xref: /linux/include/net/tcp.h (revision 02000b55850deeadffe433e4b4930a8831f477de)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Definitions for the TCP module.
7  *
8  * Version:	@(#)tcp.h	1.0.5	05/23/93
9  *
10  * Authors:	Ross Biro
11  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *
13  *		This program is free software; you can redistribute it and/or
14  *		modify it under the terms of the GNU General Public License
15  *		as published by the Free Software Foundation; either version
16  *		2 of the License, or (at your option) any later version.
17  */
18 #ifndef _TCP_H
19 #define _TCP_H
20 
21 #define FASTRETRANS_DEBUG 1
22 
23 #include <linux/list.h>
24 #include <linux/tcp.h>
25 #include <linux/bug.h>
26 #include <linux/slab.h>
27 #include <linux/cache.h>
28 #include <linux/percpu.h>
29 #include <linux/skbuff.h>
30 #include <linux/cryptohash.h>
31 #include <linux/kref.h>
32 #include <linux/ktime.h>
33 
34 #include <net/inet_connection_sock.h>
35 #include <net/inet_timewait_sock.h>
36 #include <net/inet_hashtables.h>
37 #include <net/checksum.h>
38 #include <net/request_sock.h>
39 #include <net/sock.h>
40 #include <net/snmp.h>
41 #include <net/ip.h>
42 #include <net/tcp_states.h>
43 #include <net/inet_ecn.h>
44 #include <net/dst.h>
45 
46 #include <linux/seq_file.h>
47 #include <linux/memcontrol.h>
48 #include <linux/bpf-cgroup.h>
49 
50 extern struct inet_hashinfo tcp_hashinfo;
51 
52 extern struct percpu_counter tcp_orphan_count;
53 void tcp_time_wait(struct sock *sk, int state, int timeo);
54 
55 #define MAX_TCP_HEADER	(128 + MAX_HEADER)
56 #define MAX_TCP_OPTION_SPACE 40
57 
58 /*
59  * Never offer a window over 32767 without using window scaling. Some
60  * poor stacks do signed 16bit maths!
61  */
62 #define MAX_TCP_WINDOW		32767U
63 
64 /* Minimal accepted MSS. It is (60+60+8) - (20+20). */
65 #define TCP_MIN_MSS		88U
66 
67 /* The least MTU to use for probing */
68 #define TCP_BASE_MSS		1024
69 
70 /* probing interval, default to 10 minutes as per RFC4821 */
71 #define TCP_PROBE_INTERVAL	600
72 
73 /* Specify interval when tcp mtu probing will stop */
74 #define TCP_PROBE_THRESHOLD	8
75 
76 /* After receiving this amount of duplicate ACKs fast retransmit starts. */
77 #define TCP_FASTRETRANS_THRESH 3
78 
79 /* Maximal number of ACKs sent quickly to accelerate slow-start. */
80 #define TCP_MAX_QUICKACKS	16U
81 
82 /* Maximal number of window scale according to RFC1323 */
83 #define TCP_MAX_WSCALE		14U
84 
85 /* urg_data states */
86 #define TCP_URG_VALID	0x0100
87 #define TCP_URG_NOTYET	0x0200
88 #define TCP_URG_READ	0x0400
89 
90 #define TCP_RETR1	3	/*
91 				 * This is how many retries it does before it
92 				 * tries to figure out if the gateway is
93 				 * down. Minimal RFC value is 3; it corresponds
94 				 * to ~3sec-8min depending on RTO.
95 				 */
96 
97 #define TCP_RETR2	15	/*
98 				 * This should take at least
99 				 * 90 minutes to time out.
100 				 * RFC1122 says that the limit is 100 sec.
101 				 * 15 is ~13-30min depending on RTO.
102 				 */
103 
104 #define TCP_SYN_RETRIES	 6	/* This is how many retries are done
105 				 * when active opening a connection.
106 				 * RFC1122 says the minimum retry MUST
107 				 * be at least 180secs.  Nevertheless
108 				 * this value is corresponding to
109 				 * 63secs of retransmission with the
110 				 * current initial RTO.
111 				 */
112 
113 #define TCP_SYNACK_RETRIES 5	/* This is how may retries are done
114 				 * when passive opening a connection.
115 				 * This is corresponding to 31secs of
116 				 * retransmission with the current
117 				 * initial RTO.
118 				 */
119 
120 #define TCP_TIMEWAIT_LEN (60*HZ) /* how long to wait to destroy TIME-WAIT
121 				  * state, about 60 seconds	*/
122 #define TCP_FIN_TIMEOUT	TCP_TIMEWAIT_LEN
123                                  /* BSD style FIN_WAIT2 deadlock breaker.
124 				  * It used to be 3min, new value is 60sec,
125 				  * to combine FIN-WAIT-2 timeout with
126 				  * TIME-WAIT timer.
127 				  */
128 
129 #define TCP_DELACK_MAX	((unsigned)(HZ/5))	/* maximal time to delay before sending an ACK */
130 #if HZ >= 100
131 #define TCP_DELACK_MIN	((unsigned)(HZ/25))	/* minimal time to delay before sending an ACK */
132 #define TCP_ATO_MIN	((unsigned)(HZ/25))
133 #else
134 #define TCP_DELACK_MIN	4U
135 #define TCP_ATO_MIN	4U
136 #endif
137 #define TCP_RTO_MAX	((unsigned)(120*HZ))
138 #define TCP_RTO_MIN	((unsigned)(HZ/5))
139 #define TCP_TIMEOUT_MIN	(2U) /* Min timeout for TCP timers in jiffies */
140 #define TCP_TIMEOUT_INIT ((unsigned)(1*HZ))	/* RFC6298 2.1 initial RTO value	*/
141 #define TCP_TIMEOUT_FALLBACK ((unsigned)(3*HZ))	/* RFC 1122 initial RTO value, now
142 						 * used as a fallback RTO for the
143 						 * initial data transmission if no
144 						 * valid RTT sample has been acquired,
145 						 * most likely due to retrans in 3WHS.
146 						 */
147 
148 #define TCP_RESOURCE_PROBE_INTERVAL ((unsigned)(HZ/2U)) /* Maximal interval between probes
149 					                 * for local resources.
150 					                 */
151 #define TCP_KEEPALIVE_TIME	(120*60*HZ)	/* two hours */
152 #define TCP_KEEPALIVE_PROBES	9		/* Max of 9 keepalive probes	*/
153 #define TCP_KEEPALIVE_INTVL	(75*HZ)
154 
155 #define MAX_TCP_KEEPIDLE	32767
156 #define MAX_TCP_KEEPINTVL	32767
157 #define MAX_TCP_KEEPCNT		127
158 #define MAX_TCP_SYNCNT		127
159 
160 #define TCP_SYNQ_INTERVAL	(HZ/5)	/* Period of SYNACK timer */
161 
162 #define TCP_PAWS_24DAYS	(60 * 60 * 24 * 24)
163 #define TCP_PAWS_MSL	60		/* Per-host timestamps are invalidated
164 					 * after this time. It should be equal
165 					 * (or greater than) TCP_TIMEWAIT_LEN
166 					 * to provide reliability equal to one
167 					 * provided by timewait state.
168 					 */
169 #define TCP_PAWS_WINDOW	1		/* Replay window for per-host
170 					 * timestamps. It must be less than
171 					 * minimal timewait lifetime.
172 					 */
173 /*
174  *	TCP option
175  */
176 
177 #define TCPOPT_NOP		1	/* Padding */
178 #define TCPOPT_EOL		0	/* End of options */
179 #define TCPOPT_MSS		2	/* Segment size negotiating */
180 #define TCPOPT_WINDOW		3	/* Window scaling */
181 #define TCPOPT_SACK_PERM        4       /* SACK Permitted */
182 #define TCPOPT_SACK             5       /* SACK Block */
183 #define TCPOPT_TIMESTAMP	8	/* Better RTT estimations/PAWS */
184 #define TCPOPT_MD5SIG		19	/* MD5 Signature (RFC2385) */
185 #define TCPOPT_FASTOPEN		34	/* Fast open (RFC7413) */
186 #define TCPOPT_EXP		254	/* Experimental */
187 /* Magic number to be after the option value for sharing TCP
188  * experimental options. See draft-ietf-tcpm-experimental-options-00.txt
189  */
190 #define TCPOPT_FASTOPEN_MAGIC	0xF989
191 #define TCPOPT_SMC_MAGIC	0xE2D4C3D9
192 
193 /*
194  *     TCP option lengths
195  */
196 
197 #define TCPOLEN_MSS            4
198 #define TCPOLEN_WINDOW         3
199 #define TCPOLEN_SACK_PERM      2
200 #define TCPOLEN_TIMESTAMP      10
201 #define TCPOLEN_MD5SIG         18
202 #define TCPOLEN_FASTOPEN_BASE  2
203 #define TCPOLEN_EXP_FASTOPEN_BASE  4
204 #define TCPOLEN_EXP_SMC_BASE   6
205 
206 /* But this is what stacks really send out. */
207 #define TCPOLEN_TSTAMP_ALIGNED		12
208 #define TCPOLEN_WSCALE_ALIGNED		4
209 #define TCPOLEN_SACKPERM_ALIGNED	4
210 #define TCPOLEN_SACK_BASE		2
211 #define TCPOLEN_SACK_BASE_ALIGNED	4
212 #define TCPOLEN_SACK_PERBLOCK		8
213 #define TCPOLEN_MD5SIG_ALIGNED		20
214 #define TCPOLEN_MSS_ALIGNED		4
215 #define TCPOLEN_EXP_SMC_BASE_ALIGNED	8
216 
217 /* Flags in tp->nonagle */
218 #define TCP_NAGLE_OFF		1	/* Nagle's algo is disabled */
219 #define TCP_NAGLE_CORK		2	/* Socket is corked	    */
220 #define TCP_NAGLE_PUSH		4	/* Cork is overridden for already queued data */
221 
222 /* TCP thin-stream limits */
223 #define TCP_THIN_LINEAR_RETRIES 6       /* After 6 linear retries, do exp. backoff */
224 
225 /* TCP initial congestion window as per rfc6928 */
226 #define TCP_INIT_CWND		10
227 
228 /* Bit Flags for sysctl_tcp_fastopen */
229 #define	TFO_CLIENT_ENABLE	1
230 #define	TFO_SERVER_ENABLE	2
231 #define	TFO_CLIENT_NO_COOKIE	4	/* Data in SYN w/o cookie option */
232 
233 /* Accept SYN data w/o any cookie option */
234 #define	TFO_SERVER_COOKIE_NOT_REQD	0x200
235 
236 /* Force enable TFO on all listeners, i.e., not requiring the
237  * TCP_FASTOPEN socket option.
238  */
239 #define	TFO_SERVER_WO_SOCKOPT1	0x400
240 
241 
242 /* sysctl variables for tcp */
243 extern int sysctl_tcp_max_orphans;
244 extern long sysctl_tcp_mem[3];
245 
246 #define TCP_RACK_LOSS_DETECTION  0x1 /* Use RACK to detect losses */
247 #define TCP_RACK_STATIC_REO_WND  0x2 /* Use static RACK reo wnd */
248 #define TCP_RACK_NO_DUPTHRESH    0x4 /* Do not use DUPACK threshold in RACK */
249 
250 extern atomic_long_t tcp_memory_allocated;
251 extern struct percpu_counter tcp_sockets_allocated;
252 extern unsigned long tcp_memory_pressure;
253 
254 /* optimized version of sk_under_memory_pressure() for TCP sockets */
255 static inline bool tcp_under_memory_pressure(const struct sock *sk)
256 {
257 	if (mem_cgroup_sockets_enabled && sk->sk_memcg &&
258 	    mem_cgroup_under_socket_pressure(sk->sk_memcg))
259 		return true;
260 
261 	return tcp_memory_pressure;
262 }
263 /*
264  * The next routines deal with comparing 32 bit unsigned ints
265  * and worry about wraparound (automatic with unsigned arithmetic).
266  */
267 
268 static inline bool before(__u32 seq1, __u32 seq2)
269 {
270         return (__s32)(seq1-seq2) < 0;
271 }
272 #define after(seq2, seq1) 	before(seq1, seq2)
273 
274 /* is s2<=s1<=s3 ? */
275 static inline bool between(__u32 seq1, __u32 seq2, __u32 seq3)
276 {
277 	return seq3 - seq2 >= seq1 - seq2;
278 }
279 
280 static inline bool tcp_out_of_memory(struct sock *sk)
281 {
282 	if (sk->sk_wmem_queued > SOCK_MIN_SNDBUF &&
283 	    sk_memory_allocated(sk) > sk_prot_mem_limits(sk, 2))
284 		return true;
285 	return false;
286 }
287 
288 void sk_forced_mem_schedule(struct sock *sk, int size);
289 
290 static inline bool tcp_too_many_orphans(struct sock *sk, int shift)
291 {
292 	struct percpu_counter *ocp = sk->sk_prot->orphan_count;
293 	int orphans = percpu_counter_read_positive(ocp);
294 
295 	if (orphans << shift > sysctl_tcp_max_orphans) {
296 		orphans = percpu_counter_sum_positive(ocp);
297 		if (orphans << shift > sysctl_tcp_max_orphans)
298 			return true;
299 	}
300 	return false;
301 }
302 
303 bool tcp_check_oom(struct sock *sk, int shift);
304 
305 
306 extern struct proto tcp_prot;
307 
308 #define TCP_INC_STATS(net, field)	SNMP_INC_STATS((net)->mib.tcp_statistics, field)
309 #define __TCP_INC_STATS(net, field)	__SNMP_INC_STATS((net)->mib.tcp_statistics, field)
310 #define TCP_DEC_STATS(net, field)	SNMP_DEC_STATS((net)->mib.tcp_statistics, field)
311 #define TCP_ADD_STATS(net, field, val)	SNMP_ADD_STATS((net)->mib.tcp_statistics, field, val)
312 
313 void tcp_tasklet_init(void);
314 
315 void tcp_v4_err(struct sk_buff *skb, u32);
316 
317 void tcp_shutdown(struct sock *sk, int how);
318 
319 int tcp_v4_early_demux(struct sk_buff *skb);
320 int tcp_v4_rcv(struct sk_buff *skb);
321 
322 int tcp_v4_tw_remember_stamp(struct inet_timewait_sock *tw);
323 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size);
324 int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size);
325 int tcp_sendpage(struct sock *sk, struct page *page, int offset, size_t size,
326 		 int flags);
327 int tcp_sendpage_locked(struct sock *sk, struct page *page, int offset,
328 			size_t size, int flags);
329 ssize_t do_tcp_sendpages(struct sock *sk, struct page *page, int offset,
330 		 size_t size, int flags);
331 void tcp_release_cb(struct sock *sk);
332 void tcp_wfree(struct sk_buff *skb);
333 void tcp_write_timer_handler(struct sock *sk);
334 void tcp_delack_timer_handler(struct sock *sk);
335 int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg);
336 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb);
337 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb);
338 void tcp_rcv_space_adjust(struct sock *sk);
339 int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp);
340 void tcp_twsk_destructor(struct sock *sk);
341 ssize_t tcp_splice_read(struct socket *sk, loff_t *ppos,
342 			struct pipe_inode_info *pipe, size_t len,
343 			unsigned int flags);
344 
345 static inline void tcp_dec_quickack_mode(struct sock *sk,
346 					 const unsigned int pkts)
347 {
348 	struct inet_connection_sock *icsk = inet_csk(sk);
349 
350 	if (icsk->icsk_ack.quick) {
351 		if (pkts >= icsk->icsk_ack.quick) {
352 			icsk->icsk_ack.quick = 0;
353 			/* Leaving quickack mode we deflate ATO. */
354 			icsk->icsk_ack.ato   = TCP_ATO_MIN;
355 		} else
356 			icsk->icsk_ack.quick -= pkts;
357 	}
358 }
359 
360 #define	TCP_ECN_OK		1
361 #define	TCP_ECN_QUEUE_CWR	2
362 #define	TCP_ECN_DEMAND_CWR	4
363 #define	TCP_ECN_SEEN		8
364 
365 enum tcp_tw_status {
366 	TCP_TW_SUCCESS = 0,
367 	TCP_TW_RST = 1,
368 	TCP_TW_ACK = 2,
369 	TCP_TW_SYN = 3
370 };
371 
372 
373 enum tcp_tw_status tcp_timewait_state_process(struct inet_timewait_sock *tw,
374 					      struct sk_buff *skb,
375 					      const struct tcphdr *th);
376 struct sock *tcp_check_req(struct sock *sk, struct sk_buff *skb,
377 			   struct request_sock *req, bool fastopen,
378 			   bool *lost_race);
379 int tcp_child_process(struct sock *parent, struct sock *child,
380 		      struct sk_buff *skb);
381 void tcp_enter_loss(struct sock *sk);
382 void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int flag);
383 void tcp_clear_retrans(struct tcp_sock *tp);
384 void tcp_update_metrics(struct sock *sk);
385 void tcp_init_metrics(struct sock *sk);
386 void tcp_metrics_init(void);
387 bool tcp_peer_is_proven(struct request_sock *req, struct dst_entry *dst);
388 void tcp_close(struct sock *sk, long timeout);
389 void tcp_init_sock(struct sock *sk);
390 void tcp_init_transfer(struct sock *sk, int bpf_op);
391 __poll_t tcp_poll(struct file *file, struct socket *sock,
392 		      struct poll_table_struct *wait);
393 int tcp_getsockopt(struct sock *sk, int level, int optname,
394 		   char __user *optval, int __user *optlen);
395 int tcp_setsockopt(struct sock *sk, int level, int optname,
396 		   char __user *optval, unsigned int optlen);
397 int compat_tcp_getsockopt(struct sock *sk, int level, int optname,
398 			  char __user *optval, int __user *optlen);
399 int compat_tcp_setsockopt(struct sock *sk, int level, int optname,
400 			  char __user *optval, unsigned int optlen);
401 void tcp_set_keepalive(struct sock *sk, int val);
402 void tcp_syn_ack_timeout(const struct request_sock *req);
403 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int nonblock,
404 		int flags, int *addr_len);
405 int tcp_set_rcvlowat(struct sock *sk, int val);
406 void tcp_data_ready(struct sock *sk);
407 int tcp_mmap(struct file *file, struct socket *sock,
408 	     struct vm_area_struct *vma);
409 void tcp_parse_options(const struct net *net, const struct sk_buff *skb,
410 		       struct tcp_options_received *opt_rx,
411 		       int estab, struct tcp_fastopen_cookie *foc);
412 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th);
413 
414 /*
415  *	TCP v4 functions exported for the inet6 API
416  */
417 
418 void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb);
419 void tcp_v4_mtu_reduced(struct sock *sk);
420 void tcp_req_err(struct sock *sk, u32 seq, bool abort);
421 int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb);
422 struct sock *tcp_create_openreq_child(const struct sock *sk,
423 				      struct request_sock *req,
424 				      struct sk_buff *skb);
425 void tcp_ca_openreq_child(struct sock *sk, const struct dst_entry *dst);
426 struct sock *tcp_v4_syn_recv_sock(const struct sock *sk, struct sk_buff *skb,
427 				  struct request_sock *req,
428 				  struct dst_entry *dst,
429 				  struct request_sock *req_unhash,
430 				  bool *own_req);
431 int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb);
432 int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len);
433 int tcp_connect(struct sock *sk);
434 enum tcp_synack_type {
435 	TCP_SYNACK_NORMAL,
436 	TCP_SYNACK_FASTOPEN,
437 	TCP_SYNACK_COOKIE,
438 };
439 struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst,
440 				struct request_sock *req,
441 				struct tcp_fastopen_cookie *foc,
442 				enum tcp_synack_type synack_type);
443 int tcp_disconnect(struct sock *sk, int flags);
444 
445 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb);
446 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size);
447 void inet_sk_rx_dst_set(struct sock *sk, const struct sk_buff *skb);
448 
449 /* From syncookies.c */
450 struct sock *tcp_get_cookie_sock(struct sock *sk, struct sk_buff *skb,
451 				 struct request_sock *req,
452 				 struct dst_entry *dst, u32 tsoff);
453 int __cookie_v4_check(const struct iphdr *iph, const struct tcphdr *th,
454 		      u32 cookie);
455 struct sock *cookie_v4_check(struct sock *sk, struct sk_buff *skb);
456 #ifdef CONFIG_SYN_COOKIES
457 
458 /* Syncookies use a monotonic timer which increments every 60 seconds.
459  * This counter is used both as a hash input and partially encoded into
460  * the cookie value.  A cookie is only validated further if the delta
461  * between the current counter value and the encoded one is less than this,
462  * i.e. a sent cookie is valid only at most for 2*60 seconds (or less if
463  * the counter advances immediately after a cookie is generated).
464  */
465 #define MAX_SYNCOOKIE_AGE	2
466 #define TCP_SYNCOOKIE_PERIOD	(60 * HZ)
467 #define TCP_SYNCOOKIE_VALID	(MAX_SYNCOOKIE_AGE * TCP_SYNCOOKIE_PERIOD)
468 
469 /* syncookies: remember time of last synqueue overflow
470  * But do not dirty this field too often (once per second is enough)
471  * It is racy as we do not hold a lock, but race is very minor.
472  */
473 static inline void tcp_synq_overflow(const struct sock *sk)
474 {
475 	unsigned long last_overflow = tcp_sk(sk)->rx_opt.ts_recent_stamp;
476 	unsigned long now = jiffies;
477 
478 	if (time_after(now, last_overflow + HZ))
479 		tcp_sk(sk)->rx_opt.ts_recent_stamp = now;
480 }
481 
482 /* syncookies: no recent synqueue overflow on this listening socket? */
483 static inline bool tcp_synq_no_recent_overflow(const struct sock *sk)
484 {
485 	unsigned long last_overflow = tcp_sk(sk)->rx_opt.ts_recent_stamp;
486 
487 	return time_after(jiffies, last_overflow + TCP_SYNCOOKIE_VALID);
488 }
489 
490 static inline u32 tcp_cookie_time(void)
491 {
492 	u64 val = get_jiffies_64();
493 
494 	do_div(val, TCP_SYNCOOKIE_PERIOD);
495 	return val;
496 }
497 
498 u32 __cookie_v4_init_sequence(const struct iphdr *iph, const struct tcphdr *th,
499 			      u16 *mssp);
500 __u32 cookie_v4_init_sequence(const struct sk_buff *skb, __u16 *mss);
501 u64 cookie_init_timestamp(struct request_sock *req);
502 bool cookie_timestamp_decode(const struct net *net,
503 			     struct tcp_options_received *opt);
504 bool cookie_ecn_ok(const struct tcp_options_received *opt,
505 		   const struct net *net, const struct dst_entry *dst);
506 
507 /* From net/ipv6/syncookies.c */
508 int __cookie_v6_check(const struct ipv6hdr *iph, const struct tcphdr *th,
509 		      u32 cookie);
510 struct sock *cookie_v6_check(struct sock *sk, struct sk_buff *skb);
511 
512 u32 __cookie_v6_init_sequence(const struct ipv6hdr *iph,
513 			      const struct tcphdr *th, u16 *mssp);
514 __u32 cookie_v6_init_sequence(const struct sk_buff *skb, __u16 *mss);
515 #endif
516 /* tcp_output.c */
517 
518 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
519 			       int nonagle);
520 int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs);
521 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs);
522 void tcp_retransmit_timer(struct sock *sk);
523 void tcp_xmit_retransmit_queue(struct sock *);
524 void tcp_simple_retransmit(struct sock *);
525 void tcp_enter_recovery(struct sock *sk, bool ece_ack);
526 int tcp_trim_head(struct sock *, struct sk_buff *, u32);
527 enum tcp_queue {
528 	TCP_FRAG_IN_WRITE_QUEUE,
529 	TCP_FRAG_IN_RTX_QUEUE,
530 };
531 int tcp_fragment(struct sock *sk, enum tcp_queue tcp_queue,
532 		 struct sk_buff *skb, u32 len,
533 		 unsigned int mss_now, gfp_t gfp);
534 
535 void tcp_send_probe0(struct sock *);
536 void tcp_send_partial(struct sock *);
537 int tcp_write_wakeup(struct sock *, int mib);
538 void tcp_send_fin(struct sock *sk);
539 void tcp_send_active_reset(struct sock *sk, gfp_t priority);
540 int tcp_send_synack(struct sock *);
541 void tcp_push_one(struct sock *, unsigned int mss_now);
542 void tcp_send_ack(struct sock *sk);
543 void tcp_send_delayed_ack(struct sock *sk);
544 void tcp_send_loss_probe(struct sock *sk);
545 bool tcp_schedule_loss_probe(struct sock *sk, bool advancing_rto);
546 void tcp_skb_collapse_tstamp(struct sk_buff *skb,
547 			     const struct sk_buff *next_skb);
548 
549 /* tcp_input.c */
550 void tcp_rearm_rto(struct sock *sk);
551 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req);
552 void tcp_reset(struct sock *sk);
553 void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp, struct sk_buff *skb);
554 void tcp_fin(struct sock *sk);
555 
556 /* tcp_timer.c */
557 void tcp_init_xmit_timers(struct sock *);
558 static inline void tcp_clear_xmit_timers(struct sock *sk)
559 {
560 	if (hrtimer_try_to_cancel(&tcp_sk(sk)->pacing_timer) == 1)
561 		__sock_put(sk);
562 
563 	if (hrtimer_try_to_cancel(&tcp_sk(sk)->compressed_ack_timer) == 1)
564 		__sock_put(sk);
565 
566 	inet_csk_clear_xmit_timers(sk);
567 }
568 
569 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu);
570 unsigned int tcp_current_mss(struct sock *sk);
571 
572 /* Bound MSS / TSO packet size with the half of the window */
573 static inline int tcp_bound_to_half_wnd(struct tcp_sock *tp, int pktsize)
574 {
575 	int cutoff;
576 
577 	/* When peer uses tiny windows, there is no use in packetizing
578 	 * to sub-MSS pieces for the sake of SWS or making sure there
579 	 * are enough packets in the pipe for fast recovery.
580 	 *
581 	 * On the other hand, for extremely large MSS devices, handling
582 	 * smaller than MSS windows in this way does make sense.
583 	 */
584 	if (tp->max_window > TCP_MSS_DEFAULT)
585 		cutoff = (tp->max_window >> 1);
586 	else
587 		cutoff = tp->max_window;
588 
589 	if (cutoff && pktsize > cutoff)
590 		return max_t(int, cutoff, 68U - tp->tcp_header_len);
591 	else
592 		return pktsize;
593 }
594 
595 /* tcp.c */
596 void tcp_get_info(struct sock *, struct tcp_info *);
597 
598 /* Read 'sendfile()'-style from a TCP socket */
599 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
600 		  sk_read_actor_t recv_actor);
601 
602 void tcp_initialize_rcv_mss(struct sock *sk);
603 
604 int tcp_mtu_to_mss(struct sock *sk, int pmtu);
605 int tcp_mss_to_mtu(struct sock *sk, int mss);
606 void tcp_mtup_init(struct sock *sk);
607 void tcp_init_buffer_space(struct sock *sk);
608 
609 static inline void tcp_bound_rto(const struct sock *sk)
610 {
611 	if (inet_csk(sk)->icsk_rto > TCP_RTO_MAX)
612 		inet_csk(sk)->icsk_rto = TCP_RTO_MAX;
613 }
614 
615 static inline u32 __tcp_set_rto(const struct tcp_sock *tp)
616 {
617 	return usecs_to_jiffies((tp->srtt_us >> 3) + tp->rttvar_us);
618 }
619 
620 static inline void __tcp_fast_path_on(struct tcp_sock *tp, u32 snd_wnd)
621 {
622 	tp->pred_flags = htonl((tp->tcp_header_len << 26) |
623 			       ntohl(TCP_FLAG_ACK) |
624 			       snd_wnd);
625 }
626 
627 static inline void tcp_fast_path_on(struct tcp_sock *tp)
628 {
629 	__tcp_fast_path_on(tp, tp->snd_wnd >> tp->rx_opt.snd_wscale);
630 }
631 
632 static inline void tcp_fast_path_check(struct sock *sk)
633 {
634 	struct tcp_sock *tp = tcp_sk(sk);
635 
636 	if (RB_EMPTY_ROOT(&tp->out_of_order_queue) &&
637 	    tp->rcv_wnd &&
638 	    atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf &&
639 	    !tp->urg_data)
640 		tcp_fast_path_on(tp);
641 }
642 
643 /* Compute the actual rto_min value */
644 static inline u32 tcp_rto_min(struct sock *sk)
645 {
646 	const struct dst_entry *dst = __sk_dst_get(sk);
647 	u32 rto_min = TCP_RTO_MIN;
648 
649 	if (dst && dst_metric_locked(dst, RTAX_RTO_MIN))
650 		rto_min = dst_metric_rtt(dst, RTAX_RTO_MIN);
651 	return rto_min;
652 }
653 
654 static inline u32 tcp_rto_min_us(struct sock *sk)
655 {
656 	return jiffies_to_usecs(tcp_rto_min(sk));
657 }
658 
659 static inline bool tcp_ca_dst_locked(const struct dst_entry *dst)
660 {
661 	return dst_metric_locked(dst, RTAX_CC_ALGO);
662 }
663 
664 /* Minimum RTT in usec. ~0 means not available. */
665 static inline u32 tcp_min_rtt(const struct tcp_sock *tp)
666 {
667 	return minmax_get(&tp->rtt_min);
668 }
669 
670 /* Compute the actual receive window we are currently advertising.
671  * Rcv_nxt can be after the window if our peer push more data
672  * than the offered window.
673  */
674 static inline u32 tcp_receive_window(const struct tcp_sock *tp)
675 {
676 	s32 win = tp->rcv_wup + tp->rcv_wnd - tp->rcv_nxt;
677 
678 	if (win < 0)
679 		win = 0;
680 	return (u32) win;
681 }
682 
683 /* Choose a new window, without checks for shrinking, and without
684  * scaling applied to the result.  The caller does these things
685  * if necessary.  This is a "raw" window selection.
686  */
687 u32 __tcp_select_window(struct sock *sk);
688 
689 void tcp_send_window_probe(struct sock *sk);
690 
691 /* TCP uses 32bit jiffies to save some space.
692  * Note that this is different from tcp_time_stamp, which
693  * historically has been the same until linux-4.13.
694  */
695 #define tcp_jiffies32 ((u32)jiffies)
696 
697 /*
698  * Deliver a 32bit value for TCP timestamp option (RFC 7323)
699  * It is no longer tied to jiffies, but to 1 ms clock.
700  * Note: double check if you want to use tcp_jiffies32 instead of this.
701  */
702 #define TCP_TS_HZ	1000
703 
704 static inline u64 tcp_clock_ns(void)
705 {
706 	return local_clock();
707 }
708 
709 static inline u64 tcp_clock_us(void)
710 {
711 	return div_u64(tcp_clock_ns(), NSEC_PER_USEC);
712 }
713 
714 /* This should only be used in contexts where tp->tcp_mstamp is up to date */
715 static inline u32 tcp_time_stamp(const struct tcp_sock *tp)
716 {
717 	return div_u64(tp->tcp_mstamp, USEC_PER_SEC / TCP_TS_HZ);
718 }
719 
720 /* Could use tcp_clock_us() / 1000, but this version uses a single divide */
721 static inline u32 tcp_time_stamp_raw(void)
722 {
723 	return div_u64(tcp_clock_ns(), NSEC_PER_SEC / TCP_TS_HZ);
724 }
725 
726 
727 /* Refresh 1us clock of a TCP socket,
728  * ensuring monotically increasing values.
729  */
730 static inline void tcp_mstamp_refresh(struct tcp_sock *tp)
731 {
732 	u64 val = tcp_clock_us();
733 
734 	if (val > tp->tcp_mstamp)
735 		tp->tcp_mstamp = val;
736 }
737 
738 static inline u32 tcp_stamp_us_delta(u64 t1, u64 t0)
739 {
740 	return max_t(s64, t1 - t0, 0);
741 }
742 
743 static inline u32 tcp_skb_timestamp(const struct sk_buff *skb)
744 {
745 	return div_u64(skb->skb_mstamp, USEC_PER_SEC / TCP_TS_HZ);
746 }
747 
748 
749 #define tcp_flag_byte(th) (((u_int8_t *)th)[13])
750 
751 #define TCPHDR_FIN 0x01
752 #define TCPHDR_SYN 0x02
753 #define TCPHDR_RST 0x04
754 #define TCPHDR_PSH 0x08
755 #define TCPHDR_ACK 0x10
756 #define TCPHDR_URG 0x20
757 #define TCPHDR_ECE 0x40
758 #define TCPHDR_CWR 0x80
759 
760 #define TCPHDR_SYN_ECN	(TCPHDR_SYN | TCPHDR_ECE | TCPHDR_CWR)
761 
762 /* This is what the send packet queuing engine uses to pass
763  * TCP per-packet control information to the transmission code.
764  * We also store the host-order sequence numbers in here too.
765  * This is 44 bytes if IPV6 is enabled.
766  * If this grows please adjust skbuff.h:skbuff->cb[xxx] size appropriately.
767  */
768 struct tcp_skb_cb {
769 	__u32		seq;		/* Starting sequence number	*/
770 	__u32		end_seq;	/* SEQ + FIN + SYN + datalen	*/
771 	union {
772 		/* Note : tcp_tw_isn is used in input path only
773 		 *	  (isn chosen by tcp_timewait_state_process())
774 		 *
775 		 * 	  tcp_gso_segs/size are used in write queue only,
776 		 *	  cf tcp_skb_pcount()/tcp_skb_mss()
777 		 */
778 		__u32		tcp_tw_isn;
779 		struct {
780 			u16	tcp_gso_segs;
781 			u16	tcp_gso_size;
782 		};
783 	};
784 	__u8		tcp_flags;	/* TCP header flags. (tcp[13])	*/
785 
786 	__u8		sacked;		/* State flags for SACK.	*/
787 #define TCPCB_SACKED_ACKED	0x01	/* SKB ACK'd by a SACK block	*/
788 #define TCPCB_SACKED_RETRANS	0x02	/* SKB retransmitted		*/
789 #define TCPCB_LOST		0x04	/* SKB is lost			*/
790 #define TCPCB_TAGBITS		0x07	/* All tag bits			*/
791 #define TCPCB_REPAIRED		0x10	/* SKB repaired (no skb_mstamp)	*/
792 #define TCPCB_EVER_RETRANS	0x80	/* Ever retransmitted frame	*/
793 #define TCPCB_RETRANS		(TCPCB_SACKED_RETRANS|TCPCB_EVER_RETRANS| \
794 				TCPCB_REPAIRED)
795 
796 	__u8		ip_dsfield;	/* IPv4 tos or IPv6 dsfield	*/
797 	__u8		txstamp_ack:1,	/* Record TX timestamp for ack? */
798 			eor:1,		/* Is skb MSG_EOR marked? */
799 			has_rxtstamp:1,	/* SKB has a RX timestamp	*/
800 			unused:5;
801 	__u32		ack_seq;	/* Sequence number ACK'd	*/
802 	union {
803 		struct {
804 			/* There is space for up to 24 bytes */
805 			__u32 in_flight:30,/* Bytes in flight at transmit */
806 			      is_app_limited:1, /* cwnd not fully used? */
807 			      unused:1;
808 			/* pkts S/ACKed so far upon tx of skb, incl retrans: */
809 			__u32 delivered;
810 			/* start of send pipeline phase */
811 			u64 first_tx_mstamp;
812 			/* when we reached the "delivered" count */
813 			u64 delivered_mstamp;
814 		} tx;   /* only used for outgoing skbs */
815 		union {
816 			struct inet_skb_parm	h4;
817 #if IS_ENABLED(CONFIG_IPV6)
818 			struct inet6_skb_parm	h6;
819 #endif
820 		} header;	/* For incoming skbs */
821 		struct {
822 			__u32 flags;
823 			struct sock *sk_redir;
824 			void *data_end;
825 		} bpf;
826 	};
827 };
828 
829 #define TCP_SKB_CB(__skb)	((struct tcp_skb_cb *)&((__skb)->cb[0]))
830 
831 
832 #if IS_ENABLED(CONFIG_IPV6)
833 /* This is the variant of inet6_iif() that must be used by TCP,
834  * as TCP moves IP6CB into a different location in skb->cb[]
835  */
836 static inline int tcp_v6_iif(const struct sk_buff *skb)
837 {
838 	bool l3_slave = ipv6_l3mdev_skb(TCP_SKB_CB(skb)->header.h6.flags);
839 
840 	return l3_slave ? skb->skb_iif : TCP_SKB_CB(skb)->header.h6.iif;
841 }
842 
843 /* TCP_SKB_CB reference means this can not be used from early demux */
844 static inline int tcp_v6_sdif(const struct sk_buff *skb)
845 {
846 #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
847 	if (skb && ipv6_l3mdev_skb(TCP_SKB_CB(skb)->header.h6.flags))
848 		return TCP_SKB_CB(skb)->header.h6.iif;
849 #endif
850 	return 0;
851 }
852 #endif
853 
854 static inline bool inet_exact_dif_match(struct net *net, struct sk_buff *skb)
855 {
856 #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
857 	if (!net->ipv4.sysctl_tcp_l3mdev_accept &&
858 	    skb && ipv4_l3mdev_skb(IPCB(skb)->flags))
859 		return true;
860 #endif
861 	return false;
862 }
863 
864 /* TCP_SKB_CB reference means this can not be used from early demux */
865 static inline int tcp_v4_sdif(struct sk_buff *skb)
866 {
867 #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
868 	if (skb && ipv4_l3mdev_skb(TCP_SKB_CB(skb)->header.h4.flags))
869 		return TCP_SKB_CB(skb)->header.h4.iif;
870 #endif
871 	return 0;
872 }
873 
874 /* Due to TSO, an SKB can be composed of multiple actual
875  * packets.  To keep these tracked properly, we use this.
876  */
877 static inline int tcp_skb_pcount(const struct sk_buff *skb)
878 {
879 	return TCP_SKB_CB(skb)->tcp_gso_segs;
880 }
881 
882 static inline void tcp_skb_pcount_set(struct sk_buff *skb, int segs)
883 {
884 	TCP_SKB_CB(skb)->tcp_gso_segs = segs;
885 }
886 
887 static inline void tcp_skb_pcount_add(struct sk_buff *skb, int segs)
888 {
889 	TCP_SKB_CB(skb)->tcp_gso_segs += segs;
890 }
891 
892 /* This is valid iff skb is in write queue and tcp_skb_pcount() > 1. */
893 static inline int tcp_skb_mss(const struct sk_buff *skb)
894 {
895 	return TCP_SKB_CB(skb)->tcp_gso_size;
896 }
897 
898 static inline bool tcp_skb_can_collapse_to(const struct sk_buff *skb)
899 {
900 	return likely(!TCP_SKB_CB(skb)->eor);
901 }
902 
903 /* Events passed to congestion control interface */
904 enum tcp_ca_event {
905 	CA_EVENT_TX_START,	/* first transmit when no packets in flight */
906 	CA_EVENT_CWND_RESTART,	/* congestion window restart */
907 	CA_EVENT_COMPLETE_CWR,	/* end of congestion recovery */
908 	CA_EVENT_LOSS,		/* loss timeout */
909 	CA_EVENT_ECN_NO_CE,	/* ECT set, but not CE marked */
910 	CA_EVENT_ECN_IS_CE,	/* received CE marked IP packet */
911 	CA_EVENT_DELAYED_ACK,	/* Delayed ack is sent */
912 	CA_EVENT_NON_DELAYED_ACK,
913 };
914 
915 /* Information about inbound ACK, passed to cong_ops->in_ack_event() */
916 enum tcp_ca_ack_event_flags {
917 	CA_ACK_SLOWPATH		= (1 << 0),	/* In slow path processing */
918 	CA_ACK_WIN_UPDATE	= (1 << 1),	/* ACK updated window */
919 	CA_ACK_ECE		= (1 << 2),	/* ECE bit is set on ack */
920 };
921 
922 /*
923  * Interface for adding new TCP congestion control handlers
924  */
925 #define TCP_CA_NAME_MAX	16
926 #define TCP_CA_MAX	128
927 #define TCP_CA_BUF_MAX	(TCP_CA_NAME_MAX*TCP_CA_MAX)
928 
929 #define TCP_CA_UNSPEC	0
930 
931 /* Algorithm can be set on socket without CAP_NET_ADMIN privileges */
932 #define TCP_CONG_NON_RESTRICTED 0x1
933 /* Requires ECN/ECT set on all packets */
934 #define TCP_CONG_NEEDS_ECN	0x2
935 
936 union tcp_cc_info;
937 
938 struct ack_sample {
939 	u32 pkts_acked;
940 	s32 rtt_us;
941 	u32 in_flight;
942 };
943 
944 /* A rate sample measures the number of (original/retransmitted) data
945  * packets delivered "delivered" over an interval of time "interval_us".
946  * The tcp_rate.c code fills in the rate sample, and congestion
947  * control modules that define a cong_control function to run at the end
948  * of ACK processing can optionally chose to consult this sample when
949  * setting cwnd and pacing rate.
950  * A sample is invalid if "delivered" or "interval_us" is negative.
951  */
952 struct rate_sample {
953 	u64  prior_mstamp; /* starting timestamp for interval */
954 	u32  prior_delivered;	/* tp->delivered at "prior_mstamp" */
955 	s32  delivered;		/* number of packets delivered over interval */
956 	long interval_us;	/* time for tp->delivered to incr "delivered" */
957 	long rtt_us;		/* RTT of last (S)ACKed packet (or -1) */
958 	int  losses;		/* number of packets marked lost upon ACK */
959 	u32  acked_sacked;	/* number of packets newly (S)ACKed upon ACK */
960 	u32  prior_in_flight;	/* in flight before this ACK */
961 	bool is_app_limited;	/* is sample from packet with bubble in pipe? */
962 	bool is_retrans;	/* is sample from retransmission? */
963 	bool is_ack_delayed;	/* is this (likely) a delayed ACK? */
964 };
965 
966 struct tcp_congestion_ops {
967 	struct list_head	list;
968 	u32 key;
969 	u32 flags;
970 
971 	/* initialize private data (optional) */
972 	void (*init)(struct sock *sk);
973 	/* cleanup private data  (optional) */
974 	void (*release)(struct sock *sk);
975 
976 	/* return slow start threshold (required) */
977 	u32 (*ssthresh)(struct sock *sk);
978 	/* do new cwnd calculation (required) */
979 	void (*cong_avoid)(struct sock *sk, u32 ack, u32 acked);
980 	/* call before changing ca_state (optional) */
981 	void (*set_state)(struct sock *sk, u8 new_state);
982 	/* call when cwnd event occurs (optional) */
983 	void (*cwnd_event)(struct sock *sk, enum tcp_ca_event ev);
984 	/* call when ack arrives (optional) */
985 	void (*in_ack_event)(struct sock *sk, u32 flags);
986 	/* new value of cwnd after loss (required) */
987 	u32  (*undo_cwnd)(struct sock *sk);
988 	/* hook for packet ack accounting (optional) */
989 	void (*pkts_acked)(struct sock *sk, const struct ack_sample *sample);
990 	/* override sysctl_tcp_min_tso_segs */
991 	u32 (*min_tso_segs)(struct sock *sk);
992 	/* returns the multiplier used in tcp_sndbuf_expand (optional) */
993 	u32 (*sndbuf_expand)(struct sock *sk);
994 	/* call when packets are delivered to update cwnd and pacing rate,
995 	 * after all the ca_state processing. (optional)
996 	 */
997 	void (*cong_control)(struct sock *sk, const struct rate_sample *rs);
998 	/* get info for inet_diag (optional) */
999 	size_t (*get_info)(struct sock *sk, u32 ext, int *attr,
1000 			   union tcp_cc_info *info);
1001 
1002 	char 		name[TCP_CA_NAME_MAX];
1003 	struct module 	*owner;
1004 };
1005 
1006 int tcp_register_congestion_control(struct tcp_congestion_ops *type);
1007 void tcp_unregister_congestion_control(struct tcp_congestion_ops *type);
1008 
1009 void tcp_assign_congestion_control(struct sock *sk);
1010 void tcp_init_congestion_control(struct sock *sk);
1011 void tcp_cleanup_congestion_control(struct sock *sk);
1012 int tcp_set_default_congestion_control(struct net *net, const char *name);
1013 void tcp_get_default_congestion_control(struct net *net, char *name);
1014 void tcp_get_available_congestion_control(char *buf, size_t len);
1015 void tcp_get_allowed_congestion_control(char *buf, size_t len);
1016 int tcp_set_allowed_congestion_control(char *allowed);
1017 int tcp_set_congestion_control(struct sock *sk, const char *name, bool load, bool reinit);
1018 u32 tcp_slow_start(struct tcp_sock *tp, u32 acked);
1019 void tcp_cong_avoid_ai(struct tcp_sock *tp, u32 w, u32 acked);
1020 
1021 u32 tcp_reno_ssthresh(struct sock *sk);
1022 u32 tcp_reno_undo_cwnd(struct sock *sk);
1023 void tcp_reno_cong_avoid(struct sock *sk, u32 ack, u32 acked);
1024 extern struct tcp_congestion_ops tcp_reno;
1025 
1026 struct tcp_congestion_ops *tcp_ca_find_key(u32 key);
1027 u32 tcp_ca_get_key_by_name(struct net *net, const char *name, bool *ecn_ca);
1028 #ifdef CONFIG_INET
1029 char *tcp_ca_get_name_by_key(u32 key, char *buffer);
1030 #else
1031 static inline char *tcp_ca_get_name_by_key(u32 key, char *buffer)
1032 {
1033 	return NULL;
1034 }
1035 #endif
1036 
1037 static inline bool tcp_ca_needs_ecn(const struct sock *sk)
1038 {
1039 	const struct inet_connection_sock *icsk = inet_csk(sk);
1040 
1041 	return icsk->icsk_ca_ops->flags & TCP_CONG_NEEDS_ECN;
1042 }
1043 
1044 static inline void tcp_set_ca_state(struct sock *sk, const u8 ca_state)
1045 {
1046 	struct inet_connection_sock *icsk = inet_csk(sk);
1047 
1048 	if (icsk->icsk_ca_ops->set_state)
1049 		icsk->icsk_ca_ops->set_state(sk, ca_state);
1050 	icsk->icsk_ca_state = ca_state;
1051 }
1052 
1053 static inline void tcp_ca_event(struct sock *sk, const enum tcp_ca_event event)
1054 {
1055 	const struct inet_connection_sock *icsk = inet_csk(sk);
1056 
1057 	if (icsk->icsk_ca_ops->cwnd_event)
1058 		icsk->icsk_ca_ops->cwnd_event(sk, event);
1059 }
1060 
1061 /* From tcp_rate.c */
1062 void tcp_rate_skb_sent(struct sock *sk, struct sk_buff *skb);
1063 void tcp_rate_skb_delivered(struct sock *sk, struct sk_buff *skb,
1064 			    struct rate_sample *rs);
1065 void tcp_rate_gen(struct sock *sk, u32 delivered, u32 lost,
1066 		  bool is_sack_reneg, struct rate_sample *rs);
1067 void tcp_rate_check_app_limited(struct sock *sk);
1068 
1069 /* These functions determine how the current flow behaves in respect of SACK
1070  * handling. SACK is negotiated with the peer, and therefore it can vary
1071  * between different flows.
1072  *
1073  * tcp_is_sack - SACK enabled
1074  * tcp_is_reno - No SACK
1075  */
1076 static inline int tcp_is_sack(const struct tcp_sock *tp)
1077 {
1078 	return tp->rx_opt.sack_ok;
1079 }
1080 
1081 static inline bool tcp_is_reno(const struct tcp_sock *tp)
1082 {
1083 	return !tcp_is_sack(tp);
1084 }
1085 
1086 static inline unsigned int tcp_left_out(const struct tcp_sock *tp)
1087 {
1088 	return tp->sacked_out + tp->lost_out;
1089 }
1090 
1091 /* This determines how many packets are "in the network" to the best
1092  * of our knowledge.  In many cases it is conservative, but where
1093  * detailed information is available from the receiver (via SACK
1094  * blocks etc.) we can make more aggressive calculations.
1095  *
1096  * Use this for decisions involving congestion control, use just
1097  * tp->packets_out to determine if the send queue is empty or not.
1098  *
1099  * Read this equation as:
1100  *
1101  *	"Packets sent once on transmission queue" MINUS
1102  *	"Packets left network, but not honestly ACKed yet" PLUS
1103  *	"Packets fast retransmitted"
1104  */
1105 static inline unsigned int tcp_packets_in_flight(const struct tcp_sock *tp)
1106 {
1107 	return tp->packets_out - tcp_left_out(tp) + tp->retrans_out;
1108 }
1109 
1110 #define TCP_INFINITE_SSTHRESH	0x7fffffff
1111 
1112 static inline bool tcp_in_slow_start(const struct tcp_sock *tp)
1113 {
1114 	return tp->snd_cwnd < tp->snd_ssthresh;
1115 }
1116 
1117 static inline bool tcp_in_initial_slowstart(const struct tcp_sock *tp)
1118 {
1119 	return tp->snd_ssthresh >= TCP_INFINITE_SSTHRESH;
1120 }
1121 
1122 static inline bool tcp_in_cwnd_reduction(const struct sock *sk)
1123 {
1124 	return (TCPF_CA_CWR | TCPF_CA_Recovery) &
1125 	       (1 << inet_csk(sk)->icsk_ca_state);
1126 }
1127 
1128 /* If cwnd > ssthresh, we may raise ssthresh to be half-way to cwnd.
1129  * The exception is cwnd reduction phase, when cwnd is decreasing towards
1130  * ssthresh.
1131  */
1132 static inline __u32 tcp_current_ssthresh(const struct sock *sk)
1133 {
1134 	const struct tcp_sock *tp = tcp_sk(sk);
1135 
1136 	if (tcp_in_cwnd_reduction(sk))
1137 		return tp->snd_ssthresh;
1138 	else
1139 		return max(tp->snd_ssthresh,
1140 			   ((tp->snd_cwnd >> 1) +
1141 			    (tp->snd_cwnd >> 2)));
1142 }
1143 
1144 /* Use define here intentionally to get WARN_ON location shown at the caller */
1145 #define tcp_verify_left_out(tp)	WARN_ON(tcp_left_out(tp) > tp->packets_out)
1146 
1147 void tcp_enter_cwr(struct sock *sk);
1148 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst);
1149 
1150 /* The maximum number of MSS of available cwnd for which TSO defers
1151  * sending if not using sysctl_tcp_tso_win_divisor.
1152  */
1153 static inline __u32 tcp_max_tso_deferred_mss(const struct tcp_sock *tp)
1154 {
1155 	return 3;
1156 }
1157 
1158 /* Returns end sequence number of the receiver's advertised window */
1159 static inline u32 tcp_wnd_end(const struct tcp_sock *tp)
1160 {
1161 	return tp->snd_una + tp->snd_wnd;
1162 }
1163 
1164 /* We follow the spirit of RFC2861 to validate cwnd but implement a more
1165  * flexible approach. The RFC suggests cwnd should not be raised unless
1166  * it was fully used previously. And that's exactly what we do in
1167  * congestion avoidance mode. But in slow start we allow cwnd to grow
1168  * as long as the application has used half the cwnd.
1169  * Example :
1170  *    cwnd is 10 (IW10), but application sends 9 frames.
1171  *    We allow cwnd to reach 18 when all frames are ACKed.
1172  * This check is safe because it's as aggressive as slow start which already
1173  * risks 100% overshoot. The advantage is that we discourage application to
1174  * either send more filler packets or data to artificially blow up the cwnd
1175  * usage, and allow application-limited process to probe bw more aggressively.
1176  */
1177 static inline bool tcp_is_cwnd_limited(const struct sock *sk)
1178 {
1179 	const struct tcp_sock *tp = tcp_sk(sk);
1180 
1181 	/* If in slow start, ensure cwnd grows to twice what was ACKed. */
1182 	if (tcp_in_slow_start(tp))
1183 		return tp->snd_cwnd < 2 * tp->max_packets_out;
1184 
1185 	return tp->is_cwnd_limited;
1186 }
1187 
1188 /* BBR congestion control needs pacing.
1189  * Same remark for SO_MAX_PACING_RATE.
1190  * sch_fq packet scheduler is efficiently handling pacing,
1191  * but is not always installed/used.
1192  * Return true if TCP stack should pace packets itself.
1193  */
1194 static inline bool tcp_needs_internal_pacing(const struct sock *sk)
1195 {
1196 	return smp_load_acquire(&sk->sk_pacing_status) == SK_PACING_NEEDED;
1197 }
1198 
1199 /* Something is really bad, we could not queue an additional packet,
1200  * because qdisc is full or receiver sent a 0 window.
1201  * We do not want to add fuel to the fire, or abort too early,
1202  * so make sure the timer we arm now is at least 200ms in the future,
1203  * regardless of current icsk_rto value (as it could be ~2ms)
1204  */
1205 static inline unsigned long tcp_probe0_base(const struct sock *sk)
1206 {
1207 	return max_t(unsigned long, inet_csk(sk)->icsk_rto, TCP_RTO_MIN);
1208 }
1209 
1210 /* Variant of inet_csk_rto_backoff() used for zero window probes */
1211 static inline unsigned long tcp_probe0_when(const struct sock *sk,
1212 					    unsigned long max_when)
1213 {
1214 	u64 when = (u64)tcp_probe0_base(sk) << inet_csk(sk)->icsk_backoff;
1215 
1216 	return (unsigned long)min_t(u64, when, max_when);
1217 }
1218 
1219 static inline void tcp_check_probe_timer(struct sock *sk)
1220 {
1221 	if (!tcp_sk(sk)->packets_out && !inet_csk(sk)->icsk_pending)
1222 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
1223 					  tcp_probe0_base(sk), TCP_RTO_MAX);
1224 }
1225 
1226 static inline void tcp_init_wl(struct tcp_sock *tp, u32 seq)
1227 {
1228 	tp->snd_wl1 = seq;
1229 }
1230 
1231 static inline void tcp_update_wl(struct tcp_sock *tp, u32 seq)
1232 {
1233 	tp->snd_wl1 = seq;
1234 }
1235 
1236 /*
1237  * Calculate(/check) TCP checksum
1238  */
1239 static inline __sum16 tcp_v4_check(int len, __be32 saddr,
1240 				   __be32 daddr, __wsum base)
1241 {
1242 	return csum_tcpudp_magic(saddr,daddr,len,IPPROTO_TCP,base);
1243 }
1244 
1245 static inline __sum16 __tcp_checksum_complete(struct sk_buff *skb)
1246 {
1247 	return __skb_checksum_complete(skb);
1248 }
1249 
1250 static inline bool tcp_checksum_complete(struct sk_buff *skb)
1251 {
1252 	return !skb_csum_unnecessary(skb) &&
1253 		__tcp_checksum_complete(skb);
1254 }
1255 
1256 bool tcp_add_backlog(struct sock *sk, struct sk_buff *skb);
1257 int tcp_filter(struct sock *sk, struct sk_buff *skb);
1258 
1259 #undef STATE_TRACE
1260 
1261 #ifdef STATE_TRACE
1262 static const char *statename[]={
1263 	"Unused","Established","Syn Sent","Syn Recv",
1264 	"Fin Wait 1","Fin Wait 2","Time Wait", "Close",
1265 	"Close Wait","Last ACK","Listen","Closing"
1266 };
1267 #endif
1268 void tcp_set_state(struct sock *sk, int state);
1269 
1270 void tcp_done(struct sock *sk);
1271 
1272 int tcp_abort(struct sock *sk, int err);
1273 
1274 static inline void tcp_sack_reset(struct tcp_options_received *rx_opt)
1275 {
1276 	rx_opt->dsack = 0;
1277 	rx_opt->num_sacks = 0;
1278 }
1279 
1280 u32 tcp_default_init_rwnd(u32 mss);
1281 void tcp_cwnd_restart(struct sock *sk, s32 delta);
1282 
1283 static inline void tcp_slow_start_after_idle_check(struct sock *sk)
1284 {
1285 	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1286 	struct tcp_sock *tp = tcp_sk(sk);
1287 	s32 delta;
1288 
1289 	if (!sock_net(sk)->ipv4.sysctl_tcp_slow_start_after_idle || tp->packets_out ||
1290 	    ca_ops->cong_control)
1291 		return;
1292 	delta = tcp_jiffies32 - tp->lsndtime;
1293 	if (delta > inet_csk(sk)->icsk_rto)
1294 		tcp_cwnd_restart(sk, delta);
1295 }
1296 
1297 /* Determine a window scaling and initial window to offer. */
1298 void tcp_select_initial_window(const struct sock *sk, int __space,
1299 			       __u32 mss, __u32 *rcv_wnd,
1300 			       __u32 *window_clamp, int wscale_ok,
1301 			       __u8 *rcv_wscale, __u32 init_rcv_wnd);
1302 
1303 static inline int tcp_win_from_space(const struct sock *sk, int space)
1304 {
1305 	int tcp_adv_win_scale = sock_net(sk)->ipv4.sysctl_tcp_adv_win_scale;
1306 
1307 	return tcp_adv_win_scale <= 0 ?
1308 		(space>>(-tcp_adv_win_scale)) :
1309 		space - (space>>tcp_adv_win_scale);
1310 }
1311 
1312 /* Note: caller must be prepared to deal with negative returns */
1313 static inline int tcp_space(const struct sock *sk)
1314 {
1315 	return tcp_win_from_space(sk, sk->sk_rcvbuf -
1316 				  atomic_read(&sk->sk_rmem_alloc));
1317 }
1318 
1319 static inline int tcp_full_space(const struct sock *sk)
1320 {
1321 	return tcp_win_from_space(sk, sk->sk_rcvbuf);
1322 }
1323 
1324 extern void tcp_openreq_init_rwin(struct request_sock *req,
1325 				  const struct sock *sk_listener,
1326 				  const struct dst_entry *dst);
1327 
1328 void tcp_enter_memory_pressure(struct sock *sk);
1329 void tcp_leave_memory_pressure(struct sock *sk);
1330 
1331 static inline int keepalive_intvl_when(const struct tcp_sock *tp)
1332 {
1333 	struct net *net = sock_net((struct sock *)tp);
1334 
1335 	return tp->keepalive_intvl ? : net->ipv4.sysctl_tcp_keepalive_intvl;
1336 }
1337 
1338 static inline int keepalive_time_when(const struct tcp_sock *tp)
1339 {
1340 	struct net *net = sock_net((struct sock *)tp);
1341 
1342 	return tp->keepalive_time ? : net->ipv4.sysctl_tcp_keepalive_time;
1343 }
1344 
1345 static inline int keepalive_probes(const struct tcp_sock *tp)
1346 {
1347 	struct net *net = sock_net((struct sock *)tp);
1348 
1349 	return tp->keepalive_probes ? : net->ipv4.sysctl_tcp_keepalive_probes;
1350 }
1351 
1352 static inline u32 keepalive_time_elapsed(const struct tcp_sock *tp)
1353 {
1354 	const struct inet_connection_sock *icsk = &tp->inet_conn;
1355 
1356 	return min_t(u32, tcp_jiffies32 - icsk->icsk_ack.lrcvtime,
1357 			  tcp_jiffies32 - tp->rcv_tstamp);
1358 }
1359 
1360 static inline int tcp_fin_time(const struct sock *sk)
1361 {
1362 	int fin_timeout = tcp_sk(sk)->linger2 ? : sock_net(sk)->ipv4.sysctl_tcp_fin_timeout;
1363 	const int rto = inet_csk(sk)->icsk_rto;
1364 
1365 	if (fin_timeout < (rto << 2) - (rto >> 1))
1366 		fin_timeout = (rto << 2) - (rto >> 1);
1367 
1368 	return fin_timeout;
1369 }
1370 
1371 static inline bool tcp_paws_check(const struct tcp_options_received *rx_opt,
1372 				  int paws_win)
1373 {
1374 	if ((s32)(rx_opt->ts_recent - rx_opt->rcv_tsval) <= paws_win)
1375 		return true;
1376 	if (unlikely(get_seconds() >= rx_opt->ts_recent_stamp + TCP_PAWS_24DAYS))
1377 		return true;
1378 	/*
1379 	 * Some OSes send SYN and SYNACK messages with tsval=0 tsecr=0,
1380 	 * then following tcp messages have valid values. Ignore 0 value,
1381 	 * or else 'negative' tsval might forbid us to accept their packets.
1382 	 */
1383 	if (!rx_opt->ts_recent)
1384 		return true;
1385 	return false;
1386 }
1387 
1388 static inline bool tcp_paws_reject(const struct tcp_options_received *rx_opt,
1389 				   int rst)
1390 {
1391 	if (tcp_paws_check(rx_opt, 0))
1392 		return false;
1393 
1394 	/* RST segments are not recommended to carry timestamp,
1395 	   and, if they do, it is recommended to ignore PAWS because
1396 	   "their cleanup function should take precedence over timestamps."
1397 	   Certainly, it is mistake. It is necessary to understand the reasons
1398 	   of this constraint to relax it: if peer reboots, clock may go
1399 	   out-of-sync and half-open connections will not be reset.
1400 	   Actually, the problem would be not existing if all
1401 	   the implementations followed draft about maintaining clock
1402 	   via reboots. Linux-2.2 DOES NOT!
1403 
1404 	   However, we can relax time bounds for RST segments to MSL.
1405 	 */
1406 	if (rst && get_seconds() >= rx_opt->ts_recent_stamp + TCP_PAWS_MSL)
1407 		return false;
1408 	return true;
1409 }
1410 
1411 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
1412 			  int mib_idx, u32 *last_oow_ack_time);
1413 
1414 static inline void tcp_mib_init(struct net *net)
1415 {
1416 	/* See RFC 2012 */
1417 	TCP_ADD_STATS(net, TCP_MIB_RTOALGORITHM, 1);
1418 	TCP_ADD_STATS(net, TCP_MIB_RTOMIN, TCP_RTO_MIN*1000/HZ);
1419 	TCP_ADD_STATS(net, TCP_MIB_RTOMAX, TCP_RTO_MAX*1000/HZ);
1420 	TCP_ADD_STATS(net, TCP_MIB_MAXCONN, -1);
1421 }
1422 
1423 /* from STCP */
1424 static inline void tcp_clear_retrans_hints_partial(struct tcp_sock *tp)
1425 {
1426 	tp->lost_skb_hint = NULL;
1427 }
1428 
1429 static inline void tcp_clear_all_retrans_hints(struct tcp_sock *tp)
1430 {
1431 	tcp_clear_retrans_hints_partial(tp);
1432 	tp->retransmit_skb_hint = NULL;
1433 }
1434 
1435 union tcp_md5_addr {
1436 	struct in_addr  a4;
1437 #if IS_ENABLED(CONFIG_IPV6)
1438 	struct in6_addr	a6;
1439 #endif
1440 };
1441 
1442 /* - key database */
1443 struct tcp_md5sig_key {
1444 	struct hlist_node	node;
1445 	u8			keylen;
1446 	u8			family; /* AF_INET or AF_INET6 */
1447 	union tcp_md5_addr	addr;
1448 	u8			prefixlen;
1449 	u8			key[TCP_MD5SIG_MAXKEYLEN];
1450 	struct rcu_head		rcu;
1451 };
1452 
1453 /* - sock block */
1454 struct tcp_md5sig_info {
1455 	struct hlist_head	head;
1456 	struct rcu_head		rcu;
1457 };
1458 
1459 /* - pseudo header */
1460 struct tcp4_pseudohdr {
1461 	__be32		saddr;
1462 	__be32		daddr;
1463 	__u8		pad;
1464 	__u8		protocol;
1465 	__be16		len;
1466 };
1467 
1468 struct tcp6_pseudohdr {
1469 	struct in6_addr	saddr;
1470 	struct in6_addr daddr;
1471 	__be32		len;
1472 	__be32		protocol;	/* including padding */
1473 };
1474 
1475 union tcp_md5sum_block {
1476 	struct tcp4_pseudohdr ip4;
1477 #if IS_ENABLED(CONFIG_IPV6)
1478 	struct tcp6_pseudohdr ip6;
1479 #endif
1480 };
1481 
1482 /* - pool: digest algorithm, hash description and scratch buffer */
1483 struct tcp_md5sig_pool {
1484 	struct ahash_request	*md5_req;
1485 	void			*scratch;
1486 };
1487 
1488 /* - functions */
1489 int tcp_v4_md5_hash_skb(char *md5_hash, const struct tcp_md5sig_key *key,
1490 			const struct sock *sk, const struct sk_buff *skb);
1491 int tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr,
1492 		   int family, u8 prefixlen, const u8 *newkey, u8 newkeylen,
1493 		   gfp_t gfp);
1494 int tcp_md5_do_del(struct sock *sk, const union tcp_md5_addr *addr,
1495 		   int family, u8 prefixlen);
1496 struct tcp_md5sig_key *tcp_v4_md5_lookup(const struct sock *sk,
1497 					 const struct sock *addr_sk);
1498 
1499 #ifdef CONFIG_TCP_MD5SIG
1500 struct tcp_md5sig_key *tcp_md5_do_lookup(const struct sock *sk,
1501 					 const union tcp_md5_addr *addr,
1502 					 int family);
1503 #define tcp_twsk_md5_key(twsk)	((twsk)->tw_md5_key)
1504 #else
1505 static inline struct tcp_md5sig_key *tcp_md5_do_lookup(const struct sock *sk,
1506 					 const union tcp_md5_addr *addr,
1507 					 int family)
1508 {
1509 	return NULL;
1510 }
1511 #define tcp_twsk_md5_key(twsk)	NULL
1512 #endif
1513 
1514 bool tcp_alloc_md5sig_pool(void);
1515 
1516 struct tcp_md5sig_pool *tcp_get_md5sig_pool(void);
1517 static inline void tcp_put_md5sig_pool(void)
1518 {
1519 	local_bh_enable();
1520 }
1521 
1522 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *, const struct sk_buff *,
1523 			  unsigned int header_len);
1524 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp,
1525 		     const struct tcp_md5sig_key *key);
1526 
1527 /* From tcp_fastopen.c */
1528 void tcp_fastopen_cache_get(struct sock *sk, u16 *mss,
1529 			    struct tcp_fastopen_cookie *cookie);
1530 void tcp_fastopen_cache_set(struct sock *sk, u16 mss,
1531 			    struct tcp_fastopen_cookie *cookie, bool syn_lost,
1532 			    u16 try_exp);
1533 struct tcp_fastopen_request {
1534 	/* Fast Open cookie. Size 0 means a cookie request */
1535 	struct tcp_fastopen_cookie	cookie;
1536 	struct msghdr			*data;  /* data in MSG_FASTOPEN */
1537 	size_t				size;
1538 	int				copied;	/* queued in tcp_connect() */
1539 };
1540 void tcp_free_fastopen_req(struct tcp_sock *tp);
1541 void tcp_fastopen_destroy_cipher(struct sock *sk);
1542 void tcp_fastopen_ctx_destroy(struct net *net);
1543 int tcp_fastopen_reset_cipher(struct net *net, struct sock *sk,
1544 			      void *key, unsigned int len);
1545 void tcp_fastopen_add_skb(struct sock *sk, struct sk_buff *skb);
1546 struct sock *tcp_try_fastopen(struct sock *sk, struct sk_buff *skb,
1547 			      struct request_sock *req,
1548 			      struct tcp_fastopen_cookie *foc,
1549 			      const struct dst_entry *dst);
1550 void tcp_fastopen_init_key_once(struct net *net);
1551 bool tcp_fastopen_cookie_check(struct sock *sk, u16 *mss,
1552 			     struct tcp_fastopen_cookie *cookie);
1553 bool tcp_fastopen_defer_connect(struct sock *sk, int *err);
1554 #define TCP_FASTOPEN_KEY_LENGTH 16
1555 
1556 /* Fastopen key context */
1557 struct tcp_fastopen_context {
1558 	struct crypto_cipher	*tfm;
1559 	__u8			key[TCP_FASTOPEN_KEY_LENGTH];
1560 	struct rcu_head		rcu;
1561 };
1562 
1563 extern unsigned int sysctl_tcp_fastopen_blackhole_timeout;
1564 void tcp_fastopen_active_disable(struct sock *sk);
1565 bool tcp_fastopen_active_should_disable(struct sock *sk);
1566 void tcp_fastopen_active_disable_ofo_check(struct sock *sk);
1567 void tcp_fastopen_active_detect_blackhole(struct sock *sk, bool expired);
1568 
1569 /* Latencies incurred by various limits for a sender. They are
1570  * chronograph-like stats that are mutually exclusive.
1571  */
1572 enum tcp_chrono {
1573 	TCP_CHRONO_UNSPEC,
1574 	TCP_CHRONO_BUSY, /* Actively sending data (non-empty write queue) */
1575 	TCP_CHRONO_RWND_LIMITED, /* Stalled by insufficient receive window */
1576 	TCP_CHRONO_SNDBUF_LIMITED, /* Stalled by insufficient send buffer */
1577 	__TCP_CHRONO_MAX,
1578 };
1579 
1580 void tcp_chrono_start(struct sock *sk, const enum tcp_chrono type);
1581 void tcp_chrono_stop(struct sock *sk, const enum tcp_chrono type);
1582 
1583 /* This helper is needed, because skb->tcp_tsorted_anchor uses
1584  * the same memory storage than skb->destructor/_skb_refdst
1585  */
1586 static inline void tcp_skb_tsorted_anchor_cleanup(struct sk_buff *skb)
1587 {
1588 	skb->destructor = NULL;
1589 	skb->_skb_refdst = 0UL;
1590 }
1591 
1592 #define tcp_skb_tsorted_save(skb) {		\
1593 	unsigned long _save = skb->_skb_refdst;	\
1594 	skb->_skb_refdst = 0UL;
1595 
1596 #define tcp_skb_tsorted_restore(skb)		\
1597 	skb->_skb_refdst = _save;		\
1598 }
1599 
1600 void tcp_write_queue_purge(struct sock *sk);
1601 
1602 static inline struct sk_buff *tcp_rtx_queue_head(const struct sock *sk)
1603 {
1604 	return skb_rb_first(&sk->tcp_rtx_queue);
1605 }
1606 
1607 static inline struct sk_buff *tcp_write_queue_head(const struct sock *sk)
1608 {
1609 	return skb_peek(&sk->sk_write_queue);
1610 }
1611 
1612 static inline struct sk_buff *tcp_write_queue_tail(const struct sock *sk)
1613 {
1614 	return skb_peek_tail(&sk->sk_write_queue);
1615 }
1616 
1617 #define tcp_for_write_queue_from_safe(skb, tmp, sk)			\
1618 	skb_queue_walk_from_safe(&(sk)->sk_write_queue, skb, tmp)
1619 
1620 static inline struct sk_buff *tcp_send_head(const struct sock *sk)
1621 {
1622 	return skb_peek(&sk->sk_write_queue);
1623 }
1624 
1625 static inline bool tcp_skb_is_last(const struct sock *sk,
1626 				   const struct sk_buff *skb)
1627 {
1628 	return skb_queue_is_last(&sk->sk_write_queue, skb);
1629 }
1630 
1631 static inline bool tcp_write_queue_empty(const struct sock *sk)
1632 {
1633 	return skb_queue_empty(&sk->sk_write_queue);
1634 }
1635 
1636 static inline bool tcp_rtx_queue_empty(const struct sock *sk)
1637 {
1638 	return RB_EMPTY_ROOT(&sk->tcp_rtx_queue);
1639 }
1640 
1641 static inline bool tcp_rtx_and_write_queues_empty(const struct sock *sk)
1642 {
1643 	return tcp_rtx_queue_empty(sk) && tcp_write_queue_empty(sk);
1644 }
1645 
1646 static inline void tcp_check_send_head(struct sock *sk, struct sk_buff *skb_unlinked)
1647 {
1648 	if (tcp_write_queue_empty(sk))
1649 		tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
1650 }
1651 
1652 static inline void __tcp_add_write_queue_tail(struct sock *sk, struct sk_buff *skb)
1653 {
1654 	__skb_queue_tail(&sk->sk_write_queue, skb);
1655 }
1656 
1657 static inline void tcp_add_write_queue_tail(struct sock *sk, struct sk_buff *skb)
1658 {
1659 	__tcp_add_write_queue_tail(sk, skb);
1660 
1661 	/* Queue it, remembering where we must start sending. */
1662 	if (sk->sk_write_queue.next == skb)
1663 		tcp_chrono_start(sk, TCP_CHRONO_BUSY);
1664 }
1665 
1666 /* Insert new before skb on the write queue of sk.  */
1667 static inline void tcp_insert_write_queue_before(struct sk_buff *new,
1668 						  struct sk_buff *skb,
1669 						  struct sock *sk)
1670 {
1671 	__skb_queue_before(&sk->sk_write_queue, skb, new);
1672 }
1673 
1674 static inline void tcp_unlink_write_queue(struct sk_buff *skb, struct sock *sk)
1675 {
1676 	tcp_skb_tsorted_anchor_cleanup(skb);
1677 	__skb_unlink(skb, &sk->sk_write_queue);
1678 }
1679 
1680 void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb);
1681 
1682 static inline void tcp_rtx_queue_unlink(struct sk_buff *skb, struct sock *sk)
1683 {
1684 	tcp_skb_tsorted_anchor_cleanup(skb);
1685 	rb_erase(&skb->rbnode, &sk->tcp_rtx_queue);
1686 }
1687 
1688 static inline void tcp_rtx_queue_unlink_and_free(struct sk_buff *skb, struct sock *sk)
1689 {
1690 	list_del(&skb->tcp_tsorted_anchor);
1691 	tcp_rtx_queue_unlink(skb, sk);
1692 	sk_wmem_free_skb(sk, skb);
1693 }
1694 
1695 static inline void tcp_push_pending_frames(struct sock *sk)
1696 {
1697 	if (tcp_send_head(sk)) {
1698 		struct tcp_sock *tp = tcp_sk(sk);
1699 
1700 		__tcp_push_pending_frames(sk, tcp_current_mss(sk), tp->nonagle);
1701 	}
1702 }
1703 
1704 /* Start sequence of the skb just after the highest skb with SACKed
1705  * bit, valid only if sacked_out > 0 or when the caller has ensured
1706  * validity by itself.
1707  */
1708 static inline u32 tcp_highest_sack_seq(struct tcp_sock *tp)
1709 {
1710 	if (!tp->sacked_out)
1711 		return tp->snd_una;
1712 
1713 	if (tp->highest_sack == NULL)
1714 		return tp->snd_nxt;
1715 
1716 	return TCP_SKB_CB(tp->highest_sack)->seq;
1717 }
1718 
1719 static inline void tcp_advance_highest_sack(struct sock *sk, struct sk_buff *skb)
1720 {
1721 	tcp_sk(sk)->highest_sack = skb_rb_next(skb);
1722 }
1723 
1724 static inline struct sk_buff *tcp_highest_sack(struct sock *sk)
1725 {
1726 	return tcp_sk(sk)->highest_sack;
1727 }
1728 
1729 static inline void tcp_highest_sack_reset(struct sock *sk)
1730 {
1731 	tcp_sk(sk)->highest_sack = tcp_rtx_queue_head(sk);
1732 }
1733 
1734 /* Called when old skb is about to be deleted and replaced by new skb */
1735 static inline void tcp_highest_sack_replace(struct sock *sk,
1736 					    struct sk_buff *old,
1737 					    struct sk_buff *new)
1738 {
1739 	if (old == tcp_highest_sack(sk))
1740 		tcp_sk(sk)->highest_sack = new;
1741 }
1742 
1743 /* This helper checks if socket has IP_TRANSPARENT set */
1744 static inline bool inet_sk_transparent(const struct sock *sk)
1745 {
1746 	switch (sk->sk_state) {
1747 	case TCP_TIME_WAIT:
1748 		return inet_twsk(sk)->tw_transparent;
1749 	case TCP_NEW_SYN_RECV:
1750 		return inet_rsk(inet_reqsk(sk))->no_srccheck;
1751 	}
1752 	return inet_sk(sk)->transparent;
1753 }
1754 
1755 /* Determines whether this is a thin stream (which may suffer from
1756  * increased latency). Used to trigger latency-reducing mechanisms.
1757  */
1758 static inline bool tcp_stream_is_thin(struct tcp_sock *tp)
1759 {
1760 	return tp->packets_out < 4 && !tcp_in_initial_slowstart(tp);
1761 }
1762 
1763 /* /proc */
1764 enum tcp_seq_states {
1765 	TCP_SEQ_STATE_LISTENING,
1766 	TCP_SEQ_STATE_ESTABLISHED,
1767 };
1768 
1769 void *tcp_seq_start(struct seq_file *seq, loff_t *pos);
1770 void *tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos);
1771 void tcp_seq_stop(struct seq_file *seq, void *v);
1772 
1773 struct tcp_seq_afinfo {
1774 	sa_family_t			family;
1775 };
1776 
1777 struct tcp_iter_state {
1778 	struct seq_net_private	p;
1779 	enum tcp_seq_states	state;
1780 	struct sock		*syn_wait_sk;
1781 	int			bucket, offset, sbucket, num;
1782 	loff_t			last_pos;
1783 };
1784 
1785 extern struct request_sock_ops tcp_request_sock_ops;
1786 extern struct request_sock_ops tcp6_request_sock_ops;
1787 
1788 void tcp_v4_destroy_sock(struct sock *sk);
1789 
1790 struct sk_buff *tcp_gso_segment(struct sk_buff *skb,
1791 				netdev_features_t features);
1792 struct sk_buff *tcp_gro_receive(struct list_head *head, struct sk_buff *skb);
1793 int tcp_gro_complete(struct sk_buff *skb);
1794 
1795 void __tcp_v4_send_check(struct sk_buff *skb, __be32 saddr, __be32 daddr);
1796 
1797 static inline u32 tcp_notsent_lowat(const struct tcp_sock *tp)
1798 {
1799 	struct net *net = sock_net((struct sock *)tp);
1800 	return tp->notsent_lowat ?: net->ipv4.sysctl_tcp_notsent_lowat;
1801 }
1802 
1803 static inline bool tcp_stream_memory_free(const struct sock *sk)
1804 {
1805 	const struct tcp_sock *tp = tcp_sk(sk);
1806 	u32 notsent_bytes = tp->write_seq - tp->snd_nxt;
1807 
1808 	return notsent_bytes < tcp_notsent_lowat(tp);
1809 }
1810 
1811 #ifdef CONFIG_PROC_FS
1812 int tcp4_proc_init(void);
1813 void tcp4_proc_exit(void);
1814 #endif
1815 
1816 int tcp_rtx_synack(const struct sock *sk, struct request_sock *req);
1817 int tcp_conn_request(struct request_sock_ops *rsk_ops,
1818 		     const struct tcp_request_sock_ops *af_ops,
1819 		     struct sock *sk, struct sk_buff *skb);
1820 
1821 /* TCP af-specific functions */
1822 struct tcp_sock_af_ops {
1823 #ifdef CONFIG_TCP_MD5SIG
1824 	struct tcp_md5sig_key	*(*md5_lookup) (const struct sock *sk,
1825 						const struct sock *addr_sk);
1826 	int		(*calc_md5_hash)(char *location,
1827 					 const struct tcp_md5sig_key *md5,
1828 					 const struct sock *sk,
1829 					 const struct sk_buff *skb);
1830 	int		(*md5_parse)(struct sock *sk,
1831 				     int optname,
1832 				     char __user *optval,
1833 				     int optlen);
1834 #endif
1835 };
1836 
1837 struct tcp_request_sock_ops {
1838 	u16 mss_clamp;
1839 #ifdef CONFIG_TCP_MD5SIG
1840 	struct tcp_md5sig_key *(*req_md5_lookup)(const struct sock *sk,
1841 						 const struct sock *addr_sk);
1842 	int		(*calc_md5_hash) (char *location,
1843 					  const struct tcp_md5sig_key *md5,
1844 					  const struct sock *sk,
1845 					  const struct sk_buff *skb);
1846 #endif
1847 	void (*init_req)(struct request_sock *req,
1848 			 const struct sock *sk_listener,
1849 			 struct sk_buff *skb);
1850 #ifdef CONFIG_SYN_COOKIES
1851 	__u32 (*cookie_init_seq)(const struct sk_buff *skb,
1852 				 __u16 *mss);
1853 #endif
1854 	struct dst_entry *(*route_req)(const struct sock *sk, struct flowi *fl,
1855 				       const struct request_sock *req);
1856 	u32 (*init_seq)(const struct sk_buff *skb);
1857 	u32 (*init_ts_off)(const struct net *net, const struct sk_buff *skb);
1858 	int (*send_synack)(const struct sock *sk, struct dst_entry *dst,
1859 			   struct flowi *fl, struct request_sock *req,
1860 			   struct tcp_fastopen_cookie *foc,
1861 			   enum tcp_synack_type synack_type);
1862 };
1863 
1864 #ifdef CONFIG_SYN_COOKIES
1865 static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops,
1866 					 const struct sock *sk, struct sk_buff *skb,
1867 					 __u16 *mss)
1868 {
1869 	tcp_synq_overflow(sk);
1870 	__NET_INC_STATS(sock_net(sk), LINUX_MIB_SYNCOOKIESSENT);
1871 	return ops->cookie_init_seq(skb, mss);
1872 }
1873 #else
1874 static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops,
1875 					 const struct sock *sk, struct sk_buff *skb,
1876 					 __u16 *mss)
1877 {
1878 	return 0;
1879 }
1880 #endif
1881 
1882 int tcpv4_offload_init(void);
1883 
1884 void tcp_v4_init(void);
1885 void tcp_init(void);
1886 
1887 /* tcp_recovery.c */
1888 void tcp_mark_skb_lost(struct sock *sk, struct sk_buff *skb);
1889 void tcp_newreno_mark_lost(struct sock *sk, bool snd_una_advanced);
1890 extern s32 tcp_rack_skb_timeout(struct tcp_sock *tp, struct sk_buff *skb,
1891 				u32 reo_wnd);
1892 extern void tcp_rack_mark_lost(struct sock *sk);
1893 extern void tcp_rack_advance(struct tcp_sock *tp, u8 sacked, u32 end_seq,
1894 			     u64 xmit_time);
1895 extern void tcp_rack_reo_timeout(struct sock *sk);
1896 extern void tcp_rack_update_reo_wnd(struct sock *sk, struct rate_sample *rs);
1897 
1898 /* At how many usecs into the future should the RTO fire? */
1899 static inline s64 tcp_rto_delta_us(const struct sock *sk)
1900 {
1901 	const struct sk_buff *skb = tcp_rtx_queue_head(sk);
1902 	u32 rto = inet_csk(sk)->icsk_rto;
1903 	u64 rto_time_stamp_us = skb->skb_mstamp + jiffies_to_usecs(rto);
1904 
1905 	return rto_time_stamp_us - tcp_sk(sk)->tcp_mstamp;
1906 }
1907 
1908 /*
1909  * Save and compile IPv4 options, return a pointer to it
1910  */
1911 static inline struct ip_options_rcu *tcp_v4_save_options(struct net *net,
1912 							 struct sk_buff *skb)
1913 {
1914 	const struct ip_options *opt = &TCP_SKB_CB(skb)->header.h4.opt;
1915 	struct ip_options_rcu *dopt = NULL;
1916 
1917 	if (opt->optlen) {
1918 		int opt_size = sizeof(*dopt) + opt->optlen;
1919 
1920 		dopt = kmalloc(opt_size, GFP_ATOMIC);
1921 		if (dopt && __ip_options_echo(net, &dopt->opt, skb, opt)) {
1922 			kfree(dopt);
1923 			dopt = NULL;
1924 		}
1925 	}
1926 	return dopt;
1927 }
1928 
1929 /* locally generated TCP pure ACKs have skb->truesize == 2
1930  * (check tcp_send_ack() in net/ipv4/tcp_output.c )
1931  * This is much faster than dissecting the packet to find out.
1932  * (Think of GRE encapsulations, IPv4, IPv6, ...)
1933  */
1934 static inline bool skb_is_tcp_pure_ack(const struct sk_buff *skb)
1935 {
1936 	return skb->truesize == 2;
1937 }
1938 
1939 static inline void skb_set_tcp_pure_ack(struct sk_buff *skb)
1940 {
1941 	skb->truesize = 2;
1942 }
1943 
1944 static inline int tcp_inq(struct sock *sk)
1945 {
1946 	struct tcp_sock *tp = tcp_sk(sk);
1947 	int answ;
1948 
1949 	if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) {
1950 		answ = 0;
1951 	} else if (sock_flag(sk, SOCK_URGINLINE) ||
1952 		   !tp->urg_data ||
1953 		   before(tp->urg_seq, tp->copied_seq) ||
1954 		   !before(tp->urg_seq, tp->rcv_nxt)) {
1955 
1956 		answ = tp->rcv_nxt - tp->copied_seq;
1957 
1958 		/* Subtract 1, if FIN was received */
1959 		if (answ && sock_flag(sk, SOCK_DONE))
1960 			answ--;
1961 	} else {
1962 		answ = tp->urg_seq - tp->copied_seq;
1963 	}
1964 
1965 	return answ;
1966 }
1967 
1968 int tcp_peek_len(struct socket *sock);
1969 
1970 static inline void tcp_segs_in(struct tcp_sock *tp, const struct sk_buff *skb)
1971 {
1972 	u16 segs_in;
1973 
1974 	segs_in = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
1975 	tp->segs_in += segs_in;
1976 	if (skb->len > tcp_hdrlen(skb))
1977 		tp->data_segs_in += segs_in;
1978 }
1979 
1980 /*
1981  * TCP listen path runs lockless.
1982  * We forced "struct sock" to be const qualified to make sure
1983  * we don't modify one of its field by mistake.
1984  * Here, we increment sk_drops which is an atomic_t, so we can safely
1985  * make sock writable again.
1986  */
1987 static inline void tcp_listendrop(const struct sock *sk)
1988 {
1989 	atomic_inc(&((struct sock *)sk)->sk_drops);
1990 	__NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENDROPS);
1991 }
1992 
1993 enum hrtimer_restart tcp_pace_kick(struct hrtimer *timer);
1994 
1995 /*
1996  * Interface for adding Upper Level Protocols over TCP
1997  */
1998 
1999 #define TCP_ULP_NAME_MAX	16
2000 #define TCP_ULP_MAX		128
2001 #define TCP_ULP_BUF_MAX		(TCP_ULP_NAME_MAX*TCP_ULP_MAX)
2002 
2003 enum {
2004 	TCP_ULP_TLS,
2005 	TCP_ULP_BPF,
2006 };
2007 
2008 struct tcp_ulp_ops {
2009 	struct list_head	list;
2010 
2011 	/* initialize ulp */
2012 	int (*init)(struct sock *sk);
2013 	/* cleanup ulp */
2014 	void (*release)(struct sock *sk);
2015 
2016 	int		uid;
2017 	char		name[TCP_ULP_NAME_MAX];
2018 	bool		user_visible;
2019 	struct module	*owner;
2020 };
2021 int tcp_register_ulp(struct tcp_ulp_ops *type);
2022 void tcp_unregister_ulp(struct tcp_ulp_ops *type);
2023 int tcp_set_ulp(struct sock *sk, const char *name);
2024 int tcp_set_ulp_id(struct sock *sk, const int ulp);
2025 void tcp_get_available_ulp(char *buf, size_t len);
2026 void tcp_cleanup_ulp(struct sock *sk);
2027 
2028 /* Call BPF_SOCK_OPS program that returns an int. If the return value
2029  * is < 0, then the BPF op failed (for example if the loaded BPF
2030  * program does not support the chosen operation or there is no BPF
2031  * program loaded).
2032  */
2033 #ifdef CONFIG_BPF
2034 static inline int tcp_call_bpf(struct sock *sk, int op, u32 nargs, u32 *args)
2035 {
2036 	struct bpf_sock_ops_kern sock_ops;
2037 	int ret;
2038 
2039 	memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
2040 	if (sk_fullsock(sk)) {
2041 		sock_ops.is_fullsock = 1;
2042 		sock_owned_by_me(sk);
2043 	}
2044 
2045 	sock_ops.sk = sk;
2046 	sock_ops.op = op;
2047 	if (nargs > 0)
2048 		memcpy(sock_ops.args, args, nargs * sizeof(*args));
2049 
2050 	ret = BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops);
2051 	if (ret == 0)
2052 		ret = sock_ops.reply;
2053 	else
2054 		ret = -1;
2055 	return ret;
2056 }
2057 
2058 static inline int tcp_call_bpf_2arg(struct sock *sk, int op, u32 arg1, u32 arg2)
2059 {
2060 	u32 args[2] = {arg1, arg2};
2061 
2062 	return tcp_call_bpf(sk, op, 2, args);
2063 }
2064 
2065 static inline int tcp_call_bpf_3arg(struct sock *sk, int op, u32 arg1, u32 arg2,
2066 				    u32 arg3)
2067 {
2068 	u32 args[3] = {arg1, arg2, arg3};
2069 
2070 	return tcp_call_bpf(sk, op, 3, args);
2071 }
2072 
2073 #else
2074 static inline int tcp_call_bpf(struct sock *sk, int op, u32 nargs, u32 *args)
2075 {
2076 	return -EPERM;
2077 }
2078 
2079 static inline int tcp_call_bpf_2arg(struct sock *sk, int op, u32 arg1, u32 arg2)
2080 {
2081 	return -EPERM;
2082 }
2083 
2084 static inline int tcp_call_bpf_3arg(struct sock *sk, int op, u32 arg1, u32 arg2,
2085 				    u32 arg3)
2086 {
2087 	return -EPERM;
2088 }
2089 
2090 #endif
2091 
2092 static inline u32 tcp_timeout_init(struct sock *sk)
2093 {
2094 	int timeout;
2095 
2096 	timeout = tcp_call_bpf(sk, BPF_SOCK_OPS_TIMEOUT_INIT, 0, NULL);
2097 
2098 	if (timeout <= 0)
2099 		timeout = TCP_TIMEOUT_INIT;
2100 	return timeout;
2101 }
2102 
2103 static inline u32 tcp_rwnd_init_bpf(struct sock *sk)
2104 {
2105 	int rwnd;
2106 
2107 	rwnd = tcp_call_bpf(sk, BPF_SOCK_OPS_RWND_INIT, 0, NULL);
2108 
2109 	if (rwnd < 0)
2110 		rwnd = 0;
2111 	return rwnd;
2112 }
2113 
2114 static inline bool tcp_bpf_ca_needs_ecn(struct sock *sk)
2115 {
2116 	return (tcp_call_bpf(sk, BPF_SOCK_OPS_NEEDS_ECN, 0, NULL) == 1);
2117 }
2118 
2119 #if IS_ENABLED(CONFIG_SMC)
2120 extern struct static_key_false tcp_have_smc;
2121 #endif
2122 
2123 #if IS_ENABLED(CONFIG_TLS_DEVICE)
2124 void clean_acked_data_enable(struct inet_connection_sock *icsk,
2125 			     void (*cad)(struct sock *sk, u32 ack_seq));
2126 void clean_acked_data_disable(struct inet_connection_sock *icsk);
2127 
2128 #endif
2129 
2130 #endif	/* _TCP_H */
2131