xref: /linux/include/net/tcp.h (revision 3f1c07fc21c68bd3bd2df9d2c9441f6485e934d9)
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Definitions for the TCP module.
8  *
9  * Version:	@(#)tcp.h	1.0.5	05/23/93
10  *
11  * Authors:	Ross Biro
12  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
13  */
14 #ifndef _TCP_H
15 #define _TCP_H
16 
17 #define FASTRETRANS_DEBUG 1
18 
19 #include <linux/list.h>
20 #include <linux/tcp.h>
21 #include <linux/bug.h>
22 #include <linux/slab.h>
23 #include <linux/cache.h>
24 #include <linux/percpu.h>
25 #include <linux/skbuff.h>
26 #include <linux/kref.h>
27 #include <linux/ktime.h>
28 #include <linux/indirect_call_wrapper.h>
29 #include <linux/bits.h>
30 
31 #include <net/inet_connection_sock.h>
32 #include <net/inet_timewait_sock.h>
33 #include <net/inet_hashtables.h>
34 #include <net/checksum.h>
35 #include <net/request_sock.h>
36 #include <net/sock_reuseport.h>
37 #include <net/sock.h>
38 #include <net/snmp.h>
39 #include <net/ip.h>
40 #include <net/tcp_states.h>
41 #include <net/tcp_ao.h>
42 #include <net/inet_ecn.h>
43 #include <net/dst.h>
44 #include <net/mptcp.h>
45 #include <net/xfrm.h>
46 
47 #include <linux/seq_file.h>
48 #include <linux/memcontrol.h>
49 #include <linux/bpf-cgroup.h>
50 #include <linux/siphash.h>
51 
52 extern struct inet_hashinfo tcp_hashinfo;
53 
54 DECLARE_PER_CPU(unsigned int, tcp_orphan_count);
55 int tcp_orphan_count_sum(void);
56 
tcp_orphan_count_inc(void)57 static inline void tcp_orphan_count_inc(void)
58 {
59 	this_cpu_inc(tcp_orphan_count);
60 }
61 
tcp_orphan_count_dec(void)62 static inline void tcp_orphan_count_dec(void)
63 {
64 	this_cpu_dec(tcp_orphan_count);
65 }
66 
67 DECLARE_PER_CPU(u32, tcp_tw_isn);
68 
69 void tcp_time_wait(struct sock *sk, int state, int timeo);
70 
71 #define MAX_TCP_HEADER	L1_CACHE_ALIGN(128 + MAX_HEADER)
72 #define MAX_TCP_OPTION_SPACE 40
73 #define TCP_MIN_SND_MSS		48
74 #define TCP_MIN_GSO_SIZE	(TCP_MIN_SND_MSS - MAX_TCP_OPTION_SPACE)
75 
76 /*
77  * Never offer a window over 32767 without using window scaling. Some
78  * poor stacks do signed 16bit maths!
79  */
80 #define MAX_TCP_WINDOW		32767U
81 
82 /* Minimal accepted MSS. It is (60+60+8) - (20+20). */
83 #define TCP_MIN_MSS		88U
84 
85 /* The initial MTU to use for probing */
86 #define TCP_BASE_MSS		1024
87 
88 /* probing interval, default to 10 minutes as per RFC4821 */
89 #define TCP_PROBE_INTERVAL	600
90 
91 /* Specify interval when tcp mtu probing will stop */
92 #define TCP_PROBE_THRESHOLD	8
93 
94 /* After receiving this amount of duplicate ACKs fast retransmit starts. */
95 #define TCP_FASTRETRANS_THRESH 3
96 
97 /* Maximal number of ACKs sent quickly to accelerate slow-start. */
98 #define TCP_MAX_QUICKACKS	16U
99 
100 /* Maximal number of window scale according to RFC1323 */
101 #define TCP_MAX_WSCALE		14U
102 
103 /* Default sending frequency of accurate ECN option per RTT */
104 #define TCP_ACCECN_OPTION_BEACON	3
105 
106 /* urg_data states */
107 #define TCP_URG_VALID	0x0100
108 #define TCP_URG_NOTYET	0x0200
109 #define TCP_URG_READ	0x0400
110 
111 #define TCP_RETR1	3	/*
112 				 * This is how many retries it does before it
113 				 * tries to figure out if the gateway is
114 				 * down. Minimal RFC value is 3; it corresponds
115 				 * to ~3sec-8min depending on RTO.
116 				 */
117 
118 #define TCP_RETR2	15	/*
119 				 * This should take at least
120 				 * 90 minutes to time out.
121 				 * RFC1122 says that the limit is 100 sec.
122 				 * 15 is ~13-30min depending on RTO.
123 				 */
124 
125 #define TCP_SYN_RETRIES	 6	/* This is how many retries are done
126 				 * when active opening a connection.
127 				 * RFC1122 says the minimum retry MUST
128 				 * be at least 180secs.  Nevertheless
129 				 * this value is corresponding to
130 				 * 63secs of retransmission with the
131 				 * current initial RTO.
132 				 */
133 
134 #define TCP_SYNACK_RETRIES 5	/* This is how may retries are done
135 				 * when passive opening a connection.
136 				 * This is corresponding to 31secs of
137 				 * retransmission with the current
138 				 * initial RTO.
139 				 */
140 
141 #define TCP_TIMEWAIT_LEN (60*HZ) /* how long to wait to destroy TIME-WAIT
142 				  * state, about 60 seconds	*/
143 #define TCP_FIN_TIMEOUT	TCP_TIMEWAIT_LEN
144                                  /* BSD style FIN_WAIT2 deadlock breaker.
145 				  * It used to be 3min, new value is 60sec,
146 				  * to combine FIN-WAIT-2 timeout with
147 				  * TIME-WAIT timer.
148 				  */
149 #define TCP_FIN_TIMEOUT_MAX (120 * HZ) /* max TCP_LINGER2 value (two minutes) */
150 
151 #define TCP_DELACK_MAX	((unsigned)(HZ/5))	/* maximal time to delay before sending an ACK */
152 static_assert((1 << ATO_BITS) > TCP_DELACK_MAX);
153 
154 #if HZ >= 100
155 #define TCP_DELACK_MIN	((unsigned)(HZ/25))	/* minimal time to delay before sending an ACK */
156 #define TCP_ATO_MIN	((unsigned)(HZ/25))
157 #else
158 #define TCP_DELACK_MIN	4U
159 #define TCP_ATO_MIN	4U
160 #endif
161 #define TCP_RTO_MAX_SEC 120
162 #define TCP_RTO_MAX	((unsigned)(TCP_RTO_MAX_SEC * HZ))
163 #define TCP_RTO_MIN	((unsigned)(HZ / 5))
164 #define TCP_TIMEOUT_MIN	(2U) /* Min timeout for TCP timers in jiffies */
165 
166 #define TCP_TIMEOUT_MIN_US (2*USEC_PER_MSEC) /* Min TCP timeout in microsecs */
167 
168 #define TCP_TIMEOUT_INIT ((unsigned)(1*HZ))	/* RFC6298 2.1 initial RTO value	*/
169 #define TCP_TIMEOUT_FALLBACK ((unsigned)(3*HZ))	/* RFC 1122 initial RTO value, now
170 						 * used as a fallback RTO for the
171 						 * initial data transmission if no
172 						 * valid RTT sample has been acquired,
173 						 * most likely due to retrans in 3WHS.
174 						 */
175 
176 #define TCP_RESOURCE_PROBE_INTERVAL ((unsigned)(HZ/2U)) /* Maximal interval between probes
177 					                 * for local resources.
178 					                 */
179 #define TCP_KEEPALIVE_TIME	(120*60*HZ)	/* two hours */
180 #define TCP_KEEPALIVE_PROBES	9		/* Max of 9 keepalive probes	*/
181 #define TCP_KEEPALIVE_INTVL	(75*HZ)
182 
183 #define MAX_TCP_KEEPIDLE	32767
184 #define MAX_TCP_KEEPINTVL	32767
185 #define MAX_TCP_KEEPCNT		127
186 #define MAX_TCP_SYNCNT		127
187 
188 /* Ensure that TCP PAWS checks are relaxed after ~2147 seconds
189  * to avoid overflows. This assumes a clock smaller than 1 Mhz.
190  * Default clock is 1 Khz, tcp_usec_ts uses 1 Mhz.
191  */
192 #define TCP_PAWS_WRAP (INT_MAX / USEC_PER_SEC)
193 
194 #define TCP_PAWS_MSL	60		/* Per-host timestamps are invalidated
195 					 * after this time. It should be equal
196 					 * (or greater than) TCP_TIMEWAIT_LEN
197 					 * to provide reliability equal to one
198 					 * provided by timewait state.
199 					 */
200 #define TCP_PAWS_WINDOW	1		/* Replay window for per-host
201 					 * timestamps. It must be less than
202 					 * minimal timewait lifetime.
203 					 */
204 /*
205  *	TCP option
206  */
207 
208 #define TCPOPT_NOP		1	/* Padding */
209 #define TCPOPT_EOL		0	/* End of options */
210 #define TCPOPT_MSS		2	/* Segment size negotiating */
211 #define TCPOPT_WINDOW		3	/* Window scaling */
212 #define TCPOPT_SACK_PERM        4       /* SACK Permitted */
213 #define TCPOPT_SACK             5       /* SACK Block */
214 #define TCPOPT_TIMESTAMP	8	/* Better RTT estimations/PAWS */
215 #define TCPOPT_MD5SIG		19	/* MD5 Signature (RFC2385) */
216 #define TCPOPT_AO		29	/* Authentication Option (RFC5925) */
217 #define TCPOPT_MPTCP		30	/* Multipath TCP (RFC6824) */
218 #define TCPOPT_FASTOPEN		34	/* Fast open (RFC7413) */
219 #define TCPOPT_ACCECN0		172	/* 0xAC: Accurate ECN Order 0 */
220 #define TCPOPT_ACCECN1		174	/* 0xAE: Accurate ECN Order 1 */
221 #define TCPOPT_EXP		254	/* Experimental */
222 /* Magic number to be after the option value for sharing TCP
223  * experimental options. See draft-ietf-tcpm-experimental-options-00.txt
224  */
225 #define TCPOPT_FASTOPEN_MAGIC	0xF989
226 #define TCPOPT_SMC_MAGIC	0xE2D4C3D9
227 
228 /*
229  *     TCP option lengths
230  */
231 
232 #define TCPOLEN_MSS            4
233 #define TCPOLEN_WINDOW         3
234 #define TCPOLEN_SACK_PERM      2
235 #define TCPOLEN_TIMESTAMP      10
236 #define TCPOLEN_MD5SIG         18
237 #define TCPOLEN_FASTOPEN_BASE  2
238 #define TCPOLEN_ACCECN_BASE    2
239 #define TCPOLEN_EXP_FASTOPEN_BASE  4
240 #define TCPOLEN_EXP_SMC_BASE   6
241 
242 /* But this is what stacks really send out. */
243 #define TCPOLEN_TSTAMP_ALIGNED		12
244 #define TCPOLEN_WSCALE_ALIGNED		4
245 #define TCPOLEN_SACKPERM_ALIGNED	4
246 #define TCPOLEN_SACK_BASE		2
247 #define TCPOLEN_SACK_BASE_ALIGNED	4
248 #define TCPOLEN_SACK_PERBLOCK		8
249 #define TCPOLEN_MD5SIG_ALIGNED		20
250 #define TCPOLEN_MSS_ALIGNED		4
251 #define TCPOLEN_EXP_SMC_BASE_ALIGNED	8
252 #define TCPOLEN_ACCECN_PERFIELD		3
253 
254 /* Maximum number of byte counters in AccECN option + size */
255 #define TCP_ACCECN_NUMFIELDS		3
256 #define TCP_ACCECN_MAXSIZE		(TCPOLEN_ACCECN_BASE + \
257 					 TCPOLEN_ACCECN_PERFIELD * \
258 					 TCP_ACCECN_NUMFIELDS)
259 #define TCP_ACCECN_SAFETY_SHIFT		1 /* SAFETY_FACTOR in accecn draft */
260 
261 /* Flags in tp->nonagle */
262 #define TCP_NAGLE_OFF		1	/* Nagle's algo is disabled */
263 #define TCP_NAGLE_CORK		2	/* Socket is corked	    */
264 #define TCP_NAGLE_PUSH		4	/* Cork is overridden for already queued data */
265 
266 /* TCP thin-stream limits */
267 #define TCP_THIN_LINEAR_RETRIES 6       /* After 6 linear retries, do exp. backoff */
268 
269 /* TCP initial congestion window as per rfc6928 */
270 #define TCP_INIT_CWND		10
271 
272 /* Bit Flags for sysctl_tcp_fastopen */
273 #define	TFO_CLIENT_ENABLE	1
274 #define	TFO_SERVER_ENABLE	2
275 #define	TFO_CLIENT_NO_COOKIE	4	/* Data in SYN w/o cookie option */
276 
277 /* Accept SYN data w/o any cookie option */
278 #define	TFO_SERVER_COOKIE_NOT_REQD	0x200
279 
280 /* Force enable TFO on all listeners, i.e., not requiring the
281  * TCP_FASTOPEN socket option.
282  */
283 #define	TFO_SERVER_WO_SOCKOPT1	0x400
284 
285 
286 /* sysctl variables for tcp */
287 extern int sysctl_tcp_max_orphans;
288 extern long sysctl_tcp_mem[3];
289 
290 #define TCP_RACK_LOSS_DETECTION  0x1 /* Use RACK to detect losses */
291 #define TCP_RACK_STATIC_REO_WND  0x2 /* Use static RACK reo wnd */
292 #define TCP_RACK_NO_DUPTHRESH    0x4 /* Do not use DUPACK threshold in RACK */
293 
294 DECLARE_PER_CPU(int, tcp_memory_per_cpu_fw_alloc);
295 
296 extern struct percpu_counter tcp_sockets_allocated;
297 extern unsigned long tcp_memory_pressure;
298 
299 /* optimized version of sk_under_memory_pressure() for TCP sockets */
tcp_under_memory_pressure(const struct sock * sk)300 static inline bool tcp_under_memory_pressure(const struct sock *sk)
301 {
302 	if (mem_cgroup_sk_enabled(sk) &&
303 	    mem_cgroup_sk_under_memory_pressure(sk))
304 		return true;
305 
306 	if (sk->sk_bypass_prot_mem)
307 		return false;
308 
309 	return READ_ONCE(tcp_memory_pressure);
310 }
311 /*
312  * The next routines deal with comparing 32 bit unsigned ints
313  * and worry about wraparound (automatic with unsigned arithmetic).
314  */
315 
before(__u32 seq1,__u32 seq2)316 static inline bool before(__u32 seq1, __u32 seq2)
317 {
318         return (__s32)(seq1-seq2) < 0;
319 }
320 #define after(seq2, seq1) 	before(seq1, seq2)
321 
322 /* is s2<=s1<=s3 ? */
between(__u32 seq1,__u32 seq2,__u32 seq3)323 static inline bool between(__u32 seq1, __u32 seq2, __u32 seq3)
324 {
325 	return seq3 - seq2 >= seq1 - seq2;
326 }
327 
tcp_wmem_free_skb(struct sock * sk,struct sk_buff * skb)328 static inline void tcp_wmem_free_skb(struct sock *sk, struct sk_buff *skb)
329 {
330 	sk_wmem_queued_add(sk, -skb->truesize);
331 	if (!skb_zcopy_pure(skb))
332 		sk_mem_uncharge(sk, skb->truesize);
333 	else
334 		sk_mem_uncharge(sk, SKB_TRUESIZE(skb_end_offset(skb)));
335 	__kfree_skb(skb);
336 }
337 
338 void sk_forced_mem_schedule(struct sock *sk, int size);
339 
340 bool tcp_check_oom(const struct sock *sk, int shift);
341 
342 
343 extern struct proto tcp_prot;
344 
345 #define TCP_INC_STATS(net, field)	SNMP_INC_STATS((net)->mib.tcp_statistics, field)
346 #define __TCP_INC_STATS(net, field)	__SNMP_INC_STATS((net)->mib.tcp_statistics, field)
347 #define TCP_DEC_STATS(net, field)	SNMP_DEC_STATS((net)->mib.tcp_statistics, field)
348 #define TCP_ADD_STATS(net, field, val)	SNMP_ADD_STATS((net)->mib.tcp_statistics, field, val)
349 
350 void tcp_tsq_work_init(void);
351 
352 int tcp_v4_err(struct sk_buff *skb, u32);
353 
354 void tcp_shutdown(struct sock *sk, int how);
355 
356 int tcp_v4_early_demux(struct sk_buff *skb);
357 int tcp_v4_rcv(struct sk_buff *skb);
358 
359 void tcp_remove_empty_skb(struct sock *sk);
360 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size);
361 int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size);
362 int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg, int *copied,
363 			 size_t size, struct ubuf_info *uarg);
364 void tcp_splice_eof(struct socket *sock);
365 int tcp_send_mss(struct sock *sk, int *size_goal, int flags);
366 int tcp_wmem_schedule(struct sock *sk, int copy);
367 void tcp_push(struct sock *sk, int flags, int mss_now, int nonagle,
368 	      int size_goal);
369 void tcp_release_cb(struct sock *sk);
370 void tcp_wfree(struct sk_buff *skb);
371 void tcp_write_timer_handler(struct sock *sk);
372 void tcp_delack_timer_handler(struct sock *sk);
373 int tcp_ioctl(struct sock *sk, int cmd, int *karg);
374 enum skb_drop_reason tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb);
375 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb);
376 void tcp_rcvbuf_grow(struct sock *sk, u32 newval);
377 void tcp_rcv_space_adjust(struct sock *sk);
378 int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp);
379 void tcp_twsk_destructor(struct sock *sk);
380 void tcp_twsk_purge(struct list_head *net_exit_list);
381 ssize_t tcp_splice_read(struct socket *sk, loff_t *ppos,
382 			struct pipe_inode_info *pipe, size_t len,
383 			unsigned int flags);
384 struct sk_buff *tcp_stream_alloc_skb(struct sock *sk, gfp_t gfp,
385 				     bool force_schedule);
386 
tcp_dec_quickack_mode(struct sock * sk)387 static inline void tcp_dec_quickack_mode(struct sock *sk)
388 {
389 	struct inet_connection_sock *icsk = inet_csk(sk);
390 
391 	if (icsk->icsk_ack.quick) {
392 		/* How many ACKs S/ACKing new data have we sent? */
393 		const unsigned int pkts = inet_csk_ack_scheduled(sk) ? 1 : 0;
394 
395 		if (pkts >= icsk->icsk_ack.quick) {
396 			icsk->icsk_ack.quick = 0;
397 			/* Leaving quickack mode we deflate ATO. */
398 			icsk->icsk_ack.ato   = TCP_ATO_MIN;
399 		} else
400 			icsk->icsk_ack.quick -= pkts;
401 	}
402 }
403 
404 #define	TCP_ECN_MODE_RFC3168	BIT(0)
405 #define	TCP_ECN_QUEUE_CWR	BIT(1)
406 #define	TCP_ECN_DEMAND_CWR	BIT(2)
407 #define	TCP_ECN_SEEN		BIT(3)
408 #define	TCP_ECN_MODE_ACCECN	BIT(4)
409 
410 #define	TCP_ECN_DISABLED	0
411 #define	TCP_ECN_MODE_PENDING	(TCP_ECN_MODE_RFC3168 | TCP_ECN_MODE_ACCECN)
412 #define	TCP_ECN_MODE_ANY	(TCP_ECN_MODE_RFC3168 | TCP_ECN_MODE_ACCECN)
413 
tcp_ecn_mode_any(const struct tcp_sock * tp)414 static inline bool tcp_ecn_mode_any(const struct tcp_sock *tp)
415 {
416 	return tp->ecn_flags & TCP_ECN_MODE_ANY;
417 }
418 
tcp_ecn_mode_rfc3168(const struct tcp_sock * tp)419 static inline bool tcp_ecn_mode_rfc3168(const struct tcp_sock *tp)
420 {
421 	return (tp->ecn_flags & TCP_ECN_MODE_ANY) == TCP_ECN_MODE_RFC3168;
422 }
423 
tcp_ecn_mode_accecn(const struct tcp_sock * tp)424 static inline bool tcp_ecn_mode_accecn(const struct tcp_sock *tp)
425 {
426 	return (tp->ecn_flags & TCP_ECN_MODE_ANY) == TCP_ECN_MODE_ACCECN;
427 }
428 
tcp_ecn_disabled(const struct tcp_sock * tp)429 static inline bool tcp_ecn_disabled(const struct tcp_sock *tp)
430 {
431 	return !tcp_ecn_mode_any(tp);
432 }
433 
tcp_ecn_mode_pending(const struct tcp_sock * tp)434 static inline bool tcp_ecn_mode_pending(const struct tcp_sock *tp)
435 {
436 	return (tp->ecn_flags & TCP_ECN_MODE_PENDING) == TCP_ECN_MODE_PENDING;
437 }
438 
tcp_ecn_mode_set(struct tcp_sock * tp,u8 mode)439 static inline void tcp_ecn_mode_set(struct tcp_sock *tp, u8 mode)
440 {
441 	tp->ecn_flags &= ~TCP_ECN_MODE_ANY;
442 	tp->ecn_flags |= mode;
443 }
444 
445 enum tcp_tw_status {
446 	TCP_TW_SUCCESS = 0,
447 	TCP_TW_RST = 1,
448 	TCP_TW_ACK = 2,
449 	TCP_TW_SYN = 3,
450 	TCP_TW_ACK_OOW = 4
451 };
452 
453 
454 enum tcp_tw_status tcp_timewait_state_process(struct inet_timewait_sock *tw,
455 					      struct sk_buff *skb,
456 					      const struct tcphdr *th,
457 					      u32 *tw_isn,
458 					      enum skb_drop_reason *drop_reason);
459 struct sock *tcp_check_req(struct sock *sk, struct sk_buff *skb,
460 			   struct request_sock *req, bool fastopen,
461 			   bool *lost_race, enum skb_drop_reason *drop_reason);
462 enum skb_drop_reason tcp_child_process(struct sock *parent, struct sock *child,
463 				       struct sk_buff *skb);
464 void tcp_enter_loss(struct sock *sk);
465 void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int newly_lost, int flag);
466 void tcp_clear_retrans(struct tcp_sock *tp);
467 void tcp_update_pacing_rate(struct sock *sk);
468 void tcp_set_rto(struct sock *sk);
469 void tcp_update_metrics(struct sock *sk);
470 void tcp_init_metrics(struct sock *sk);
471 void tcp_metrics_init(void);
472 bool tcp_peer_is_proven(struct request_sock *req, struct dst_entry *dst);
473 void __tcp_close(struct sock *sk, long timeout);
474 void tcp_close(struct sock *sk, long timeout);
475 void tcp_init_sock(struct sock *sk);
476 void tcp_init_transfer(struct sock *sk, int bpf_op, struct sk_buff *skb);
477 __poll_t tcp_poll(struct file *file, struct socket *sock,
478 		      struct poll_table_struct *wait);
479 int do_tcp_getsockopt(struct sock *sk, int level,
480 		      int optname, sockptr_t optval, sockptr_t optlen);
481 int tcp_getsockopt(struct sock *sk, int level, int optname,
482 		   char __user *optval, int __user *optlen);
483 bool tcp_bpf_bypass_getsockopt(int level, int optname);
484 int do_tcp_setsockopt(struct sock *sk, int level, int optname,
485 		      sockptr_t optval, unsigned int optlen);
486 int tcp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval,
487 		   unsigned int optlen);
488 void tcp_reset_keepalive_timer(struct sock *sk, unsigned long timeout);
489 void tcp_set_keepalive(struct sock *sk, int val);
490 void tcp_syn_ack_timeout(const struct request_sock *req);
491 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len,
492 		int flags, int *addr_len);
493 int tcp_set_rcvlowat(struct sock *sk, int val);
494 int tcp_set_window_clamp(struct sock *sk, int val);
495 void tcp_update_recv_tstamps(struct sk_buff *skb,
496 			     struct scm_timestamping_internal *tss);
497 void tcp_recv_timestamp(struct msghdr *msg, const struct sock *sk,
498 			struct scm_timestamping_internal *tss);
499 void tcp_data_ready(struct sock *sk);
500 #ifdef CONFIG_MMU
501 int tcp_mmap(struct file *file, struct socket *sock,
502 	     struct vm_area_struct *vma);
503 #endif
504 void tcp_parse_options(const struct net *net, const struct sk_buff *skb,
505 		       struct tcp_options_received *opt_rx,
506 		       int estab, struct tcp_fastopen_cookie *foc);
507 
508 /*
509  *	BPF SKB-less helpers
510  */
511 u16 tcp_v4_get_syncookie(struct sock *sk, struct iphdr *iph,
512 			 struct tcphdr *th, u32 *cookie);
513 u16 tcp_v6_get_syncookie(struct sock *sk, struct ipv6hdr *iph,
514 			 struct tcphdr *th, u32 *cookie);
515 u16 tcp_parse_mss_option(const struct tcphdr *th, u16 user_mss);
516 u16 tcp_get_syncookie_mss(struct request_sock_ops *rsk_ops,
517 			  const struct tcp_request_sock_ops *af_ops,
518 			  struct sock *sk, struct tcphdr *th);
519 /*
520  *	TCP v4 functions exported for the inet6 API
521  */
522 
523 void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb);
524 void tcp_v4_mtu_reduced(struct sock *sk);
525 void tcp_req_err(struct sock *sk, u32 seq, bool abort);
526 void tcp_ld_RTO_revert(struct sock *sk, u32 seq);
527 int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb);
528 struct sock *tcp_create_openreq_child(const struct sock *sk,
529 				      struct request_sock *req,
530 				      struct sk_buff *skb);
531 void tcp_ca_openreq_child(struct sock *sk, const struct dst_entry *dst);
532 struct sock *tcp_v4_syn_recv_sock(const struct sock *sk, struct sk_buff *skb,
533 				  struct request_sock *req,
534 				  struct dst_entry *dst,
535 				  struct request_sock *req_unhash,
536 				  bool *own_req);
537 int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb);
538 int tcp_v4_connect(struct sock *sk, struct sockaddr_unsized *uaddr, int addr_len);
539 int tcp_connect(struct sock *sk);
540 enum tcp_synack_type {
541 	TCP_SYNACK_NORMAL,
542 	TCP_SYNACK_FASTOPEN,
543 	TCP_SYNACK_COOKIE,
544 };
545 struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst,
546 				struct request_sock *req,
547 				struct tcp_fastopen_cookie *foc,
548 				enum tcp_synack_type synack_type,
549 				struct sk_buff *syn_skb);
550 int tcp_disconnect(struct sock *sk, int flags);
551 
552 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb);
553 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size);
554 void inet_sk_rx_dst_set(struct sock *sk, const struct sk_buff *skb);
555 
556 /* From syncookies.c */
557 struct sock *tcp_get_cookie_sock(struct sock *sk, struct sk_buff *skb,
558 				 struct request_sock *req,
559 				 struct dst_entry *dst);
560 int __cookie_v4_check(const struct iphdr *iph, const struct tcphdr *th);
561 struct sock *cookie_v4_check(struct sock *sk, struct sk_buff *skb);
562 struct request_sock *cookie_tcp_reqsk_alloc(const struct request_sock_ops *ops,
563 					    struct sock *sk, struct sk_buff *skb,
564 					    struct tcp_options_received *tcp_opt,
565 					    int mss, u32 tsoff);
566 
567 #if IS_ENABLED(CONFIG_BPF)
568 struct bpf_tcp_req_attrs {
569 	u32 rcv_tsval;
570 	u32 rcv_tsecr;
571 	u16 mss;
572 	u8 rcv_wscale;
573 	u8 snd_wscale;
574 	u8 ecn_ok;
575 	u8 wscale_ok;
576 	u8 sack_ok;
577 	u8 tstamp_ok;
578 	u8 usec_ts_ok;
579 	u8 reserved[3];
580 };
581 #endif
582 
583 #ifdef CONFIG_SYN_COOKIES
584 
585 /* Syncookies use a monotonic timer which increments every 60 seconds.
586  * This counter is used both as a hash input and partially encoded into
587  * the cookie value.  A cookie is only validated further if the delta
588  * between the current counter value and the encoded one is less than this,
589  * i.e. a sent cookie is valid only at most for 2*60 seconds (or less if
590  * the counter advances immediately after a cookie is generated).
591  */
592 #define MAX_SYNCOOKIE_AGE	2
593 #define TCP_SYNCOOKIE_PERIOD	(60 * HZ)
594 #define TCP_SYNCOOKIE_VALID	(MAX_SYNCOOKIE_AGE * TCP_SYNCOOKIE_PERIOD)
595 
596 /* syncookies: remember time of last synqueue overflow
597  * But do not dirty this field too often (once per second is enough)
598  * It is racy as we do not hold a lock, but race is very minor.
599  */
tcp_synq_overflow(const struct sock * sk)600 static inline void tcp_synq_overflow(const struct sock *sk)
601 {
602 	unsigned int last_overflow;
603 	unsigned int now = jiffies;
604 
605 	if (sk->sk_reuseport) {
606 		struct sock_reuseport *reuse;
607 
608 		reuse = rcu_dereference(sk->sk_reuseport_cb);
609 		if (likely(reuse)) {
610 			last_overflow = READ_ONCE(reuse->synq_overflow_ts);
611 			if (!time_between32(now, last_overflow,
612 					    last_overflow + HZ))
613 				WRITE_ONCE(reuse->synq_overflow_ts, now);
614 			return;
615 		}
616 	}
617 
618 	last_overflow = READ_ONCE(tcp_sk(sk)->rx_opt.ts_recent_stamp);
619 	if (!time_between32(now, last_overflow, last_overflow + HZ))
620 		WRITE_ONCE(tcp_sk_rw(sk)->rx_opt.ts_recent_stamp, now);
621 }
622 
623 /* syncookies: no recent synqueue overflow on this listening socket? */
tcp_synq_no_recent_overflow(const struct sock * sk)624 static inline bool tcp_synq_no_recent_overflow(const struct sock *sk)
625 {
626 	unsigned int last_overflow;
627 	unsigned int now = jiffies;
628 
629 	if (sk->sk_reuseport) {
630 		struct sock_reuseport *reuse;
631 
632 		reuse = rcu_dereference(sk->sk_reuseport_cb);
633 		if (likely(reuse)) {
634 			last_overflow = READ_ONCE(reuse->synq_overflow_ts);
635 			return !time_between32(now, last_overflow - HZ,
636 					       last_overflow +
637 					       TCP_SYNCOOKIE_VALID);
638 		}
639 	}
640 
641 	last_overflow = READ_ONCE(tcp_sk(sk)->rx_opt.ts_recent_stamp);
642 
643 	/* If last_overflow <= jiffies <= last_overflow + TCP_SYNCOOKIE_VALID,
644 	 * then we're under synflood. However, we have to use
645 	 * 'last_overflow - HZ' as lower bound. That's because a concurrent
646 	 * tcp_synq_overflow() could update .ts_recent_stamp after we read
647 	 * jiffies but before we store .ts_recent_stamp into last_overflow,
648 	 * which could lead to rejecting a valid syncookie.
649 	 */
650 	return !time_between32(now, last_overflow - HZ,
651 			       last_overflow + TCP_SYNCOOKIE_VALID);
652 }
653 
tcp_cookie_time(void)654 static inline u32 tcp_cookie_time(void)
655 {
656 	u64 val = get_jiffies_64();
657 
658 	do_div(val, TCP_SYNCOOKIE_PERIOD);
659 	return val;
660 }
661 
662 /* Convert one nsec 64bit timestamp to ts (ms or usec resolution) */
tcp_ns_to_ts(bool usec_ts,u64 val)663 static inline u64 tcp_ns_to_ts(bool usec_ts, u64 val)
664 {
665 	if (usec_ts)
666 		return div_u64(val, NSEC_PER_USEC);
667 
668 	return div_u64(val, NSEC_PER_MSEC);
669 }
670 
671 u32 __cookie_v4_init_sequence(const struct iphdr *iph, const struct tcphdr *th,
672 			      u16 *mssp);
673 __u32 cookie_v4_init_sequence(const struct sk_buff *skb, __u16 *mss);
674 u64 cookie_init_timestamp(struct request_sock *req, u64 now);
675 bool cookie_timestamp_decode(const struct net *net,
676 			     struct tcp_options_received *opt);
677 
cookie_ecn_ok(const struct net * net,const struct dst_entry * dst)678 static inline bool cookie_ecn_ok(const struct net *net, const struct dst_entry *dst)
679 {
680 	return READ_ONCE(net->ipv4.sysctl_tcp_ecn) ||
681 		dst_feature(dst, RTAX_FEATURE_ECN);
682 }
683 
684 #if IS_ENABLED(CONFIG_BPF)
cookie_bpf_ok(struct sk_buff * skb)685 static inline bool cookie_bpf_ok(struct sk_buff *skb)
686 {
687 	return skb->sk;
688 }
689 
690 struct request_sock *cookie_bpf_check(struct sock *sk, struct sk_buff *skb);
691 #else
cookie_bpf_ok(struct sk_buff * skb)692 static inline bool cookie_bpf_ok(struct sk_buff *skb)
693 {
694 	return false;
695 }
696 
cookie_bpf_check(struct net * net,struct sock * sk,struct sk_buff * skb)697 static inline struct request_sock *cookie_bpf_check(struct net *net, struct sock *sk,
698 						    struct sk_buff *skb)
699 {
700 	return NULL;
701 }
702 #endif
703 
704 /* From net/ipv6/syncookies.c */
705 int __cookie_v6_check(const struct ipv6hdr *iph, const struct tcphdr *th);
706 struct sock *cookie_v6_check(struct sock *sk, struct sk_buff *skb);
707 
708 u32 __cookie_v6_init_sequence(const struct ipv6hdr *iph,
709 			      const struct tcphdr *th, u16 *mssp);
710 __u32 cookie_v6_init_sequence(const struct sk_buff *skb, __u16 *mss);
711 #endif
712 /* tcp_output.c */
713 
714 void tcp_skb_entail(struct sock *sk, struct sk_buff *skb);
715 void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb);
716 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
717 			       int nonagle);
718 int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs);
719 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs);
720 void tcp_retransmit_timer(struct sock *sk);
721 void tcp_xmit_retransmit_queue(struct sock *);
722 void tcp_simple_retransmit(struct sock *);
723 void tcp_enter_recovery(struct sock *sk, bool ece_ack);
724 int tcp_trim_head(struct sock *, struct sk_buff *, u32);
725 enum tcp_queue {
726 	TCP_FRAG_IN_WRITE_QUEUE,
727 	TCP_FRAG_IN_RTX_QUEUE,
728 };
729 int tcp_fragment(struct sock *sk, enum tcp_queue tcp_queue,
730 		 struct sk_buff *skb, u32 len,
731 		 unsigned int mss_now, gfp_t gfp);
732 
733 void tcp_send_probe0(struct sock *);
734 int tcp_write_wakeup(struct sock *, int mib);
735 void tcp_send_fin(struct sock *sk);
736 void tcp_send_active_reset(struct sock *sk, gfp_t priority,
737 			   enum sk_rst_reason reason);
738 int tcp_send_synack(struct sock *);
739 void tcp_push_one(struct sock *, unsigned int mss_now);
740 void __tcp_send_ack(struct sock *sk, u32 rcv_nxt, u16 flags);
741 void tcp_send_ack(struct sock *sk);
742 void tcp_send_delayed_ack(struct sock *sk);
743 void tcp_send_loss_probe(struct sock *sk);
744 bool tcp_schedule_loss_probe(struct sock *sk, bool advancing_rto);
745 void tcp_skb_collapse_tstamp(struct sk_buff *skb,
746 			     const struct sk_buff *next_skb);
747 
748 /* tcp_input.c */
749 void tcp_rearm_rto(struct sock *sk);
750 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req);
751 void tcp_done_with_error(struct sock *sk, int err);
752 void tcp_reset(struct sock *sk, struct sk_buff *skb);
753 void tcp_fin(struct sock *sk);
754 void tcp_check_space(struct sock *sk);
755 void tcp_sack_compress_send_ack(struct sock *sk);
756 
tcp_cleanup_skb(struct sk_buff * skb)757 static inline void tcp_cleanup_skb(struct sk_buff *skb)
758 {
759 	skb_dst_drop(skb);
760 	secpath_reset(skb);
761 }
762 
tcp_add_receive_queue(struct sock * sk,struct sk_buff * skb)763 static inline void tcp_add_receive_queue(struct sock *sk, struct sk_buff *skb)
764 {
765 	DEBUG_NET_WARN_ON_ONCE(skb_dst(skb));
766 	DEBUG_NET_WARN_ON_ONCE(secpath_exists(skb));
767 	__skb_queue_tail(&sk->sk_receive_queue, skb);
768 }
769 
770 /* tcp_timer.c */
771 void tcp_init_xmit_timers(struct sock *);
tcp_clear_xmit_timers(struct sock * sk)772 static inline void tcp_clear_xmit_timers(struct sock *sk)
773 {
774 	if (hrtimer_try_to_cancel(&tcp_sk(sk)->pacing_timer) == 1)
775 		__sock_put(sk);
776 
777 	if (hrtimer_try_to_cancel(&tcp_sk(sk)->compressed_ack_timer) == 1)
778 		__sock_put(sk);
779 
780 	inet_csk_clear_xmit_timers(sk);
781 }
782 
783 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu);
784 unsigned int tcp_current_mss(struct sock *sk);
785 u32 tcp_clamp_probe0_to_user_timeout(const struct sock *sk, u32 when);
786 
787 /* Bound MSS / TSO packet size with the half of the window */
tcp_bound_to_half_wnd(struct tcp_sock * tp,int pktsize)788 static inline int tcp_bound_to_half_wnd(struct tcp_sock *tp, int pktsize)
789 {
790 	int cutoff;
791 
792 	/* When peer uses tiny windows, there is no use in packetizing
793 	 * to sub-MSS pieces for the sake of SWS or making sure there
794 	 * are enough packets in the pipe for fast recovery.
795 	 *
796 	 * On the other hand, for extremely large MSS devices, handling
797 	 * smaller than MSS windows in this way does make sense.
798 	 */
799 	if (tp->max_window > TCP_MSS_DEFAULT)
800 		cutoff = (tp->max_window >> 1);
801 	else
802 		cutoff = tp->max_window;
803 
804 	if (cutoff && pktsize > cutoff)
805 		return max_t(int, cutoff, 68U - tp->tcp_header_len);
806 	else
807 		return pktsize;
808 }
809 
810 /* tcp.c */
811 void tcp_get_info(struct sock *, struct tcp_info *);
812 
813 /* Read 'sendfile()'-style from a TCP socket */
814 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
815 		  sk_read_actor_t recv_actor);
816 int tcp_read_sock_noack(struct sock *sk, read_descriptor_t *desc,
817 			sk_read_actor_t recv_actor, bool noack,
818 			u32 *copied_seq);
819 int tcp_read_skb(struct sock *sk, skb_read_actor_t recv_actor);
820 struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off);
821 void tcp_read_done(struct sock *sk, size_t len);
822 
823 void tcp_initialize_rcv_mss(struct sock *sk);
824 
825 int tcp_mtu_to_mss(struct sock *sk, int pmtu);
826 int tcp_mss_to_mtu(struct sock *sk, int mss);
827 void tcp_mtup_init(struct sock *sk);
828 
tcp_rto_max(const struct sock * sk)829 static inline unsigned int tcp_rto_max(const struct sock *sk)
830 {
831 	return READ_ONCE(inet_csk(sk)->icsk_rto_max);
832 }
833 
tcp_bound_rto(struct sock * sk)834 static inline void tcp_bound_rto(struct sock *sk)
835 {
836 	inet_csk(sk)->icsk_rto = min(inet_csk(sk)->icsk_rto, tcp_rto_max(sk));
837 }
838 
__tcp_set_rto(const struct tcp_sock * tp)839 static inline u32 __tcp_set_rto(const struct tcp_sock *tp)
840 {
841 	return usecs_to_jiffies((tp->srtt_us >> 3) + tp->rttvar_us);
842 }
843 
tcp_reqsk_timeout(struct request_sock * req)844 static inline unsigned long tcp_reqsk_timeout(struct request_sock *req)
845 {
846 	u64 timeout = (u64)req->timeout << req->num_timeout;
847 
848 	return (unsigned long)min_t(u64, timeout,
849 				    tcp_rto_max(req->rsk_listener));
850 }
851 
852 u32 tcp_delack_max(const struct sock *sk);
853 
854 /* Compute the actual rto_min value */
tcp_rto_min(const struct sock * sk)855 static inline u32 tcp_rto_min(const struct sock *sk)
856 {
857 	const struct dst_entry *dst = __sk_dst_get(sk);
858 	u32 rto_min = READ_ONCE(inet_csk(sk)->icsk_rto_min);
859 
860 	if (dst && dst_metric_locked(dst, RTAX_RTO_MIN))
861 		rto_min = dst_metric_rtt(dst, RTAX_RTO_MIN);
862 	return rto_min;
863 }
864 
tcp_rto_min_us(const struct sock * sk)865 static inline u32 tcp_rto_min_us(const struct sock *sk)
866 {
867 	return jiffies_to_usecs(tcp_rto_min(sk));
868 }
869 
tcp_ca_dst_locked(const struct dst_entry * dst)870 static inline bool tcp_ca_dst_locked(const struct dst_entry *dst)
871 {
872 	return dst_metric_locked(dst, RTAX_CC_ALGO);
873 }
874 
875 /* Minimum RTT in usec. ~0 means not available. */
tcp_min_rtt(const struct tcp_sock * tp)876 static inline u32 tcp_min_rtt(const struct tcp_sock *tp)
877 {
878 	return minmax_get(&tp->rtt_min);
879 }
880 
881 /* Compute the actual receive window we are currently advertising.
882  * Rcv_nxt can be after the window if our peer push more data
883  * than the offered window.
884  */
tcp_receive_window(const struct tcp_sock * tp)885 static inline u32 tcp_receive_window(const struct tcp_sock *tp)
886 {
887 	s32 win = tp->rcv_wup + tp->rcv_wnd - tp->rcv_nxt;
888 
889 	if (win < 0)
890 		win = 0;
891 	return (u32) win;
892 }
893 
894 /* Choose a new window, without checks for shrinking, and without
895  * scaling applied to the result.  The caller does these things
896  * if necessary.  This is a "raw" window selection.
897  */
898 u32 __tcp_select_window(struct sock *sk);
899 
900 void tcp_send_window_probe(struct sock *sk);
901 
902 /* TCP uses 32bit jiffies to save some space.
903  * Note that this is different from tcp_time_stamp, which
904  * historically has been the same until linux-4.13.
905  */
906 #define tcp_jiffies32 ((u32)jiffies)
907 
908 /*
909  * Deliver a 32bit value for TCP timestamp option (RFC 7323)
910  * It is no longer tied to jiffies, but to 1 ms clock.
911  * Note: double check if you want to use tcp_jiffies32 instead of this.
912  */
913 #define TCP_TS_HZ	1000
914 
tcp_clock_ns(void)915 static inline u64 tcp_clock_ns(void)
916 {
917 	return ktime_get_ns();
918 }
919 
tcp_clock_us(void)920 static inline u64 tcp_clock_us(void)
921 {
922 	return div_u64(tcp_clock_ns(), NSEC_PER_USEC);
923 }
924 
tcp_clock_ms(void)925 static inline u64 tcp_clock_ms(void)
926 {
927 	return div_u64(tcp_clock_ns(), NSEC_PER_MSEC);
928 }
929 
930 /* TCP Timestamp included in TS option (RFC 1323) can either use ms
931  * or usec resolution. Each socket carries a flag to select one or other
932  * resolution, as the route attribute could change anytime.
933  * Each flow must stick to initial resolution.
934  */
tcp_clock_ts(bool usec_ts)935 static inline u32 tcp_clock_ts(bool usec_ts)
936 {
937 	return usec_ts ? tcp_clock_us() : tcp_clock_ms();
938 }
939 
tcp_time_stamp_ms(const struct tcp_sock * tp)940 static inline u32 tcp_time_stamp_ms(const struct tcp_sock *tp)
941 {
942 	return div_u64(tp->tcp_mstamp, USEC_PER_MSEC);
943 }
944 
tcp_time_stamp_ts(const struct tcp_sock * tp)945 static inline u32 tcp_time_stamp_ts(const struct tcp_sock *tp)
946 {
947 	if (tp->tcp_usec_ts)
948 		return tp->tcp_mstamp;
949 	return tcp_time_stamp_ms(tp);
950 }
951 
952 void tcp_mstamp_refresh(struct tcp_sock *tp);
953 
tcp_stamp_us_delta(u64 t1,u64 t0)954 static inline u32 tcp_stamp_us_delta(u64 t1, u64 t0)
955 {
956 	return max_t(s64, t1 - t0, 0);
957 }
958 
959 /* provide the departure time in us unit */
tcp_skb_timestamp_us(const struct sk_buff * skb)960 static inline u64 tcp_skb_timestamp_us(const struct sk_buff *skb)
961 {
962 	return div_u64(skb->skb_mstamp_ns, NSEC_PER_USEC);
963 }
964 
965 /* Provide skb TSval in usec or ms unit */
tcp_skb_timestamp_ts(bool usec_ts,const struct sk_buff * skb)966 static inline u32 tcp_skb_timestamp_ts(bool usec_ts, const struct sk_buff *skb)
967 {
968 	if (usec_ts)
969 		return tcp_skb_timestamp_us(skb);
970 
971 	return div_u64(skb->skb_mstamp_ns, NSEC_PER_MSEC);
972 }
973 
tcp_tw_tsval(const struct tcp_timewait_sock * tcptw)974 static inline u32 tcp_tw_tsval(const struct tcp_timewait_sock *tcptw)
975 {
976 	return tcp_clock_ts(tcptw->tw_sk.tw_usec_ts) + tcptw->tw_ts_offset;
977 }
978 
tcp_rsk_tsval(const struct tcp_request_sock * treq)979 static inline u32 tcp_rsk_tsval(const struct tcp_request_sock *treq)
980 {
981 	return tcp_clock_ts(treq->req_usec_ts) + treq->ts_off;
982 }
983 
984 #define tcp_flag_byte(th) (((u_int8_t *)th)[13])
985 
986 #define TCPHDR_FIN	BIT(0)
987 #define TCPHDR_SYN	BIT(1)
988 #define TCPHDR_RST	BIT(2)
989 #define TCPHDR_PSH	BIT(3)
990 #define TCPHDR_ACK	BIT(4)
991 #define TCPHDR_URG	BIT(5)
992 #define TCPHDR_ECE	BIT(6)
993 #define TCPHDR_CWR	BIT(7)
994 #define TCPHDR_AE	BIT(8)
995 #define TCPHDR_FLAGS_MASK (TCPHDR_FIN | TCPHDR_SYN | TCPHDR_RST | \
996 			   TCPHDR_PSH | TCPHDR_ACK | TCPHDR_URG | \
997 			   TCPHDR_ECE | TCPHDR_CWR | TCPHDR_AE)
998 #define tcp_flags_ntohs(th) (ntohs(*(__be16 *)&tcp_flag_word(th)) & \
999 			    TCPHDR_FLAGS_MASK)
1000 
1001 #define TCPHDR_ACE (TCPHDR_ECE | TCPHDR_CWR | TCPHDR_AE)
1002 #define TCPHDR_SYN_ECN	(TCPHDR_SYN | TCPHDR_ECE | TCPHDR_CWR)
1003 #define TCPHDR_SYNACK_ACCECN (TCPHDR_SYN | TCPHDR_ACK | TCPHDR_CWR)
1004 
1005 #define TCP_ACCECN_CEP_ACE_MASK 0x7
1006 #define TCP_ACCECN_ACE_MAX_DELTA 6
1007 
1008 /* To avoid/detect middlebox interference, not all counters start at 0.
1009  * See draft-ietf-tcpm-accurate-ecn for the latest values.
1010  */
1011 #define TCP_ACCECN_CEP_INIT_OFFSET 5
1012 #define TCP_ACCECN_E1B_INIT_OFFSET 1
1013 #define TCP_ACCECN_E0B_INIT_OFFSET 1
1014 #define TCP_ACCECN_CEB_INIT_OFFSET 0
1015 
1016 /* State flags for sacked in struct tcp_skb_cb */
1017 enum tcp_skb_cb_sacked_flags {
1018 	TCPCB_SACKED_ACKED	= (1 << 0),	/* SKB ACK'd by a SACK block	*/
1019 	TCPCB_SACKED_RETRANS	= (1 << 1),	/* SKB retransmitted		*/
1020 	TCPCB_LOST		= (1 << 2),	/* SKB is lost			*/
1021 	TCPCB_TAGBITS		= (TCPCB_SACKED_ACKED | TCPCB_SACKED_RETRANS |
1022 				   TCPCB_LOST),	/* All tag bits			*/
1023 	TCPCB_REPAIRED		= (1 << 4),	/* SKB repaired (no skb_mstamp_ns)	*/
1024 	TCPCB_EVER_RETRANS	= (1 << 7),	/* Ever retransmitted frame	*/
1025 	TCPCB_RETRANS		= (TCPCB_SACKED_RETRANS | TCPCB_EVER_RETRANS |
1026 				   TCPCB_REPAIRED),
1027 };
1028 
1029 /* This is what the send packet queuing engine uses to pass
1030  * TCP per-packet control information to the transmission code.
1031  * We also store the host-order sequence numbers in here too.
1032  * This is 44 bytes if IPV6 is enabled.
1033  * If this grows please adjust skbuff.h:skbuff->cb[xxx] size appropriately.
1034  */
1035 struct tcp_skb_cb {
1036 	__u32		seq;		/* Starting sequence number	*/
1037 	__u32		end_seq;	/* SEQ + FIN + SYN + datalen	*/
1038 	union {
1039 		/* Note :
1040 		 * 	  tcp_gso_segs/size are used in write queue only,
1041 		 *	  cf tcp_skb_pcount()/tcp_skb_mss()
1042 		 */
1043 		struct {
1044 			u16	tcp_gso_segs;
1045 			u16	tcp_gso_size;
1046 		};
1047 	};
1048 	__u16		tcp_flags;	/* TCP header flags (tcp[12-13])*/
1049 
1050 	__u8		sacked;		/* State flags for SACK.	*/
1051 	__u8		ip_dsfield;	/* IPv4 tos or IPv6 dsfield	*/
1052 #define TSTAMP_ACK_SK	0x1
1053 #define TSTAMP_ACK_BPF	0x2
1054 	__u8		txstamp_ack:2,	/* Record TX timestamp for ack? */
1055 			eor:1,		/* Is skb MSG_EOR marked? */
1056 			has_rxtstamp:1,	/* SKB has a RX timestamp	*/
1057 			unused:4;
1058 	__u32		ack_seq;	/* Sequence number ACK'd	*/
1059 	union {
1060 		struct {
1061 #define TCPCB_DELIVERED_CE_MASK ((1U<<20) - 1)
1062 			/* There is space for up to 24 bytes */
1063 			__u32 is_app_limited:1, /* cwnd not fully used? */
1064 			      delivered_ce:20,
1065 			      unused:11;
1066 			/* pkts S/ACKed so far upon tx of skb, incl retrans: */
1067 			__u32 delivered;
1068 			/* start of send pipeline phase */
1069 			u64 first_tx_mstamp;
1070 			/* when we reached the "delivered" count */
1071 			u64 delivered_mstamp;
1072 		} tx;   /* only used for outgoing skbs */
1073 		union {
1074 			struct inet_skb_parm	h4;
1075 #if IS_ENABLED(CONFIG_IPV6)
1076 			struct inet6_skb_parm	h6;
1077 #endif
1078 		} header;	/* For incoming skbs */
1079 	};
1080 };
1081 
1082 #define TCP_SKB_CB(__skb)	((struct tcp_skb_cb *)&((__skb)->cb[0]))
1083 
1084 extern const struct inet_connection_sock_af_ops ipv4_specific;
1085 
1086 #if IS_ENABLED(CONFIG_IPV6)
1087 /* This is the variant of inet6_iif() that must be used by TCP,
1088  * as TCP moves IP6CB into a different location in skb->cb[]
1089  */
tcp_v6_iif(const struct sk_buff * skb)1090 static inline int tcp_v6_iif(const struct sk_buff *skb)
1091 {
1092 	return TCP_SKB_CB(skb)->header.h6.iif;
1093 }
1094 
tcp_v6_iif_l3_slave(const struct sk_buff * skb)1095 static inline int tcp_v6_iif_l3_slave(const struct sk_buff *skb)
1096 {
1097 	bool l3_slave = ipv6_l3mdev_skb(TCP_SKB_CB(skb)->header.h6.flags);
1098 
1099 	return l3_slave ? skb->skb_iif : TCP_SKB_CB(skb)->header.h6.iif;
1100 }
1101 
1102 /* TCP_SKB_CB reference means this can not be used from early demux */
tcp_v6_sdif(const struct sk_buff * skb)1103 static inline int tcp_v6_sdif(const struct sk_buff *skb)
1104 {
1105 #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
1106 	if (skb && ipv6_l3mdev_skb(TCP_SKB_CB(skb)->header.h6.flags))
1107 		return TCP_SKB_CB(skb)->header.h6.iif;
1108 #endif
1109 	return 0;
1110 }
1111 
1112 extern const struct inet_connection_sock_af_ops ipv6_specific;
1113 
1114 INDIRECT_CALLABLE_DECLARE(void tcp_v6_send_check(struct sock *sk, struct sk_buff *skb));
1115 INDIRECT_CALLABLE_DECLARE(int tcp_v6_rcv(struct sk_buff *skb));
1116 void tcp_v6_early_demux(struct sk_buff *skb);
1117 
1118 #endif
1119 
1120 /* TCP_SKB_CB reference means this can not be used from early demux */
tcp_v4_sdif(struct sk_buff * skb)1121 static inline int tcp_v4_sdif(struct sk_buff *skb)
1122 {
1123 #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
1124 	if (skb && ipv4_l3mdev_skb(TCP_SKB_CB(skb)->header.h4.flags))
1125 		return TCP_SKB_CB(skb)->header.h4.iif;
1126 #endif
1127 	return 0;
1128 }
1129 
1130 /* Due to TSO, an SKB can be composed of multiple actual
1131  * packets.  To keep these tracked properly, we use this.
1132  */
tcp_skb_pcount(const struct sk_buff * skb)1133 static inline int tcp_skb_pcount(const struct sk_buff *skb)
1134 {
1135 	return TCP_SKB_CB(skb)->tcp_gso_segs;
1136 }
1137 
tcp_skb_pcount_set(struct sk_buff * skb,int segs)1138 static inline void tcp_skb_pcount_set(struct sk_buff *skb, int segs)
1139 {
1140 	TCP_SKB_CB(skb)->tcp_gso_segs = segs;
1141 }
1142 
tcp_skb_pcount_add(struct sk_buff * skb,int segs)1143 static inline void tcp_skb_pcount_add(struct sk_buff *skb, int segs)
1144 {
1145 	TCP_SKB_CB(skb)->tcp_gso_segs += segs;
1146 }
1147 
1148 /* This is valid iff skb is in write queue and tcp_skb_pcount() > 1. */
tcp_skb_mss(const struct sk_buff * skb)1149 static inline int tcp_skb_mss(const struct sk_buff *skb)
1150 {
1151 	return TCP_SKB_CB(skb)->tcp_gso_size;
1152 }
1153 
tcp_skb_can_collapse_to(const struct sk_buff * skb)1154 static inline bool tcp_skb_can_collapse_to(const struct sk_buff *skb)
1155 {
1156 	return likely(!TCP_SKB_CB(skb)->eor);
1157 }
1158 
tcp_skb_can_collapse(const struct sk_buff * to,const struct sk_buff * from)1159 static inline bool tcp_skb_can_collapse(const struct sk_buff *to,
1160 					const struct sk_buff *from)
1161 {
1162 	/* skb_cmp_decrypted() not needed, use tcp_write_collapse_fence() */
1163 	return likely(tcp_skb_can_collapse_to(to) &&
1164 		      mptcp_skb_can_collapse(to, from) &&
1165 		      skb_pure_zcopy_same(to, from) &&
1166 		      skb_frags_readable(to) == skb_frags_readable(from));
1167 }
1168 
tcp_skb_can_collapse_rx(const struct sk_buff * to,const struct sk_buff * from)1169 static inline bool tcp_skb_can_collapse_rx(const struct sk_buff *to,
1170 					   const struct sk_buff *from)
1171 {
1172 	return likely(mptcp_skb_can_collapse(to, from) &&
1173 		      !skb_cmp_decrypted(to, from));
1174 }
1175 
1176 /* Events passed to congestion control interface */
1177 enum tcp_ca_event {
1178 	CA_EVENT_TX_START,	/* first transmit when no packets in flight */
1179 	CA_EVENT_CWND_RESTART,	/* congestion window restart */
1180 	CA_EVENT_COMPLETE_CWR,	/* end of congestion recovery */
1181 	CA_EVENT_LOSS,		/* loss timeout */
1182 	CA_EVENT_ECN_NO_CE,	/* ECT set, but not CE marked */
1183 	CA_EVENT_ECN_IS_CE,	/* received CE marked IP packet */
1184 };
1185 
1186 /* Information about inbound ACK, passed to cong_ops->in_ack_event() */
1187 enum tcp_ca_ack_event_flags {
1188 	CA_ACK_SLOWPATH		= (1 << 0),	/* In slow path processing */
1189 	CA_ACK_WIN_UPDATE	= (1 << 1),	/* ACK updated window */
1190 	CA_ACK_ECE		= (1 << 2),	/* ECE bit is set on ack */
1191 };
1192 
1193 /*
1194  * Interface for adding new TCP congestion control handlers
1195  */
1196 #define TCP_CA_NAME_MAX	16
1197 #define TCP_CA_MAX	128
1198 #define TCP_CA_BUF_MAX	(TCP_CA_NAME_MAX*TCP_CA_MAX)
1199 
1200 #define TCP_CA_UNSPEC	0
1201 
1202 /* Algorithm can be set on socket without CAP_NET_ADMIN privileges */
1203 #define TCP_CONG_NON_RESTRICTED		BIT(0)
1204 /* Requires ECN/ECT set on all packets */
1205 #define TCP_CONG_NEEDS_ECN		BIT(1)
1206 #define TCP_CONG_MASK	(TCP_CONG_NON_RESTRICTED | TCP_CONG_NEEDS_ECN)
1207 
1208 union tcp_cc_info;
1209 
1210 struct ack_sample {
1211 	u32 pkts_acked;
1212 	s32 rtt_us;
1213 	u32 in_flight;
1214 };
1215 
1216 /* A rate sample measures the number of (original/retransmitted) data
1217  * packets delivered "delivered" over an interval of time "interval_us".
1218  * The tcp_rate.c code fills in the rate sample, and congestion
1219  * control modules that define a cong_control function to run at the end
1220  * of ACK processing can optionally chose to consult this sample when
1221  * setting cwnd and pacing rate.
1222  * A sample is invalid if "delivered" or "interval_us" is negative.
1223  */
1224 struct rate_sample {
1225 	u64  prior_mstamp; /* starting timestamp for interval */
1226 	u32  prior_delivered;	/* tp->delivered at "prior_mstamp" */
1227 	u32  prior_delivered_ce;/* tp->delivered_ce at "prior_mstamp" */
1228 	s32  delivered;		/* number of packets delivered over interval */
1229 	s32  delivered_ce;	/* number of packets delivered w/ CE marks*/
1230 	long interval_us;	/* time for tp->delivered to incr "delivered" */
1231 	u32 snd_interval_us;	/* snd interval for delivered packets */
1232 	u32 rcv_interval_us;	/* rcv interval for delivered packets */
1233 	long rtt_us;		/* RTT of last (S)ACKed packet (or -1) */
1234 	int  losses;		/* number of packets marked lost upon ACK */
1235 	u32  acked_sacked;	/* number of packets newly (S)ACKed upon ACK */
1236 	u32  prior_in_flight;	/* in flight before this ACK */
1237 	u32  last_end_seq;	/* end_seq of most recently ACKed packet */
1238 	bool is_app_limited;	/* is sample from packet with bubble in pipe? */
1239 	bool is_retrans;	/* is sample from retransmission? */
1240 	bool is_ack_delayed;	/* is this (likely) a delayed ACK? */
1241 };
1242 
1243 struct tcp_congestion_ops {
1244 /* fast path fields are put first to fill one cache line */
1245 
1246 	/* return slow start threshold (required) */
1247 	u32 (*ssthresh)(struct sock *sk);
1248 
1249 	/* do new cwnd calculation (required) */
1250 	void (*cong_avoid)(struct sock *sk, u32 ack, u32 acked);
1251 
1252 	/* call before changing ca_state (optional) */
1253 	void (*set_state)(struct sock *sk, u8 new_state);
1254 
1255 	/* call when cwnd event occurs (optional) */
1256 	void (*cwnd_event)(struct sock *sk, enum tcp_ca_event ev);
1257 
1258 	/* call when ack arrives (optional) */
1259 	void (*in_ack_event)(struct sock *sk, u32 flags);
1260 
1261 	/* hook for packet ack accounting (optional) */
1262 	void (*pkts_acked)(struct sock *sk, const struct ack_sample *sample);
1263 
1264 	/* override sysctl_tcp_min_tso_segs */
1265 	u32 (*min_tso_segs)(struct sock *sk);
1266 
1267 	/* call when packets are delivered to update cwnd and pacing rate,
1268 	 * after all the ca_state processing. (optional)
1269 	 */
1270 	void (*cong_control)(struct sock *sk, u32 ack, int flag, const struct rate_sample *rs);
1271 
1272 
1273 	/* new value of cwnd after loss (required) */
1274 	u32  (*undo_cwnd)(struct sock *sk);
1275 	/* returns the multiplier used in tcp_sndbuf_expand (optional) */
1276 	u32 (*sndbuf_expand)(struct sock *sk);
1277 
1278 /* control/slow paths put last */
1279 	/* get info for inet_diag (optional) */
1280 	size_t (*get_info)(struct sock *sk, u32 ext, int *attr,
1281 			   union tcp_cc_info *info);
1282 
1283 	char 			name[TCP_CA_NAME_MAX];
1284 	struct module		*owner;
1285 	struct list_head	list;
1286 	u32			key;
1287 	u32			flags;
1288 
1289 	/* initialize private data (optional) */
1290 	void (*init)(struct sock *sk);
1291 	/* cleanup private data  (optional) */
1292 	void (*release)(struct sock *sk);
1293 } ____cacheline_aligned_in_smp;
1294 
1295 int tcp_register_congestion_control(struct tcp_congestion_ops *type);
1296 void tcp_unregister_congestion_control(struct tcp_congestion_ops *type);
1297 int tcp_update_congestion_control(struct tcp_congestion_ops *type,
1298 				  struct tcp_congestion_ops *old_type);
1299 int tcp_validate_congestion_control(struct tcp_congestion_ops *ca);
1300 
1301 void tcp_assign_congestion_control(struct sock *sk);
1302 void tcp_init_congestion_control(struct sock *sk);
1303 void tcp_cleanup_congestion_control(struct sock *sk);
1304 int tcp_set_default_congestion_control(struct net *net, const char *name);
1305 void tcp_get_default_congestion_control(struct net *net, char *name);
1306 void tcp_get_available_congestion_control(char *buf, size_t len);
1307 void tcp_get_allowed_congestion_control(char *buf, size_t len);
1308 int tcp_set_allowed_congestion_control(char *allowed);
1309 int tcp_set_congestion_control(struct sock *sk, const char *name, bool load,
1310 			       bool cap_net_admin);
1311 u32 tcp_slow_start(struct tcp_sock *tp, u32 acked);
1312 void tcp_cong_avoid_ai(struct tcp_sock *tp, u32 w, u32 acked);
1313 
1314 u32 tcp_reno_ssthresh(struct sock *sk);
1315 u32 tcp_reno_undo_cwnd(struct sock *sk);
1316 void tcp_reno_cong_avoid(struct sock *sk, u32 ack, u32 acked);
1317 extern struct tcp_congestion_ops tcp_reno;
1318 
1319 struct tcp_congestion_ops *tcp_ca_find(const char *name);
1320 struct tcp_congestion_ops *tcp_ca_find_key(u32 key);
1321 u32 tcp_ca_get_key_by_name(const char *name, bool *ecn_ca);
1322 #ifdef CONFIG_INET
1323 char *tcp_ca_get_name_by_key(u32 key, char *buffer);
1324 #else
tcp_ca_get_name_by_key(u32 key,char * buffer)1325 static inline char *tcp_ca_get_name_by_key(u32 key, char *buffer)
1326 {
1327 	return NULL;
1328 }
1329 #endif
1330 
tcp_ca_needs_ecn(const struct sock * sk)1331 static inline bool tcp_ca_needs_ecn(const struct sock *sk)
1332 {
1333 	const struct inet_connection_sock *icsk = inet_csk(sk);
1334 
1335 	return icsk->icsk_ca_ops->flags & TCP_CONG_NEEDS_ECN;
1336 }
1337 
tcp_ca_event(struct sock * sk,const enum tcp_ca_event event)1338 static inline void tcp_ca_event(struct sock *sk, const enum tcp_ca_event event)
1339 {
1340 	const struct inet_connection_sock *icsk = inet_csk(sk);
1341 
1342 	if (icsk->icsk_ca_ops->cwnd_event)
1343 		icsk->icsk_ca_ops->cwnd_event(sk, event);
1344 }
1345 
1346 /* From tcp_cong.c */
1347 void tcp_set_ca_state(struct sock *sk, const u8 ca_state);
1348 
1349 /* From tcp_rate.c */
1350 void tcp_rate_skb_sent(struct sock *sk, struct sk_buff *skb);
1351 void tcp_rate_skb_delivered(struct sock *sk, struct sk_buff *skb,
1352 			    struct rate_sample *rs);
1353 void tcp_rate_gen(struct sock *sk, u32 delivered, u32 lost,
1354 		  bool is_sack_reneg, struct rate_sample *rs);
1355 void tcp_rate_check_app_limited(struct sock *sk);
1356 
tcp_skb_sent_after(u64 t1,u64 t2,u32 seq1,u32 seq2)1357 static inline bool tcp_skb_sent_after(u64 t1, u64 t2, u32 seq1, u32 seq2)
1358 {
1359 	return t1 > t2 || (t1 == t2 && after(seq1, seq2));
1360 }
1361 
1362 /* These functions determine how the current flow behaves in respect of SACK
1363  * handling. SACK is negotiated with the peer, and therefore it can vary
1364  * between different flows.
1365  *
1366  * tcp_is_sack - SACK enabled
1367  * tcp_is_reno - No SACK
1368  */
tcp_is_sack(const struct tcp_sock * tp)1369 static inline int tcp_is_sack(const struct tcp_sock *tp)
1370 {
1371 	return likely(tp->rx_opt.sack_ok);
1372 }
1373 
tcp_is_reno(const struct tcp_sock * tp)1374 static inline bool tcp_is_reno(const struct tcp_sock *tp)
1375 {
1376 	return !tcp_is_sack(tp);
1377 }
1378 
tcp_left_out(const struct tcp_sock * tp)1379 static inline unsigned int tcp_left_out(const struct tcp_sock *tp)
1380 {
1381 	return tp->sacked_out + tp->lost_out;
1382 }
1383 
1384 /* This determines how many packets are "in the network" to the best
1385  * of our knowledge.  In many cases it is conservative, but where
1386  * detailed information is available from the receiver (via SACK
1387  * blocks etc.) we can make more aggressive calculations.
1388  *
1389  * Use this for decisions involving congestion control, use just
1390  * tp->packets_out to determine if the send queue is empty or not.
1391  *
1392  * Read this equation as:
1393  *
1394  *	"Packets sent once on transmission queue" MINUS
1395  *	"Packets left network, but not honestly ACKed yet" PLUS
1396  *	"Packets fast retransmitted"
1397  */
tcp_packets_in_flight(const struct tcp_sock * tp)1398 static inline unsigned int tcp_packets_in_flight(const struct tcp_sock *tp)
1399 {
1400 	return tp->packets_out - tcp_left_out(tp) + tp->retrans_out;
1401 }
1402 
1403 #define TCP_INFINITE_SSTHRESH	0x7fffffff
1404 
tcp_snd_cwnd(const struct tcp_sock * tp)1405 static inline u32 tcp_snd_cwnd(const struct tcp_sock *tp)
1406 {
1407 	return tp->snd_cwnd;
1408 }
1409 
tcp_snd_cwnd_set(struct tcp_sock * tp,u32 val)1410 static inline void tcp_snd_cwnd_set(struct tcp_sock *tp, u32 val)
1411 {
1412 	WARN_ON_ONCE((int)val <= 0);
1413 	tp->snd_cwnd = val;
1414 }
1415 
tcp_in_slow_start(const struct tcp_sock * tp)1416 static inline bool tcp_in_slow_start(const struct tcp_sock *tp)
1417 {
1418 	return tcp_snd_cwnd(tp) < tp->snd_ssthresh;
1419 }
1420 
tcp_in_initial_slowstart(const struct tcp_sock * tp)1421 static inline bool tcp_in_initial_slowstart(const struct tcp_sock *tp)
1422 {
1423 	return tp->snd_ssthresh >= TCP_INFINITE_SSTHRESH;
1424 }
1425 
tcp_in_cwnd_reduction(const struct sock * sk)1426 static inline bool tcp_in_cwnd_reduction(const struct sock *sk)
1427 {
1428 	return (TCPF_CA_CWR | TCPF_CA_Recovery) &
1429 	       (1 << inet_csk(sk)->icsk_ca_state);
1430 }
1431 
1432 /* If cwnd > ssthresh, we may raise ssthresh to be half-way to cwnd.
1433  * The exception is cwnd reduction phase, when cwnd is decreasing towards
1434  * ssthresh.
1435  */
tcp_current_ssthresh(const struct sock * sk)1436 static inline __u32 tcp_current_ssthresh(const struct sock *sk)
1437 {
1438 	const struct tcp_sock *tp = tcp_sk(sk);
1439 
1440 	if (tcp_in_cwnd_reduction(sk))
1441 		return tp->snd_ssthresh;
1442 	else
1443 		return max(tp->snd_ssthresh,
1444 			   ((tcp_snd_cwnd(tp) >> 1) +
1445 			    (tcp_snd_cwnd(tp) >> 2)));
1446 }
1447 
1448 /* Use define here intentionally to get WARN_ON location shown at the caller */
1449 #define tcp_verify_left_out(tp)	WARN_ON(tcp_left_out(tp) > tp->packets_out)
1450 
1451 void tcp_enter_cwr(struct sock *sk);
1452 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst);
1453 
1454 /* The maximum number of MSS of available cwnd for which TSO defers
1455  * sending if not using sysctl_tcp_tso_win_divisor.
1456  */
tcp_max_tso_deferred_mss(const struct tcp_sock * tp)1457 static inline __u32 tcp_max_tso_deferred_mss(const struct tcp_sock *tp)
1458 {
1459 	return 3;
1460 }
1461 
1462 /* Returns end sequence number of the receiver's advertised window */
tcp_wnd_end(const struct tcp_sock * tp)1463 static inline u32 tcp_wnd_end(const struct tcp_sock *tp)
1464 {
1465 	return tp->snd_una + tp->snd_wnd;
1466 }
1467 
1468 /* We follow the spirit of RFC2861 to validate cwnd but implement a more
1469  * flexible approach. The RFC suggests cwnd should not be raised unless
1470  * it was fully used previously. And that's exactly what we do in
1471  * congestion avoidance mode. But in slow start we allow cwnd to grow
1472  * as long as the application has used half the cwnd.
1473  * Example :
1474  *    cwnd is 10 (IW10), but application sends 9 frames.
1475  *    We allow cwnd to reach 18 when all frames are ACKed.
1476  * This check is safe because it's as aggressive as slow start which already
1477  * risks 100% overshoot. The advantage is that we discourage application to
1478  * either send more filler packets or data to artificially blow up the cwnd
1479  * usage, and allow application-limited process to probe bw more aggressively.
1480  */
tcp_is_cwnd_limited(const struct sock * sk)1481 static inline bool tcp_is_cwnd_limited(const struct sock *sk)
1482 {
1483 	const struct tcp_sock *tp = tcp_sk(sk);
1484 
1485 	if (tp->is_cwnd_limited)
1486 		return true;
1487 
1488 	/* If in slow start, ensure cwnd grows to twice what was ACKed. */
1489 	if (tcp_in_slow_start(tp))
1490 		return tcp_snd_cwnd(tp) < 2 * tp->max_packets_out;
1491 
1492 	return false;
1493 }
1494 
1495 /* BBR congestion control needs pacing.
1496  * Same remark for SO_MAX_PACING_RATE.
1497  * sch_fq packet scheduler is efficiently handling pacing,
1498  * but is not always installed/used.
1499  * Return true if TCP stack should pace packets itself.
1500  */
tcp_needs_internal_pacing(const struct sock * sk)1501 static inline bool tcp_needs_internal_pacing(const struct sock *sk)
1502 {
1503 	return smp_load_acquire(&sk->sk_pacing_status) == SK_PACING_NEEDED;
1504 }
1505 
1506 /* Estimates in how many jiffies next packet for this flow can be sent.
1507  * Scheduling a retransmit timer too early would be silly.
1508  */
tcp_pacing_delay(const struct sock * sk)1509 static inline unsigned long tcp_pacing_delay(const struct sock *sk)
1510 {
1511 	s64 delay = tcp_sk(sk)->tcp_wstamp_ns - tcp_sk(sk)->tcp_clock_cache;
1512 
1513 	return delay > 0 ? nsecs_to_jiffies(delay) : 0;
1514 }
1515 
tcp_reset_xmit_timer(struct sock * sk,const int what,unsigned long when,bool pace_delay)1516 static inline void tcp_reset_xmit_timer(struct sock *sk,
1517 					const int what,
1518 					unsigned long when,
1519 					bool pace_delay)
1520 {
1521 	if (pace_delay)
1522 		when += tcp_pacing_delay(sk);
1523 	inet_csk_reset_xmit_timer(sk, what, when,
1524 				  tcp_rto_max(sk));
1525 }
1526 
1527 /* Something is really bad, we could not queue an additional packet,
1528  * because qdisc is full or receiver sent a 0 window, or we are paced.
1529  * We do not want to add fuel to the fire, or abort too early,
1530  * so make sure the timer we arm now is at least 200ms in the future,
1531  * regardless of current icsk_rto value (as it could be ~2ms)
1532  */
tcp_probe0_base(const struct sock * sk)1533 static inline unsigned long tcp_probe0_base(const struct sock *sk)
1534 {
1535 	return max_t(unsigned long, inet_csk(sk)->icsk_rto, TCP_RTO_MIN);
1536 }
1537 
1538 /* Variant of inet_csk_rto_backoff() used for zero window probes */
tcp_probe0_when(const struct sock * sk,unsigned long max_when)1539 static inline unsigned long tcp_probe0_when(const struct sock *sk,
1540 					    unsigned long max_when)
1541 {
1542 	u8 backoff = min_t(u8, ilog2(TCP_RTO_MAX / TCP_RTO_MIN) + 1,
1543 			   inet_csk(sk)->icsk_backoff);
1544 	u64 when = (u64)tcp_probe0_base(sk) << backoff;
1545 
1546 	return (unsigned long)min_t(u64, when, max_when);
1547 }
1548 
tcp_check_probe_timer(struct sock * sk)1549 static inline void tcp_check_probe_timer(struct sock *sk)
1550 {
1551 	if (!tcp_sk(sk)->packets_out && !inet_csk(sk)->icsk_pending)
1552 		tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
1553 				     tcp_probe0_base(sk), true);
1554 }
1555 
tcp_init_wl(struct tcp_sock * tp,u32 seq)1556 static inline void tcp_init_wl(struct tcp_sock *tp, u32 seq)
1557 {
1558 	tp->snd_wl1 = seq;
1559 }
1560 
tcp_update_wl(struct tcp_sock * tp,u32 seq)1561 static inline void tcp_update_wl(struct tcp_sock *tp, u32 seq)
1562 {
1563 	tp->snd_wl1 = seq;
1564 }
1565 
1566 /*
1567  * Calculate(/check) TCP checksum
1568  */
tcp_v4_check(int len,__be32 saddr,__be32 daddr,__wsum base)1569 static inline __sum16 tcp_v4_check(int len, __be32 saddr,
1570 				   __be32 daddr, __wsum base)
1571 {
1572 	return csum_tcpudp_magic(saddr, daddr, len, IPPROTO_TCP, base);
1573 }
1574 
tcp_checksum_complete(struct sk_buff * skb)1575 static inline bool tcp_checksum_complete(struct sk_buff *skb)
1576 {
1577 	return !skb_csum_unnecessary(skb) &&
1578 		__skb_checksum_complete(skb);
1579 }
1580 
1581 bool tcp_add_backlog(struct sock *sk, struct sk_buff *skb,
1582 		     enum skb_drop_reason *reason);
1583 
1584 
1585 int tcp_filter(struct sock *sk, struct sk_buff *skb, enum skb_drop_reason *reason);
1586 void tcp_set_state(struct sock *sk, int state);
1587 void tcp_done(struct sock *sk);
1588 int tcp_abort(struct sock *sk, int err);
1589 
tcp_sack_reset(struct tcp_options_received * rx_opt)1590 static inline void tcp_sack_reset(struct tcp_options_received *rx_opt)
1591 {
1592 	rx_opt->dsack = 0;
1593 	rx_opt->num_sacks = 0;
1594 }
1595 
1596 void tcp_cwnd_restart(struct sock *sk, s32 delta);
1597 
tcp_slow_start_after_idle_check(struct sock * sk)1598 static inline void tcp_slow_start_after_idle_check(struct sock *sk)
1599 {
1600 	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1601 	struct tcp_sock *tp = tcp_sk(sk);
1602 	s32 delta;
1603 
1604 	if (!READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_slow_start_after_idle) ||
1605 	    tp->packets_out || ca_ops->cong_control)
1606 		return;
1607 	delta = tcp_jiffies32 - tp->lsndtime;
1608 	if (delta > inet_csk(sk)->icsk_rto)
1609 		tcp_cwnd_restart(sk, delta);
1610 }
1611 
1612 /* Determine a window scaling and initial window to offer. */
1613 void tcp_select_initial_window(const struct sock *sk, int __space,
1614 			       __u32 mss, __u32 *rcv_wnd,
1615 			       __u32 *window_clamp, int wscale_ok,
1616 			       __u8 *rcv_wscale, __u32 init_rcv_wnd);
1617 
__tcp_win_from_space(u8 scaling_ratio,int space)1618 static inline int __tcp_win_from_space(u8 scaling_ratio, int space)
1619 {
1620 	s64 scaled_space = (s64)space * scaling_ratio;
1621 
1622 	return scaled_space >> TCP_RMEM_TO_WIN_SCALE;
1623 }
1624 
tcp_win_from_space(const struct sock * sk,int space)1625 static inline int tcp_win_from_space(const struct sock *sk, int space)
1626 {
1627 	return __tcp_win_from_space(tcp_sk(sk)->scaling_ratio, space);
1628 }
1629 
1630 /* inverse of __tcp_win_from_space() */
__tcp_space_from_win(u8 scaling_ratio,int win)1631 static inline int __tcp_space_from_win(u8 scaling_ratio, int win)
1632 {
1633 	u64 val = (u64)win << TCP_RMEM_TO_WIN_SCALE;
1634 
1635 	do_div(val, scaling_ratio);
1636 	return val;
1637 }
1638 
tcp_space_from_win(const struct sock * sk,int win)1639 static inline int tcp_space_from_win(const struct sock *sk, int win)
1640 {
1641 	return __tcp_space_from_win(tcp_sk(sk)->scaling_ratio, win);
1642 }
1643 
1644 /* Assume a 50% default for skb->len/skb->truesize ratio.
1645  * This may be adjusted later in tcp_measure_rcv_mss().
1646  */
1647 #define TCP_DEFAULT_SCALING_RATIO (1 << (TCP_RMEM_TO_WIN_SCALE - 1))
1648 
tcp_scaling_ratio_init(struct sock * sk)1649 static inline void tcp_scaling_ratio_init(struct sock *sk)
1650 {
1651 	tcp_sk(sk)->scaling_ratio = TCP_DEFAULT_SCALING_RATIO;
1652 }
1653 
1654 /* Note: caller must be prepared to deal with negative returns */
tcp_space(const struct sock * sk)1655 static inline int tcp_space(const struct sock *sk)
1656 {
1657 	return tcp_win_from_space(sk, READ_ONCE(sk->sk_rcvbuf) -
1658 				  READ_ONCE(sk->sk_backlog.len) -
1659 				  atomic_read(&sk->sk_rmem_alloc));
1660 }
1661 
tcp_full_space(const struct sock * sk)1662 static inline int tcp_full_space(const struct sock *sk)
1663 {
1664 	return tcp_win_from_space(sk, READ_ONCE(sk->sk_rcvbuf));
1665 }
1666 
__tcp_adjust_rcv_ssthresh(struct sock * sk,u32 new_ssthresh)1667 static inline void __tcp_adjust_rcv_ssthresh(struct sock *sk, u32 new_ssthresh)
1668 {
1669 	int unused_mem = sk_unused_reserved_mem(sk);
1670 	struct tcp_sock *tp = tcp_sk(sk);
1671 
1672 	tp->rcv_ssthresh = min(tp->rcv_ssthresh, new_ssthresh);
1673 	if (unused_mem)
1674 		tp->rcv_ssthresh = max_t(u32, tp->rcv_ssthresh,
1675 					 tcp_win_from_space(sk, unused_mem));
1676 }
1677 
tcp_adjust_rcv_ssthresh(struct sock * sk)1678 static inline void tcp_adjust_rcv_ssthresh(struct sock *sk)
1679 {
1680 	__tcp_adjust_rcv_ssthresh(sk, 4U * tcp_sk(sk)->advmss);
1681 }
1682 
1683 void tcp_cleanup_rbuf(struct sock *sk, int copied);
1684 void __tcp_cleanup_rbuf(struct sock *sk, int copied);
1685 
1686 
1687 /* We provision sk_rcvbuf around 200% of sk_rcvlowat.
1688  * If 87.5 % (7/8) of the space has been consumed, we want to override
1689  * SO_RCVLOWAT constraint, since we are receiving skbs with too small
1690  * len/truesize ratio.
1691  */
tcp_rmem_pressure(const struct sock * sk)1692 static inline bool tcp_rmem_pressure(const struct sock *sk)
1693 {
1694 	int rcvbuf, threshold;
1695 
1696 	if (tcp_under_memory_pressure(sk))
1697 		return true;
1698 
1699 	rcvbuf = READ_ONCE(sk->sk_rcvbuf);
1700 	threshold = rcvbuf - (rcvbuf >> 3);
1701 
1702 	return atomic_read(&sk->sk_rmem_alloc) > threshold;
1703 }
1704 
tcp_epollin_ready(const struct sock * sk,int target)1705 static inline bool tcp_epollin_ready(const struct sock *sk, int target)
1706 {
1707 	const struct tcp_sock *tp = tcp_sk(sk);
1708 	int avail = READ_ONCE(tp->rcv_nxt) - READ_ONCE(tp->copied_seq);
1709 
1710 	if (avail <= 0)
1711 		return false;
1712 
1713 	return (avail >= target) || tcp_rmem_pressure(sk) ||
1714 	       (tcp_receive_window(tp) <= inet_csk(sk)->icsk_ack.rcv_mss);
1715 }
1716 
1717 extern void tcp_openreq_init_rwin(struct request_sock *req,
1718 				  const struct sock *sk_listener,
1719 				  const struct dst_entry *dst);
1720 
1721 void tcp_enter_memory_pressure(struct sock *sk);
1722 void tcp_leave_memory_pressure(struct sock *sk);
1723 
keepalive_intvl_when(const struct tcp_sock * tp)1724 static inline int keepalive_intvl_when(const struct tcp_sock *tp)
1725 {
1726 	struct net *net = sock_net((struct sock *)tp);
1727 	int val;
1728 
1729 	/* Paired with WRITE_ONCE() in tcp_sock_set_keepintvl()
1730 	 * and do_tcp_setsockopt().
1731 	 */
1732 	val = READ_ONCE(tp->keepalive_intvl);
1733 
1734 	return val ? : READ_ONCE(net->ipv4.sysctl_tcp_keepalive_intvl);
1735 }
1736 
keepalive_time_when(const struct tcp_sock * tp)1737 static inline int keepalive_time_when(const struct tcp_sock *tp)
1738 {
1739 	struct net *net = sock_net((struct sock *)tp);
1740 	int val;
1741 
1742 	/* Paired with WRITE_ONCE() in tcp_sock_set_keepidle_locked() */
1743 	val = READ_ONCE(tp->keepalive_time);
1744 
1745 	return val ? : READ_ONCE(net->ipv4.sysctl_tcp_keepalive_time);
1746 }
1747 
keepalive_probes(const struct tcp_sock * tp)1748 static inline int keepalive_probes(const struct tcp_sock *tp)
1749 {
1750 	struct net *net = sock_net((struct sock *)tp);
1751 	int val;
1752 
1753 	/* Paired with WRITE_ONCE() in tcp_sock_set_keepcnt()
1754 	 * and do_tcp_setsockopt().
1755 	 */
1756 	val = READ_ONCE(tp->keepalive_probes);
1757 
1758 	return val ? : READ_ONCE(net->ipv4.sysctl_tcp_keepalive_probes);
1759 }
1760 
keepalive_time_elapsed(const struct tcp_sock * tp)1761 static inline u32 keepalive_time_elapsed(const struct tcp_sock *tp)
1762 {
1763 	const struct inet_connection_sock *icsk = &tp->inet_conn;
1764 
1765 	return min_t(u32, tcp_jiffies32 - icsk->icsk_ack.lrcvtime,
1766 			  tcp_jiffies32 - tp->rcv_tstamp);
1767 }
1768 
tcp_fin_time(const struct sock * sk)1769 static inline int tcp_fin_time(const struct sock *sk)
1770 {
1771 	int fin_timeout = tcp_sk(sk)->linger2 ? :
1772 		READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_fin_timeout);
1773 	const int rto = inet_csk(sk)->icsk_rto;
1774 
1775 	if (fin_timeout < (rto << 2) - (rto >> 1))
1776 		fin_timeout = (rto << 2) - (rto >> 1);
1777 
1778 	return fin_timeout;
1779 }
1780 
tcp_paws_check(const struct tcp_options_received * rx_opt,int paws_win)1781 static inline bool tcp_paws_check(const struct tcp_options_received *rx_opt,
1782 				  int paws_win)
1783 {
1784 	if ((s32)(rx_opt->ts_recent - rx_opt->rcv_tsval) <= paws_win)
1785 		return true;
1786 	if (unlikely(!time_before32(ktime_get_seconds(),
1787 				    rx_opt->ts_recent_stamp + TCP_PAWS_WRAP)))
1788 		return true;
1789 	/*
1790 	 * Some OSes send SYN and SYNACK messages with tsval=0 tsecr=0,
1791 	 * then following tcp messages have valid values. Ignore 0 value,
1792 	 * or else 'negative' tsval might forbid us to accept their packets.
1793 	 */
1794 	if (!rx_opt->ts_recent)
1795 		return true;
1796 	return false;
1797 }
1798 
tcp_paws_reject(const struct tcp_options_received * rx_opt,int rst)1799 static inline bool tcp_paws_reject(const struct tcp_options_received *rx_opt,
1800 				   int rst)
1801 {
1802 	if (tcp_paws_check(rx_opt, 0))
1803 		return false;
1804 
1805 	/* RST segments are not recommended to carry timestamp,
1806 	   and, if they do, it is recommended to ignore PAWS because
1807 	   "their cleanup function should take precedence over timestamps."
1808 	   Certainly, it is mistake. It is necessary to understand the reasons
1809 	   of this constraint to relax it: if peer reboots, clock may go
1810 	   out-of-sync and half-open connections will not be reset.
1811 	   Actually, the problem would be not existing if all
1812 	   the implementations followed draft about maintaining clock
1813 	   via reboots. Linux-2.2 DOES NOT!
1814 
1815 	   However, we can relax time bounds for RST segments to MSL.
1816 	 */
1817 	if (rst && !time_before32(ktime_get_seconds(),
1818 				  rx_opt->ts_recent_stamp + TCP_PAWS_MSL))
1819 		return false;
1820 	return true;
1821 }
1822 
__tcp_fast_path_on(struct tcp_sock * tp,u32 snd_wnd)1823 static inline void __tcp_fast_path_on(struct tcp_sock *tp, u32 snd_wnd)
1824 {
1825 	u32 ace;
1826 
1827 	/* mptcp hooks are only on the slow path */
1828 	if (sk_is_mptcp((struct sock *)tp))
1829 		return;
1830 
1831 	ace = tcp_ecn_mode_accecn(tp) ?
1832 	      ((tp->delivered_ce + TCP_ACCECN_CEP_INIT_OFFSET) &
1833 	       TCP_ACCECN_CEP_ACE_MASK) : 0;
1834 
1835 	tp->pred_flags = htonl((tp->tcp_header_len << 26) |
1836 			       (ace << 22) |
1837 			       ntohl(TCP_FLAG_ACK) |
1838 			       snd_wnd);
1839 }
1840 
tcp_fast_path_on(struct tcp_sock * tp)1841 static inline void tcp_fast_path_on(struct tcp_sock *tp)
1842 {
1843 	__tcp_fast_path_on(tp, tp->snd_wnd >> tp->rx_opt.snd_wscale);
1844 }
1845 
tcp_fast_path_check(struct sock * sk)1846 static inline void tcp_fast_path_check(struct sock *sk)
1847 {
1848 	struct tcp_sock *tp = tcp_sk(sk);
1849 
1850 	if (RB_EMPTY_ROOT(&tp->out_of_order_queue) &&
1851 	    tp->rcv_wnd &&
1852 	    atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf &&
1853 	    !tp->urg_data)
1854 		tcp_fast_path_on(tp);
1855 }
1856 
1857 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
1858 			  int mib_idx, u32 *last_oow_ack_time);
1859 
tcp_mib_init(struct net * net)1860 static inline void tcp_mib_init(struct net *net)
1861 {
1862 	/* See RFC 2012 */
1863 	TCP_ADD_STATS(net, TCP_MIB_RTOALGORITHM, 1);
1864 	TCP_ADD_STATS(net, TCP_MIB_RTOMIN, TCP_RTO_MIN*1000/HZ);
1865 	TCP_ADD_STATS(net, TCP_MIB_RTOMAX, TCP_RTO_MAX*1000/HZ);
1866 	TCP_ADD_STATS(net, TCP_MIB_MAXCONN, -1);
1867 }
1868 
1869 /* from STCP */
tcp_clear_all_retrans_hints(struct tcp_sock * tp)1870 static inline void tcp_clear_all_retrans_hints(struct tcp_sock *tp)
1871 {
1872 	tp->retransmit_skb_hint = NULL;
1873 }
1874 
1875 #define tcp_md5_addr tcp_ao_addr
1876 
1877 /* - key database */
1878 struct tcp_md5sig_key {
1879 	struct hlist_node	node;
1880 	u8			keylen;
1881 	u8			family; /* AF_INET or AF_INET6 */
1882 	u8			prefixlen;
1883 	u8			flags;
1884 	union tcp_md5_addr	addr;
1885 	int			l3index; /* set if key added with L3 scope */
1886 	u8			key[TCP_MD5SIG_MAXKEYLEN];
1887 	struct rcu_head		rcu;
1888 };
1889 
1890 /* - sock block */
1891 struct tcp_md5sig_info {
1892 	struct hlist_head	head;
1893 	struct rcu_head		rcu;
1894 };
1895 
1896 /* - pseudo header */
1897 struct tcp4_pseudohdr {
1898 	__be32		saddr;
1899 	__be32		daddr;
1900 	__u8		pad;
1901 	__u8		protocol;
1902 	__be16		len;
1903 };
1904 
1905 struct tcp6_pseudohdr {
1906 	struct in6_addr	saddr;
1907 	struct in6_addr daddr;
1908 	__be32		len;
1909 	__be32		protocol;	/* including padding */
1910 };
1911 
1912 /*
1913  * struct tcp_sigpool - per-CPU pool of ahash_requests
1914  * @scratch: per-CPU temporary area, that can be used between
1915  *	     tcp_sigpool_start() and tcp_sigpool_end() to perform
1916  *	     crypto request
1917  * @req: pre-allocated ahash request
1918  */
1919 struct tcp_sigpool {
1920 	void *scratch;
1921 	struct ahash_request *req;
1922 };
1923 
1924 int tcp_sigpool_alloc_ahash(const char *alg, size_t scratch_size);
1925 void tcp_sigpool_get(unsigned int id);
1926 void tcp_sigpool_release(unsigned int id);
1927 int tcp_sigpool_hash_skb_data(struct tcp_sigpool *hp,
1928 			      const struct sk_buff *skb,
1929 			      unsigned int header_len);
1930 
1931 /**
1932  * tcp_sigpool_start - disable bh and start using tcp_sigpool_ahash
1933  * @id: tcp_sigpool that was previously allocated by tcp_sigpool_alloc_ahash()
1934  * @c: returned tcp_sigpool for usage (uninitialized on failure)
1935  *
1936  * Returns: 0 on success, error otherwise.
1937  */
1938 int tcp_sigpool_start(unsigned int id, struct tcp_sigpool *c);
1939 /**
1940  * tcp_sigpool_end - enable bh and stop using tcp_sigpool
1941  * @c: tcp_sigpool context that was returned by tcp_sigpool_start()
1942  */
1943 void tcp_sigpool_end(struct tcp_sigpool *c);
1944 size_t tcp_sigpool_algo(unsigned int id, char *buf, size_t buf_len);
1945 /* - functions */
1946 void tcp_v4_md5_hash_skb(char *md5_hash, const struct tcp_md5sig_key *key,
1947 			 const struct sock *sk, const struct sk_buff *skb);
1948 int tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr,
1949 		   int family, u8 prefixlen, int l3index, u8 flags,
1950 		   const u8 *newkey, u8 newkeylen);
1951 int tcp_md5_key_copy(struct sock *sk, const union tcp_md5_addr *addr,
1952 		     int family, u8 prefixlen, int l3index,
1953 		     struct tcp_md5sig_key *key);
1954 
1955 int tcp_md5_do_del(struct sock *sk, const union tcp_md5_addr *addr,
1956 		   int family, u8 prefixlen, int l3index, u8 flags);
1957 void tcp_clear_md5_list(struct sock *sk);
1958 struct tcp_md5sig_key *tcp_v4_md5_lookup(const struct sock *sk,
1959 					 const struct sock *addr_sk);
1960 
1961 #ifdef CONFIG_TCP_MD5SIG
1962 struct tcp_md5sig_key *__tcp_md5_do_lookup(const struct sock *sk, int l3index,
1963 					   const union tcp_md5_addr *addr,
1964 					   int family, bool any_l3index);
1965 static inline struct tcp_md5sig_key *
tcp_md5_do_lookup(const struct sock * sk,int l3index,const union tcp_md5_addr * addr,int family)1966 tcp_md5_do_lookup(const struct sock *sk, int l3index,
1967 		  const union tcp_md5_addr *addr, int family)
1968 {
1969 	if (!static_branch_unlikely(&tcp_md5_needed.key))
1970 		return NULL;
1971 	return __tcp_md5_do_lookup(sk, l3index, addr, family, false);
1972 }
1973 
1974 static inline struct tcp_md5sig_key *
tcp_md5_do_lookup_any_l3index(const struct sock * sk,const union tcp_md5_addr * addr,int family)1975 tcp_md5_do_lookup_any_l3index(const struct sock *sk,
1976 			      const union tcp_md5_addr *addr, int family)
1977 {
1978 	if (!static_branch_unlikely(&tcp_md5_needed.key))
1979 		return NULL;
1980 	return __tcp_md5_do_lookup(sk, 0, addr, family, true);
1981 }
1982 
1983 #define tcp_twsk_md5_key(twsk)	((twsk)->tw_md5_key)
1984 void tcp_md5_destruct_sock(struct sock *sk);
1985 #else
1986 static inline struct tcp_md5sig_key *
tcp_md5_do_lookup(const struct sock * sk,int l3index,const union tcp_md5_addr * addr,int family)1987 tcp_md5_do_lookup(const struct sock *sk, int l3index,
1988 		  const union tcp_md5_addr *addr, int family)
1989 {
1990 	return NULL;
1991 }
1992 
1993 static inline struct tcp_md5sig_key *
tcp_md5_do_lookup_any_l3index(const struct sock * sk,const union tcp_md5_addr * addr,int family)1994 tcp_md5_do_lookup_any_l3index(const struct sock *sk,
1995 			      const union tcp_md5_addr *addr, int family)
1996 {
1997 	return NULL;
1998 }
1999 
2000 #define tcp_twsk_md5_key(twsk)	NULL
tcp_md5_destruct_sock(struct sock * sk)2001 static inline void tcp_md5_destruct_sock(struct sock *sk)
2002 {
2003 }
2004 #endif
2005 
2006 struct md5_ctx;
2007 void tcp_md5_hash_skb_data(struct md5_ctx *ctx, const struct sk_buff *skb,
2008 			   unsigned int header_len);
2009 void tcp_md5_hash_key(struct md5_ctx *ctx, const struct tcp_md5sig_key *key);
2010 
2011 /* From tcp_fastopen.c */
2012 void tcp_fastopen_cache_get(struct sock *sk, u16 *mss,
2013 			    struct tcp_fastopen_cookie *cookie);
2014 void tcp_fastopen_cache_set(struct sock *sk, u16 mss,
2015 			    struct tcp_fastopen_cookie *cookie, bool syn_lost,
2016 			    u16 try_exp);
2017 struct tcp_fastopen_request {
2018 	/* Fast Open cookie. Size 0 means a cookie request */
2019 	struct tcp_fastopen_cookie	cookie;
2020 	struct msghdr			*data;  /* data in MSG_FASTOPEN */
2021 	size_t				size;
2022 	int				copied;	/* queued in tcp_connect() */
2023 	struct ubuf_info		*uarg;
2024 };
2025 void tcp_free_fastopen_req(struct tcp_sock *tp);
2026 void tcp_fastopen_destroy_cipher(struct sock *sk);
2027 void tcp_fastopen_ctx_destroy(struct net *net);
2028 int tcp_fastopen_reset_cipher(struct net *net, struct sock *sk,
2029 			      void *primary_key, void *backup_key);
2030 int tcp_fastopen_get_cipher(struct net *net, struct inet_connection_sock *icsk,
2031 			    u64 *key);
2032 void tcp_fastopen_add_skb(struct sock *sk, struct sk_buff *skb);
2033 struct sock *tcp_try_fastopen(struct sock *sk, struct sk_buff *skb,
2034 			      struct request_sock *req,
2035 			      struct tcp_fastopen_cookie *foc,
2036 			      const struct dst_entry *dst);
2037 void tcp_fastopen_init_key_once(struct net *net);
2038 bool tcp_fastopen_cookie_check(struct sock *sk, u16 *mss,
2039 			     struct tcp_fastopen_cookie *cookie);
2040 bool tcp_fastopen_defer_connect(struct sock *sk, int *err);
2041 #define TCP_FASTOPEN_KEY_LENGTH sizeof(siphash_key_t)
2042 #define TCP_FASTOPEN_KEY_MAX 2
2043 #define TCP_FASTOPEN_KEY_BUF_LENGTH \
2044 	(TCP_FASTOPEN_KEY_LENGTH * TCP_FASTOPEN_KEY_MAX)
2045 
2046 /* Fastopen key context */
2047 struct tcp_fastopen_context {
2048 	siphash_key_t	key[TCP_FASTOPEN_KEY_MAX];
2049 	int		num;
2050 	struct rcu_head	rcu;
2051 };
2052 
2053 void tcp_fastopen_active_disable(struct sock *sk);
2054 bool tcp_fastopen_active_should_disable(struct sock *sk);
2055 void tcp_fastopen_active_disable_ofo_check(struct sock *sk);
2056 void tcp_fastopen_active_detect_blackhole(struct sock *sk, bool expired);
2057 
2058 /* Caller needs to wrap with rcu_read_(un)lock() */
2059 static inline
tcp_fastopen_get_ctx(const struct sock * sk)2060 struct tcp_fastopen_context *tcp_fastopen_get_ctx(const struct sock *sk)
2061 {
2062 	struct tcp_fastopen_context *ctx;
2063 
2064 	ctx = rcu_dereference(inet_csk(sk)->icsk_accept_queue.fastopenq.ctx);
2065 	if (!ctx)
2066 		ctx = rcu_dereference(sock_net(sk)->ipv4.tcp_fastopen_ctx);
2067 	return ctx;
2068 }
2069 
2070 static inline
tcp_fastopen_cookie_match(const struct tcp_fastopen_cookie * foc,const struct tcp_fastopen_cookie * orig)2071 bool tcp_fastopen_cookie_match(const struct tcp_fastopen_cookie *foc,
2072 			       const struct tcp_fastopen_cookie *orig)
2073 {
2074 	if (orig->len == TCP_FASTOPEN_COOKIE_SIZE &&
2075 	    orig->len == foc->len &&
2076 	    !memcmp(orig->val, foc->val, foc->len))
2077 		return true;
2078 	return false;
2079 }
2080 
2081 static inline
tcp_fastopen_context_len(const struct tcp_fastopen_context * ctx)2082 int tcp_fastopen_context_len(const struct tcp_fastopen_context *ctx)
2083 {
2084 	return ctx->num;
2085 }
2086 
2087 /* Latencies incurred by various limits for a sender. They are
2088  * chronograph-like stats that are mutually exclusive.
2089  */
2090 enum tcp_chrono {
2091 	TCP_CHRONO_UNSPEC,
2092 	TCP_CHRONO_BUSY, /* Actively sending data (non-empty write queue) */
2093 	TCP_CHRONO_RWND_LIMITED, /* Stalled by insufficient receive window */
2094 	TCP_CHRONO_SNDBUF_LIMITED, /* Stalled by insufficient send buffer */
2095 	__TCP_CHRONO_MAX,
2096 };
2097 
2098 void tcp_chrono_start(struct sock *sk, const enum tcp_chrono type);
2099 void tcp_chrono_stop(struct sock *sk, const enum tcp_chrono type);
2100 
2101 /* This helper is needed, because skb->tcp_tsorted_anchor uses
2102  * the same memory storage than skb->destructor/_skb_refdst
2103  */
tcp_skb_tsorted_anchor_cleanup(struct sk_buff * skb)2104 static inline void tcp_skb_tsorted_anchor_cleanup(struct sk_buff *skb)
2105 {
2106 	skb->destructor = NULL;
2107 	skb->_skb_refdst = 0UL;
2108 }
2109 
2110 #define tcp_skb_tsorted_save(skb) {		\
2111 	unsigned long _save = skb->_skb_refdst;	\
2112 	skb->_skb_refdst = 0UL;
2113 
2114 #define tcp_skb_tsorted_restore(skb)		\
2115 	skb->_skb_refdst = _save;		\
2116 }
2117 
2118 void tcp_write_queue_purge(struct sock *sk);
2119 
tcp_rtx_queue_head(const struct sock * sk)2120 static inline struct sk_buff *tcp_rtx_queue_head(const struct sock *sk)
2121 {
2122 	return skb_rb_first(&sk->tcp_rtx_queue);
2123 }
2124 
tcp_rtx_queue_tail(const struct sock * sk)2125 static inline struct sk_buff *tcp_rtx_queue_tail(const struct sock *sk)
2126 {
2127 	return skb_rb_last(&sk->tcp_rtx_queue);
2128 }
2129 
tcp_write_queue_tail(const struct sock * sk)2130 static inline struct sk_buff *tcp_write_queue_tail(const struct sock *sk)
2131 {
2132 	return skb_peek_tail(&sk->sk_write_queue);
2133 }
2134 
2135 #define tcp_for_write_queue_from_safe(skb, tmp, sk)			\
2136 	skb_queue_walk_from_safe(&(sk)->sk_write_queue, skb, tmp)
2137 
tcp_send_head(const struct sock * sk)2138 static inline struct sk_buff *tcp_send_head(const struct sock *sk)
2139 {
2140 	return skb_peek(&sk->sk_write_queue);
2141 }
2142 
tcp_skb_is_last(const struct sock * sk,const struct sk_buff * skb)2143 static inline bool tcp_skb_is_last(const struct sock *sk,
2144 				   const struct sk_buff *skb)
2145 {
2146 	return skb_queue_is_last(&sk->sk_write_queue, skb);
2147 }
2148 
2149 /**
2150  * tcp_write_queue_empty - test if any payload (or FIN) is available in write queue
2151  * @sk: socket
2152  *
2153  * Since the write queue can have a temporary empty skb in it,
2154  * we must not use "return skb_queue_empty(&sk->sk_write_queue)"
2155  */
tcp_write_queue_empty(const struct sock * sk)2156 static inline bool tcp_write_queue_empty(const struct sock *sk)
2157 {
2158 	const struct tcp_sock *tp = tcp_sk(sk);
2159 
2160 	return tp->write_seq == tp->snd_nxt;
2161 }
2162 
tcp_rtx_queue_empty(const struct sock * sk)2163 static inline bool tcp_rtx_queue_empty(const struct sock *sk)
2164 {
2165 	return RB_EMPTY_ROOT(&sk->tcp_rtx_queue);
2166 }
2167 
tcp_rtx_and_write_queues_empty(const struct sock * sk)2168 static inline bool tcp_rtx_and_write_queues_empty(const struct sock *sk)
2169 {
2170 	return tcp_rtx_queue_empty(sk) && tcp_write_queue_empty(sk);
2171 }
2172 
tcp_add_write_queue_tail(struct sock * sk,struct sk_buff * skb)2173 static inline void tcp_add_write_queue_tail(struct sock *sk, struct sk_buff *skb)
2174 {
2175 	__skb_queue_tail(&sk->sk_write_queue, skb);
2176 
2177 	/* Queue it, remembering where we must start sending. */
2178 	if (sk->sk_write_queue.next == skb)
2179 		tcp_chrono_start(sk, TCP_CHRONO_BUSY);
2180 }
2181 
2182 /* Insert new before skb on the write queue of sk.  */
tcp_insert_write_queue_before(struct sk_buff * new,struct sk_buff * skb,struct sock * sk)2183 static inline void tcp_insert_write_queue_before(struct sk_buff *new,
2184 						  struct sk_buff *skb,
2185 						  struct sock *sk)
2186 {
2187 	__skb_queue_before(&sk->sk_write_queue, skb, new);
2188 }
2189 
tcp_unlink_write_queue(struct sk_buff * skb,struct sock * sk)2190 static inline void tcp_unlink_write_queue(struct sk_buff *skb, struct sock *sk)
2191 {
2192 	tcp_skb_tsorted_anchor_cleanup(skb);
2193 	__skb_unlink(skb, &sk->sk_write_queue);
2194 }
2195 
2196 void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb);
2197 
tcp_rtx_queue_unlink(struct sk_buff * skb,struct sock * sk)2198 static inline void tcp_rtx_queue_unlink(struct sk_buff *skb, struct sock *sk)
2199 {
2200 	tcp_skb_tsorted_anchor_cleanup(skb);
2201 	rb_erase(&skb->rbnode, &sk->tcp_rtx_queue);
2202 }
2203 
tcp_rtx_queue_unlink_and_free(struct sk_buff * skb,struct sock * sk)2204 static inline void tcp_rtx_queue_unlink_and_free(struct sk_buff *skb, struct sock *sk)
2205 {
2206 	list_del(&skb->tcp_tsorted_anchor);
2207 	tcp_rtx_queue_unlink(skb, sk);
2208 	tcp_wmem_free_skb(sk, skb);
2209 }
2210 
tcp_write_collapse_fence(struct sock * sk)2211 static inline void tcp_write_collapse_fence(struct sock *sk)
2212 {
2213 	struct sk_buff *skb = tcp_write_queue_tail(sk);
2214 
2215 	if (skb)
2216 		TCP_SKB_CB(skb)->eor = 1;
2217 }
2218 
tcp_push_pending_frames(struct sock * sk)2219 static inline void tcp_push_pending_frames(struct sock *sk)
2220 {
2221 	if (tcp_send_head(sk)) {
2222 		struct tcp_sock *tp = tcp_sk(sk);
2223 
2224 		__tcp_push_pending_frames(sk, tcp_current_mss(sk), tp->nonagle);
2225 	}
2226 }
2227 
2228 /* Start sequence of the skb just after the highest skb with SACKed
2229  * bit, valid only if sacked_out > 0 or when the caller has ensured
2230  * validity by itself.
2231  */
tcp_highest_sack_seq(struct tcp_sock * tp)2232 static inline u32 tcp_highest_sack_seq(struct tcp_sock *tp)
2233 {
2234 	if (!tp->sacked_out)
2235 		return tp->snd_una;
2236 
2237 	if (tp->highest_sack == NULL)
2238 		return tp->snd_nxt;
2239 
2240 	return TCP_SKB_CB(tp->highest_sack)->seq;
2241 }
2242 
tcp_advance_highest_sack(struct sock * sk,struct sk_buff * skb)2243 static inline void tcp_advance_highest_sack(struct sock *sk, struct sk_buff *skb)
2244 {
2245 	tcp_sk(sk)->highest_sack = skb_rb_next(skb);
2246 }
2247 
tcp_highest_sack(struct sock * sk)2248 static inline struct sk_buff *tcp_highest_sack(struct sock *sk)
2249 {
2250 	return tcp_sk(sk)->highest_sack;
2251 }
2252 
tcp_highest_sack_reset(struct sock * sk)2253 static inline void tcp_highest_sack_reset(struct sock *sk)
2254 {
2255 	tcp_sk(sk)->highest_sack = tcp_rtx_queue_head(sk);
2256 }
2257 
2258 /* Called when old skb is about to be deleted and replaced by new skb */
tcp_highest_sack_replace(struct sock * sk,struct sk_buff * old,struct sk_buff * new)2259 static inline void tcp_highest_sack_replace(struct sock *sk,
2260 					    struct sk_buff *old,
2261 					    struct sk_buff *new)
2262 {
2263 	if (old == tcp_highest_sack(sk))
2264 		tcp_sk(sk)->highest_sack = new;
2265 }
2266 
2267 /* This helper checks if socket has IP_TRANSPARENT set */
inet_sk_transparent(const struct sock * sk)2268 static inline bool inet_sk_transparent(const struct sock *sk)
2269 {
2270 	switch (sk->sk_state) {
2271 	case TCP_TIME_WAIT:
2272 		return inet_twsk(sk)->tw_transparent;
2273 	case TCP_NEW_SYN_RECV:
2274 		return inet_rsk(inet_reqsk(sk))->no_srccheck;
2275 	}
2276 	return inet_test_bit(TRANSPARENT, sk);
2277 }
2278 
2279 /* Determines whether this is a thin stream (which may suffer from
2280  * increased latency). Used to trigger latency-reducing mechanisms.
2281  */
tcp_stream_is_thin(struct tcp_sock * tp)2282 static inline bool tcp_stream_is_thin(struct tcp_sock *tp)
2283 {
2284 	return tp->packets_out < 4 && !tcp_in_initial_slowstart(tp);
2285 }
2286 
2287 /* /proc */
2288 enum tcp_seq_states {
2289 	TCP_SEQ_STATE_LISTENING,
2290 	TCP_SEQ_STATE_ESTABLISHED,
2291 };
2292 
2293 void *tcp_seq_start(struct seq_file *seq, loff_t *pos);
2294 void *tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos);
2295 void tcp_seq_stop(struct seq_file *seq, void *v);
2296 
2297 struct tcp_seq_afinfo {
2298 	sa_family_t			family;
2299 };
2300 
2301 struct tcp_iter_state {
2302 	struct seq_net_private	p;
2303 	enum tcp_seq_states	state;
2304 	struct sock		*syn_wait_sk;
2305 	int			bucket, offset, sbucket, num;
2306 	loff_t			last_pos;
2307 };
2308 
2309 extern struct request_sock_ops tcp_request_sock_ops;
2310 extern struct request_sock_ops tcp6_request_sock_ops;
2311 
2312 void tcp_v4_destroy_sock(struct sock *sk);
2313 
2314 struct sk_buff *tcp_gso_segment(struct sk_buff *skb,
2315 				netdev_features_t features);
2316 struct sk_buff *tcp_gro_lookup(struct list_head *head, struct tcphdr *th);
2317 struct sk_buff *tcp_gro_receive(struct list_head *head, struct sk_buff *skb,
2318 				struct tcphdr *th);
2319 INDIRECT_CALLABLE_DECLARE(int tcp4_gro_complete(struct sk_buff *skb, int thoff));
2320 INDIRECT_CALLABLE_DECLARE(struct sk_buff *tcp4_gro_receive(struct list_head *head, struct sk_buff *skb));
2321 INDIRECT_CALLABLE_DECLARE(int tcp6_gro_complete(struct sk_buff *skb, int thoff));
2322 INDIRECT_CALLABLE_DECLARE(struct sk_buff *tcp6_gro_receive(struct list_head *head, struct sk_buff *skb));
2323 #ifdef CONFIG_INET
2324 void tcp_gro_complete(struct sk_buff *skb);
2325 #else
tcp_gro_complete(struct sk_buff * skb)2326 static inline void tcp_gro_complete(struct sk_buff *skb) { }
2327 #endif
2328 
2329 void __tcp_v4_send_check(struct sk_buff *skb, __be32 saddr, __be32 daddr);
2330 
tcp_notsent_lowat(const struct tcp_sock * tp)2331 static inline u32 tcp_notsent_lowat(const struct tcp_sock *tp)
2332 {
2333 	struct net *net = sock_net((struct sock *)tp);
2334 	u32 val;
2335 
2336 	val = READ_ONCE(tp->notsent_lowat);
2337 
2338 	return val ?: READ_ONCE(net->ipv4.sysctl_tcp_notsent_lowat);
2339 }
2340 
2341 bool tcp_stream_memory_free(const struct sock *sk, int wake);
2342 
2343 #ifdef CONFIG_PROC_FS
2344 int tcp4_proc_init(void);
2345 void tcp4_proc_exit(void);
2346 #endif
2347 
2348 int tcp_rtx_synack(const struct sock *sk, struct request_sock *req);
2349 int tcp_conn_request(struct request_sock_ops *rsk_ops,
2350 		     const struct tcp_request_sock_ops *af_ops,
2351 		     struct sock *sk, struct sk_buff *skb);
2352 
2353 /* TCP af-specific functions */
2354 struct tcp_sock_af_ops {
2355 #ifdef CONFIG_TCP_MD5SIG
2356 	struct tcp_md5sig_key	*(*md5_lookup) (const struct sock *sk,
2357 						const struct sock *addr_sk);
2358 	void		(*calc_md5_hash)(char *location,
2359 					 const struct tcp_md5sig_key *md5,
2360 					 const struct sock *sk,
2361 					 const struct sk_buff *skb);
2362 	int		(*md5_parse)(struct sock *sk,
2363 				     int optname,
2364 				     sockptr_t optval,
2365 				     int optlen);
2366 #endif
2367 #ifdef CONFIG_TCP_AO
2368 	int (*ao_parse)(struct sock *sk, int optname, sockptr_t optval, int optlen);
2369 	struct tcp_ao_key *(*ao_lookup)(const struct sock *sk,
2370 					struct sock *addr_sk,
2371 					int sndid, int rcvid);
2372 	int (*ao_calc_key_sk)(struct tcp_ao_key *mkt, u8 *key,
2373 			      const struct sock *sk,
2374 			      __be32 sisn, __be32 disn, bool send);
2375 	int (*calc_ao_hash)(char *location, struct tcp_ao_key *ao,
2376 			    const struct sock *sk, const struct sk_buff *skb,
2377 			    const u8 *tkey, int hash_offset, u32 sne);
2378 #endif
2379 };
2380 
2381 struct tcp_request_sock_ops {
2382 	u16 mss_clamp;
2383 #ifdef CONFIG_TCP_MD5SIG
2384 	struct tcp_md5sig_key *(*req_md5_lookup)(const struct sock *sk,
2385 						 const struct sock *addr_sk);
2386 	void		(*calc_md5_hash) (char *location,
2387 					  const struct tcp_md5sig_key *md5,
2388 					  const struct sock *sk,
2389 					  const struct sk_buff *skb);
2390 #endif
2391 #ifdef CONFIG_TCP_AO
2392 	struct tcp_ao_key *(*ao_lookup)(const struct sock *sk,
2393 					struct request_sock *req,
2394 					int sndid, int rcvid);
2395 	int (*ao_calc_key)(struct tcp_ao_key *mkt, u8 *key, struct request_sock *sk);
2396 	int (*ao_synack_hash)(char *ao_hash, struct tcp_ao_key *mkt,
2397 			      struct request_sock *req, const struct sk_buff *skb,
2398 			      int hash_offset, u32 sne);
2399 #endif
2400 #ifdef CONFIG_SYN_COOKIES
2401 	__u32 (*cookie_init_seq)(const struct sk_buff *skb,
2402 				 __u16 *mss);
2403 #endif
2404 	struct dst_entry *(*route_req)(const struct sock *sk,
2405 				       struct sk_buff *skb,
2406 				       struct flowi *fl,
2407 				       struct request_sock *req,
2408 				       u32 tw_isn);
2409 	u32 (*init_seq)(const struct sk_buff *skb);
2410 	u32 (*init_ts_off)(const struct net *net, const struct sk_buff *skb);
2411 	int (*send_synack)(const struct sock *sk, struct dst_entry *dst,
2412 			   struct flowi *fl, struct request_sock *req,
2413 			   struct tcp_fastopen_cookie *foc,
2414 			   enum tcp_synack_type synack_type,
2415 			   struct sk_buff *syn_skb);
2416 };
2417 
2418 extern const struct tcp_request_sock_ops tcp_request_sock_ipv4_ops;
2419 #if IS_ENABLED(CONFIG_IPV6)
2420 extern const struct tcp_request_sock_ops tcp_request_sock_ipv6_ops;
2421 #endif
2422 
2423 #ifdef CONFIG_SYN_COOKIES
cookie_init_sequence(const struct tcp_request_sock_ops * ops,const struct sock * sk,struct sk_buff * skb,__u16 * mss)2424 static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops,
2425 					 const struct sock *sk, struct sk_buff *skb,
2426 					 __u16 *mss)
2427 {
2428 	tcp_synq_overflow(sk);
2429 	__NET_INC_STATS(sock_net(sk), LINUX_MIB_SYNCOOKIESSENT);
2430 	return ops->cookie_init_seq(skb, mss);
2431 }
2432 #else
cookie_init_sequence(const struct tcp_request_sock_ops * ops,const struct sock * sk,struct sk_buff * skb,__u16 * mss)2433 static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops,
2434 					 const struct sock *sk, struct sk_buff *skb,
2435 					 __u16 *mss)
2436 {
2437 	return 0;
2438 }
2439 #endif
2440 
2441 struct tcp_key {
2442 	union {
2443 		struct {
2444 			struct tcp_ao_key *ao_key;
2445 			char *traffic_key;
2446 			u32 sne;
2447 			u8 rcv_next;
2448 		};
2449 		struct tcp_md5sig_key *md5_key;
2450 	};
2451 	enum {
2452 		TCP_KEY_NONE = 0,
2453 		TCP_KEY_MD5,
2454 		TCP_KEY_AO,
2455 	} type;
2456 };
2457 
tcp_get_current_key(const struct sock * sk,struct tcp_key * out)2458 static inline void tcp_get_current_key(const struct sock *sk,
2459 				       struct tcp_key *out)
2460 {
2461 #if defined(CONFIG_TCP_AO) || defined(CONFIG_TCP_MD5SIG)
2462 	const struct tcp_sock *tp = tcp_sk(sk);
2463 #endif
2464 
2465 #ifdef CONFIG_TCP_AO
2466 	if (static_branch_unlikely(&tcp_ao_needed.key)) {
2467 		struct tcp_ao_info *ao;
2468 
2469 		ao = rcu_dereference_protected(tp->ao_info,
2470 					       lockdep_sock_is_held(sk));
2471 		if (ao) {
2472 			out->ao_key = READ_ONCE(ao->current_key);
2473 			out->type = TCP_KEY_AO;
2474 			return;
2475 		}
2476 	}
2477 #endif
2478 #ifdef CONFIG_TCP_MD5SIG
2479 	if (static_branch_unlikely(&tcp_md5_needed.key) &&
2480 	    rcu_access_pointer(tp->md5sig_info)) {
2481 		out->md5_key = tp->af_specific->md5_lookup(sk, sk);
2482 		if (out->md5_key) {
2483 			out->type = TCP_KEY_MD5;
2484 			return;
2485 		}
2486 	}
2487 #endif
2488 	out->type = TCP_KEY_NONE;
2489 }
2490 
tcp_key_is_md5(const struct tcp_key * key)2491 static inline bool tcp_key_is_md5(const struct tcp_key *key)
2492 {
2493 	if (static_branch_tcp_md5())
2494 		return key->type == TCP_KEY_MD5;
2495 	return false;
2496 }
2497 
tcp_key_is_ao(const struct tcp_key * key)2498 static inline bool tcp_key_is_ao(const struct tcp_key *key)
2499 {
2500 	if (static_branch_tcp_ao())
2501 		return key->type == TCP_KEY_AO;
2502 	return false;
2503 }
2504 
2505 int tcpv4_offload_init(void);
2506 
2507 void tcp_v4_init(void);
2508 void tcp_init(void);
2509 
2510 /* tcp_recovery.c */
2511 void tcp_mark_skb_lost(struct sock *sk, struct sk_buff *skb);
2512 void tcp_newreno_mark_lost(struct sock *sk, bool snd_una_advanced);
2513 extern s32 tcp_rack_skb_timeout(struct tcp_sock *tp, struct sk_buff *skb,
2514 				u32 reo_wnd);
2515 extern bool tcp_rack_mark_lost(struct sock *sk);
2516 extern void tcp_rack_advance(struct tcp_sock *tp, u8 sacked, u32 end_seq,
2517 			     u64 xmit_time);
2518 extern void tcp_rack_reo_timeout(struct sock *sk);
2519 extern void tcp_rack_update_reo_wnd(struct sock *sk, struct rate_sample *rs);
2520 
2521 /* tcp_plb.c */
2522 
2523 /*
2524  * Scaling factor for fractions in PLB. For example, tcp_plb_update_state
2525  * expects cong_ratio which represents fraction of traffic that experienced
2526  * congestion over a single RTT. In order to avoid floating point operations,
2527  * this fraction should be mapped to (1 << TCP_PLB_SCALE) and passed in.
2528  */
2529 #define TCP_PLB_SCALE 8
2530 
2531 /* State for PLB (Protective Load Balancing) for a single TCP connection. */
2532 struct tcp_plb_state {
2533 	u8	consec_cong_rounds:5, /* consecutive congested rounds */
2534 		unused:3;
2535 	u32	pause_until; /* jiffies32 when PLB can resume rerouting */
2536 };
2537 
tcp_plb_init(const struct sock * sk,struct tcp_plb_state * plb)2538 static inline void tcp_plb_init(const struct sock *sk,
2539 				struct tcp_plb_state *plb)
2540 {
2541 	plb->consec_cong_rounds = 0;
2542 	plb->pause_until = 0;
2543 }
2544 void tcp_plb_update_state(const struct sock *sk, struct tcp_plb_state *plb,
2545 			  const int cong_ratio);
2546 void tcp_plb_check_rehash(struct sock *sk, struct tcp_plb_state *plb);
2547 void tcp_plb_update_state_upon_rto(struct sock *sk, struct tcp_plb_state *plb);
2548 
tcp_warn_once(const struct sock * sk,bool cond,const char * str)2549 static inline void tcp_warn_once(const struct sock *sk, bool cond, const char *str)
2550 {
2551 	WARN_ONCE(cond,
2552 		  "%scwn:%u out:%u sacked:%u lost:%u retrans:%u tlp_high_seq:%u sk_state:%u ca_state:%u advmss:%u mss_cache:%u pmtu:%u\n",
2553 		  str,
2554 		  tcp_snd_cwnd(tcp_sk(sk)),
2555 		  tcp_sk(sk)->packets_out, tcp_sk(sk)->sacked_out,
2556 		  tcp_sk(sk)->lost_out, tcp_sk(sk)->retrans_out,
2557 		  tcp_sk(sk)->tlp_high_seq, sk->sk_state,
2558 		  inet_csk(sk)->icsk_ca_state,
2559 		  tcp_sk(sk)->advmss, tcp_sk(sk)->mss_cache,
2560 		  inet_csk(sk)->icsk_pmtu_cookie);
2561 }
2562 
2563 /* At how many usecs into the future should the RTO fire? */
tcp_rto_delta_us(const struct sock * sk)2564 static inline s64 tcp_rto_delta_us(const struct sock *sk)
2565 {
2566 	const struct sk_buff *skb = tcp_rtx_queue_head(sk);
2567 	u32 rto = inet_csk(sk)->icsk_rto;
2568 
2569 	if (likely(skb)) {
2570 		u64 rto_time_stamp_us = tcp_skb_timestamp_us(skb) + jiffies_to_usecs(rto);
2571 
2572 		return rto_time_stamp_us - tcp_sk(sk)->tcp_mstamp;
2573 	} else {
2574 		tcp_warn_once(sk, 1, "rtx queue empty: ");
2575 		return jiffies_to_usecs(rto);
2576 	}
2577 
2578 }
2579 
2580 /*
2581  * Save and compile IPv4 options, return a pointer to it
2582  */
tcp_v4_save_options(struct net * net,struct sk_buff * skb)2583 static inline struct ip_options_rcu *tcp_v4_save_options(struct net *net,
2584 							 struct sk_buff *skb)
2585 {
2586 	const struct ip_options *opt = &TCP_SKB_CB(skb)->header.h4.opt;
2587 	struct ip_options_rcu *dopt = NULL;
2588 
2589 	if (opt->optlen) {
2590 		int opt_size = sizeof(*dopt) + opt->optlen;
2591 
2592 		dopt = kmalloc(opt_size, GFP_ATOMIC);
2593 		if (dopt && __ip_options_echo(net, &dopt->opt, skb, opt)) {
2594 			kfree(dopt);
2595 			dopt = NULL;
2596 		}
2597 	}
2598 	return dopt;
2599 }
2600 
2601 /* locally generated TCP pure ACKs have skb->truesize == 2
2602  * (check tcp_send_ack() in net/ipv4/tcp_output.c )
2603  * This is much faster than dissecting the packet to find out.
2604  * (Think of GRE encapsulations, IPv4, IPv6, ...)
2605  */
skb_is_tcp_pure_ack(const struct sk_buff * skb)2606 static inline bool skb_is_tcp_pure_ack(const struct sk_buff *skb)
2607 {
2608 	return skb->truesize == 2;
2609 }
2610 
skb_set_tcp_pure_ack(struct sk_buff * skb)2611 static inline void skb_set_tcp_pure_ack(struct sk_buff *skb)
2612 {
2613 	skb->truesize = 2;
2614 }
2615 
tcp_inq(struct sock * sk)2616 static inline int tcp_inq(struct sock *sk)
2617 {
2618 	struct tcp_sock *tp = tcp_sk(sk);
2619 	int answ;
2620 
2621 	if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) {
2622 		answ = 0;
2623 	} else if (sock_flag(sk, SOCK_URGINLINE) ||
2624 		   !tp->urg_data ||
2625 		   before(tp->urg_seq, tp->copied_seq) ||
2626 		   !before(tp->urg_seq, tp->rcv_nxt)) {
2627 
2628 		answ = tp->rcv_nxt - tp->copied_seq;
2629 
2630 		/* Subtract 1, if FIN was received */
2631 		if (answ && sock_flag(sk, SOCK_DONE))
2632 			answ--;
2633 	} else {
2634 		answ = tp->urg_seq - tp->copied_seq;
2635 	}
2636 
2637 	return answ;
2638 }
2639 
2640 int tcp_peek_len(struct socket *sock);
2641 
tcp_segs_in(struct tcp_sock * tp,const struct sk_buff * skb)2642 static inline void tcp_segs_in(struct tcp_sock *tp, const struct sk_buff *skb)
2643 {
2644 	u16 segs_in;
2645 
2646 	segs_in = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
2647 
2648 	/* We update these fields while other threads might
2649 	 * read them from tcp_get_info()
2650 	 */
2651 	WRITE_ONCE(tp->segs_in, tp->segs_in + segs_in);
2652 	if (skb->len > tcp_hdrlen(skb))
2653 		WRITE_ONCE(tp->data_segs_in, tp->data_segs_in + segs_in);
2654 }
2655 
2656 /*
2657  * TCP listen path runs lockless.
2658  * We forced "struct sock" to be const qualified to make sure
2659  * we don't modify one of its field by mistake.
2660  * Here, we increment sk_drops which is an atomic_t, so we can safely
2661  * make sock writable again.
2662  */
tcp_listendrop(const struct sock * sk)2663 static inline void tcp_listendrop(const struct sock *sk)
2664 {
2665 	sk_drops_inc((struct sock *)sk);
2666 	__NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENDROPS);
2667 }
2668 
2669 enum hrtimer_restart tcp_pace_kick(struct hrtimer *timer);
2670 
2671 /*
2672  * Interface for adding Upper Level Protocols over TCP
2673  */
2674 
2675 #define TCP_ULP_NAME_MAX	16
2676 #define TCP_ULP_MAX		128
2677 #define TCP_ULP_BUF_MAX		(TCP_ULP_NAME_MAX*TCP_ULP_MAX)
2678 
2679 struct tcp_ulp_ops {
2680 	struct list_head	list;
2681 
2682 	/* initialize ulp */
2683 	int (*init)(struct sock *sk);
2684 	/* update ulp */
2685 	void (*update)(struct sock *sk, struct proto *p,
2686 		       void (*write_space)(struct sock *sk));
2687 	/* cleanup ulp */
2688 	void (*release)(struct sock *sk);
2689 	/* diagnostic */
2690 	int (*get_info)(struct sock *sk, struct sk_buff *skb, bool net_admin);
2691 	size_t (*get_info_size)(const struct sock *sk, bool net_admin);
2692 	/* clone ulp */
2693 	void (*clone)(const struct request_sock *req, struct sock *newsk,
2694 		      const gfp_t priority);
2695 
2696 	char		name[TCP_ULP_NAME_MAX];
2697 	struct module	*owner;
2698 };
2699 int tcp_register_ulp(struct tcp_ulp_ops *type);
2700 void tcp_unregister_ulp(struct tcp_ulp_ops *type);
2701 int tcp_set_ulp(struct sock *sk, const char *name);
2702 void tcp_get_available_ulp(char *buf, size_t len);
2703 void tcp_cleanup_ulp(struct sock *sk);
2704 void tcp_update_ulp(struct sock *sk, struct proto *p,
2705 		    void (*write_space)(struct sock *sk));
2706 
2707 #define MODULE_ALIAS_TCP_ULP(name)				\
2708 	MODULE_INFO(alias, name);		\
2709 	MODULE_INFO(alias, "tcp-ulp-" name)
2710 
2711 #ifdef CONFIG_NET_SOCK_MSG
2712 struct sk_msg;
2713 struct sk_psock;
2714 
2715 #ifdef CONFIG_BPF_SYSCALL
2716 int tcp_bpf_update_proto(struct sock *sk, struct sk_psock *psock, bool restore);
2717 void tcp_bpf_clone(const struct sock *sk, struct sock *newsk);
2718 #ifdef CONFIG_BPF_STREAM_PARSER
2719 struct strparser;
2720 int tcp_bpf_strp_read_sock(struct strparser *strp, read_descriptor_t *desc,
2721 			   sk_read_actor_t recv_actor);
2722 #endif /* CONFIG_BPF_STREAM_PARSER */
2723 #endif /* CONFIG_BPF_SYSCALL */
2724 
2725 #ifdef CONFIG_INET
2726 void tcp_eat_skb(struct sock *sk, struct sk_buff *skb);
2727 #else
tcp_eat_skb(struct sock * sk,struct sk_buff * skb)2728 static inline void tcp_eat_skb(struct sock *sk, struct sk_buff *skb)
2729 {
2730 }
2731 #endif
2732 
2733 int tcp_bpf_sendmsg_redir(struct sock *sk, bool ingress,
2734 			  struct sk_msg *msg, u32 bytes, int flags);
2735 #endif /* CONFIG_NET_SOCK_MSG */
2736 
2737 #if !defined(CONFIG_BPF_SYSCALL) || !defined(CONFIG_NET_SOCK_MSG)
tcp_bpf_clone(const struct sock * sk,struct sock * newsk)2738 static inline void tcp_bpf_clone(const struct sock *sk, struct sock *newsk)
2739 {
2740 }
2741 #endif
2742 
2743 #ifdef CONFIG_CGROUP_BPF
bpf_skops_init_skb(struct bpf_sock_ops_kern * skops,struct sk_buff * skb,unsigned int end_offset)2744 static inline void bpf_skops_init_skb(struct bpf_sock_ops_kern *skops,
2745 				      struct sk_buff *skb,
2746 				      unsigned int end_offset)
2747 {
2748 	skops->skb = skb;
2749 	skops->skb_data_end = skb->data + end_offset;
2750 }
2751 #else
bpf_skops_init_skb(struct bpf_sock_ops_kern * skops,struct sk_buff * skb,unsigned int end_offset)2752 static inline void bpf_skops_init_skb(struct bpf_sock_ops_kern *skops,
2753 				      struct sk_buff *skb,
2754 				      unsigned int end_offset)
2755 {
2756 }
2757 #endif
2758 
2759 /* Call BPF_SOCK_OPS program that returns an int. If the return value
2760  * is < 0, then the BPF op failed (for example if the loaded BPF
2761  * program does not support the chosen operation or there is no BPF
2762  * program loaded).
2763  */
2764 #ifdef CONFIG_BPF
tcp_call_bpf(struct sock * sk,int op,u32 nargs,u32 * args)2765 static inline int tcp_call_bpf(struct sock *sk, int op, u32 nargs, u32 *args)
2766 {
2767 	struct bpf_sock_ops_kern sock_ops;
2768 	int ret;
2769 
2770 	memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
2771 	if (sk_fullsock(sk)) {
2772 		sock_ops.is_fullsock = 1;
2773 		sock_ops.is_locked_tcp_sock = 1;
2774 		sock_owned_by_me(sk);
2775 	}
2776 
2777 	sock_ops.sk = sk;
2778 	sock_ops.op = op;
2779 	if (nargs > 0)
2780 		memcpy(sock_ops.args, args, nargs * sizeof(*args));
2781 
2782 	ret = BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops);
2783 	if (ret == 0)
2784 		ret = sock_ops.reply;
2785 	else
2786 		ret = -1;
2787 	return ret;
2788 }
2789 
tcp_call_bpf_2arg(struct sock * sk,int op,u32 arg1,u32 arg2)2790 static inline int tcp_call_bpf_2arg(struct sock *sk, int op, u32 arg1, u32 arg2)
2791 {
2792 	u32 args[2] = {arg1, arg2};
2793 
2794 	return tcp_call_bpf(sk, op, 2, args);
2795 }
2796 
tcp_call_bpf_3arg(struct sock * sk,int op,u32 arg1,u32 arg2,u32 arg3)2797 static inline int tcp_call_bpf_3arg(struct sock *sk, int op, u32 arg1, u32 arg2,
2798 				    u32 arg3)
2799 {
2800 	u32 args[3] = {arg1, arg2, arg3};
2801 
2802 	return tcp_call_bpf(sk, op, 3, args);
2803 }
2804 
2805 #else
tcp_call_bpf(struct sock * sk,int op,u32 nargs,u32 * args)2806 static inline int tcp_call_bpf(struct sock *sk, int op, u32 nargs, u32 *args)
2807 {
2808 	return -EPERM;
2809 }
2810 
tcp_call_bpf_2arg(struct sock * sk,int op,u32 arg1,u32 arg2)2811 static inline int tcp_call_bpf_2arg(struct sock *sk, int op, u32 arg1, u32 arg2)
2812 {
2813 	return -EPERM;
2814 }
2815 
tcp_call_bpf_3arg(struct sock * sk,int op,u32 arg1,u32 arg2,u32 arg3)2816 static inline int tcp_call_bpf_3arg(struct sock *sk, int op, u32 arg1, u32 arg2,
2817 				    u32 arg3)
2818 {
2819 	return -EPERM;
2820 }
2821 
2822 #endif
2823 
tcp_timeout_init(struct sock * sk)2824 static inline u32 tcp_timeout_init(struct sock *sk)
2825 {
2826 	int timeout;
2827 
2828 	timeout = tcp_call_bpf(sk, BPF_SOCK_OPS_TIMEOUT_INIT, 0, NULL);
2829 
2830 	if (timeout <= 0)
2831 		timeout = TCP_TIMEOUT_INIT;
2832 	return min_t(int, timeout, TCP_RTO_MAX);
2833 }
2834 
tcp_rwnd_init_bpf(struct sock * sk)2835 static inline u32 tcp_rwnd_init_bpf(struct sock *sk)
2836 {
2837 	int rwnd;
2838 
2839 	rwnd = tcp_call_bpf(sk, BPF_SOCK_OPS_RWND_INIT, 0, NULL);
2840 
2841 	if (rwnd < 0)
2842 		rwnd = 0;
2843 	return rwnd;
2844 }
2845 
tcp_bpf_ca_needs_ecn(struct sock * sk)2846 static inline bool tcp_bpf_ca_needs_ecn(struct sock *sk)
2847 {
2848 	return (tcp_call_bpf(sk, BPF_SOCK_OPS_NEEDS_ECN, 0, NULL) == 1);
2849 }
2850 
tcp_bpf_rtt(struct sock * sk,long mrtt,u32 srtt)2851 static inline void tcp_bpf_rtt(struct sock *sk, long mrtt, u32 srtt)
2852 {
2853 	if (BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), BPF_SOCK_OPS_RTT_CB_FLAG))
2854 		tcp_call_bpf_2arg(sk, BPF_SOCK_OPS_RTT_CB, mrtt, srtt);
2855 }
2856 
2857 #if IS_ENABLED(CONFIG_SMC)
2858 extern struct static_key_false tcp_have_smc;
2859 #endif
2860 
2861 #if IS_ENABLED(CONFIG_TLS_DEVICE)
2862 void clean_acked_data_enable(struct tcp_sock *tp,
2863 			     void (*cad)(struct sock *sk, u32 ack_seq));
2864 void clean_acked_data_disable(struct tcp_sock *tp);
2865 void clean_acked_data_flush(void);
2866 #endif
2867 
2868 DECLARE_STATIC_KEY_FALSE(tcp_tx_delay_enabled);
tcp_add_tx_delay(struct sk_buff * skb,const struct tcp_sock * tp)2869 static inline void tcp_add_tx_delay(struct sk_buff *skb,
2870 				    const struct tcp_sock *tp)
2871 {
2872 	if (static_branch_unlikely(&tcp_tx_delay_enabled))
2873 		skb->skb_mstamp_ns += (u64)tp->tcp_tx_delay * NSEC_PER_USEC;
2874 }
2875 
2876 /* Compute Earliest Departure Time for some control packets
2877  * like ACK or RST for TIME_WAIT or non ESTABLISHED sockets.
2878  */
tcp_transmit_time(const struct sock * sk)2879 static inline u64 tcp_transmit_time(const struct sock *sk)
2880 {
2881 	if (static_branch_unlikely(&tcp_tx_delay_enabled)) {
2882 		u32 delay = (sk->sk_state == TCP_TIME_WAIT) ?
2883 			tcp_twsk(sk)->tw_tx_delay : tcp_sk(sk)->tcp_tx_delay;
2884 
2885 		return tcp_clock_ns() + (u64)delay * NSEC_PER_USEC;
2886 	}
2887 	return 0;
2888 }
2889 
tcp_parse_auth_options(const struct tcphdr * th,const u8 ** md5_hash,const struct tcp_ao_hdr ** aoh)2890 static inline int tcp_parse_auth_options(const struct tcphdr *th,
2891 		const u8 **md5_hash, const struct tcp_ao_hdr **aoh)
2892 {
2893 	const u8 *md5_tmp, *ao_tmp;
2894 	int ret;
2895 
2896 	ret = tcp_do_parse_auth_options(th, &md5_tmp, &ao_tmp);
2897 	if (ret)
2898 		return ret;
2899 
2900 	if (md5_hash)
2901 		*md5_hash = md5_tmp;
2902 
2903 	if (aoh) {
2904 		if (!ao_tmp)
2905 			*aoh = NULL;
2906 		else
2907 			*aoh = (struct tcp_ao_hdr *)(ao_tmp - 2);
2908 	}
2909 
2910 	return 0;
2911 }
2912 
tcp_ao_required(struct sock * sk,const void * saddr,int family,int l3index,bool stat_inc)2913 static inline bool tcp_ao_required(struct sock *sk, const void *saddr,
2914 				   int family, int l3index, bool stat_inc)
2915 {
2916 #ifdef CONFIG_TCP_AO
2917 	struct tcp_ao_info *ao_info;
2918 	struct tcp_ao_key *ao_key;
2919 
2920 	if (!static_branch_unlikely(&tcp_ao_needed.key))
2921 		return false;
2922 
2923 	ao_info = rcu_dereference_check(tcp_sk(sk)->ao_info,
2924 					lockdep_sock_is_held(sk));
2925 	if (!ao_info)
2926 		return false;
2927 
2928 	ao_key = tcp_ao_do_lookup(sk, l3index, saddr, family, -1, -1);
2929 	if (ao_info->ao_required || ao_key) {
2930 		if (stat_inc) {
2931 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAOREQUIRED);
2932 			atomic64_inc(&ao_info->counters.ao_required);
2933 		}
2934 		return true;
2935 	}
2936 #endif
2937 	return false;
2938 }
2939 
2940 enum skb_drop_reason tcp_inbound_hash(struct sock *sk,
2941 		const struct request_sock *req, const struct sk_buff *skb,
2942 		const void *saddr, const void *daddr,
2943 		int family, int dif, int sdif);
2944 
2945 #endif	/* _TCP_H */
2946