xref: /linux/include/net/tcp.h (revision 0883c2c06fb5bcf5b9e008270827e63c09a88c1e)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Definitions for the TCP module.
7  *
8  * Version:	@(#)tcp.h	1.0.5	05/23/93
9  *
10  * Authors:	Ross Biro
11  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *
13  *		This program is free software; you can redistribute it and/or
14  *		modify it under the terms of the GNU General Public License
15  *		as published by the Free Software Foundation; either version
16  *		2 of the License, or (at your option) any later version.
17  */
18 #ifndef _TCP_H
19 #define _TCP_H
20 
21 #define FASTRETRANS_DEBUG 1
22 
23 #include <linux/list.h>
24 #include <linux/tcp.h>
25 #include <linux/bug.h>
26 #include <linux/slab.h>
27 #include <linux/cache.h>
28 #include <linux/percpu.h>
29 #include <linux/skbuff.h>
30 #include <linux/cryptohash.h>
31 #include <linux/kref.h>
32 #include <linux/ktime.h>
33 
34 #include <net/inet_connection_sock.h>
35 #include <net/inet_timewait_sock.h>
36 #include <net/inet_hashtables.h>
37 #include <net/checksum.h>
38 #include <net/request_sock.h>
39 #include <net/sock.h>
40 #include <net/snmp.h>
41 #include <net/ip.h>
42 #include <net/tcp_states.h>
43 #include <net/inet_ecn.h>
44 #include <net/dst.h>
45 
46 #include <linux/seq_file.h>
47 #include <linux/memcontrol.h>
48 
49 extern struct inet_hashinfo tcp_hashinfo;
50 
51 extern struct percpu_counter tcp_orphan_count;
52 void tcp_time_wait(struct sock *sk, int state, int timeo);
53 
54 #define MAX_TCP_HEADER	(128 + MAX_HEADER)
55 #define MAX_TCP_OPTION_SPACE 40
56 
57 /*
58  * Never offer a window over 32767 without using window scaling. Some
59  * poor stacks do signed 16bit maths!
60  */
61 #define MAX_TCP_WINDOW		32767U
62 
63 /* Minimal accepted MSS. It is (60+60+8) - (20+20). */
64 #define TCP_MIN_MSS		88U
65 
66 /* The least MTU to use for probing */
67 #define TCP_BASE_MSS		1024
68 
69 /* probing interval, default to 10 minutes as per RFC4821 */
70 #define TCP_PROBE_INTERVAL	600
71 
72 /* Specify interval when tcp mtu probing will stop */
73 #define TCP_PROBE_THRESHOLD	8
74 
75 /* After receiving this amount of duplicate ACKs fast retransmit starts. */
76 #define TCP_FASTRETRANS_THRESH 3
77 
78 /* Maximal number of ACKs sent quickly to accelerate slow-start. */
79 #define TCP_MAX_QUICKACKS	16U
80 
81 /* urg_data states */
82 #define TCP_URG_VALID	0x0100
83 #define TCP_URG_NOTYET	0x0200
84 #define TCP_URG_READ	0x0400
85 
86 #define TCP_RETR1	3	/*
87 				 * This is how many retries it does before it
88 				 * tries to figure out if the gateway is
89 				 * down. Minimal RFC value is 3; it corresponds
90 				 * to ~3sec-8min depending on RTO.
91 				 */
92 
93 #define TCP_RETR2	15	/*
94 				 * This should take at least
95 				 * 90 minutes to time out.
96 				 * RFC1122 says that the limit is 100 sec.
97 				 * 15 is ~13-30min depending on RTO.
98 				 */
99 
100 #define TCP_SYN_RETRIES	 6	/* This is how many retries are done
101 				 * when active opening a connection.
102 				 * RFC1122 says the minimum retry MUST
103 				 * be at least 180secs.  Nevertheless
104 				 * this value is corresponding to
105 				 * 63secs of retransmission with the
106 				 * current initial RTO.
107 				 */
108 
109 #define TCP_SYNACK_RETRIES 5	/* This is how may retries are done
110 				 * when passive opening a connection.
111 				 * This is corresponding to 31secs of
112 				 * retransmission with the current
113 				 * initial RTO.
114 				 */
115 
116 #define TCP_TIMEWAIT_LEN (60*HZ) /* how long to wait to destroy TIME-WAIT
117 				  * state, about 60 seconds	*/
118 #define TCP_FIN_TIMEOUT	TCP_TIMEWAIT_LEN
119                                  /* BSD style FIN_WAIT2 deadlock breaker.
120 				  * It used to be 3min, new value is 60sec,
121 				  * to combine FIN-WAIT-2 timeout with
122 				  * TIME-WAIT timer.
123 				  */
124 
125 #define TCP_DELACK_MAX	((unsigned)(HZ/5))	/* maximal time to delay before sending an ACK */
126 #if HZ >= 100
127 #define TCP_DELACK_MIN	((unsigned)(HZ/25))	/* minimal time to delay before sending an ACK */
128 #define TCP_ATO_MIN	((unsigned)(HZ/25))
129 #else
130 #define TCP_DELACK_MIN	4U
131 #define TCP_ATO_MIN	4U
132 #endif
133 #define TCP_RTO_MAX	((unsigned)(120*HZ))
134 #define TCP_RTO_MIN	((unsigned)(HZ/5))
135 #define TCP_TIMEOUT_INIT ((unsigned)(1*HZ))	/* RFC6298 2.1 initial RTO value	*/
136 #define TCP_TIMEOUT_FALLBACK ((unsigned)(3*HZ))	/* RFC 1122 initial RTO value, now
137 						 * used as a fallback RTO for the
138 						 * initial data transmission if no
139 						 * valid RTT sample has been acquired,
140 						 * most likely due to retrans in 3WHS.
141 						 */
142 
143 #define TCP_RESOURCE_PROBE_INTERVAL ((unsigned)(HZ/2U)) /* Maximal interval between probes
144 					                 * for local resources.
145 					                 */
146 
147 #define TCP_KEEPALIVE_TIME	(120*60*HZ)	/* two hours */
148 #define TCP_KEEPALIVE_PROBES	9		/* Max of 9 keepalive probes	*/
149 #define TCP_KEEPALIVE_INTVL	(75*HZ)
150 
151 #define MAX_TCP_KEEPIDLE	32767
152 #define MAX_TCP_KEEPINTVL	32767
153 #define MAX_TCP_KEEPCNT		127
154 #define MAX_TCP_SYNCNT		127
155 
156 #define TCP_SYNQ_INTERVAL	(HZ/5)	/* Period of SYNACK timer */
157 
158 #define TCP_PAWS_24DAYS	(60 * 60 * 24 * 24)
159 #define TCP_PAWS_MSL	60		/* Per-host timestamps are invalidated
160 					 * after this time. It should be equal
161 					 * (or greater than) TCP_TIMEWAIT_LEN
162 					 * to provide reliability equal to one
163 					 * provided by timewait state.
164 					 */
165 #define TCP_PAWS_WINDOW	1		/* Replay window for per-host
166 					 * timestamps. It must be less than
167 					 * minimal timewait lifetime.
168 					 */
169 /*
170  *	TCP option
171  */
172 
173 #define TCPOPT_NOP		1	/* Padding */
174 #define TCPOPT_EOL		0	/* End of options */
175 #define TCPOPT_MSS		2	/* Segment size negotiating */
176 #define TCPOPT_WINDOW		3	/* Window scaling */
177 #define TCPOPT_SACK_PERM        4       /* SACK Permitted */
178 #define TCPOPT_SACK             5       /* SACK Block */
179 #define TCPOPT_TIMESTAMP	8	/* Better RTT estimations/PAWS */
180 #define TCPOPT_MD5SIG		19	/* MD5 Signature (RFC2385) */
181 #define TCPOPT_FASTOPEN		34	/* Fast open (RFC7413) */
182 #define TCPOPT_EXP		254	/* Experimental */
183 /* Magic number to be after the option value for sharing TCP
184  * experimental options. See draft-ietf-tcpm-experimental-options-00.txt
185  */
186 #define TCPOPT_FASTOPEN_MAGIC	0xF989
187 
188 /*
189  *     TCP option lengths
190  */
191 
192 #define TCPOLEN_MSS            4
193 #define TCPOLEN_WINDOW         3
194 #define TCPOLEN_SACK_PERM      2
195 #define TCPOLEN_TIMESTAMP      10
196 #define TCPOLEN_MD5SIG         18
197 #define TCPOLEN_FASTOPEN_BASE  2
198 #define TCPOLEN_EXP_FASTOPEN_BASE  4
199 
200 /* But this is what stacks really send out. */
201 #define TCPOLEN_TSTAMP_ALIGNED		12
202 #define TCPOLEN_WSCALE_ALIGNED		4
203 #define TCPOLEN_SACKPERM_ALIGNED	4
204 #define TCPOLEN_SACK_BASE		2
205 #define TCPOLEN_SACK_BASE_ALIGNED	4
206 #define TCPOLEN_SACK_PERBLOCK		8
207 #define TCPOLEN_MD5SIG_ALIGNED		20
208 #define TCPOLEN_MSS_ALIGNED		4
209 
210 /* Flags in tp->nonagle */
211 #define TCP_NAGLE_OFF		1	/* Nagle's algo is disabled */
212 #define TCP_NAGLE_CORK		2	/* Socket is corked	    */
213 #define TCP_NAGLE_PUSH		4	/* Cork is overridden for already queued data */
214 
215 /* TCP thin-stream limits */
216 #define TCP_THIN_LINEAR_RETRIES 6       /* After 6 linear retries, do exp. backoff */
217 
218 /* TCP initial congestion window as per rfc6928 */
219 #define TCP_INIT_CWND		10
220 
221 /* Bit Flags for sysctl_tcp_fastopen */
222 #define	TFO_CLIENT_ENABLE	1
223 #define	TFO_SERVER_ENABLE	2
224 #define	TFO_CLIENT_NO_COOKIE	4	/* Data in SYN w/o cookie option */
225 
226 /* Accept SYN data w/o any cookie option */
227 #define	TFO_SERVER_COOKIE_NOT_REQD	0x200
228 
229 /* Force enable TFO on all listeners, i.e., not requiring the
230  * TCP_FASTOPEN socket option. SOCKOPT1/2 determine how to set max_qlen.
231  */
232 #define	TFO_SERVER_WO_SOCKOPT1	0x400
233 #define	TFO_SERVER_WO_SOCKOPT2	0x800
234 
235 extern struct inet_timewait_death_row tcp_death_row;
236 
237 /* sysctl variables for tcp */
238 extern int sysctl_tcp_timestamps;
239 extern int sysctl_tcp_window_scaling;
240 extern int sysctl_tcp_sack;
241 extern int sysctl_tcp_fastopen;
242 extern int sysctl_tcp_retrans_collapse;
243 extern int sysctl_tcp_stdurg;
244 extern int sysctl_tcp_rfc1337;
245 extern int sysctl_tcp_abort_on_overflow;
246 extern int sysctl_tcp_max_orphans;
247 extern int sysctl_tcp_fack;
248 extern int sysctl_tcp_reordering;
249 extern int sysctl_tcp_max_reordering;
250 extern int sysctl_tcp_dsack;
251 extern long sysctl_tcp_mem[3];
252 extern int sysctl_tcp_wmem[3];
253 extern int sysctl_tcp_rmem[3];
254 extern int sysctl_tcp_app_win;
255 extern int sysctl_tcp_adv_win_scale;
256 extern int sysctl_tcp_tw_reuse;
257 extern int sysctl_tcp_frto;
258 extern int sysctl_tcp_low_latency;
259 extern int sysctl_tcp_nometrics_save;
260 extern int sysctl_tcp_moderate_rcvbuf;
261 extern int sysctl_tcp_tso_win_divisor;
262 extern int sysctl_tcp_workaround_signed_windows;
263 extern int sysctl_tcp_slow_start_after_idle;
264 extern int sysctl_tcp_thin_linear_timeouts;
265 extern int sysctl_tcp_thin_dupack;
266 extern int sysctl_tcp_early_retrans;
267 extern int sysctl_tcp_limit_output_bytes;
268 extern int sysctl_tcp_challenge_ack_limit;
269 extern int sysctl_tcp_min_tso_segs;
270 extern int sysctl_tcp_min_rtt_wlen;
271 extern int sysctl_tcp_autocorking;
272 extern int sysctl_tcp_invalid_ratelimit;
273 extern int sysctl_tcp_pacing_ss_ratio;
274 extern int sysctl_tcp_pacing_ca_ratio;
275 
276 extern atomic_long_t tcp_memory_allocated;
277 extern struct percpu_counter tcp_sockets_allocated;
278 extern int tcp_memory_pressure;
279 
280 /* optimized version of sk_under_memory_pressure() for TCP sockets */
281 static inline bool tcp_under_memory_pressure(const struct sock *sk)
282 {
283 	if (mem_cgroup_sockets_enabled && sk->sk_memcg &&
284 	    mem_cgroup_under_socket_pressure(sk->sk_memcg))
285 		return true;
286 
287 	return tcp_memory_pressure;
288 }
289 /*
290  * The next routines deal with comparing 32 bit unsigned ints
291  * and worry about wraparound (automatic with unsigned arithmetic).
292  */
293 
294 static inline bool before(__u32 seq1, __u32 seq2)
295 {
296         return (__s32)(seq1-seq2) < 0;
297 }
298 #define after(seq2, seq1) 	before(seq1, seq2)
299 
300 /* is s2<=s1<=s3 ? */
301 static inline bool between(__u32 seq1, __u32 seq2, __u32 seq3)
302 {
303 	return seq3 - seq2 >= seq1 - seq2;
304 }
305 
306 static inline bool tcp_out_of_memory(struct sock *sk)
307 {
308 	if (sk->sk_wmem_queued > SOCK_MIN_SNDBUF &&
309 	    sk_memory_allocated(sk) > sk_prot_mem_limits(sk, 2))
310 		return true;
311 	return false;
312 }
313 
314 void sk_forced_mem_schedule(struct sock *sk, int size);
315 
316 static inline bool tcp_too_many_orphans(struct sock *sk, int shift)
317 {
318 	struct percpu_counter *ocp = sk->sk_prot->orphan_count;
319 	int orphans = percpu_counter_read_positive(ocp);
320 
321 	if (orphans << shift > sysctl_tcp_max_orphans) {
322 		orphans = percpu_counter_sum_positive(ocp);
323 		if (orphans << shift > sysctl_tcp_max_orphans)
324 			return true;
325 	}
326 	return false;
327 }
328 
329 bool tcp_check_oom(struct sock *sk, int shift);
330 
331 
332 extern struct proto tcp_prot;
333 
334 #define TCP_INC_STATS(net, field)	SNMP_INC_STATS((net)->mib.tcp_statistics, field)
335 #define __TCP_INC_STATS(net, field)	__SNMP_INC_STATS((net)->mib.tcp_statistics, field)
336 #define TCP_DEC_STATS(net, field)	SNMP_DEC_STATS((net)->mib.tcp_statistics, field)
337 #define TCP_ADD_STATS(net, field, val)	SNMP_ADD_STATS((net)->mib.tcp_statistics, field, val)
338 
339 void tcp_tasklet_init(void);
340 
341 void tcp_v4_err(struct sk_buff *skb, u32);
342 
343 void tcp_shutdown(struct sock *sk, int how);
344 
345 void tcp_v4_early_demux(struct sk_buff *skb);
346 int tcp_v4_rcv(struct sk_buff *skb);
347 
348 int tcp_v4_tw_remember_stamp(struct inet_timewait_sock *tw);
349 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size);
350 int tcp_sendpage(struct sock *sk, struct page *page, int offset, size_t size,
351 		 int flags);
352 void tcp_release_cb(struct sock *sk);
353 void tcp_wfree(struct sk_buff *skb);
354 void tcp_write_timer_handler(struct sock *sk);
355 void tcp_delack_timer_handler(struct sock *sk);
356 int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg);
357 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb);
358 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
359 			 const struct tcphdr *th, unsigned int len);
360 void tcp_rcv_space_adjust(struct sock *sk);
361 int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp);
362 void tcp_twsk_destructor(struct sock *sk);
363 ssize_t tcp_splice_read(struct socket *sk, loff_t *ppos,
364 			struct pipe_inode_info *pipe, size_t len,
365 			unsigned int flags);
366 
367 static inline void tcp_dec_quickack_mode(struct sock *sk,
368 					 const unsigned int pkts)
369 {
370 	struct inet_connection_sock *icsk = inet_csk(sk);
371 
372 	if (icsk->icsk_ack.quick) {
373 		if (pkts >= icsk->icsk_ack.quick) {
374 			icsk->icsk_ack.quick = 0;
375 			/* Leaving quickack mode we deflate ATO. */
376 			icsk->icsk_ack.ato   = TCP_ATO_MIN;
377 		} else
378 			icsk->icsk_ack.quick -= pkts;
379 	}
380 }
381 
382 #define	TCP_ECN_OK		1
383 #define	TCP_ECN_QUEUE_CWR	2
384 #define	TCP_ECN_DEMAND_CWR	4
385 #define	TCP_ECN_SEEN		8
386 
387 enum tcp_tw_status {
388 	TCP_TW_SUCCESS = 0,
389 	TCP_TW_RST = 1,
390 	TCP_TW_ACK = 2,
391 	TCP_TW_SYN = 3
392 };
393 
394 
395 enum tcp_tw_status tcp_timewait_state_process(struct inet_timewait_sock *tw,
396 					      struct sk_buff *skb,
397 					      const struct tcphdr *th);
398 struct sock *tcp_check_req(struct sock *sk, struct sk_buff *skb,
399 			   struct request_sock *req, bool fastopen);
400 int tcp_child_process(struct sock *parent, struct sock *child,
401 		      struct sk_buff *skb);
402 void tcp_enter_loss(struct sock *sk);
403 void tcp_clear_retrans(struct tcp_sock *tp);
404 void tcp_update_metrics(struct sock *sk);
405 void tcp_init_metrics(struct sock *sk);
406 void tcp_metrics_init(void);
407 bool tcp_peer_is_proven(struct request_sock *req, struct dst_entry *dst,
408 			bool paws_check, bool timestamps);
409 bool tcp_remember_stamp(struct sock *sk);
410 bool tcp_tw_remember_stamp(struct inet_timewait_sock *tw);
411 void tcp_fetch_timewait_stamp(struct sock *sk, struct dst_entry *dst);
412 void tcp_disable_fack(struct tcp_sock *tp);
413 void tcp_close(struct sock *sk, long timeout);
414 void tcp_init_sock(struct sock *sk);
415 unsigned int tcp_poll(struct file *file, struct socket *sock,
416 		      struct poll_table_struct *wait);
417 int tcp_getsockopt(struct sock *sk, int level, int optname,
418 		   char __user *optval, int __user *optlen);
419 int tcp_setsockopt(struct sock *sk, int level, int optname,
420 		   char __user *optval, unsigned int optlen);
421 int compat_tcp_getsockopt(struct sock *sk, int level, int optname,
422 			  char __user *optval, int __user *optlen);
423 int compat_tcp_setsockopt(struct sock *sk, int level, int optname,
424 			  char __user *optval, unsigned int optlen);
425 void tcp_set_keepalive(struct sock *sk, int val);
426 void tcp_syn_ack_timeout(const struct request_sock *req);
427 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int nonblock,
428 		int flags, int *addr_len);
429 void tcp_parse_options(const struct sk_buff *skb,
430 		       struct tcp_options_received *opt_rx,
431 		       int estab, struct tcp_fastopen_cookie *foc);
432 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th);
433 
434 /*
435  *	TCP v4 functions exported for the inet6 API
436  */
437 
438 void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb);
439 void tcp_v4_mtu_reduced(struct sock *sk);
440 void tcp_req_err(struct sock *sk, u32 seq, bool abort);
441 int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb);
442 struct sock *tcp_create_openreq_child(const struct sock *sk,
443 				      struct request_sock *req,
444 				      struct sk_buff *skb);
445 void tcp_ca_openreq_child(struct sock *sk, const struct dst_entry *dst);
446 struct sock *tcp_v4_syn_recv_sock(const struct sock *sk, struct sk_buff *skb,
447 				  struct request_sock *req,
448 				  struct dst_entry *dst,
449 				  struct request_sock *req_unhash,
450 				  bool *own_req);
451 int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb);
452 int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len);
453 int tcp_connect(struct sock *sk);
454 enum tcp_synack_type {
455 	TCP_SYNACK_NORMAL,
456 	TCP_SYNACK_FASTOPEN,
457 	TCP_SYNACK_COOKIE,
458 };
459 struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst,
460 				struct request_sock *req,
461 				struct tcp_fastopen_cookie *foc,
462 				enum tcp_synack_type synack_type);
463 int tcp_disconnect(struct sock *sk, int flags);
464 
465 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb);
466 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size);
467 void inet_sk_rx_dst_set(struct sock *sk, const struct sk_buff *skb);
468 
469 /* From syncookies.c */
470 struct sock *tcp_get_cookie_sock(struct sock *sk, struct sk_buff *skb,
471 				 struct request_sock *req,
472 				 struct dst_entry *dst);
473 int __cookie_v4_check(const struct iphdr *iph, const struct tcphdr *th,
474 		      u32 cookie);
475 struct sock *cookie_v4_check(struct sock *sk, struct sk_buff *skb);
476 #ifdef CONFIG_SYN_COOKIES
477 
478 /* Syncookies use a monotonic timer which increments every 60 seconds.
479  * This counter is used both as a hash input and partially encoded into
480  * the cookie value.  A cookie is only validated further if the delta
481  * between the current counter value and the encoded one is less than this,
482  * i.e. a sent cookie is valid only at most for 2*60 seconds (or less if
483  * the counter advances immediately after a cookie is generated).
484  */
485 #define MAX_SYNCOOKIE_AGE	2
486 #define TCP_SYNCOOKIE_PERIOD	(60 * HZ)
487 #define TCP_SYNCOOKIE_VALID	(MAX_SYNCOOKIE_AGE * TCP_SYNCOOKIE_PERIOD)
488 
489 /* syncookies: remember time of last synqueue overflow
490  * But do not dirty this field too often (once per second is enough)
491  * It is racy as we do not hold a lock, but race is very minor.
492  */
493 static inline void tcp_synq_overflow(const struct sock *sk)
494 {
495 	unsigned long last_overflow = tcp_sk(sk)->rx_opt.ts_recent_stamp;
496 	unsigned long now = jiffies;
497 
498 	if (time_after(now, last_overflow + HZ))
499 		tcp_sk(sk)->rx_opt.ts_recent_stamp = now;
500 }
501 
502 /* syncookies: no recent synqueue overflow on this listening socket? */
503 static inline bool tcp_synq_no_recent_overflow(const struct sock *sk)
504 {
505 	unsigned long last_overflow = tcp_sk(sk)->rx_opt.ts_recent_stamp;
506 
507 	return time_after(jiffies, last_overflow + TCP_SYNCOOKIE_VALID);
508 }
509 
510 static inline u32 tcp_cookie_time(void)
511 {
512 	u64 val = get_jiffies_64();
513 
514 	do_div(val, TCP_SYNCOOKIE_PERIOD);
515 	return val;
516 }
517 
518 u32 __cookie_v4_init_sequence(const struct iphdr *iph, const struct tcphdr *th,
519 			      u16 *mssp);
520 __u32 cookie_v4_init_sequence(const struct sk_buff *skb, __u16 *mss);
521 __u32 cookie_init_timestamp(struct request_sock *req);
522 bool cookie_timestamp_decode(struct tcp_options_received *opt);
523 bool cookie_ecn_ok(const struct tcp_options_received *opt,
524 		   const struct net *net, const struct dst_entry *dst);
525 
526 /* From net/ipv6/syncookies.c */
527 int __cookie_v6_check(const struct ipv6hdr *iph, const struct tcphdr *th,
528 		      u32 cookie);
529 struct sock *cookie_v6_check(struct sock *sk, struct sk_buff *skb);
530 
531 u32 __cookie_v6_init_sequence(const struct ipv6hdr *iph,
532 			      const struct tcphdr *th, u16 *mssp);
533 __u32 cookie_v6_init_sequence(const struct sk_buff *skb, __u16 *mss);
534 #endif
535 /* tcp_output.c */
536 
537 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
538 			       int nonagle);
539 bool tcp_may_send_now(struct sock *sk);
540 int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs);
541 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs);
542 void tcp_retransmit_timer(struct sock *sk);
543 void tcp_xmit_retransmit_queue(struct sock *);
544 void tcp_simple_retransmit(struct sock *);
545 int tcp_trim_head(struct sock *, struct sk_buff *, u32);
546 int tcp_fragment(struct sock *, struct sk_buff *, u32, unsigned int, gfp_t);
547 
548 void tcp_send_probe0(struct sock *);
549 void tcp_send_partial(struct sock *);
550 int tcp_write_wakeup(struct sock *, int mib);
551 void tcp_send_fin(struct sock *sk);
552 void tcp_send_active_reset(struct sock *sk, gfp_t priority);
553 int tcp_send_synack(struct sock *);
554 void tcp_push_one(struct sock *, unsigned int mss_now);
555 void tcp_send_ack(struct sock *sk);
556 void tcp_send_delayed_ack(struct sock *sk);
557 void tcp_send_loss_probe(struct sock *sk);
558 bool tcp_schedule_loss_probe(struct sock *sk);
559 void tcp_skb_collapse_tstamp(struct sk_buff *skb,
560 			     const struct sk_buff *next_skb);
561 
562 /* tcp_input.c */
563 void tcp_resume_early_retransmit(struct sock *sk);
564 void tcp_rearm_rto(struct sock *sk);
565 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req);
566 void tcp_reset(struct sock *sk);
567 void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp, struct sk_buff *skb);
568 void tcp_fin(struct sock *sk);
569 
570 /* tcp_timer.c */
571 void tcp_init_xmit_timers(struct sock *);
572 static inline void tcp_clear_xmit_timers(struct sock *sk)
573 {
574 	inet_csk_clear_xmit_timers(sk);
575 }
576 
577 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu);
578 unsigned int tcp_current_mss(struct sock *sk);
579 
580 /* Bound MSS / TSO packet size with the half of the window */
581 static inline int tcp_bound_to_half_wnd(struct tcp_sock *tp, int pktsize)
582 {
583 	int cutoff;
584 
585 	/* When peer uses tiny windows, there is no use in packetizing
586 	 * to sub-MSS pieces for the sake of SWS or making sure there
587 	 * are enough packets in the pipe for fast recovery.
588 	 *
589 	 * On the other hand, for extremely large MSS devices, handling
590 	 * smaller than MSS windows in this way does make sense.
591 	 */
592 	if (tp->max_window >= 512)
593 		cutoff = (tp->max_window >> 1);
594 	else
595 		cutoff = tp->max_window;
596 
597 	if (cutoff && pktsize > cutoff)
598 		return max_t(int, cutoff, 68U - tp->tcp_header_len);
599 	else
600 		return pktsize;
601 }
602 
603 /* tcp.c */
604 void tcp_get_info(struct sock *, struct tcp_info *);
605 
606 /* Read 'sendfile()'-style from a TCP socket */
607 typedef int (*sk_read_actor_t)(read_descriptor_t *, struct sk_buff *,
608 				unsigned int, size_t);
609 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
610 		  sk_read_actor_t recv_actor);
611 
612 void tcp_initialize_rcv_mss(struct sock *sk);
613 
614 int tcp_mtu_to_mss(struct sock *sk, int pmtu);
615 int tcp_mss_to_mtu(struct sock *sk, int mss);
616 void tcp_mtup_init(struct sock *sk);
617 void tcp_init_buffer_space(struct sock *sk);
618 
619 static inline void tcp_bound_rto(const struct sock *sk)
620 {
621 	if (inet_csk(sk)->icsk_rto > TCP_RTO_MAX)
622 		inet_csk(sk)->icsk_rto = TCP_RTO_MAX;
623 }
624 
625 static inline u32 __tcp_set_rto(const struct tcp_sock *tp)
626 {
627 	return usecs_to_jiffies((tp->srtt_us >> 3) + tp->rttvar_us);
628 }
629 
630 static inline void __tcp_fast_path_on(struct tcp_sock *tp, u32 snd_wnd)
631 {
632 	tp->pred_flags = htonl((tp->tcp_header_len << 26) |
633 			       ntohl(TCP_FLAG_ACK) |
634 			       snd_wnd);
635 }
636 
637 static inline void tcp_fast_path_on(struct tcp_sock *tp)
638 {
639 	__tcp_fast_path_on(tp, tp->snd_wnd >> tp->rx_opt.snd_wscale);
640 }
641 
642 static inline void tcp_fast_path_check(struct sock *sk)
643 {
644 	struct tcp_sock *tp = tcp_sk(sk);
645 
646 	if (skb_queue_empty(&tp->out_of_order_queue) &&
647 	    tp->rcv_wnd &&
648 	    atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf &&
649 	    !tp->urg_data)
650 		tcp_fast_path_on(tp);
651 }
652 
653 /* Compute the actual rto_min value */
654 static inline u32 tcp_rto_min(struct sock *sk)
655 {
656 	const struct dst_entry *dst = __sk_dst_get(sk);
657 	u32 rto_min = TCP_RTO_MIN;
658 
659 	if (dst && dst_metric_locked(dst, RTAX_RTO_MIN))
660 		rto_min = dst_metric_rtt(dst, RTAX_RTO_MIN);
661 	return rto_min;
662 }
663 
664 static inline u32 tcp_rto_min_us(struct sock *sk)
665 {
666 	return jiffies_to_usecs(tcp_rto_min(sk));
667 }
668 
669 static inline bool tcp_ca_dst_locked(const struct dst_entry *dst)
670 {
671 	return dst_metric_locked(dst, RTAX_CC_ALGO);
672 }
673 
674 /* Minimum RTT in usec. ~0 means not available. */
675 static inline u32 tcp_min_rtt(const struct tcp_sock *tp)
676 {
677 	return tp->rtt_min[0].rtt;
678 }
679 
680 /* Compute the actual receive window we are currently advertising.
681  * Rcv_nxt can be after the window if our peer push more data
682  * than the offered window.
683  */
684 static inline u32 tcp_receive_window(const struct tcp_sock *tp)
685 {
686 	s32 win = tp->rcv_wup + tp->rcv_wnd - tp->rcv_nxt;
687 
688 	if (win < 0)
689 		win = 0;
690 	return (u32) win;
691 }
692 
693 /* Choose a new window, without checks for shrinking, and without
694  * scaling applied to the result.  The caller does these things
695  * if necessary.  This is a "raw" window selection.
696  */
697 u32 __tcp_select_window(struct sock *sk);
698 
699 void tcp_send_window_probe(struct sock *sk);
700 
701 /* TCP timestamps are only 32-bits, this causes a slight
702  * complication on 64-bit systems since we store a snapshot
703  * of jiffies in the buffer control blocks below.  We decided
704  * to use only the low 32-bits of jiffies and hide the ugly
705  * casts with the following macro.
706  */
707 #define tcp_time_stamp		((__u32)(jiffies))
708 
709 static inline u32 tcp_skb_timestamp(const struct sk_buff *skb)
710 {
711 	return skb->skb_mstamp.stamp_jiffies;
712 }
713 
714 
715 #define tcp_flag_byte(th) (((u_int8_t *)th)[13])
716 
717 #define TCPHDR_FIN 0x01
718 #define TCPHDR_SYN 0x02
719 #define TCPHDR_RST 0x04
720 #define TCPHDR_PSH 0x08
721 #define TCPHDR_ACK 0x10
722 #define TCPHDR_URG 0x20
723 #define TCPHDR_ECE 0x40
724 #define TCPHDR_CWR 0x80
725 
726 #define TCPHDR_SYN_ECN	(TCPHDR_SYN | TCPHDR_ECE | TCPHDR_CWR)
727 
728 /* This is what the send packet queuing engine uses to pass
729  * TCP per-packet control information to the transmission code.
730  * We also store the host-order sequence numbers in here too.
731  * This is 44 bytes if IPV6 is enabled.
732  * If this grows please adjust skbuff.h:skbuff->cb[xxx] size appropriately.
733  */
734 struct tcp_skb_cb {
735 	__u32		seq;		/* Starting sequence number	*/
736 	__u32		end_seq;	/* SEQ + FIN + SYN + datalen	*/
737 	union {
738 		/* Note : tcp_tw_isn is used in input path only
739 		 *	  (isn chosen by tcp_timewait_state_process())
740 		 *
741 		 * 	  tcp_gso_segs/size are used in write queue only,
742 		 *	  cf tcp_skb_pcount()/tcp_skb_mss()
743 		 */
744 		__u32		tcp_tw_isn;
745 		struct {
746 			u16	tcp_gso_segs;
747 			u16	tcp_gso_size;
748 		};
749 	};
750 	__u8		tcp_flags;	/* TCP header flags. (tcp[13])	*/
751 
752 	__u8		sacked;		/* State flags for SACK/FACK.	*/
753 #define TCPCB_SACKED_ACKED	0x01	/* SKB ACK'd by a SACK block	*/
754 #define TCPCB_SACKED_RETRANS	0x02	/* SKB retransmitted		*/
755 #define TCPCB_LOST		0x04	/* SKB is lost			*/
756 #define TCPCB_TAGBITS		0x07	/* All tag bits			*/
757 #define TCPCB_REPAIRED		0x10	/* SKB repaired (no skb_mstamp)	*/
758 #define TCPCB_EVER_RETRANS	0x80	/* Ever retransmitted frame	*/
759 #define TCPCB_RETRANS		(TCPCB_SACKED_RETRANS|TCPCB_EVER_RETRANS| \
760 				TCPCB_REPAIRED)
761 
762 	__u8		ip_dsfield;	/* IPv4 tos or IPv6 dsfield	*/
763 	__u8		txstamp_ack:1,	/* Record TX timestamp for ack? */
764 			eor:1,		/* Is skb MSG_EOR marked? */
765 			unused:6;
766 	__u32		ack_seq;	/* Sequence number ACK'd	*/
767 	union {
768 		struct {
769 			/* There is space for up to 20 bytes */
770 		} tx;   /* only used for outgoing skbs */
771 		union {
772 			struct inet_skb_parm	h4;
773 #if IS_ENABLED(CONFIG_IPV6)
774 			struct inet6_skb_parm	h6;
775 #endif
776 		} header;	/* For incoming skbs */
777 	};
778 };
779 
780 #define TCP_SKB_CB(__skb)	((struct tcp_skb_cb *)&((__skb)->cb[0]))
781 
782 
783 #if IS_ENABLED(CONFIG_IPV6)
784 /* This is the variant of inet6_iif() that must be used by TCP,
785  * as TCP moves IP6CB into a different location in skb->cb[]
786  */
787 static inline int tcp_v6_iif(const struct sk_buff *skb)
788 {
789 	bool l3_slave = skb_l3mdev_slave(TCP_SKB_CB(skb)->header.h6.flags);
790 
791 	return l3_slave ? skb->skb_iif : TCP_SKB_CB(skb)->header.h6.iif;
792 }
793 #endif
794 
795 /* Due to TSO, an SKB can be composed of multiple actual
796  * packets.  To keep these tracked properly, we use this.
797  */
798 static inline int tcp_skb_pcount(const struct sk_buff *skb)
799 {
800 	return TCP_SKB_CB(skb)->tcp_gso_segs;
801 }
802 
803 static inline void tcp_skb_pcount_set(struct sk_buff *skb, int segs)
804 {
805 	TCP_SKB_CB(skb)->tcp_gso_segs = segs;
806 }
807 
808 static inline void tcp_skb_pcount_add(struct sk_buff *skb, int segs)
809 {
810 	TCP_SKB_CB(skb)->tcp_gso_segs += segs;
811 }
812 
813 /* This is valid iff skb is in write queue and tcp_skb_pcount() > 1. */
814 static inline int tcp_skb_mss(const struct sk_buff *skb)
815 {
816 	return TCP_SKB_CB(skb)->tcp_gso_size;
817 }
818 
819 static inline bool tcp_skb_can_collapse_to(const struct sk_buff *skb)
820 {
821 	return likely(!TCP_SKB_CB(skb)->eor);
822 }
823 
824 /* Events passed to congestion control interface */
825 enum tcp_ca_event {
826 	CA_EVENT_TX_START,	/* first transmit when no packets in flight */
827 	CA_EVENT_CWND_RESTART,	/* congestion window restart */
828 	CA_EVENT_COMPLETE_CWR,	/* end of congestion recovery */
829 	CA_EVENT_LOSS,		/* loss timeout */
830 	CA_EVENT_ECN_NO_CE,	/* ECT set, but not CE marked */
831 	CA_EVENT_ECN_IS_CE,	/* received CE marked IP packet */
832 	CA_EVENT_DELAYED_ACK,	/* Delayed ack is sent */
833 	CA_EVENT_NON_DELAYED_ACK,
834 };
835 
836 /* Information about inbound ACK, passed to cong_ops->in_ack_event() */
837 enum tcp_ca_ack_event_flags {
838 	CA_ACK_SLOWPATH		= (1 << 0),	/* In slow path processing */
839 	CA_ACK_WIN_UPDATE	= (1 << 1),	/* ACK updated window */
840 	CA_ACK_ECE		= (1 << 2),	/* ECE bit is set on ack */
841 };
842 
843 /*
844  * Interface for adding new TCP congestion control handlers
845  */
846 #define TCP_CA_NAME_MAX	16
847 #define TCP_CA_MAX	128
848 #define TCP_CA_BUF_MAX	(TCP_CA_NAME_MAX*TCP_CA_MAX)
849 
850 #define TCP_CA_UNSPEC	0
851 
852 /* Algorithm can be set on socket without CAP_NET_ADMIN privileges */
853 #define TCP_CONG_NON_RESTRICTED 0x1
854 /* Requires ECN/ECT set on all packets */
855 #define TCP_CONG_NEEDS_ECN	0x2
856 
857 union tcp_cc_info;
858 
859 struct ack_sample {
860 	u32 pkts_acked;
861 	s32 rtt_us;
862 };
863 
864 struct tcp_congestion_ops {
865 	struct list_head	list;
866 	u32 key;
867 	u32 flags;
868 
869 	/* initialize private data (optional) */
870 	void (*init)(struct sock *sk);
871 	/* cleanup private data  (optional) */
872 	void (*release)(struct sock *sk);
873 
874 	/* return slow start threshold (required) */
875 	u32 (*ssthresh)(struct sock *sk);
876 	/* do new cwnd calculation (required) */
877 	void (*cong_avoid)(struct sock *sk, u32 ack, u32 acked);
878 	/* call before changing ca_state (optional) */
879 	void (*set_state)(struct sock *sk, u8 new_state);
880 	/* call when cwnd event occurs (optional) */
881 	void (*cwnd_event)(struct sock *sk, enum tcp_ca_event ev);
882 	/* call when ack arrives (optional) */
883 	void (*in_ack_event)(struct sock *sk, u32 flags);
884 	/* new value of cwnd after loss (optional) */
885 	u32  (*undo_cwnd)(struct sock *sk);
886 	/* hook for packet ack accounting (optional) */
887 	void (*pkts_acked)(struct sock *sk, const struct ack_sample *sample);
888 	/* get info for inet_diag (optional) */
889 	size_t (*get_info)(struct sock *sk, u32 ext, int *attr,
890 			   union tcp_cc_info *info);
891 
892 	char 		name[TCP_CA_NAME_MAX];
893 	struct module 	*owner;
894 };
895 
896 int tcp_register_congestion_control(struct tcp_congestion_ops *type);
897 void tcp_unregister_congestion_control(struct tcp_congestion_ops *type);
898 
899 void tcp_assign_congestion_control(struct sock *sk);
900 void tcp_init_congestion_control(struct sock *sk);
901 void tcp_cleanup_congestion_control(struct sock *sk);
902 int tcp_set_default_congestion_control(const char *name);
903 void tcp_get_default_congestion_control(char *name);
904 void tcp_get_available_congestion_control(char *buf, size_t len);
905 void tcp_get_allowed_congestion_control(char *buf, size_t len);
906 int tcp_set_allowed_congestion_control(char *allowed);
907 int tcp_set_congestion_control(struct sock *sk, const char *name);
908 u32 tcp_slow_start(struct tcp_sock *tp, u32 acked);
909 void tcp_cong_avoid_ai(struct tcp_sock *tp, u32 w, u32 acked);
910 
911 u32 tcp_reno_ssthresh(struct sock *sk);
912 void tcp_reno_cong_avoid(struct sock *sk, u32 ack, u32 acked);
913 extern struct tcp_congestion_ops tcp_reno;
914 
915 struct tcp_congestion_ops *tcp_ca_find_key(u32 key);
916 u32 tcp_ca_get_key_by_name(const char *name, bool *ecn_ca);
917 #ifdef CONFIG_INET
918 char *tcp_ca_get_name_by_key(u32 key, char *buffer);
919 #else
920 static inline char *tcp_ca_get_name_by_key(u32 key, char *buffer)
921 {
922 	return NULL;
923 }
924 #endif
925 
926 static inline bool tcp_ca_needs_ecn(const struct sock *sk)
927 {
928 	const struct inet_connection_sock *icsk = inet_csk(sk);
929 
930 	return icsk->icsk_ca_ops->flags & TCP_CONG_NEEDS_ECN;
931 }
932 
933 static inline void tcp_set_ca_state(struct sock *sk, const u8 ca_state)
934 {
935 	struct inet_connection_sock *icsk = inet_csk(sk);
936 
937 	if (icsk->icsk_ca_ops->set_state)
938 		icsk->icsk_ca_ops->set_state(sk, ca_state);
939 	icsk->icsk_ca_state = ca_state;
940 }
941 
942 static inline void tcp_ca_event(struct sock *sk, const enum tcp_ca_event event)
943 {
944 	const struct inet_connection_sock *icsk = inet_csk(sk);
945 
946 	if (icsk->icsk_ca_ops->cwnd_event)
947 		icsk->icsk_ca_ops->cwnd_event(sk, event);
948 }
949 
950 /* These functions determine how the current flow behaves in respect of SACK
951  * handling. SACK is negotiated with the peer, and therefore it can vary
952  * between different flows.
953  *
954  * tcp_is_sack - SACK enabled
955  * tcp_is_reno - No SACK
956  * tcp_is_fack - FACK enabled, implies SACK enabled
957  */
958 static inline int tcp_is_sack(const struct tcp_sock *tp)
959 {
960 	return tp->rx_opt.sack_ok;
961 }
962 
963 static inline bool tcp_is_reno(const struct tcp_sock *tp)
964 {
965 	return !tcp_is_sack(tp);
966 }
967 
968 static inline bool tcp_is_fack(const struct tcp_sock *tp)
969 {
970 	return tp->rx_opt.sack_ok & TCP_FACK_ENABLED;
971 }
972 
973 static inline void tcp_enable_fack(struct tcp_sock *tp)
974 {
975 	tp->rx_opt.sack_ok |= TCP_FACK_ENABLED;
976 }
977 
978 /* TCP early-retransmit (ER) is similar to but more conservative than
979  * the thin-dupack feature.  Enable ER only if thin-dupack is disabled.
980  */
981 static inline void tcp_enable_early_retrans(struct tcp_sock *tp)
982 {
983 	struct net *net = sock_net((struct sock *)tp);
984 
985 	tp->do_early_retrans = sysctl_tcp_early_retrans &&
986 		sysctl_tcp_early_retrans < 4 && !sysctl_tcp_thin_dupack &&
987 		net->ipv4.sysctl_tcp_reordering == 3;
988 }
989 
990 static inline void tcp_disable_early_retrans(struct tcp_sock *tp)
991 {
992 	tp->do_early_retrans = 0;
993 }
994 
995 static inline unsigned int tcp_left_out(const struct tcp_sock *tp)
996 {
997 	return tp->sacked_out + tp->lost_out;
998 }
999 
1000 /* This determines how many packets are "in the network" to the best
1001  * of our knowledge.  In many cases it is conservative, but where
1002  * detailed information is available from the receiver (via SACK
1003  * blocks etc.) we can make more aggressive calculations.
1004  *
1005  * Use this for decisions involving congestion control, use just
1006  * tp->packets_out to determine if the send queue is empty or not.
1007  *
1008  * Read this equation as:
1009  *
1010  *	"Packets sent once on transmission queue" MINUS
1011  *	"Packets left network, but not honestly ACKed yet" PLUS
1012  *	"Packets fast retransmitted"
1013  */
1014 static inline unsigned int tcp_packets_in_flight(const struct tcp_sock *tp)
1015 {
1016 	return tp->packets_out - tcp_left_out(tp) + tp->retrans_out;
1017 }
1018 
1019 #define TCP_INFINITE_SSTHRESH	0x7fffffff
1020 
1021 static inline bool tcp_in_slow_start(const struct tcp_sock *tp)
1022 {
1023 	return tp->snd_cwnd < tp->snd_ssthresh;
1024 }
1025 
1026 static inline bool tcp_in_initial_slowstart(const struct tcp_sock *tp)
1027 {
1028 	return tp->snd_ssthresh >= TCP_INFINITE_SSTHRESH;
1029 }
1030 
1031 static inline bool tcp_in_cwnd_reduction(const struct sock *sk)
1032 {
1033 	return (TCPF_CA_CWR | TCPF_CA_Recovery) &
1034 	       (1 << inet_csk(sk)->icsk_ca_state);
1035 }
1036 
1037 /* If cwnd > ssthresh, we may raise ssthresh to be half-way to cwnd.
1038  * The exception is cwnd reduction phase, when cwnd is decreasing towards
1039  * ssthresh.
1040  */
1041 static inline __u32 tcp_current_ssthresh(const struct sock *sk)
1042 {
1043 	const struct tcp_sock *tp = tcp_sk(sk);
1044 
1045 	if (tcp_in_cwnd_reduction(sk))
1046 		return tp->snd_ssthresh;
1047 	else
1048 		return max(tp->snd_ssthresh,
1049 			   ((tp->snd_cwnd >> 1) +
1050 			    (tp->snd_cwnd >> 2)));
1051 }
1052 
1053 /* Use define here intentionally to get WARN_ON location shown at the caller */
1054 #define tcp_verify_left_out(tp)	WARN_ON(tcp_left_out(tp) > tp->packets_out)
1055 
1056 void tcp_enter_cwr(struct sock *sk);
1057 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst);
1058 
1059 /* The maximum number of MSS of available cwnd for which TSO defers
1060  * sending if not using sysctl_tcp_tso_win_divisor.
1061  */
1062 static inline __u32 tcp_max_tso_deferred_mss(const struct tcp_sock *tp)
1063 {
1064 	return 3;
1065 }
1066 
1067 /* Returns end sequence number of the receiver's advertised window */
1068 static inline u32 tcp_wnd_end(const struct tcp_sock *tp)
1069 {
1070 	return tp->snd_una + tp->snd_wnd;
1071 }
1072 
1073 /* We follow the spirit of RFC2861 to validate cwnd but implement a more
1074  * flexible approach. The RFC suggests cwnd should not be raised unless
1075  * it was fully used previously. And that's exactly what we do in
1076  * congestion avoidance mode. But in slow start we allow cwnd to grow
1077  * as long as the application has used half the cwnd.
1078  * Example :
1079  *    cwnd is 10 (IW10), but application sends 9 frames.
1080  *    We allow cwnd to reach 18 when all frames are ACKed.
1081  * This check is safe because it's as aggressive as slow start which already
1082  * risks 100% overshoot. The advantage is that we discourage application to
1083  * either send more filler packets or data to artificially blow up the cwnd
1084  * usage, and allow application-limited process to probe bw more aggressively.
1085  */
1086 static inline bool tcp_is_cwnd_limited(const struct sock *sk)
1087 {
1088 	const struct tcp_sock *tp = tcp_sk(sk);
1089 
1090 	/* If in slow start, ensure cwnd grows to twice what was ACKed. */
1091 	if (tcp_in_slow_start(tp))
1092 		return tp->snd_cwnd < 2 * tp->max_packets_out;
1093 
1094 	return tp->is_cwnd_limited;
1095 }
1096 
1097 /* Something is really bad, we could not queue an additional packet,
1098  * because qdisc is full or receiver sent a 0 window.
1099  * We do not want to add fuel to the fire, or abort too early,
1100  * so make sure the timer we arm now is at least 200ms in the future,
1101  * regardless of current icsk_rto value (as it could be ~2ms)
1102  */
1103 static inline unsigned long tcp_probe0_base(const struct sock *sk)
1104 {
1105 	return max_t(unsigned long, inet_csk(sk)->icsk_rto, TCP_RTO_MIN);
1106 }
1107 
1108 /* Variant of inet_csk_rto_backoff() used for zero window probes */
1109 static inline unsigned long tcp_probe0_when(const struct sock *sk,
1110 					    unsigned long max_when)
1111 {
1112 	u64 when = (u64)tcp_probe0_base(sk) << inet_csk(sk)->icsk_backoff;
1113 
1114 	return (unsigned long)min_t(u64, when, max_when);
1115 }
1116 
1117 static inline void tcp_check_probe_timer(struct sock *sk)
1118 {
1119 	if (!tcp_sk(sk)->packets_out && !inet_csk(sk)->icsk_pending)
1120 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
1121 					  tcp_probe0_base(sk), TCP_RTO_MAX);
1122 }
1123 
1124 static inline void tcp_init_wl(struct tcp_sock *tp, u32 seq)
1125 {
1126 	tp->snd_wl1 = seq;
1127 }
1128 
1129 static inline void tcp_update_wl(struct tcp_sock *tp, u32 seq)
1130 {
1131 	tp->snd_wl1 = seq;
1132 }
1133 
1134 /*
1135  * Calculate(/check) TCP checksum
1136  */
1137 static inline __sum16 tcp_v4_check(int len, __be32 saddr,
1138 				   __be32 daddr, __wsum base)
1139 {
1140 	return csum_tcpudp_magic(saddr,daddr,len,IPPROTO_TCP,base);
1141 }
1142 
1143 static inline __sum16 __tcp_checksum_complete(struct sk_buff *skb)
1144 {
1145 	return __skb_checksum_complete(skb);
1146 }
1147 
1148 static inline bool tcp_checksum_complete(struct sk_buff *skb)
1149 {
1150 	return !skb_csum_unnecessary(skb) &&
1151 		__tcp_checksum_complete(skb);
1152 }
1153 
1154 /* Prequeue for VJ style copy to user, combined with checksumming. */
1155 
1156 static inline void tcp_prequeue_init(struct tcp_sock *tp)
1157 {
1158 	tp->ucopy.task = NULL;
1159 	tp->ucopy.len = 0;
1160 	tp->ucopy.memory = 0;
1161 	skb_queue_head_init(&tp->ucopy.prequeue);
1162 }
1163 
1164 bool tcp_prequeue(struct sock *sk, struct sk_buff *skb);
1165 
1166 #undef STATE_TRACE
1167 
1168 #ifdef STATE_TRACE
1169 static const char *statename[]={
1170 	"Unused","Established","Syn Sent","Syn Recv",
1171 	"Fin Wait 1","Fin Wait 2","Time Wait", "Close",
1172 	"Close Wait","Last ACK","Listen","Closing"
1173 };
1174 #endif
1175 void tcp_set_state(struct sock *sk, int state);
1176 
1177 void tcp_done(struct sock *sk);
1178 
1179 int tcp_abort(struct sock *sk, int err);
1180 
1181 static inline void tcp_sack_reset(struct tcp_options_received *rx_opt)
1182 {
1183 	rx_opt->dsack = 0;
1184 	rx_opt->num_sacks = 0;
1185 }
1186 
1187 u32 tcp_default_init_rwnd(u32 mss);
1188 void tcp_cwnd_restart(struct sock *sk, s32 delta);
1189 
1190 static inline void tcp_slow_start_after_idle_check(struct sock *sk)
1191 {
1192 	struct tcp_sock *tp = tcp_sk(sk);
1193 	s32 delta;
1194 
1195 	if (!sysctl_tcp_slow_start_after_idle || tp->packets_out)
1196 		return;
1197 	delta = tcp_time_stamp - tp->lsndtime;
1198 	if (delta > inet_csk(sk)->icsk_rto)
1199 		tcp_cwnd_restart(sk, delta);
1200 }
1201 
1202 /* Determine a window scaling and initial window to offer. */
1203 void tcp_select_initial_window(int __space, __u32 mss, __u32 *rcv_wnd,
1204 			       __u32 *window_clamp, int wscale_ok,
1205 			       __u8 *rcv_wscale, __u32 init_rcv_wnd);
1206 
1207 static inline int tcp_win_from_space(int space)
1208 {
1209 	return sysctl_tcp_adv_win_scale<=0 ?
1210 		(space>>(-sysctl_tcp_adv_win_scale)) :
1211 		space - (space>>sysctl_tcp_adv_win_scale);
1212 }
1213 
1214 /* Note: caller must be prepared to deal with negative returns */
1215 static inline int tcp_space(const struct sock *sk)
1216 {
1217 	return tcp_win_from_space(sk->sk_rcvbuf -
1218 				  atomic_read(&sk->sk_rmem_alloc));
1219 }
1220 
1221 static inline int tcp_full_space(const struct sock *sk)
1222 {
1223 	return tcp_win_from_space(sk->sk_rcvbuf);
1224 }
1225 
1226 extern void tcp_openreq_init_rwin(struct request_sock *req,
1227 				  const struct sock *sk_listener,
1228 				  const struct dst_entry *dst);
1229 
1230 void tcp_enter_memory_pressure(struct sock *sk);
1231 
1232 static inline int keepalive_intvl_when(const struct tcp_sock *tp)
1233 {
1234 	struct net *net = sock_net((struct sock *)tp);
1235 
1236 	return tp->keepalive_intvl ? : net->ipv4.sysctl_tcp_keepalive_intvl;
1237 }
1238 
1239 static inline int keepalive_time_when(const struct tcp_sock *tp)
1240 {
1241 	struct net *net = sock_net((struct sock *)tp);
1242 
1243 	return tp->keepalive_time ? : net->ipv4.sysctl_tcp_keepalive_time;
1244 }
1245 
1246 static inline int keepalive_probes(const struct tcp_sock *tp)
1247 {
1248 	struct net *net = sock_net((struct sock *)tp);
1249 
1250 	return tp->keepalive_probes ? : net->ipv4.sysctl_tcp_keepalive_probes;
1251 }
1252 
1253 static inline u32 keepalive_time_elapsed(const struct tcp_sock *tp)
1254 {
1255 	const struct inet_connection_sock *icsk = &tp->inet_conn;
1256 
1257 	return min_t(u32, tcp_time_stamp - icsk->icsk_ack.lrcvtime,
1258 			  tcp_time_stamp - tp->rcv_tstamp);
1259 }
1260 
1261 static inline int tcp_fin_time(const struct sock *sk)
1262 {
1263 	int fin_timeout = tcp_sk(sk)->linger2 ? : sock_net(sk)->ipv4.sysctl_tcp_fin_timeout;
1264 	const int rto = inet_csk(sk)->icsk_rto;
1265 
1266 	if (fin_timeout < (rto << 2) - (rto >> 1))
1267 		fin_timeout = (rto << 2) - (rto >> 1);
1268 
1269 	return fin_timeout;
1270 }
1271 
1272 static inline bool tcp_paws_check(const struct tcp_options_received *rx_opt,
1273 				  int paws_win)
1274 {
1275 	if ((s32)(rx_opt->ts_recent - rx_opt->rcv_tsval) <= paws_win)
1276 		return true;
1277 	if (unlikely(get_seconds() >= rx_opt->ts_recent_stamp + TCP_PAWS_24DAYS))
1278 		return true;
1279 	/*
1280 	 * Some OSes send SYN and SYNACK messages with tsval=0 tsecr=0,
1281 	 * then following tcp messages have valid values. Ignore 0 value,
1282 	 * or else 'negative' tsval might forbid us to accept their packets.
1283 	 */
1284 	if (!rx_opt->ts_recent)
1285 		return true;
1286 	return false;
1287 }
1288 
1289 static inline bool tcp_paws_reject(const struct tcp_options_received *rx_opt,
1290 				   int rst)
1291 {
1292 	if (tcp_paws_check(rx_opt, 0))
1293 		return false;
1294 
1295 	/* RST segments are not recommended to carry timestamp,
1296 	   and, if they do, it is recommended to ignore PAWS because
1297 	   "their cleanup function should take precedence over timestamps."
1298 	   Certainly, it is mistake. It is necessary to understand the reasons
1299 	   of this constraint to relax it: if peer reboots, clock may go
1300 	   out-of-sync and half-open connections will not be reset.
1301 	   Actually, the problem would be not existing if all
1302 	   the implementations followed draft about maintaining clock
1303 	   via reboots. Linux-2.2 DOES NOT!
1304 
1305 	   However, we can relax time bounds for RST segments to MSL.
1306 	 */
1307 	if (rst && get_seconds() >= rx_opt->ts_recent_stamp + TCP_PAWS_MSL)
1308 		return false;
1309 	return true;
1310 }
1311 
1312 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
1313 			  int mib_idx, u32 *last_oow_ack_time);
1314 
1315 static inline void tcp_mib_init(struct net *net)
1316 {
1317 	/* See RFC 2012 */
1318 	TCP_ADD_STATS(net, TCP_MIB_RTOALGORITHM, 1);
1319 	TCP_ADD_STATS(net, TCP_MIB_RTOMIN, TCP_RTO_MIN*1000/HZ);
1320 	TCP_ADD_STATS(net, TCP_MIB_RTOMAX, TCP_RTO_MAX*1000/HZ);
1321 	TCP_ADD_STATS(net, TCP_MIB_MAXCONN, -1);
1322 }
1323 
1324 /* from STCP */
1325 static inline void tcp_clear_retrans_hints_partial(struct tcp_sock *tp)
1326 {
1327 	tp->lost_skb_hint = NULL;
1328 }
1329 
1330 static inline void tcp_clear_all_retrans_hints(struct tcp_sock *tp)
1331 {
1332 	tcp_clear_retrans_hints_partial(tp);
1333 	tp->retransmit_skb_hint = NULL;
1334 }
1335 
1336 union tcp_md5_addr {
1337 	struct in_addr  a4;
1338 #if IS_ENABLED(CONFIG_IPV6)
1339 	struct in6_addr	a6;
1340 #endif
1341 };
1342 
1343 /* - key database */
1344 struct tcp_md5sig_key {
1345 	struct hlist_node	node;
1346 	u8			keylen;
1347 	u8			family; /* AF_INET or AF_INET6 */
1348 	union tcp_md5_addr	addr;
1349 	u8			key[TCP_MD5SIG_MAXKEYLEN];
1350 	struct rcu_head		rcu;
1351 };
1352 
1353 /* - sock block */
1354 struct tcp_md5sig_info {
1355 	struct hlist_head	head;
1356 	struct rcu_head		rcu;
1357 };
1358 
1359 /* - pseudo header */
1360 struct tcp4_pseudohdr {
1361 	__be32		saddr;
1362 	__be32		daddr;
1363 	__u8		pad;
1364 	__u8		protocol;
1365 	__be16		len;
1366 };
1367 
1368 struct tcp6_pseudohdr {
1369 	struct in6_addr	saddr;
1370 	struct in6_addr daddr;
1371 	__be32		len;
1372 	__be32		protocol;	/* including padding */
1373 };
1374 
1375 union tcp_md5sum_block {
1376 	struct tcp4_pseudohdr ip4;
1377 #if IS_ENABLED(CONFIG_IPV6)
1378 	struct tcp6_pseudohdr ip6;
1379 #endif
1380 };
1381 
1382 /* - pool: digest algorithm, hash description and scratch buffer */
1383 struct tcp_md5sig_pool {
1384 	struct ahash_request	*md5_req;
1385 	union tcp_md5sum_block	md5_blk;
1386 };
1387 
1388 /* - functions */
1389 int tcp_v4_md5_hash_skb(char *md5_hash, const struct tcp_md5sig_key *key,
1390 			const struct sock *sk, const struct sk_buff *skb);
1391 int tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr,
1392 		   int family, const u8 *newkey, u8 newkeylen, gfp_t gfp);
1393 int tcp_md5_do_del(struct sock *sk, const union tcp_md5_addr *addr,
1394 		   int family);
1395 struct tcp_md5sig_key *tcp_v4_md5_lookup(const struct sock *sk,
1396 					 const struct sock *addr_sk);
1397 
1398 #ifdef CONFIG_TCP_MD5SIG
1399 struct tcp_md5sig_key *tcp_md5_do_lookup(const struct sock *sk,
1400 					 const union tcp_md5_addr *addr,
1401 					 int family);
1402 #define tcp_twsk_md5_key(twsk)	((twsk)->tw_md5_key)
1403 #else
1404 static inline struct tcp_md5sig_key *tcp_md5_do_lookup(const struct sock *sk,
1405 					 const union tcp_md5_addr *addr,
1406 					 int family)
1407 {
1408 	return NULL;
1409 }
1410 #define tcp_twsk_md5_key(twsk)	NULL
1411 #endif
1412 
1413 bool tcp_alloc_md5sig_pool(void);
1414 
1415 struct tcp_md5sig_pool *tcp_get_md5sig_pool(void);
1416 static inline void tcp_put_md5sig_pool(void)
1417 {
1418 	local_bh_enable();
1419 }
1420 
1421 int tcp_md5_hash_header(struct tcp_md5sig_pool *, const struct tcphdr *);
1422 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *, const struct sk_buff *,
1423 			  unsigned int header_len);
1424 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp,
1425 		     const struct tcp_md5sig_key *key);
1426 
1427 /* From tcp_fastopen.c */
1428 void tcp_fastopen_cache_get(struct sock *sk, u16 *mss,
1429 			    struct tcp_fastopen_cookie *cookie, int *syn_loss,
1430 			    unsigned long *last_syn_loss);
1431 void tcp_fastopen_cache_set(struct sock *sk, u16 mss,
1432 			    struct tcp_fastopen_cookie *cookie, bool syn_lost,
1433 			    u16 try_exp);
1434 struct tcp_fastopen_request {
1435 	/* Fast Open cookie. Size 0 means a cookie request */
1436 	struct tcp_fastopen_cookie	cookie;
1437 	struct msghdr			*data;  /* data in MSG_FASTOPEN */
1438 	size_t				size;
1439 	int				copied;	/* queued in tcp_connect() */
1440 };
1441 void tcp_free_fastopen_req(struct tcp_sock *tp);
1442 
1443 extern struct tcp_fastopen_context __rcu *tcp_fastopen_ctx;
1444 int tcp_fastopen_reset_cipher(void *key, unsigned int len);
1445 void tcp_fastopen_add_skb(struct sock *sk, struct sk_buff *skb);
1446 struct sock *tcp_try_fastopen(struct sock *sk, struct sk_buff *skb,
1447 			      struct request_sock *req,
1448 			      struct tcp_fastopen_cookie *foc,
1449 			      struct dst_entry *dst);
1450 void tcp_fastopen_init_key_once(bool publish);
1451 #define TCP_FASTOPEN_KEY_LENGTH 16
1452 
1453 /* Fastopen key context */
1454 struct tcp_fastopen_context {
1455 	struct crypto_cipher	*tfm;
1456 	__u8			key[TCP_FASTOPEN_KEY_LENGTH];
1457 	struct rcu_head		rcu;
1458 };
1459 
1460 /* write queue abstraction */
1461 static inline void tcp_write_queue_purge(struct sock *sk)
1462 {
1463 	struct sk_buff *skb;
1464 
1465 	while ((skb = __skb_dequeue(&sk->sk_write_queue)) != NULL)
1466 		sk_wmem_free_skb(sk, skb);
1467 	sk_mem_reclaim(sk);
1468 	tcp_clear_all_retrans_hints(tcp_sk(sk));
1469 }
1470 
1471 static inline struct sk_buff *tcp_write_queue_head(const struct sock *sk)
1472 {
1473 	return skb_peek(&sk->sk_write_queue);
1474 }
1475 
1476 static inline struct sk_buff *tcp_write_queue_tail(const struct sock *sk)
1477 {
1478 	return skb_peek_tail(&sk->sk_write_queue);
1479 }
1480 
1481 static inline struct sk_buff *tcp_write_queue_next(const struct sock *sk,
1482 						   const struct sk_buff *skb)
1483 {
1484 	return skb_queue_next(&sk->sk_write_queue, skb);
1485 }
1486 
1487 static inline struct sk_buff *tcp_write_queue_prev(const struct sock *sk,
1488 						   const struct sk_buff *skb)
1489 {
1490 	return skb_queue_prev(&sk->sk_write_queue, skb);
1491 }
1492 
1493 #define tcp_for_write_queue(skb, sk)					\
1494 	skb_queue_walk(&(sk)->sk_write_queue, skb)
1495 
1496 #define tcp_for_write_queue_from(skb, sk)				\
1497 	skb_queue_walk_from(&(sk)->sk_write_queue, skb)
1498 
1499 #define tcp_for_write_queue_from_safe(skb, tmp, sk)			\
1500 	skb_queue_walk_from_safe(&(sk)->sk_write_queue, skb, tmp)
1501 
1502 static inline struct sk_buff *tcp_send_head(const struct sock *sk)
1503 {
1504 	return sk->sk_send_head;
1505 }
1506 
1507 static inline bool tcp_skb_is_last(const struct sock *sk,
1508 				   const struct sk_buff *skb)
1509 {
1510 	return skb_queue_is_last(&sk->sk_write_queue, skb);
1511 }
1512 
1513 static inline void tcp_advance_send_head(struct sock *sk, const struct sk_buff *skb)
1514 {
1515 	if (tcp_skb_is_last(sk, skb))
1516 		sk->sk_send_head = NULL;
1517 	else
1518 		sk->sk_send_head = tcp_write_queue_next(sk, skb);
1519 }
1520 
1521 static inline void tcp_check_send_head(struct sock *sk, struct sk_buff *skb_unlinked)
1522 {
1523 	if (sk->sk_send_head == skb_unlinked)
1524 		sk->sk_send_head = NULL;
1525 }
1526 
1527 static inline void tcp_init_send_head(struct sock *sk)
1528 {
1529 	sk->sk_send_head = NULL;
1530 }
1531 
1532 static inline void __tcp_add_write_queue_tail(struct sock *sk, struct sk_buff *skb)
1533 {
1534 	__skb_queue_tail(&sk->sk_write_queue, skb);
1535 }
1536 
1537 static inline void tcp_add_write_queue_tail(struct sock *sk, struct sk_buff *skb)
1538 {
1539 	__tcp_add_write_queue_tail(sk, skb);
1540 
1541 	/* Queue it, remembering where we must start sending. */
1542 	if (sk->sk_send_head == NULL) {
1543 		sk->sk_send_head = skb;
1544 
1545 		if (tcp_sk(sk)->highest_sack == NULL)
1546 			tcp_sk(sk)->highest_sack = skb;
1547 	}
1548 }
1549 
1550 static inline void __tcp_add_write_queue_head(struct sock *sk, struct sk_buff *skb)
1551 {
1552 	__skb_queue_head(&sk->sk_write_queue, skb);
1553 }
1554 
1555 /* Insert buff after skb on the write queue of sk.  */
1556 static inline void tcp_insert_write_queue_after(struct sk_buff *skb,
1557 						struct sk_buff *buff,
1558 						struct sock *sk)
1559 {
1560 	__skb_queue_after(&sk->sk_write_queue, skb, buff);
1561 }
1562 
1563 /* Insert new before skb on the write queue of sk.  */
1564 static inline void tcp_insert_write_queue_before(struct sk_buff *new,
1565 						  struct sk_buff *skb,
1566 						  struct sock *sk)
1567 {
1568 	__skb_queue_before(&sk->sk_write_queue, skb, new);
1569 
1570 	if (sk->sk_send_head == skb)
1571 		sk->sk_send_head = new;
1572 }
1573 
1574 static inline void tcp_unlink_write_queue(struct sk_buff *skb, struct sock *sk)
1575 {
1576 	__skb_unlink(skb, &sk->sk_write_queue);
1577 }
1578 
1579 static inline bool tcp_write_queue_empty(struct sock *sk)
1580 {
1581 	return skb_queue_empty(&sk->sk_write_queue);
1582 }
1583 
1584 static inline void tcp_push_pending_frames(struct sock *sk)
1585 {
1586 	if (tcp_send_head(sk)) {
1587 		struct tcp_sock *tp = tcp_sk(sk);
1588 
1589 		__tcp_push_pending_frames(sk, tcp_current_mss(sk), tp->nonagle);
1590 	}
1591 }
1592 
1593 /* Start sequence of the skb just after the highest skb with SACKed
1594  * bit, valid only if sacked_out > 0 or when the caller has ensured
1595  * validity by itself.
1596  */
1597 static inline u32 tcp_highest_sack_seq(struct tcp_sock *tp)
1598 {
1599 	if (!tp->sacked_out)
1600 		return tp->snd_una;
1601 
1602 	if (tp->highest_sack == NULL)
1603 		return tp->snd_nxt;
1604 
1605 	return TCP_SKB_CB(tp->highest_sack)->seq;
1606 }
1607 
1608 static inline void tcp_advance_highest_sack(struct sock *sk, struct sk_buff *skb)
1609 {
1610 	tcp_sk(sk)->highest_sack = tcp_skb_is_last(sk, skb) ? NULL :
1611 						tcp_write_queue_next(sk, skb);
1612 }
1613 
1614 static inline struct sk_buff *tcp_highest_sack(struct sock *sk)
1615 {
1616 	return tcp_sk(sk)->highest_sack;
1617 }
1618 
1619 static inline void tcp_highest_sack_reset(struct sock *sk)
1620 {
1621 	tcp_sk(sk)->highest_sack = tcp_write_queue_head(sk);
1622 }
1623 
1624 /* Called when old skb is about to be deleted (to be combined with new skb) */
1625 static inline void tcp_highest_sack_combine(struct sock *sk,
1626 					    struct sk_buff *old,
1627 					    struct sk_buff *new)
1628 {
1629 	if (tcp_sk(sk)->sacked_out && (old == tcp_sk(sk)->highest_sack))
1630 		tcp_sk(sk)->highest_sack = new;
1631 }
1632 
1633 /* This helper checks if socket has IP_TRANSPARENT set */
1634 static inline bool inet_sk_transparent(const struct sock *sk)
1635 {
1636 	switch (sk->sk_state) {
1637 	case TCP_TIME_WAIT:
1638 		return inet_twsk(sk)->tw_transparent;
1639 	case TCP_NEW_SYN_RECV:
1640 		return inet_rsk(inet_reqsk(sk))->no_srccheck;
1641 	}
1642 	return inet_sk(sk)->transparent;
1643 }
1644 
1645 /* Determines whether this is a thin stream (which may suffer from
1646  * increased latency). Used to trigger latency-reducing mechanisms.
1647  */
1648 static inline bool tcp_stream_is_thin(struct tcp_sock *tp)
1649 {
1650 	return tp->packets_out < 4 && !tcp_in_initial_slowstart(tp);
1651 }
1652 
1653 /* /proc */
1654 enum tcp_seq_states {
1655 	TCP_SEQ_STATE_LISTENING,
1656 	TCP_SEQ_STATE_ESTABLISHED,
1657 };
1658 
1659 int tcp_seq_open(struct inode *inode, struct file *file);
1660 
1661 struct tcp_seq_afinfo {
1662 	char				*name;
1663 	sa_family_t			family;
1664 	const struct file_operations	*seq_fops;
1665 	struct seq_operations		seq_ops;
1666 };
1667 
1668 struct tcp_iter_state {
1669 	struct seq_net_private	p;
1670 	sa_family_t		family;
1671 	enum tcp_seq_states	state;
1672 	struct sock		*syn_wait_sk;
1673 	int			bucket, offset, sbucket, num;
1674 	loff_t			last_pos;
1675 };
1676 
1677 int tcp_proc_register(struct net *net, struct tcp_seq_afinfo *afinfo);
1678 void tcp_proc_unregister(struct net *net, struct tcp_seq_afinfo *afinfo);
1679 
1680 extern struct request_sock_ops tcp_request_sock_ops;
1681 extern struct request_sock_ops tcp6_request_sock_ops;
1682 
1683 void tcp_v4_destroy_sock(struct sock *sk);
1684 
1685 struct sk_buff *tcp_gso_segment(struct sk_buff *skb,
1686 				netdev_features_t features);
1687 struct sk_buff **tcp_gro_receive(struct sk_buff **head, struct sk_buff *skb);
1688 int tcp_gro_complete(struct sk_buff *skb);
1689 
1690 void __tcp_v4_send_check(struct sk_buff *skb, __be32 saddr, __be32 daddr);
1691 
1692 static inline u32 tcp_notsent_lowat(const struct tcp_sock *tp)
1693 {
1694 	struct net *net = sock_net((struct sock *)tp);
1695 	return tp->notsent_lowat ?: net->ipv4.sysctl_tcp_notsent_lowat;
1696 }
1697 
1698 static inline bool tcp_stream_memory_free(const struct sock *sk)
1699 {
1700 	const struct tcp_sock *tp = tcp_sk(sk);
1701 	u32 notsent_bytes = tp->write_seq - tp->snd_nxt;
1702 
1703 	return notsent_bytes < tcp_notsent_lowat(tp);
1704 }
1705 
1706 #ifdef CONFIG_PROC_FS
1707 int tcp4_proc_init(void);
1708 void tcp4_proc_exit(void);
1709 #endif
1710 
1711 int tcp_rtx_synack(const struct sock *sk, struct request_sock *req);
1712 int tcp_conn_request(struct request_sock_ops *rsk_ops,
1713 		     const struct tcp_request_sock_ops *af_ops,
1714 		     struct sock *sk, struct sk_buff *skb);
1715 
1716 /* TCP af-specific functions */
1717 struct tcp_sock_af_ops {
1718 #ifdef CONFIG_TCP_MD5SIG
1719 	struct tcp_md5sig_key	*(*md5_lookup) (const struct sock *sk,
1720 						const struct sock *addr_sk);
1721 	int		(*calc_md5_hash)(char *location,
1722 					 const struct tcp_md5sig_key *md5,
1723 					 const struct sock *sk,
1724 					 const struct sk_buff *skb);
1725 	int		(*md5_parse)(struct sock *sk,
1726 				     char __user *optval,
1727 				     int optlen);
1728 #endif
1729 };
1730 
1731 struct tcp_request_sock_ops {
1732 	u16 mss_clamp;
1733 #ifdef CONFIG_TCP_MD5SIG
1734 	struct tcp_md5sig_key *(*req_md5_lookup)(const struct sock *sk,
1735 						 const struct sock *addr_sk);
1736 	int		(*calc_md5_hash) (char *location,
1737 					  const struct tcp_md5sig_key *md5,
1738 					  const struct sock *sk,
1739 					  const struct sk_buff *skb);
1740 #endif
1741 	void (*init_req)(struct request_sock *req,
1742 			 const struct sock *sk_listener,
1743 			 struct sk_buff *skb);
1744 #ifdef CONFIG_SYN_COOKIES
1745 	__u32 (*cookie_init_seq)(const struct sk_buff *skb,
1746 				 __u16 *mss);
1747 #endif
1748 	struct dst_entry *(*route_req)(const struct sock *sk, struct flowi *fl,
1749 				       const struct request_sock *req,
1750 				       bool *strict);
1751 	__u32 (*init_seq)(const struct sk_buff *skb);
1752 	int (*send_synack)(const struct sock *sk, struct dst_entry *dst,
1753 			   struct flowi *fl, struct request_sock *req,
1754 			   struct tcp_fastopen_cookie *foc,
1755 			   enum tcp_synack_type synack_type);
1756 };
1757 
1758 #ifdef CONFIG_SYN_COOKIES
1759 static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops,
1760 					 const struct sock *sk, struct sk_buff *skb,
1761 					 __u16 *mss)
1762 {
1763 	tcp_synq_overflow(sk);
1764 	__NET_INC_STATS(sock_net(sk), LINUX_MIB_SYNCOOKIESSENT);
1765 	return ops->cookie_init_seq(skb, mss);
1766 }
1767 #else
1768 static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops,
1769 					 const struct sock *sk, struct sk_buff *skb,
1770 					 __u16 *mss)
1771 {
1772 	return 0;
1773 }
1774 #endif
1775 
1776 int tcpv4_offload_init(void);
1777 
1778 void tcp_v4_init(void);
1779 void tcp_init(void);
1780 
1781 /* tcp_recovery.c */
1782 
1783 /* Flags to enable various loss recovery features. See below */
1784 extern int sysctl_tcp_recovery;
1785 
1786 /* Use TCP RACK to detect (some) tail and retransmit losses */
1787 #define TCP_RACK_LOST_RETRANS  0x1
1788 
1789 extern int tcp_rack_mark_lost(struct sock *sk);
1790 
1791 extern void tcp_rack_advance(struct tcp_sock *tp,
1792 			     const struct skb_mstamp *xmit_time, u8 sacked);
1793 
1794 /*
1795  * Save and compile IPv4 options, return a pointer to it
1796  */
1797 static inline struct ip_options_rcu *tcp_v4_save_options(struct sk_buff *skb)
1798 {
1799 	const struct ip_options *opt = &TCP_SKB_CB(skb)->header.h4.opt;
1800 	struct ip_options_rcu *dopt = NULL;
1801 
1802 	if (opt->optlen) {
1803 		int opt_size = sizeof(*dopt) + opt->optlen;
1804 
1805 		dopt = kmalloc(opt_size, GFP_ATOMIC);
1806 		if (dopt && __ip_options_echo(&dopt->opt, skb, opt)) {
1807 			kfree(dopt);
1808 			dopt = NULL;
1809 		}
1810 	}
1811 	return dopt;
1812 }
1813 
1814 /* locally generated TCP pure ACKs have skb->truesize == 2
1815  * (check tcp_send_ack() in net/ipv4/tcp_output.c )
1816  * This is much faster than dissecting the packet to find out.
1817  * (Think of GRE encapsulations, IPv4, IPv6, ...)
1818  */
1819 static inline bool skb_is_tcp_pure_ack(const struct sk_buff *skb)
1820 {
1821 	return skb->truesize == 2;
1822 }
1823 
1824 static inline void skb_set_tcp_pure_ack(struct sk_buff *skb)
1825 {
1826 	skb->truesize = 2;
1827 }
1828 
1829 static inline int tcp_inq(struct sock *sk)
1830 {
1831 	struct tcp_sock *tp = tcp_sk(sk);
1832 	int answ;
1833 
1834 	if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) {
1835 		answ = 0;
1836 	} else if (sock_flag(sk, SOCK_URGINLINE) ||
1837 		   !tp->urg_data ||
1838 		   before(tp->urg_seq, tp->copied_seq) ||
1839 		   !before(tp->urg_seq, tp->rcv_nxt)) {
1840 
1841 		answ = tp->rcv_nxt - tp->copied_seq;
1842 
1843 		/* Subtract 1, if FIN was received */
1844 		if (answ && sock_flag(sk, SOCK_DONE))
1845 			answ--;
1846 	} else {
1847 		answ = tp->urg_seq - tp->copied_seq;
1848 	}
1849 
1850 	return answ;
1851 }
1852 
1853 static inline void tcp_segs_in(struct tcp_sock *tp, const struct sk_buff *skb)
1854 {
1855 	u16 segs_in;
1856 
1857 	segs_in = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
1858 	tp->segs_in += segs_in;
1859 	if (skb->len > tcp_hdrlen(skb))
1860 		tp->data_segs_in += segs_in;
1861 }
1862 
1863 /*
1864  * TCP listen path runs lockless.
1865  * We forced "struct sock" to be const qualified to make sure
1866  * we don't modify one of its field by mistake.
1867  * Here, we increment sk_drops which is an atomic_t, so we can safely
1868  * make sock writable again.
1869  */
1870 static inline void tcp_listendrop(const struct sock *sk)
1871 {
1872 	atomic_inc(&((struct sock *)sk)->sk_drops);
1873 	__NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENDROPS);
1874 }
1875 
1876 #endif	/* _TCP_H */
1877