xref: /linux/include/net/tcp.h (revision 0e50474fa514822e9d990874e554bf8043a201d7)
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Definitions for the TCP module.
8  *
9  * Version:	@(#)tcp.h	1.0.5	05/23/93
10  *
11  * Authors:	Ross Biro
12  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
13  */
14 #ifndef _TCP_H
15 #define _TCP_H
16 
17 #define FASTRETRANS_DEBUG 1
18 
19 #include <linux/list.h>
20 #include <linux/tcp.h>
21 #include <linux/bug.h>
22 #include <linux/slab.h>
23 #include <linux/cache.h>
24 #include <linux/percpu.h>
25 #include <linux/skbuff.h>
26 #include <linux/kref.h>
27 #include <linux/ktime.h>
28 #include <linux/indirect_call_wrapper.h>
29 #include <linux/bits.h>
30 
31 #include <net/inet_connection_sock.h>
32 #include <net/inet_timewait_sock.h>
33 #include <net/inet_hashtables.h>
34 #include <net/checksum.h>
35 #include <net/request_sock.h>
36 #include <net/sock_reuseport.h>
37 #include <net/sock.h>
38 #include <net/snmp.h>
39 #include <net/ip.h>
40 #include <net/tcp_states.h>
41 #include <net/tcp_ao.h>
42 #include <net/inet_ecn.h>
43 #include <net/dst.h>
44 #include <net/mptcp.h>
45 #include <net/xfrm.h>
46 
47 #include <linux/seq_file.h>
48 #include <linux/memcontrol.h>
49 #include <linux/bpf-cgroup.h>
50 #include <linux/siphash.h>
51 
52 extern struct inet_hashinfo tcp_hashinfo;
53 
54 DECLARE_PER_CPU(unsigned int, tcp_orphan_count);
55 int tcp_orphan_count_sum(void);
56 
57 static inline void tcp_orphan_count_inc(void)
58 {
59 	this_cpu_inc(tcp_orphan_count);
60 }
61 
62 static inline void tcp_orphan_count_dec(void)
63 {
64 	this_cpu_dec(tcp_orphan_count);
65 }
66 
67 DECLARE_PER_CPU(u32, tcp_tw_isn);
68 
69 void tcp_time_wait(struct sock *sk, int state, int timeo);
70 
71 #define MAX_TCP_HEADER	L1_CACHE_ALIGN(128 + MAX_HEADER)
72 #define MAX_TCP_OPTION_SPACE 40
73 #define TCP_MIN_SND_MSS		48
74 #define TCP_MIN_GSO_SIZE	(TCP_MIN_SND_MSS - MAX_TCP_OPTION_SPACE)
75 
76 /*
77  * Never offer a window over 32767 without using window scaling. Some
78  * poor stacks do signed 16bit maths!
79  */
80 #define MAX_TCP_WINDOW		32767U
81 
82 /* Minimal accepted MSS. It is (60+60+8) - (20+20). */
83 #define TCP_MIN_MSS		88U
84 
85 /* The initial MTU to use for probing */
86 #define TCP_BASE_MSS		1024
87 
88 /* probing interval, default to 10 minutes as per RFC4821 */
89 #define TCP_PROBE_INTERVAL	600
90 
91 /* Specify interval when tcp mtu probing will stop */
92 #define TCP_PROBE_THRESHOLD	8
93 
94 /* After receiving this amount of duplicate ACKs fast retransmit starts. */
95 #define TCP_FASTRETRANS_THRESH 3
96 
97 /* Maximal number of ACKs sent quickly to accelerate slow-start. */
98 #define TCP_MAX_QUICKACKS	16U
99 
100 /* Maximal number of window scale according to RFC1323 */
101 #define TCP_MAX_WSCALE		14U
102 
103 /* Default sending frequency of accurate ECN option per RTT */
104 #define TCP_ACCECN_OPTION_BEACON	3
105 
106 /* urg_data states */
107 #define TCP_URG_VALID	0x0100
108 #define TCP_URG_NOTYET	0x0200
109 #define TCP_URG_READ	0x0400
110 
111 #define TCP_RETR1	3	/*
112 				 * This is how many retries it does before it
113 				 * tries to figure out if the gateway is
114 				 * down. Minimal RFC value is 3; it corresponds
115 				 * to ~3sec-8min depending on RTO.
116 				 */
117 
118 #define TCP_RETR2	15	/*
119 				 * This should take at least
120 				 * 90 minutes to time out.
121 				 * RFC1122 says that the limit is 100 sec.
122 				 * 15 is ~13-30min depending on RTO.
123 				 */
124 
125 #define TCP_SYN_RETRIES	 6	/* This is how many retries are done
126 				 * when active opening a connection.
127 				 * RFC1122 says the minimum retry MUST
128 				 * be at least 180secs.  Nevertheless
129 				 * this value is corresponding to
130 				 * 63secs of retransmission with the
131 				 * current initial RTO.
132 				 */
133 
134 #define TCP_SYNACK_RETRIES 5	/* This is how may retries are done
135 				 * when passive opening a connection.
136 				 * This is corresponding to 31secs of
137 				 * retransmission with the current
138 				 * initial RTO.
139 				 */
140 
141 #define TCP_TIMEWAIT_LEN (60*HZ) /* how long to wait to destroy TIME-WAIT
142 				  * state, about 60 seconds	*/
143 #define TCP_FIN_TIMEOUT	TCP_TIMEWAIT_LEN
144                                  /* BSD style FIN_WAIT2 deadlock breaker.
145 				  * It used to be 3min, new value is 60sec,
146 				  * to combine FIN-WAIT-2 timeout with
147 				  * TIME-WAIT timer.
148 				  */
149 #define TCP_FIN_TIMEOUT_MAX (120 * HZ) /* max TCP_LINGER2 value (two minutes) */
150 
151 #define TCP_DELACK_MAX	((unsigned)(HZ/5))	/* maximal time to delay before sending an ACK */
152 static_assert((1 << ATO_BITS) > TCP_DELACK_MAX);
153 
154 #if HZ >= 100
155 #define TCP_DELACK_MIN	((unsigned)(HZ/25))	/* minimal time to delay before sending an ACK */
156 #define TCP_ATO_MIN	((unsigned)(HZ/25))
157 #else
158 #define TCP_DELACK_MIN	4U
159 #define TCP_ATO_MIN	4U
160 #endif
161 #define TCP_RTO_MAX_SEC 120
162 #define TCP_RTO_MAX	((unsigned)(TCP_RTO_MAX_SEC * HZ))
163 #define TCP_RTO_MIN	((unsigned)(HZ / 5))
164 #define TCP_TIMEOUT_MIN	(2U) /* Min timeout for TCP timers in jiffies */
165 
166 #define TCP_TIMEOUT_MIN_US (2*USEC_PER_MSEC) /* Min TCP timeout in microsecs */
167 
168 #define TCP_TIMEOUT_INIT ((unsigned)(1*HZ))	/* RFC6298 2.1 initial RTO value	*/
169 #define TCP_TIMEOUT_FALLBACK ((unsigned)(3*HZ))	/* RFC 1122 initial RTO value, now
170 						 * used as a fallback RTO for the
171 						 * initial data transmission if no
172 						 * valid RTT sample has been acquired,
173 						 * most likely due to retrans in 3WHS.
174 						 */
175 
176 #define TCP_RESOURCE_PROBE_INTERVAL ((unsigned)(HZ/2U)) /* Maximal interval between probes
177 					                 * for local resources.
178 					                 */
179 #define TCP_KEEPALIVE_TIME	(120*60*HZ)	/* two hours */
180 #define TCP_KEEPALIVE_PROBES	9		/* Max of 9 keepalive probes	*/
181 #define TCP_KEEPALIVE_INTVL	(75*HZ)
182 
183 #define MAX_TCP_KEEPIDLE	32767
184 #define MAX_TCP_KEEPINTVL	32767
185 #define MAX_TCP_KEEPCNT		127
186 #define MAX_TCP_SYNCNT		127
187 
188 /* Ensure that TCP PAWS checks are relaxed after ~2147 seconds
189  * to avoid overflows. This assumes a clock smaller than 1 Mhz.
190  * Default clock is 1 Khz, tcp_usec_ts uses 1 Mhz.
191  */
192 #define TCP_PAWS_WRAP (INT_MAX / USEC_PER_SEC)
193 
194 #define TCP_PAWS_MSL	60		/* Per-host timestamps are invalidated
195 					 * after this time. It should be equal
196 					 * (or greater than) TCP_TIMEWAIT_LEN
197 					 * to provide reliability equal to one
198 					 * provided by timewait state.
199 					 */
200 #define TCP_PAWS_WINDOW	1		/* Replay window for per-host
201 					 * timestamps. It must be less than
202 					 * minimal timewait lifetime.
203 					 */
204 /*
205  *	TCP option
206  */
207 
208 #define TCPOPT_NOP		1	/* Padding */
209 #define TCPOPT_EOL		0	/* End of options */
210 #define TCPOPT_MSS		2	/* Segment size negotiating */
211 #define TCPOPT_WINDOW		3	/* Window scaling */
212 #define TCPOPT_SACK_PERM        4       /* SACK Permitted */
213 #define TCPOPT_SACK             5       /* SACK Block */
214 #define TCPOPT_TIMESTAMP	8	/* Better RTT estimations/PAWS */
215 #define TCPOPT_MD5SIG		19	/* MD5 Signature (RFC2385) */
216 #define TCPOPT_AO		29	/* Authentication Option (RFC5925) */
217 #define TCPOPT_MPTCP		30	/* Multipath TCP (RFC6824) */
218 #define TCPOPT_FASTOPEN		34	/* Fast open (RFC7413) */
219 #define TCPOPT_ACCECN0		172	/* 0xAC: Accurate ECN Order 0 */
220 #define TCPOPT_ACCECN1		174	/* 0xAE: Accurate ECN Order 1 */
221 #define TCPOPT_EXP		254	/* Experimental */
222 /* Magic number to be after the option value for sharing TCP
223  * experimental options. See draft-ietf-tcpm-experimental-options-00.txt
224  */
225 #define TCPOPT_FASTOPEN_MAGIC	0xF989
226 #define TCPOPT_SMC_MAGIC	0xE2D4C3D9
227 
228 /*
229  *     TCP option lengths
230  */
231 
232 #define TCPOLEN_MSS            4
233 #define TCPOLEN_WINDOW         3
234 #define TCPOLEN_SACK_PERM      2
235 #define TCPOLEN_TIMESTAMP      10
236 #define TCPOLEN_MD5SIG         18
237 #define TCPOLEN_FASTOPEN_BASE  2
238 #define TCPOLEN_ACCECN_BASE    2
239 #define TCPOLEN_EXP_FASTOPEN_BASE  4
240 #define TCPOLEN_EXP_SMC_BASE   6
241 
242 /* But this is what stacks really send out. */
243 #define TCPOLEN_TSTAMP_ALIGNED		12
244 #define TCPOLEN_WSCALE_ALIGNED		4
245 #define TCPOLEN_SACKPERM_ALIGNED	4
246 #define TCPOLEN_SACK_BASE		2
247 #define TCPOLEN_SACK_BASE_ALIGNED	4
248 #define TCPOLEN_SACK_PERBLOCK		8
249 #define TCPOLEN_MD5SIG_ALIGNED		20
250 #define TCPOLEN_MSS_ALIGNED		4
251 #define TCPOLEN_EXP_SMC_BASE_ALIGNED	8
252 #define TCPOLEN_ACCECN_PERFIELD		3
253 
254 /* Maximum number of byte counters in AccECN option + size */
255 #define TCP_ACCECN_NUMFIELDS		3
256 #define TCP_ACCECN_MAXSIZE		(TCPOLEN_ACCECN_BASE + \
257 					 TCPOLEN_ACCECN_PERFIELD * \
258 					 TCP_ACCECN_NUMFIELDS)
259 #define TCP_ACCECN_SAFETY_SHIFT		1 /* SAFETY_FACTOR in accecn draft */
260 
261 /* Flags in tp->nonagle */
262 #define TCP_NAGLE_OFF		1	/* Nagle's algo is disabled */
263 #define TCP_NAGLE_CORK		2	/* Socket is corked	    */
264 #define TCP_NAGLE_PUSH		4	/* Cork is overridden for already queued data */
265 
266 /* TCP thin-stream limits */
267 #define TCP_THIN_LINEAR_RETRIES 6       /* After 6 linear retries, do exp. backoff */
268 
269 /* TCP initial congestion window as per rfc6928 */
270 #define TCP_INIT_CWND		10
271 
272 /* Bit Flags for sysctl_tcp_fastopen */
273 #define	TFO_CLIENT_ENABLE	1
274 #define	TFO_SERVER_ENABLE	2
275 #define	TFO_CLIENT_NO_COOKIE	4	/* Data in SYN w/o cookie option */
276 
277 /* Accept SYN data w/o any cookie option */
278 #define	TFO_SERVER_COOKIE_NOT_REQD	0x200
279 
280 /* Force enable TFO on all listeners, i.e., not requiring the
281  * TCP_FASTOPEN socket option.
282  */
283 #define	TFO_SERVER_WO_SOCKOPT1	0x400
284 
285 
286 /* sysctl variables for tcp */
287 extern int sysctl_tcp_max_orphans;
288 extern long sysctl_tcp_mem[3];
289 
290 #define TCP_RACK_LOSS_DETECTION  0x1 /* Use RACK to detect losses */
291 #define TCP_RACK_STATIC_REO_WND  0x2 /* Use static RACK reo wnd */
292 #define TCP_RACK_NO_DUPTHRESH    0x4 /* Do not use DUPACK threshold in RACK */
293 
294 DECLARE_PER_CPU(int, tcp_memory_per_cpu_fw_alloc);
295 
296 extern struct percpu_counter tcp_sockets_allocated;
297 extern unsigned long tcp_memory_pressure;
298 
299 /* optimized version of sk_under_memory_pressure() for TCP sockets */
300 static inline bool tcp_under_memory_pressure(const struct sock *sk)
301 {
302 	if (mem_cgroup_sk_enabled(sk) &&
303 	    mem_cgroup_sk_under_memory_pressure(sk))
304 		return true;
305 
306 	if (sk->sk_bypass_prot_mem)
307 		return false;
308 
309 	return READ_ONCE(tcp_memory_pressure);
310 }
311 /*
312  * The next routines deal with comparing 32 bit unsigned ints
313  * and worry about wraparound (automatic with unsigned arithmetic).
314  */
315 
316 static inline bool before(__u32 seq1, __u32 seq2)
317 {
318         return (__s32)(seq1-seq2) < 0;
319 }
320 #define after(seq2, seq1) 	before(seq1, seq2)
321 
322 /* is s2<=s1<=s3 ? */
323 static inline bool between(__u32 seq1, __u32 seq2, __u32 seq3)
324 {
325 	return seq3 - seq2 >= seq1 - seq2;
326 }
327 
328 static inline void tcp_wmem_free_skb(struct sock *sk, struct sk_buff *skb)
329 {
330 	sk_wmem_queued_add(sk, -skb->truesize);
331 	if (!skb_zcopy_pure(skb))
332 		sk_mem_uncharge(sk, skb->truesize);
333 	else
334 		sk_mem_uncharge(sk, SKB_TRUESIZE(skb_end_offset(skb)));
335 	__kfree_skb(skb);
336 }
337 
338 void sk_forced_mem_schedule(struct sock *sk, int size);
339 
340 bool tcp_check_oom(const struct sock *sk, int shift);
341 
342 
343 extern struct proto tcp_prot;
344 
345 #define TCP_INC_STATS(net, field)	SNMP_INC_STATS((net)->mib.tcp_statistics, field)
346 #define __TCP_INC_STATS(net, field)	__SNMP_INC_STATS((net)->mib.tcp_statistics, field)
347 #define TCP_DEC_STATS(net, field)	SNMP_DEC_STATS((net)->mib.tcp_statistics, field)
348 #define TCP_ADD_STATS(net, field, val)	SNMP_ADD_STATS((net)->mib.tcp_statistics, field, val)
349 
350 void tcp_tsq_work_init(void);
351 
352 int tcp_v4_err(struct sk_buff *skb, u32);
353 
354 void tcp_shutdown(struct sock *sk, int how);
355 
356 int tcp_v4_early_demux(struct sk_buff *skb);
357 int tcp_v4_rcv(struct sk_buff *skb);
358 
359 void tcp_remove_empty_skb(struct sock *sk);
360 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size);
361 int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size);
362 int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg, int *copied,
363 			 size_t size, struct ubuf_info *uarg);
364 void tcp_splice_eof(struct socket *sock);
365 int tcp_send_mss(struct sock *sk, int *size_goal, int flags);
366 int tcp_wmem_schedule(struct sock *sk, int copy);
367 void tcp_push(struct sock *sk, int flags, int mss_now, int nonagle,
368 	      int size_goal);
369 void tcp_release_cb(struct sock *sk);
370 void tcp_wfree(struct sk_buff *skb);
371 void tcp_write_timer_handler(struct sock *sk);
372 void tcp_delack_timer_handler(struct sock *sk);
373 int tcp_ioctl(struct sock *sk, int cmd, int *karg);
374 enum skb_drop_reason tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb);
375 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb);
376 void tcp_rcvbuf_grow(struct sock *sk, u32 newval);
377 void tcp_rcv_space_adjust(struct sock *sk);
378 int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp);
379 void tcp_twsk_destructor(struct sock *sk);
380 void tcp_twsk_purge(struct list_head *net_exit_list);
381 ssize_t tcp_splice_read(struct socket *sk, loff_t *ppos,
382 			struct pipe_inode_info *pipe, size_t len,
383 			unsigned int flags);
384 struct sk_buff *tcp_stream_alloc_skb(struct sock *sk, gfp_t gfp,
385 				     bool force_schedule);
386 
387 static inline void tcp_dec_quickack_mode(struct sock *sk)
388 {
389 	struct inet_connection_sock *icsk = inet_csk(sk);
390 
391 	if (icsk->icsk_ack.quick) {
392 		/* How many ACKs S/ACKing new data have we sent? */
393 		const unsigned int pkts = inet_csk_ack_scheduled(sk) ? 1 : 0;
394 
395 		if (pkts >= icsk->icsk_ack.quick) {
396 			icsk->icsk_ack.quick = 0;
397 			/* Leaving quickack mode we deflate ATO. */
398 			icsk->icsk_ack.ato   = TCP_ATO_MIN;
399 		} else
400 			icsk->icsk_ack.quick -= pkts;
401 	}
402 }
403 
404 #define	TCP_ECN_MODE_RFC3168	BIT(0)
405 #define	TCP_ECN_QUEUE_CWR	BIT(1)
406 #define	TCP_ECN_DEMAND_CWR	BIT(2)
407 #define	TCP_ECN_SEEN		BIT(3)
408 #define	TCP_ECN_MODE_ACCECN	BIT(4)
409 
410 #define	TCP_ECN_DISABLED	0
411 #define	TCP_ECN_MODE_PENDING	(TCP_ECN_MODE_RFC3168 | TCP_ECN_MODE_ACCECN)
412 #define	TCP_ECN_MODE_ANY	(TCP_ECN_MODE_RFC3168 | TCP_ECN_MODE_ACCECN)
413 
414 static inline bool tcp_ecn_mode_any(const struct tcp_sock *tp)
415 {
416 	return tp->ecn_flags & TCP_ECN_MODE_ANY;
417 }
418 
419 static inline bool tcp_ecn_mode_rfc3168(const struct tcp_sock *tp)
420 {
421 	return (tp->ecn_flags & TCP_ECN_MODE_ANY) == TCP_ECN_MODE_RFC3168;
422 }
423 
424 static inline bool tcp_ecn_mode_accecn(const struct tcp_sock *tp)
425 {
426 	return (tp->ecn_flags & TCP_ECN_MODE_ANY) == TCP_ECN_MODE_ACCECN;
427 }
428 
429 static inline bool tcp_ecn_disabled(const struct tcp_sock *tp)
430 {
431 	return !tcp_ecn_mode_any(tp);
432 }
433 
434 static inline bool tcp_ecn_mode_pending(const struct tcp_sock *tp)
435 {
436 	return (tp->ecn_flags & TCP_ECN_MODE_PENDING) == TCP_ECN_MODE_PENDING;
437 }
438 
439 static inline void tcp_ecn_mode_set(struct tcp_sock *tp, u8 mode)
440 {
441 	tp->ecn_flags &= ~TCP_ECN_MODE_ANY;
442 	tp->ecn_flags |= mode;
443 }
444 
445 enum tcp_tw_status {
446 	TCP_TW_SUCCESS = 0,
447 	TCP_TW_RST = 1,
448 	TCP_TW_ACK = 2,
449 	TCP_TW_SYN = 3,
450 	TCP_TW_ACK_OOW = 4
451 };
452 
453 
454 enum tcp_tw_status tcp_timewait_state_process(struct inet_timewait_sock *tw,
455 					      struct sk_buff *skb,
456 					      const struct tcphdr *th,
457 					      u32 *tw_isn,
458 					      enum skb_drop_reason *drop_reason);
459 struct sock *tcp_check_req(struct sock *sk, struct sk_buff *skb,
460 			   struct request_sock *req, bool fastopen,
461 			   bool *lost_race, enum skb_drop_reason *drop_reason);
462 enum skb_drop_reason tcp_child_process(struct sock *parent, struct sock *child,
463 				       struct sk_buff *skb);
464 void tcp_enter_loss(struct sock *sk);
465 void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int newly_lost, int flag);
466 void tcp_clear_retrans(struct tcp_sock *tp);
467 void tcp_update_pacing_rate(struct sock *sk);
468 void tcp_set_rto(struct sock *sk);
469 void tcp_update_metrics(struct sock *sk);
470 void tcp_init_metrics(struct sock *sk);
471 void tcp_metrics_init(void);
472 bool tcp_peer_is_proven(struct request_sock *req, struct dst_entry *dst);
473 void __tcp_close(struct sock *sk, long timeout);
474 void tcp_close(struct sock *sk, long timeout);
475 void tcp_init_sock(struct sock *sk);
476 void tcp_init_transfer(struct sock *sk, int bpf_op, struct sk_buff *skb);
477 __poll_t tcp_poll(struct file *file, struct socket *sock,
478 		      struct poll_table_struct *wait);
479 int do_tcp_getsockopt(struct sock *sk, int level,
480 		      int optname, sockptr_t optval, sockptr_t optlen);
481 int tcp_getsockopt(struct sock *sk, int level, int optname,
482 		   char __user *optval, int __user *optlen);
483 bool tcp_bpf_bypass_getsockopt(int level, int optname);
484 int do_tcp_setsockopt(struct sock *sk, int level, int optname,
485 		      sockptr_t optval, unsigned int optlen);
486 int tcp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval,
487 		   unsigned int optlen);
488 void tcp_reset_keepalive_timer(struct sock *sk, unsigned long timeout);
489 void tcp_set_keepalive(struct sock *sk, int val);
490 void tcp_syn_ack_timeout(const struct request_sock *req);
491 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len,
492 		int flags, int *addr_len);
493 int tcp_set_rcvlowat(struct sock *sk, int val);
494 int tcp_set_window_clamp(struct sock *sk, int val);
495 void tcp_update_recv_tstamps(struct sk_buff *skb,
496 			     struct scm_timestamping_internal *tss);
497 void tcp_recv_timestamp(struct msghdr *msg, const struct sock *sk,
498 			struct scm_timestamping_internal *tss);
499 void tcp_data_ready(struct sock *sk);
500 #ifdef CONFIG_MMU
501 int tcp_mmap(struct file *file, struct socket *sock,
502 	     struct vm_area_struct *vma);
503 #endif
504 void tcp_parse_options(const struct net *net, const struct sk_buff *skb,
505 		       struct tcp_options_received *opt_rx,
506 		       int estab, struct tcp_fastopen_cookie *foc);
507 
508 /*
509  *	BPF SKB-less helpers
510  */
511 u16 tcp_v4_get_syncookie(struct sock *sk, struct iphdr *iph,
512 			 struct tcphdr *th, u32 *cookie);
513 u16 tcp_v6_get_syncookie(struct sock *sk, struct ipv6hdr *iph,
514 			 struct tcphdr *th, u32 *cookie);
515 u16 tcp_parse_mss_option(const struct tcphdr *th, u16 user_mss);
516 u16 tcp_get_syncookie_mss(struct request_sock_ops *rsk_ops,
517 			  const struct tcp_request_sock_ops *af_ops,
518 			  struct sock *sk, struct tcphdr *th);
519 /*
520  *	TCP v4 functions exported for the inet6 API
521  */
522 
523 void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb);
524 void tcp_v4_mtu_reduced(struct sock *sk);
525 void tcp_req_err(struct sock *sk, u32 seq, bool abort);
526 void tcp_ld_RTO_revert(struct sock *sk, u32 seq);
527 int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb);
528 struct sock *tcp_create_openreq_child(const struct sock *sk,
529 				      struct request_sock *req,
530 				      struct sk_buff *skb);
531 void tcp_ca_openreq_child(struct sock *sk, const struct dst_entry *dst);
532 struct sock *tcp_v4_syn_recv_sock(const struct sock *sk, struct sk_buff *skb,
533 				  struct request_sock *req,
534 				  struct dst_entry *dst,
535 				  struct request_sock *req_unhash,
536 				  bool *own_req);
537 int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb);
538 int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len);
539 int tcp_connect(struct sock *sk);
540 enum tcp_synack_type {
541 	TCP_SYNACK_NORMAL,
542 	TCP_SYNACK_FASTOPEN,
543 	TCP_SYNACK_COOKIE,
544 };
545 struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst,
546 				struct request_sock *req,
547 				struct tcp_fastopen_cookie *foc,
548 				enum tcp_synack_type synack_type,
549 				struct sk_buff *syn_skb);
550 int tcp_disconnect(struct sock *sk, int flags);
551 
552 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb);
553 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size);
554 void inet_sk_rx_dst_set(struct sock *sk, const struct sk_buff *skb);
555 
556 /* From syncookies.c */
557 struct sock *tcp_get_cookie_sock(struct sock *sk, struct sk_buff *skb,
558 				 struct request_sock *req,
559 				 struct dst_entry *dst);
560 int __cookie_v4_check(const struct iphdr *iph, const struct tcphdr *th);
561 struct sock *cookie_v4_check(struct sock *sk, struct sk_buff *skb);
562 struct request_sock *cookie_tcp_reqsk_alloc(const struct request_sock_ops *ops,
563 					    struct sock *sk, struct sk_buff *skb,
564 					    struct tcp_options_received *tcp_opt,
565 					    int mss, u32 tsoff);
566 
567 #if IS_ENABLED(CONFIG_BPF)
568 struct bpf_tcp_req_attrs {
569 	u32 rcv_tsval;
570 	u32 rcv_tsecr;
571 	u16 mss;
572 	u8 rcv_wscale;
573 	u8 snd_wscale;
574 	u8 ecn_ok;
575 	u8 wscale_ok;
576 	u8 sack_ok;
577 	u8 tstamp_ok;
578 	u8 usec_ts_ok;
579 	u8 reserved[3];
580 };
581 #endif
582 
583 #ifdef CONFIG_SYN_COOKIES
584 
585 /* Syncookies use a monotonic timer which increments every 60 seconds.
586  * This counter is used both as a hash input and partially encoded into
587  * the cookie value.  A cookie is only validated further if the delta
588  * between the current counter value and the encoded one is less than this,
589  * i.e. a sent cookie is valid only at most for 2*60 seconds (or less if
590  * the counter advances immediately after a cookie is generated).
591  */
592 #define MAX_SYNCOOKIE_AGE	2
593 #define TCP_SYNCOOKIE_PERIOD	(60 * HZ)
594 #define TCP_SYNCOOKIE_VALID	(MAX_SYNCOOKIE_AGE * TCP_SYNCOOKIE_PERIOD)
595 
596 /* syncookies: remember time of last synqueue overflow
597  * But do not dirty this field too often (once per second is enough)
598  * It is racy as we do not hold a lock, but race is very minor.
599  */
600 static inline void tcp_synq_overflow(const struct sock *sk)
601 {
602 	unsigned int last_overflow;
603 	unsigned int now = jiffies;
604 
605 	if (sk->sk_reuseport) {
606 		struct sock_reuseport *reuse;
607 
608 		reuse = rcu_dereference(sk->sk_reuseport_cb);
609 		if (likely(reuse)) {
610 			last_overflow = READ_ONCE(reuse->synq_overflow_ts);
611 			if (!time_between32(now, last_overflow,
612 					    last_overflow + HZ))
613 				WRITE_ONCE(reuse->synq_overflow_ts, now);
614 			return;
615 		}
616 	}
617 
618 	last_overflow = READ_ONCE(tcp_sk(sk)->rx_opt.ts_recent_stamp);
619 	if (!time_between32(now, last_overflow, last_overflow + HZ))
620 		WRITE_ONCE(tcp_sk_rw(sk)->rx_opt.ts_recent_stamp, now);
621 }
622 
623 /* syncookies: no recent synqueue overflow on this listening socket? */
624 static inline bool tcp_synq_no_recent_overflow(const struct sock *sk)
625 {
626 	unsigned int last_overflow;
627 	unsigned int now = jiffies;
628 
629 	if (sk->sk_reuseport) {
630 		struct sock_reuseport *reuse;
631 
632 		reuse = rcu_dereference(sk->sk_reuseport_cb);
633 		if (likely(reuse)) {
634 			last_overflow = READ_ONCE(reuse->synq_overflow_ts);
635 			return !time_between32(now, last_overflow - HZ,
636 					       last_overflow +
637 					       TCP_SYNCOOKIE_VALID);
638 		}
639 	}
640 
641 	last_overflow = READ_ONCE(tcp_sk(sk)->rx_opt.ts_recent_stamp);
642 
643 	/* If last_overflow <= jiffies <= last_overflow + TCP_SYNCOOKIE_VALID,
644 	 * then we're under synflood. However, we have to use
645 	 * 'last_overflow - HZ' as lower bound. That's because a concurrent
646 	 * tcp_synq_overflow() could update .ts_recent_stamp after we read
647 	 * jiffies but before we store .ts_recent_stamp into last_overflow,
648 	 * which could lead to rejecting a valid syncookie.
649 	 */
650 	return !time_between32(now, last_overflow - HZ,
651 			       last_overflow + TCP_SYNCOOKIE_VALID);
652 }
653 
654 static inline u32 tcp_cookie_time(void)
655 {
656 	u64 val = get_jiffies_64();
657 
658 	do_div(val, TCP_SYNCOOKIE_PERIOD);
659 	return val;
660 }
661 
662 /* Convert one nsec 64bit timestamp to ts (ms or usec resolution) */
663 static inline u64 tcp_ns_to_ts(bool usec_ts, u64 val)
664 {
665 	if (usec_ts)
666 		return div_u64(val, NSEC_PER_USEC);
667 
668 	return div_u64(val, NSEC_PER_MSEC);
669 }
670 
671 u32 __cookie_v4_init_sequence(const struct iphdr *iph, const struct tcphdr *th,
672 			      u16 *mssp);
673 __u32 cookie_v4_init_sequence(const struct sk_buff *skb, __u16 *mss);
674 u64 cookie_init_timestamp(struct request_sock *req, u64 now);
675 bool cookie_timestamp_decode(const struct net *net,
676 			     struct tcp_options_received *opt);
677 
678 static inline bool cookie_ecn_ok(const struct net *net, const struct dst_entry *dst)
679 {
680 	return READ_ONCE(net->ipv4.sysctl_tcp_ecn) ||
681 		dst_feature(dst, RTAX_FEATURE_ECN);
682 }
683 
684 #if IS_ENABLED(CONFIG_BPF)
685 static inline bool cookie_bpf_ok(struct sk_buff *skb)
686 {
687 	return skb->sk;
688 }
689 
690 struct request_sock *cookie_bpf_check(struct sock *sk, struct sk_buff *skb);
691 #else
692 static inline bool cookie_bpf_ok(struct sk_buff *skb)
693 {
694 	return false;
695 }
696 
697 static inline struct request_sock *cookie_bpf_check(struct net *net, struct sock *sk,
698 						    struct sk_buff *skb)
699 {
700 	return NULL;
701 }
702 #endif
703 
704 /* From net/ipv6/syncookies.c */
705 int __cookie_v6_check(const struct ipv6hdr *iph, const struct tcphdr *th);
706 struct sock *cookie_v6_check(struct sock *sk, struct sk_buff *skb);
707 
708 u32 __cookie_v6_init_sequence(const struct ipv6hdr *iph,
709 			      const struct tcphdr *th, u16 *mssp);
710 __u32 cookie_v6_init_sequence(const struct sk_buff *skb, __u16 *mss);
711 #endif
712 /* tcp_output.c */
713 
714 void tcp_skb_entail(struct sock *sk, struct sk_buff *skb);
715 void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb);
716 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
717 			       int nonagle);
718 int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs);
719 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs);
720 void tcp_retransmit_timer(struct sock *sk);
721 void tcp_xmit_retransmit_queue(struct sock *);
722 void tcp_simple_retransmit(struct sock *);
723 void tcp_enter_recovery(struct sock *sk, bool ece_ack);
724 int tcp_trim_head(struct sock *, struct sk_buff *, u32);
725 enum tcp_queue {
726 	TCP_FRAG_IN_WRITE_QUEUE,
727 	TCP_FRAG_IN_RTX_QUEUE,
728 };
729 int tcp_fragment(struct sock *sk, enum tcp_queue tcp_queue,
730 		 struct sk_buff *skb, u32 len,
731 		 unsigned int mss_now, gfp_t gfp);
732 
733 void tcp_send_probe0(struct sock *);
734 int tcp_write_wakeup(struct sock *, int mib);
735 void tcp_send_fin(struct sock *sk);
736 void tcp_send_active_reset(struct sock *sk, gfp_t priority,
737 			   enum sk_rst_reason reason);
738 int tcp_send_synack(struct sock *);
739 void tcp_push_one(struct sock *, unsigned int mss_now);
740 void __tcp_send_ack(struct sock *sk, u32 rcv_nxt, u16 flags);
741 void tcp_send_ack(struct sock *sk);
742 void tcp_send_delayed_ack(struct sock *sk);
743 void tcp_send_loss_probe(struct sock *sk);
744 bool tcp_schedule_loss_probe(struct sock *sk, bool advancing_rto);
745 void tcp_skb_collapse_tstamp(struct sk_buff *skb,
746 			     const struct sk_buff *next_skb);
747 
748 /* tcp_input.c */
749 void tcp_rearm_rto(struct sock *sk);
750 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req);
751 void tcp_done_with_error(struct sock *sk, int err);
752 void tcp_reset(struct sock *sk, struct sk_buff *skb);
753 void tcp_fin(struct sock *sk);
754 void tcp_check_space(struct sock *sk);
755 void tcp_sack_compress_send_ack(struct sock *sk);
756 
757 static inline void tcp_cleanup_skb(struct sk_buff *skb)
758 {
759 	skb_dst_drop(skb);
760 	secpath_reset(skb);
761 }
762 
763 static inline void tcp_add_receive_queue(struct sock *sk, struct sk_buff *skb)
764 {
765 	DEBUG_NET_WARN_ON_ONCE(skb_dst(skb));
766 	DEBUG_NET_WARN_ON_ONCE(secpath_exists(skb));
767 	__skb_queue_tail(&sk->sk_receive_queue, skb);
768 }
769 
770 /* tcp_timer.c */
771 void tcp_init_xmit_timers(struct sock *);
772 static inline void tcp_clear_xmit_timers(struct sock *sk)
773 {
774 	if (hrtimer_try_to_cancel(&tcp_sk(sk)->pacing_timer) == 1)
775 		__sock_put(sk);
776 
777 	if (hrtimer_try_to_cancel(&tcp_sk(sk)->compressed_ack_timer) == 1)
778 		__sock_put(sk);
779 
780 	inet_csk_clear_xmit_timers(sk);
781 }
782 
783 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu);
784 unsigned int tcp_current_mss(struct sock *sk);
785 u32 tcp_clamp_probe0_to_user_timeout(const struct sock *sk, u32 when);
786 
787 /* Bound MSS / TSO packet size with the half of the window */
788 static inline int tcp_bound_to_half_wnd(struct tcp_sock *tp, int pktsize)
789 {
790 	int cutoff;
791 
792 	/* When peer uses tiny windows, there is no use in packetizing
793 	 * to sub-MSS pieces for the sake of SWS or making sure there
794 	 * are enough packets in the pipe for fast recovery.
795 	 *
796 	 * On the other hand, for extremely large MSS devices, handling
797 	 * smaller than MSS windows in this way does make sense.
798 	 */
799 	if (tp->max_window > TCP_MSS_DEFAULT)
800 		cutoff = (tp->max_window >> 1);
801 	else
802 		cutoff = tp->max_window;
803 
804 	if (cutoff && pktsize > cutoff)
805 		return max_t(int, cutoff, 68U - tp->tcp_header_len);
806 	else
807 		return pktsize;
808 }
809 
810 /* tcp.c */
811 void tcp_get_info(struct sock *, struct tcp_info *);
812 
813 /* Read 'sendfile()'-style from a TCP socket */
814 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
815 		  sk_read_actor_t recv_actor);
816 int tcp_read_sock_noack(struct sock *sk, read_descriptor_t *desc,
817 			sk_read_actor_t recv_actor, bool noack,
818 			u32 *copied_seq);
819 int tcp_read_skb(struct sock *sk, skb_read_actor_t recv_actor);
820 struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off);
821 void tcp_read_done(struct sock *sk, size_t len);
822 
823 void tcp_initialize_rcv_mss(struct sock *sk);
824 
825 int tcp_mtu_to_mss(struct sock *sk, int pmtu);
826 int tcp_mss_to_mtu(struct sock *sk, int mss);
827 void tcp_mtup_init(struct sock *sk);
828 
829 static inline unsigned int tcp_rto_max(const struct sock *sk)
830 {
831 	return READ_ONCE(inet_csk(sk)->icsk_rto_max);
832 }
833 
834 static inline void tcp_bound_rto(struct sock *sk)
835 {
836 	inet_csk(sk)->icsk_rto = min(inet_csk(sk)->icsk_rto, tcp_rto_max(sk));
837 }
838 
839 static inline u32 __tcp_set_rto(const struct tcp_sock *tp)
840 {
841 	return usecs_to_jiffies((tp->srtt_us >> 3) + tp->rttvar_us);
842 }
843 
844 u32 tcp_delack_max(const struct sock *sk);
845 
846 /* Compute the actual rto_min value */
847 static inline u32 tcp_rto_min(const struct sock *sk)
848 {
849 	const struct dst_entry *dst = __sk_dst_get(sk);
850 	u32 rto_min = READ_ONCE(inet_csk(sk)->icsk_rto_min);
851 
852 	if (dst && dst_metric_locked(dst, RTAX_RTO_MIN))
853 		rto_min = dst_metric_rtt(dst, RTAX_RTO_MIN);
854 	return rto_min;
855 }
856 
857 static inline u32 tcp_rto_min_us(const struct sock *sk)
858 {
859 	return jiffies_to_usecs(tcp_rto_min(sk));
860 }
861 
862 static inline bool tcp_ca_dst_locked(const struct dst_entry *dst)
863 {
864 	return dst_metric_locked(dst, RTAX_CC_ALGO);
865 }
866 
867 /* Minimum RTT in usec. ~0 means not available. */
868 static inline u32 tcp_min_rtt(const struct tcp_sock *tp)
869 {
870 	return minmax_get(&tp->rtt_min);
871 }
872 
873 /* Compute the actual receive window we are currently advertising.
874  * Rcv_nxt can be after the window if our peer push more data
875  * than the offered window.
876  */
877 static inline u32 tcp_receive_window(const struct tcp_sock *tp)
878 {
879 	s32 win = tp->rcv_wup + tp->rcv_wnd - tp->rcv_nxt;
880 
881 	if (win < 0)
882 		win = 0;
883 	return (u32) win;
884 }
885 
886 /* Choose a new window, without checks for shrinking, and without
887  * scaling applied to the result.  The caller does these things
888  * if necessary.  This is a "raw" window selection.
889  */
890 u32 __tcp_select_window(struct sock *sk);
891 
892 void tcp_send_window_probe(struct sock *sk);
893 
894 /* TCP uses 32bit jiffies to save some space.
895  * Note that this is different from tcp_time_stamp, which
896  * historically has been the same until linux-4.13.
897  */
898 #define tcp_jiffies32 ((u32)jiffies)
899 
900 /*
901  * Deliver a 32bit value for TCP timestamp option (RFC 7323)
902  * It is no longer tied to jiffies, but to 1 ms clock.
903  * Note: double check if you want to use tcp_jiffies32 instead of this.
904  */
905 #define TCP_TS_HZ	1000
906 
907 static inline u64 tcp_clock_ns(void)
908 {
909 	return ktime_get_ns();
910 }
911 
912 static inline u64 tcp_clock_us(void)
913 {
914 	return div_u64(tcp_clock_ns(), NSEC_PER_USEC);
915 }
916 
917 static inline u64 tcp_clock_ms(void)
918 {
919 	return div_u64(tcp_clock_ns(), NSEC_PER_MSEC);
920 }
921 
922 /* TCP Timestamp included in TS option (RFC 1323) can either use ms
923  * or usec resolution. Each socket carries a flag to select one or other
924  * resolution, as the route attribute could change anytime.
925  * Each flow must stick to initial resolution.
926  */
927 static inline u32 tcp_clock_ts(bool usec_ts)
928 {
929 	return usec_ts ? tcp_clock_us() : tcp_clock_ms();
930 }
931 
932 static inline u32 tcp_time_stamp_ms(const struct tcp_sock *tp)
933 {
934 	return div_u64(tp->tcp_mstamp, USEC_PER_MSEC);
935 }
936 
937 static inline u32 tcp_time_stamp_ts(const struct tcp_sock *tp)
938 {
939 	if (tp->tcp_usec_ts)
940 		return tp->tcp_mstamp;
941 	return tcp_time_stamp_ms(tp);
942 }
943 
944 void tcp_mstamp_refresh(struct tcp_sock *tp);
945 
946 static inline u32 tcp_stamp_us_delta(u64 t1, u64 t0)
947 {
948 	return max_t(s64, t1 - t0, 0);
949 }
950 
951 /* provide the departure time in us unit */
952 static inline u64 tcp_skb_timestamp_us(const struct sk_buff *skb)
953 {
954 	return div_u64(skb->skb_mstamp_ns, NSEC_PER_USEC);
955 }
956 
957 /* Provide skb TSval in usec or ms unit */
958 static inline u32 tcp_skb_timestamp_ts(bool usec_ts, const struct sk_buff *skb)
959 {
960 	if (usec_ts)
961 		return tcp_skb_timestamp_us(skb);
962 
963 	return div_u64(skb->skb_mstamp_ns, NSEC_PER_MSEC);
964 }
965 
966 static inline u32 tcp_tw_tsval(const struct tcp_timewait_sock *tcptw)
967 {
968 	return tcp_clock_ts(tcptw->tw_sk.tw_usec_ts) + tcptw->tw_ts_offset;
969 }
970 
971 static inline u32 tcp_rsk_tsval(const struct tcp_request_sock *treq)
972 {
973 	return tcp_clock_ts(treq->req_usec_ts) + treq->ts_off;
974 }
975 
976 #define tcp_flag_byte(th) (((u_int8_t *)th)[13])
977 
978 #define TCPHDR_FIN	BIT(0)
979 #define TCPHDR_SYN	BIT(1)
980 #define TCPHDR_RST	BIT(2)
981 #define TCPHDR_PSH	BIT(3)
982 #define TCPHDR_ACK	BIT(4)
983 #define TCPHDR_URG	BIT(5)
984 #define TCPHDR_ECE	BIT(6)
985 #define TCPHDR_CWR	BIT(7)
986 #define TCPHDR_AE	BIT(8)
987 #define TCPHDR_FLAGS_MASK (TCPHDR_FIN | TCPHDR_SYN | TCPHDR_RST | \
988 			   TCPHDR_PSH | TCPHDR_ACK | TCPHDR_URG | \
989 			   TCPHDR_ECE | TCPHDR_CWR | TCPHDR_AE)
990 #define tcp_flags_ntohs(th) (ntohs(*(__be16 *)&tcp_flag_word(th)) & \
991 			    TCPHDR_FLAGS_MASK)
992 
993 #define TCPHDR_ACE (TCPHDR_ECE | TCPHDR_CWR | TCPHDR_AE)
994 #define TCPHDR_SYN_ECN	(TCPHDR_SYN | TCPHDR_ECE | TCPHDR_CWR)
995 #define TCPHDR_SYNACK_ACCECN (TCPHDR_SYN | TCPHDR_ACK | TCPHDR_CWR)
996 
997 #define TCP_ACCECN_CEP_ACE_MASK 0x7
998 #define TCP_ACCECN_ACE_MAX_DELTA 6
999 
1000 /* To avoid/detect middlebox interference, not all counters start at 0.
1001  * See draft-ietf-tcpm-accurate-ecn for the latest values.
1002  */
1003 #define TCP_ACCECN_CEP_INIT_OFFSET 5
1004 #define TCP_ACCECN_E1B_INIT_OFFSET 1
1005 #define TCP_ACCECN_E0B_INIT_OFFSET 1
1006 #define TCP_ACCECN_CEB_INIT_OFFSET 0
1007 
1008 /* State flags for sacked in struct tcp_skb_cb */
1009 enum tcp_skb_cb_sacked_flags {
1010 	TCPCB_SACKED_ACKED	= (1 << 0),	/* SKB ACK'd by a SACK block	*/
1011 	TCPCB_SACKED_RETRANS	= (1 << 1),	/* SKB retransmitted		*/
1012 	TCPCB_LOST		= (1 << 2),	/* SKB is lost			*/
1013 	TCPCB_TAGBITS		= (TCPCB_SACKED_ACKED | TCPCB_SACKED_RETRANS |
1014 				   TCPCB_LOST),	/* All tag bits			*/
1015 	TCPCB_REPAIRED		= (1 << 4),	/* SKB repaired (no skb_mstamp_ns)	*/
1016 	TCPCB_EVER_RETRANS	= (1 << 7),	/* Ever retransmitted frame	*/
1017 	TCPCB_RETRANS		= (TCPCB_SACKED_RETRANS | TCPCB_EVER_RETRANS |
1018 				   TCPCB_REPAIRED),
1019 };
1020 
1021 /* This is what the send packet queuing engine uses to pass
1022  * TCP per-packet control information to the transmission code.
1023  * We also store the host-order sequence numbers in here too.
1024  * This is 44 bytes if IPV6 is enabled.
1025  * If this grows please adjust skbuff.h:skbuff->cb[xxx] size appropriately.
1026  */
1027 struct tcp_skb_cb {
1028 	__u32		seq;		/* Starting sequence number	*/
1029 	__u32		end_seq;	/* SEQ + FIN + SYN + datalen	*/
1030 	union {
1031 		/* Note :
1032 		 * 	  tcp_gso_segs/size are used in write queue only,
1033 		 *	  cf tcp_skb_pcount()/tcp_skb_mss()
1034 		 */
1035 		struct {
1036 			u16	tcp_gso_segs;
1037 			u16	tcp_gso_size;
1038 		};
1039 	};
1040 	__u16		tcp_flags;	/* TCP header flags (tcp[12-13])*/
1041 
1042 	__u8		sacked;		/* State flags for SACK.	*/
1043 	__u8		ip_dsfield;	/* IPv4 tos or IPv6 dsfield	*/
1044 #define TSTAMP_ACK_SK	0x1
1045 #define TSTAMP_ACK_BPF	0x2
1046 	__u8		txstamp_ack:2,	/* Record TX timestamp for ack? */
1047 			eor:1,		/* Is skb MSG_EOR marked? */
1048 			has_rxtstamp:1,	/* SKB has a RX timestamp	*/
1049 			unused:4;
1050 	__u32		ack_seq;	/* Sequence number ACK'd	*/
1051 	union {
1052 		struct {
1053 #define TCPCB_DELIVERED_CE_MASK ((1U<<20) - 1)
1054 			/* There is space for up to 24 bytes */
1055 			__u32 is_app_limited:1, /* cwnd not fully used? */
1056 			      delivered_ce:20,
1057 			      unused:11;
1058 			/* pkts S/ACKed so far upon tx of skb, incl retrans: */
1059 			__u32 delivered;
1060 			/* start of send pipeline phase */
1061 			u64 first_tx_mstamp;
1062 			/* when we reached the "delivered" count */
1063 			u64 delivered_mstamp;
1064 		} tx;   /* only used for outgoing skbs */
1065 		union {
1066 			struct inet_skb_parm	h4;
1067 #if IS_ENABLED(CONFIG_IPV6)
1068 			struct inet6_skb_parm	h6;
1069 #endif
1070 		} header;	/* For incoming skbs */
1071 	};
1072 };
1073 
1074 #define TCP_SKB_CB(__skb)	((struct tcp_skb_cb *)&((__skb)->cb[0]))
1075 
1076 extern const struct inet_connection_sock_af_ops ipv4_specific;
1077 
1078 #if IS_ENABLED(CONFIG_IPV6)
1079 /* This is the variant of inet6_iif() that must be used by TCP,
1080  * as TCP moves IP6CB into a different location in skb->cb[]
1081  */
1082 static inline int tcp_v6_iif(const struct sk_buff *skb)
1083 {
1084 	return TCP_SKB_CB(skb)->header.h6.iif;
1085 }
1086 
1087 static inline int tcp_v6_iif_l3_slave(const struct sk_buff *skb)
1088 {
1089 	bool l3_slave = ipv6_l3mdev_skb(TCP_SKB_CB(skb)->header.h6.flags);
1090 
1091 	return l3_slave ? skb->skb_iif : TCP_SKB_CB(skb)->header.h6.iif;
1092 }
1093 
1094 /* TCP_SKB_CB reference means this can not be used from early demux */
1095 static inline int tcp_v6_sdif(const struct sk_buff *skb)
1096 {
1097 #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
1098 	if (skb && ipv6_l3mdev_skb(TCP_SKB_CB(skb)->header.h6.flags))
1099 		return TCP_SKB_CB(skb)->header.h6.iif;
1100 #endif
1101 	return 0;
1102 }
1103 
1104 extern const struct inet_connection_sock_af_ops ipv6_specific;
1105 
1106 INDIRECT_CALLABLE_DECLARE(void tcp_v6_send_check(struct sock *sk, struct sk_buff *skb));
1107 INDIRECT_CALLABLE_DECLARE(int tcp_v6_rcv(struct sk_buff *skb));
1108 void tcp_v6_early_demux(struct sk_buff *skb);
1109 
1110 #endif
1111 
1112 /* TCP_SKB_CB reference means this can not be used from early demux */
1113 static inline int tcp_v4_sdif(struct sk_buff *skb)
1114 {
1115 #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
1116 	if (skb && ipv4_l3mdev_skb(TCP_SKB_CB(skb)->header.h4.flags))
1117 		return TCP_SKB_CB(skb)->header.h4.iif;
1118 #endif
1119 	return 0;
1120 }
1121 
1122 /* Due to TSO, an SKB can be composed of multiple actual
1123  * packets.  To keep these tracked properly, we use this.
1124  */
1125 static inline int tcp_skb_pcount(const struct sk_buff *skb)
1126 {
1127 	return TCP_SKB_CB(skb)->tcp_gso_segs;
1128 }
1129 
1130 static inline void tcp_skb_pcount_set(struct sk_buff *skb, int segs)
1131 {
1132 	TCP_SKB_CB(skb)->tcp_gso_segs = segs;
1133 }
1134 
1135 static inline void tcp_skb_pcount_add(struct sk_buff *skb, int segs)
1136 {
1137 	TCP_SKB_CB(skb)->tcp_gso_segs += segs;
1138 }
1139 
1140 /* This is valid iff skb is in write queue and tcp_skb_pcount() > 1. */
1141 static inline int tcp_skb_mss(const struct sk_buff *skb)
1142 {
1143 	return TCP_SKB_CB(skb)->tcp_gso_size;
1144 }
1145 
1146 static inline bool tcp_skb_can_collapse_to(const struct sk_buff *skb)
1147 {
1148 	return likely(!TCP_SKB_CB(skb)->eor);
1149 }
1150 
1151 static inline bool tcp_skb_can_collapse(const struct sk_buff *to,
1152 					const struct sk_buff *from)
1153 {
1154 	/* skb_cmp_decrypted() not needed, use tcp_write_collapse_fence() */
1155 	return likely(tcp_skb_can_collapse_to(to) &&
1156 		      mptcp_skb_can_collapse(to, from) &&
1157 		      skb_pure_zcopy_same(to, from) &&
1158 		      skb_frags_readable(to) == skb_frags_readable(from));
1159 }
1160 
1161 static inline bool tcp_skb_can_collapse_rx(const struct sk_buff *to,
1162 					   const struct sk_buff *from)
1163 {
1164 	return likely(mptcp_skb_can_collapse(to, from) &&
1165 		      !skb_cmp_decrypted(to, from));
1166 }
1167 
1168 /* Events passed to congestion control interface */
1169 enum tcp_ca_event {
1170 	CA_EVENT_TX_START,	/* first transmit when no packets in flight */
1171 	CA_EVENT_CWND_RESTART,	/* congestion window restart */
1172 	CA_EVENT_COMPLETE_CWR,	/* end of congestion recovery */
1173 	CA_EVENT_LOSS,		/* loss timeout */
1174 	CA_EVENT_ECN_NO_CE,	/* ECT set, but not CE marked */
1175 	CA_EVENT_ECN_IS_CE,	/* received CE marked IP packet */
1176 };
1177 
1178 /* Information about inbound ACK, passed to cong_ops->in_ack_event() */
1179 enum tcp_ca_ack_event_flags {
1180 	CA_ACK_SLOWPATH		= (1 << 0),	/* In slow path processing */
1181 	CA_ACK_WIN_UPDATE	= (1 << 1),	/* ACK updated window */
1182 	CA_ACK_ECE		= (1 << 2),	/* ECE bit is set on ack */
1183 };
1184 
1185 /*
1186  * Interface for adding new TCP congestion control handlers
1187  */
1188 #define TCP_CA_NAME_MAX	16
1189 #define TCP_CA_MAX	128
1190 #define TCP_CA_BUF_MAX	(TCP_CA_NAME_MAX*TCP_CA_MAX)
1191 
1192 #define TCP_CA_UNSPEC	0
1193 
1194 /* Algorithm can be set on socket without CAP_NET_ADMIN privileges */
1195 #define TCP_CONG_NON_RESTRICTED		BIT(0)
1196 /* Requires ECN/ECT set on all packets */
1197 #define TCP_CONG_NEEDS_ECN		BIT(1)
1198 #define TCP_CONG_MASK	(TCP_CONG_NON_RESTRICTED | TCP_CONG_NEEDS_ECN)
1199 
1200 union tcp_cc_info;
1201 
1202 struct ack_sample {
1203 	u32 pkts_acked;
1204 	s32 rtt_us;
1205 	u32 in_flight;
1206 };
1207 
1208 /* A rate sample measures the number of (original/retransmitted) data
1209  * packets delivered "delivered" over an interval of time "interval_us".
1210  * The tcp_rate.c code fills in the rate sample, and congestion
1211  * control modules that define a cong_control function to run at the end
1212  * of ACK processing can optionally chose to consult this sample when
1213  * setting cwnd and pacing rate.
1214  * A sample is invalid if "delivered" or "interval_us" is negative.
1215  */
1216 struct rate_sample {
1217 	u64  prior_mstamp; /* starting timestamp for interval */
1218 	u32  prior_delivered;	/* tp->delivered at "prior_mstamp" */
1219 	u32  prior_delivered_ce;/* tp->delivered_ce at "prior_mstamp" */
1220 	s32  delivered;		/* number of packets delivered over interval */
1221 	s32  delivered_ce;	/* number of packets delivered w/ CE marks*/
1222 	long interval_us;	/* time for tp->delivered to incr "delivered" */
1223 	u32 snd_interval_us;	/* snd interval for delivered packets */
1224 	u32 rcv_interval_us;	/* rcv interval for delivered packets */
1225 	long rtt_us;		/* RTT of last (S)ACKed packet (or -1) */
1226 	int  losses;		/* number of packets marked lost upon ACK */
1227 	u32  acked_sacked;	/* number of packets newly (S)ACKed upon ACK */
1228 	u32  prior_in_flight;	/* in flight before this ACK */
1229 	u32  last_end_seq;	/* end_seq of most recently ACKed packet */
1230 	bool is_app_limited;	/* is sample from packet with bubble in pipe? */
1231 	bool is_retrans;	/* is sample from retransmission? */
1232 	bool is_ack_delayed;	/* is this (likely) a delayed ACK? */
1233 };
1234 
1235 struct tcp_congestion_ops {
1236 /* fast path fields are put first to fill one cache line */
1237 
1238 	/* return slow start threshold (required) */
1239 	u32 (*ssthresh)(struct sock *sk);
1240 
1241 	/* do new cwnd calculation (required) */
1242 	void (*cong_avoid)(struct sock *sk, u32 ack, u32 acked);
1243 
1244 	/* call before changing ca_state (optional) */
1245 	void (*set_state)(struct sock *sk, u8 new_state);
1246 
1247 	/* call when cwnd event occurs (optional) */
1248 	void (*cwnd_event)(struct sock *sk, enum tcp_ca_event ev);
1249 
1250 	/* call when ack arrives (optional) */
1251 	void (*in_ack_event)(struct sock *sk, u32 flags);
1252 
1253 	/* hook for packet ack accounting (optional) */
1254 	void (*pkts_acked)(struct sock *sk, const struct ack_sample *sample);
1255 
1256 	/* override sysctl_tcp_min_tso_segs */
1257 	u32 (*min_tso_segs)(struct sock *sk);
1258 
1259 	/* call when packets are delivered to update cwnd and pacing rate,
1260 	 * after all the ca_state processing. (optional)
1261 	 */
1262 	void (*cong_control)(struct sock *sk, u32 ack, int flag, const struct rate_sample *rs);
1263 
1264 
1265 	/* new value of cwnd after loss (required) */
1266 	u32  (*undo_cwnd)(struct sock *sk);
1267 	/* returns the multiplier used in tcp_sndbuf_expand (optional) */
1268 	u32 (*sndbuf_expand)(struct sock *sk);
1269 
1270 /* control/slow paths put last */
1271 	/* get info for inet_diag (optional) */
1272 	size_t (*get_info)(struct sock *sk, u32 ext, int *attr,
1273 			   union tcp_cc_info *info);
1274 
1275 	char 			name[TCP_CA_NAME_MAX];
1276 	struct module		*owner;
1277 	struct list_head	list;
1278 	u32			key;
1279 	u32			flags;
1280 
1281 	/* initialize private data (optional) */
1282 	void (*init)(struct sock *sk);
1283 	/* cleanup private data  (optional) */
1284 	void (*release)(struct sock *sk);
1285 } ____cacheline_aligned_in_smp;
1286 
1287 int tcp_register_congestion_control(struct tcp_congestion_ops *type);
1288 void tcp_unregister_congestion_control(struct tcp_congestion_ops *type);
1289 int tcp_update_congestion_control(struct tcp_congestion_ops *type,
1290 				  struct tcp_congestion_ops *old_type);
1291 int tcp_validate_congestion_control(struct tcp_congestion_ops *ca);
1292 
1293 void tcp_assign_congestion_control(struct sock *sk);
1294 void tcp_init_congestion_control(struct sock *sk);
1295 void tcp_cleanup_congestion_control(struct sock *sk);
1296 int tcp_set_default_congestion_control(struct net *net, const char *name);
1297 void tcp_get_default_congestion_control(struct net *net, char *name);
1298 void tcp_get_available_congestion_control(char *buf, size_t len);
1299 void tcp_get_allowed_congestion_control(char *buf, size_t len);
1300 int tcp_set_allowed_congestion_control(char *allowed);
1301 int tcp_set_congestion_control(struct sock *sk, const char *name, bool load,
1302 			       bool cap_net_admin);
1303 u32 tcp_slow_start(struct tcp_sock *tp, u32 acked);
1304 void tcp_cong_avoid_ai(struct tcp_sock *tp, u32 w, u32 acked);
1305 
1306 u32 tcp_reno_ssthresh(struct sock *sk);
1307 u32 tcp_reno_undo_cwnd(struct sock *sk);
1308 void tcp_reno_cong_avoid(struct sock *sk, u32 ack, u32 acked);
1309 extern struct tcp_congestion_ops tcp_reno;
1310 
1311 struct tcp_congestion_ops *tcp_ca_find(const char *name);
1312 struct tcp_congestion_ops *tcp_ca_find_key(u32 key);
1313 u32 tcp_ca_get_key_by_name(const char *name, bool *ecn_ca);
1314 #ifdef CONFIG_INET
1315 char *tcp_ca_get_name_by_key(u32 key, char *buffer);
1316 #else
1317 static inline char *tcp_ca_get_name_by_key(u32 key, char *buffer)
1318 {
1319 	return NULL;
1320 }
1321 #endif
1322 
1323 static inline bool tcp_ca_needs_ecn(const struct sock *sk)
1324 {
1325 	const struct inet_connection_sock *icsk = inet_csk(sk);
1326 
1327 	return icsk->icsk_ca_ops->flags & TCP_CONG_NEEDS_ECN;
1328 }
1329 
1330 static inline void tcp_ca_event(struct sock *sk, const enum tcp_ca_event event)
1331 {
1332 	const struct inet_connection_sock *icsk = inet_csk(sk);
1333 
1334 	if (icsk->icsk_ca_ops->cwnd_event)
1335 		icsk->icsk_ca_ops->cwnd_event(sk, event);
1336 }
1337 
1338 /* From tcp_cong.c */
1339 void tcp_set_ca_state(struct sock *sk, const u8 ca_state);
1340 
1341 /* From tcp_rate.c */
1342 void tcp_rate_skb_sent(struct sock *sk, struct sk_buff *skb);
1343 void tcp_rate_skb_delivered(struct sock *sk, struct sk_buff *skb,
1344 			    struct rate_sample *rs);
1345 void tcp_rate_gen(struct sock *sk, u32 delivered, u32 lost,
1346 		  bool is_sack_reneg, struct rate_sample *rs);
1347 void tcp_rate_check_app_limited(struct sock *sk);
1348 
1349 static inline bool tcp_skb_sent_after(u64 t1, u64 t2, u32 seq1, u32 seq2)
1350 {
1351 	return t1 > t2 || (t1 == t2 && after(seq1, seq2));
1352 }
1353 
1354 /* These functions determine how the current flow behaves in respect of SACK
1355  * handling. SACK is negotiated with the peer, and therefore it can vary
1356  * between different flows.
1357  *
1358  * tcp_is_sack - SACK enabled
1359  * tcp_is_reno - No SACK
1360  */
1361 static inline int tcp_is_sack(const struct tcp_sock *tp)
1362 {
1363 	return likely(tp->rx_opt.sack_ok);
1364 }
1365 
1366 static inline bool tcp_is_reno(const struct tcp_sock *tp)
1367 {
1368 	return !tcp_is_sack(tp);
1369 }
1370 
1371 static inline unsigned int tcp_left_out(const struct tcp_sock *tp)
1372 {
1373 	return tp->sacked_out + tp->lost_out;
1374 }
1375 
1376 /* This determines how many packets are "in the network" to the best
1377  * of our knowledge.  In many cases it is conservative, but where
1378  * detailed information is available from the receiver (via SACK
1379  * blocks etc.) we can make more aggressive calculations.
1380  *
1381  * Use this for decisions involving congestion control, use just
1382  * tp->packets_out to determine if the send queue is empty or not.
1383  *
1384  * Read this equation as:
1385  *
1386  *	"Packets sent once on transmission queue" MINUS
1387  *	"Packets left network, but not honestly ACKed yet" PLUS
1388  *	"Packets fast retransmitted"
1389  */
1390 static inline unsigned int tcp_packets_in_flight(const struct tcp_sock *tp)
1391 {
1392 	return tp->packets_out - tcp_left_out(tp) + tp->retrans_out;
1393 }
1394 
1395 #define TCP_INFINITE_SSTHRESH	0x7fffffff
1396 
1397 static inline u32 tcp_snd_cwnd(const struct tcp_sock *tp)
1398 {
1399 	return tp->snd_cwnd;
1400 }
1401 
1402 static inline void tcp_snd_cwnd_set(struct tcp_sock *tp, u32 val)
1403 {
1404 	WARN_ON_ONCE((int)val <= 0);
1405 	tp->snd_cwnd = val;
1406 }
1407 
1408 static inline bool tcp_in_slow_start(const struct tcp_sock *tp)
1409 {
1410 	return tcp_snd_cwnd(tp) < tp->snd_ssthresh;
1411 }
1412 
1413 static inline bool tcp_in_initial_slowstart(const struct tcp_sock *tp)
1414 {
1415 	return tp->snd_ssthresh >= TCP_INFINITE_SSTHRESH;
1416 }
1417 
1418 static inline bool tcp_in_cwnd_reduction(const struct sock *sk)
1419 {
1420 	return (TCPF_CA_CWR | TCPF_CA_Recovery) &
1421 	       (1 << inet_csk(sk)->icsk_ca_state);
1422 }
1423 
1424 /* If cwnd > ssthresh, we may raise ssthresh to be half-way to cwnd.
1425  * The exception is cwnd reduction phase, when cwnd is decreasing towards
1426  * ssthresh.
1427  */
1428 static inline __u32 tcp_current_ssthresh(const struct sock *sk)
1429 {
1430 	const struct tcp_sock *tp = tcp_sk(sk);
1431 
1432 	if (tcp_in_cwnd_reduction(sk))
1433 		return tp->snd_ssthresh;
1434 	else
1435 		return max(tp->snd_ssthresh,
1436 			   ((tcp_snd_cwnd(tp) >> 1) +
1437 			    (tcp_snd_cwnd(tp) >> 2)));
1438 }
1439 
1440 /* Use define here intentionally to get WARN_ON location shown at the caller */
1441 #define tcp_verify_left_out(tp)	WARN_ON(tcp_left_out(tp) > tp->packets_out)
1442 
1443 void tcp_enter_cwr(struct sock *sk);
1444 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst);
1445 
1446 /* The maximum number of MSS of available cwnd for which TSO defers
1447  * sending if not using sysctl_tcp_tso_win_divisor.
1448  */
1449 static inline __u32 tcp_max_tso_deferred_mss(const struct tcp_sock *tp)
1450 {
1451 	return 3;
1452 }
1453 
1454 /* Returns end sequence number of the receiver's advertised window */
1455 static inline u32 tcp_wnd_end(const struct tcp_sock *tp)
1456 {
1457 	return tp->snd_una + tp->snd_wnd;
1458 }
1459 
1460 /* We follow the spirit of RFC2861 to validate cwnd but implement a more
1461  * flexible approach. The RFC suggests cwnd should not be raised unless
1462  * it was fully used previously. And that's exactly what we do in
1463  * congestion avoidance mode. But in slow start we allow cwnd to grow
1464  * as long as the application has used half the cwnd.
1465  * Example :
1466  *    cwnd is 10 (IW10), but application sends 9 frames.
1467  *    We allow cwnd to reach 18 when all frames are ACKed.
1468  * This check is safe because it's as aggressive as slow start which already
1469  * risks 100% overshoot. The advantage is that we discourage application to
1470  * either send more filler packets or data to artificially blow up the cwnd
1471  * usage, and allow application-limited process to probe bw more aggressively.
1472  */
1473 static inline bool tcp_is_cwnd_limited(const struct sock *sk)
1474 {
1475 	const struct tcp_sock *tp = tcp_sk(sk);
1476 
1477 	if (tp->is_cwnd_limited)
1478 		return true;
1479 
1480 	/* If in slow start, ensure cwnd grows to twice what was ACKed. */
1481 	if (tcp_in_slow_start(tp))
1482 		return tcp_snd_cwnd(tp) < 2 * tp->max_packets_out;
1483 
1484 	return false;
1485 }
1486 
1487 /* BBR congestion control needs pacing.
1488  * Same remark for SO_MAX_PACING_RATE.
1489  * sch_fq packet scheduler is efficiently handling pacing,
1490  * but is not always installed/used.
1491  * Return true if TCP stack should pace packets itself.
1492  */
1493 static inline bool tcp_needs_internal_pacing(const struct sock *sk)
1494 {
1495 	return smp_load_acquire(&sk->sk_pacing_status) == SK_PACING_NEEDED;
1496 }
1497 
1498 /* Estimates in how many jiffies next packet for this flow can be sent.
1499  * Scheduling a retransmit timer too early would be silly.
1500  */
1501 static inline unsigned long tcp_pacing_delay(const struct sock *sk)
1502 {
1503 	s64 delay = tcp_sk(sk)->tcp_wstamp_ns - tcp_sk(sk)->tcp_clock_cache;
1504 
1505 	return delay > 0 ? nsecs_to_jiffies(delay) : 0;
1506 }
1507 
1508 static inline void tcp_reset_xmit_timer(struct sock *sk,
1509 					const int what,
1510 					unsigned long when,
1511 					bool pace_delay)
1512 {
1513 	if (pace_delay)
1514 		when += tcp_pacing_delay(sk);
1515 	inet_csk_reset_xmit_timer(sk, what, when,
1516 				  tcp_rto_max(sk));
1517 }
1518 
1519 /* Something is really bad, we could not queue an additional packet,
1520  * because qdisc is full or receiver sent a 0 window, or we are paced.
1521  * We do not want to add fuel to the fire, or abort too early,
1522  * so make sure the timer we arm now is at least 200ms in the future,
1523  * regardless of current icsk_rto value (as it could be ~2ms)
1524  */
1525 static inline unsigned long tcp_probe0_base(const struct sock *sk)
1526 {
1527 	return max_t(unsigned long, inet_csk(sk)->icsk_rto, TCP_RTO_MIN);
1528 }
1529 
1530 /* Variant of inet_csk_rto_backoff() used for zero window probes */
1531 static inline unsigned long tcp_probe0_when(const struct sock *sk,
1532 					    unsigned long max_when)
1533 {
1534 	u8 backoff = min_t(u8, ilog2(TCP_RTO_MAX / TCP_RTO_MIN) + 1,
1535 			   inet_csk(sk)->icsk_backoff);
1536 	u64 when = (u64)tcp_probe0_base(sk) << backoff;
1537 
1538 	return (unsigned long)min_t(u64, when, max_when);
1539 }
1540 
1541 static inline void tcp_check_probe_timer(struct sock *sk)
1542 {
1543 	if (!tcp_sk(sk)->packets_out && !inet_csk(sk)->icsk_pending)
1544 		tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
1545 				     tcp_probe0_base(sk), true);
1546 }
1547 
1548 static inline void tcp_init_wl(struct tcp_sock *tp, u32 seq)
1549 {
1550 	tp->snd_wl1 = seq;
1551 }
1552 
1553 static inline void tcp_update_wl(struct tcp_sock *tp, u32 seq)
1554 {
1555 	tp->snd_wl1 = seq;
1556 }
1557 
1558 /*
1559  * Calculate(/check) TCP checksum
1560  */
1561 static inline __sum16 tcp_v4_check(int len, __be32 saddr,
1562 				   __be32 daddr, __wsum base)
1563 {
1564 	return csum_tcpudp_magic(saddr, daddr, len, IPPROTO_TCP, base);
1565 }
1566 
1567 static inline bool tcp_checksum_complete(struct sk_buff *skb)
1568 {
1569 	return !skb_csum_unnecessary(skb) &&
1570 		__skb_checksum_complete(skb);
1571 }
1572 
1573 bool tcp_add_backlog(struct sock *sk, struct sk_buff *skb,
1574 		     enum skb_drop_reason *reason);
1575 
1576 
1577 int tcp_filter(struct sock *sk, struct sk_buff *skb, enum skb_drop_reason *reason);
1578 void tcp_set_state(struct sock *sk, int state);
1579 void tcp_done(struct sock *sk);
1580 int tcp_abort(struct sock *sk, int err);
1581 
1582 static inline void tcp_sack_reset(struct tcp_options_received *rx_opt)
1583 {
1584 	rx_opt->dsack = 0;
1585 	rx_opt->num_sacks = 0;
1586 }
1587 
1588 void tcp_cwnd_restart(struct sock *sk, s32 delta);
1589 
1590 static inline void tcp_slow_start_after_idle_check(struct sock *sk)
1591 {
1592 	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1593 	struct tcp_sock *tp = tcp_sk(sk);
1594 	s32 delta;
1595 
1596 	if (!READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_slow_start_after_idle) ||
1597 	    tp->packets_out || ca_ops->cong_control)
1598 		return;
1599 	delta = tcp_jiffies32 - tp->lsndtime;
1600 	if (delta > inet_csk(sk)->icsk_rto)
1601 		tcp_cwnd_restart(sk, delta);
1602 }
1603 
1604 /* Determine a window scaling and initial window to offer. */
1605 void tcp_select_initial_window(const struct sock *sk, int __space,
1606 			       __u32 mss, __u32 *rcv_wnd,
1607 			       __u32 *window_clamp, int wscale_ok,
1608 			       __u8 *rcv_wscale, __u32 init_rcv_wnd);
1609 
1610 static inline int __tcp_win_from_space(u8 scaling_ratio, int space)
1611 {
1612 	s64 scaled_space = (s64)space * scaling_ratio;
1613 
1614 	return scaled_space >> TCP_RMEM_TO_WIN_SCALE;
1615 }
1616 
1617 static inline int tcp_win_from_space(const struct sock *sk, int space)
1618 {
1619 	return __tcp_win_from_space(tcp_sk(sk)->scaling_ratio, space);
1620 }
1621 
1622 /* inverse of __tcp_win_from_space() */
1623 static inline int __tcp_space_from_win(u8 scaling_ratio, int win)
1624 {
1625 	u64 val = (u64)win << TCP_RMEM_TO_WIN_SCALE;
1626 
1627 	do_div(val, scaling_ratio);
1628 	return val;
1629 }
1630 
1631 static inline int tcp_space_from_win(const struct sock *sk, int win)
1632 {
1633 	return __tcp_space_from_win(tcp_sk(sk)->scaling_ratio, win);
1634 }
1635 
1636 /* Assume a 50% default for skb->len/skb->truesize ratio.
1637  * This may be adjusted later in tcp_measure_rcv_mss().
1638  */
1639 #define TCP_DEFAULT_SCALING_RATIO (1 << (TCP_RMEM_TO_WIN_SCALE - 1))
1640 
1641 static inline void tcp_scaling_ratio_init(struct sock *sk)
1642 {
1643 	tcp_sk(sk)->scaling_ratio = TCP_DEFAULT_SCALING_RATIO;
1644 }
1645 
1646 /* Note: caller must be prepared to deal with negative returns */
1647 static inline int tcp_space(const struct sock *sk)
1648 {
1649 	return tcp_win_from_space(sk, READ_ONCE(sk->sk_rcvbuf) -
1650 				  READ_ONCE(sk->sk_backlog.len) -
1651 				  atomic_read(&sk->sk_rmem_alloc));
1652 }
1653 
1654 static inline int tcp_full_space(const struct sock *sk)
1655 {
1656 	return tcp_win_from_space(sk, READ_ONCE(sk->sk_rcvbuf));
1657 }
1658 
1659 static inline void __tcp_adjust_rcv_ssthresh(struct sock *sk, u32 new_ssthresh)
1660 {
1661 	int unused_mem = sk_unused_reserved_mem(sk);
1662 	struct tcp_sock *tp = tcp_sk(sk);
1663 
1664 	tp->rcv_ssthresh = min(tp->rcv_ssthresh, new_ssthresh);
1665 	if (unused_mem)
1666 		tp->rcv_ssthresh = max_t(u32, tp->rcv_ssthresh,
1667 					 tcp_win_from_space(sk, unused_mem));
1668 }
1669 
1670 static inline void tcp_adjust_rcv_ssthresh(struct sock *sk)
1671 {
1672 	__tcp_adjust_rcv_ssthresh(sk, 4U * tcp_sk(sk)->advmss);
1673 }
1674 
1675 void tcp_cleanup_rbuf(struct sock *sk, int copied);
1676 void __tcp_cleanup_rbuf(struct sock *sk, int copied);
1677 
1678 
1679 /* We provision sk_rcvbuf around 200% of sk_rcvlowat.
1680  * If 87.5 % (7/8) of the space has been consumed, we want to override
1681  * SO_RCVLOWAT constraint, since we are receiving skbs with too small
1682  * len/truesize ratio.
1683  */
1684 static inline bool tcp_rmem_pressure(const struct sock *sk)
1685 {
1686 	int rcvbuf, threshold;
1687 
1688 	if (tcp_under_memory_pressure(sk))
1689 		return true;
1690 
1691 	rcvbuf = READ_ONCE(sk->sk_rcvbuf);
1692 	threshold = rcvbuf - (rcvbuf >> 3);
1693 
1694 	return atomic_read(&sk->sk_rmem_alloc) > threshold;
1695 }
1696 
1697 static inline bool tcp_epollin_ready(const struct sock *sk, int target)
1698 {
1699 	const struct tcp_sock *tp = tcp_sk(sk);
1700 	int avail = READ_ONCE(tp->rcv_nxt) - READ_ONCE(tp->copied_seq);
1701 
1702 	if (avail <= 0)
1703 		return false;
1704 
1705 	return (avail >= target) || tcp_rmem_pressure(sk) ||
1706 	       (tcp_receive_window(tp) <= inet_csk(sk)->icsk_ack.rcv_mss);
1707 }
1708 
1709 extern void tcp_openreq_init_rwin(struct request_sock *req,
1710 				  const struct sock *sk_listener,
1711 				  const struct dst_entry *dst);
1712 
1713 void tcp_enter_memory_pressure(struct sock *sk);
1714 void tcp_leave_memory_pressure(struct sock *sk);
1715 
1716 static inline int keepalive_intvl_when(const struct tcp_sock *tp)
1717 {
1718 	struct net *net = sock_net((struct sock *)tp);
1719 	int val;
1720 
1721 	/* Paired with WRITE_ONCE() in tcp_sock_set_keepintvl()
1722 	 * and do_tcp_setsockopt().
1723 	 */
1724 	val = READ_ONCE(tp->keepalive_intvl);
1725 
1726 	return val ? : READ_ONCE(net->ipv4.sysctl_tcp_keepalive_intvl);
1727 }
1728 
1729 static inline int keepalive_time_when(const struct tcp_sock *tp)
1730 {
1731 	struct net *net = sock_net((struct sock *)tp);
1732 	int val;
1733 
1734 	/* Paired with WRITE_ONCE() in tcp_sock_set_keepidle_locked() */
1735 	val = READ_ONCE(tp->keepalive_time);
1736 
1737 	return val ? : READ_ONCE(net->ipv4.sysctl_tcp_keepalive_time);
1738 }
1739 
1740 static inline int keepalive_probes(const struct tcp_sock *tp)
1741 {
1742 	struct net *net = sock_net((struct sock *)tp);
1743 	int val;
1744 
1745 	/* Paired with WRITE_ONCE() in tcp_sock_set_keepcnt()
1746 	 * and do_tcp_setsockopt().
1747 	 */
1748 	val = READ_ONCE(tp->keepalive_probes);
1749 
1750 	return val ? : READ_ONCE(net->ipv4.sysctl_tcp_keepalive_probes);
1751 }
1752 
1753 static inline u32 keepalive_time_elapsed(const struct tcp_sock *tp)
1754 {
1755 	const struct inet_connection_sock *icsk = &tp->inet_conn;
1756 
1757 	return min_t(u32, tcp_jiffies32 - icsk->icsk_ack.lrcvtime,
1758 			  tcp_jiffies32 - tp->rcv_tstamp);
1759 }
1760 
1761 static inline int tcp_fin_time(const struct sock *sk)
1762 {
1763 	int fin_timeout = tcp_sk(sk)->linger2 ? :
1764 		READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_fin_timeout);
1765 	const int rto = inet_csk(sk)->icsk_rto;
1766 
1767 	if (fin_timeout < (rto << 2) - (rto >> 1))
1768 		fin_timeout = (rto << 2) - (rto >> 1);
1769 
1770 	return fin_timeout;
1771 }
1772 
1773 static inline bool tcp_paws_check(const struct tcp_options_received *rx_opt,
1774 				  int paws_win)
1775 {
1776 	if ((s32)(rx_opt->ts_recent - rx_opt->rcv_tsval) <= paws_win)
1777 		return true;
1778 	if (unlikely(!time_before32(ktime_get_seconds(),
1779 				    rx_opt->ts_recent_stamp + TCP_PAWS_WRAP)))
1780 		return true;
1781 	/*
1782 	 * Some OSes send SYN and SYNACK messages with tsval=0 tsecr=0,
1783 	 * then following tcp messages have valid values. Ignore 0 value,
1784 	 * or else 'negative' tsval might forbid us to accept their packets.
1785 	 */
1786 	if (!rx_opt->ts_recent)
1787 		return true;
1788 	return false;
1789 }
1790 
1791 static inline bool tcp_paws_reject(const struct tcp_options_received *rx_opt,
1792 				   int rst)
1793 {
1794 	if (tcp_paws_check(rx_opt, 0))
1795 		return false;
1796 
1797 	/* RST segments are not recommended to carry timestamp,
1798 	   and, if they do, it is recommended to ignore PAWS because
1799 	   "their cleanup function should take precedence over timestamps."
1800 	   Certainly, it is mistake. It is necessary to understand the reasons
1801 	   of this constraint to relax it: if peer reboots, clock may go
1802 	   out-of-sync and half-open connections will not be reset.
1803 	   Actually, the problem would be not existing if all
1804 	   the implementations followed draft about maintaining clock
1805 	   via reboots. Linux-2.2 DOES NOT!
1806 
1807 	   However, we can relax time bounds for RST segments to MSL.
1808 	 */
1809 	if (rst && !time_before32(ktime_get_seconds(),
1810 				  rx_opt->ts_recent_stamp + TCP_PAWS_MSL))
1811 		return false;
1812 	return true;
1813 }
1814 
1815 static inline void __tcp_fast_path_on(struct tcp_sock *tp, u32 snd_wnd)
1816 {
1817 	u32 ace;
1818 
1819 	/* mptcp hooks are only on the slow path */
1820 	if (sk_is_mptcp((struct sock *)tp))
1821 		return;
1822 
1823 	ace = tcp_ecn_mode_accecn(tp) ?
1824 	      ((tp->delivered_ce + TCP_ACCECN_CEP_INIT_OFFSET) &
1825 	       TCP_ACCECN_CEP_ACE_MASK) : 0;
1826 
1827 	tp->pred_flags = htonl((tp->tcp_header_len << 26) |
1828 			       (ace << 22) |
1829 			       ntohl(TCP_FLAG_ACK) |
1830 			       snd_wnd);
1831 }
1832 
1833 static inline void tcp_fast_path_on(struct tcp_sock *tp)
1834 {
1835 	__tcp_fast_path_on(tp, tp->snd_wnd >> tp->rx_opt.snd_wscale);
1836 }
1837 
1838 static inline void tcp_fast_path_check(struct sock *sk)
1839 {
1840 	struct tcp_sock *tp = tcp_sk(sk);
1841 
1842 	if (RB_EMPTY_ROOT(&tp->out_of_order_queue) &&
1843 	    tp->rcv_wnd &&
1844 	    atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf &&
1845 	    !tp->urg_data)
1846 		tcp_fast_path_on(tp);
1847 }
1848 
1849 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
1850 			  int mib_idx, u32 *last_oow_ack_time);
1851 
1852 static inline void tcp_mib_init(struct net *net)
1853 {
1854 	/* See RFC 2012 */
1855 	TCP_ADD_STATS(net, TCP_MIB_RTOALGORITHM, 1);
1856 	TCP_ADD_STATS(net, TCP_MIB_RTOMIN, TCP_RTO_MIN*1000/HZ);
1857 	TCP_ADD_STATS(net, TCP_MIB_RTOMAX, TCP_RTO_MAX*1000/HZ);
1858 	TCP_ADD_STATS(net, TCP_MIB_MAXCONN, -1);
1859 }
1860 
1861 /* from STCP */
1862 static inline void tcp_clear_all_retrans_hints(struct tcp_sock *tp)
1863 {
1864 	tp->retransmit_skb_hint = NULL;
1865 }
1866 
1867 #define tcp_md5_addr tcp_ao_addr
1868 
1869 /* - key database */
1870 struct tcp_md5sig_key {
1871 	struct hlist_node	node;
1872 	u8			keylen;
1873 	u8			family; /* AF_INET or AF_INET6 */
1874 	u8			prefixlen;
1875 	u8			flags;
1876 	union tcp_md5_addr	addr;
1877 	int			l3index; /* set if key added with L3 scope */
1878 	u8			key[TCP_MD5SIG_MAXKEYLEN];
1879 	struct rcu_head		rcu;
1880 };
1881 
1882 /* - sock block */
1883 struct tcp_md5sig_info {
1884 	struct hlist_head	head;
1885 	struct rcu_head		rcu;
1886 };
1887 
1888 /* - pseudo header */
1889 struct tcp4_pseudohdr {
1890 	__be32		saddr;
1891 	__be32		daddr;
1892 	__u8		pad;
1893 	__u8		protocol;
1894 	__be16		len;
1895 };
1896 
1897 struct tcp6_pseudohdr {
1898 	struct in6_addr	saddr;
1899 	struct in6_addr daddr;
1900 	__be32		len;
1901 	__be32		protocol;	/* including padding */
1902 };
1903 
1904 /*
1905  * struct tcp_sigpool - per-CPU pool of ahash_requests
1906  * @scratch: per-CPU temporary area, that can be used between
1907  *	     tcp_sigpool_start() and tcp_sigpool_end() to perform
1908  *	     crypto request
1909  * @req: pre-allocated ahash request
1910  */
1911 struct tcp_sigpool {
1912 	void *scratch;
1913 	struct ahash_request *req;
1914 };
1915 
1916 int tcp_sigpool_alloc_ahash(const char *alg, size_t scratch_size);
1917 void tcp_sigpool_get(unsigned int id);
1918 void tcp_sigpool_release(unsigned int id);
1919 int tcp_sigpool_hash_skb_data(struct tcp_sigpool *hp,
1920 			      const struct sk_buff *skb,
1921 			      unsigned int header_len);
1922 
1923 /**
1924  * tcp_sigpool_start - disable bh and start using tcp_sigpool_ahash
1925  * @id: tcp_sigpool that was previously allocated by tcp_sigpool_alloc_ahash()
1926  * @c: returned tcp_sigpool for usage (uninitialized on failure)
1927  *
1928  * Returns: 0 on success, error otherwise.
1929  */
1930 int tcp_sigpool_start(unsigned int id, struct tcp_sigpool *c);
1931 /**
1932  * tcp_sigpool_end - enable bh and stop using tcp_sigpool
1933  * @c: tcp_sigpool context that was returned by tcp_sigpool_start()
1934  */
1935 void tcp_sigpool_end(struct tcp_sigpool *c);
1936 size_t tcp_sigpool_algo(unsigned int id, char *buf, size_t buf_len);
1937 /* - functions */
1938 void tcp_v4_md5_hash_skb(char *md5_hash, const struct tcp_md5sig_key *key,
1939 			 const struct sock *sk, const struct sk_buff *skb);
1940 int tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr,
1941 		   int family, u8 prefixlen, int l3index, u8 flags,
1942 		   const u8 *newkey, u8 newkeylen);
1943 int tcp_md5_key_copy(struct sock *sk, const union tcp_md5_addr *addr,
1944 		     int family, u8 prefixlen, int l3index,
1945 		     struct tcp_md5sig_key *key);
1946 
1947 int tcp_md5_do_del(struct sock *sk, const union tcp_md5_addr *addr,
1948 		   int family, u8 prefixlen, int l3index, u8 flags);
1949 void tcp_clear_md5_list(struct sock *sk);
1950 struct tcp_md5sig_key *tcp_v4_md5_lookup(const struct sock *sk,
1951 					 const struct sock *addr_sk);
1952 
1953 #ifdef CONFIG_TCP_MD5SIG
1954 struct tcp_md5sig_key *__tcp_md5_do_lookup(const struct sock *sk, int l3index,
1955 					   const union tcp_md5_addr *addr,
1956 					   int family, bool any_l3index);
1957 static inline struct tcp_md5sig_key *
1958 tcp_md5_do_lookup(const struct sock *sk, int l3index,
1959 		  const union tcp_md5_addr *addr, int family)
1960 {
1961 	if (!static_branch_unlikely(&tcp_md5_needed.key))
1962 		return NULL;
1963 	return __tcp_md5_do_lookup(sk, l3index, addr, family, false);
1964 }
1965 
1966 static inline struct tcp_md5sig_key *
1967 tcp_md5_do_lookup_any_l3index(const struct sock *sk,
1968 			      const union tcp_md5_addr *addr, int family)
1969 {
1970 	if (!static_branch_unlikely(&tcp_md5_needed.key))
1971 		return NULL;
1972 	return __tcp_md5_do_lookup(sk, 0, addr, family, true);
1973 }
1974 
1975 #define tcp_twsk_md5_key(twsk)	((twsk)->tw_md5_key)
1976 void tcp_md5_destruct_sock(struct sock *sk);
1977 #else
1978 static inline struct tcp_md5sig_key *
1979 tcp_md5_do_lookup(const struct sock *sk, int l3index,
1980 		  const union tcp_md5_addr *addr, int family)
1981 {
1982 	return NULL;
1983 }
1984 
1985 static inline struct tcp_md5sig_key *
1986 tcp_md5_do_lookup_any_l3index(const struct sock *sk,
1987 			      const union tcp_md5_addr *addr, int family)
1988 {
1989 	return NULL;
1990 }
1991 
1992 #define tcp_twsk_md5_key(twsk)	NULL
1993 static inline void tcp_md5_destruct_sock(struct sock *sk)
1994 {
1995 }
1996 #endif
1997 
1998 struct md5_ctx;
1999 void tcp_md5_hash_skb_data(struct md5_ctx *ctx, const struct sk_buff *skb,
2000 			   unsigned int header_len);
2001 void tcp_md5_hash_key(struct md5_ctx *ctx, const struct tcp_md5sig_key *key);
2002 
2003 /* From tcp_fastopen.c */
2004 void tcp_fastopen_cache_get(struct sock *sk, u16 *mss,
2005 			    struct tcp_fastopen_cookie *cookie);
2006 void tcp_fastopen_cache_set(struct sock *sk, u16 mss,
2007 			    struct tcp_fastopen_cookie *cookie, bool syn_lost,
2008 			    u16 try_exp);
2009 struct tcp_fastopen_request {
2010 	/* Fast Open cookie. Size 0 means a cookie request */
2011 	struct tcp_fastopen_cookie	cookie;
2012 	struct msghdr			*data;  /* data in MSG_FASTOPEN */
2013 	size_t				size;
2014 	int				copied;	/* queued in tcp_connect() */
2015 	struct ubuf_info		*uarg;
2016 };
2017 void tcp_free_fastopen_req(struct tcp_sock *tp);
2018 void tcp_fastopen_destroy_cipher(struct sock *sk);
2019 void tcp_fastopen_ctx_destroy(struct net *net);
2020 int tcp_fastopen_reset_cipher(struct net *net, struct sock *sk,
2021 			      void *primary_key, void *backup_key);
2022 int tcp_fastopen_get_cipher(struct net *net, struct inet_connection_sock *icsk,
2023 			    u64 *key);
2024 void tcp_fastopen_add_skb(struct sock *sk, struct sk_buff *skb);
2025 struct sock *tcp_try_fastopen(struct sock *sk, struct sk_buff *skb,
2026 			      struct request_sock *req,
2027 			      struct tcp_fastopen_cookie *foc,
2028 			      const struct dst_entry *dst);
2029 void tcp_fastopen_init_key_once(struct net *net);
2030 bool tcp_fastopen_cookie_check(struct sock *sk, u16 *mss,
2031 			     struct tcp_fastopen_cookie *cookie);
2032 bool tcp_fastopen_defer_connect(struct sock *sk, int *err);
2033 #define TCP_FASTOPEN_KEY_LENGTH sizeof(siphash_key_t)
2034 #define TCP_FASTOPEN_KEY_MAX 2
2035 #define TCP_FASTOPEN_KEY_BUF_LENGTH \
2036 	(TCP_FASTOPEN_KEY_LENGTH * TCP_FASTOPEN_KEY_MAX)
2037 
2038 /* Fastopen key context */
2039 struct tcp_fastopen_context {
2040 	siphash_key_t	key[TCP_FASTOPEN_KEY_MAX];
2041 	int		num;
2042 	struct rcu_head	rcu;
2043 };
2044 
2045 void tcp_fastopen_active_disable(struct sock *sk);
2046 bool tcp_fastopen_active_should_disable(struct sock *sk);
2047 void tcp_fastopen_active_disable_ofo_check(struct sock *sk);
2048 void tcp_fastopen_active_detect_blackhole(struct sock *sk, bool expired);
2049 
2050 /* Caller needs to wrap with rcu_read_(un)lock() */
2051 static inline
2052 struct tcp_fastopen_context *tcp_fastopen_get_ctx(const struct sock *sk)
2053 {
2054 	struct tcp_fastopen_context *ctx;
2055 
2056 	ctx = rcu_dereference(inet_csk(sk)->icsk_accept_queue.fastopenq.ctx);
2057 	if (!ctx)
2058 		ctx = rcu_dereference(sock_net(sk)->ipv4.tcp_fastopen_ctx);
2059 	return ctx;
2060 }
2061 
2062 static inline
2063 bool tcp_fastopen_cookie_match(const struct tcp_fastopen_cookie *foc,
2064 			       const struct tcp_fastopen_cookie *orig)
2065 {
2066 	if (orig->len == TCP_FASTOPEN_COOKIE_SIZE &&
2067 	    orig->len == foc->len &&
2068 	    !memcmp(orig->val, foc->val, foc->len))
2069 		return true;
2070 	return false;
2071 }
2072 
2073 static inline
2074 int tcp_fastopen_context_len(const struct tcp_fastopen_context *ctx)
2075 {
2076 	return ctx->num;
2077 }
2078 
2079 /* Latencies incurred by various limits for a sender. They are
2080  * chronograph-like stats that are mutually exclusive.
2081  */
2082 enum tcp_chrono {
2083 	TCP_CHRONO_UNSPEC,
2084 	TCP_CHRONO_BUSY, /* Actively sending data (non-empty write queue) */
2085 	TCP_CHRONO_RWND_LIMITED, /* Stalled by insufficient receive window */
2086 	TCP_CHRONO_SNDBUF_LIMITED, /* Stalled by insufficient send buffer */
2087 	__TCP_CHRONO_MAX,
2088 };
2089 
2090 void tcp_chrono_start(struct sock *sk, const enum tcp_chrono type);
2091 void tcp_chrono_stop(struct sock *sk, const enum tcp_chrono type);
2092 
2093 /* This helper is needed, because skb->tcp_tsorted_anchor uses
2094  * the same memory storage than skb->destructor/_skb_refdst
2095  */
2096 static inline void tcp_skb_tsorted_anchor_cleanup(struct sk_buff *skb)
2097 {
2098 	skb->destructor = NULL;
2099 	skb->_skb_refdst = 0UL;
2100 }
2101 
2102 #define tcp_skb_tsorted_save(skb) {		\
2103 	unsigned long _save = skb->_skb_refdst;	\
2104 	skb->_skb_refdst = 0UL;
2105 
2106 #define tcp_skb_tsorted_restore(skb)		\
2107 	skb->_skb_refdst = _save;		\
2108 }
2109 
2110 void tcp_write_queue_purge(struct sock *sk);
2111 
2112 static inline struct sk_buff *tcp_rtx_queue_head(const struct sock *sk)
2113 {
2114 	return skb_rb_first(&sk->tcp_rtx_queue);
2115 }
2116 
2117 static inline struct sk_buff *tcp_rtx_queue_tail(const struct sock *sk)
2118 {
2119 	return skb_rb_last(&sk->tcp_rtx_queue);
2120 }
2121 
2122 static inline struct sk_buff *tcp_write_queue_tail(const struct sock *sk)
2123 {
2124 	return skb_peek_tail(&sk->sk_write_queue);
2125 }
2126 
2127 #define tcp_for_write_queue_from_safe(skb, tmp, sk)			\
2128 	skb_queue_walk_from_safe(&(sk)->sk_write_queue, skb, tmp)
2129 
2130 static inline struct sk_buff *tcp_send_head(const struct sock *sk)
2131 {
2132 	return skb_peek(&sk->sk_write_queue);
2133 }
2134 
2135 static inline bool tcp_skb_is_last(const struct sock *sk,
2136 				   const struct sk_buff *skb)
2137 {
2138 	return skb_queue_is_last(&sk->sk_write_queue, skb);
2139 }
2140 
2141 /**
2142  * tcp_write_queue_empty - test if any payload (or FIN) is available in write queue
2143  * @sk: socket
2144  *
2145  * Since the write queue can have a temporary empty skb in it,
2146  * we must not use "return skb_queue_empty(&sk->sk_write_queue)"
2147  */
2148 static inline bool tcp_write_queue_empty(const struct sock *sk)
2149 {
2150 	const struct tcp_sock *tp = tcp_sk(sk);
2151 
2152 	return tp->write_seq == tp->snd_nxt;
2153 }
2154 
2155 static inline bool tcp_rtx_queue_empty(const struct sock *sk)
2156 {
2157 	return RB_EMPTY_ROOT(&sk->tcp_rtx_queue);
2158 }
2159 
2160 static inline bool tcp_rtx_and_write_queues_empty(const struct sock *sk)
2161 {
2162 	return tcp_rtx_queue_empty(sk) && tcp_write_queue_empty(sk);
2163 }
2164 
2165 static inline void tcp_add_write_queue_tail(struct sock *sk, struct sk_buff *skb)
2166 {
2167 	__skb_queue_tail(&sk->sk_write_queue, skb);
2168 
2169 	/* Queue it, remembering where we must start sending. */
2170 	if (sk->sk_write_queue.next == skb)
2171 		tcp_chrono_start(sk, TCP_CHRONO_BUSY);
2172 }
2173 
2174 /* Insert new before skb on the write queue of sk.  */
2175 static inline void tcp_insert_write_queue_before(struct sk_buff *new,
2176 						  struct sk_buff *skb,
2177 						  struct sock *sk)
2178 {
2179 	__skb_queue_before(&sk->sk_write_queue, skb, new);
2180 }
2181 
2182 static inline void tcp_unlink_write_queue(struct sk_buff *skb, struct sock *sk)
2183 {
2184 	tcp_skb_tsorted_anchor_cleanup(skb);
2185 	__skb_unlink(skb, &sk->sk_write_queue);
2186 }
2187 
2188 void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb);
2189 
2190 static inline void tcp_rtx_queue_unlink(struct sk_buff *skb, struct sock *sk)
2191 {
2192 	tcp_skb_tsorted_anchor_cleanup(skb);
2193 	rb_erase(&skb->rbnode, &sk->tcp_rtx_queue);
2194 }
2195 
2196 static inline void tcp_rtx_queue_unlink_and_free(struct sk_buff *skb, struct sock *sk)
2197 {
2198 	list_del(&skb->tcp_tsorted_anchor);
2199 	tcp_rtx_queue_unlink(skb, sk);
2200 	tcp_wmem_free_skb(sk, skb);
2201 }
2202 
2203 static inline void tcp_write_collapse_fence(struct sock *sk)
2204 {
2205 	struct sk_buff *skb = tcp_write_queue_tail(sk);
2206 
2207 	if (skb)
2208 		TCP_SKB_CB(skb)->eor = 1;
2209 }
2210 
2211 static inline void tcp_push_pending_frames(struct sock *sk)
2212 {
2213 	if (tcp_send_head(sk)) {
2214 		struct tcp_sock *tp = tcp_sk(sk);
2215 
2216 		__tcp_push_pending_frames(sk, tcp_current_mss(sk), tp->nonagle);
2217 	}
2218 }
2219 
2220 /* Start sequence of the skb just after the highest skb with SACKed
2221  * bit, valid only if sacked_out > 0 or when the caller has ensured
2222  * validity by itself.
2223  */
2224 static inline u32 tcp_highest_sack_seq(struct tcp_sock *tp)
2225 {
2226 	if (!tp->sacked_out)
2227 		return tp->snd_una;
2228 
2229 	if (tp->highest_sack == NULL)
2230 		return tp->snd_nxt;
2231 
2232 	return TCP_SKB_CB(tp->highest_sack)->seq;
2233 }
2234 
2235 static inline void tcp_advance_highest_sack(struct sock *sk, struct sk_buff *skb)
2236 {
2237 	tcp_sk(sk)->highest_sack = skb_rb_next(skb);
2238 }
2239 
2240 static inline struct sk_buff *tcp_highest_sack(struct sock *sk)
2241 {
2242 	return tcp_sk(sk)->highest_sack;
2243 }
2244 
2245 static inline void tcp_highest_sack_reset(struct sock *sk)
2246 {
2247 	tcp_sk(sk)->highest_sack = tcp_rtx_queue_head(sk);
2248 }
2249 
2250 /* Called when old skb is about to be deleted and replaced by new skb */
2251 static inline void tcp_highest_sack_replace(struct sock *sk,
2252 					    struct sk_buff *old,
2253 					    struct sk_buff *new)
2254 {
2255 	if (old == tcp_highest_sack(sk))
2256 		tcp_sk(sk)->highest_sack = new;
2257 }
2258 
2259 /* This helper checks if socket has IP_TRANSPARENT set */
2260 static inline bool inet_sk_transparent(const struct sock *sk)
2261 {
2262 	switch (sk->sk_state) {
2263 	case TCP_TIME_WAIT:
2264 		return inet_twsk(sk)->tw_transparent;
2265 	case TCP_NEW_SYN_RECV:
2266 		return inet_rsk(inet_reqsk(sk))->no_srccheck;
2267 	}
2268 	return inet_test_bit(TRANSPARENT, sk);
2269 }
2270 
2271 /* Determines whether this is a thin stream (which may suffer from
2272  * increased latency). Used to trigger latency-reducing mechanisms.
2273  */
2274 static inline bool tcp_stream_is_thin(struct tcp_sock *tp)
2275 {
2276 	return tp->packets_out < 4 && !tcp_in_initial_slowstart(tp);
2277 }
2278 
2279 /* /proc */
2280 enum tcp_seq_states {
2281 	TCP_SEQ_STATE_LISTENING,
2282 	TCP_SEQ_STATE_ESTABLISHED,
2283 };
2284 
2285 void *tcp_seq_start(struct seq_file *seq, loff_t *pos);
2286 void *tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos);
2287 void tcp_seq_stop(struct seq_file *seq, void *v);
2288 
2289 struct tcp_seq_afinfo {
2290 	sa_family_t			family;
2291 };
2292 
2293 struct tcp_iter_state {
2294 	struct seq_net_private	p;
2295 	enum tcp_seq_states	state;
2296 	struct sock		*syn_wait_sk;
2297 	int			bucket, offset, sbucket, num;
2298 	loff_t			last_pos;
2299 };
2300 
2301 extern struct request_sock_ops tcp_request_sock_ops;
2302 extern struct request_sock_ops tcp6_request_sock_ops;
2303 
2304 void tcp_v4_destroy_sock(struct sock *sk);
2305 
2306 struct sk_buff *tcp_gso_segment(struct sk_buff *skb,
2307 				netdev_features_t features);
2308 struct tcphdr *tcp_gro_pull_header(struct sk_buff *skb);
2309 struct sk_buff *tcp_gro_lookup(struct list_head *head, struct tcphdr *th);
2310 struct sk_buff *tcp_gro_receive(struct list_head *head, struct sk_buff *skb,
2311 				struct tcphdr *th);
2312 INDIRECT_CALLABLE_DECLARE(int tcp4_gro_complete(struct sk_buff *skb, int thoff));
2313 INDIRECT_CALLABLE_DECLARE(struct sk_buff *tcp4_gro_receive(struct list_head *head, struct sk_buff *skb));
2314 INDIRECT_CALLABLE_DECLARE(int tcp6_gro_complete(struct sk_buff *skb, int thoff));
2315 INDIRECT_CALLABLE_DECLARE(struct sk_buff *tcp6_gro_receive(struct list_head *head, struct sk_buff *skb));
2316 #ifdef CONFIG_INET
2317 void tcp_gro_complete(struct sk_buff *skb);
2318 #else
2319 static inline void tcp_gro_complete(struct sk_buff *skb) { }
2320 #endif
2321 
2322 void __tcp_v4_send_check(struct sk_buff *skb, __be32 saddr, __be32 daddr);
2323 
2324 static inline u32 tcp_notsent_lowat(const struct tcp_sock *tp)
2325 {
2326 	struct net *net = sock_net((struct sock *)tp);
2327 	u32 val;
2328 
2329 	val = READ_ONCE(tp->notsent_lowat);
2330 
2331 	return val ?: READ_ONCE(net->ipv4.sysctl_tcp_notsent_lowat);
2332 }
2333 
2334 bool tcp_stream_memory_free(const struct sock *sk, int wake);
2335 
2336 #ifdef CONFIG_PROC_FS
2337 int tcp4_proc_init(void);
2338 void tcp4_proc_exit(void);
2339 #endif
2340 
2341 int tcp_rtx_synack(const struct sock *sk, struct request_sock *req);
2342 int tcp_conn_request(struct request_sock_ops *rsk_ops,
2343 		     const struct tcp_request_sock_ops *af_ops,
2344 		     struct sock *sk, struct sk_buff *skb);
2345 
2346 /* TCP af-specific functions */
2347 struct tcp_sock_af_ops {
2348 #ifdef CONFIG_TCP_MD5SIG
2349 	struct tcp_md5sig_key	*(*md5_lookup) (const struct sock *sk,
2350 						const struct sock *addr_sk);
2351 	void		(*calc_md5_hash)(char *location,
2352 					 const struct tcp_md5sig_key *md5,
2353 					 const struct sock *sk,
2354 					 const struct sk_buff *skb);
2355 	int		(*md5_parse)(struct sock *sk,
2356 				     int optname,
2357 				     sockptr_t optval,
2358 				     int optlen);
2359 #endif
2360 #ifdef CONFIG_TCP_AO
2361 	int (*ao_parse)(struct sock *sk, int optname, sockptr_t optval, int optlen);
2362 	struct tcp_ao_key *(*ao_lookup)(const struct sock *sk,
2363 					struct sock *addr_sk,
2364 					int sndid, int rcvid);
2365 	int (*ao_calc_key_sk)(struct tcp_ao_key *mkt, u8 *key,
2366 			      const struct sock *sk,
2367 			      __be32 sisn, __be32 disn, bool send);
2368 	int (*calc_ao_hash)(char *location, struct tcp_ao_key *ao,
2369 			    const struct sock *sk, const struct sk_buff *skb,
2370 			    const u8 *tkey, int hash_offset, u32 sne);
2371 #endif
2372 };
2373 
2374 struct tcp_request_sock_ops {
2375 	u16 mss_clamp;
2376 #ifdef CONFIG_TCP_MD5SIG
2377 	struct tcp_md5sig_key *(*req_md5_lookup)(const struct sock *sk,
2378 						 const struct sock *addr_sk);
2379 	void		(*calc_md5_hash) (char *location,
2380 					  const struct tcp_md5sig_key *md5,
2381 					  const struct sock *sk,
2382 					  const struct sk_buff *skb);
2383 #endif
2384 #ifdef CONFIG_TCP_AO
2385 	struct tcp_ao_key *(*ao_lookup)(const struct sock *sk,
2386 					struct request_sock *req,
2387 					int sndid, int rcvid);
2388 	int (*ao_calc_key)(struct tcp_ao_key *mkt, u8 *key, struct request_sock *sk);
2389 	int (*ao_synack_hash)(char *ao_hash, struct tcp_ao_key *mkt,
2390 			      struct request_sock *req, const struct sk_buff *skb,
2391 			      int hash_offset, u32 sne);
2392 #endif
2393 #ifdef CONFIG_SYN_COOKIES
2394 	__u32 (*cookie_init_seq)(const struct sk_buff *skb,
2395 				 __u16 *mss);
2396 #endif
2397 	struct dst_entry *(*route_req)(const struct sock *sk,
2398 				       struct sk_buff *skb,
2399 				       struct flowi *fl,
2400 				       struct request_sock *req,
2401 				       u32 tw_isn);
2402 	u32 (*init_seq)(const struct sk_buff *skb);
2403 	u32 (*init_ts_off)(const struct net *net, const struct sk_buff *skb);
2404 	int (*send_synack)(const struct sock *sk, struct dst_entry *dst,
2405 			   struct flowi *fl, struct request_sock *req,
2406 			   struct tcp_fastopen_cookie *foc,
2407 			   enum tcp_synack_type synack_type,
2408 			   struct sk_buff *syn_skb);
2409 };
2410 
2411 extern const struct tcp_request_sock_ops tcp_request_sock_ipv4_ops;
2412 #if IS_ENABLED(CONFIG_IPV6)
2413 extern const struct tcp_request_sock_ops tcp_request_sock_ipv6_ops;
2414 #endif
2415 
2416 #ifdef CONFIG_SYN_COOKIES
2417 static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops,
2418 					 const struct sock *sk, struct sk_buff *skb,
2419 					 __u16 *mss)
2420 {
2421 	tcp_synq_overflow(sk);
2422 	__NET_INC_STATS(sock_net(sk), LINUX_MIB_SYNCOOKIESSENT);
2423 	return ops->cookie_init_seq(skb, mss);
2424 }
2425 #else
2426 static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops,
2427 					 const struct sock *sk, struct sk_buff *skb,
2428 					 __u16 *mss)
2429 {
2430 	return 0;
2431 }
2432 #endif
2433 
2434 struct tcp_key {
2435 	union {
2436 		struct {
2437 			struct tcp_ao_key *ao_key;
2438 			char *traffic_key;
2439 			u32 sne;
2440 			u8 rcv_next;
2441 		};
2442 		struct tcp_md5sig_key *md5_key;
2443 	};
2444 	enum {
2445 		TCP_KEY_NONE = 0,
2446 		TCP_KEY_MD5,
2447 		TCP_KEY_AO,
2448 	} type;
2449 };
2450 
2451 static inline void tcp_get_current_key(const struct sock *sk,
2452 				       struct tcp_key *out)
2453 {
2454 #if defined(CONFIG_TCP_AO) || defined(CONFIG_TCP_MD5SIG)
2455 	const struct tcp_sock *tp = tcp_sk(sk);
2456 #endif
2457 
2458 #ifdef CONFIG_TCP_AO
2459 	if (static_branch_unlikely(&tcp_ao_needed.key)) {
2460 		struct tcp_ao_info *ao;
2461 
2462 		ao = rcu_dereference_protected(tp->ao_info,
2463 					       lockdep_sock_is_held(sk));
2464 		if (ao) {
2465 			out->ao_key = READ_ONCE(ao->current_key);
2466 			out->type = TCP_KEY_AO;
2467 			return;
2468 		}
2469 	}
2470 #endif
2471 #ifdef CONFIG_TCP_MD5SIG
2472 	if (static_branch_unlikely(&tcp_md5_needed.key) &&
2473 	    rcu_access_pointer(tp->md5sig_info)) {
2474 		out->md5_key = tp->af_specific->md5_lookup(sk, sk);
2475 		if (out->md5_key) {
2476 			out->type = TCP_KEY_MD5;
2477 			return;
2478 		}
2479 	}
2480 #endif
2481 	out->type = TCP_KEY_NONE;
2482 }
2483 
2484 static inline bool tcp_key_is_md5(const struct tcp_key *key)
2485 {
2486 	if (static_branch_tcp_md5())
2487 		return key->type == TCP_KEY_MD5;
2488 	return false;
2489 }
2490 
2491 static inline bool tcp_key_is_ao(const struct tcp_key *key)
2492 {
2493 	if (static_branch_tcp_ao())
2494 		return key->type == TCP_KEY_AO;
2495 	return false;
2496 }
2497 
2498 int tcpv4_offload_init(void);
2499 
2500 void tcp_v4_init(void);
2501 void tcp_init(void);
2502 
2503 /* tcp_recovery.c */
2504 void tcp_mark_skb_lost(struct sock *sk, struct sk_buff *skb);
2505 void tcp_newreno_mark_lost(struct sock *sk, bool snd_una_advanced);
2506 extern s32 tcp_rack_skb_timeout(struct tcp_sock *tp, struct sk_buff *skb,
2507 				u32 reo_wnd);
2508 extern bool tcp_rack_mark_lost(struct sock *sk);
2509 extern void tcp_rack_advance(struct tcp_sock *tp, u8 sacked, u32 end_seq,
2510 			     u64 xmit_time);
2511 extern void tcp_rack_reo_timeout(struct sock *sk);
2512 extern void tcp_rack_update_reo_wnd(struct sock *sk, struct rate_sample *rs);
2513 
2514 /* tcp_plb.c */
2515 
2516 /*
2517  * Scaling factor for fractions in PLB. For example, tcp_plb_update_state
2518  * expects cong_ratio which represents fraction of traffic that experienced
2519  * congestion over a single RTT. In order to avoid floating point operations,
2520  * this fraction should be mapped to (1 << TCP_PLB_SCALE) and passed in.
2521  */
2522 #define TCP_PLB_SCALE 8
2523 
2524 /* State for PLB (Protective Load Balancing) for a single TCP connection. */
2525 struct tcp_plb_state {
2526 	u8	consec_cong_rounds:5, /* consecutive congested rounds */
2527 		unused:3;
2528 	u32	pause_until; /* jiffies32 when PLB can resume rerouting */
2529 };
2530 
2531 static inline void tcp_plb_init(const struct sock *sk,
2532 				struct tcp_plb_state *plb)
2533 {
2534 	plb->consec_cong_rounds = 0;
2535 	plb->pause_until = 0;
2536 }
2537 void tcp_plb_update_state(const struct sock *sk, struct tcp_plb_state *plb,
2538 			  const int cong_ratio);
2539 void tcp_plb_check_rehash(struct sock *sk, struct tcp_plb_state *plb);
2540 void tcp_plb_update_state_upon_rto(struct sock *sk, struct tcp_plb_state *plb);
2541 
2542 static inline void tcp_warn_once(const struct sock *sk, bool cond, const char *str)
2543 {
2544 	WARN_ONCE(cond,
2545 		  "%scwn:%u out:%u sacked:%u lost:%u retrans:%u tlp_high_seq:%u sk_state:%u ca_state:%u advmss:%u mss_cache:%u pmtu:%u\n",
2546 		  str,
2547 		  tcp_snd_cwnd(tcp_sk(sk)),
2548 		  tcp_sk(sk)->packets_out, tcp_sk(sk)->sacked_out,
2549 		  tcp_sk(sk)->lost_out, tcp_sk(sk)->retrans_out,
2550 		  tcp_sk(sk)->tlp_high_seq, sk->sk_state,
2551 		  inet_csk(sk)->icsk_ca_state,
2552 		  tcp_sk(sk)->advmss, tcp_sk(sk)->mss_cache,
2553 		  inet_csk(sk)->icsk_pmtu_cookie);
2554 }
2555 
2556 /* At how many usecs into the future should the RTO fire? */
2557 static inline s64 tcp_rto_delta_us(const struct sock *sk)
2558 {
2559 	const struct sk_buff *skb = tcp_rtx_queue_head(sk);
2560 	u32 rto = inet_csk(sk)->icsk_rto;
2561 
2562 	if (likely(skb)) {
2563 		u64 rto_time_stamp_us = tcp_skb_timestamp_us(skb) + jiffies_to_usecs(rto);
2564 
2565 		return rto_time_stamp_us - tcp_sk(sk)->tcp_mstamp;
2566 	} else {
2567 		tcp_warn_once(sk, 1, "rtx queue empty: ");
2568 		return jiffies_to_usecs(rto);
2569 	}
2570 
2571 }
2572 
2573 /*
2574  * Save and compile IPv4 options, return a pointer to it
2575  */
2576 static inline struct ip_options_rcu *tcp_v4_save_options(struct net *net,
2577 							 struct sk_buff *skb)
2578 {
2579 	const struct ip_options *opt = &TCP_SKB_CB(skb)->header.h4.opt;
2580 	struct ip_options_rcu *dopt = NULL;
2581 
2582 	if (opt->optlen) {
2583 		int opt_size = sizeof(*dopt) + opt->optlen;
2584 
2585 		dopt = kmalloc(opt_size, GFP_ATOMIC);
2586 		if (dopt && __ip_options_echo(net, &dopt->opt, skb, opt)) {
2587 			kfree(dopt);
2588 			dopt = NULL;
2589 		}
2590 	}
2591 	return dopt;
2592 }
2593 
2594 /* locally generated TCP pure ACKs have skb->truesize == 2
2595  * (check tcp_send_ack() in net/ipv4/tcp_output.c )
2596  * This is much faster than dissecting the packet to find out.
2597  * (Think of GRE encapsulations, IPv4, IPv6, ...)
2598  */
2599 static inline bool skb_is_tcp_pure_ack(const struct sk_buff *skb)
2600 {
2601 	return skb->truesize == 2;
2602 }
2603 
2604 static inline void skb_set_tcp_pure_ack(struct sk_buff *skb)
2605 {
2606 	skb->truesize = 2;
2607 }
2608 
2609 static inline int tcp_inq(struct sock *sk)
2610 {
2611 	struct tcp_sock *tp = tcp_sk(sk);
2612 	int answ;
2613 
2614 	if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) {
2615 		answ = 0;
2616 	} else if (sock_flag(sk, SOCK_URGINLINE) ||
2617 		   !tp->urg_data ||
2618 		   before(tp->urg_seq, tp->copied_seq) ||
2619 		   !before(tp->urg_seq, tp->rcv_nxt)) {
2620 
2621 		answ = tp->rcv_nxt - tp->copied_seq;
2622 
2623 		/* Subtract 1, if FIN was received */
2624 		if (answ && sock_flag(sk, SOCK_DONE))
2625 			answ--;
2626 	} else {
2627 		answ = tp->urg_seq - tp->copied_seq;
2628 	}
2629 
2630 	return answ;
2631 }
2632 
2633 int tcp_peek_len(struct socket *sock);
2634 
2635 static inline void tcp_segs_in(struct tcp_sock *tp, const struct sk_buff *skb)
2636 {
2637 	u16 segs_in;
2638 
2639 	segs_in = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
2640 
2641 	/* We update these fields while other threads might
2642 	 * read them from tcp_get_info()
2643 	 */
2644 	WRITE_ONCE(tp->segs_in, tp->segs_in + segs_in);
2645 	if (skb->len > tcp_hdrlen(skb))
2646 		WRITE_ONCE(tp->data_segs_in, tp->data_segs_in + segs_in);
2647 }
2648 
2649 /*
2650  * TCP listen path runs lockless.
2651  * We forced "struct sock" to be const qualified to make sure
2652  * we don't modify one of its field by mistake.
2653  * Here, we increment sk_drops which is an atomic_t, so we can safely
2654  * make sock writable again.
2655  */
2656 static inline void tcp_listendrop(const struct sock *sk)
2657 {
2658 	sk_drops_inc((struct sock *)sk);
2659 	__NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENDROPS);
2660 }
2661 
2662 enum hrtimer_restart tcp_pace_kick(struct hrtimer *timer);
2663 
2664 /*
2665  * Interface for adding Upper Level Protocols over TCP
2666  */
2667 
2668 #define TCP_ULP_NAME_MAX	16
2669 #define TCP_ULP_MAX		128
2670 #define TCP_ULP_BUF_MAX		(TCP_ULP_NAME_MAX*TCP_ULP_MAX)
2671 
2672 struct tcp_ulp_ops {
2673 	struct list_head	list;
2674 
2675 	/* initialize ulp */
2676 	int (*init)(struct sock *sk);
2677 	/* update ulp */
2678 	void (*update)(struct sock *sk, struct proto *p,
2679 		       void (*write_space)(struct sock *sk));
2680 	/* cleanup ulp */
2681 	void (*release)(struct sock *sk);
2682 	/* diagnostic */
2683 	int (*get_info)(struct sock *sk, struct sk_buff *skb, bool net_admin);
2684 	size_t (*get_info_size)(const struct sock *sk, bool net_admin);
2685 	/* clone ulp */
2686 	void (*clone)(const struct request_sock *req, struct sock *newsk,
2687 		      const gfp_t priority);
2688 
2689 	char		name[TCP_ULP_NAME_MAX];
2690 	struct module	*owner;
2691 };
2692 int tcp_register_ulp(struct tcp_ulp_ops *type);
2693 void tcp_unregister_ulp(struct tcp_ulp_ops *type);
2694 int tcp_set_ulp(struct sock *sk, const char *name);
2695 void tcp_get_available_ulp(char *buf, size_t len);
2696 void tcp_cleanup_ulp(struct sock *sk);
2697 void tcp_update_ulp(struct sock *sk, struct proto *p,
2698 		    void (*write_space)(struct sock *sk));
2699 
2700 #define MODULE_ALIAS_TCP_ULP(name)				\
2701 	MODULE_INFO(alias, name);		\
2702 	MODULE_INFO(alias, "tcp-ulp-" name)
2703 
2704 #ifdef CONFIG_NET_SOCK_MSG
2705 struct sk_msg;
2706 struct sk_psock;
2707 
2708 #ifdef CONFIG_BPF_SYSCALL
2709 int tcp_bpf_update_proto(struct sock *sk, struct sk_psock *psock, bool restore);
2710 void tcp_bpf_clone(const struct sock *sk, struct sock *newsk);
2711 #ifdef CONFIG_BPF_STREAM_PARSER
2712 struct strparser;
2713 int tcp_bpf_strp_read_sock(struct strparser *strp, read_descriptor_t *desc,
2714 			   sk_read_actor_t recv_actor);
2715 #endif /* CONFIG_BPF_STREAM_PARSER */
2716 #endif /* CONFIG_BPF_SYSCALL */
2717 
2718 #ifdef CONFIG_INET
2719 void tcp_eat_skb(struct sock *sk, struct sk_buff *skb);
2720 #else
2721 static inline void tcp_eat_skb(struct sock *sk, struct sk_buff *skb)
2722 {
2723 }
2724 #endif
2725 
2726 int tcp_bpf_sendmsg_redir(struct sock *sk, bool ingress,
2727 			  struct sk_msg *msg, u32 bytes, int flags);
2728 #endif /* CONFIG_NET_SOCK_MSG */
2729 
2730 #if !defined(CONFIG_BPF_SYSCALL) || !defined(CONFIG_NET_SOCK_MSG)
2731 static inline void tcp_bpf_clone(const struct sock *sk, struct sock *newsk)
2732 {
2733 }
2734 #endif
2735 
2736 #ifdef CONFIG_CGROUP_BPF
2737 static inline void bpf_skops_init_skb(struct bpf_sock_ops_kern *skops,
2738 				      struct sk_buff *skb,
2739 				      unsigned int end_offset)
2740 {
2741 	skops->skb = skb;
2742 	skops->skb_data_end = skb->data + end_offset;
2743 }
2744 #else
2745 static inline void bpf_skops_init_skb(struct bpf_sock_ops_kern *skops,
2746 				      struct sk_buff *skb,
2747 				      unsigned int end_offset)
2748 {
2749 }
2750 #endif
2751 
2752 /* Call BPF_SOCK_OPS program that returns an int. If the return value
2753  * is < 0, then the BPF op failed (for example if the loaded BPF
2754  * program does not support the chosen operation or there is no BPF
2755  * program loaded).
2756  */
2757 #ifdef CONFIG_BPF
2758 static inline int tcp_call_bpf(struct sock *sk, int op, u32 nargs, u32 *args)
2759 {
2760 	struct bpf_sock_ops_kern sock_ops;
2761 	int ret;
2762 
2763 	memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
2764 	if (sk_fullsock(sk)) {
2765 		sock_ops.is_fullsock = 1;
2766 		sock_ops.is_locked_tcp_sock = 1;
2767 		sock_owned_by_me(sk);
2768 	}
2769 
2770 	sock_ops.sk = sk;
2771 	sock_ops.op = op;
2772 	if (nargs > 0)
2773 		memcpy(sock_ops.args, args, nargs * sizeof(*args));
2774 
2775 	ret = BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops);
2776 	if (ret == 0)
2777 		ret = sock_ops.reply;
2778 	else
2779 		ret = -1;
2780 	return ret;
2781 }
2782 
2783 static inline int tcp_call_bpf_2arg(struct sock *sk, int op, u32 arg1, u32 arg2)
2784 {
2785 	u32 args[2] = {arg1, arg2};
2786 
2787 	return tcp_call_bpf(sk, op, 2, args);
2788 }
2789 
2790 static inline int tcp_call_bpf_3arg(struct sock *sk, int op, u32 arg1, u32 arg2,
2791 				    u32 arg3)
2792 {
2793 	u32 args[3] = {arg1, arg2, arg3};
2794 
2795 	return tcp_call_bpf(sk, op, 3, args);
2796 }
2797 
2798 #else
2799 static inline int tcp_call_bpf(struct sock *sk, int op, u32 nargs, u32 *args)
2800 {
2801 	return -EPERM;
2802 }
2803 
2804 static inline int tcp_call_bpf_2arg(struct sock *sk, int op, u32 arg1, u32 arg2)
2805 {
2806 	return -EPERM;
2807 }
2808 
2809 static inline int tcp_call_bpf_3arg(struct sock *sk, int op, u32 arg1, u32 arg2,
2810 				    u32 arg3)
2811 {
2812 	return -EPERM;
2813 }
2814 
2815 #endif
2816 
2817 static inline u32 tcp_timeout_init(struct sock *sk)
2818 {
2819 	int timeout;
2820 
2821 	timeout = tcp_call_bpf(sk, BPF_SOCK_OPS_TIMEOUT_INIT, 0, NULL);
2822 
2823 	if (timeout <= 0)
2824 		timeout = TCP_TIMEOUT_INIT;
2825 	return min_t(int, timeout, TCP_RTO_MAX);
2826 }
2827 
2828 static inline u32 tcp_rwnd_init_bpf(struct sock *sk)
2829 {
2830 	int rwnd;
2831 
2832 	rwnd = tcp_call_bpf(sk, BPF_SOCK_OPS_RWND_INIT, 0, NULL);
2833 
2834 	if (rwnd < 0)
2835 		rwnd = 0;
2836 	return rwnd;
2837 }
2838 
2839 static inline bool tcp_bpf_ca_needs_ecn(struct sock *sk)
2840 {
2841 	return (tcp_call_bpf(sk, BPF_SOCK_OPS_NEEDS_ECN, 0, NULL) == 1);
2842 }
2843 
2844 static inline void tcp_bpf_rtt(struct sock *sk, long mrtt, u32 srtt)
2845 {
2846 	if (BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), BPF_SOCK_OPS_RTT_CB_FLAG))
2847 		tcp_call_bpf_2arg(sk, BPF_SOCK_OPS_RTT_CB, mrtt, srtt);
2848 }
2849 
2850 #if IS_ENABLED(CONFIG_SMC)
2851 extern struct static_key_false tcp_have_smc;
2852 #endif
2853 
2854 #if IS_ENABLED(CONFIG_TLS_DEVICE)
2855 void clean_acked_data_enable(struct tcp_sock *tp,
2856 			     void (*cad)(struct sock *sk, u32 ack_seq));
2857 void clean_acked_data_disable(struct tcp_sock *tp);
2858 void clean_acked_data_flush(void);
2859 #endif
2860 
2861 DECLARE_STATIC_KEY_FALSE(tcp_tx_delay_enabled);
2862 static inline void tcp_add_tx_delay(struct sk_buff *skb,
2863 				    const struct tcp_sock *tp)
2864 {
2865 	if (static_branch_unlikely(&tcp_tx_delay_enabled))
2866 		skb->skb_mstamp_ns += (u64)tp->tcp_tx_delay * NSEC_PER_USEC;
2867 }
2868 
2869 /* Compute Earliest Departure Time for some control packets
2870  * like ACK or RST for TIME_WAIT or non ESTABLISHED sockets.
2871  */
2872 static inline u64 tcp_transmit_time(const struct sock *sk)
2873 {
2874 	if (static_branch_unlikely(&tcp_tx_delay_enabled)) {
2875 		u32 delay = (sk->sk_state == TCP_TIME_WAIT) ?
2876 			tcp_twsk(sk)->tw_tx_delay : tcp_sk(sk)->tcp_tx_delay;
2877 
2878 		return tcp_clock_ns() + (u64)delay * NSEC_PER_USEC;
2879 	}
2880 	return 0;
2881 }
2882 
2883 static inline int tcp_parse_auth_options(const struct tcphdr *th,
2884 		const u8 **md5_hash, const struct tcp_ao_hdr **aoh)
2885 {
2886 	const u8 *md5_tmp, *ao_tmp;
2887 	int ret;
2888 
2889 	ret = tcp_do_parse_auth_options(th, &md5_tmp, &ao_tmp);
2890 	if (ret)
2891 		return ret;
2892 
2893 	if (md5_hash)
2894 		*md5_hash = md5_tmp;
2895 
2896 	if (aoh) {
2897 		if (!ao_tmp)
2898 			*aoh = NULL;
2899 		else
2900 			*aoh = (struct tcp_ao_hdr *)(ao_tmp - 2);
2901 	}
2902 
2903 	return 0;
2904 }
2905 
2906 static inline bool tcp_ao_required(struct sock *sk, const void *saddr,
2907 				   int family, int l3index, bool stat_inc)
2908 {
2909 #ifdef CONFIG_TCP_AO
2910 	struct tcp_ao_info *ao_info;
2911 	struct tcp_ao_key *ao_key;
2912 
2913 	if (!static_branch_unlikely(&tcp_ao_needed.key))
2914 		return false;
2915 
2916 	ao_info = rcu_dereference_check(tcp_sk(sk)->ao_info,
2917 					lockdep_sock_is_held(sk));
2918 	if (!ao_info)
2919 		return false;
2920 
2921 	ao_key = tcp_ao_do_lookup(sk, l3index, saddr, family, -1, -1);
2922 	if (ao_info->ao_required || ao_key) {
2923 		if (stat_inc) {
2924 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAOREQUIRED);
2925 			atomic64_inc(&ao_info->counters.ao_required);
2926 		}
2927 		return true;
2928 	}
2929 #endif
2930 	return false;
2931 }
2932 
2933 enum skb_drop_reason tcp_inbound_hash(struct sock *sk,
2934 		const struct request_sock *req, const struct sk_buff *skb,
2935 		const void *saddr, const void *daddr,
2936 		int family, int dif, int sdif);
2937 
2938 #endif	/* _TCP_H */
2939