xref: /linux/include/net/tcp.h (revision 04317b129e4eb5c6f4a58bb899b2019c1545320b)
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Definitions for the TCP module.
8  *
9  * Version:	@(#)tcp.h	1.0.5	05/23/93
10  *
11  * Authors:	Ross Biro
12  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
13  */
14 #ifndef _TCP_H
15 #define _TCP_H
16 
17 #define FASTRETRANS_DEBUG 1
18 
19 #include <linux/list.h>
20 #include <linux/tcp.h>
21 #include <linux/bug.h>
22 #include <linux/slab.h>
23 #include <linux/cache.h>
24 #include <linux/percpu.h>
25 #include <linux/skbuff.h>
26 #include <linux/kref.h>
27 #include <linux/ktime.h>
28 #include <linux/indirect_call_wrapper.h>
29 
30 #include <net/inet_connection_sock.h>
31 #include <net/inet_timewait_sock.h>
32 #include <net/inet_hashtables.h>
33 #include <net/checksum.h>
34 #include <net/request_sock.h>
35 #include <net/sock_reuseport.h>
36 #include <net/sock.h>
37 #include <net/snmp.h>
38 #include <net/ip.h>
39 #include <net/tcp_states.h>
40 #include <net/inet_ecn.h>
41 #include <net/dst.h>
42 #include <net/mptcp.h>
43 
44 #include <linux/seq_file.h>
45 #include <linux/memcontrol.h>
46 #include <linux/bpf-cgroup.h>
47 #include <linux/siphash.h>
48 
49 extern struct inet_hashinfo tcp_hashinfo;
50 
51 DECLARE_PER_CPU(unsigned int, tcp_orphan_count);
52 int tcp_orphan_count_sum(void);
53 
54 void tcp_time_wait(struct sock *sk, int state, int timeo);
55 
56 #define MAX_TCP_HEADER	L1_CACHE_ALIGN(128 + MAX_HEADER)
57 #define MAX_TCP_OPTION_SPACE 40
58 #define TCP_MIN_SND_MSS		48
59 #define TCP_MIN_GSO_SIZE	(TCP_MIN_SND_MSS - MAX_TCP_OPTION_SPACE)
60 
61 /*
62  * Never offer a window over 32767 without using window scaling. Some
63  * poor stacks do signed 16bit maths!
64  */
65 #define MAX_TCP_WINDOW		32767U
66 
67 /* Minimal accepted MSS. It is (60+60+8) - (20+20). */
68 #define TCP_MIN_MSS		88U
69 
70 /* The initial MTU to use for probing */
71 #define TCP_BASE_MSS		1024
72 
73 /* probing interval, default to 10 minutes as per RFC4821 */
74 #define TCP_PROBE_INTERVAL	600
75 
76 /* Specify interval when tcp mtu probing will stop */
77 #define TCP_PROBE_THRESHOLD	8
78 
79 /* After receiving this amount of duplicate ACKs fast retransmit starts. */
80 #define TCP_FASTRETRANS_THRESH 3
81 
82 /* Maximal number of ACKs sent quickly to accelerate slow-start. */
83 #define TCP_MAX_QUICKACKS	16U
84 
85 /* Maximal number of window scale according to RFC1323 */
86 #define TCP_MAX_WSCALE		14U
87 
88 /* urg_data states */
89 #define TCP_URG_VALID	0x0100
90 #define TCP_URG_NOTYET	0x0200
91 #define TCP_URG_READ	0x0400
92 
93 #define TCP_RETR1	3	/*
94 				 * This is how many retries it does before it
95 				 * tries to figure out if the gateway is
96 				 * down. Minimal RFC value is 3; it corresponds
97 				 * to ~3sec-8min depending on RTO.
98 				 */
99 
100 #define TCP_RETR2	15	/*
101 				 * This should take at least
102 				 * 90 minutes to time out.
103 				 * RFC1122 says that the limit is 100 sec.
104 				 * 15 is ~13-30min depending on RTO.
105 				 */
106 
107 #define TCP_SYN_RETRIES	 6	/* This is how many retries are done
108 				 * when active opening a connection.
109 				 * RFC1122 says the minimum retry MUST
110 				 * be at least 180secs.  Nevertheless
111 				 * this value is corresponding to
112 				 * 63secs of retransmission with the
113 				 * current initial RTO.
114 				 */
115 
116 #define TCP_SYNACK_RETRIES 5	/* This is how may retries are done
117 				 * when passive opening a connection.
118 				 * This is corresponding to 31secs of
119 				 * retransmission with the current
120 				 * initial RTO.
121 				 */
122 
123 #define TCP_TIMEWAIT_LEN (60*HZ) /* how long to wait to destroy TIME-WAIT
124 				  * state, about 60 seconds	*/
125 #define TCP_FIN_TIMEOUT	TCP_TIMEWAIT_LEN
126                                  /* BSD style FIN_WAIT2 deadlock breaker.
127 				  * It used to be 3min, new value is 60sec,
128 				  * to combine FIN-WAIT-2 timeout with
129 				  * TIME-WAIT timer.
130 				  */
131 #define TCP_FIN_TIMEOUT_MAX (120 * HZ) /* max TCP_LINGER2 value (two minutes) */
132 
133 #define TCP_DELACK_MAX	((unsigned)(HZ/5))	/* maximal time to delay before sending an ACK */
134 static_assert((1 << ATO_BITS) > TCP_DELACK_MAX);
135 
136 #if HZ >= 100
137 #define TCP_DELACK_MIN	((unsigned)(HZ/25))	/* minimal time to delay before sending an ACK */
138 #define TCP_ATO_MIN	((unsigned)(HZ/25))
139 #else
140 #define TCP_DELACK_MIN	4U
141 #define TCP_ATO_MIN	4U
142 #endif
143 #define TCP_RTO_MAX	((unsigned)(120*HZ))
144 #define TCP_RTO_MIN	((unsigned)(HZ/5))
145 #define TCP_TIMEOUT_MIN	(2U) /* Min timeout for TCP timers in jiffies */
146 #define TCP_TIMEOUT_INIT ((unsigned)(1*HZ))	/* RFC6298 2.1 initial RTO value	*/
147 #define TCP_TIMEOUT_FALLBACK ((unsigned)(3*HZ))	/* RFC 1122 initial RTO value, now
148 						 * used as a fallback RTO for the
149 						 * initial data transmission if no
150 						 * valid RTT sample has been acquired,
151 						 * most likely due to retrans in 3WHS.
152 						 */
153 
154 #define TCP_RESOURCE_PROBE_INTERVAL ((unsigned)(HZ/2U)) /* Maximal interval between probes
155 					                 * for local resources.
156 					                 */
157 #define TCP_KEEPALIVE_TIME	(120*60*HZ)	/* two hours */
158 #define TCP_KEEPALIVE_PROBES	9		/* Max of 9 keepalive probes	*/
159 #define TCP_KEEPALIVE_INTVL	(75*HZ)
160 
161 #define MAX_TCP_KEEPIDLE	32767
162 #define MAX_TCP_KEEPINTVL	32767
163 #define MAX_TCP_KEEPCNT		127
164 #define MAX_TCP_SYNCNT		127
165 
166 #define TCP_PAWS_24DAYS	(60 * 60 * 24 * 24)
167 #define TCP_PAWS_MSL	60		/* Per-host timestamps are invalidated
168 					 * after this time. It should be equal
169 					 * (or greater than) TCP_TIMEWAIT_LEN
170 					 * to provide reliability equal to one
171 					 * provided by timewait state.
172 					 */
173 #define TCP_PAWS_WINDOW	1		/* Replay window for per-host
174 					 * timestamps. It must be less than
175 					 * minimal timewait lifetime.
176 					 */
177 /*
178  *	TCP option
179  */
180 
181 #define TCPOPT_NOP		1	/* Padding */
182 #define TCPOPT_EOL		0	/* End of options */
183 #define TCPOPT_MSS		2	/* Segment size negotiating */
184 #define TCPOPT_WINDOW		3	/* Window scaling */
185 #define TCPOPT_SACK_PERM        4       /* SACK Permitted */
186 #define TCPOPT_SACK             5       /* SACK Block */
187 #define TCPOPT_TIMESTAMP	8	/* Better RTT estimations/PAWS */
188 #define TCPOPT_MD5SIG		19	/* MD5 Signature (RFC2385) */
189 #define TCPOPT_MPTCP		30	/* Multipath TCP (RFC6824) */
190 #define TCPOPT_FASTOPEN		34	/* Fast open (RFC7413) */
191 #define TCPOPT_EXP		254	/* Experimental */
192 /* Magic number to be after the option value for sharing TCP
193  * experimental options. See draft-ietf-tcpm-experimental-options-00.txt
194  */
195 #define TCPOPT_FASTOPEN_MAGIC	0xF989
196 #define TCPOPT_SMC_MAGIC	0xE2D4C3D9
197 
198 /*
199  *     TCP option lengths
200  */
201 
202 #define TCPOLEN_MSS            4
203 #define TCPOLEN_WINDOW         3
204 #define TCPOLEN_SACK_PERM      2
205 #define TCPOLEN_TIMESTAMP      10
206 #define TCPOLEN_MD5SIG         18
207 #define TCPOLEN_FASTOPEN_BASE  2
208 #define TCPOLEN_EXP_FASTOPEN_BASE  4
209 #define TCPOLEN_EXP_SMC_BASE   6
210 
211 /* But this is what stacks really send out. */
212 #define TCPOLEN_TSTAMP_ALIGNED		12
213 #define TCPOLEN_WSCALE_ALIGNED		4
214 #define TCPOLEN_SACKPERM_ALIGNED	4
215 #define TCPOLEN_SACK_BASE		2
216 #define TCPOLEN_SACK_BASE_ALIGNED	4
217 #define TCPOLEN_SACK_PERBLOCK		8
218 #define TCPOLEN_MD5SIG_ALIGNED		20
219 #define TCPOLEN_MSS_ALIGNED		4
220 #define TCPOLEN_EXP_SMC_BASE_ALIGNED	8
221 
222 /* Flags in tp->nonagle */
223 #define TCP_NAGLE_OFF		1	/* Nagle's algo is disabled */
224 #define TCP_NAGLE_CORK		2	/* Socket is corked	    */
225 #define TCP_NAGLE_PUSH		4	/* Cork is overridden for already queued data */
226 
227 /* TCP thin-stream limits */
228 #define TCP_THIN_LINEAR_RETRIES 6       /* After 6 linear retries, do exp. backoff */
229 
230 /* TCP initial congestion window as per rfc6928 */
231 #define TCP_INIT_CWND		10
232 
233 /* Bit Flags for sysctl_tcp_fastopen */
234 #define	TFO_CLIENT_ENABLE	1
235 #define	TFO_SERVER_ENABLE	2
236 #define	TFO_CLIENT_NO_COOKIE	4	/* Data in SYN w/o cookie option */
237 
238 /* Accept SYN data w/o any cookie option */
239 #define	TFO_SERVER_COOKIE_NOT_REQD	0x200
240 
241 /* Force enable TFO on all listeners, i.e., not requiring the
242  * TCP_FASTOPEN socket option.
243  */
244 #define	TFO_SERVER_WO_SOCKOPT1	0x400
245 
246 
247 /* sysctl variables for tcp */
248 extern int sysctl_tcp_max_orphans;
249 extern long sysctl_tcp_mem[3];
250 
251 #define TCP_RACK_LOSS_DETECTION  0x1 /* Use RACK to detect losses */
252 #define TCP_RACK_STATIC_REO_WND  0x2 /* Use static RACK reo wnd */
253 #define TCP_RACK_NO_DUPTHRESH    0x4 /* Do not use DUPACK threshold in RACK */
254 
255 extern atomic_long_t tcp_memory_allocated;
256 DECLARE_PER_CPU(int, tcp_memory_per_cpu_fw_alloc);
257 
258 extern struct percpu_counter tcp_sockets_allocated;
259 extern unsigned long tcp_memory_pressure;
260 
261 /* optimized version of sk_under_memory_pressure() for TCP sockets */
262 static inline bool tcp_under_memory_pressure(const struct sock *sk)
263 {
264 	if (mem_cgroup_sockets_enabled && sk->sk_memcg &&
265 	    mem_cgroup_under_socket_pressure(sk->sk_memcg))
266 		return true;
267 
268 	return READ_ONCE(tcp_memory_pressure);
269 }
270 /*
271  * The next routines deal with comparing 32 bit unsigned ints
272  * and worry about wraparound (automatic with unsigned arithmetic).
273  */
274 
275 static inline bool before(__u32 seq1, __u32 seq2)
276 {
277         return (__s32)(seq1-seq2) < 0;
278 }
279 #define after(seq2, seq1) 	before(seq1, seq2)
280 
281 /* is s2<=s1<=s3 ? */
282 static inline bool between(__u32 seq1, __u32 seq2, __u32 seq3)
283 {
284 	return seq3 - seq2 >= seq1 - seq2;
285 }
286 
287 static inline bool tcp_out_of_memory(struct sock *sk)
288 {
289 	if (sk->sk_wmem_queued > SOCK_MIN_SNDBUF &&
290 	    sk_memory_allocated(sk) > sk_prot_mem_limits(sk, 2))
291 		return true;
292 	return false;
293 }
294 
295 static inline void tcp_wmem_free_skb(struct sock *sk, struct sk_buff *skb)
296 {
297 	sk_wmem_queued_add(sk, -skb->truesize);
298 	if (!skb_zcopy_pure(skb))
299 		sk_mem_uncharge(sk, skb->truesize);
300 	else
301 		sk_mem_uncharge(sk, SKB_TRUESIZE(skb_end_offset(skb)));
302 	__kfree_skb(skb);
303 }
304 
305 void sk_forced_mem_schedule(struct sock *sk, int size);
306 
307 bool tcp_check_oom(struct sock *sk, int shift);
308 
309 
310 extern struct proto tcp_prot;
311 
312 #define TCP_INC_STATS(net, field)	SNMP_INC_STATS((net)->mib.tcp_statistics, field)
313 #define __TCP_INC_STATS(net, field)	__SNMP_INC_STATS((net)->mib.tcp_statistics, field)
314 #define TCP_DEC_STATS(net, field)	SNMP_DEC_STATS((net)->mib.tcp_statistics, field)
315 #define TCP_ADD_STATS(net, field, val)	SNMP_ADD_STATS((net)->mib.tcp_statistics, field, val)
316 
317 void tcp_tasklet_init(void);
318 
319 int tcp_v4_err(struct sk_buff *skb, u32);
320 
321 void tcp_shutdown(struct sock *sk, int how);
322 
323 int tcp_v4_early_demux(struct sk_buff *skb);
324 int tcp_v4_rcv(struct sk_buff *skb);
325 
326 void tcp_remove_empty_skb(struct sock *sk);
327 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size);
328 int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size);
329 int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg, int *copied,
330 			 size_t size, struct ubuf_info *uarg);
331 void tcp_splice_eof(struct socket *sock);
332 int tcp_send_mss(struct sock *sk, int *size_goal, int flags);
333 int tcp_wmem_schedule(struct sock *sk, int copy);
334 void tcp_push(struct sock *sk, int flags, int mss_now, int nonagle,
335 	      int size_goal);
336 void tcp_release_cb(struct sock *sk);
337 void tcp_wfree(struct sk_buff *skb);
338 void tcp_write_timer_handler(struct sock *sk);
339 void tcp_delack_timer_handler(struct sock *sk);
340 int tcp_ioctl(struct sock *sk, int cmd, int *karg);
341 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb);
342 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb);
343 void tcp_rcv_space_adjust(struct sock *sk);
344 int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp);
345 void tcp_twsk_destructor(struct sock *sk);
346 void tcp_twsk_purge(struct list_head *net_exit_list, int family);
347 ssize_t tcp_splice_read(struct socket *sk, loff_t *ppos,
348 			struct pipe_inode_info *pipe, size_t len,
349 			unsigned int flags);
350 struct sk_buff *tcp_stream_alloc_skb(struct sock *sk, gfp_t gfp,
351 				     bool force_schedule);
352 
353 static inline void tcp_dec_quickack_mode(struct sock *sk)
354 {
355 	struct inet_connection_sock *icsk = inet_csk(sk);
356 
357 	if (icsk->icsk_ack.quick) {
358 		/* How many ACKs S/ACKing new data have we sent? */
359 		const unsigned int pkts = inet_csk_ack_scheduled(sk) ? 1 : 0;
360 
361 		if (pkts >= icsk->icsk_ack.quick) {
362 			icsk->icsk_ack.quick = 0;
363 			/* Leaving quickack mode we deflate ATO. */
364 			icsk->icsk_ack.ato   = TCP_ATO_MIN;
365 		} else
366 			icsk->icsk_ack.quick -= pkts;
367 	}
368 }
369 
370 #define	TCP_ECN_OK		1
371 #define	TCP_ECN_QUEUE_CWR	2
372 #define	TCP_ECN_DEMAND_CWR	4
373 #define	TCP_ECN_SEEN		8
374 
375 enum tcp_tw_status {
376 	TCP_TW_SUCCESS = 0,
377 	TCP_TW_RST = 1,
378 	TCP_TW_ACK = 2,
379 	TCP_TW_SYN = 3
380 };
381 
382 
383 enum tcp_tw_status tcp_timewait_state_process(struct inet_timewait_sock *tw,
384 					      struct sk_buff *skb,
385 					      const struct tcphdr *th);
386 struct sock *tcp_check_req(struct sock *sk, struct sk_buff *skb,
387 			   struct request_sock *req, bool fastopen,
388 			   bool *lost_race);
389 int tcp_child_process(struct sock *parent, struct sock *child,
390 		      struct sk_buff *skb);
391 void tcp_enter_loss(struct sock *sk);
392 void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int newly_lost, int flag);
393 void tcp_clear_retrans(struct tcp_sock *tp);
394 void tcp_update_metrics(struct sock *sk);
395 void tcp_init_metrics(struct sock *sk);
396 void tcp_metrics_init(void);
397 bool tcp_peer_is_proven(struct request_sock *req, struct dst_entry *dst);
398 void __tcp_close(struct sock *sk, long timeout);
399 void tcp_close(struct sock *sk, long timeout);
400 void tcp_init_sock(struct sock *sk);
401 void tcp_init_transfer(struct sock *sk, int bpf_op, struct sk_buff *skb);
402 __poll_t tcp_poll(struct file *file, struct socket *sock,
403 		      struct poll_table_struct *wait);
404 int do_tcp_getsockopt(struct sock *sk, int level,
405 		      int optname, sockptr_t optval, sockptr_t optlen);
406 int tcp_getsockopt(struct sock *sk, int level, int optname,
407 		   char __user *optval, int __user *optlen);
408 bool tcp_bpf_bypass_getsockopt(int level, int optname);
409 int do_tcp_setsockopt(struct sock *sk, int level, int optname,
410 		      sockptr_t optval, unsigned int optlen);
411 int tcp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval,
412 		   unsigned int optlen);
413 void tcp_set_keepalive(struct sock *sk, int val);
414 void tcp_syn_ack_timeout(const struct request_sock *req);
415 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len,
416 		int flags, int *addr_len);
417 int tcp_set_rcvlowat(struct sock *sk, int val);
418 int tcp_set_window_clamp(struct sock *sk, int val);
419 void tcp_update_recv_tstamps(struct sk_buff *skb,
420 			     struct scm_timestamping_internal *tss);
421 void tcp_recv_timestamp(struct msghdr *msg, const struct sock *sk,
422 			struct scm_timestamping_internal *tss);
423 void tcp_data_ready(struct sock *sk);
424 #ifdef CONFIG_MMU
425 int tcp_mmap(struct file *file, struct socket *sock,
426 	     struct vm_area_struct *vma);
427 #endif
428 void tcp_parse_options(const struct net *net, const struct sk_buff *skb,
429 		       struct tcp_options_received *opt_rx,
430 		       int estab, struct tcp_fastopen_cookie *foc);
431 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th);
432 
433 /*
434  *	BPF SKB-less helpers
435  */
436 u16 tcp_v4_get_syncookie(struct sock *sk, struct iphdr *iph,
437 			 struct tcphdr *th, u32 *cookie);
438 u16 tcp_v6_get_syncookie(struct sock *sk, struct ipv6hdr *iph,
439 			 struct tcphdr *th, u32 *cookie);
440 u16 tcp_parse_mss_option(const struct tcphdr *th, u16 user_mss);
441 u16 tcp_get_syncookie_mss(struct request_sock_ops *rsk_ops,
442 			  const struct tcp_request_sock_ops *af_ops,
443 			  struct sock *sk, struct tcphdr *th);
444 /*
445  *	TCP v4 functions exported for the inet6 API
446  */
447 
448 void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb);
449 void tcp_v4_mtu_reduced(struct sock *sk);
450 void tcp_req_err(struct sock *sk, u32 seq, bool abort);
451 void tcp_ld_RTO_revert(struct sock *sk, u32 seq);
452 int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb);
453 struct sock *tcp_create_openreq_child(const struct sock *sk,
454 				      struct request_sock *req,
455 				      struct sk_buff *skb);
456 void tcp_ca_openreq_child(struct sock *sk, const struct dst_entry *dst);
457 struct sock *tcp_v4_syn_recv_sock(const struct sock *sk, struct sk_buff *skb,
458 				  struct request_sock *req,
459 				  struct dst_entry *dst,
460 				  struct request_sock *req_unhash,
461 				  bool *own_req);
462 int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb);
463 int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len);
464 int tcp_connect(struct sock *sk);
465 enum tcp_synack_type {
466 	TCP_SYNACK_NORMAL,
467 	TCP_SYNACK_FASTOPEN,
468 	TCP_SYNACK_COOKIE,
469 };
470 struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst,
471 				struct request_sock *req,
472 				struct tcp_fastopen_cookie *foc,
473 				enum tcp_synack_type synack_type,
474 				struct sk_buff *syn_skb);
475 int tcp_disconnect(struct sock *sk, int flags);
476 
477 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb);
478 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size);
479 void inet_sk_rx_dst_set(struct sock *sk, const struct sk_buff *skb);
480 
481 /* From syncookies.c */
482 struct sock *tcp_get_cookie_sock(struct sock *sk, struct sk_buff *skb,
483 				 struct request_sock *req,
484 				 struct dst_entry *dst, u32 tsoff);
485 int __cookie_v4_check(const struct iphdr *iph, const struct tcphdr *th,
486 		      u32 cookie);
487 struct sock *cookie_v4_check(struct sock *sk, struct sk_buff *skb);
488 struct request_sock *cookie_tcp_reqsk_alloc(const struct request_sock_ops *ops,
489 					    const struct tcp_request_sock_ops *af_ops,
490 					    struct sock *sk, struct sk_buff *skb);
491 #ifdef CONFIG_SYN_COOKIES
492 
493 /* Syncookies use a monotonic timer which increments every 60 seconds.
494  * This counter is used both as a hash input and partially encoded into
495  * the cookie value.  A cookie is only validated further if the delta
496  * between the current counter value and the encoded one is less than this,
497  * i.e. a sent cookie is valid only at most for 2*60 seconds (or less if
498  * the counter advances immediately after a cookie is generated).
499  */
500 #define MAX_SYNCOOKIE_AGE	2
501 #define TCP_SYNCOOKIE_PERIOD	(60 * HZ)
502 #define TCP_SYNCOOKIE_VALID	(MAX_SYNCOOKIE_AGE * TCP_SYNCOOKIE_PERIOD)
503 
504 /* syncookies: remember time of last synqueue overflow
505  * But do not dirty this field too often (once per second is enough)
506  * It is racy as we do not hold a lock, but race is very minor.
507  */
508 static inline void tcp_synq_overflow(const struct sock *sk)
509 {
510 	unsigned int last_overflow;
511 	unsigned int now = jiffies;
512 
513 	if (sk->sk_reuseport) {
514 		struct sock_reuseport *reuse;
515 
516 		reuse = rcu_dereference(sk->sk_reuseport_cb);
517 		if (likely(reuse)) {
518 			last_overflow = READ_ONCE(reuse->synq_overflow_ts);
519 			if (!time_between32(now, last_overflow,
520 					    last_overflow + HZ))
521 				WRITE_ONCE(reuse->synq_overflow_ts, now);
522 			return;
523 		}
524 	}
525 
526 	last_overflow = READ_ONCE(tcp_sk(sk)->rx_opt.ts_recent_stamp);
527 	if (!time_between32(now, last_overflow, last_overflow + HZ))
528 		WRITE_ONCE(tcp_sk_rw(sk)->rx_opt.ts_recent_stamp, now);
529 }
530 
531 /* syncookies: no recent synqueue overflow on this listening socket? */
532 static inline bool tcp_synq_no_recent_overflow(const struct sock *sk)
533 {
534 	unsigned int last_overflow;
535 	unsigned int now = jiffies;
536 
537 	if (sk->sk_reuseport) {
538 		struct sock_reuseport *reuse;
539 
540 		reuse = rcu_dereference(sk->sk_reuseport_cb);
541 		if (likely(reuse)) {
542 			last_overflow = READ_ONCE(reuse->synq_overflow_ts);
543 			return !time_between32(now, last_overflow - HZ,
544 					       last_overflow +
545 					       TCP_SYNCOOKIE_VALID);
546 		}
547 	}
548 
549 	last_overflow = READ_ONCE(tcp_sk(sk)->rx_opt.ts_recent_stamp);
550 
551 	/* If last_overflow <= jiffies <= last_overflow + TCP_SYNCOOKIE_VALID,
552 	 * then we're under synflood. However, we have to use
553 	 * 'last_overflow - HZ' as lower bound. That's because a concurrent
554 	 * tcp_synq_overflow() could update .ts_recent_stamp after we read
555 	 * jiffies but before we store .ts_recent_stamp into last_overflow,
556 	 * which could lead to rejecting a valid syncookie.
557 	 */
558 	return !time_between32(now, last_overflow - HZ,
559 			       last_overflow + TCP_SYNCOOKIE_VALID);
560 }
561 
562 static inline u32 tcp_cookie_time(void)
563 {
564 	u64 val = get_jiffies_64();
565 
566 	do_div(val, TCP_SYNCOOKIE_PERIOD);
567 	return val;
568 }
569 
570 u32 __cookie_v4_init_sequence(const struct iphdr *iph, const struct tcphdr *th,
571 			      u16 *mssp);
572 __u32 cookie_v4_init_sequence(const struct sk_buff *skb, __u16 *mss);
573 u64 cookie_init_timestamp(struct request_sock *req, u64 now);
574 bool cookie_timestamp_decode(const struct net *net,
575 			     struct tcp_options_received *opt);
576 bool cookie_ecn_ok(const struct tcp_options_received *opt,
577 		   const struct net *net, const struct dst_entry *dst);
578 
579 /* From net/ipv6/syncookies.c */
580 int __cookie_v6_check(const struct ipv6hdr *iph, const struct tcphdr *th,
581 		      u32 cookie);
582 struct sock *cookie_v6_check(struct sock *sk, struct sk_buff *skb);
583 
584 u32 __cookie_v6_init_sequence(const struct ipv6hdr *iph,
585 			      const struct tcphdr *th, u16 *mssp);
586 __u32 cookie_v6_init_sequence(const struct sk_buff *skb, __u16 *mss);
587 #endif
588 /* tcp_output.c */
589 
590 void tcp_skb_entail(struct sock *sk, struct sk_buff *skb);
591 void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb);
592 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
593 			       int nonagle);
594 int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs);
595 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs);
596 void tcp_retransmit_timer(struct sock *sk);
597 void tcp_xmit_retransmit_queue(struct sock *);
598 void tcp_simple_retransmit(struct sock *);
599 void tcp_enter_recovery(struct sock *sk, bool ece_ack);
600 int tcp_trim_head(struct sock *, struct sk_buff *, u32);
601 enum tcp_queue {
602 	TCP_FRAG_IN_WRITE_QUEUE,
603 	TCP_FRAG_IN_RTX_QUEUE,
604 };
605 int tcp_fragment(struct sock *sk, enum tcp_queue tcp_queue,
606 		 struct sk_buff *skb, u32 len,
607 		 unsigned int mss_now, gfp_t gfp);
608 
609 void tcp_send_probe0(struct sock *);
610 int tcp_write_wakeup(struct sock *, int mib);
611 void tcp_send_fin(struct sock *sk);
612 void tcp_send_active_reset(struct sock *sk, gfp_t priority);
613 int tcp_send_synack(struct sock *);
614 void tcp_push_one(struct sock *, unsigned int mss_now);
615 void __tcp_send_ack(struct sock *sk, u32 rcv_nxt);
616 void tcp_send_ack(struct sock *sk);
617 void tcp_send_delayed_ack(struct sock *sk);
618 void tcp_send_loss_probe(struct sock *sk);
619 bool tcp_schedule_loss_probe(struct sock *sk, bool advancing_rto);
620 void tcp_skb_collapse_tstamp(struct sk_buff *skb,
621 			     const struct sk_buff *next_skb);
622 
623 /* tcp_input.c */
624 void tcp_rearm_rto(struct sock *sk);
625 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req);
626 void tcp_reset(struct sock *sk, struct sk_buff *skb);
627 void tcp_fin(struct sock *sk);
628 void tcp_check_space(struct sock *sk);
629 void tcp_sack_compress_send_ack(struct sock *sk);
630 
631 /* tcp_timer.c */
632 void tcp_init_xmit_timers(struct sock *);
633 static inline void tcp_clear_xmit_timers(struct sock *sk)
634 {
635 	if (hrtimer_try_to_cancel(&tcp_sk(sk)->pacing_timer) == 1)
636 		__sock_put(sk);
637 
638 	if (hrtimer_try_to_cancel(&tcp_sk(sk)->compressed_ack_timer) == 1)
639 		__sock_put(sk);
640 
641 	inet_csk_clear_xmit_timers(sk);
642 }
643 
644 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu);
645 unsigned int tcp_current_mss(struct sock *sk);
646 u32 tcp_clamp_probe0_to_user_timeout(const struct sock *sk, u32 when);
647 
648 /* Bound MSS / TSO packet size with the half of the window */
649 static inline int tcp_bound_to_half_wnd(struct tcp_sock *tp, int pktsize)
650 {
651 	int cutoff;
652 
653 	/* When peer uses tiny windows, there is no use in packetizing
654 	 * to sub-MSS pieces for the sake of SWS or making sure there
655 	 * are enough packets in the pipe for fast recovery.
656 	 *
657 	 * On the other hand, for extremely large MSS devices, handling
658 	 * smaller than MSS windows in this way does make sense.
659 	 */
660 	if (tp->max_window > TCP_MSS_DEFAULT)
661 		cutoff = (tp->max_window >> 1);
662 	else
663 		cutoff = tp->max_window;
664 
665 	if (cutoff && pktsize > cutoff)
666 		return max_t(int, cutoff, 68U - tp->tcp_header_len);
667 	else
668 		return pktsize;
669 }
670 
671 /* tcp.c */
672 void tcp_get_info(struct sock *, struct tcp_info *);
673 
674 /* Read 'sendfile()'-style from a TCP socket */
675 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
676 		  sk_read_actor_t recv_actor);
677 int tcp_read_skb(struct sock *sk, skb_read_actor_t recv_actor);
678 struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off);
679 void tcp_read_done(struct sock *sk, size_t len);
680 
681 void tcp_initialize_rcv_mss(struct sock *sk);
682 
683 int tcp_mtu_to_mss(struct sock *sk, int pmtu);
684 int tcp_mss_to_mtu(struct sock *sk, int mss);
685 void tcp_mtup_init(struct sock *sk);
686 
687 static inline void tcp_bound_rto(const struct sock *sk)
688 {
689 	if (inet_csk(sk)->icsk_rto > TCP_RTO_MAX)
690 		inet_csk(sk)->icsk_rto = TCP_RTO_MAX;
691 }
692 
693 static inline u32 __tcp_set_rto(const struct tcp_sock *tp)
694 {
695 	return usecs_to_jiffies((tp->srtt_us >> 3) + tp->rttvar_us);
696 }
697 
698 static inline void __tcp_fast_path_on(struct tcp_sock *tp, u32 snd_wnd)
699 {
700 	/* mptcp hooks are only on the slow path */
701 	if (sk_is_mptcp((struct sock *)tp))
702 		return;
703 
704 	tp->pred_flags = htonl((tp->tcp_header_len << 26) |
705 			       ntohl(TCP_FLAG_ACK) |
706 			       snd_wnd);
707 }
708 
709 static inline void tcp_fast_path_on(struct tcp_sock *tp)
710 {
711 	__tcp_fast_path_on(tp, tp->snd_wnd >> tp->rx_opt.snd_wscale);
712 }
713 
714 static inline void tcp_fast_path_check(struct sock *sk)
715 {
716 	struct tcp_sock *tp = tcp_sk(sk);
717 
718 	if (RB_EMPTY_ROOT(&tp->out_of_order_queue) &&
719 	    tp->rcv_wnd &&
720 	    atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf &&
721 	    !tp->urg_data)
722 		tcp_fast_path_on(tp);
723 }
724 
725 u32 tcp_delack_max(const struct sock *sk);
726 
727 /* Compute the actual rto_min value */
728 static inline u32 tcp_rto_min(const struct sock *sk)
729 {
730 	const struct dst_entry *dst = __sk_dst_get(sk);
731 	u32 rto_min = inet_csk(sk)->icsk_rto_min;
732 
733 	if (dst && dst_metric_locked(dst, RTAX_RTO_MIN))
734 		rto_min = dst_metric_rtt(dst, RTAX_RTO_MIN);
735 	return rto_min;
736 }
737 
738 static inline u32 tcp_rto_min_us(const struct sock *sk)
739 {
740 	return jiffies_to_usecs(tcp_rto_min(sk));
741 }
742 
743 static inline bool tcp_ca_dst_locked(const struct dst_entry *dst)
744 {
745 	return dst_metric_locked(dst, RTAX_CC_ALGO);
746 }
747 
748 /* Minimum RTT in usec. ~0 means not available. */
749 static inline u32 tcp_min_rtt(const struct tcp_sock *tp)
750 {
751 	return minmax_get(&tp->rtt_min);
752 }
753 
754 /* Compute the actual receive window we are currently advertising.
755  * Rcv_nxt can be after the window if our peer push more data
756  * than the offered window.
757  */
758 static inline u32 tcp_receive_window(const struct tcp_sock *tp)
759 {
760 	s32 win = tp->rcv_wup + tp->rcv_wnd - tp->rcv_nxt;
761 
762 	if (win < 0)
763 		win = 0;
764 	return (u32) win;
765 }
766 
767 /* Choose a new window, without checks for shrinking, and without
768  * scaling applied to the result.  The caller does these things
769  * if necessary.  This is a "raw" window selection.
770  */
771 u32 __tcp_select_window(struct sock *sk);
772 
773 void tcp_send_window_probe(struct sock *sk);
774 
775 /* TCP uses 32bit jiffies to save some space.
776  * Note that this is different from tcp_time_stamp, which
777  * historically has been the same until linux-4.13.
778  */
779 #define tcp_jiffies32 ((u32)jiffies)
780 
781 /*
782  * Deliver a 32bit value for TCP timestamp option (RFC 7323)
783  * It is no longer tied to jiffies, but to 1 ms clock.
784  * Note: double check if you want to use tcp_jiffies32 instead of this.
785  */
786 #define TCP_TS_HZ	1000
787 
788 static inline u64 tcp_clock_ns(void)
789 {
790 	return ktime_get_ns();
791 }
792 
793 static inline u64 tcp_clock_us(void)
794 {
795 	return div_u64(tcp_clock_ns(), NSEC_PER_USEC);
796 }
797 
798 /* This should only be used in contexts where tp->tcp_mstamp is up to date */
799 static inline u32 tcp_time_stamp(const struct tcp_sock *tp)
800 {
801 	return div_u64(tp->tcp_mstamp, USEC_PER_SEC / TCP_TS_HZ);
802 }
803 
804 /* Convert a nsec timestamp into TCP TSval timestamp (ms based currently) */
805 static inline u32 tcp_ns_to_ts(u64 ns)
806 {
807 	return div_u64(ns, NSEC_PER_SEC / TCP_TS_HZ);
808 }
809 
810 /* Could use tcp_clock_us() / 1000, but this version uses a single divide */
811 static inline u32 tcp_time_stamp_raw(void)
812 {
813 	return tcp_ns_to_ts(tcp_clock_ns());
814 }
815 
816 void tcp_mstamp_refresh(struct tcp_sock *tp);
817 
818 static inline u32 tcp_stamp_us_delta(u64 t1, u64 t0)
819 {
820 	return max_t(s64, t1 - t0, 0);
821 }
822 
823 static inline u32 tcp_skb_timestamp(const struct sk_buff *skb)
824 {
825 	return tcp_ns_to_ts(skb->skb_mstamp_ns);
826 }
827 
828 /* provide the departure time in us unit */
829 static inline u64 tcp_skb_timestamp_us(const struct sk_buff *skb)
830 {
831 	return div_u64(skb->skb_mstamp_ns, NSEC_PER_USEC);
832 }
833 
834 
835 #define tcp_flag_byte(th) (((u_int8_t *)th)[13])
836 
837 #define TCPHDR_FIN 0x01
838 #define TCPHDR_SYN 0x02
839 #define TCPHDR_RST 0x04
840 #define TCPHDR_PSH 0x08
841 #define TCPHDR_ACK 0x10
842 #define TCPHDR_URG 0x20
843 #define TCPHDR_ECE 0x40
844 #define TCPHDR_CWR 0x80
845 
846 #define TCPHDR_SYN_ECN	(TCPHDR_SYN | TCPHDR_ECE | TCPHDR_CWR)
847 
848 /* This is what the send packet queuing engine uses to pass
849  * TCP per-packet control information to the transmission code.
850  * We also store the host-order sequence numbers in here too.
851  * This is 44 bytes if IPV6 is enabled.
852  * If this grows please adjust skbuff.h:skbuff->cb[xxx] size appropriately.
853  */
854 struct tcp_skb_cb {
855 	__u32		seq;		/* Starting sequence number	*/
856 	__u32		end_seq;	/* SEQ + FIN + SYN + datalen	*/
857 	union {
858 		/* Note : tcp_tw_isn is used in input path only
859 		 *	  (isn chosen by tcp_timewait_state_process())
860 		 *
861 		 * 	  tcp_gso_segs/size are used in write queue only,
862 		 *	  cf tcp_skb_pcount()/tcp_skb_mss()
863 		 */
864 		__u32		tcp_tw_isn;
865 		struct {
866 			u16	tcp_gso_segs;
867 			u16	tcp_gso_size;
868 		};
869 	};
870 	__u8		tcp_flags;	/* TCP header flags. (tcp[13])	*/
871 
872 	__u8		sacked;		/* State flags for SACK.	*/
873 #define TCPCB_SACKED_ACKED	0x01	/* SKB ACK'd by a SACK block	*/
874 #define TCPCB_SACKED_RETRANS	0x02	/* SKB retransmitted		*/
875 #define TCPCB_LOST		0x04	/* SKB is lost			*/
876 #define TCPCB_TAGBITS		0x07	/* All tag bits			*/
877 #define TCPCB_REPAIRED		0x10	/* SKB repaired (no skb_mstamp_ns)	*/
878 #define TCPCB_EVER_RETRANS	0x80	/* Ever retransmitted frame	*/
879 #define TCPCB_RETRANS		(TCPCB_SACKED_RETRANS|TCPCB_EVER_RETRANS| \
880 				TCPCB_REPAIRED)
881 
882 	__u8		ip_dsfield;	/* IPv4 tos or IPv6 dsfield	*/
883 	__u8		txstamp_ack:1,	/* Record TX timestamp for ack? */
884 			eor:1,		/* Is skb MSG_EOR marked? */
885 			has_rxtstamp:1,	/* SKB has a RX timestamp	*/
886 			unused:5;
887 	__u32		ack_seq;	/* Sequence number ACK'd	*/
888 	union {
889 		struct {
890 #define TCPCB_DELIVERED_CE_MASK ((1U<<20) - 1)
891 			/* There is space for up to 24 bytes */
892 			__u32 is_app_limited:1, /* cwnd not fully used? */
893 			      delivered_ce:20,
894 			      unused:11;
895 			/* pkts S/ACKed so far upon tx of skb, incl retrans: */
896 			__u32 delivered;
897 			/* start of send pipeline phase */
898 			u64 first_tx_mstamp;
899 			/* when we reached the "delivered" count */
900 			u64 delivered_mstamp;
901 		} tx;   /* only used for outgoing skbs */
902 		union {
903 			struct inet_skb_parm	h4;
904 #if IS_ENABLED(CONFIG_IPV6)
905 			struct inet6_skb_parm	h6;
906 #endif
907 		} header;	/* For incoming skbs */
908 	};
909 };
910 
911 #define TCP_SKB_CB(__skb)	((struct tcp_skb_cb *)&((__skb)->cb[0]))
912 
913 extern const struct inet_connection_sock_af_ops ipv4_specific;
914 
915 #if IS_ENABLED(CONFIG_IPV6)
916 /* This is the variant of inet6_iif() that must be used by TCP,
917  * as TCP moves IP6CB into a different location in skb->cb[]
918  */
919 static inline int tcp_v6_iif(const struct sk_buff *skb)
920 {
921 	return TCP_SKB_CB(skb)->header.h6.iif;
922 }
923 
924 static inline int tcp_v6_iif_l3_slave(const struct sk_buff *skb)
925 {
926 	bool l3_slave = ipv6_l3mdev_skb(TCP_SKB_CB(skb)->header.h6.flags);
927 
928 	return l3_slave ? skb->skb_iif : TCP_SKB_CB(skb)->header.h6.iif;
929 }
930 
931 /* TCP_SKB_CB reference means this can not be used from early demux */
932 static inline int tcp_v6_sdif(const struct sk_buff *skb)
933 {
934 #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
935 	if (skb && ipv6_l3mdev_skb(TCP_SKB_CB(skb)->header.h6.flags))
936 		return TCP_SKB_CB(skb)->header.h6.iif;
937 #endif
938 	return 0;
939 }
940 
941 extern const struct inet_connection_sock_af_ops ipv6_specific;
942 
943 INDIRECT_CALLABLE_DECLARE(void tcp_v6_send_check(struct sock *sk, struct sk_buff *skb));
944 INDIRECT_CALLABLE_DECLARE(int tcp_v6_rcv(struct sk_buff *skb));
945 void tcp_v6_early_demux(struct sk_buff *skb);
946 
947 #endif
948 
949 /* TCP_SKB_CB reference means this can not be used from early demux */
950 static inline int tcp_v4_sdif(struct sk_buff *skb)
951 {
952 #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
953 	if (skb && ipv4_l3mdev_skb(TCP_SKB_CB(skb)->header.h4.flags))
954 		return TCP_SKB_CB(skb)->header.h4.iif;
955 #endif
956 	return 0;
957 }
958 
959 /* Due to TSO, an SKB can be composed of multiple actual
960  * packets.  To keep these tracked properly, we use this.
961  */
962 static inline int tcp_skb_pcount(const struct sk_buff *skb)
963 {
964 	return TCP_SKB_CB(skb)->tcp_gso_segs;
965 }
966 
967 static inline void tcp_skb_pcount_set(struct sk_buff *skb, int segs)
968 {
969 	TCP_SKB_CB(skb)->tcp_gso_segs = segs;
970 }
971 
972 static inline void tcp_skb_pcount_add(struct sk_buff *skb, int segs)
973 {
974 	TCP_SKB_CB(skb)->tcp_gso_segs += segs;
975 }
976 
977 /* This is valid iff skb is in write queue and tcp_skb_pcount() > 1. */
978 static inline int tcp_skb_mss(const struct sk_buff *skb)
979 {
980 	return TCP_SKB_CB(skb)->tcp_gso_size;
981 }
982 
983 static inline bool tcp_skb_can_collapse_to(const struct sk_buff *skb)
984 {
985 	return likely(!TCP_SKB_CB(skb)->eor);
986 }
987 
988 static inline bool tcp_skb_can_collapse(const struct sk_buff *to,
989 					const struct sk_buff *from)
990 {
991 	return likely(tcp_skb_can_collapse_to(to) &&
992 		      mptcp_skb_can_collapse(to, from) &&
993 		      skb_pure_zcopy_same(to, from));
994 }
995 
996 /* Events passed to congestion control interface */
997 enum tcp_ca_event {
998 	CA_EVENT_TX_START,	/* first transmit when no packets in flight */
999 	CA_EVENT_CWND_RESTART,	/* congestion window restart */
1000 	CA_EVENT_COMPLETE_CWR,	/* end of congestion recovery */
1001 	CA_EVENT_LOSS,		/* loss timeout */
1002 	CA_EVENT_ECN_NO_CE,	/* ECT set, but not CE marked */
1003 	CA_EVENT_ECN_IS_CE,	/* received CE marked IP packet */
1004 };
1005 
1006 /* Information about inbound ACK, passed to cong_ops->in_ack_event() */
1007 enum tcp_ca_ack_event_flags {
1008 	CA_ACK_SLOWPATH		= (1 << 0),	/* In slow path processing */
1009 	CA_ACK_WIN_UPDATE	= (1 << 1),	/* ACK updated window */
1010 	CA_ACK_ECE		= (1 << 2),	/* ECE bit is set on ack */
1011 };
1012 
1013 /*
1014  * Interface for adding new TCP congestion control handlers
1015  */
1016 #define TCP_CA_NAME_MAX	16
1017 #define TCP_CA_MAX	128
1018 #define TCP_CA_BUF_MAX	(TCP_CA_NAME_MAX*TCP_CA_MAX)
1019 
1020 #define TCP_CA_UNSPEC	0
1021 
1022 /* Algorithm can be set on socket without CAP_NET_ADMIN privileges */
1023 #define TCP_CONG_NON_RESTRICTED 0x1
1024 /* Requires ECN/ECT set on all packets */
1025 #define TCP_CONG_NEEDS_ECN	0x2
1026 #define TCP_CONG_MASK	(TCP_CONG_NON_RESTRICTED | TCP_CONG_NEEDS_ECN)
1027 
1028 union tcp_cc_info;
1029 
1030 struct ack_sample {
1031 	u32 pkts_acked;
1032 	s32 rtt_us;
1033 	u32 in_flight;
1034 };
1035 
1036 /* A rate sample measures the number of (original/retransmitted) data
1037  * packets delivered "delivered" over an interval of time "interval_us".
1038  * The tcp_rate.c code fills in the rate sample, and congestion
1039  * control modules that define a cong_control function to run at the end
1040  * of ACK processing can optionally chose to consult this sample when
1041  * setting cwnd and pacing rate.
1042  * A sample is invalid if "delivered" or "interval_us" is negative.
1043  */
1044 struct rate_sample {
1045 	u64  prior_mstamp; /* starting timestamp for interval */
1046 	u32  prior_delivered;	/* tp->delivered at "prior_mstamp" */
1047 	u32  prior_delivered_ce;/* tp->delivered_ce at "prior_mstamp" */
1048 	s32  delivered;		/* number of packets delivered over interval */
1049 	s32  delivered_ce;	/* number of packets delivered w/ CE marks*/
1050 	long interval_us;	/* time for tp->delivered to incr "delivered" */
1051 	u32 snd_interval_us;	/* snd interval for delivered packets */
1052 	u32 rcv_interval_us;	/* rcv interval for delivered packets */
1053 	long rtt_us;		/* RTT of last (S)ACKed packet (or -1) */
1054 	int  losses;		/* number of packets marked lost upon ACK */
1055 	u32  acked_sacked;	/* number of packets newly (S)ACKed upon ACK */
1056 	u32  prior_in_flight;	/* in flight before this ACK */
1057 	u32  last_end_seq;	/* end_seq of most recently ACKed packet */
1058 	bool is_app_limited;	/* is sample from packet with bubble in pipe? */
1059 	bool is_retrans;	/* is sample from retransmission? */
1060 	bool is_ack_delayed;	/* is this (likely) a delayed ACK? */
1061 };
1062 
1063 struct tcp_congestion_ops {
1064 /* fast path fields are put first to fill one cache line */
1065 
1066 	/* return slow start threshold (required) */
1067 	u32 (*ssthresh)(struct sock *sk);
1068 
1069 	/* do new cwnd calculation (required) */
1070 	void (*cong_avoid)(struct sock *sk, u32 ack, u32 acked);
1071 
1072 	/* call before changing ca_state (optional) */
1073 	void (*set_state)(struct sock *sk, u8 new_state);
1074 
1075 	/* call when cwnd event occurs (optional) */
1076 	void (*cwnd_event)(struct sock *sk, enum tcp_ca_event ev);
1077 
1078 	/* call when ack arrives (optional) */
1079 	void (*in_ack_event)(struct sock *sk, u32 flags);
1080 
1081 	/* hook for packet ack accounting (optional) */
1082 	void (*pkts_acked)(struct sock *sk, const struct ack_sample *sample);
1083 
1084 	/* override sysctl_tcp_min_tso_segs */
1085 	u32 (*min_tso_segs)(struct sock *sk);
1086 
1087 	/* call when packets are delivered to update cwnd and pacing rate,
1088 	 * after all the ca_state processing. (optional)
1089 	 */
1090 	void (*cong_control)(struct sock *sk, const struct rate_sample *rs);
1091 
1092 
1093 	/* new value of cwnd after loss (required) */
1094 	u32  (*undo_cwnd)(struct sock *sk);
1095 	/* returns the multiplier used in tcp_sndbuf_expand (optional) */
1096 	u32 (*sndbuf_expand)(struct sock *sk);
1097 
1098 /* control/slow paths put last */
1099 	/* get info for inet_diag (optional) */
1100 	size_t (*get_info)(struct sock *sk, u32 ext, int *attr,
1101 			   union tcp_cc_info *info);
1102 
1103 	char 			name[TCP_CA_NAME_MAX];
1104 	struct module		*owner;
1105 	struct list_head	list;
1106 	u32			key;
1107 	u32			flags;
1108 
1109 	/* initialize private data (optional) */
1110 	void (*init)(struct sock *sk);
1111 	/* cleanup private data  (optional) */
1112 	void (*release)(struct sock *sk);
1113 } ____cacheline_aligned_in_smp;
1114 
1115 int tcp_register_congestion_control(struct tcp_congestion_ops *type);
1116 void tcp_unregister_congestion_control(struct tcp_congestion_ops *type);
1117 int tcp_update_congestion_control(struct tcp_congestion_ops *type,
1118 				  struct tcp_congestion_ops *old_type);
1119 int tcp_validate_congestion_control(struct tcp_congestion_ops *ca);
1120 
1121 void tcp_assign_congestion_control(struct sock *sk);
1122 void tcp_init_congestion_control(struct sock *sk);
1123 void tcp_cleanup_congestion_control(struct sock *sk);
1124 int tcp_set_default_congestion_control(struct net *net, const char *name);
1125 void tcp_get_default_congestion_control(struct net *net, char *name);
1126 void tcp_get_available_congestion_control(char *buf, size_t len);
1127 void tcp_get_allowed_congestion_control(char *buf, size_t len);
1128 int tcp_set_allowed_congestion_control(char *allowed);
1129 int tcp_set_congestion_control(struct sock *sk, const char *name, bool load,
1130 			       bool cap_net_admin);
1131 u32 tcp_slow_start(struct tcp_sock *tp, u32 acked);
1132 void tcp_cong_avoid_ai(struct tcp_sock *tp, u32 w, u32 acked);
1133 
1134 u32 tcp_reno_ssthresh(struct sock *sk);
1135 u32 tcp_reno_undo_cwnd(struct sock *sk);
1136 void tcp_reno_cong_avoid(struct sock *sk, u32 ack, u32 acked);
1137 extern struct tcp_congestion_ops tcp_reno;
1138 
1139 struct tcp_congestion_ops *tcp_ca_find(const char *name);
1140 struct tcp_congestion_ops *tcp_ca_find_key(u32 key);
1141 u32 tcp_ca_get_key_by_name(struct net *net, const char *name, bool *ecn_ca);
1142 #ifdef CONFIG_INET
1143 char *tcp_ca_get_name_by_key(u32 key, char *buffer);
1144 #else
1145 static inline char *tcp_ca_get_name_by_key(u32 key, char *buffer)
1146 {
1147 	return NULL;
1148 }
1149 #endif
1150 
1151 static inline bool tcp_ca_needs_ecn(const struct sock *sk)
1152 {
1153 	const struct inet_connection_sock *icsk = inet_csk(sk);
1154 
1155 	return icsk->icsk_ca_ops->flags & TCP_CONG_NEEDS_ECN;
1156 }
1157 
1158 static inline void tcp_ca_event(struct sock *sk, const enum tcp_ca_event event)
1159 {
1160 	const struct inet_connection_sock *icsk = inet_csk(sk);
1161 
1162 	if (icsk->icsk_ca_ops->cwnd_event)
1163 		icsk->icsk_ca_ops->cwnd_event(sk, event);
1164 }
1165 
1166 /* From tcp_cong.c */
1167 void tcp_set_ca_state(struct sock *sk, const u8 ca_state);
1168 
1169 /* From tcp_rate.c */
1170 void tcp_rate_skb_sent(struct sock *sk, struct sk_buff *skb);
1171 void tcp_rate_skb_delivered(struct sock *sk, struct sk_buff *skb,
1172 			    struct rate_sample *rs);
1173 void tcp_rate_gen(struct sock *sk, u32 delivered, u32 lost,
1174 		  bool is_sack_reneg, struct rate_sample *rs);
1175 void tcp_rate_check_app_limited(struct sock *sk);
1176 
1177 static inline bool tcp_skb_sent_after(u64 t1, u64 t2, u32 seq1, u32 seq2)
1178 {
1179 	return t1 > t2 || (t1 == t2 && after(seq1, seq2));
1180 }
1181 
1182 /* These functions determine how the current flow behaves in respect of SACK
1183  * handling. SACK is negotiated with the peer, and therefore it can vary
1184  * between different flows.
1185  *
1186  * tcp_is_sack - SACK enabled
1187  * tcp_is_reno - No SACK
1188  */
1189 static inline int tcp_is_sack(const struct tcp_sock *tp)
1190 {
1191 	return likely(tp->rx_opt.sack_ok);
1192 }
1193 
1194 static inline bool tcp_is_reno(const struct tcp_sock *tp)
1195 {
1196 	return !tcp_is_sack(tp);
1197 }
1198 
1199 static inline unsigned int tcp_left_out(const struct tcp_sock *tp)
1200 {
1201 	return tp->sacked_out + tp->lost_out;
1202 }
1203 
1204 /* This determines how many packets are "in the network" to the best
1205  * of our knowledge.  In many cases it is conservative, but where
1206  * detailed information is available from the receiver (via SACK
1207  * blocks etc.) we can make more aggressive calculations.
1208  *
1209  * Use this for decisions involving congestion control, use just
1210  * tp->packets_out to determine if the send queue is empty or not.
1211  *
1212  * Read this equation as:
1213  *
1214  *	"Packets sent once on transmission queue" MINUS
1215  *	"Packets left network, but not honestly ACKed yet" PLUS
1216  *	"Packets fast retransmitted"
1217  */
1218 static inline unsigned int tcp_packets_in_flight(const struct tcp_sock *tp)
1219 {
1220 	return tp->packets_out - tcp_left_out(tp) + tp->retrans_out;
1221 }
1222 
1223 #define TCP_INFINITE_SSTHRESH	0x7fffffff
1224 
1225 static inline u32 tcp_snd_cwnd(const struct tcp_sock *tp)
1226 {
1227 	return tp->snd_cwnd;
1228 }
1229 
1230 static inline void tcp_snd_cwnd_set(struct tcp_sock *tp, u32 val)
1231 {
1232 	WARN_ON_ONCE((int)val <= 0);
1233 	tp->snd_cwnd = val;
1234 }
1235 
1236 static inline bool tcp_in_slow_start(const struct tcp_sock *tp)
1237 {
1238 	return tcp_snd_cwnd(tp) < tp->snd_ssthresh;
1239 }
1240 
1241 static inline bool tcp_in_initial_slowstart(const struct tcp_sock *tp)
1242 {
1243 	return tp->snd_ssthresh >= TCP_INFINITE_SSTHRESH;
1244 }
1245 
1246 static inline bool tcp_in_cwnd_reduction(const struct sock *sk)
1247 {
1248 	return (TCPF_CA_CWR | TCPF_CA_Recovery) &
1249 	       (1 << inet_csk(sk)->icsk_ca_state);
1250 }
1251 
1252 /* If cwnd > ssthresh, we may raise ssthresh to be half-way to cwnd.
1253  * The exception is cwnd reduction phase, when cwnd is decreasing towards
1254  * ssthresh.
1255  */
1256 static inline __u32 tcp_current_ssthresh(const struct sock *sk)
1257 {
1258 	const struct tcp_sock *tp = tcp_sk(sk);
1259 
1260 	if (tcp_in_cwnd_reduction(sk))
1261 		return tp->snd_ssthresh;
1262 	else
1263 		return max(tp->snd_ssthresh,
1264 			   ((tcp_snd_cwnd(tp) >> 1) +
1265 			    (tcp_snd_cwnd(tp) >> 2)));
1266 }
1267 
1268 /* Use define here intentionally to get WARN_ON location shown at the caller */
1269 #define tcp_verify_left_out(tp)	WARN_ON(tcp_left_out(tp) > tp->packets_out)
1270 
1271 void tcp_enter_cwr(struct sock *sk);
1272 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst);
1273 
1274 /* The maximum number of MSS of available cwnd for which TSO defers
1275  * sending if not using sysctl_tcp_tso_win_divisor.
1276  */
1277 static inline __u32 tcp_max_tso_deferred_mss(const struct tcp_sock *tp)
1278 {
1279 	return 3;
1280 }
1281 
1282 /* Returns end sequence number of the receiver's advertised window */
1283 static inline u32 tcp_wnd_end(const struct tcp_sock *tp)
1284 {
1285 	return tp->snd_una + tp->snd_wnd;
1286 }
1287 
1288 /* We follow the spirit of RFC2861 to validate cwnd but implement a more
1289  * flexible approach. The RFC suggests cwnd should not be raised unless
1290  * it was fully used previously. And that's exactly what we do in
1291  * congestion avoidance mode. But in slow start we allow cwnd to grow
1292  * as long as the application has used half the cwnd.
1293  * Example :
1294  *    cwnd is 10 (IW10), but application sends 9 frames.
1295  *    We allow cwnd to reach 18 when all frames are ACKed.
1296  * This check is safe because it's as aggressive as slow start which already
1297  * risks 100% overshoot. The advantage is that we discourage application to
1298  * either send more filler packets or data to artificially blow up the cwnd
1299  * usage, and allow application-limited process to probe bw more aggressively.
1300  */
1301 static inline bool tcp_is_cwnd_limited(const struct sock *sk)
1302 {
1303 	const struct tcp_sock *tp = tcp_sk(sk);
1304 
1305 	if (tp->is_cwnd_limited)
1306 		return true;
1307 
1308 	/* If in slow start, ensure cwnd grows to twice what was ACKed. */
1309 	if (tcp_in_slow_start(tp))
1310 		return tcp_snd_cwnd(tp) < 2 * tp->max_packets_out;
1311 
1312 	return false;
1313 }
1314 
1315 /* BBR congestion control needs pacing.
1316  * Same remark for SO_MAX_PACING_RATE.
1317  * sch_fq packet scheduler is efficiently handling pacing,
1318  * but is not always installed/used.
1319  * Return true if TCP stack should pace packets itself.
1320  */
1321 static inline bool tcp_needs_internal_pacing(const struct sock *sk)
1322 {
1323 	return smp_load_acquire(&sk->sk_pacing_status) == SK_PACING_NEEDED;
1324 }
1325 
1326 /* Estimates in how many jiffies next packet for this flow can be sent.
1327  * Scheduling a retransmit timer too early would be silly.
1328  */
1329 static inline unsigned long tcp_pacing_delay(const struct sock *sk)
1330 {
1331 	s64 delay = tcp_sk(sk)->tcp_wstamp_ns - tcp_sk(sk)->tcp_clock_cache;
1332 
1333 	return delay > 0 ? nsecs_to_jiffies(delay) : 0;
1334 }
1335 
1336 static inline void tcp_reset_xmit_timer(struct sock *sk,
1337 					const int what,
1338 					unsigned long when,
1339 					const unsigned long max_when)
1340 {
1341 	inet_csk_reset_xmit_timer(sk, what, when + tcp_pacing_delay(sk),
1342 				  max_when);
1343 }
1344 
1345 /* Something is really bad, we could not queue an additional packet,
1346  * because qdisc is full or receiver sent a 0 window, or we are paced.
1347  * We do not want to add fuel to the fire, or abort too early,
1348  * so make sure the timer we arm now is at least 200ms in the future,
1349  * regardless of current icsk_rto value (as it could be ~2ms)
1350  */
1351 static inline unsigned long tcp_probe0_base(const struct sock *sk)
1352 {
1353 	return max_t(unsigned long, inet_csk(sk)->icsk_rto, TCP_RTO_MIN);
1354 }
1355 
1356 /* Variant of inet_csk_rto_backoff() used for zero window probes */
1357 static inline unsigned long tcp_probe0_when(const struct sock *sk,
1358 					    unsigned long max_when)
1359 {
1360 	u8 backoff = min_t(u8, ilog2(TCP_RTO_MAX / TCP_RTO_MIN) + 1,
1361 			   inet_csk(sk)->icsk_backoff);
1362 	u64 when = (u64)tcp_probe0_base(sk) << backoff;
1363 
1364 	return (unsigned long)min_t(u64, when, max_when);
1365 }
1366 
1367 static inline void tcp_check_probe_timer(struct sock *sk)
1368 {
1369 	if (!tcp_sk(sk)->packets_out && !inet_csk(sk)->icsk_pending)
1370 		tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
1371 				     tcp_probe0_base(sk), TCP_RTO_MAX);
1372 }
1373 
1374 static inline void tcp_init_wl(struct tcp_sock *tp, u32 seq)
1375 {
1376 	tp->snd_wl1 = seq;
1377 }
1378 
1379 static inline void tcp_update_wl(struct tcp_sock *tp, u32 seq)
1380 {
1381 	tp->snd_wl1 = seq;
1382 }
1383 
1384 /*
1385  * Calculate(/check) TCP checksum
1386  */
1387 static inline __sum16 tcp_v4_check(int len, __be32 saddr,
1388 				   __be32 daddr, __wsum base)
1389 {
1390 	return csum_tcpudp_magic(saddr, daddr, len, IPPROTO_TCP, base);
1391 }
1392 
1393 static inline bool tcp_checksum_complete(struct sk_buff *skb)
1394 {
1395 	return !skb_csum_unnecessary(skb) &&
1396 		__skb_checksum_complete(skb);
1397 }
1398 
1399 bool tcp_add_backlog(struct sock *sk, struct sk_buff *skb,
1400 		     enum skb_drop_reason *reason);
1401 
1402 
1403 int tcp_filter(struct sock *sk, struct sk_buff *skb);
1404 void tcp_set_state(struct sock *sk, int state);
1405 void tcp_done(struct sock *sk);
1406 int tcp_abort(struct sock *sk, int err);
1407 
1408 static inline void tcp_sack_reset(struct tcp_options_received *rx_opt)
1409 {
1410 	rx_opt->dsack = 0;
1411 	rx_opt->num_sacks = 0;
1412 }
1413 
1414 void tcp_cwnd_restart(struct sock *sk, s32 delta);
1415 
1416 static inline void tcp_slow_start_after_idle_check(struct sock *sk)
1417 {
1418 	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1419 	struct tcp_sock *tp = tcp_sk(sk);
1420 	s32 delta;
1421 
1422 	if (!READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_slow_start_after_idle) ||
1423 	    tp->packets_out || ca_ops->cong_control)
1424 		return;
1425 	delta = tcp_jiffies32 - tp->lsndtime;
1426 	if (delta > inet_csk(sk)->icsk_rto)
1427 		tcp_cwnd_restart(sk, delta);
1428 }
1429 
1430 /* Determine a window scaling and initial window to offer. */
1431 void tcp_select_initial_window(const struct sock *sk, int __space,
1432 			       __u32 mss, __u32 *rcv_wnd,
1433 			       __u32 *window_clamp, int wscale_ok,
1434 			       __u8 *rcv_wscale, __u32 init_rcv_wnd);
1435 
1436 static inline int __tcp_win_from_space(u8 scaling_ratio, int space)
1437 {
1438 	s64 scaled_space = (s64)space * scaling_ratio;
1439 
1440 	return scaled_space >> TCP_RMEM_TO_WIN_SCALE;
1441 }
1442 
1443 static inline int tcp_win_from_space(const struct sock *sk, int space)
1444 {
1445 	return __tcp_win_from_space(tcp_sk(sk)->scaling_ratio, space);
1446 }
1447 
1448 /* inverse of __tcp_win_from_space() */
1449 static inline int __tcp_space_from_win(u8 scaling_ratio, int win)
1450 {
1451 	u64 val = (u64)win << TCP_RMEM_TO_WIN_SCALE;
1452 
1453 	do_div(val, scaling_ratio);
1454 	return val;
1455 }
1456 
1457 static inline int tcp_space_from_win(const struct sock *sk, int win)
1458 {
1459 	return __tcp_space_from_win(tcp_sk(sk)->scaling_ratio, win);
1460 }
1461 
1462 static inline void tcp_scaling_ratio_init(struct sock *sk)
1463 {
1464 	/* Assume a conservative default of 1200 bytes of payload per 4K page.
1465 	 * This may be adjusted later in tcp_measure_rcv_mss().
1466 	 */
1467 	tcp_sk(sk)->scaling_ratio = (1200 << TCP_RMEM_TO_WIN_SCALE) /
1468 				    SKB_TRUESIZE(4096);
1469 }
1470 
1471 /* Note: caller must be prepared to deal with negative returns */
1472 static inline int tcp_space(const struct sock *sk)
1473 {
1474 	return tcp_win_from_space(sk, READ_ONCE(sk->sk_rcvbuf) -
1475 				  READ_ONCE(sk->sk_backlog.len) -
1476 				  atomic_read(&sk->sk_rmem_alloc));
1477 }
1478 
1479 static inline int tcp_full_space(const struct sock *sk)
1480 {
1481 	return tcp_win_from_space(sk, READ_ONCE(sk->sk_rcvbuf));
1482 }
1483 
1484 static inline void tcp_adjust_rcv_ssthresh(struct sock *sk)
1485 {
1486 	int unused_mem = sk_unused_reserved_mem(sk);
1487 	struct tcp_sock *tp = tcp_sk(sk);
1488 
1489 	tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
1490 	if (unused_mem)
1491 		tp->rcv_ssthresh = max_t(u32, tp->rcv_ssthresh,
1492 					 tcp_win_from_space(sk, unused_mem));
1493 }
1494 
1495 void tcp_cleanup_rbuf(struct sock *sk, int copied);
1496 void __tcp_cleanup_rbuf(struct sock *sk, int copied);
1497 
1498 
1499 /* We provision sk_rcvbuf around 200% of sk_rcvlowat.
1500  * If 87.5 % (7/8) of the space has been consumed, we want to override
1501  * SO_RCVLOWAT constraint, since we are receiving skbs with too small
1502  * len/truesize ratio.
1503  */
1504 static inline bool tcp_rmem_pressure(const struct sock *sk)
1505 {
1506 	int rcvbuf, threshold;
1507 
1508 	if (tcp_under_memory_pressure(sk))
1509 		return true;
1510 
1511 	rcvbuf = READ_ONCE(sk->sk_rcvbuf);
1512 	threshold = rcvbuf - (rcvbuf >> 3);
1513 
1514 	return atomic_read(&sk->sk_rmem_alloc) > threshold;
1515 }
1516 
1517 static inline bool tcp_epollin_ready(const struct sock *sk, int target)
1518 {
1519 	const struct tcp_sock *tp = tcp_sk(sk);
1520 	int avail = READ_ONCE(tp->rcv_nxt) - READ_ONCE(tp->copied_seq);
1521 
1522 	if (avail <= 0)
1523 		return false;
1524 
1525 	return (avail >= target) || tcp_rmem_pressure(sk) ||
1526 	       (tcp_receive_window(tp) <= inet_csk(sk)->icsk_ack.rcv_mss);
1527 }
1528 
1529 extern void tcp_openreq_init_rwin(struct request_sock *req,
1530 				  const struct sock *sk_listener,
1531 				  const struct dst_entry *dst);
1532 
1533 void tcp_enter_memory_pressure(struct sock *sk);
1534 void tcp_leave_memory_pressure(struct sock *sk);
1535 
1536 static inline int keepalive_intvl_when(const struct tcp_sock *tp)
1537 {
1538 	struct net *net = sock_net((struct sock *)tp);
1539 	int val;
1540 
1541 	/* Paired with WRITE_ONCE() in tcp_sock_set_keepintvl()
1542 	 * and do_tcp_setsockopt().
1543 	 */
1544 	val = READ_ONCE(tp->keepalive_intvl);
1545 
1546 	return val ? : READ_ONCE(net->ipv4.sysctl_tcp_keepalive_intvl);
1547 }
1548 
1549 static inline int keepalive_time_when(const struct tcp_sock *tp)
1550 {
1551 	struct net *net = sock_net((struct sock *)tp);
1552 	int val;
1553 
1554 	/* Paired with WRITE_ONCE() in tcp_sock_set_keepidle_locked() */
1555 	val = READ_ONCE(tp->keepalive_time);
1556 
1557 	return val ? : READ_ONCE(net->ipv4.sysctl_tcp_keepalive_time);
1558 }
1559 
1560 static inline int keepalive_probes(const struct tcp_sock *tp)
1561 {
1562 	struct net *net = sock_net((struct sock *)tp);
1563 	int val;
1564 
1565 	/* Paired with WRITE_ONCE() in tcp_sock_set_keepcnt()
1566 	 * and do_tcp_setsockopt().
1567 	 */
1568 	val = READ_ONCE(tp->keepalive_probes);
1569 
1570 	return val ? : READ_ONCE(net->ipv4.sysctl_tcp_keepalive_probes);
1571 }
1572 
1573 static inline u32 keepalive_time_elapsed(const struct tcp_sock *tp)
1574 {
1575 	const struct inet_connection_sock *icsk = &tp->inet_conn;
1576 
1577 	return min_t(u32, tcp_jiffies32 - icsk->icsk_ack.lrcvtime,
1578 			  tcp_jiffies32 - tp->rcv_tstamp);
1579 }
1580 
1581 static inline int tcp_fin_time(const struct sock *sk)
1582 {
1583 	int fin_timeout = tcp_sk(sk)->linger2 ? :
1584 		READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_fin_timeout);
1585 	const int rto = inet_csk(sk)->icsk_rto;
1586 
1587 	if (fin_timeout < (rto << 2) - (rto >> 1))
1588 		fin_timeout = (rto << 2) - (rto >> 1);
1589 
1590 	return fin_timeout;
1591 }
1592 
1593 static inline bool tcp_paws_check(const struct tcp_options_received *rx_opt,
1594 				  int paws_win)
1595 {
1596 	if ((s32)(rx_opt->ts_recent - rx_opt->rcv_tsval) <= paws_win)
1597 		return true;
1598 	if (unlikely(!time_before32(ktime_get_seconds(),
1599 				    rx_opt->ts_recent_stamp + TCP_PAWS_24DAYS)))
1600 		return true;
1601 	/*
1602 	 * Some OSes send SYN and SYNACK messages with tsval=0 tsecr=0,
1603 	 * then following tcp messages have valid values. Ignore 0 value,
1604 	 * or else 'negative' tsval might forbid us to accept their packets.
1605 	 */
1606 	if (!rx_opt->ts_recent)
1607 		return true;
1608 	return false;
1609 }
1610 
1611 static inline bool tcp_paws_reject(const struct tcp_options_received *rx_opt,
1612 				   int rst)
1613 {
1614 	if (tcp_paws_check(rx_opt, 0))
1615 		return false;
1616 
1617 	/* RST segments are not recommended to carry timestamp,
1618 	   and, if they do, it is recommended to ignore PAWS because
1619 	   "their cleanup function should take precedence over timestamps."
1620 	   Certainly, it is mistake. It is necessary to understand the reasons
1621 	   of this constraint to relax it: if peer reboots, clock may go
1622 	   out-of-sync and half-open connections will not be reset.
1623 	   Actually, the problem would be not existing if all
1624 	   the implementations followed draft about maintaining clock
1625 	   via reboots. Linux-2.2 DOES NOT!
1626 
1627 	   However, we can relax time bounds for RST segments to MSL.
1628 	 */
1629 	if (rst && !time_before32(ktime_get_seconds(),
1630 				  rx_opt->ts_recent_stamp + TCP_PAWS_MSL))
1631 		return false;
1632 	return true;
1633 }
1634 
1635 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
1636 			  int mib_idx, u32 *last_oow_ack_time);
1637 
1638 static inline void tcp_mib_init(struct net *net)
1639 {
1640 	/* See RFC 2012 */
1641 	TCP_ADD_STATS(net, TCP_MIB_RTOALGORITHM, 1);
1642 	TCP_ADD_STATS(net, TCP_MIB_RTOMIN, TCP_RTO_MIN*1000/HZ);
1643 	TCP_ADD_STATS(net, TCP_MIB_RTOMAX, TCP_RTO_MAX*1000/HZ);
1644 	TCP_ADD_STATS(net, TCP_MIB_MAXCONN, -1);
1645 }
1646 
1647 /* from STCP */
1648 static inline void tcp_clear_retrans_hints_partial(struct tcp_sock *tp)
1649 {
1650 	tp->lost_skb_hint = NULL;
1651 }
1652 
1653 static inline void tcp_clear_all_retrans_hints(struct tcp_sock *tp)
1654 {
1655 	tcp_clear_retrans_hints_partial(tp);
1656 	tp->retransmit_skb_hint = NULL;
1657 }
1658 
1659 union tcp_md5_addr {
1660 	struct in_addr  a4;
1661 #if IS_ENABLED(CONFIG_IPV6)
1662 	struct in6_addr	a6;
1663 #endif
1664 };
1665 
1666 /* - key database */
1667 struct tcp_md5sig_key {
1668 	struct hlist_node	node;
1669 	u8			keylen;
1670 	u8			family; /* AF_INET or AF_INET6 */
1671 	u8			prefixlen;
1672 	u8			flags;
1673 	union tcp_md5_addr	addr;
1674 	int			l3index; /* set if key added with L3 scope */
1675 	u8			key[TCP_MD5SIG_MAXKEYLEN];
1676 	struct rcu_head		rcu;
1677 };
1678 
1679 /* - sock block */
1680 struct tcp_md5sig_info {
1681 	struct hlist_head	head;
1682 	struct rcu_head		rcu;
1683 };
1684 
1685 /* - pseudo header */
1686 struct tcp4_pseudohdr {
1687 	__be32		saddr;
1688 	__be32		daddr;
1689 	__u8		pad;
1690 	__u8		protocol;
1691 	__be16		len;
1692 };
1693 
1694 struct tcp6_pseudohdr {
1695 	struct in6_addr	saddr;
1696 	struct in6_addr daddr;
1697 	__be32		len;
1698 	__be32		protocol;	/* including padding */
1699 };
1700 
1701 union tcp_md5sum_block {
1702 	struct tcp4_pseudohdr ip4;
1703 #if IS_ENABLED(CONFIG_IPV6)
1704 	struct tcp6_pseudohdr ip6;
1705 #endif
1706 };
1707 
1708 /* - pool: digest algorithm, hash description and scratch buffer */
1709 struct tcp_md5sig_pool {
1710 	struct ahash_request	*md5_req;
1711 	void			*scratch;
1712 };
1713 
1714 /* - functions */
1715 int tcp_v4_md5_hash_skb(char *md5_hash, const struct tcp_md5sig_key *key,
1716 			const struct sock *sk, const struct sk_buff *skb);
1717 int tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr,
1718 		   int family, u8 prefixlen, int l3index, u8 flags,
1719 		   const u8 *newkey, u8 newkeylen);
1720 int tcp_md5_key_copy(struct sock *sk, const union tcp_md5_addr *addr,
1721 		     int family, u8 prefixlen, int l3index,
1722 		     struct tcp_md5sig_key *key);
1723 
1724 int tcp_md5_do_del(struct sock *sk, const union tcp_md5_addr *addr,
1725 		   int family, u8 prefixlen, int l3index, u8 flags);
1726 struct tcp_md5sig_key *tcp_v4_md5_lookup(const struct sock *sk,
1727 					 const struct sock *addr_sk);
1728 
1729 #ifdef CONFIG_TCP_MD5SIG
1730 #include <linux/jump_label.h>
1731 extern struct static_key_false_deferred tcp_md5_needed;
1732 struct tcp_md5sig_key *__tcp_md5_do_lookup(const struct sock *sk, int l3index,
1733 					   const union tcp_md5_addr *addr,
1734 					   int family);
1735 static inline struct tcp_md5sig_key *
1736 tcp_md5_do_lookup(const struct sock *sk, int l3index,
1737 		  const union tcp_md5_addr *addr, int family)
1738 {
1739 	if (!static_branch_unlikely(&tcp_md5_needed.key))
1740 		return NULL;
1741 	return __tcp_md5_do_lookup(sk, l3index, addr, family);
1742 }
1743 
1744 enum skb_drop_reason
1745 tcp_inbound_md5_hash(const struct sock *sk, const struct sk_buff *skb,
1746 		     const void *saddr, const void *daddr,
1747 		     int family, int dif, int sdif);
1748 
1749 
1750 #define tcp_twsk_md5_key(twsk)	((twsk)->tw_md5_key)
1751 #else
1752 static inline struct tcp_md5sig_key *
1753 tcp_md5_do_lookup(const struct sock *sk, int l3index,
1754 		  const union tcp_md5_addr *addr, int family)
1755 {
1756 	return NULL;
1757 }
1758 
1759 static inline enum skb_drop_reason
1760 tcp_inbound_md5_hash(const struct sock *sk, const struct sk_buff *skb,
1761 		     const void *saddr, const void *daddr,
1762 		     int family, int dif, int sdif)
1763 {
1764 	return SKB_NOT_DROPPED_YET;
1765 }
1766 #define tcp_twsk_md5_key(twsk)	NULL
1767 #endif
1768 
1769 bool tcp_alloc_md5sig_pool(void);
1770 
1771 struct tcp_md5sig_pool *tcp_get_md5sig_pool(void);
1772 static inline void tcp_put_md5sig_pool(void)
1773 {
1774 	local_bh_enable();
1775 }
1776 
1777 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *, const struct sk_buff *,
1778 			  unsigned int header_len);
1779 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp,
1780 		     const struct tcp_md5sig_key *key);
1781 
1782 /* From tcp_fastopen.c */
1783 void tcp_fastopen_cache_get(struct sock *sk, u16 *mss,
1784 			    struct tcp_fastopen_cookie *cookie);
1785 void tcp_fastopen_cache_set(struct sock *sk, u16 mss,
1786 			    struct tcp_fastopen_cookie *cookie, bool syn_lost,
1787 			    u16 try_exp);
1788 struct tcp_fastopen_request {
1789 	/* Fast Open cookie. Size 0 means a cookie request */
1790 	struct tcp_fastopen_cookie	cookie;
1791 	struct msghdr			*data;  /* data in MSG_FASTOPEN */
1792 	size_t				size;
1793 	int				copied;	/* queued in tcp_connect() */
1794 	struct ubuf_info		*uarg;
1795 };
1796 void tcp_free_fastopen_req(struct tcp_sock *tp);
1797 void tcp_fastopen_destroy_cipher(struct sock *sk);
1798 void tcp_fastopen_ctx_destroy(struct net *net);
1799 int tcp_fastopen_reset_cipher(struct net *net, struct sock *sk,
1800 			      void *primary_key, void *backup_key);
1801 int tcp_fastopen_get_cipher(struct net *net, struct inet_connection_sock *icsk,
1802 			    u64 *key);
1803 void tcp_fastopen_add_skb(struct sock *sk, struct sk_buff *skb);
1804 struct sock *tcp_try_fastopen(struct sock *sk, struct sk_buff *skb,
1805 			      struct request_sock *req,
1806 			      struct tcp_fastopen_cookie *foc,
1807 			      const struct dst_entry *dst);
1808 void tcp_fastopen_init_key_once(struct net *net);
1809 bool tcp_fastopen_cookie_check(struct sock *sk, u16 *mss,
1810 			     struct tcp_fastopen_cookie *cookie);
1811 bool tcp_fastopen_defer_connect(struct sock *sk, int *err);
1812 #define TCP_FASTOPEN_KEY_LENGTH sizeof(siphash_key_t)
1813 #define TCP_FASTOPEN_KEY_MAX 2
1814 #define TCP_FASTOPEN_KEY_BUF_LENGTH \
1815 	(TCP_FASTOPEN_KEY_LENGTH * TCP_FASTOPEN_KEY_MAX)
1816 
1817 /* Fastopen key context */
1818 struct tcp_fastopen_context {
1819 	siphash_key_t	key[TCP_FASTOPEN_KEY_MAX];
1820 	int		num;
1821 	struct rcu_head	rcu;
1822 };
1823 
1824 void tcp_fastopen_active_disable(struct sock *sk);
1825 bool tcp_fastopen_active_should_disable(struct sock *sk);
1826 void tcp_fastopen_active_disable_ofo_check(struct sock *sk);
1827 void tcp_fastopen_active_detect_blackhole(struct sock *sk, bool expired);
1828 
1829 /* Caller needs to wrap with rcu_read_(un)lock() */
1830 static inline
1831 struct tcp_fastopen_context *tcp_fastopen_get_ctx(const struct sock *sk)
1832 {
1833 	struct tcp_fastopen_context *ctx;
1834 
1835 	ctx = rcu_dereference(inet_csk(sk)->icsk_accept_queue.fastopenq.ctx);
1836 	if (!ctx)
1837 		ctx = rcu_dereference(sock_net(sk)->ipv4.tcp_fastopen_ctx);
1838 	return ctx;
1839 }
1840 
1841 static inline
1842 bool tcp_fastopen_cookie_match(const struct tcp_fastopen_cookie *foc,
1843 			       const struct tcp_fastopen_cookie *orig)
1844 {
1845 	if (orig->len == TCP_FASTOPEN_COOKIE_SIZE &&
1846 	    orig->len == foc->len &&
1847 	    !memcmp(orig->val, foc->val, foc->len))
1848 		return true;
1849 	return false;
1850 }
1851 
1852 static inline
1853 int tcp_fastopen_context_len(const struct tcp_fastopen_context *ctx)
1854 {
1855 	return ctx->num;
1856 }
1857 
1858 /* Latencies incurred by various limits for a sender. They are
1859  * chronograph-like stats that are mutually exclusive.
1860  */
1861 enum tcp_chrono {
1862 	TCP_CHRONO_UNSPEC,
1863 	TCP_CHRONO_BUSY, /* Actively sending data (non-empty write queue) */
1864 	TCP_CHRONO_RWND_LIMITED, /* Stalled by insufficient receive window */
1865 	TCP_CHRONO_SNDBUF_LIMITED, /* Stalled by insufficient send buffer */
1866 	__TCP_CHRONO_MAX,
1867 };
1868 
1869 void tcp_chrono_start(struct sock *sk, const enum tcp_chrono type);
1870 void tcp_chrono_stop(struct sock *sk, const enum tcp_chrono type);
1871 
1872 /* This helper is needed, because skb->tcp_tsorted_anchor uses
1873  * the same memory storage than skb->destructor/_skb_refdst
1874  */
1875 static inline void tcp_skb_tsorted_anchor_cleanup(struct sk_buff *skb)
1876 {
1877 	skb->destructor = NULL;
1878 	skb->_skb_refdst = 0UL;
1879 }
1880 
1881 #define tcp_skb_tsorted_save(skb) {		\
1882 	unsigned long _save = skb->_skb_refdst;	\
1883 	skb->_skb_refdst = 0UL;
1884 
1885 #define tcp_skb_tsorted_restore(skb)		\
1886 	skb->_skb_refdst = _save;		\
1887 }
1888 
1889 void tcp_write_queue_purge(struct sock *sk);
1890 
1891 static inline struct sk_buff *tcp_rtx_queue_head(const struct sock *sk)
1892 {
1893 	return skb_rb_first(&sk->tcp_rtx_queue);
1894 }
1895 
1896 static inline struct sk_buff *tcp_rtx_queue_tail(const struct sock *sk)
1897 {
1898 	return skb_rb_last(&sk->tcp_rtx_queue);
1899 }
1900 
1901 static inline struct sk_buff *tcp_write_queue_tail(const struct sock *sk)
1902 {
1903 	return skb_peek_tail(&sk->sk_write_queue);
1904 }
1905 
1906 #define tcp_for_write_queue_from_safe(skb, tmp, sk)			\
1907 	skb_queue_walk_from_safe(&(sk)->sk_write_queue, skb, tmp)
1908 
1909 static inline struct sk_buff *tcp_send_head(const struct sock *sk)
1910 {
1911 	return skb_peek(&sk->sk_write_queue);
1912 }
1913 
1914 static inline bool tcp_skb_is_last(const struct sock *sk,
1915 				   const struct sk_buff *skb)
1916 {
1917 	return skb_queue_is_last(&sk->sk_write_queue, skb);
1918 }
1919 
1920 /**
1921  * tcp_write_queue_empty - test if any payload (or FIN) is available in write queue
1922  * @sk: socket
1923  *
1924  * Since the write queue can have a temporary empty skb in it,
1925  * we must not use "return skb_queue_empty(&sk->sk_write_queue)"
1926  */
1927 static inline bool tcp_write_queue_empty(const struct sock *sk)
1928 {
1929 	const struct tcp_sock *tp = tcp_sk(sk);
1930 
1931 	return tp->write_seq == tp->snd_nxt;
1932 }
1933 
1934 static inline bool tcp_rtx_queue_empty(const struct sock *sk)
1935 {
1936 	return RB_EMPTY_ROOT(&sk->tcp_rtx_queue);
1937 }
1938 
1939 static inline bool tcp_rtx_and_write_queues_empty(const struct sock *sk)
1940 {
1941 	return tcp_rtx_queue_empty(sk) && tcp_write_queue_empty(sk);
1942 }
1943 
1944 static inline void tcp_add_write_queue_tail(struct sock *sk, struct sk_buff *skb)
1945 {
1946 	__skb_queue_tail(&sk->sk_write_queue, skb);
1947 
1948 	/* Queue it, remembering where we must start sending. */
1949 	if (sk->sk_write_queue.next == skb)
1950 		tcp_chrono_start(sk, TCP_CHRONO_BUSY);
1951 }
1952 
1953 /* Insert new before skb on the write queue of sk.  */
1954 static inline void tcp_insert_write_queue_before(struct sk_buff *new,
1955 						  struct sk_buff *skb,
1956 						  struct sock *sk)
1957 {
1958 	__skb_queue_before(&sk->sk_write_queue, skb, new);
1959 }
1960 
1961 static inline void tcp_unlink_write_queue(struct sk_buff *skb, struct sock *sk)
1962 {
1963 	tcp_skb_tsorted_anchor_cleanup(skb);
1964 	__skb_unlink(skb, &sk->sk_write_queue);
1965 }
1966 
1967 void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb);
1968 
1969 static inline void tcp_rtx_queue_unlink(struct sk_buff *skb, struct sock *sk)
1970 {
1971 	tcp_skb_tsorted_anchor_cleanup(skb);
1972 	rb_erase(&skb->rbnode, &sk->tcp_rtx_queue);
1973 }
1974 
1975 static inline void tcp_rtx_queue_unlink_and_free(struct sk_buff *skb, struct sock *sk)
1976 {
1977 	list_del(&skb->tcp_tsorted_anchor);
1978 	tcp_rtx_queue_unlink(skb, sk);
1979 	tcp_wmem_free_skb(sk, skb);
1980 }
1981 
1982 static inline void tcp_push_pending_frames(struct sock *sk)
1983 {
1984 	if (tcp_send_head(sk)) {
1985 		struct tcp_sock *tp = tcp_sk(sk);
1986 
1987 		__tcp_push_pending_frames(sk, tcp_current_mss(sk), tp->nonagle);
1988 	}
1989 }
1990 
1991 /* Start sequence of the skb just after the highest skb with SACKed
1992  * bit, valid only if sacked_out > 0 or when the caller has ensured
1993  * validity by itself.
1994  */
1995 static inline u32 tcp_highest_sack_seq(struct tcp_sock *tp)
1996 {
1997 	if (!tp->sacked_out)
1998 		return tp->snd_una;
1999 
2000 	if (tp->highest_sack == NULL)
2001 		return tp->snd_nxt;
2002 
2003 	return TCP_SKB_CB(tp->highest_sack)->seq;
2004 }
2005 
2006 static inline void tcp_advance_highest_sack(struct sock *sk, struct sk_buff *skb)
2007 {
2008 	tcp_sk(sk)->highest_sack = skb_rb_next(skb);
2009 }
2010 
2011 static inline struct sk_buff *tcp_highest_sack(struct sock *sk)
2012 {
2013 	return tcp_sk(sk)->highest_sack;
2014 }
2015 
2016 static inline void tcp_highest_sack_reset(struct sock *sk)
2017 {
2018 	tcp_sk(sk)->highest_sack = tcp_rtx_queue_head(sk);
2019 }
2020 
2021 /* Called when old skb is about to be deleted and replaced by new skb */
2022 static inline void tcp_highest_sack_replace(struct sock *sk,
2023 					    struct sk_buff *old,
2024 					    struct sk_buff *new)
2025 {
2026 	if (old == tcp_highest_sack(sk))
2027 		tcp_sk(sk)->highest_sack = new;
2028 }
2029 
2030 /* This helper checks if socket has IP_TRANSPARENT set */
2031 static inline bool inet_sk_transparent(const struct sock *sk)
2032 {
2033 	switch (sk->sk_state) {
2034 	case TCP_TIME_WAIT:
2035 		return inet_twsk(sk)->tw_transparent;
2036 	case TCP_NEW_SYN_RECV:
2037 		return inet_rsk(inet_reqsk(sk))->no_srccheck;
2038 	}
2039 	return inet_test_bit(TRANSPARENT, sk);
2040 }
2041 
2042 /* Determines whether this is a thin stream (which may suffer from
2043  * increased latency). Used to trigger latency-reducing mechanisms.
2044  */
2045 static inline bool tcp_stream_is_thin(struct tcp_sock *tp)
2046 {
2047 	return tp->packets_out < 4 && !tcp_in_initial_slowstart(tp);
2048 }
2049 
2050 /* /proc */
2051 enum tcp_seq_states {
2052 	TCP_SEQ_STATE_LISTENING,
2053 	TCP_SEQ_STATE_ESTABLISHED,
2054 };
2055 
2056 void *tcp_seq_start(struct seq_file *seq, loff_t *pos);
2057 void *tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos);
2058 void tcp_seq_stop(struct seq_file *seq, void *v);
2059 
2060 struct tcp_seq_afinfo {
2061 	sa_family_t			family;
2062 };
2063 
2064 struct tcp_iter_state {
2065 	struct seq_net_private	p;
2066 	enum tcp_seq_states	state;
2067 	struct sock		*syn_wait_sk;
2068 	int			bucket, offset, sbucket, num;
2069 	loff_t			last_pos;
2070 };
2071 
2072 extern struct request_sock_ops tcp_request_sock_ops;
2073 extern struct request_sock_ops tcp6_request_sock_ops;
2074 
2075 void tcp_v4_destroy_sock(struct sock *sk);
2076 
2077 struct sk_buff *tcp_gso_segment(struct sk_buff *skb,
2078 				netdev_features_t features);
2079 struct sk_buff *tcp_gro_receive(struct list_head *head, struct sk_buff *skb);
2080 INDIRECT_CALLABLE_DECLARE(int tcp4_gro_complete(struct sk_buff *skb, int thoff));
2081 INDIRECT_CALLABLE_DECLARE(struct sk_buff *tcp4_gro_receive(struct list_head *head, struct sk_buff *skb));
2082 INDIRECT_CALLABLE_DECLARE(int tcp6_gro_complete(struct sk_buff *skb, int thoff));
2083 INDIRECT_CALLABLE_DECLARE(struct sk_buff *tcp6_gro_receive(struct list_head *head, struct sk_buff *skb));
2084 void tcp_gro_complete(struct sk_buff *skb);
2085 
2086 void __tcp_v4_send_check(struct sk_buff *skb, __be32 saddr, __be32 daddr);
2087 
2088 static inline u32 tcp_notsent_lowat(const struct tcp_sock *tp)
2089 {
2090 	struct net *net = sock_net((struct sock *)tp);
2091 	u32 val;
2092 
2093 	val = READ_ONCE(tp->notsent_lowat);
2094 
2095 	return val ?: READ_ONCE(net->ipv4.sysctl_tcp_notsent_lowat);
2096 }
2097 
2098 bool tcp_stream_memory_free(const struct sock *sk, int wake);
2099 
2100 #ifdef CONFIG_PROC_FS
2101 int tcp4_proc_init(void);
2102 void tcp4_proc_exit(void);
2103 #endif
2104 
2105 int tcp_rtx_synack(const struct sock *sk, struct request_sock *req);
2106 int tcp_conn_request(struct request_sock_ops *rsk_ops,
2107 		     const struct tcp_request_sock_ops *af_ops,
2108 		     struct sock *sk, struct sk_buff *skb);
2109 
2110 /* TCP af-specific functions */
2111 struct tcp_sock_af_ops {
2112 #ifdef CONFIG_TCP_MD5SIG
2113 	struct tcp_md5sig_key	*(*md5_lookup) (const struct sock *sk,
2114 						const struct sock *addr_sk);
2115 	int		(*calc_md5_hash)(char *location,
2116 					 const struct tcp_md5sig_key *md5,
2117 					 const struct sock *sk,
2118 					 const struct sk_buff *skb);
2119 	int		(*md5_parse)(struct sock *sk,
2120 				     int optname,
2121 				     sockptr_t optval,
2122 				     int optlen);
2123 #endif
2124 };
2125 
2126 struct tcp_request_sock_ops {
2127 	u16 mss_clamp;
2128 #ifdef CONFIG_TCP_MD5SIG
2129 	struct tcp_md5sig_key *(*req_md5_lookup)(const struct sock *sk,
2130 						 const struct sock *addr_sk);
2131 	int		(*calc_md5_hash) (char *location,
2132 					  const struct tcp_md5sig_key *md5,
2133 					  const struct sock *sk,
2134 					  const struct sk_buff *skb);
2135 #endif
2136 #ifdef CONFIG_SYN_COOKIES
2137 	__u32 (*cookie_init_seq)(const struct sk_buff *skb,
2138 				 __u16 *mss);
2139 #endif
2140 	struct dst_entry *(*route_req)(const struct sock *sk,
2141 				       struct sk_buff *skb,
2142 				       struct flowi *fl,
2143 				       struct request_sock *req);
2144 	u32 (*init_seq)(const struct sk_buff *skb);
2145 	u32 (*init_ts_off)(const struct net *net, const struct sk_buff *skb);
2146 	int (*send_synack)(const struct sock *sk, struct dst_entry *dst,
2147 			   struct flowi *fl, struct request_sock *req,
2148 			   struct tcp_fastopen_cookie *foc,
2149 			   enum tcp_synack_type synack_type,
2150 			   struct sk_buff *syn_skb);
2151 };
2152 
2153 extern const struct tcp_request_sock_ops tcp_request_sock_ipv4_ops;
2154 #if IS_ENABLED(CONFIG_IPV6)
2155 extern const struct tcp_request_sock_ops tcp_request_sock_ipv6_ops;
2156 #endif
2157 
2158 #ifdef CONFIG_SYN_COOKIES
2159 static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops,
2160 					 const struct sock *sk, struct sk_buff *skb,
2161 					 __u16 *mss)
2162 {
2163 	tcp_synq_overflow(sk);
2164 	__NET_INC_STATS(sock_net(sk), LINUX_MIB_SYNCOOKIESSENT);
2165 	return ops->cookie_init_seq(skb, mss);
2166 }
2167 #else
2168 static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops,
2169 					 const struct sock *sk, struct sk_buff *skb,
2170 					 __u16 *mss)
2171 {
2172 	return 0;
2173 }
2174 #endif
2175 
2176 int tcpv4_offload_init(void);
2177 
2178 void tcp_v4_init(void);
2179 void tcp_init(void);
2180 
2181 /* tcp_recovery.c */
2182 void tcp_mark_skb_lost(struct sock *sk, struct sk_buff *skb);
2183 void tcp_newreno_mark_lost(struct sock *sk, bool snd_una_advanced);
2184 extern s32 tcp_rack_skb_timeout(struct tcp_sock *tp, struct sk_buff *skb,
2185 				u32 reo_wnd);
2186 extern bool tcp_rack_mark_lost(struct sock *sk);
2187 extern void tcp_rack_advance(struct tcp_sock *tp, u8 sacked, u32 end_seq,
2188 			     u64 xmit_time);
2189 extern void tcp_rack_reo_timeout(struct sock *sk);
2190 extern void tcp_rack_update_reo_wnd(struct sock *sk, struct rate_sample *rs);
2191 
2192 /* tcp_plb.c */
2193 
2194 /*
2195  * Scaling factor for fractions in PLB. For example, tcp_plb_update_state
2196  * expects cong_ratio which represents fraction of traffic that experienced
2197  * congestion over a single RTT. In order to avoid floating point operations,
2198  * this fraction should be mapped to (1 << TCP_PLB_SCALE) and passed in.
2199  */
2200 #define TCP_PLB_SCALE 8
2201 
2202 /* State for PLB (Protective Load Balancing) for a single TCP connection. */
2203 struct tcp_plb_state {
2204 	u8	consec_cong_rounds:5, /* consecutive congested rounds */
2205 		unused:3;
2206 	u32	pause_until; /* jiffies32 when PLB can resume rerouting */
2207 };
2208 
2209 static inline void tcp_plb_init(const struct sock *sk,
2210 				struct tcp_plb_state *plb)
2211 {
2212 	plb->consec_cong_rounds = 0;
2213 	plb->pause_until = 0;
2214 }
2215 void tcp_plb_update_state(const struct sock *sk, struct tcp_plb_state *plb,
2216 			  const int cong_ratio);
2217 void tcp_plb_check_rehash(struct sock *sk, struct tcp_plb_state *plb);
2218 void tcp_plb_update_state_upon_rto(struct sock *sk, struct tcp_plb_state *plb);
2219 
2220 /* At how many usecs into the future should the RTO fire? */
2221 static inline s64 tcp_rto_delta_us(const struct sock *sk)
2222 {
2223 	const struct sk_buff *skb = tcp_rtx_queue_head(sk);
2224 	u32 rto = inet_csk(sk)->icsk_rto;
2225 	u64 rto_time_stamp_us = tcp_skb_timestamp_us(skb) + jiffies_to_usecs(rto);
2226 
2227 	return rto_time_stamp_us - tcp_sk(sk)->tcp_mstamp;
2228 }
2229 
2230 /*
2231  * Save and compile IPv4 options, return a pointer to it
2232  */
2233 static inline struct ip_options_rcu *tcp_v4_save_options(struct net *net,
2234 							 struct sk_buff *skb)
2235 {
2236 	const struct ip_options *opt = &TCP_SKB_CB(skb)->header.h4.opt;
2237 	struct ip_options_rcu *dopt = NULL;
2238 
2239 	if (opt->optlen) {
2240 		int opt_size = sizeof(*dopt) + opt->optlen;
2241 
2242 		dopt = kmalloc(opt_size, GFP_ATOMIC);
2243 		if (dopt && __ip_options_echo(net, &dopt->opt, skb, opt)) {
2244 			kfree(dopt);
2245 			dopt = NULL;
2246 		}
2247 	}
2248 	return dopt;
2249 }
2250 
2251 /* locally generated TCP pure ACKs have skb->truesize == 2
2252  * (check tcp_send_ack() in net/ipv4/tcp_output.c )
2253  * This is much faster than dissecting the packet to find out.
2254  * (Think of GRE encapsulations, IPv4, IPv6, ...)
2255  */
2256 static inline bool skb_is_tcp_pure_ack(const struct sk_buff *skb)
2257 {
2258 	return skb->truesize == 2;
2259 }
2260 
2261 static inline void skb_set_tcp_pure_ack(struct sk_buff *skb)
2262 {
2263 	skb->truesize = 2;
2264 }
2265 
2266 static inline int tcp_inq(struct sock *sk)
2267 {
2268 	struct tcp_sock *tp = tcp_sk(sk);
2269 	int answ;
2270 
2271 	if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) {
2272 		answ = 0;
2273 	} else if (sock_flag(sk, SOCK_URGINLINE) ||
2274 		   !tp->urg_data ||
2275 		   before(tp->urg_seq, tp->copied_seq) ||
2276 		   !before(tp->urg_seq, tp->rcv_nxt)) {
2277 
2278 		answ = tp->rcv_nxt - tp->copied_seq;
2279 
2280 		/* Subtract 1, if FIN was received */
2281 		if (answ && sock_flag(sk, SOCK_DONE))
2282 			answ--;
2283 	} else {
2284 		answ = tp->urg_seq - tp->copied_seq;
2285 	}
2286 
2287 	return answ;
2288 }
2289 
2290 int tcp_peek_len(struct socket *sock);
2291 
2292 static inline void tcp_segs_in(struct tcp_sock *tp, const struct sk_buff *skb)
2293 {
2294 	u16 segs_in;
2295 
2296 	segs_in = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
2297 
2298 	/* We update these fields while other threads might
2299 	 * read them from tcp_get_info()
2300 	 */
2301 	WRITE_ONCE(tp->segs_in, tp->segs_in + segs_in);
2302 	if (skb->len > tcp_hdrlen(skb))
2303 		WRITE_ONCE(tp->data_segs_in, tp->data_segs_in + segs_in);
2304 }
2305 
2306 /*
2307  * TCP listen path runs lockless.
2308  * We forced "struct sock" to be const qualified to make sure
2309  * we don't modify one of its field by mistake.
2310  * Here, we increment sk_drops which is an atomic_t, so we can safely
2311  * make sock writable again.
2312  */
2313 static inline void tcp_listendrop(const struct sock *sk)
2314 {
2315 	atomic_inc(&((struct sock *)sk)->sk_drops);
2316 	__NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENDROPS);
2317 }
2318 
2319 enum hrtimer_restart tcp_pace_kick(struct hrtimer *timer);
2320 
2321 /*
2322  * Interface for adding Upper Level Protocols over TCP
2323  */
2324 
2325 #define TCP_ULP_NAME_MAX	16
2326 #define TCP_ULP_MAX		128
2327 #define TCP_ULP_BUF_MAX		(TCP_ULP_NAME_MAX*TCP_ULP_MAX)
2328 
2329 struct tcp_ulp_ops {
2330 	struct list_head	list;
2331 
2332 	/* initialize ulp */
2333 	int (*init)(struct sock *sk);
2334 	/* update ulp */
2335 	void (*update)(struct sock *sk, struct proto *p,
2336 		       void (*write_space)(struct sock *sk));
2337 	/* cleanup ulp */
2338 	void (*release)(struct sock *sk);
2339 	/* diagnostic */
2340 	int (*get_info)(const struct sock *sk, struct sk_buff *skb);
2341 	size_t (*get_info_size)(const struct sock *sk);
2342 	/* clone ulp */
2343 	void (*clone)(const struct request_sock *req, struct sock *newsk,
2344 		      const gfp_t priority);
2345 
2346 	char		name[TCP_ULP_NAME_MAX];
2347 	struct module	*owner;
2348 };
2349 int tcp_register_ulp(struct tcp_ulp_ops *type);
2350 void tcp_unregister_ulp(struct tcp_ulp_ops *type);
2351 int tcp_set_ulp(struct sock *sk, const char *name);
2352 void tcp_get_available_ulp(char *buf, size_t len);
2353 void tcp_cleanup_ulp(struct sock *sk);
2354 void tcp_update_ulp(struct sock *sk, struct proto *p,
2355 		    void (*write_space)(struct sock *sk));
2356 
2357 #define MODULE_ALIAS_TCP_ULP(name)				\
2358 	__MODULE_INFO(alias, alias_userspace, name);		\
2359 	__MODULE_INFO(alias, alias_tcp_ulp, "tcp-ulp-" name)
2360 
2361 #ifdef CONFIG_NET_SOCK_MSG
2362 struct sk_msg;
2363 struct sk_psock;
2364 
2365 #ifdef CONFIG_BPF_SYSCALL
2366 int tcp_bpf_update_proto(struct sock *sk, struct sk_psock *psock, bool restore);
2367 void tcp_bpf_clone(const struct sock *sk, struct sock *newsk);
2368 #endif /* CONFIG_BPF_SYSCALL */
2369 
2370 #ifdef CONFIG_INET
2371 void tcp_eat_skb(struct sock *sk, struct sk_buff *skb);
2372 #else
2373 static inline void tcp_eat_skb(struct sock *sk, struct sk_buff *skb)
2374 {
2375 }
2376 #endif
2377 
2378 int tcp_bpf_sendmsg_redir(struct sock *sk, bool ingress,
2379 			  struct sk_msg *msg, u32 bytes, int flags);
2380 #endif /* CONFIG_NET_SOCK_MSG */
2381 
2382 #if !defined(CONFIG_BPF_SYSCALL) || !defined(CONFIG_NET_SOCK_MSG)
2383 static inline void tcp_bpf_clone(const struct sock *sk, struct sock *newsk)
2384 {
2385 }
2386 #endif
2387 
2388 #ifdef CONFIG_CGROUP_BPF
2389 static inline void bpf_skops_init_skb(struct bpf_sock_ops_kern *skops,
2390 				      struct sk_buff *skb,
2391 				      unsigned int end_offset)
2392 {
2393 	skops->skb = skb;
2394 	skops->skb_data_end = skb->data + end_offset;
2395 }
2396 #else
2397 static inline void bpf_skops_init_skb(struct bpf_sock_ops_kern *skops,
2398 				      struct sk_buff *skb,
2399 				      unsigned int end_offset)
2400 {
2401 }
2402 #endif
2403 
2404 /* Call BPF_SOCK_OPS program that returns an int. If the return value
2405  * is < 0, then the BPF op failed (for example if the loaded BPF
2406  * program does not support the chosen operation or there is no BPF
2407  * program loaded).
2408  */
2409 #ifdef CONFIG_BPF
2410 static inline int tcp_call_bpf(struct sock *sk, int op, u32 nargs, u32 *args)
2411 {
2412 	struct bpf_sock_ops_kern sock_ops;
2413 	int ret;
2414 
2415 	memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
2416 	if (sk_fullsock(sk)) {
2417 		sock_ops.is_fullsock = 1;
2418 		sock_owned_by_me(sk);
2419 	}
2420 
2421 	sock_ops.sk = sk;
2422 	sock_ops.op = op;
2423 	if (nargs > 0)
2424 		memcpy(sock_ops.args, args, nargs * sizeof(*args));
2425 
2426 	ret = BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops);
2427 	if (ret == 0)
2428 		ret = sock_ops.reply;
2429 	else
2430 		ret = -1;
2431 	return ret;
2432 }
2433 
2434 static inline int tcp_call_bpf_2arg(struct sock *sk, int op, u32 arg1, u32 arg2)
2435 {
2436 	u32 args[2] = {arg1, arg2};
2437 
2438 	return tcp_call_bpf(sk, op, 2, args);
2439 }
2440 
2441 static inline int tcp_call_bpf_3arg(struct sock *sk, int op, u32 arg1, u32 arg2,
2442 				    u32 arg3)
2443 {
2444 	u32 args[3] = {arg1, arg2, arg3};
2445 
2446 	return tcp_call_bpf(sk, op, 3, args);
2447 }
2448 
2449 #else
2450 static inline int tcp_call_bpf(struct sock *sk, int op, u32 nargs, u32 *args)
2451 {
2452 	return -EPERM;
2453 }
2454 
2455 static inline int tcp_call_bpf_2arg(struct sock *sk, int op, u32 arg1, u32 arg2)
2456 {
2457 	return -EPERM;
2458 }
2459 
2460 static inline int tcp_call_bpf_3arg(struct sock *sk, int op, u32 arg1, u32 arg2,
2461 				    u32 arg3)
2462 {
2463 	return -EPERM;
2464 }
2465 
2466 #endif
2467 
2468 static inline u32 tcp_timeout_init(struct sock *sk)
2469 {
2470 	int timeout;
2471 
2472 	timeout = tcp_call_bpf(sk, BPF_SOCK_OPS_TIMEOUT_INIT, 0, NULL);
2473 
2474 	if (timeout <= 0)
2475 		timeout = TCP_TIMEOUT_INIT;
2476 	return min_t(int, timeout, TCP_RTO_MAX);
2477 }
2478 
2479 static inline u32 tcp_rwnd_init_bpf(struct sock *sk)
2480 {
2481 	int rwnd;
2482 
2483 	rwnd = tcp_call_bpf(sk, BPF_SOCK_OPS_RWND_INIT, 0, NULL);
2484 
2485 	if (rwnd < 0)
2486 		rwnd = 0;
2487 	return rwnd;
2488 }
2489 
2490 static inline bool tcp_bpf_ca_needs_ecn(struct sock *sk)
2491 {
2492 	return (tcp_call_bpf(sk, BPF_SOCK_OPS_NEEDS_ECN, 0, NULL) == 1);
2493 }
2494 
2495 static inline void tcp_bpf_rtt(struct sock *sk)
2496 {
2497 	if (BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), BPF_SOCK_OPS_RTT_CB_FLAG))
2498 		tcp_call_bpf(sk, BPF_SOCK_OPS_RTT_CB, 0, NULL);
2499 }
2500 
2501 #if IS_ENABLED(CONFIG_SMC)
2502 extern struct static_key_false tcp_have_smc;
2503 #endif
2504 
2505 #if IS_ENABLED(CONFIG_TLS_DEVICE)
2506 void clean_acked_data_enable(struct inet_connection_sock *icsk,
2507 			     void (*cad)(struct sock *sk, u32 ack_seq));
2508 void clean_acked_data_disable(struct inet_connection_sock *icsk);
2509 void clean_acked_data_flush(void);
2510 #endif
2511 
2512 DECLARE_STATIC_KEY_FALSE(tcp_tx_delay_enabled);
2513 static inline void tcp_add_tx_delay(struct sk_buff *skb,
2514 				    const struct tcp_sock *tp)
2515 {
2516 	if (static_branch_unlikely(&tcp_tx_delay_enabled))
2517 		skb->skb_mstamp_ns += (u64)tp->tcp_tx_delay * NSEC_PER_USEC;
2518 }
2519 
2520 /* Compute Earliest Departure Time for some control packets
2521  * like ACK or RST for TIME_WAIT or non ESTABLISHED sockets.
2522  */
2523 static inline u64 tcp_transmit_time(const struct sock *sk)
2524 {
2525 	if (static_branch_unlikely(&tcp_tx_delay_enabled)) {
2526 		u32 delay = (sk->sk_state == TCP_TIME_WAIT) ?
2527 			tcp_twsk(sk)->tw_tx_delay : tcp_sk(sk)->tcp_tx_delay;
2528 
2529 		return tcp_clock_ns() + (u64)delay * NSEC_PER_USEC;
2530 	}
2531 	return 0;
2532 }
2533 
2534 #endif	/* _TCP_H */
2535