1 /* SPDX-License-Identifier: GPL-2.0-or-later */ 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * Definitions for the AF_INET socket handler. 8 * 9 * Version: @(#)sock.h 1.0.4 05/13/93 10 * 11 * Authors: Ross Biro 12 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 13 * Corey Minyard <wf-rch!minyard@relay.EU.net> 14 * Florian La Roche <flla@stud.uni-sb.de> 15 * 16 * Fixes: 17 * Alan Cox : Volatiles in skbuff pointers. See 18 * skbuff comments. May be overdone, 19 * better to prove they can be removed 20 * than the reverse. 21 * Alan Cox : Added a zapped field for tcp to note 22 * a socket is reset and must stay shut up 23 * Alan Cox : New fields for options 24 * Pauline Middelink : identd support 25 * Alan Cox : Eliminate low level recv/recvfrom 26 * David S. Miller : New socket lookup architecture. 27 * Steve Whitehouse: Default routines for sock_ops 28 * Arnaldo C. Melo : removed net_pinfo, tp_pinfo and made 29 * protinfo be just a void pointer, as the 30 * protocol specific parts were moved to 31 * respective headers and ipv4/v6, etc now 32 * use private slabcaches for its socks 33 * Pedro Hortas : New flags field for socket options 34 */ 35 #ifndef _SOCK_H 36 #define _SOCK_H 37 38 #include <linux/hardirq.h> 39 #include <linux/kernel.h> 40 #include <linux/list.h> 41 #include <linux/list_nulls.h> 42 #include <linux/timer.h> 43 #include <linux/cache.h> 44 #include <linux/bitops.h> 45 #include <linux/lockdep.h> 46 #include <linux/netdevice.h> 47 #include <linux/skbuff.h> /* struct sk_buff */ 48 #include <linux/mm.h> 49 #include <linux/security.h> 50 #include <linux/slab.h> 51 #include <linux/uaccess.h> 52 #include <linux/page_counter.h> 53 #include <linux/memcontrol.h> 54 #include <linux/static_key.h> 55 #include <linux/sched.h> 56 #include <linux/wait.h> 57 #include <linux/cgroup-defs.h> 58 #include <linux/rbtree.h> 59 #include <linux/rculist_nulls.h> 60 #include <linux/poll.h> 61 #include <linux/sockptr.h> 62 #include <linux/indirect_call_wrapper.h> 63 #include <linux/atomic.h> 64 #include <linux/refcount.h> 65 #include <linux/llist.h> 66 #include <net/dst.h> 67 #include <net/checksum.h> 68 #include <net/tcp_states.h> 69 #include <linux/net_tstamp.h> 70 #include <net/l3mdev.h> 71 #include <uapi/linux/socket.h> 72 73 /* 74 * This structure really needs to be cleaned up. 75 * Most of it is for TCP, and not used by any of 76 * the other protocols. 77 */ 78 79 /* This is the per-socket lock. The spinlock provides a synchronization 80 * between user contexts and software interrupt processing, whereas the 81 * mini-semaphore synchronizes multiple users amongst themselves. 82 */ 83 typedef struct { 84 spinlock_t slock; 85 int owned; 86 wait_queue_head_t wq; 87 /* 88 * We express the mutex-alike socket_lock semantics 89 * to the lock validator by explicitly managing 90 * the slock as a lock variant (in addition to 91 * the slock itself): 92 */ 93 #ifdef CONFIG_DEBUG_LOCK_ALLOC 94 struct lockdep_map dep_map; 95 #endif 96 } socket_lock_t; 97 98 struct sock; 99 struct proto; 100 struct net; 101 102 typedef __u32 __bitwise __portpair; 103 typedef __u64 __bitwise __addrpair; 104 105 struct socket_drop_counters { 106 atomic_t drops0 ____cacheline_aligned_in_smp; 107 atomic_t drops1 ____cacheline_aligned_in_smp; 108 }; 109 110 /** 111 * struct sock_common - minimal network layer representation of sockets 112 * @skc_daddr: Foreign IPv4 addr 113 * @skc_rcv_saddr: Bound local IPv4 addr 114 * @skc_addrpair: 8-byte-aligned __u64 union of @skc_daddr & @skc_rcv_saddr 115 * @skc_hash: hash value used with various protocol lookup tables 116 * @skc_u16hashes: two u16 hash values used by UDP lookup tables 117 * @skc_dport: placeholder for inet_dport/tw_dport 118 * @skc_num: placeholder for inet_num/tw_num 119 * @skc_portpair: __u32 union of @skc_dport & @skc_num 120 * @skc_family: network address family 121 * @skc_state: Connection state 122 * @skc_reuse: %SO_REUSEADDR setting 123 * @skc_reuseport: %SO_REUSEPORT setting 124 * @skc_ipv6only: socket is IPV6 only 125 * @skc_net_refcnt: socket is using net ref counting 126 * @skc_bound_dev_if: bound device index if != 0 127 * @skc_bind_node: bind hash linkage for various protocol lookup tables 128 * @skc_portaddr_node: second hash linkage for UDP/UDP-Lite protocol 129 * @skc_prot: protocol handlers inside a network family 130 * @skc_net: reference to the network namespace of this socket 131 * @skc_v6_daddr: IPV6 destination address 132 * @skc_v6_rcv_saddr: IPV6 source address 133 * @skc_cookie: socket's cookie value 134 * @skc_node: main hash linkage for various protocol lookup tables 135 * @skc_nulls_node: main hash linkage for TCP/UDP/UDP-Lite protocol 136 * @skc_tx_queue_mapping: tx queue number for this connection 137 * @skc_rx_queue_mapping: rx queue number for this connection 138 * @skc_flags: place holder for sk_flags 139 * %SO_LINGER (l_onoff), %SO_BROADCAST, %SO_KEEPALIVE, 140 * %SO_OOBINLINE settings, %SO_TIMESTAMPING settings 141 * @skc_listener: connection request listener socket (aka rsk_listener) 142 * [union with @skc_flags] 143 * @skc_tw_dr: (aka tw_dr) ptr to &struct inet_timewait_death_row 144 * [union with @skc_flags] 145 * @skc_incoming_cpu: record/match cpu processing incoming packets 146 * @skc_rcv_wnd: (aka rsk_rcv_wnd) TCP receive window size (possibly scaled) 147 * [union with @skc_incoming_cpu] 148 * @skc_tw_rcv_nxt: (aka tw_rcv_nxt) TCP window next expected seq number 149 * [union with @skc_incoming_cpu] 150 * @skc_refcnt: reference count 151 * 152 * This is the minimal network layer representation of sockets, the header 153 * for struct sock and struct inet_timewait_sock. 154 */ 155 struct sock_common { 156 union { 157 __addrpair skc_addrpair; 158 struct { 159 __be32 skc_daddr; 160 __be32 skc_rcv_saddr; 161 }; 162 }; 163 union { 164 unsigned int skc_hash; 165 __u16 skc_u16hashes[2]; 166 }; 167 /* skc_dport && skc_num must be grouped as well */ 168 union { 169 __portpair skc_portpair; 170 struct { 171 __be16 skc_dport; 172 __u16 skc_num; 173 }; 174 }; 175 176 unsigned short skc_family; 177 volatile unsigned char skc_state; 178 unsigned char skc_reuse:4; 179 unsigned char skc_reuseport:1; 180 unsigned char skc_ipv6only:1; 181 unsigned char skc_net_refcnt:1; 182 int skc_bound_dev_if; 183 union { 184 struct hlist_node skc_bind_node; 185 struct hlist_node skc_portaddr_node; 186 }; 187 struct proto *skc_prot; 188 possible_net_t skc_net; 189 190 #if IS_ENABLED(CONFIG_IPV6) 191 struct in6_addr skc_v6_daddr; 192 struct in6_addr skc_v6_rcv_saddr; 193 #endif 194 195 atomic64_t skc_cookie; 196 197 /* following fields are padding to force 198 * offset(struct sock, sk_refcnt) == 128 on 64bit arches 199 * assuming IPV6 is enabled. We use this padding differently 200 * for different kind of 'sockets' 201 */ 202 union { 203 unsigned long skc_flags; 204 struct sock *skc_listener; /* request_sock */ 205 struct inet_timewait_death_row *skc_tw_dr; /* inet_timewait_sock */ 206 }; 207 /* 208 * fields between dontcopy_begin/dontcopy_end 209 * are not copied in sock_copy() 210 */ 211 /* private: */ 212 int skc_dontcopy_begin[0]; 213 /* public: */ 214 union { 215 struct hlist_node skc_node; 216 struct hlist_nulls_node skc_nulls_node; 217 }; 218 unsigned short skc_tx_queue_mapping; 219 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING 220 unsigned short skc_rx_queue_mapping; 221 #endif 222 union { 223 int skc_incoming_cpu; 224 u32 skc_rcv_wnd; 225 u32 skc_tw_rcv_nxt; /* struct tcp_timewait_sock */ 226 }; 227 228 refcount_t skc_refcnt; 229 /* private: */ 230 int skc_dontcopy_end[0]; 231 union { 232 u32 skc_rxhash; 233 u32 skc_window_clamp; 234 u32 skc_tw_snd_nxt; /* struct tcp_timewait_sock */ 235 }; 236 /* public: */ 237 }; 238 239 struct bpf_local_storage; 240 struct sk_filter; 241 242 /** 243 * struct sock - network layer representation of sockets 244 * @__sk_common: shared layout with inet_timewait_sock 245 * @sk_shutdown: mask of %SEND_SHUTDOWN and/or %RCV_SHUTDOWN 246 * @sk_userlocks: %SO_SNDBUF and %SO_RCVBUF settings 247 * @sk_lock: synchronizer 248 * @sk_kern_sock: True if sock is using kernel lock classes 249 * @sk_rcvbuf: size of receive buffer in bytes 250 * @sk_wq: sock wait queue and async head 251 * @sk_rx_dst: receive input route used by early demux 252 * @sk_rx_dst_ifindex: ifindex for @sk_rx_dst 253 * @sk_rx_dst_cookie: cookie for @sk_rx_dst 254 * @sk_dst_cache: destination cache 255 * @sk_dst_pending_confirm: need to confirm neighbour 256 * @sk_policy: flow policy 257 * @sk_receive_queue: incoming packets 258 * @sk_wmem_alloc: transmit queue bytes committed 259 * @sk_tsq_flags: TCP Small Queues flags 260 * @sk_write_queue: Packet sending queue 261 * @sk_omem_alloc: "o" is "option" or "other" 262 * @sk_wmem_queued: persistent queue size 263 * @sk_forward_alloc: space allocated forward 264 * @sk_reserved_mem: space reserved and non-reclaimable for the socket 265 * @sk_napi_id: id of the last napi context to receive data for sk 266 * @sk_ll_usec: usecs to busypoll when there is no data 267 * @sk_allocation: allocation mode 268 * @sk_pacing_rate: Pacing rate (if supported by transport/packet scheduler) 269 * @sk_pacing_status: Pacing status (requested, handled by sch_fq) 270 * @sk_max_pacing_rate: Maximum pacing rate (%SO_MAX_PACING_RATE) 271 * @sk_sndbuf: size of send buffer in bytes 272 * @sk_no_check_tx: %SO_NO_CHECK setting, set checksum in TX packets 273 * @sk_no_check_rx: allow zero checksum in RX packets 274 * @sk_route_caps: route capabilities (e.g. %NETIF_F_TSO) 275 * @sk_gso_disabled: if set, NETIF_F_GSO_MASK is forbidden. 276 * @sk_gso_type: GSO type (e.g. %SKB_GSO_TCPV4) 277 * @sk_gso_max_size: Maximum GSO segment size to build 278 * @sk_gso_max_segs: Maximum number of GSO segments 279 * @sk_pacing_shift: scaling factor for TCP Small Queues 280 * @sk_lingertime: %SO_LINGER l_linger setting 281 * @sk_backlog: always used with the per-socket spinlock held 282 * @sk_callback_lock: used with the callbacks in the end of this struct 283 * @sk_error_queue: rarely used 284 * @sk_prot_creator: sk_prot of original sock creator (see ipv6_setsockopt, 285 * IPV6_ADDRFORM for instance) 286 * @sk_err: last error 287 * @sk_err_soft: errors that don't cause failure but are the cause of a 288 * persistent failure not just 'timed out' 289 * @sk_drops: raw/udp drops counter 290 * @sk_drop_counters: optional pointer to socket_drop_counters 291 * @sk_ack_backlog: current listen backlog 292 * @sk_max_ack_backlog: listen backlog set in listen() 293 * @sk_uid: user id of owner 294 * @sk_ino: inode number (zero if orphaned) 295 * @sk_prefer_busy_poll: prefer busypolling over softirq processing 296 * @sk_busy_poll_budget: napi processing budget when busypolling 297 * @sk_priority: %SO_PRIORITY setting 298 * @sk_type: socket type (%SOCK_STREAM, etc) 299 * @sk_protocol: which protocol this socket belongs in this network family 300 * @sk_peer_lock: lock protecting @sk_peer_pid and @sk_peer_cred 301 * @sk_peer_pid: &struct pid for this socket's peer 302 * @sk_peer_cred: %SO_PEERCRED setting 303 * @sk_rcvlowat: %SO_RCVLOWAT setting 304 * @sk_rcvtimeo: %SO_RCVTIMEO setting 305 * @sk_sndtimeo: %SO_SNDTIMEO setting 306 * @sk_txhash: computed flow hash for use on transmit 307 * @sk_txrehash: enable TX hash rethink 308 * @sk_filter: socket filtering instructions 309 * @sk_timer: sock cleanup timer 310 * @sk_stamp: time stamp of last packet received 311 * @sk_stamp_seq: lock for accessing sk_stamp on 32 bit architectures only 312 * @sk_tsflags: SO_TIMESTAMPING flags 313 * @sk_bpf_cb_flags: used in bpf_setsockopt() 314 * @sk_use_task_frag: allow sk_page_frag() to use current->task_frag. 315 * Sockets that can be used under memory reclaim should 316 * set this to false. 317 * @sk_bind_phc: SO_TIMESTAMPING bind PHC index of PTP virtual clock 318 * for timestamping 319 * @sk_tskey: counter to disambiguate concurrent tstamp requests 320 * @sk_zckey: counter to order MSG_ZEROCOPY notifications 321 * @sk_socket: Identd and reporting IO signals 322 * @sk_user_data: RPC layer private data. Write-protected by @sk_callback_lock. 323 * @sk_frag: cached page frag 324 * @sk_peek_off: current peek_offset value 325 * @sk_send_head: front of stuff to transmit 326 * @tcp_rtx_queue: TCP re-transmit queue [union with @sk_send_head] 327 * @sk_security: used by security modules 328 * @sk_mark: generic packet mark 329 * @sk_cgrp_data: cgroup data for this cgroup 330 * @sk_memcg: this socket's memory cgroup association 331 * @sk_write_pending: a write to stream socket waits to start 332 * @sk_disconnects: number of disconnect operations performed on this sock 333 * @sk_state_change: callback to indicate change in the state of the sock 334 * @sk_data_ready: callback to indicate there is data to be processed 335 * @sk_write_space: callback to indicate there is bf sending space available 336 * @sk_error_report: callback to indicate errors (e.g. %MSG_ERRQUEUE) 337 * @sk_backlog_rcv: callback to process the backlog 338 * @sk_validate_xmit_skb: ptr to an optional validate function 339 * @sk_destruct: called at sock freeing time, i.e. when all refcnt == 0 340 * @sk_reuseport_cb: reuseport group container 341 * @sk_bpf_storage: ptr to cache and control for bpf_sk_storage 342 * @sk_rcu: used during RCU grace period 343 * @sk_clockid: clockid used by time-based scheduling (SO_TXTIME) 344 * @sk_txtime_deadline_mode: set deadline mode for SO_TXTIME 345 * @sk_txtime_report_errors: set report errors mode for SO_TXTIME 346 * @sk_txtime_unused: unused txtime flags 347 * @sk_scm_recv_flags: all flags used by scm_recv() 348 * @sk_scm_credentials: flagged by SO_PASSCRED to recv SCM_CREDENTIALS 349 * @sk_scm_security: flagged by SO_PASSSEC to recv SCM_SECURITY 350 * @sk_scm_pidfd: flagged by SO_PASSPIDFD to recv SCM_PIDFD 351 * @sk_scm_rights: flagged by SO_PASSRIGHTS to recv SCM_RIGHTS 352 * @sk_scm_unused: unused flags for scm_recv() 353 * @ns_tracker: tracker for netns reference 354 * @sk_user_frags: xarray of pages the user is holding a reference on. 355 * @sk_owner: reference to the real owner of the socket that calls 356 * sock_lock_init_class_and_name(). 357 */ 358 struct sock { 359 /* 360 * Now struct inet_timewait_sock also uses sock_common, so please just 361 * don't add nothing before this first member (__sk_common) --acme 362 */ 363 struct sock_common __sk_common; 364 #define sk_node __sk_common.skc_node 365 #define sk_nulls_node __sk_common.skc_nulls_node 366 #define sk_refcnt __sk_common.skc_refcnt 367 #define sk_tx_queue_mapping __sk_common.skc_tx_queue_mapping 368 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING 369 #define sk_rx_queue_mapping __sk_common.skc_rx_queue_mapping 370 #endif 371 372 #define sk_dontcopy_begin __sk_common.skc_dontcopy_begin 373 #define sk_dontcopy_end __sk_common.skc_dontcopy_end 374 #define sk_hash __sk_common.skc_hash 375 #define sk_portpair __sk_common.skc_portpair 376 #define sk_num __sk_common.skc_num 377 #define sk_dport __sk_common.skc_dport 378 #define sk_addrpair __sk_common.skc_addrpair 379 #define sk_daddr __sk_common.skc_daddr 380 #define sk_rcv_saddr __sk_common.skc_rcv_saddr 381 #define sk_family __sk_common.skc_family 382 #define sk_state __sk_common.skc_state 383 #define sk_reuse __sk_common.skc_reuse 384 #define sk_reuseport __sk_common.skc_reuseport 385 #define sk_ipv6only __sk_common.skc_ipv6only 386 #define sk_net_refcnt __sk_common.skc_net_refcnt 387 #define sk_bound_dev_if __sk_common.skc_bound_dev_if 388 #define sk_bind_node __sk_common.skc_bind_node 389 #define sk_prot __sk_common.skc_prot 390 #define sk_net __sk_common.skc_net 391 #define sk_v6_daddr __sk_common.skc_v6_daddr 392 #define sk_v6_rcv_saddr __sk_common.skc_v6_rcv_saddr 393 #define sk_cookie __sk_common.skc_cookie 394 #define sk_incoming_cpu __sk_common.skc_incoming_cpu 395 #define sk_flags __sk_common.skc_flags 396 #define sk_rxhash __sk_common.skc_rxhash 397 398 __cacheline_group_begin(sock_write_rx); 399 400 atomic_t sk_drops; 401 __s32 sk_peek_off; 402 struct sk_buff_head sk_error_queue; 403 struct sk_buff_head sk_receive_queue; 404 /* 405 * The backlog queue is special, it is always used with 406 * the per-socket spinlock held and requires low latency 407 * access. Therefore we special case it's implementation. 408 * Note : rmem_alloc is in this structure to fill a hole 409 * on 64bit arches, not because its logically part of 410 * backlog. 411 */ 412 struct { 413 atomic_t rmem_alloc; 414 int len; 415 struct sk_buff *head; 416 struct sk_buff *tail; 417 } sk_backlog; 418 #define sk_rmem_alloc sk_backlog.rmem_alloc 419 420 __cacheline_group_end(sock_write_rx); 421 422 __cacheline_group_begin(sock_read_rx); 423 /* early demux fields */ 424 struct dst_entry __rcu *sk_rx_dst; 425 int sk_rx_dst_ifindex; 426 u32 sk_rx_dst_cookie; 427 428 #ifdef CONFIG_NET_RX_BUSY_POLL 429 unsigned int sk_ll_usec; 430 unsigned int sk_napi_id; 431 u16 sk_busy_poll_budget; 432 u8 sk_prefer_busy_poll; 433 #endif 434 u8 sk_userlocks; 435 int sk_rcvbuf; 436 437 struct sk_filter __rcu *sk_filter; 438 union { 439 struct socket_wq __rcu *sk_wq; 440 /* private: */ 441 struct socket_wq *sk_wq_raw; 442 /* public: */ 443 }; 444 445 void (*sk_data_ready)(struct sock *sk); 446 long sk_rcvtimeo; 447 int sk_rcvlowat; 448 __cacheline_group_end(sock_read_rx); 449 450 __cacheline_group_begin(sock_read_rxtx); 451 int sk_err; 452 struct socket *sk_socket; 453 #ifdef CONFIG_MEMCG 454 struct mem_cgroup *sk_memcg; 455 #endif 456 #ifdef CONFIG_XFRM 457 struct xfrm_policy __rcu *sk_policy[2]; 458 #endif 459 struct socket_drop_counters *sk_drop_counters; 460 __cacheline_group_end(sock_read_rxtx); 461 462 __cacheline_group_begin(sock_write_rxtx); 463 socket_lock_t sk_lock; 464 u32 sk_reserved_mem; 465 int sk_forward_alloc; 466 u32 sk_tsflags; 467 __cacheline_group_end(sock_write_rxtx); 468 469 __cacheline_group_begin(sock_write_tx); 470 int sk_write_pending; 471 atomic_t sk_omem_alloc; 472 int sk_sndbuf; 473 474 int sk_wmem_queued; 475 refcount_t sk_wmem_alloc; 476 unsigned long sk_tsq_flags; 477 union { 478 struct sk_buff *sk_send_head; 479 struct rb_root tcp_rtx_queue; 480 }; 481 struct sk_buff_head sk_write_queue; 482 u32 sk_dst_pending_confirm; 483 u32 sk_pacing_status; /* see enum sk_pacing */ 484 struct page_frag sk_frag; 485 struct timer_list sk_timer; 486 487 unsigned long sk_pacing_rate; /* bytes per second */ 488 atomic_t sk_zckey; 489 atomic_t sk_tskey; 490 __cacheline_group_end(sock_write_tx); 491 492 __cacheline_group_begin(sock_read_tx); 493 unsigned long sk_max_pacing_rate; 494 long sk_sndtimeo; 495 u32 sk_priority; 496 u32 sk_mark; 497 struct dst_entry __rcu *sk_dst_cache; 498 netdev_features_t sk_route_caps; 499 #ifdef CONFIG_SOCK_VALIDATE_XMIT 500 struct sk_buff* (*sk_validate_xmit_skb)(struct sock *sk, 501 struct net_device *dev, 502 struct sk_buff *skb); 503 #endif 504 u16 sk_gso_type; 505 u16 sk_gso_max_segs; 506 unsigned int sk_gso_max_size; 507 gfp_t sk_allocation; 508 u32 sk_txhash; 509 u8 sk_pacing_shift; 510 bool sk_use_task_frag; 511 __cacheline_group_end(sock_read_tx); 512 513 /* 514 * Because of non atomicity rules, all 515 * changes are protected by socket lock. 516 */ 517 u8 sk_gso_disabled : 1, 518 sk_kern_sock : 1, 519 sk_no_check_tx : 1, 520 sk_no_check_rx : 1; 521 u8 sk_shutdown; 522 u16 sk_type; 523 u16 sk_protocol; 524 unsigned long sk_lingertime; 525 struct proto *sk_prot_creator; 526 rwlock_t sk_callback_lock; 527 int sk_err_soft; 528 u32 sk_ack_backlog; 529 u32 sk_max_ack_backlog; 530 kuid_t sk_uid; 531 unsigned long sk_ino; 532 spinlock_t sk_peer_lock; 533 int sk_bind_phc; 534 struct pid *sk_peer_pid; 535 const struct cred *sk_peer_cred; 536 537 ktime_t sk_stamp; 538 #if BITS_PER_LONG==32 539 seqlock_t sk_stamp_seq; 540 #endif 541 int sk_disconnects; 542 543 union { 544 u8 sk_txrehash; 545 u8 sk_scm_recv_flags; 546 struct { 547 u8 sk_scm_credentials : 1, 548 sk_scm_security : 1, 549 sk_scm_pidfd : 1, 550 sk_scm_rights : 1, 551 sk_scm_unused : 4; 552 }; 553 }; 554 u8 sk_clockid; 555 u8 sk_txtime_deadline_mode : 1, 556 sk_txtime_report_errors : 1, 557 sk_txtime_unused : 6; 558 #define SK_BPF_CB_FLAG_TEST(SK, FLAG) ((SK)->sk_bpf_cb_flags & (FLAG)) 559 u8 sk_bpf_cb_flags; 560 561 void *sk_user_data; 562 #ifdef CONFIG_SECURITY 563 void *sk_security; 564 #endif 565 struct sock_cgroup_data sk_cgrp_data; 566 void (*sk_state_change)(struct sock *sk); 567 void (*sk_write_space)(struct sock *sk); 568 void (*sk_error_report)(struct sock *sk); 569 int (*sk_backlog_rcv)(struct sock *sk, 570 struct sk_buff *skb); 571 void (*sk_destruct)(struct sock *sk); 572 struct sock_reuseport __rcu *sk_reuseport_cb; 573 #ifdef CONFIG_BPF_SYSCALL 574 struct bpf_local_storage __rcu *sk_bpf_storage; 575 #endif 576 struct rcu_head sk_rcu; 577 netns_tracker ns_tracker; 578 struct xarray sk_user_frags; 579 580 #if IS_ENABLED(CONFIG_PROVE_LOCKING) && IS_ENABLED(CONFIG_MODULES) 581 struct module *sk_owner; 582 #endif 583 }; 584 585 struct sock_bh_locked { 586 struct sock *sock; 587 local_lock_t bh_lock; 588 }; 589 590 enum sk_pacing { 591 SK_PACING_NONE = 0, 592 SK_PACING_NEEDED = 1, 593 SK_PACING_FQ = 2, 594 }; 595 596 /* flag bits in sk_user_data 597 * 598 * - SK_USER_DATA_NOCOPY: Pointer stored in sk_user_data might 599 * not be suitable for copying when cloning the socket. For instance, 600 * it can point to a reference counted object. sk_user_data bottom 601 * bit is set if pointer must not be copied. 602 * 603 * - SK_USER_DATA_BPF: Mark whether sk_user_data field is 604 * managed/owned by a BPF reuseport array. This bit should be set 605 * when sk_user_data's sk is added to the bpf's reuseport_array. 606 * 607 * - SK_USER_DATA_PSOCK: Mark whether pointer stored in 608 * sk_user_data points to psock type. This bit should be set 609 * when sk_user_data is assigned to a psock object. 610 */ 611 #define SK_USER_DATA_NOCOPY 1UL 612 #define SK_USER_DATA_BPF 2UL 613 #define SK_USER_DATA_PSOCK 4UL 614 #define SK_USER_DATA_PTRMASK ~(SK_USER_DATA_NOCOPY | SK_USER_DATA_BPF |\ 615 SK_USER_DATA_PSOCK) 616 617 /** 618 * sk_user_data_is_nocopy - Test if sk_user_data pointer must not be copied 619 * @sk: socket 620 */ 621 static inline bool sk_user_data_is_nocopy(const struct sock *sk) 622 { 623 return ((uintptr_t)sk->sk_user_data & SK_USER_DATA_NOCOPY); 624 } 625 626 #define __sk_user_data(sk) ((*((void __rcu **)&(sk)->sk_user_data))) 627 628 /** 629 * __locked_read_sk_user_data_with_flags - return the pointer 630 * only if argument flags all has been set in sk_user_data. Otherwise 631 * return NULL 632 * 633 * @sk: socket 634 * @flags: flag bits 635 * 636 * The caller must be holding sk->sk_callback_lock. 637 */ 638 static inline void * 639 __locked_read_sk_user_data_with_flags(const struct sock *sk, 640 uintptr_t flags) 641 { 642 uintptr_t sk_user_data = 643 (uintptr_t)rcu_dereference_check(__sk_user_data(sk), 644 lockdep_is_held(&sk->sk_callback_lock)); 645 646 WARN_ON_ONCE(flags & SK_USER_DATA_PTRMASK); 647 648 if ((sk_user_data & flags) == flags) 649 return (void *)(sk_user_data & SK_USER_DATA_PTRMASK); 650 return NULL; 651 } 652 653 /** 654 * __rcu_dereference_sk_user_data_with_flags - return the pointer 655 * only if argument flags all has been set in sk_user_data. Otherwise 656 * return NULL 657 * 658 * @sk: socket 659 * @flags: flag bits 660 */ 661 static inline void * 662 __rcu_dereference_sk_user_data_with_flags(const struct sock *sk, 663 uintptr_t flags) 664 { 665 uintptr_t sk_user_data = (uintptr_t)rcu_dereference(__sk_user_data(sk)); 666 667 WARN_ON_ONCE(flags & SK_USER_DATA_PTRMASK); 668 669 if ((sk_user_data & flags) == flags) 670 return (void *)(sk_user_data & SK_USER_DATA_PTRMASK); 671 return NULL; 672 } 673 674 #define rcu_dereference_sk_user_data(sk) \ 675 __rcu_dereference_sk_user_data_with_flags(sk, 0) 676 #define __rcu_assign_sk_user_data_with_flags(sk, ptr, flags) \ 677 ({ \ 678 uintptr_t __tmp1 = (uintptr_t)(ptr), \ 679 __tmp2 = (uintptr_t)(flags); \ 680 WARN_ON_ONCE(__tmp1 & ~SK_USER_DATA_PTRMASK); \ 681 WARN_ON_ONCE(__tmp2 & SK_USER_DATA_PTRMASK); \ 682 rcu_assign_pointer(__sk_user_data((sk)), \ 683 __tmp1 | __tmp2); \ 684 }) 685 #define rcu_assign_sk_user_data(sk, ptr) \ 686 __rcu_assign_sk_user_data_with_flags(sk, ptr, 0) 687 688 static inline 689 struct net *sock_net(const struct sock *sk) 690 { 691 return read_pnet(&sk->sk_net); 692 } 693 694 static inline 695 void sock_net_set(struct sock *sk, struct net *net) 696 { 697 write_pnet(&sk->sk_net, net); 698 } 699 700 /* 701 * SK_CAN_REUSE and SK_NO_REUSE on a socket mean that the socket is OK 702 * or not whether his port will be reused by someone else. SK_FORCE_REUSE 703 * on a socket means that the socket will reuse everybody else's port 704 * without looking at the other's sk_reuse value. 705 */ 706 707 #define SK_NO_REUSE 0 708 #define SK_CAN_REUSE 1 709 #define SK_FORCE_REUSE 2 710 711 int sk_set_peek_off(struct sock *sk, int val); 712 713 static inline int sk_peek_offset(const struct sock *sk, int flags) 714 { 715 if (unlikely(flags & MSG_PEEK)) { 716 return READ_ONCE(sk->sk_peek_off); 717 } 718 719 return 0; 720 } 721 722 static inline void sk_peek_offset_bwd(struct sock *sk, int val) 723 { 724 s32 off = READ_ONCE(sk->sk_peek_off); 725 726 if (unlikely(off >= 0)) { 727 off = max_t(s32, off - val, 0); 728 WRITE_ONCE(sk->sk_peek_off, off); 729 } 730 } 731 732 static inline void sk_peek_offset_fwd(struct sock *sk, int val) 733 { 734 sk_peek_offset_bwd(sk, -val); 735 } 736 737 /* 738 * Hashed lists helper routines 739 */ 740 static inline struct sock *sk_entry(const struct hlist_node *node) 741 { 742 return hlist_entry(node, struct sock, sk_node); 743 } 744 745 static inline struct sock *__sk_head(const struct hlist_head *head) 746 { 747 return hlist_entry(head->first, struct sock, sk_node); 748 } 749 750 static inline struct sock *sk_head(const struct hlist_head *head) 751 { 752 return hlist_empty(head) ? NULL : __sk_head(head); 753 } 754 755 static inline struct sock *__sk_nulls_head(const struct hlist_nulls_head *head) 756 { 757 return hlist_nulls_entry(head->first, struct sock, sk_nulls_node); 758 } 759 760 static inline struct sock *sk_nulls_head(const struct hlist_nulls_head *head) 761 { 762 return hlist_nulls_empty(head) ? NULL : __sk_nulls_head(head); 763 } 764 765 static inline struct sock *sk_next(const struct sock *sk) 766 { 767 return hlist_entry_safe(sk->sk_node.next, struct sock, sk_node); 768 } 769 770 static inline struct sock *sk_nulls_next(const struct sock *sk) 771 { 772 return (!is_a_nulls(sk->sk_nulls_node.next)) ? 773 hlist_nulls_entry(sk->sk_nulls_node.next, 774 struct sock, sk_nulls_node) : 775 NULL; 776 } 777 778 static inline bool sk_unhashed(const struct sock *sk) 779 { 780 return hlist_unhashed(&sk->sk_node); 781 } 782 783 static inline bool sk_hashed(const struct sock *sk) 784 { 785 return !sk_unhashed(sk); 786 } 787 788 static inline void sk_node_init(struct hlist_node *node) 789 { 790 node->pprev = NULL; 791 } 792 793 static inline void __sk_del_node(struct sock *sk) 794 { 795 __hlist_del(&sk->sk_node); 796 } 797 798 /* NB: equivalent to hlist_del_init_rcu */ 799 static inline bool __sk_del_node_init(struct sock *sk) 800 { 801 if (sk_hashed(sk)) { 802 __sk_del_node(sk); 803 sk_node_init(&sk->sk_node); 804 return true; 805 } 806 return false; 807 } 808 809 /* Grab socket reference count. This operation is valid only 810 when sk is ALREADY grabbed f.e. it is found in hash table 811 or a list and the lookup is made under lock preventing hash table 812 modifications. 813 */ 814 815 static __always_inline void sock_hold(struct sock *sk) 816 { 817 refcount_inc(&sk->sk_refcnt); 818 } 819 820 /* Ungrab socket in the context, which assumes that socket refcnt 821 cannot hit zero, f.e. it is true in context of any socketcall. 822 */ 823 static __always_inline void __sock_put(struct sock *sk) 824 { 825 refcount_dec(&sk->sk_refcnt); 826 } 827 828 static inline bool sk_del_node_init(struct sock *sk) 829 { 830 bool rc = __sk_del_node_init(sk); 831 832 if (rc) { 833 /* paranoid for a while -acme */ 834 WARN_ON(refcount_read(&sk->sk_refcnt) == 1); 835 __sock_put(sk); 836 } 837 return rc; 838 } 839 #define sk_del_node_init_rcu(sk) sk_del_node_init(sk) 840 841 static inline bool __sk_nulls_del_node_init_rcu(struct sock *sk) 842 { 843 if (sk_hashed(sk)) { 844 hlist_nulls_del_init_rcu(&sk->sk_nulls_node); 845 return true; 846 } 847 return false; 848 } 849 850 static inline bool sk_nulls_del_node_init_rcu(struct sock *sk) 851 { 852 bool rc = __sk_nulls_del_node_init_rcu(sk); 853 854 if (rc) { 855 /* paranoid for a while -acme */ 856 WARN_ON(refcount_read(&sk->sk_refcnt) == 1); 857 __sock_put(sk); 858 } 859 return rc; 860 } 861 862 static inline void __sk_add_node(struct sock *sk, struct hlist_head *list) 863 { 864 hlist_add_head(&sk->sk_node, list); 865 } 866 867 static inline void sk_add_node(struct sock *sk, struct hlist_head *list) 868 { 869 sock_hold(sk); 870 __sk_add_node(sk, list); 871 } 872 873 static inline void sk_add_node_rcu(struct sock *sk, struct hlist_head *list) 874 { 875 sock_hold(sk); 876 if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport && 877 sk->sk_family == AF_INET6) 878 hlist_add_tail_rcu(&sk->sk_node, list); 879 else 880 hlist_add_head_rcu(&sk->sk_node, list); 881 } 882 883 static inline void sk_add_node_tail_rcu(struct sock *sk, struct hlist_head *list) 884 { 885 sock_hold(sk); 886 hlist_add_tail_rcu(&sk->sk_node, list); 887 } 888 889 static inline void __sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list) 890 { 891 hlist_nulls_add_head_rcu(&sk->sk_nulls_node, list); 892 } 893 894 static inline void __sk_nulls_add_node_tail_rcu(struct sock *sk, struct hlist_nulls_head *list) 895 { 896 hlist_nulls_add_tail_rcu(&sk->sk_nulls_node, list); 897 } 898 899 static inline void sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list) 900 { 901 sock_hold(sk); 902 __sk_nulls_add_node_rcu(sk, list); 903 } 904 905 static inline void __sk_del_bind_node(struct sock *sk) 906 { 907 __hlist_del(&sk->sk_bind_node); 908 } 909 910 static inline void sk_add_bind_node(struct sock *sk, 911 struct hlist_head *list) 912 { 913 hlist_add_head(&sk->sk_bind_node, list); 914 } 915 916 #define sk_for_each(__sk, list) \ 917 hlist_for_each_entry(__sk, list, sk_node) 918 #define sk_for_each_rcu(__sk, list) \ 919 hlist_for_each_entry_rcu(__sk, list, sk_node) 920 #define sk_nulls_for_each(__sk, node, list) \ 921 hlist_nulls_for_each_entry(__sk, node, list, sk_nulls_node) 922 #define sk_nulls_for_each_rcu(__sk, node, list) \ 923 hlist_nulls_for_each_entry_rcu(__sk, node, list, sk_nulls_node) 924 #define sk_for_each_from(__sk) \ 925 hlist_for_each_entry_from(__sk, sk_node) 926 #define sk_nulls_for_each_from(__sk, node) \ 927 if (__sk && ({ node = &(__sk)->sk_nulls_node; 1; })) \ 928 hlist_nulls_for_each_entry_from(__sk, node, sk_nulls_node) 929 #define sk_for_each_safe(__sk, tmp, list) \ 930 hlist_for_each_entry_safe(__sk, tmp, list, sk_node) 931 #define sk_for_each_bound(__sk, list) \ 932 hlist_for_each_entry(__sk, list, sk_bind_node) 933 #define sk_for_each_bound_safe(__sk, tmp, list) \ 934 hlist_for_each_entry_safe(__sk, tmp, list, sk_bind_node) 935 936 /** 937 * sk_for_each_entry_offset_rcu - iterate over a list at a given struct offset 938 * @tpos: the type * to use as a loop cursor. 939 * @pos: the &struct hlist_node to use as a loop cursor. 940 * @head: the head for your list. 941 * @offset: offset of hlist_node within the struct. 942 * 943 */ 944 #define sk_for_each_entry_offset_rcu(tpos, pos, head, offset) \ 945 for (pos = rcu_dereference(hlist_first_rcu(head)); \ 946 pos != NULL && \ 947 ({ tpos = (typeof(*tpos) *)((void *)pos - offset); 1;}); \ 948 pos = rcu_dereference(hlist_next_rcu(pos))) 949 950 static inline struct user_namespace *sk_user_ns(const struct sock *sk) 951 { 952 /* Careful only use this in a context where these parameters 953 * can not change and must all be valid, such as recvmsg from 954 * userspace. 955 */ 956 return sk->sk_socket->file->f_cred->user_ns; 957 } 958 959 /* Sock flags */ 960 enum sock_flags { 961 SOCK_DEAD, 962 SOCK_DONE, 963 SOCK_URGINLINE, 964 SOCK_KEEPOPEN, 965 SOCK_LINGER, 966 SOCK_DESTROY, 967 SOCK_BROADCAST, 968 SOCK_TIMESTAMP, 969 SOCK_ZAPPED, 970 SOCK_USE_WRITE_QUEUE, /* whether to call sk->sk_write_space in sock_wfree */ 971 SOCK_DBG, /* %SO_DEBUG setting */ 972 SOCK_RCVTSTAMP, /* %SO_TIMESTAMP setting */ 973 SOCK_RCVTSTAMPNS, /* %SO_TIMESTAMPNS setting */ 974 SOCK_LOCALROUTE, /* route locally only, %SO_DONTROUTE setting */ 975 SOCK_MEMALLOC, /* VM depends on this socket for swapping */ 976 SOCK_TIMESTAMPING_RX_SOFTWARE, /* %SOF_TIMESTAMPING_RX_SOFTWARE */ 977 SOCK_FASYNC, /* fasync() active */ 978 SOCK_RXQ_OVFL, 979 SOCK_ZEROCOPY, /* buffers from userspace */ 980 SOCK_WIFI_STATUS, /* push wifi status to userspace */ 981 SOCK_NOFCS, /* Tell NIC not to do the Ethernet FCS. 982 * Will use last 4 bytes of packet sent from 983 * user-space instead. 984 */ 985 SOCK_FILTER_LOCKED, /* Filter cannot be changed anymore */ 986 SOCK_SELECT_ERR_QUEUE, /* Wake select on error queue */ 987 SOCK_RCU_FREE, /* wait rcu grace period in sk_destruct() */ 988 SOCK_TXTIME, 989 SOCK_XDP, /* XDP is attached */ 990 SOCK_TSTAMP_NEW, /* Indicates 64 bit timestamps always */ 991 SOCK_RCVMARK, /* Receive SO_MARK ancillary data with packet */ 992 SOCK_RCVPRIORITY, /* Receive SO_PRIORITY ancillary data with packet */ 993 SOCK_TIMESTAMPING_ANY, /* Copy of sk_tsflags & TSFLAGS_ANY */ 994 }; 995 996 #define SK_FLAGS_TIMESTAMP ((1UL << SOCK_TIMESTAMP) | (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE)) 997 /* 998 * The highest bit of sk_tsflags is reserved for kernel-internal 999 * SOCKCM_FLAG_TS_OPT_ID. There is a check in core/sock.c to control that 1000 * SOF_TIMESTAMPING* values do not reach this reserved area 1001 */ 1002 #define SOCKCM_FLAG_TS_OPT_ID BIT(31) 1003 1004 static inline void sock_copy_flags(struct sock *nsk, const struct sock *osk) 1005 { 1006 nsk->sk_flags = osk->sk_flags; 1007 } 1008 1009 static inline void sock_set_flag(struct sock *sk, enum sock_flags flag) 1010 { 1011 __set_bit(flag, &sk->sk_flags); 1012 } 1013 1014 static inline void sock_reset_flag(struct sock *sk, enum sock_flags flag) 1015 { 1016 __clear_bit(flag, &sk->sk_flags); 1017 } 1018 1019 static inline void sock_valbool_flag(struct sock *sk, enum sock_flags bit, 1020 int valbool) 1021 { 1022 if (valbool) 1023 sock_set_flag(sk, bit); 1024 else 1025 sock_reset_flag(sk, bit); 1026 } 1027 1028 static inline bool sock_flag(const struct sock *sk, enum sock_flags flag) 1029 { 1030 return test_bit(flag, &sk->sk_flags); 1031 } 1032 1033 #ifdef CONFIG_NET 1034 DECLARE_STATIC_KEY_FALSE(memalloc_socks_key); 1035 static inline int sk_memalloc_socks(void) 1036 { 1037 return static_branch_unlikely(&memalloc_socks_key); 1038 } 1039 1040 void __receive_sock(struct file *file); 1041 #else 1042 1043 static inline int sk_memalloc_socks(void) 1044 { 1045 return 0; 1046 } 1047 1048 static inline void __receive_sock(struct file *file) 1049 { } 1050 #endif 1051 1052 static inline gfp_t sk_gfp_mask(const struct sock *sk, gfp_t gfp_mask) 1053 { 1054 return gfp_mask | (sk->sk_allocation & __GFP_MEMALLOC); 1055 } 1056 1057 static inline void sk_acceptq_removed(struct sock *sk) 1058 { 1059 WRITE_ONCE(sk->sk_ack_backlog, sk->sk_ack_backlog - 1); 1060 } 1061 1062 static inline void sk_acceptq_added(struct sock *sk) 1063 { 1064 WRITE_ONCE(sk->sk_ack_backlog, sk->sk_ack_backlog + 1); 1065 } 1066 1067 /* Note: If you think the test should be: 1068 * return READ_ONCE(sk->sk_ack_backlog) >= READ_ONCE(sk->sk_max_ack_backlog); 1069 * Then please take a look at commit 64a146513f8f ("[NET]: Revert incorrect accept queue backlog changes.") 1070 */ 1071 static inline bool sk_acceptq_is_full(const struct sock *sk) 1072 { 1073 return READ_ONCE(sk->sk_ack_backlog) > READ_ONCE(sk->sk_max_ack_backlog); 1074 } 1075 1076 /* 1077 * Compute minimal free write space needed to queue new packets. 1078 */ 1079 static inline int sk_stream_min_wspace(const struct sock *sk) 1080 { 1081 return READ_ONCE(sk->sk_wmem_queued) >> 1; 1082 } 1083 1084 static inline int sk_stream_wspace(const struct sock *sk) 1085 { 1086 return READ_ONCE(sk->sk_sndbuf) - READ_ONCE(sk->sk_wmem_queued); 1087 } 1088 1089 static inline void sk_wmem_queued_add(struct sock *sk, int val) 1090 { 1091 WRITE_ONCE(sk->sk_wmem_queued, sk->sk_wmem_queued + val); 1092 } 1093 1094 static inline void sk_forward_alloc_add(struct sock *sk, int val) 1095 { 1096 /* Paired with lockless reads of sk->sk_forward_alloc */ 1097 WRITE_ONCE(sk->sk_forward_alloc, sk->sk_forward_alloc + val); 1098 } 1099 1100 void sk_stream_write_space(struct sock *sk); 1101 1102 /* OOB backlog add */ 1103 static inline void __sk_add_backlog(struct sock *sk, struct sk_buff *skb) 1104 { 1105 /* dont let skb dst not refcounted, we are going to leave rcu lock */ 1106 skb_dst_force(skb); 1107 1108 if (!sk->sk_backlog.tail) 1109 WRITE_ONCE(sk->sk_backlog.head, skb); 1110 else 1111 sk->sk_backlog.tail->next = skb; 1112 1113 WRITE_ONCE(sk->sk_backlog.tail, skb); 1114 skb->next = NULL; 1115 } 1116 1117 /* 1118 * Take into account size of receive queue and backlog queue 1119 * Do not take into account this skb truesize, 1120 * to allow even a single big packet to come. 1121 */ 1122 static inline bool sk_rcvqueues_full(const struct sock *sk, unsigned int limit) 1123 { 1124 unsigned int qsize = sk->sk_backlog.len + atomic_read(&sk->sk_rmem_alloc); 1125 1126 return qsize > limit; 1127 } 1128 1129 /* The per-socket spinlock must be held here. */ 1130 static inline __must_check int sk_add_backlog(struct sock *sk, struct sk_buff *skb, 1131 unsigned int limit) 1132 { 1133 if (sk_rcvqueues_full(sk, limit)) 1134 return -ENOBUFS; 1135 1136 /* 1137 * If the skb was allocated from pfmemalloc reserves, only 1138 * allow SOCK_MEMALLOC sockets to use it as this socket is 1139 * helping free memory 1140 */ 1141 if (skb_pfmemalloc(skb) && !sock_flag(sk, SOCK_MEMALLOC)) 1142 return -ENOMEM; 1143 1144 __sk_add_backlog(sk, skb); 1145 sk->sk_backlog.len += skb->truesize; 1146 return 0; 1147 } 1148 1149 int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb); 1150 1151 INDIRECT_CALLABLE_DECLARE(int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb)); 1152 INDIRECT_CALLABLE_DECLARE(int tcp_v6_do_rcv(struct sock *sk, struct sk_buff *skb)); 1153 1154 static inline int sk_backlog_rcv(struct sock *sk, struct sk_buff *skb) 1155 { 1156 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) 1157 return __sk_backlog_rcv(sk, skb); 1158 1159 return INDIRECT_CALL_INET(sk->sk_backlog_rcv, 1160 tcp_v6_do_rcv, 1161 tcp_v4_do_rcv, 1162 sk, skb); 1163 } 1164 1165 static inline void sk_incoming_cpu_update(struct sock *sk) 1166 { 1167 int cpu = raw_smp_processor_id(); 1168 1169 if (unlikely(READ_ONCE(sk->sk_incoming_cpu) != cpu)) 1170 WRITE_ONCE(sk->sk_incoming_cpu, cpu); 1171 } 1172 1173 1174 static inline void sock_rps_save_rxhash(struct sock *sk, 1175 const struct sk_buff *skb) 1176 { 1177 #ifdef CONFIG_RPS 1178 /* The following WRITE_ONCE() is paired with the READ_ONCE() 1179 * here, and another one in sock_rps_record_flow(). 1180 */ 1181 if (unlikely(READ_ONCE(sk->sk_rxhash) != skb->hash)) 1182 WRITE_ONCE(sk->sk_rxhash, skb->hash); 1183 #endif 1184 } 1185 1186 static inline void sock_rps_reset_rxhash(struct sock *sk) 1187 { 1188 #ifdef CONFIG_RPS 1189 /* Paired with READ_ONCE() in sock_rps_record_flow() */ 1190 WRITE_ONCE(sk->sk_rxhash, 0); 1191 #endif 1192 } 1193 1194 #define sk_wait_event(__sk, __timeo, __condition, __wait) \ 1195 ({ int __rc, __dis = __sk->sk_disconnects; \ 1196 release_sock(__sk); \ 1197 __rc = __condition; \ 1198 if (!__rc) { \ 1199 *(__timeo) = wait_woken(__wait, \ 1200 TASK_INTERRUPTIBLE, \ 1201 *(__timeo)); \ 1202 } \ 1203 sched_annotate_sleep(); \ 1204 lock_sock(__sk); \ 1205 __rc = __dis == __sk->sk_disconnects ? __condition : -EPIPE; \ 1206 __rc; \ 1207 }) 1208 1209 int sk_stream_wait_connect(struct sock *sk, long *timeo_p); 1210 int sk_stream_wait_memory(struct sock *sk, long *timeo_p); 1211 void sk_stream_wait_close(struct sock *sk, long timeo_p); 1212 int sk_stream_error(struct sock *sk, int flags, int err); 1213 void sk_stream_kill_queues(struct sock *sk); 1214 void sk_set_memalloc(struct sock *sk); 1215 void sk_clear_memalloc(struct sock *sk); 1216 1217 void __sk_flush_backlog(struct sock *sk); 1218 1219 static inline bool sk_flush_backlog(struct sock *sk) 1220 { 1221 if (unlikely(READ_ONCE(sk->sk_backlog.tail))) { 1222 __sk_flush_backlog(sk); 1223 return true; 1224 } 1225 return false; 1226 } 1227 1228 int sk_wait_data(struct sock *sk, long *timeo, const struct sk_buff *skb); 1229 1230 struct request_sock_ops; 1231 struct timewait_sock_ops; 1232 struct inet_hashinfo; 1233 struct raw_hashinfo; 1234 struct smc_hashinfo; 1235 struct module; 1236 struct sk_psock; 1237 1238 /* 1239 * caches using SLAB_TYPESAFE_BY_RCU should let .next pointer from nulls nodes 1240 * un-modified. Special care is taken when initializing object to zero. 1241 */ 1242 static inline void sk_prot_clear_nulls(struct sock *sk, int size) 1243 { 1244 if (offsetof(struct sock, sk_node.next) != 0) 1245 memset(sk, 0, offsetof(struct sock, sk_node.next)); 1246 memset(&sk->sk_node.pprev, 0, 1247 size - offsetof(struct sock, sk_node.pprev)); 1248 } 1249 1250 struct proto_accept_arg { 1251 int flags; 1252 int err; 1253 int is_empty; 1254 bool kern; 1255 }; 1256 1257 /* Networking protocol blocks we attach to sockets. 1258 * socket layer -> transport layer interface 1259 */ 1260 struct proto { 1261 void (*close)(struct sock *sk, 1262 long timeout); 1263 int (*pre_connect)(struct sock *sk, 1264 struct sockaddr *uaddr, 1265 int addr_len); 1266 int (*connect)(struct sock *sk, 1267 struct sockaddr *uaddr, 1268 int addr_len); 1269 int (*disconnect)(struct sock *sk, int flags); 1270 1271 struct sock * (*accept)(struct sock *sk, 1272 struct proto_accept_arg *arg); 1273 1274 int (*ioctl)(struct sock *sk, int cmd, 1275 int *karg); 1276 int (*init)(struct sock *sk); 1277 void (*destroy)(struct sock *sk); 1278 void (*shutdown)(struct sock *sk, int how); 1279 int (*setsockopt)(struct sock *sk, int level, 1280 int optname, sockptr_t optval, 1281 unsigned int optlen); 1282 int (*getsockopt)(struct sock *sk, int level, 1283 int optname, char __user *optval, 1284 int __user *option); 1285 void (*keepalive)(struct sock *sk, int valbool); 1286 #ifdef CONFIG_COMPAT 1287 int (*compat_ioctl)(struct sock *sk, 1288 unsigned int cmd, unsigned long arg); 1289 #endif 1290 int (*sendmsg)(struct sock *sk, struct msghdr *msg, 1291 size_t len); 1292 int (*recvmsg)(struct sock *sk, struct msghdr *msg, 1293 size_t len, int flags, int *addr_len); 1294 void (*splice_eof)(struct socket *sock); 1295 int (*bind)(struct sock *sk, 1296 struct sockaddr *addr, int addr_len); 1297 int (*bind_add)(struct sock *sk, 1298 struct sockaddr *addr, int addr_len); 1299 1300 int (*backlog_rcv) (struct sock *sk, 1301 struct sk_buff *skb); 1302 bool (*bpf_bypass_getsockopt)(int level, 1303 int optname); 1304 1305 void (*release_cb)(struct sock *sk); 1306 1307 /* Keeping track of sk's, looking them up, and port selection methods. */ 1308 int (*hash)(struct sock *sk); 1309 void (*unhash)(struct sock *sk); 1310 void (*rehash)(struct sock *sk); 1311 int (*get_port)(struct sock *sk, unsigned short snum); 1312 void (*put_port)(struct sock *sk); 1313 #ifdef CONFIG_BPF_SYSCALL 1314 int (*psock_update_sk_prot)(struct sock *sk, 1315 struct sk_psock *psock, 1316 bool restore); 1317 #endif 1318 1319 /* Keeping track of sockets in use */ 1320 #ifdef CONFIG_PROC_FS 1321 unsigned int inuse_idx; 1322 #endif 1323 1324 bool (*stream_memory_free)(const struct sock *sk, int wake); 1325 bool (*sock_is_readable)(struct sock *sk); 1326 /* Memory pressure */ 1327 void (*enter_memory_pressure)(struct sock *sk); 1328 void (*leave_memory_pressure)(struct sock *sk); 1329 atomic_long_t *memory_allocated; /* Current allocated memory. */ 1330 int __percpu *per_cpu_fw_alloc; 1331 struct percpu_counter *sockets_allocated; /* Current number of sockets. */ 1332 1333 /* 1334 * Pressure flag: try to collapse. 1335 * Technical note: it is used by multiple contexts non atomically. 1336 * Make sure to use READ_ONCE()/WRITE_ONCE() for all reads/writes. 1337 * All the __sk_mem_schedule() is of this nature: accounting 1338 * is strict, actions are advisory and have some latency. 1339 */ 1340 unsigned long *memory_pressure; 1341 long *sysctl_mem; 1342 1343 int *sysctl_wmem; 1344 int *sysctl_rmem; 1345 u32 sysctl_wmem_offset; 1346 u32 sysctl_rmem_offset; 1347 1348 int max_header; 1349 bool no_autobind; 1350 1351 struct kmem_cache *slab; 1352 unsigned int obj_size; 1353 unsigned int ipv6_pinfo_offset; 1354 slab_flags_t slab_flags; 1355 unsigned int useroffset; /* Usercopy region offset */ 1356 unsigned int usersize; /* Usercopy region size */ 1357 1358 struct request_sock_ops *rsk_prot; 1359 struct timewait_sock_ops *twsk_prot; 1360 1361 union { 1362 struct inet_hashinfo *hashinfo; 1363 struct udp_table *udp_table; 1364 struct raw_hashinfo *raw_hash; 1365 struct smc_hashinfo *smc_hash; 1366 } h; 1367 1368 struct module *owner; 1369 1370 char name[32]; 1371 1372 struct list_head node; 1373 int (*diag_destroy)(struct sock *sk, int err); 1374 } __randomize_layout; 1375 1376 int proto_register(struct proto *prot, int alloc_slab); 1377 void proto_unregister(struct proto *prot); 1378 int sock_load_diag_module(int family, int protocol); 1379 1380 INDIRECT_CALLABLE_DECLARE(bool tcp_stream_memory_free(const struct sock *sk, int wake)); 1381 1382 static inline bool __sk_stream_memory_free(const struct sock *sk, int wake) 1383 { 1384 if (READ_ONCE(sk->sk_wmem_queued) >= READ_ONCE(sk->sk_sndbuf)) 1385 return false; 1386 1387 return sk->sk_prot->stream_memory_free ? 1388 INDIRECT_CALL_INET_1(sk->sk_prot->stream_memory_free, 1389 tcp_stream_memory_free, sk, wake) : true; 1390 } 1391 1392 static inline bool sk_stream_memory_free(const struct sock *sk) 1393 { 1394 return __sk_stream_memory_free(sk, 0); 1395 } 1396 1397 static inline bool __sk_stream_is_writeable(const struct sock *sk, int wake) 1398 { 1399 return sk_stream_wspace(sk) >= sk_stream_min_wspace(sk) && 1400 __sk_stream_memory_free(sk, wake); 1401 } 1402 1403 static inline bool sk_stream_is_writeable(const struct sock *sk) 1404 { 1405 return __sk_stream_is_writeable(sk, 0); 1406 } 1407 1408 static inline int sk_under_cgroup_hierarchy(struct sock *sk, 1409 struct cgroup *ancestor) 1410 { 1411 #ifdef CONFIG_SOCK_CGROUP_DATA 1412 return cgroup_is_descendant(sock_cgroup_ptr(&sk->sk_cgrp_data), 1413 ancestor); 1414 #else 1415 return -ENOTSUPP; 1416 #endif 1417 } 1418 1419 #define SK_ALLOC_PERCPU_COUNTER_BATCH 16 1420 1421 static inline void sk_sockets_allocated_dec(struct sock *sk) 1422 { 1423 percpu_counter_add_batch(sk->sk_prot->sockets_allocated, -1, 1424 SK_ALLOC_PERCPU_COUNTER_BATCH); 1425 } 1426 1427 static inline void sk_sockets_allocated_inc(struct sock *sk) 1428 { 1429 percpu_counter_add_batch(sk->sk_prot->sockets_allocated, 1, 1430 SK_ALLOC_PERCPU_COUNTER_BATCH); 1431 } 1432 1433 static inline u64 1434 sk_sockets_allocated_read_positive(struct sock *sk) 1435 { 1436 return percpu_counter_read_positive(sk->sk_prot->sockets_allocated); 1437 } 1438 1439 static inline int 1440 proto_sockets_allocated_sum_positive(struct proto *prot) 1441 { 1442 return percpu_counter_sum_positive(prot->sockets_allocated); 1443 } 1444 1445 #ifdef CONFIG_PROC_FS 1446 #define PROTO_INUSE_NR 64 /* should be enough for the first time */ 1447 struct prot_inuse { 1448 int all; 1449 int val[PROTO_INUSE_NR]; 1450 }; 1451 1452 static inline void sock_prot_inuse_add(const struct net *net, 1453 const struct proto *prot, int val) 1454 { 1455 this_cpu_add(net->core.prot_inuse->val[prot->inuse_idx], val); 1456 } 1457 1458 static inline void sock_inuse_add(const struct net *net, int val) 1459 { 1460 this_cpu_add(net->core.prot_inuse->all, val); 1461 } 1462 1463 int sock_prot_inuse_get(struct net *net, struct proto *proto); 1464 int sock_inuse_get(struct net *net); 1465 #else 1466 static inline void sock_prot_inuse_add(const struct net *net, 1467 const struct proto *prot, int val) 1468 { 1469 } 1470 1471 static inline void sock_inuse_add(const struct net *net, int val) 1472 { 1473 } 1474 #endif 1475 1476 1477 /* With per-bucket locks this operation is not-atomic, so that 1478 * this version is not worse. 1479 */ 1480 static inline int __sk_prot_rehash(struct sock *sk) 1481 { 1482 sk->sk_prot->unhash(sk); 1483 return sk->sk_prot->hash(sk); 1484 } 1485 1486 /* About 10 seconds */ 1487 #define SOCK_DESTROY_TIME (10*HZ) 1488 1489 /* Sockets 0-1023 can't be bound to unless you are superuser */ 1490 #define PROT_SOCK 1024 1491 1492 #define SHUTDOWN_MASK 3 1493 #define RCV_SHUTDOWN 1 1494 #define SEND_SHUTDOWN 2 1495 1496 #define SOCK_BINDADDR_LOCK 4 1497 #define SOCK_BINDPORT_LOCK 8 1498 1499 struct socket_alloc { 1500 struct socket socket; 1501 struct inode vfs_inode; 1502 }; 1503 1504 static inline struct socket *SOCKET_I(struct inode *inode) 1505 { 1506 return &container_of(inode, struct socket_alloc, vfs_inode)->socket; 1507 } 1508 1509 static inline struct inode *SOCK_INODE(struct socket *socket) 1510 { 1511 return &container_of(socket, struct socket_alloc, socket)->vfs_inode; 1512 } 1513 1514 /* 1515 * Functions for memory accounting 1516 */ 1517 int __sk_mem_raise_allocated(struct sock *sk, int size, int amt, int kind); 1518 int __sk_mem_schedule(struct sock *sk, int size, int kind); 1519 void __sk_mem_reduce_allocated(struct sock *sk, int amount); 1520 void __sk_mem_reclaim(struct sock *sk, int amount); 1521 1522 #define SK_MEM_SEND 0 1523 #define SK_MEM_RECV 1 1524 1525 /* sysctl_mem values are in pages */ 1526 static inline long sk_prot_mem_limits(const struct sock *sk, int index) 1527 { 1528 return READ_ONCE(sk->sk_prot->sysctl_mem[index]); 1529 } 1530 1531 static inline int sk_mem_pages(int amt) 1532 { 1533 return (amt + PAGE_SIZE - 1) >> PAGE_SHIFT; 1534 } 1535 1536 static inline bool sk_has_account(struct sock *sk) 1537 { 1538 /* return true if protocol supports memory accounting */ 1539 return !!sk->sk_prot->memory_allocated; 1540 } 1541 1542 static inline bool sk_wmem_schedule(struct sock *sk, int size) 1543 { 1544 int delta; 1545 1546 if (!sk_has_account(sk)) 1547 return true; 1548 delta = size - sk->sk_forward_alloc; 1549 return delta <= 0 || __sk_mem_schedule(sk, delta, SK_MEM_SEND); 1550 } 1551 1552 static inline bool 1553 __sk_rmem_schedule(struct sock *sk, int size, bool pfmemalloc) 1554 { 1555 int delta; 1556 1557 if (!sk_has_account(sk)) 1558 return true; 1559 delta = size - sk->sk_forward_alloc; 1560 return delta <= 0 || __sk_mem_schedule(sk, delta, SK_MEM_RECV) || 1561 pfmemalloc; 1562 } 1563 1564 static inline bool 1565 sk_rmem_schedule(struct sock *sk, const struct sk_buff *skb, int size) 1566 { 1567 return __sk_rmem_schedule(sk, size, skb_pfmemalloc(skb)); 1568 } 1569 1570 static inline int sk_unused_reserved_mem(const struct sock *sk) 1571 { 1572 int unused_mem; 1573 1574 if (likely(!sk->sk_reserved_mem)) 1575 return 0; 1576 1577 unused_mem = sk->sk_reserved_mem - sk->sk_wmem_queued - 1578 atomic_read(&sk->sk_rmem_alloc); 1579 1580 return unused_mem > 0 ? unused_mem : 0; 1581 } 1582 1583 static inline void sk_mem_reclaim(struct sock *sk) 1584 { 1585 int reclaimable; 1586 1587 if (!sk_has_account(sk)) 1588 return; 1589 1590 reclaimable = sk->sk_forward_alloc - sk_unused_reserved_mem(sk); 1591 1592 if (reclaimable >= (int)PAGE_SIZE) 1593 __sk_mem_reclaim(sk, reclaimable); 1594 } 1595 1596 static inline void sk_mem_reclaim_final(struct sock *sk) 1597 { 1598 sk->sk_reserved_mem = 0; 1599 sk_mem_reclaim(sk); 1600 } 1601 1602 static inline void sk_mem_charge(struct sock *sk, int size) 1603 { 1604 if (!sk_has_account(sk)) 1605 return; 1606 sk_forward_alloc_add(sk, -size); 1607 } 1608 1609 static inline void sk_mem_uncharge(struct sock *sk, int size) 1610 { 1611 if (!sk_has_account(sk)) 1612 return; 1613 sk_forward_alloc_add(sk, size); 1614 sk_mem_reclaim(sk); 1615 } 1616 1617 #if IS_ENABLED(CONFIG_PROVE_LOCKING) && IS_ENABLED(CONFIG_MODULES) 1618 static inline void sk_owner_set(struct sock *sk, struct module *owner) 1619 { 1620 __module_get(owner); 1621 sk->sk_owner = owner; 1622 } 1623 1624 static inline void sk_owner_clear(struct sock *sk) 1625 { 1626 sk->sk_owner = NULL; 1627 } 1628 1629 static inline void sk_owner_put(struct sock *sk) 1630 { 1631 module_put(sk->sk_owner); 1632 } 1633 #else 1634 static inline void sk_owner_set(struct sock *sk, struct module *owner) 1635 { 1636 } 1637 1638 static inline void sk_owner_clear(struct sock *sk) 1639 { 1640 } 1641 1642 static inline void sk_owner_put(struct sock *sk) 1643 { 1644 } 1645 #endif 1646 /* 1647 * Macro so as to not evaluate some arguments when 1648 * lockdep is not enabled. 1649 * 1650 * Mark both the sk_lock and the sk_lock.slock as a 1651 * per-address-family lock class. 1652 */ 1653 #define sock_lock_init_class_and_name(sk, sname, skey, name, key) \ 1654 do { \ 1655 sk_owner_set(sk, THIS_MODULE); \ 1656 sk->sk_lock.owned = 0; \ 1657 init_waitqueue_head(&sk->sk_lock.wq); \ 1658 spin_lock_init(&(sk)->sk_lock.slock); \ 1659 debug_check_no_locks_freed((void *)&(sk)->sk_lock, \ 1660 sizeof((sk)->sk_lock)); \ 1661 lockdep_set_class_and_name(&(sk)->sk_lock.slock, \ 1662 (skey), (sname)); \ 1663 lockdep_init_map(&(sk)->sk_lock.dep_map, (name), (key), 0); \ 1664 } while (0) 1665 1666 static inline bool lockdep_sock_is_held(const struct sock *sk) 1667 { 1668 return lockdep_is_held(&sk->sk_lock) || 1669 lockdep_is_held(&sk->sk_lock.slock); 1670 } 1671 1672 void lock_sock_nested(struct sock *sk, int subclass); 1673 1674 static inline void lock_sock(struct sock *sk) 1675 { 1676 lock_sock_nested(sk, 0); 1677 } 1678 1679 void __lock_sock(struct sock *sk); 1680 void __release_sock(struct sock *sk); 1681 void release_sock(struct sock *sk); 1682 1683 /* BH context may only use the following locking interface. */ 1684 #define bh_lock_sock(__sk) spin_lock(&((__sk)->sk_lock.slock)) 1685 #define bh_lock_sock_nested(__sk) \ 1686 spin_lock_nested(&((__sk)->sk_lock.slock), \ 1687 SINGLE_DEPTH_NESTING) 1688 #define bh_unlock_sock(__sk) spin_unlock(&((__sk)->sk_lock.slock)) 1689 1690 bool __lock_sock_fast(struct sock *sk) __acquires(&sk->sk_lock.slock); 1691 1692 /** 1693 * lock_sock_fast - fast version of lock_sock 1694 * @sk: socket 1695 * 1696 * This version should be used for very small section, where process won't block 1697 * return false if fast path is taken: 1698 * 1699 * sk_lock.slock locked, owned = 0, BH disabled 1700 * 1701 * return true if slow path is taken: 1702 * 1703 * sk_lock.slock unlocked, owned = 1, BH enabled 1704 */ 1705 static inline bool lock_sock_fast(struct sock *sk) 1706 { 1707 /* The sk_lock has mutex_lock() semantics here. */ 1708 mutex_acquire(&sk->sk_lock.dep_map, 0, 0, _RET_IP_); 1709 1710 return __lock_sock_fast(sk); 1711 } 1712 1713 /* fast socket lock variant for caller already holding a [different] socket lock */ 1714 static inline bool lock_sock_fast_nested(struct sock *sk) 1715 { 1716 mutex_acquire(&sk->sk_lock.dep_map, SINGLE_DEPTH_NESTING, 0, _RET_IP_); 1717 1718 return __lock_sock_fast(sk); 1719 } 1720 1721 /** 1722 * unlock_sock_fast - complement of lock_sock_fast 1723 * @sk: socket 1724 * @slow: slow mode 1725 * 1726 * fast unlock socket for user context. 1727 * If slow mode is on, we call regular release_sock() 1728 */ 1729 static inline void unlock_sock_fast(struct sock *sk, bool slow) 1730 __releases(&sk->sk_lock.slock) 1731 { 1732 if (slow) { 1733 release_sock(sk); 1734 __release(&sk->sk_lock.slock); 1735 } else { 1736 mutex_release(&sk->sk_lock.dep_map, _RET_IP_); 1737 spin_unlock_bh(&sk->sk_lock.slock); 1738 } 1739 } 1740 1741 void sockopt_lock_sock(struct sock *sk); 1742 void sockopt_release_sock(struct sock *sk); 1743 bool sockopt_ns_capable(struct user_namespace *ns, int cap); 1744 bool sockopt_capable(int cap); 1745 1746 /* Used by processes to "lock" a socket state, so that 1747 * interrupts and bottom half handlers won't change it 1748 * from under us. It essentially blocks any incoming 1749 * packets, so that we won't get any new data or any 1750 * packets that change the state of the socket. 1751 * 1752 * While locked, BH processing will add new packets to 1753 * the backlog queue. This queue is processed by the 1754 * owner of the socket lock right before it is released. 1755 * 1756 * Since ~2.3.5 it is also exclusive sleep lock serializing 1757 * accesses from user process context. 1758 */ 1759 1760 static inline void sock_owned_by_me(const struct sock *sk) 1761 { 1762 #ifdef CONFIG_LOCKDEP 1763 WARN_ON_ONCE(!lockdep_sock_is_held(sk) && debug_locks); 1764 #endif 1765 } 1766 1767 static inline void sock_not_owned_by_me(const struct sock *sk) 1768 { 1769 #ifdef CONFIG_LOCKDEP 1770 WARN_ON_ONCE(lockdep_sock_is_held(sk) && debug_locks); 1771 #endif 1772 } 1773 1774 static inline bool sock_owned_by_user(const struct sock *sk) 1775 { 1776 sock_owned_by_me(sk); 1777 return sk->sk_lock.owned; 1778 } 1779 1780 static inline bool sock_owned_by_user_nocheck(const struct sock *sk) 1781 { 1782 return sk->sk_lock.owned; 1783 } 1784 1785 static inline void sock_release_ownership(struct sock *sk) 1786 { 1787 DEBUG_NET_WARN_ON_ONCE(!sock_owned_by_user_nocheck(sk)); 1788 sk->sk_lock.owned = 0; 1789 1790 /* The sk_lock has mutex_unlock() semantics: */ 1791 mutex_release(&sk->sk_lock.dep_map, _RET_IP_); 1792 } 1793 1794 /* no reclassification while locks are held */ 1795 static inline bool sock_allow_reclassification(const struct sock *csk) 1796 { 1797 struct sock *sk = (struct sock *)csk; 1798 1799 return !sock_owned_by_user_nocheck(sk) && 1800 !spin_is_locked(&sk->sk_lock.slock); 1801 } 1802 1803 struct sock *sk_alloc(struct net *net, int family, gfp_t priority, 1804 struct proto *prot, int kern); 1805 void sk_free(struct sock *sk); 1806 void sk_net_refcnt_upgrade(struct sock *sk); 1807 void sk_destruct(struct sock *sk); 1808 struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority); 1809 1810 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force, 1811 gfp_t priority); 1812 void __sock_wfree(struct sk_buff *skb); 1813 void sock_wfree(struct sk_buff *skb); 1814 struct sk_buff *sock_omalloc(struct sock *sk, unsigned long size, 1815 gfp_t priority); 1816 void skb_orphan_partial(struct sk_buff *skb); 1817 void sock_rfree(struct sk_buff *skb); 1818 void sock_efree(struct sk_buff *skb); 1819 #ifdef CONFIG_INET 1820 void sock_edemux(struct sk_buff *skb); 1821 void sock_pfree(struct sk_buff *skb); 1822 1823 static inline void skb_set_owner_edemux(struct sk_buff *skb, struct sock *sk) 1824 { 1825 skb_orphan(skb); 1826 if (refcount_inc_not_zero(&sk->sk_refcnt)) { 1827 skb->sk = sk; 1828 skb->destructor = sock_edemux; 1829 } 1830 } 1831 #else 1832 #define sock_edemux sock_efree 1833 #endif 1834 1835 int sk_setsockopt(struct sock *sk, int level, int optname, 1836 sockptr_t optval, unsigned int optlen); 1837 int sock_setsockopt(struct socket *sock, int level, int op, 1838 sockptr_t optval, unsigned int optlen); 1839 int do_sock_setsockopt(struct socket *sock, bool compat, int level, 1840 int optname, sockptr_t optval, int optlen); 1841 int do_sock_getsockopt(struct socket *sock, bool compat, int level, 1842 int optname, sockptr_t optval, sockptr_t optlen); 1843 1844 int sk_getsockopt(struct sock *sk, int level, int optname, 1845 sockptr_t optval, sockptr_t optlen); 1846 int sock_gettstamp(struct socket *sock, void __user *userstamp, 1847 bool timeval, bool time32); 1848 struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len, 1849 unsigned long data_len, int noblock, 1850 int *errcode, int max_page_order); 1851 1852 static inline struct sk_buff *sock_alloc_send_skb(struct sock *sk, 1853 unsigned long size, 1854 int noblock, int *errcode) 1855 { 1856 return sock_alloc_send_pskb(sk, size, 0, noblock, errcode, 0); 1857 } 1858 1859 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority); 1860 void *sock_kmemdup(struct sock *sk, const void *src, 1861 int size, gfp_t priority); 1862 void sock_kfree_s(struct sock *sk, void *mem, int size); 1863 void sock_kzfree_s(struct sock *sk, void *mem, int size); 1864 void sk_send_sigurg(struct sock *sk); 1865 1866 static inline void sock_replace_proto(struct sock *sk, struct proto *proto) 1867 { 1868 if (sk->sk_socket) 1869 clear_bit(SOCK_SUPPORT_ZC, &sk->sk_socket->flags); 1870 WRITE_ONCE(sk->sk_prot, proto); 1871 } 1872 1873 struct sockcm_cookie { 1874 u64 transmit_time; 1875 u32 mark; 1876 u32 tsflags; 1877 u32 ts_opt_id; 1878 u32 priority; 1879 u32 dmabuf_id; 1880 }; 1881 1882 static inline void sockcm_init(struct sockcm_cookie *sockc, 1883 const struct sock *sk) 1884 { 1885 *sockc = (struct sockcm_cookie) { 1886 .mark = READ_ONCE(sk->sk_mark), 1887 .tsflags = READ_ONCE(sk->sk_tsflags), 1888 .priority = READ_ONCE(sk->sk_priority), 1889 }; 1890 } 1891 1892 int __sock_cmsg_send(struct sock *sk, struct cmsghdr *cmsg, 1893 struct sockcm_cookie *sockc); 1894 int sock_cmsg_send(struct sock *sk, struct msghdr *msg, 1895 struct sockcm_cookie *sockc); 1896 1897 /* 1898 * Functions to fill in entries in struct proto_ops when a protocol 1899 * does not implement a particular function. 1900 */ 1901 int sock_no_bind(struct socket *, struct sockaddr *, int); 1902 int sock_no_connect(struct socket *, struct sockaddr *, int, int); 1903 int sock_no_socketpair(struct socket *, struct socket *); 1904 int sock_no_accept(struct socket *, struct socket *, struct proto_accept_arg *); 1905 int sock_no_getname(struct socket *, struct sockaddr *, int); 1906 int sock_no_ioctl(struct socket *, unsigned int, unsigned long); 1907 int sock_no_listen(struct socket *, int); 1908 int sock_no_shutdown(struct socket *, int); 1909 int sock_no_sendmsg(struct socket *, struct msghdr *, size_t); 1910 int sock_no_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t len); 1911 int sock_no_recvmsg(struct socket *, struct msghdr *, size_t, int); 1912 int sock_no_mmap(struct file *file, struct socket *sock, 1913 struct vm_area_struct *vma); 1914 1915 /* 1916 * Functions to fill in entries in struct proto_ops when a protocol 1917 * uses the inet style. 1918 */ 1919 int sock_common_getsockopt(struct socket *sock, int level, int optname, 1920 char __user *optval, int __user *optlen); 1921 int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size, 1922 int flags); 1923 int sock_common_setsockopt(struct socket *sock, int level, int optname, 1924 sockptr_t optval, unsigned int optlen); 1925 1926 void sk_common_release(struct sock *sk); 1927 1928 /* 1929 * Default socket callbacks and setup code 1930 */ 1931 1932 /* Initialise core socket variables using an explicit uid. */ 1933 void sock_init_data_uid(struct socket *sock, struct sock *sk, kuid_t uid); 1934 1935 /* Initialise core socket variables. 1936 * Assumes struct socket *sock is embedded in a struct socket_alloc. 1937 */ 1938 void sock_init_data(struct socket *sock, struct sock *sk); 1939 1940 /* 1941 * Socket reference counting postulates. 1942 * 1943 * * Each user of socket SHOULD hold a reference count. 1944 * * Each access point to socket (an hash table bucket, reference from a list, 1945 * running timer, skb in flight MUST hold a reference count. 1946 * * When reference count hits 0, it means it will never increase back. 1947 * * When reference count hits 0, it means that no references from 1948 * outside exist to this socket and current process on current CPU 1949 * is last user and may/should destroy this socket. 1950 * * sk_free is called from any context: process, BH, IRQ. When 1951 * it is called, socket has no references from outside -> sk_free 1952 * may release descendant resources allocated by the socket, but 1953 * to the time when it is called, socket is NOT referenced by any 1954 * hash tables, lists etc. 1955 * * Packets, delivered from outside (from network or from another process) 1956 * and enqueued on receive/error queues SHOULD NOT grab reference count, 1957 * when they sit in queue. Otherwise, packets will leak to hole, when 1958 * socket is looked up by one cpu and unhasing is made by another CPU. 1959 * It is true for udp/raw, netlink (leak to receive and error queues), tcp 1960 * (leak to backlog). Packet socket does all the processing inside 1961 * BR_NETPROTO_LOCK, so that it has not this race condition. UNIX sockets 1962 * use separate SMP lock, so that they are prone too. 1963 */ 1964 1965 /* Ungrab socket and destroy it, if it was the last reference. */ 1966 static inline void sock_put(struct sock *sk) 1967 { 1968 if (refcount_dec_and_test(&sk->sk_refcnt)) 1969 sk_free(sk); 1970 } 1971 /* Generic version of sock_put(), dealing with all sockets 1972 * (TCP_TIMEWAIT, TCP_NEW_SYN_RECV, ESTABLISHED...) 1973 */ 1974 void sock_gen_put(struct sock *sk); 1975 1976 int __sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested, 1977 unsigned int trim_cap, bool refcounted); 1978 static inline int sk_receive_skb(struct sock *sk, struct sk_buff *skb, 1979 const int nested) 1980 { 1981 return __sk_receive_skb(sk, skb, nested, 1, true); 1982 } 1983 1984 static inline void sk_tx_queue_set(struct sock *sk, int tx_queue) 1985 { 1986 /* sk_tx_queue_mapping accept only upto a 16-bit value */ 1987 if (WARN_ON_ONCE((unsigned short)tx_queue >= USHRT_MAX)) 1988 return; 1989 /* Paired with READ_ONCE() in sk_tx_queue_get() and 1990 * other WRITE_ONCE() because socket lock might be not held. 1991 */ 1992 WRITE_ONCE(sk->sk_tx_queue_mapping, tx_queue); 1993 } 1994 1995 #define NO_QUEUE_MAPPING USHRT_MAX 1996 1997 static inline void sk_tx_queue_clear(struct sock *sk) 1998 { 1999 /* Paired with READ_ONCE() in sk_tx_queue_get() and 2000 * other WRITE_ONCE() because socket lock might be not held. 2001 */ 2002 WRITE_ONCE(sk->sk_tx_queue_mapping, NO_QUEUE_MAPPING); 2003 } 2004 2005 static inline int sk_tx_queue_get(const struct sock *sk) 2006 { 2007 if (sk) { 2008 /* Paired with WRITE_ONCE() in sk_tx_queue_clear() 2009 * and sk_tx_queue_set(). 2010 */ 2011 int val = READ_ONCE(sk->sk_tx_queue_mapping); 2012 2013 if (val != NO_QUEUE_MAPPING) 2014 return val; 2015 } 2016 return -1; 2017 } 2018 2019 static inline void __sk_rx_queue_set(struct sock *sk, 2020 const struct sk_buff *skb, 2021 bool force_set) 2022 { 2023 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING 2024 if (skb_rx_queue_recorded(skb)) { 2025 u16 rx_queue = skb_get_rx_queue(skb); 2026 2027 if (force_set || 2028 unlikely(READ_ONCE(sk->sk_rx_queue_mapping) != rx_queue)) 2029 WRITE_ONCE(sk->sk_rx_queue_mapping, rx_queue); 2030 } 2031 #endif 2032 } 2033 2034 static inline void sk_rx_queue_set(struct sock *sk, const struct sk_buff *skb) 2035 { 2036 __sk_rx_queue_set(sk, skb, true); 2037 } 2038 2039 static inline void sk_rx_queue_update(struct sock *sk, const struct sk_buff *skb) 2040 { 2041 __sk_rx_queue_set(sk, skb, false); 2042 } 2043 2044 static inline void sk_rx_queue_clear(struct sock *sk) 2045 { 2046 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING 2047 WRITE_ONCE(sk->sk_rx_queue_mapping, NO_QUEUE_MAPPING); 2048 #endif 2049 } 2050 2051 static inline int sk_rx_queue_get(const struct sock *sk) 2052 { 2053 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING 2054 if (sk) { 2055 int res = READ_ONCE(sk->sk_rx_queue_mapping); 2056 2057 if (res != NO_QUEUE_MAPPING) 2058 return res; 2059 } 2060 #endif 2061 2062 return -1; 2063 } 2064 2065 static inline void sk_set_socket(struct sock *sk, struct socket *sock) 2066 { 2067 sk->sk_socket = sock; 2068 if (sock) { 2069 WRITE_ONCE(sk->sk_uid, SOCK_INODE(sock)->i_uid); 2070 WRITE_ONCE(sk->sk_ino, SOCK_INODE(sock)->i_ino); 2071 } 2072 } 2073 2074 static inline wait_queue_head_t *sk_sleep(struct sock *sk) 2075 { 2076 BUILD_BUG_ON(offsetof(struct socket_wq, wait) != 0); 2077 return &rcu_dereference_raw(sk->sk_wq)->wait; 2078 } 2079 /* Detach socket from process context. 2080 * Announce socket dead, detach it from wait queue and inode. 2081 * Note that parent inode held reference count on this struct sock, 2082 * we do not release it in this function, because protocol 2083 * probably wants some additional cleanups or even continuing 2084 * to work with this socket (TCP). 2085 */ 2086 static inline void sock_orphan(struct sock *sk) 2087 { 2088 write_lock_bh(&sk->sk_callback_lock); 2089 sock_set_flag(sk, SOCK_DEAD); 2090 sk_set_socket(sk, NULL); 2091 sk->sk_wq = NULL; 2092 /* Note: sk_uid is unchanged. */ 2093 WRITE_ONCE(sk->sk_ino, 0); 2094 write_unlock_bh(&sk->sk_callback_lock); 2095 } 2096 2097 static inline void sock_graft(struct sock *sk, struct socket *parent) 2098 { 2099 WARN_ON(parent->sk); 2100 write_lock_bh(&sk->sk_callback_lock); 2101 rcu_assign_pointer(sk->sk_wq, &parent->wq); 2102 parent->sk = sk; 2103 sk_set_socket(sk, parent); 2104 security_sock_graft(sk, parent); 2105 write_unlock_bh(&sk->sk_callback_lock); 2106 } 2107 2108 static inline unsigned long sock_i_ino(const struct sock *sk) 2109 { 2110 /* Paired with WRITE_ONCE() in sock_graft() and sock_orphan() */ 2111 return READ_ONCE(sk->sk_ino); 2112 } 2113 2114 static inline kuid_t sk_uid(const struct sock *sk) 2115 { 2116 /* Paired with WRITE_ONCE() in sockfs_setattr() */ 2117 return READ_ONCE(sk->sk_uid); 2118 } 2119 2120 static inline kuid_t sock_net_uid(const struct net *net, const struct sock *sk) 2121 { 2122 return sk ? sk_uid(sk) : make_kuid(net->user_ns, 0); 2123 } 2124 2125 static inline u32 net_tx_rndhash(void) 2126 { 2127 u32 v = get_random_u32(); 2128 2129 return v ?: 1; 2130 } 2131 2132 static inline void sk_set_txhash(struct sock *sk) 2133 { 2134 /* This pairs with READ_ONCE() in skb_set_hash_from_sk() */ 2135 WRITE_ONCE(sk->sk_txhash, net_tx_rndhash()); 2136 } 2137 2138 static inline bool sk_rethink_txhash(struct sock *sk) 2139 { 2140 if (sk->sk_txhash && sk->sk_txrehash == SOCK_TXREHASH_ENABLED) { 2141 sk_set_txhash(sk); 2142 return true; 2143 } 2144 return false; 2145 } 2146 2147 static inline struct dst_entry * 2148 __sk_dst_get(const struct sock *sk) 2149 { 2150 return rcu_dereference_check(sk->sk_dst_cache, 2151 lockdep_sock_is_held(sk)); 2152 } 2153 2154 static inline struct dst_entry * 2155 sk_dst_get(const struct sock *sk) 2156 { 2157 struct dst_entry *dst; 2158 2159 rcu_read_lock(); 2160 dst = rcu_dereference(sk->sk_dst_cache); 2161 if (dst && !rcuref_get(&dst->__rcuref)) 2162 dst = NULL; 2163 rcu_read_unlock(); 2164 return dst; 2165 } 2166 2167 static inline void __dst_negative_advice(struct sock *sk) 2168 { 2169 struct dst_entry *dst = __sk_dst_get(sk); 2170 2171 if (dst && dst->ops->negative_advice) 2172 dst->ops->negative_advice(sk, dst); 2173 } 2174 2175 static inline void dst_negative_advice(struct sock *sk) 2176 { 2177 sk_rethink_txhash(sk); 2178 __dst_negative_advice(sk); 2179 } 2180 2181 static inline void 2182 __sk_dst_set(struct sock *sk, struct dst_entry *dst) 2183 { 2184 struct dst_entry *old_dst; 2185 2186 sk_tx_queue_clear(sk); 2187 WRITE_ONCE(sk->sk_dst_pending_confirm, 0); 2188 old_dst = rcu_dereference_protected(sk->sk_dst_cache, 2189 lockdep_sock_is_held(sk)); 2190 rcu_assign_pointer(sk->sk_dst_cache, dst); 2191 dst_release(old_dst); 2192 } 2193 2194 static inline void 2195 sk_dst_set(struct sock *sk, struct dst_entry *dst) 2196 { 2197 struct dst_entry *old_dst; 2198 2199 sk_tx_queue_clear(sk); 2200 WRITE_ONCE(sk->sk_dst_pending_confirm, 0); 2201 old_dst = unrcu_pointer(xchg(&sk->sk_dst_cache, RCU_INITIALIZER(dst))); 2202 dst_release(old_dst); 2203 } 2204 2205 static inline void 2206 __sk_dst_reset(struct sock *sk) 2207 { 2208 __sk_dst_set(sk, NULL); 2209 } 2210 2211 static inline void 2212 sk_dst_reset(struct sock *sk) 2213 { 2214 sk_dst_set(sk, NULL); 2215 } 2216 2217 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie); 2218 2219 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie); 2220 2221 static inline void sk_dst_confirm(struct sock *sk) 2222 { 2223 if (!READ_ONCE(sk->sk_dst_pending_confirm)) 2224 WRITE_ONCE(sk->sk_dst_pending_confirm, 1); 2225 } 2226 2227 static inline void sock_confirm_neigh(struct sk_buff *skb, struct neighbour *n) 2228 { 2229 if (skb_get_dst_pending_confirm(skb)) { 2230 struct sock *sk = skb->sk; 2231 2232 if (sk && READ_ONCE(sk->sk_dst_pending_confirm)) 2233 WRITE_ONCE(sk->sk_dst_pending_confirm, 0); 2234 neigh_confirm(n); 2235 } 2236 } 2237 2238 bool sk_mc_loop(const struct sock *sk); 2239 2240 static inline bool sk_can_gso(const struct sock *sk) 2241 { 2242 return net_gso_ok(sk->sk_route_caps, sk->sk_gso_type); 2243 } 2244 2245 void sk_setup_caps(struct sock *sk, struct dst_entry *dst); 2246 2247 static inline void sk_gso_disable(struct sock *sk) 2248 { 2249 sk->sk_gso_disabled = 1; 2250 sk->sk_route_caps &= ~NETIF_F_GSO_MASK; 2251 } 2252 2253 static inline int skb_do_copy_data_nocache(struct sock *sk, struct sk_buff *skb, 2254 struct iov_iter *from, char *to, 2255 int copy, int offset) 2256 { 2257 if (skb->ip_summed == CHECKSUM_NONE) { 2258 __wsum csum = 0; 2259 if (!csum_and_copy_from_iter_full(to, copy, &csum, from)) 2260 return -EFAULT; 2261 skb->csum = csum_block_add(skb->csum, csum, offset); 2262 } else if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY) { 2263 if (!copy_from_iter_full_nocache(to, copy, from)) 2264 return -EFAULT; 2265 } else if (!copy_from_iter_full(to, copy, from)) 2266 return -EFAULT; 2267 2268 return 0; 2269 } 2270 2271 static inline int skb_add_data_nocache(struct sock *sk, struct sk_buff *skb, 2272 struct iov_iter *from, int copy) 2273 { 2274 int err, offset = skb->len; 2275 2276 err = skb_do_copy_data_nocache(sk, skb, from, skb_put(skb, copy), 2277 copy, offset); 2278 if (err) 2279 __skb_trim(skb, offset); 2280 2281 return err; 2282 } 2283 2284 static inline int skb_copy_to_page_nocache(struct sock *sk, struct iov_iter *from, 2285 struct sk_buff *skb, 2286 struct page *page, 2287 int off, int copy) 2288 { 2289 int err; 2290 2291 err = skb_do_copy_data_nocache(sk, skb, from, page_address(page) + off, 2292 copy, skb->len); 2293 if (err) 2294 return err; 2295 2296 skb_len_add(skb, copy); 2297 sk_wmem_queued_add(sk, copy); 2298 sk_mem_charge(sk, copy); 2299 return 0; 2300 } 2301 2302 /** 2303 * sk_wmem_alloc_get - returns write allocations 2304 * @sk: socket 2305 * 2306 * Return: sk_wmem_alloc minus initial offset of one 2307 */ 2308 static inline int sk_wmem_alloc_get(const struct sock *sk) 2309 { 2310 return refcount_read(&sk->sk_wmem_alloc) - 1; 2311 } 2312 2313 /** 2314 * sk_rmem_alloc_get - returns read allocations 2315 * @sk: socket 2316 * 2317 * Return: sk_rmem_alloc 2318 */ 2319 static inline int sk_rmem_alloc_get(const struct sock *sk) 2320 { 2321 return atomic_read(&sk->sk_rmem_alloc); 2322 } 2323 2324 /** 2325 * sk_has_allocations - check if allocations are outstanding 2326 * @sk: socket 2327 * 2328 * Return: true if socket has write or read allocations 2329 */ 2330 static inline bool sk_has_allocations(const struct sock *sk) 2331 { 2332 return sk_wmem_alloc_get(sk) || sk_rmem_alloc_get(sk); 2333 } 2334 2335 /** 2336 * skwq_has_sleeper - check if there are any waiting processes 2337 * @wq: struct socket_wq 2338 * 2339 * Return: true if socket_wq has waiting processes 2340 * 2341 * The purpose of the skwq_has_sleeper and sock_poll_wait is to wrap the memory 2342 * barrier call. They were added due to the race found within the tcp code. 2343 * 2344 * Consider following tcp code paths:: 2345 * 2346 * CPU1 CPU2 2347 * sys_select receive packet 2348 * ... ... 2349 * __add_wait_queue update tp->rcv_nxt 2350 * ... ... 2351 * tp->rcv_nxt check sock_def_readable 2352 * ... { 2353 * schedule rcu_read_lock(); 2354 * wq = rcu_dereference(sk->sk_wq); 2355 * if (wq && waitqueue_active(&wq->wait)) 2356 * wake_up_interruptible(&wq->wait) 2357 * ... 2358 * } 2359 * 2360 * The race for tcp fires when the __add_wait_queue changes done by CPU1 stay 2361 * in its cache, and so does the tp->rcv_nxt update on CPU2 side. The CPU1 2362 * could then endup calling schedule and sleep forever if there are no more 2363 * data on the socket. 2364 * 2365 */ 2366 static inline bool skwq_has_sleeper(struct socket_wq *wq) 2367 { 2368 return wq && wq_has_sleeper(&wq->wait); 2369 } 2370 2371 /** 2372 * sock_poll_wait - wrapper for the poll_wait call. 2373 * @filp: file 2374 * @sock: socket to wait on 2375 * @p: poll_table 2376 * 2377 * See the comments in the wq_has_sleeper function. 2378 */ 2379 static inline void sock_poll_wait(struct file *filp, struct socket *sock, 2380 poll_table *p) 2381 { 2382 /* Provides a barrier we need to be sure we are in sync 2383 * with the socket flags modification. 2384 * 2385 * This memory barrier is paired in the wq_has_sleeper. 2386 */ 2387 poll_wait(filp, &sock->wq.wait, p); 2388 } 2389 2390 static inline void skb_set_hash_from_sk(struct sk_buff *skb, struct sock *sk) 2391 { 2392 /* This pairs with WRITE_ONCE() in sk_set_txhash() */ 2393 u32 txhash = READ_ONCE(sk->sk_txhash); 2394 2395 if (txhash) { 2396 skb->l4_hash = 1; 2397 skb->hash = txhash; 2398 } 2399 } 2400 2401 void skb_set_owner_w(struct sk_buff *skb, struct sock *sk); 2402 2403 /* 2404 * Queue a received datagram if it will fit. Stream and sequenced 2405 * protocols can't normally use this as they need to fit buffers in 2406 * and play with them. 2407 * 2408 * Inlined as it's very short and called for pretty much every 2409 * packet ever received. 2410 */ 2411 static inline void skb_set_owner_r(struct sk_buff *skb, struct sock *sk) 2412 { 2413 skb_orphan(skb); 2414 skb->sk = sk; 2415 skb->destructor = sock_rfree; 2416 atomic_add(skb->truesize, &sk->sk_rmem_alloc); 2417 sk_mem_charge(sk, skb->truesize); 2418 } 2419 2420 static inline __must_check bool skb_set_owner_sk_safe(struct sk_buff *skb, struct sock *sk) 2421 { 2422 if (sk && refcount_inc_not_zero(&sk->sk_refcnt)) { 2423 skb_orphan(skb); 2424 skb->destructor = sock_efree; 2425 skb->sk = sk; 2426 return true; 2427 } 2428 return false; 2429 } 2430 2431 static inline struct sk_buff *skb_clone_and_charge_r(struct sk_buff *skb, struct sock *sk) 2432 { 2433 skb = skb_clone(skb, sk_gfp_mask(sk, GFP_ATOMIC)); 2434 if (skb) { 2435 if (sk_rmem_schedule(sk, skb, skb->truesize)) { 2436 skb_set_owner_r(skb, sk); 2437 return skb; 2438 } 2439 __kfree_skb(skb); 2440 } 2441 return NULL; 2442 } 2443 2444 static inline void skb_prepare_for_gro(struct sk_buff *skb) 2445 { 2446 if (skb->destructor != sock_wfree) { 2447 skb_orphan(skb); 2448 return; 2449 } 2450 skb->slow_gro = 1; 2451 } 2452 2453 void sk_reset_timer(struct sock *sk, struct timer_list *timer, 2454 unsigned long expires); 2455 2456 void sk_stop_timer(struct sock *sk, struct timer_list *timer); 2457 2458 void sk_stop_timer_sync(struct sock *sk, struct timer_list *timer); 2459 2460 int __sk_queue_drop_skb(struct sock *sk, struct sk_buff_head *sk_queue, 2461 struct sk_buff *skb, unsigned int flags, 2462 void (*destructor)(struct sock *sk, 2463 struct sk_buff *skb)); 2464 int __sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb); 2465 2466 int sock_queue_rcv_skb_reason(struct sock *sk, struct sk_buff *skb, 2467 enum skb_drop_reason *reason); 2468 2469 static inline int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb) 2470 { 2471 return sock_queue_rcv_skb_reason(sk, skb, NULL); 2472 } 2473 2474 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb); 2475 struct sk_buff *sock_dequeue_err_skb(struct sock *sk); 2476 2477 /* 2478 * Recover an error report and clear atomically 2479 */ 2480 2481 static inline int sock_error(struct sock *sk) 2482 { 2483 int err; 2484 2485 /* Avoid an atomic operation for the common case. 2486 * This is racy since another cpu/thread can change sk_err under us. 2487 */ 2488 if (likely(data_race(!sk->sk_err))) 2489 return 0; 2490 2491 err = xchg(&sk->sk_err, 0); 2492 return -err; 2493 } 2494 2495 void sk_error_report(struct sock *sk); 2496 2497 static inline unsigned long sock_wspace(struct sock *sk) 2498 { 2499 int amt = 0; 2500 2501 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) { 2502 amt = sk->sk_sndbuf - refcount_read(&sk->sk_wmem_alloc); 2503 if (amt < 0) 2504 amt = 0; 2505 } 2506 return amt; 2507 } 2508 2509 /* Note: 2510 * We use sk->sk_wq_raw, from contexts knowing this 2511 * pointer is not NULL and cannot disappear/change. 2512 */ 2513 static inline void sk_set_bit(int nr, struct sock *sk) 2514 { 2515 if ((nr == SOCKWQ_ASYNC_NOSPACE || nr == SOCKWQ_ASYNC_WAITDATA) && 2516 !sock_flag(sk, SOCK_FASYNC)) 2517 return; 2518 2519 set_bit(nr, &sk->sk_wq_raw->flags); 2520 } 2521 2522 static inline void sk_clear_bit(int nr, struct sock *sk) 2523 { 2524 if ((nr == SOCKWQ_ASYNC_NOSPACE || nr == SOCKWQ_ASYNC_WAITDATA) && 2525 !sock_flag(sk, SOCK_FASYNC)) 2526 return; 2527 2528 clear_bit(nr, &sk->sk_wq_raw->flags); 2529 } 2530 2531 static inline void sk_wake_async(const struct sock *sk, int how, int band) 2532 { 2533 if (sock_flag(sk, SOCK_FASYNC)) { 2534 rcu_read_lock(); 2535 sock_wake_async(rcu_dereference(sk->sk_wq), how, band); 2536 rcu_read_unlock(); 2537 } 2538 } 2539 2540 static inline void sk_wake_async_rcu(const struct sock *sk, int how, int band) 2541 { 2542 if (unlikely(sock_flag(sk, SOCK_FASYNC))) 2543 sock_wake_async(rcu_dereference(sk->sk_wq), how, band); 2544 } 2545 2546 /* Since sk_{r,w}mem_alloc sums skb->truesize, even a small frame might 2547 * need sizeof(sk_buff) + MTU + padding, unless net driver perform copybreak. 2548 * Note: for send buffers, TCP works better if we can build two skbs at 2549 * minimum. 2550 */ 2551 #define TCP_SKB_MIN_TRUESIZE (2048 + SKB_DATA_ALIGN(sizeof(struct sk_buff))) 2552 2553 #define SOCK_MIN_SNDBUF (TCP_SKB_MIN_TRUESIZE * 2) 2554 #define SOCK_MIN_RCVBUF TCP_SKB_MIN_TRUESIZE 2555 2556 static inline void sk_stream_moderate_sndbuf(struct sock *sk) 2557 { 2558 u32 val; 2559 2560 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK) 2561 return; 2562 2563 val = min(sk->sk_sndbuf, sk->sk_wmem_queued >> 1); 2564 val = max_t(u32, val, sk_unused_reserved_mem(sk)); 2565 2566 WRITE_ONCE(sk->sk_sndbuf, max_t(u32, val, SOCK_MIN_SNDBUF)); 2567 } 2568 2569 /** 2570 * sk_page_frag - return an appropriate page_frag 2571 * @sk: socket 2572 * 2573 * Use the per task page_frag instead of the per socket one for 2574 * optimization when we know that we're in process context and own 2575 * everything that's associated with %current. 2576 * 2577 * Both direct reclaim and page faults can nest inside other 2578 * socket operations and end up recursing into sk_page_frag() 2579 * while it's already in use: explicitly avoid task page_frag 2580 * when users disable sk_use_task_frag. 2581 * 2582 * Return: a per task page_frag if context allows that, 2583 * otherwise a per socket one. 2584 */ 2585 static inline struct page_frag *sk_page_frag(struct sock *sk) 2586 { 2587 if (sk->sk_use_task_frag) 2588 return ¤t->task_frag; 2589 2590 return &sk->sk_frag; 2591 } 2592 2593 bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag); 2594 2595 /* 2596 * Default write policy as shown to user space via poll/select/SIGIO 2597 */ 2598 static inline bool sock_writeable(const struct sock *sk) 2599 { 2600 return refcount_read(&sk->sk_wmem_alloc) < (READ_ONCE(sk->sk_sndbuf) >> 1); 2601 } 2602 2603 static inline gfp_t gfp_any(void) 2604 { 2605 return in_softirq() ? GFP_ATOMIC : GFP_KERNEL; 2606 } 2607 2608 static inline gfp_t gfp_memcg_charge(void) 2609 { 2610 return in_softirq() ? GFP_ATOMIC : GFP_KERNEL; 2611 } 2612 2613 #ifdef CONFIG_MEMCG 2614 static inline struct mem_cgroup *mem_cgroup_from_sk(const struct sock *sk) 2615 { 2616 return sk->sk_memcg; 2617 } 2618 2619 static inline bool mem_cgroup_sk_enabled(const struct sock *sk) 2620 { 2621 return mem_cgroup_sockets_enabled && mem_cgroup_from_sk(sk); 2622 } 2623 2624 static inline bool mem_cgroup_sk_under_memory_pressure(const struct sock *sk) 2625 { 2626 struct mem_cgroup *memcg = mem_cgroup_from_sk(sk); 2627 2628 #ifdef CONFIG_MEMCG_V1 2629 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) 2630 return !!memcg->tcpmem_pressure; 2631 #endif /* CONFIG_MEMCG_V1 */ 2632 2633 do { 2634 if (time_before64(get_jiffies_64(), mem_cgroup_get_socket_pressure(memcg))) 2635 return true; 2636 } while ((memcg = parent_mem_cgroup(memcg))); 2637 2638 return false; 2639 } 2640 #else 2641 static inline struct mem_cgroup *mem_cgroup_from_sk(const struct sock *sk) 2642 { 2643 return NULL; 2644 } 2645 2646 static inline bool mem_cgroup_sk_enabled(const struct sock *sk) 2647 { 2648 return false; 2649 } 2650 2651 static inline bool mem_cgroup_sk_under_memory_pressure(const struct sock *sk) 2652 { 2653 return false; 2654 } 2655 #endif 2656 2657 static inline long sock_rcvtimeo(const struct sock *sk, bool noblock) 2658 { 2659 return noblock ? 0 : READ_ONCE(sk->sk_rcvtimeo); 2660 } 2661 2662 static inline long sock_sndtimeo(const struct sock *sk, bool noblock) 2663 { 2664 return noblock ? 0 : READ_ONCE(sk->sk_sndtimeo); 2665 } 2666 2667 static inline int sock_rcvlowat(const struct sock *sk, int waitall, int len) 2668 { 2669 int v = waitall ? len : min_t(int, READ_ONCE(sk->sk_rcvlowat), len); 2670 2671 return v ?: 1; 2672 } 2673 2674 /* Alas, with timeout socket operations are not restartable. 2675 * Compare this to poll(). 2676 */ 2677 static inline int sock_intr_errno(long timeo) 2678 { 2679 return timeo == MAX_SCHEDULE_TIMEOUT ? -ERESTARTSYS : -EINTR; 2680 } 2681 2682 struct sock_skb_cb { 2683 u32 dropcount; 2684 }; 2685 2686 /* Store sock_skb_cb at the end of skb->cb[] so protocol families 2687 * using skb->cb[] would keep using it directly and utilize its 2688 * alignment guarantee. 2689 */ 2690 #define SOCK_SKB_CB_OFFSET (sizeof_field(struct sk_buff, cb) - \ 2691 sizeof(struct sock_skb_cb)) 2692 2693 #define SOCK_SKB_CB(__skb) ((struct sock_skb_cb *)((__skb)->cb + \ 2694 SOCK_SKB_CB_OFFSET)) 2695 2696 #define sock_skb_cb_check_size(size) \ 2697 BUILD_BUG_ON((size) > SOCK_SKB_CB_OFFSET) 2698 2699 static inline void sk_drops_add(struct sock *sk, int segs) 2700 { 2701 struct socket_drop_counters *sdc = sk->sk_drop_counters; 2702 2703 if (sdc) { 2704 int n = numa_node_id() % 2; 2705 2706 if (n) 2707 atomic_add(segs, &sdc->drops1); 2708 else 2709 atomic_add(segs, &sdc->drops0); 2710 } else { 2711 atomic_add(segs, &sk->sk_drops); 2712 } 2713 } 2714 2715 static inline void sk_drops_inc(struct sock *sk) 2716 { 2717 sk_drops_add(sk, 1); 2718 } 2719 2720 static inline int sk_drops_read(const struct sock *sk) 2721 { 2722 const struct socket_drop_counters *sdc = sk->sk_drop_counters; 2723 2724 if (sdc) { 2725 DEBUG_NET_WARN_ON_ONCE(atomic_read(&sk->sk_drops)); 2726 return atomic_read(&sdc->drops0) + atomic_read(&sdc->drops1); 2727 } 2728 return atomic_read(&sk->sk_drops); 2729 } 2730 2731 static inline void sk_drops_reset(struct sock *sk) 2732 { 2733 struct socket_drop_counters *sdc = sk->sk_drop_counters; 2734 2735 if (sdc) { 2736 atomic_set(&sdc->drops0, 0); 2737 atomic_set(&sdc->drops1, 0); 2738 } 2739 atomic_set(&sk->sk_drops, 0); 2740 } 2741 2742 static inline void 2743 sock_skb_set_dropcount(const struct sock *sk, struct sk_buff *skb) 2744 { 2745 SOCK_SKB_CB(skb)->dropcount = sock_flag(sk, SOCK_RXQ_OVFL) ? 2746 sk_drops_read(sk) : 0; 2747 } 2748 2749 static inline void sk_drops_skbadd(struct sock *sk, const struct sk_buff *skb) 2750 { 2751 int segs = max_t(u16, 1, skb_shinfo(skb)->gso_segs); 2752 2753 sk_drops_add(sk, segs); 2754 } 2755 2756 static inline ktime_t sock_read_timestamp(struct sock *sk) 2757 { 2758 #if BITS_PER_LONG==32 2759 unsigned int seq; 2760 ktime_t kt; 2761 2762 do { 2763 seq = read_seqbegin(&sk->sk_stamp_seq); 2764 kt = sk->sk_stamp; 2765 } while (read_seqretry(&sk->sk_stamp_seq, seq)); 2766 2767 return kt; 2768 #else 2769 return READ_ONCE(sk->sk_stamp); 2770 #endif 2771 } 2772 2773 static inline void sock_write_timestamp(struct sock *sk, ktime_t kt) 2774 { 2775 #if BITS_PER_LONG==32 2776 write_seqlock(&sk->sk_stamp_seq); 2777 sk->sk_stamp = kt; 2778 write_sequnlock(&sk->sk_stamp_seq); 2779 #else 2780 WRITE_ONCE(sk->sk_stamp, kt); 2781 #endif 2782 } 2783 2784 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk, 2785 struct sk_buff *skb); 2786 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk, 2787 struct sk_buff *skb); 2788 2789 bool skb_has_tx_timestamp(struct sk_buff *skb, const struct sock *sk); 2790 int skb_get_tx_timestamp(struct sk_buff *skb, struct sock *sk, 2791 struct timespec64 *ts); 2792 2793 static inline void 2794 sock_recv_timestamp(struct msghdr *msg, struct sock *sk, struct sk_buff *skb) 2795 { 2796 struct skb_shared_hwtstamps *hwtstamps = skb_hwtstamps(skb); 2797 u32 tsflags = READ_ONCE(sk->sk_tsflags); 2798 ktime_t kt = skb->tstamp; 2799 /* 2800 * generate control messages if 2801 * - receive time stamping in software requested 2802 * - software time stamp available and wanted 2803 * - hardware time stamps available and wanted 2804 */ 2805 if (sock_flag(sk, SOCK_RCVTSTAMP) || 2806 (tsflags & SOF_TIMESTAMPING_RX_SOFTWARE) || 2807 (kt && tsflags & SOF_TIMESTAMPING_SOFTWARE) || 2808 (hwtstamps->hwtstamp && 2809 (tsflags & SOF_TIMESTAMPING_RAW_HARDWARE))) 2810 __sock_recv_timestamp(msg, sk, skb); 2811 else 2812 sock_write_timestamp(sk, kt); 2813 2814 if (sock_flag(sk, SOCK_WIFI_STATUS) && skb_wifi_acked_valid(skb)) 2815 __sock_recv_wifi_status(msg, sk, skb); 2816 } 2817 2818 void __sock_recv_cmsgs(struct msghdr *msg, struct sock *sk, 2819 struct sk_buff *skb); 2820 2821 #define SK_DEFAULT_STAMP (-1L * NSEC_PER_SEC) 2822 static inline void sock_recv_cmsgs(struct msghdr *msg, struct sock *sk, 2823 struct sk_buff *skb) 2824 { 2825 #define FLAGS_RECV_CMSGS ((1UL << SOCK_RXQ_OVFL) | \ 2826 (1UL << SOCK_RCVTSTAMP) | \ 2827 (1UL << SOCK_RCVMARK) | \ 2828 (1UL << SOCK_RCVPRIORITY) | \ 2829 (1UL << SOCK_TIMESTAMPING_ANY)) 2830 #define TSFLAGS_ANY (SOF_TIMESTAMPING_SOFTWARE | \ 2831 SOF_TIMESTAMPING_RAW_HARDWARE) 2832 2833 if (READ_ONCE(sk->sk_flags) & FLAGS_RECV_CMSGS) 2834 __sock_recv_cmsgs(msg, sk, skb); 2835 else if (unlikely(sock_flag(sk, SOCK_TIMESTAMP))) 2836 sock_write_timestamp(sk, skb->tstamp); 2837 else if (unlikely(sock_read_timestamp(sk) == SK_DEFAULT_STAMP)) 2838 sock_write_timestamp(sk, 0); 2839 } 2840 2841 void __sock_tx_timestamp(__u32 tsflags, __u8 *tx_flags); 2842 2843 /** 2844 * _sock_tx_timestamp - checks whether the outgoing packet is to be time stamped 2845 * @sk: socket sending this packet 2846 * @sockc: pointer to socket cmsg cookie to get timestamping info 2847 * @tx_flags: completed with instructions for time stamping 2848 * @tskey: filled in with next sk_tskey (not for TCP, which uses seqno) 2849 * 2850 * Note: callers should take care of initial ``*tx_flags`` value (usually 0) 2851 */ 2852 static inline void _sock_tx_timestamp(struct sock *sk, 2853 const struct sockcm_cookie *sockc, 2854 __u8 *tx_flags, __u32 *tskey) 2855 { 2856 __u32 tsflags = sockc->tsflags; 2857 2858 if (unlikely(tsflags)) { 2859 __sock_tx_timestamp(tsflags, tx_flags); 2860 if (tsflags & SOF_TIMESTAMPING_OPT_ID && tskey && 2861 tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK) { 2862 if (tsflags & SOCKCM_FLAG_TS_OPT_ID) 2863 *tskey = sockc->ts_opt_id; 2864 else 2865 *tskey = atomic_inc_return(&sk->sk_tskey) - 1; 2866 } 2867 } 2868 } 2869 2870 static inline void sock_tx_timestamp(struct sock *sk, 2871 const struct sockcm_cookie *sockc, 2872 __u8 *tx_flags) 2873 { 2874 _sock_tx_timestamp(sk, sockc, tx_flags, NULL); 2875 } 2876 2877 static inline void skb_setup_tx_timestamp(struct sk_buff *skb, 2878 const struct sockcm_cookie *sockc) 2879 { 2880 _sock_tx_timestamp(skb->sk, sockc, &skb_shinfo(skb)->tx_flags, 2881 &skb_shinfo(skb)->tskey); 2882 } 2883 2884 static inline bool sk_is_inet(const struct sock *sk) 2885 { 2886 int family = READ_ONCE(sk->sk_family); 2887 2888 return family == AF_INET || family == AF_INET6; 2889 } 2890 2891 static inline bool sk_is_tcp(const struct sock *sk) 2892 { 2893 return sk_is_inet(sk) && 2894 sk->sk_type == SOCK_STREAM && 2895 sk->sk_protocol == IPPROTO_TCP; 2896 } 2897 2898 static inline bool sk_is_udp(const struct sock *sk) 2899 { 2900 return sk_is_inet(sk) && 2901 sk->sk_type == SOCK_DGRAM && 2902 sk->sk_protocol == IPPROTO_UDP; 2903 } 2904 2905 static inline bool sk_is_unix(const struct sock *sk) 2906 { 2907 return sk->sk_family == AF_UNIX; 2908 } 2909 2910 static inline bool sk_is_stream_unix(const struct sock *sk) 2911 { 2912 return sk_is_unix(sk) && sk->sk_type == SOCK_STREAM; 2913 } 2914 2915 static inline bool sk_is_vsock(const struct sock *sk) 2916 { 2917 return sk->sk_family == AF_VSOCK; 2918 } 2919 2920 static inline bool sk_may_scm_recv(const struct sock *sk) 2921 { 2922 return (IS_ENABLED(CONFIG_UNIX) && sk->sk_family == AF_UNIX) || 2923 sk->sk_family == AF_NETLINK || 2924 (IS_ENABLED(CONFIG_BT) && sk->sk_family == AF_BLUETOOTH); 2925 } 2926 2927 /** 2928 * sk_eat_skb - Release a skb if it is no longer needed 2929 * @sk: socket to eat this skb from 2930 * @skb: socket buffer to eat 2931 * 2932 * This routine must be called with interrupts disabled or with the socket 2933 * locked so that the sk_buff queue operation is ok. 2934 */ 2935 static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb) 2936 { 2937 __skb_unlink(skb, &sk->sk_receive_queue); 2938 __kfree_skb(skb); 2939 } 2940 2941 static inline bool 2942 skb_sk_is_prefetched(struct sk_buff *skb) 2943 { 2944 #ifdef CONFIG_INET 2945 return skb->destructor == sock_pfree; 2946 #else 2947 return false; 2948 #endif /* CONFIG_INET */ 2949 } 2950 2951 /* This helper checks if a socket is a full socket, 2952 * ie _not_ a timewait or request socket. 2953 */ 2954 static inline bool sk_fullsock(const struct sock *sk) 2955 { 2956 return (1 << sk->sk_state) & ~(TCPF_TIME_WAIT | TCPF_NEW_SYN_RECV); 2957 } 2958 2959 static inline bool 2960 sk_is_refcounted(struct sock *sk) 2961 { 2962 /* Only full sockets have sk->sk_flags. */ 2963 return !sk_fullsock(sk) || !sock_flag(sk, SOCK_RCU_FREE); 2964 } 2965 2966 static inline bool 2967 sk_requests_wifi_status(struct sock *sk) 2968 { 2969 return sk && sk_fullsock(sk) && sock_flag(sk, SOCK_WIFI_STATUS); 2970 } 2971 2972 /* Checks if this SKB belongs to an HW offloaded socket 2973 * and whether any SW fallbacks are required based on dev. 2974 * Check decrypted mark in case skb_orphan() cleared socket. 2975 */ 2976 static inline struct sk_buff *sk_validate_xmit_skb(struct sk_buff *skb, 2977 struct net_device *dev) 2978 { 2979 #ifdef CONFIG_SOCK_VALIDATE_XMIT 2980 struct sock *sk = skb->sk; 2981 2982 if (sk && sk_fullsock(sk) && sk->sk_validate_xmit_skb) { 2983 skb = sk->sk_validate_xmit_skb(sk, dev, skb); 2984 } else if (unlikely(skb_is_decrypted(skb))) { 2985 pr_warn_ratelimited("unencrypted skb with no associated socket - dropping\n"); 2986 kfree_skb(skb); 2987 skb = NULL; 2988 } 2989 #endif 2990 2991 return skb; 2992 } 2993 2994 /* This helper checks if a socket is a LISTEN or NEW_SYN_RECV 2995 * SYNACK messages can be attached to either ones (depending on SYNCOOKIE) 2996 */ 2997 static inline bool sk_listener(const struct sock *sk) 2998 { 2999 return (1 << sk->sk_state) & (TCPF_LISTEN | TCPF_NEW_SYN_RECV); 3000 } 3001 3002 /* This helper checks if a socket is a LISTEN or NEW_SYN_RECV or TIME_WAIT 3003 * TCP SYNACK messages can be attached to LISTEN or NEW_SYN_RECV (depending on SYNCOOKIE) 3004 * TCP RST and ACK can be attached to TIME_WAIT. 3005 */ 3006 static inline bool sk_listener_or_tw(const struct sock *sk) 3007 { 3008 return (1 << READ_ONCE(sk->sk_state)) & 3009 (TCPF_LISTEN | TCPF_NEW_SYN_RECV | TCPF_TIME_WAIT); 3010 } 3011 3012 void sock_enable_timestamp(struct sock *sk, enum sock_flags flag); 3013 int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len, int level, 3014 int type); 3015 3016 bool sk_ns_capable(const struct sock *sk, 3017 struct user_namespace *user_ns, int cap); 3018 bool sk_capable(const struct sock *sk, int cap); 3019 bool sk_net_capable(const struct sock *sk, int cap); 3020 3021 void sk_get_meminfo(const struct sock *sk, u32 *meminfo); 3022 3023 /* Take into consideration the size of the struct sk_buff overhead in the 3024 * determination of these values, since that is non-constant across 3025 * platforms. This makes socket queueing behavior and performance 3026 * not depend upon such differences. 3027 */ 3028 #define _SK_MEM_PACKETS 256 3029 #define _SK_MEM_OVERHEAD SKB_TRUESIZE(256) 3030 #define SK_WMEM_DEFAULT (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS) 3031 #define SK_RMEM_DEFAULT (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS) 3032 3033 extern __u32 sysctl_wmem_max; 3034 extern __u32 sysctl_rmem_max; 3035 3036 extern __u32 sysctl_wmem_default; 3037 extern __u32 sysctl_rmem_default; 3038 3039 #define SKB_FRAG_PAGE_ORDER get_order(32768) 3040 DECLARE_STATIC_KEY_FALSE(net_high_order_alloc_disable_key); 3041 3042 static inline int sk_get_wmem0(const struct sock *sk, const struct proto *proto) 3043 { 3044 /* Does this proto have per netns sysctl_wmem ? */ 3045 if (proto->sysctl_wmem_offset) 3046 return READ_ONCE(*(int *)((void *)sock_net(sk) + proto->sysctl_wmem_offset)); 3047 3048 return READ_ONCE(*proto->sysctl_wmem); 3049 } 3050 3051 static inline int sk_get_rmem0(const struct sock *sk, const struct proto *proto) 3052 { 3053 /* Does this proto have per netns sysctl_rmem ? */ 3054 if (proto->sysctl_rmem_offset) 3055 return READ_ONCE(*(int *)((void *)sock_net(sk) + proto->sysctl_rmem_offset)); 3056 3057 return READ_ONCE(*proto->sysctl_rmem); 3058 } 3059 3060 /* Default TCP Small queue budget is ~1 ms of data (1sec >> 10) 3061 * Some wifi drivers need to tweak it to get more chunks. 3062 * They can use this helper from their ndo_start_xmit() 3063 */ 3064 static inline void sk_pacing_shift_update(struct sock *sk, int val) 3065 { 3066 if (!sk || !sk_fullsock(sk) || READ_ONCE(sk->sk_pacing_shift) == val) 3067 return; 3068 WRITE_ONCE(sk->sk_pacing_shift, val); 3069 } 3070 3071 /* if a socket is bound to a device, check that the given device 3072 * index is either the same or that the socket is bound to an L3 3073 * master device and the given device index is also enslaved to 3074 * that L3 master 3075 */ 3076 static inline bool sk_dev_equal_l3scope(struct sock *sk, int dif) 3077 { 3078 int bound_dev_if = READ_ONCE(sk->sk_bound_dev_if); 3079 int mdif; 3080 3081 if (!bound_dev_if || bound_dev_if == dif) 3082 return true; 3083 3084 mdif = l3mdev_master_ifindex_by_index(sock_net(sk), dif); 3085 if (mdif && mdif == bound_dev_if) 3086 return true; 3087 3088 return false; 3089 } 3090 3091 void sock_def_readable(struct sock *sk); 3092 3093 int sock_bindtoindex(struct sock *sk, int ifindex, bool lock_sk); 3094 void sock_set_timestamp(struct sock *sk, int optname, bool valbool); 3095 int sock_set_timestamping(struct sock *sk, int optname, 3096 struct so_timestamping timestamping); 3097 3098 #if defined(CONFIG_CGROUP_BPF) 3099 void bpf_skops_tx_timestamping(struct sock *sk, struct sk_buff *skb, int op); 3100 #else 3101 static inline void bpf_skops_tx_timestamping(struct sock *sk, struct sk_buff *skb, int op) 3102 { 3103 } 3104 #endif 3105 void sock_no_linger(struct sock *sk); 3106 void sock_set_keepalive(struct sock *sk); 3107 void sock_set_priority(struct sock *sk, u32 priority); 3108 void sock_set_rcvbuf(struct sock *sk, int val); 3109 void sock_set_mark(struct sock *sk, u32 val); 3110 void sock_set_reuseaddr(struct sock *sk); 3111 void sock_set_reuseport(struct sock *sk); 3112 void sock_set_sndtimeo(struct sock *sk, s64 secs); 3113 3114 int sock_bind_add(struct sock *sk, struct sockaddr *addr, int addr_len); 3115 3116 int sock_get_timeout(long timeo, void *optval, bool old_timeval); 3117 int sock_copy_user_timeval(struct __kernel_sock_timeval *tv, 3118 sockptr_t optval, int optlen, bool old_timeval); 3119 3120 int sock_ioctl_inout(struct sock *sk, unsigned int cmd, 3121 void __user *arg, void *karg, size_t size); 3122 int sk_ioctl(struct sock *sk, unsigned int cmd, void __user *arg); 3123 static inline bool sk_is_readable(struct sock *sk) 3124 { 3125 const struct proto *prot = READ_ONCE(sk->sk_prot); 3126 3127 if (prot->sock_is_readable) 3128 return prot->sock_is_readable(sk); 3129 3130 return false; 3131 } 3132 #endif /* _SOCK_H */ 3133