_rtx_and_write_queues_empty(const struct sock *sk) 2161 { 2162 return tcp_rtx_queue_empty(sk) && tcp_write_queue_empty(sk); 2163 } 2164 2165 static inline void tcp_add_write_queue_tail(struct sock *sk, struct sk_buff *skb) 2166 { 2167 __skb_queue_tail(&sk->sk_write_queue, skb); 2168 2169 /* Queue it, remembering where we must start sending. */ 2170 if (sk->sk_write_queue.next == skb) 2171 tcp_chrono_start(sk, TCP_CHRONO_BUSY); 2172 } 2173 2174 /* Insert new before skb on the write queue of sk. */ 2175 static inline void tcp_insert_write_queue_before(struct sk_buff *new, 2176 struct sk_buff *skb, 2177 struct sock *sk) 2178 { 2179 __skb_queue_before(&sk->sk_write_queue, skb, new); 2180 } 2181 2182 static inline void tcp_unlink_write_queue(struct sk_buff *skb, struct sock *sk) 2183 { 2184 tcp_skb_tsorted_anchor_cleanup(skb); 2185 __skb_unlink(skb, &sk->sk_write_queue); 2186 } 2187 2188 void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb); 2189 2190 static inline void tcp_rtx_queue_unlink(struct sk_buff *skb, struct sock *sk) 2191 { 2192 tcp_skb_tsorted_anchor_cleanup(skb); 2193 rb_erase(&skb->rbnode, &sk->tcp_rtx_queue); 2194 } 2195 2196 static inline void tcp_rtx_queue_unlink_and_free(struct sk_buff *skb, struct sock *sk) 2197 { 2198 list_del(&skb->tcp_tsorted_anchor); 2199 tcp_rtx_queue_unlink(skb, sk); 2200 tcp_wmem_free_skb(sk, skb); 2201 } 2202 2203 static inline void tcp_write_collapse_fence(struct sock *sk) 2204 { 2205 struct sk_buff *skb = tcp_write_queue_tail(sk); 2206 2207 if (skb) 2208 TCP_SKB_CB(skb)->eor = 1; 2209 } 2210 2211 static inline void tcp_push_pending_frames(struct sock *sk) 2212 { 2213 if (tcp_send_head(sk)) { 2214 struct tcp_sock *tp = tcp_sk(sk); 2215 2216 __tcp_push_pending_frames(sk, tcp_current_mss(sk), tp->nonagle); 2217 } 2218 } 2219 2220 /* Start sequence of the skb just after the highest skb with SACKed 2221 * bit, valid only if sacked_out > 0 or when the caller has ensured 2222 * validity by itself. 2223 */ 2224 static inline u32 tcp_highest_sack_seq(struct tcp_sock *tp) 2225 { 2226 if (!tp->sacked_out) 2227 return tp->snd_una; 2228 2229 if (tp->highest_sack == NULL) 2230 return tp->snd_nxt; 2231 2232 return TCP_SKB_CB(tp->highest_sack)->seq; 2233 } 2234 2235 static inline void tcp_advance_highest_sack(struct sock *sk, struct sk_buff *skb) 2236 { 2237 tcp_sk(sk)->highest_sack = skb_rb_next(skb); 2238 } 2239 2240 static inline struct sk_buff *tcp_highest_sack(struct sock *sk) 2241 { 2242 return tcp_sk(sk)->highest_sack; 2243 } 2244 2245 static inline void tcp_highest_sack_reset(struct sock *sk) 2246 { 2247 tcp_sk(sk)->highest_sack = tcp_rtx_queue_head(sk); 2248 } 2249 2250 /* Called when old skb is about to be deleted and replaced by new skb */ 2251 static inline void tcp_highest_sack_replace(struct sock *sk, 2252 struct sk_buff *old, 2253 struct sk_buff *new) 2254 { 2255 if (old == tcp_highest_sack(sk)) 2256 tcp_sk(sk)->highest_sack = new; 2257 } 2258 2259 /* This helper checks if socket has IP_TRANSPARENT set */ 2260 static inline bool inet_sk_transparent(const struct sock *sk) 2261 { 2262 switch (sk->sk_state) { 2263 case TCP_TIME_WAIT: 2264 return inet_twsk(sk)->tw_transparent; 2265 case TCP_NEW_SYN_RECV: 2266 return inet_rsk(inet_reqsk(sk))->no_srccheck; 2267 } 2268 return inet_test_bit(TRANSPARENT, sk); 2269 } 2270 2271 /* Determines whether this is a thin stream (which may suffer from 2272 * increased latency). Used to trigger latency-reducing mechanisms. 2273 */ 2274 static inline bool tcp_stream_is_thin(struct tcp_sock *tp) 2275 { 2276 return tp->packets_out < 4 && !tcp_in_initial_slowstart(tp); 2277 } 2278 2279 /* /proc */ 2280 enum tcp_seq_states { 2281 TCP_SEQ_STATE_LISTENING, 2282 TCP_SEQ_STATE_ESTABLISHED, 2283 }; 2284 2285 void *tcp_seq_start(struct seq_file *seq, loff_t *pos); 2286 void *tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos); 2287 void tcp_seq_stop(struct seq_file *seq, void *v); 2288 2289 struct tcp_seq_afinfo { 2290 sa_family_t family; 2291 }; 2292 2293 struct tcp_iter_state { 2294 struct seq_net_private p; 2295 enum tcp_seq_states state; 2296 struct sock *syn_wait_sk; 2297 int bucket, offset, sbucket, num; 2298 loff_t last_pos; 2299 }; 2300 2301 extern struct request_sock_ops tcp_request_sock_ops; 2302 extern struct request_sock_ops tcp6_request_sock_ops; 2303 2304 void tcp_v4_destroy_sock(struct sock *sk); 2305 2306 struct sk_buff *tcp_gso_segment(struct sk_buff *skb, 2307 netdev_features_t features); 2308 struct tcphdr *tcp_gro_pull_header(struct sk_buff *skb); 2309 struct sk_buff *tcp_gro_lookup(struct list_head *head, struct tcphdr *th); 2310 struct sk_buff *tcp_gro_receive(struct list_head *head, struct sk_buff *skb, 2311 struct tcphdr *th); 2312 INDIRECT_CALLABLE_DECLARE(int tcp4_gro_complete(struct sk_buff *skb, int thoff)); 2313 INDIRECT_CALLABLE_DECLARE(struct sk_buff *tcp4_gro_receive(struct list_head *head, struct sk_buff *skb)); 2314 INDIRECT_CALLABLE_DECLARE(int tcp6_gro_complete(struct sk_buff *skb, int thoff)); 2315 INDIRECT_CALLABLE_DECLARE(struct sk_buff *tcp6_gro_receive(struct list_head *head, struct sk_buff *skb)); 2316 #ifdef CONFIG_INET 2317 void tcp_gro_complete(struct sk_buff *skb); 2318 #else 2319 static inline void tcp_gro_complete(struct sk_buff *skb) { } 2320 #endif 2321 2322 void __tcp_v4_send_check(struct sk_buff *skb, __be32 saddr, __be32 daddr); 2323 2324 static inline u32 tcp_notsent_lowat(const struct tcp_sock *tp) 2325 { 2326 struct net *net = sock_net((struct sock *)tp); 2327 u32 val; 2328 2329 val = READ_ONCE(tp->notsent_lowat); 2330 2331 return val ?: READ_ONCE(net->ipv4.sysctl_tcp_notsent_lowat); 2332 } 2333 2334 bool tcp_stream_memory_free(const struct sock *sk, int wake); 2335 2336 #ifdef CONFIG_PROC_FS 2337 int tcp4_proc_init(void); 2338 void tcp4_proc_exit(void); 2339 #endif 2340 2341 int tcp_rtx_synack(const struct sock *sk, struct request_sock *req); 2342 int tcp_conn_request(struct request_sock_ops *rsk_ops, 2343 const struct tcp_request_sock_ops *af_ops, 2344 struct sock *sk, struct sk_buff *skb); 2345 2346 /* TCP af-specific functions */ 2347 struct tcp_sock_af_ops { 2348 #ifdef CONFIG_TCP_MD5SIG 2349 struct tcp_md5sig_key *(*md5_lookup) (const struct sock *sk, 2350 const struct sock *addr_sk); 2351 void (*calc_md5_hash)(char *location, 2352 const struct tcp_md5sig_key *md5, 2353 const struct sock *sk, 2354 const struct sk_buff *skb); 2355 int (*md5_parse)(struct sock *sk, 2356 int optname, 2357 sockptr_t optval, 2358 int optlen); 2359 #endif 2360 #ifdef CONFIG_TCP_AO 2361 int (*ao_parse)(struct sock *sk, int optname, sockptr_t optval, int optlen); 2362 struct tcp_ao_key *(*ao_lookup)(const struct sock *sk, 2363 struct sock *addr_sk, 2364 int sndid, int rcvid); 2365 int (*ao_calc_key_sk)(struct tcp_ao_key *mkt, u8 *key, 2366 const struct sock *sk, 2367 __be32 sisn, __be32 disn, bool send); 2368 int (*calc_ao_hash)(char *location, struct tcp_ao_key *ao, 2369 const struct sock *sk, const struct sk_buff *skb, 2370 const u8 *tkey, int hash_offset, u32 sne); 2371 #endif 2372 }; 2373 2374 struct tcp_request_sock_ops { 2375 u16 mss_clamp; 2376 #ifdef CONFIG_TCP_MD5SIG 2377 struct tcp_md5sig_key *(*req_md5_lookup)(const struct sock *sk, 2378 const struct sock *addr_sk); 2379 void (*calc_md5_hash) (char *location, 2380 const struct tcp_md5sig_key *md5, 2381 const struct sock *sk, 2382 const struct sk_buff *skb); 2383 #endif 2384 #ifdef CONFIG_TCP_AO 2385 struct tcp_ao_key *(*ao_lookup)(const struct sock *sk, 2386 struct request_sock *req, 2387 int sndid, int rcvid); 2388 int (*ao_calc_key)(struct tcp_ao_key *mkt, u8 *key, struct request_sock *sk); 2389 int (*ao_synack_hash)(char *ao_hash, struct tcp_ao_key *mkt, 2390 struct request_sock *req, const struct sk_buff *skb, 2391 int hash_offset, u32 sne); 2392 #endif 2393 #ifdef CONFIG_SYN_COOKIES 2394 __u32 (*cookie_init_seq)(const struct sk_buff *skb, 2395 __u16 *mss); 2396 #endif 2397 struct dst_entry *(*route_req)(const struct sock *sk, 2398 struct sk_buff *skb, 2399 struct flowi *fl, 2400 struct request_sock *req, 2401 u32 tw_isn); 2402 u32 (*init_seq)(const struct sk_buff *skb); 2403 u32 (*init_ts_off)(const struct net *net, const struct sk_buff *skb); 2404 int (*send_synack)(const struct sock *sk, struct dst_entry *dst, 2405 struct flowi *fl, struct request_sock *req, 2406 struct tcp_fastopen_cookie *foc, 2407 enum tcp_synack_type synack_type, 2408 struct sk_buff *syn_skb); 2409 }; 2410 2411 extern const struct tcp_request_sock_ops tcp_request_sock_ipv4_ops; 2412 #if IS_ENABLED(CONFIG_IPV6) 2413 extern const struct tcp_request_sock_ops tcp_request_sock_ipv6_ops; 2414 #endif 2415 2416 #ifdef CONFIG_SYN_COOKIES 2417 static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops, 2418 const struct sock *sk, struct sk_buff *skb, 2419 __u16 *mss) 2420 { 2421 tcp_synq_overflow(sk); 2422 __NET_INC_STATS(sock_net(sk), LINUX_MIB_SYNCOOKIESSENT); 2423 return ops->cookie_init_seq(skb, mss); 2424 } 2425 #else 2426 static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops, 2427 const struct sock *sk, struct sk_buff *skb, 2428 __u16 *mss) 2429 { 2430 return 0; 2431 } 2432 #endif 2433 2434 struct tcp_key { 2435 union { 2436 struct { 2437 struct tcp_ao_key *ao_key; 2438 char *traffic_key; 2439 u32 sne; 2440 u8 rcv_next; 2441 }; 2442 struct tcp_md5sig_key *md5_key; 2443 }; 2444 enum { 2445 TCP_KEY_NONE = 0, 2446 TCP_KEY_MD5, 2447 TCP_KEY_AO, 2448 } type; 2449 }; 2450 2451 static inline void tcp_get_current_key(const struct sock *sk, 2452 struct tcp_key *out) 2453 { 2454 #if defined(CONFIG_TCP_AO) || defined(CONFIG_TCP_MD5SIG) 2455 const struct tcp_sock *tp = tcp_sk(sk); 2456 #endif 2457 2458 #ifdef CONFIG_TCP_AO 2459 if (static_branch_unlikely(&tcp_ao_needed.key)) { 2460 struct tcp_ao_info *ao; 2461 2462 ao = rcu_dereference_protected(tp->ao_info, 2463 lockdep_sock_is_held(sk)); 2464 if (ao) { 2465 out->ao_key = READ_ONCE(ao->current_key); 2466 out->type = TCP_KEY_AO; 2467 return; 2468 } 2469 } 2470 #endif 2471 #ifdef CONFIG_TCP_MD5SIG 2472 if (static_branch_unlikely(&tcp_md5_needed.key) && 2473 rcu_access_pointer(tp->md5sig_info)) { 2474 out->md5_key = tp->af_specific->md5_lookup(sk, sk); 2475 if (out->md5_key) { 2476 out->type = TCP_KEY_MD5; 2477 return; 2478 } 2479 } 2480 #endif 2481 out->type = TCP_KEY_NONE; 2482 } 2483 2484 static inline bool tcp_key_is_md5(const struct tcp_key *key) 2485 { 2486 if (static_branch_tcp_md5()) 2487 return key->type == TCP_KEY_MD5; 2488 return false; 2489 } 2490 2491 static inline bool tcp_key_is_ao(const struct tcp_key *key) 2492 { 2493 if (static_branch_tcp_ao()) 2494 return key->type == TCP_KEY_AO; 2495 return false; 2496 } 2497 2498 int tcpv4_offload_init(void); 2499 2500 void tcp_v4_init(void); 2501 void tcp_init(void); 2502 2503 /* tcp_recovery.c */ 2504 void tcp_mark_skb_lost(struct sock *sk, struct sk_buff *skb); 2505 void tcp_newreno_mark_lost(struct sock *sk, bool snd_una_advanced); 2506 extern s32 tcp_rack_skb_timeout(struct tcp_sock *tp, struct sk_buff *skb, 2507 u32 reo_wnd); 2508 extern bool tcp_rack_mark_lost(struct sock *sk); 2509 extern void tcp_rack_advance(struct tcp_sock *tp, u8 sacked, u32 end_seq, 2510 u64 xmit_time); 2511 extern void tcp_rack_reo_timeout(struct sock *sk); 2512 extern void tcp_rack_update_reo_wnd(struct sock *sk, struct rate_sample *rs); 2513 2514 /* tcp_plb.c */ 2515 2516 /* 2517 * Scaling factor for fractions in PLB. For example, tcp_plb_update_state 2518 * expects cong_ratio which represents fraction of traffic that experienced 2519 * congestion over a single RTT. In order to avoid floating point operations, 2520 * this fraction should be mapped to (1 << TCP_PLB_SCALE) and passed in. 2521 */ 2522 #define TCP_PLB_SCALE 8 2523 2524 /* State for PLB (Protective Load Balancing) for a single TCP connection. */ 2525 struct tcp_plb_state { 2526 u8 consec_cong_rounds:5, /* consecutive congested rounds */ 2527 unused:3; 2528 u32 pause_until; /* jiffies32 when PLB can resume rerouting */ 2529 }; 2530 2531 static inline void tcp_plb_init(const struct sock *sk, 2532 struct tcp_plb_state *plb) 2533 { 2534 plb->consec_cong_rounds = 0; 2535 plb->pause_until = 0; 2536 } 2537 void tcp_plb_update_state(const struct sock *sk, struct tcp_plb_state *plb, 2538 const int cong_ratio); 2539 void tcp_plb_check_rehash(struct sock *sk, struct tcp_plb_state *plb); 2540 void tcp_plb_update_state_upon_rto(struct sock *sk, struct tcp_plb_state *plb); 2541 2542 static inline void tcp_warn_once(const struct sock *sk, bool cond, const char *str) 2543 { 2544 WARN_ONCE(cond, 2545 "%scwn:%u out:%u sacked:%u lost:%u retrans:%u tlp_high_seq:%u sk_state:%u ca_state:%u advmss:%u mss_cache:%u pmtu:%u\n", 2546 str, 2547 tcp_snd_cwnd(tcp_sk(sk)), 2548 tcp_sk(sk)->packets_out, tcp_sk(sk)->sacked_out, 2549 tcp_sk(sk)->lost_out, tcp_sk(sk)->retrans_out, 2550 tcp_sk(sk)->tlp_high_seq, sk->sk_state, 2551 inet_csk(sk)->icsk_ca_state, 2552 tcp_sk(sk)->advmss, tcp_sk(sk)->mss_cache, 2553 inet_csk(sk)->icsk_pmtu_cookie); 2554 } 2555 2556 /* At how many usecs into the future should the RTO fire? */ 2557 static inline s64 tcp_rto_delta_us(const struct sock *sk) 2558 { 2559 const struct sk_buff *skb = tcp_rtx_queue_head(sk); 2560 u32 rto = inet_csk(sk)->icsk_rto; 2561 2562 if (likely(skb)) { 2563 u64 rto_time_stamp_us = tcp_skb_timestamp_us(skb) + jiffies_to_usecs(rto); 2564 2565 return rto_time_stamp_us - tcp_sk(sk)->tcp_mstamp; 2566 } else { 2567 tcp_warn_once(sk, 1, "rtx queue empty: "); 2568 return jiffies_to_usecs(rto); 2569 } 2570 2571 } 2572 2573 /* 2574 * Save and compile IPv4 options, return a pointer to it 2575 */ 2576 static inline struct ip_options_rcu *tcp_v4_save_options(struct net *net, 2577 struct sk_buff *skb) 2578 { 2579 const struct ip_options *opt = &TCP_SKB_CB(skb)->header.h4.opt; 2580 struct ip_options_rcu *dopt = NULL; 2581 2582 if (opt->optlen) { 2583 int opt_size = sizeof(*dopt) + opt->optlen; 2584 2585 dopt = kmalloc(opt_size, GFP_ATOMIC); 2586 if (dopt && __ip_options_echo(net, &dopt->opt, skb, opt)) { 2587 kfree(dopt); 2588 dopt = NULL; 2589 } 2590 } 2591 return dopt; 2592 } 2593 2594 /* locally generated TCP pure ACKs have skb->truesize == 2 2595 * (check tcp_send_ack() in net/ipv4/tcp_output.c ) 2596 * This is much faster than dissecting the packet to find out. 2597 * (Think of GRE encapsulations, IPv4, IPv6, ...) 2598 */ 2599 static inline bool skb_is_tcp_pure_ack(const struct sk_buff *skb) 2600 { 2601 return skb->truesize == 2; 2602 } 2603 2604 static inline void skb_set_tcp_pure_ack(struct sk_buff *skb) 2605 { 2606 skb->truesize = 2; 2607 } 2608 2609 static inline int tcp_inq(struct sock *sk) 2610 { 2611 struct tcp_sock *tp = tcp_sk(sk); 2612 int answ; 2613 2614 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) { 2615 answ = 0; 2616 } else if (sock_flag(sk, SOCK_URGINLINE) || 2617 !tp->urg_data || 2618 before(tp->urg_seq, tp->copied_seq) || 2619 !before(tp->urg_seq, tp->rcv_nxt)) { 2620 2621 answ = tp->rcv_nxt - tp->copied_seq; 2622 2623 /* Subtract 1, if FIN was received */ 2624 if (answ && sock_flag(sk, SOCK_DONE)) 2625 answ--; 2626 } else { 2627 answ = tp->urg_seq - tp->copied_seq; 2628 } 2629 2630 return answ; 2631 } 2632 2633 int tcp_peek_len(struct socket *sock); 2634 2635 static inline void tcp_segs_in(struct tcp_sock *tp, const struct sk_buff *skb) 2636 { 2637 u16 segs_in; 2638 2639 segs_in = max_t(u16, 1, skb_shinfo(skb)->gso_segs); 2640 2641 /* We update these fields while other threads might 2642 * read them from tcp_get_info() 2643 */ 2644 WRITE_ONCE(tp->segs_in, tp->segs_in + segs_in); 2645 if (skb->len > tcp_hdrlen(skb)) 2646 WRITE_ONCE(tp->data_segs_in, tp->data_segs_in + segs_in); 2647 } 2648 2649 /* 2650 * TCP listen path runs lockless. 2651 * We forced "struct sock" to be const qualified to make sure 2652 * we don't modify one of its field by mistake. 2653 * Here, we increment sk_drops which is an atomic_t, so we can safely 2654 * make sock writable again. 2655 */ 2656 static inline void tcp_listendrop(const struct sock *sk) 2657 { 2658 sk_drops_inc((struct sock *)sk); 2659 __NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENDROPS); 2660 } 2661 2662 enum hrtimer_restart tcp_pace_kick(struct hrtimer *timer); 2663 2664 /* 2665 * Interface for adding Upper Level Protocols over TCP 2666 */ 2667 2668 #define TCP_ULP_NAME_MAX 16 2669 #define TCP_ULP_MAX 128 2670 #define TCP_ULP_BUF_MAX (TCP_ULP_NAME_MAX*TCP_ULP_MAX) 2671 2672 struct tcp_ulp_ops { 2673 struct list_head list; 2674 2675 /* initialize ulp */ 2676 int (*init)(struct sock *sk); 2677 /* update ulp */ 2678 void (*update)(struct sock *sk, struct proto *p, 2679 void (*write_space)(struct sock *sk)); 2680 /* cleanup ulp */ 2681 void (*release)(struct sock *sk); 2682 /* diagnostic */ 2683 int (*get_info)(struct sock *sk, struct sk_buff *skb, bool net_admin); 2684 size_t (*get_info_size)(const struct sock *sk, bool net_admin); 2685 /* clone ulp */ 2686 void (*clone)(const struct request_sock *req, struct sock *newsk, 2687 const gfp_t priority); 2688 2689 char name[TCP_ULP_NAME_MAX]; 2690 struct module *owner; 2691 }; 2692 int tcp_register_ulp(struct tcp_ulp_ops *type); 2693 void tcp_unregister_ulp(struct tcp_ulp_ops *type); 2694 int tcp_set_ulp(struct sock *sk, const char *name); 2695 void tcp_get_available_ulp(char *buf, size_t len); 2696 void tcp_cleanup_ulp(struct sock *sk); 2697 void tcp_update_ulp(struct sock *sk, struct proto *p, 2698 void (*write_space)(struct sock *sk)); 2699 2700 #define MODULE_ALIAS_TCP_ULP(name) \ 2701 MODULE_INFO(alias, name); \ 2702 MODULE_INFO(alias, "tcp-ulp-" name) 2703 2704 #ifdef CONFIG_NET_SOCK_MSG 2705 struct sk_msg; 2706 struct sk_psock; 2707 2708 #ifdef CONFIG_BPF_SYSCALL 2709 int tcp_bpf_update_proto(struct sock *sk, struct sk_psock *psock, bool restore); 2710 void tcp_bpf_clone(const struct sock *sk, struct sock *newsk); 2711 #ifdef CONFIG_BPF_STREAM_PARSER 2712 struct strparser; 2713 int tcp_bpf_strp_read_sock(struct strparser *strp, read_descriptor_t *desc, 2714 sk_read_actor_t recv_actor); 2715 #endif /* CONFIG_BPF_STREAM_PARSER */ 2716 #endif /* CONFIG_BPF_SYSCALL */ 2717 2718 #ifdef CONFIG_INET 2719 void tcp_eat_skb(struct sock *sk, struct sk_buff *skb); 2720 #else 2721 static inline void tcp_eat_skb(struct sock *sk, struct sk_buff *skb) 2722 { 2723 } 2724 #endif 2725 2726 int tcp_bpf_sendmsg_redir(struct sock *sk, bool ingress, 2727 struct sk_msg *msg, u32 bytes, int flags); 2728 #endif /* CONFIG_NET_SOCK_MSG */ 2729 2730 #if !defined(CONFIG_BPF_SYSCALL) || !defined(CONFIG_NET_SOCK_MSG) 2731 static inline void tcp_bpf_clone(const struct sock *sk, struct sock *newsk) 2732 { 2733 } 2734 #endif 2735 2736 #ifdef CONFIG_CGROUP_BPF 2737 static inline void bpf_skops_init_skb(struct bpf_sock_ops_kern *skops, 2738 struct sk_buff *skb, 2739 unsigned int end_offset) 2740 { 2741 skops->skb = skb; 2742 skops->skb_data_end = skb->data + end_offset; 2743 } 2744 #else 2745 static inline void bpf_skops_init_skb(struct bpf_sock_ops_kern *skops, 2746 struct sk_buff *skb, 2747 unsigned int end_offset) 2748 { 2749 } 2750 #endif 2751 2752 /* Call BPF_SOCK_OPS program that returns an int. If the return value 2753 * is < 0, then the BPF op failed (for example if the loaded BPF 2754 * program does not support the chosen operation or there is no BPF 2755 * program loaded). 2756 */ 2757 #ifdef CONFIG_BPF 2758 static inline int tcp_call_bpf(struct sock *sk, int op, u32 nargs, u32 *args) 2759 { 2760 struct bpf_sock_ops_kern sock_ops; 2761 int ret; 2762 2763 memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp)); 2764 if (sk_fullsock(sk)) { 2765 sock_ops.is_fullsock = 1; 2766 sock_ops.is_locked_tcp_sock = 1; 2767 sock_owned_by_me(sk); 2768 } 2769 2770 sock_ops.sk = sk; 2771 sock_ops.op = op; 2772 if (nargs > 0) 2773 memcpy(sock_ops.args, args, nargs * sizeof(*args)); 2774 2775 ret = BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops); 2776 if (ret == 0) 2777 ret = sock_ops.reply; 2778 else 2779 ret = -1; 2780 return ret; 2781 } 2782 2783 static inline int tcp_call_bpf_2arg(struct sock *sk, int op, u32 arg1, u32 arg2) 2784 { 2785 u32 args[2] = {arg1, arg2}; 2786 2787 return tcp_call_bpf(sk, op, 2, args); 2788 } 2789 2790 static inline int tcp_call_bpf_3arg(struct sock *sk, int op, u32 arg1, u32 arg2, 2791 u32 arg3) 2792 { 2793 u32 args[3] = {arg1, arg2, arg3}; 2794 2795 return tcp_call_bpf(sk, op, 3, args); 2796 } 2797 2798 #else 2799 static inline int tcp_call_bpf(struct sock *sk, int op, u32 nargs, u32 *args) 2800 { 2801 return -EPERM; 2802 } 2803 2804 static inline int tcp_call_bpf_2arg(struct sock *sk, int op, u32 arg1, u32 arg2) 2805 { 2806 return -EPERM; 2807 } 2808 2809 static inline int tcp_call_bpf_3arg(struct sock *sk, int op, u32 arg1, u32 arg2, 2810 u32 arg3) 2811 { 2812 return -EPERM; 2813 } 2814 2815 #endif 2816 2817 static inline u32 tcp_timeout_init(struct sock *sk) 2818 { 2819 int timeout; 2820 2821 timeout = tcp_call_bpf(sk, BPF_SOCK_OPS_TIMEOUT_INIT, 0, NULL); 2822 2823 if (timeout <= 0) 2824 timeout = TCP_TIMEOUT_INIT; 2825 return min_t(int, timeout, TCP_RTO_MAX); 2826 } 2827 2828 static inline u32 tcp_rwnd_init_bpf(struct sock *sk) 2829 { 2830 int rwnd; 2831 2832 rwnd = tcp_call_bpf(sk, BPF_SOCK_OPS_RWND_INIT, 0, NULL); 2833 2834 if (rwnd < 0) 2835 rwnd = 0; 2836 return rwnd; 2837 } 2838 2839 static inline bool tcp_bpf_ca_needs_ecn(struct sock *sk) 2840 { 2841 return (tcp_call_bpf(sk, BPF_SOCK_OPS_NEEDS_ECN, 0, NULL) == 1); 2842 } 2843 2844 static inline void tcp_bpf_rtt(struct sock *sk, long mrtt, u32 srtt) 2845 { 2846 if (BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), BPF_SOCK_OPS_RTT_CB_FLAG)) 2847 tcp_call_bpf_2arg(sk, BPF_SOCK_OPS_RTT_CB, mrtt, srtt); 2848 } 2849 2850 #if IS_ENABLED(CONFIG_SMC) 2851 extern struct static_key_false tcp_have_smc; 2852 #endif 2853 2854 #if IS_ENABLED(CONFIG_TLS_DEVICE) 2855 void clean_acked_data_enable(struct tcp_sock *tp, 2856 void (*cad)(struct sock *sk, u32 ack_seq)); 2857 void clean_acked_data_disable(struct tcp_sock *tp); 2858 void clean_acked_data_flush(void); 2859 #endif 2860 2861 DECLARE_STATIC_KEY_FALSE(tcp_tx_delay_enabled); 2862 static inline void tcp_add_tx_delay(struct sk_buff *skb, 2863 const struct tcp_sock *tp) 2864 { 2865 if (static_branch_unlikely(&tcp_tx_delay_enabled)) 2866 skb->skb_mstamp_ns += (u64)tp->tcp_tx_delay * NSEC_PER_USEC; 2867 } 2868 2869 /* Compute Earliest Departure Time for some control packets 2870 * like ACK or RST for TIME_WAIT or non ESTABLISHED sockets. 2871 */ 2872 static inline u64 tcp_transmit_time(const struct sock *sk) 2873 { 2874 if (static_branch_unlikely(&tcp_tx_delay_enabled)) { 2875 u32 delay = (sk->sk_state == TCP_TIME_WAIT) ? 2876 tcp_twsk(sk)->tw_tx_delay : tcp_sk(sk)->tcp_tx_delay; 2877 2878 return tcp_clock_ns() + (u64)delay * NSEC_PER_USEC; 2879 } 2880 return 0; 2881 } 2882 2883 static inline int tcp_parse_auth_options(const struct tcphdr *th, 2884 const u8 **md5_hash, const struct tcp_ao_hdr **aoh) 2885 { 2886 const u8 *md5_tmp, *ao_tmp; 2887 int ret; 2888 2889 ret = tcp_do_parse_auth_options(th, &md5_tmp, &ao_tmp); 2890 if (ret) 2891 return ret; 2892 2893 if (md5_hash) 2894 *md5_hash = md5_tmp; 2895 2896 if (aoh) { 2897 if (!ao_tmp) 2898 *aoh = NULL; 2899 else 2900 *aoh = (struct tcp_ao_hdr *)(ao_tmp - 2); 2901 } 2902 2903 return 0; 2904 } 2905 2906 static inline bool tcp_ao_required(struct sock *sk, const void *saddr, 2907 int family, int l3index, bool stat_inc) 2908 { 2909 #ifdef CONFIG_TCP_AO 2910 struct tcp_ao_info *ao_info; 2911 struct tcp_ao_key *ao_key; 2912 2913 if (!static_branch_unlikely(&tcp_ao_needed.key)) 2914 return false; 2915 2916 ao_info = rcu_dereference_check(tcp_sk(sk)->ao_info, 2917 lockdep_sock_is_held(sk)); 2918 if (!ao_info) 2919 return false; 2920 2921 ao_key = tcp_ao_do_lookup(sk, l3index, saddr, family, -1, -1); 2922 if (ao_info->ao_required || ao_key) { 2923 if (stat_inc) { 2924 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAOREQUIRED); 2925 atomic64_inc(&ao_info->counters.ao_required); 2926 } 2927 return true; 2928 } 2929 #endif 2930 return false; 2931 } 2932 2933 enum skb_drop_reason tcp_inbound_hash(struct sock *sk, 2934 const struct request_sock *req, const struct sk_buff *skb, 2935 const void *saddr, const void *daddr, 2936 int family, int dif, int sdif); 2937 2938 #endif /* _TCP_H */ 2939