1 /* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * Definitions for the AF_INET socket handler. 7 * 8 * Version: @(#)sock.h 1.0.4 05/13/93 9 * 10 * Authors: Ross Biro 11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 12 * Corey Minyard <wf-rch!minyard@relay.EU.net> 13 * Florian La Roche <flla@stud.uni-sb.de> 14 * 15 * Fixes: 16 * Alan Cox : Volatiles in skbuff pointers. See 17 * skbuff comments. May be overdone, 18 * better to prove they can be removed 19 * than the reverse. 20 * Alan Cox : Added a zapped field for tcp to note 21 * a socket is reset and must stay shut up 22 * Alan Cox : New fields for options 23 * Pauline Middelink : identd support 24 * Alan Cox : Eliminate low level recv/recvfrom 25 * David S. Miller : New socket lookup architecture. 26 * Steve Whitehouse: Default routines for sock_ops 27 * Arnaldo C. Melo : removed net_pinfo, tp_pinfo and made 28 * protinfo be just a void pointer, as the 29 * protocol specific parts were moved to 30 * respective headers and ipv4/v6, etc now 31 * use private slabcaches for its socks 32 * Pedro Hortas : New flags field for socket options 33 * 34 * 35 * This program is free software; you can redistribute it and/or 36 * modify it under the terms of the GNU General Public License 37 * as published by the Free Software Foundation; either version 38 * 2 of the License, or (at your option) any later version. 39 */ 40 #ifndef _SOCK_H 41 #define _SOCK_H 42 43 #include <linux/list.h> 44 #include <linux/timer.h> 45 #include <linux/cache.h> 46 #include <linux/module.h> 47 #include <linux/netdevice.h> 48 #include <linux/skbuff.h> /* struct sk_buff */ 49 #include <linux/security.h> 50 51 #include <linux/filter.h> 52 53 #include <asm/atomic.h> 54 #include <net/dst.h> 55 #include <net/checksum.h> 56 57 /* 58 * This structure really needs to be cleaned up. 59 * Most of it is for TCP, and not used by any of 60 * the other protocols. 61 */ 62 63 /* Define this to get the SOCK_DBG debugging facility. */ 64 #define SOCK_DEBUGGING 65 #ifdef SOCK_DEBUGGING 66 #define SOCK_DEBUG(sk, msg...) do { if ((sk) && sock_flag((sk), SOCK_DBG)) \ 67 printk(KERN_DEBUG msg); } while (0) 68 #else 69 #define SOCK_DEBUG(sk, msg...) do { } while (0) 70 #endif 71 72 /* This is the per-socket lock. The spinlock provides a synchronization 73 * between user contexts and software interrupt processing, whereas the 74 * mini-semaphore synchronizes multiple users amongst themselves. 75 */ 76 struct sock_iocb; 77 typedef struct { 78 spinlock_t slock; 79 struct sock_iocb *owner; 80 wait_queue_head_t wq; 81 } socket_lock_t; 82 83 #define sock_lock_init(__sk) \ 84 do { spin_lock_init(&((__sk)->sk_lock.slock)); \ 85 (__sk)->sk_lock.owner = NULL; \ 86 init_waitqueue_head(&((__sk)->sk_lock.wq)); \ 87 } while(0) 88 89 struct sock; 90 struct proto; 91 92 /** 93 * struct sock_common - minimal network layer representation of sockets 94 * @skc_family: network address family 95 * @skc_state: Connection state 96 * @skc_reuse: %SO_REUSEADDR setting 97 * @skc_bound_dev_if: bound device index if != 0 98 * @skc_node: main hash linkage for various protocol lookup tables 99 * @skc_bind_node: bind hash linkage for various protocol lookup tables 100 * @skc_refcnt: reference count 101 * @skc_hash: hash value used with various protocol lookup tables 102 * @skc_prot: protocol handlers inside a network family 103 * 104 * This is the minimal network layer representation of sockets, the header 105 * for struct sock and struct inet_timewait_sock. 106 */ 107 struct sock_common { 108 unsigned short skc_family; 109 volatile unsigned char skc_state; 110 unsigned char skc_reuse; 111 int skc_bound_dev_if; 112 struct hlist_node skc_node; 113 struct hlist_node skc_bind_node; 114 atomic_t skc_refcnt; 115 unsigned int skc_hash; 116 struct proto *skc_prot; 117 }; 118 119 /** 120 * struct sock - network layer representation of sockets 121 * @__sk_common: shared layout with inet_timewait_sock 122 * @sk_shutdown: mask of %SEND_SHUTDOWN and/or %RCV_SHUTDOWN 123 * @sk_userlocks: %SO_SNDBUF and %SO_RCVBUF settings 124 * @sk_lock: synchronizer 125 * @sk_rcvbuf: size of receive buffer in bytes 126 * @sk_sleep: sock wait queue 127 * @sk_dst_cache: destination cache 128 * @sk_dst_lock: destination cache lock 129 * @sk_policy: flow policy 130 * @sk_rmem_alloc: receive queue bytes committed 131 * @sk_receive_queue: incoming packets 132 * @sk_wmem_alloc: transmit queue bytes committed 133 * @sk_write_queue: Packet sending queue 134 * @sk_async_wait_queue: DMA copied packets 135 * @sk_omem_alloc: "o" is "option" or "other" 136 * @sk_wmem_queued: persistent queue size 137 * @sk_forward_alloc: space allocated forward 138 * @sk_allocation: allocation mode 139 * @sk_sndbuf: size of send buffer in bytes 140 * @sk_flags: %SO_LINGER (l_onoff), %SO_BROADCAST, %SO_KEEPALIVE, %SO_OOBINLINE settings 141 * @sk_no_check: %SO_NO_CHECK setting, wether or not checkup packets 142 * @sk_route_caps: route capabilities (e.g. %NETIF_F_TSO) 143 * @sk_lingertime: %SO_LINGER l_linger setting 144 * @sk_backlog: always used with the per-socket spinlock held 145 * @sk_callback_lock: used with the callbacks in the end of this struct 146 * @sk_error_queue: rarely used 147 * @sk_prot_creator: sk_prot of original sock creator (see ipv6_setsockopt, IPV6_ADDRFORM for instance) 148 * @sk_err: last error 149 * @sk_err_soft: errors that don't cause failure but are the cause of a persistent failure not just 'timed out' 150 * @sk_ack_backlog: current listen backlog 151 * @sk_max_ack_backlog: listen backlog set in listen() 152 * @sk_priority: %SO_PRIORITY setting 153 * @sk_type: socket type (%SOCK_STREAM, etc) 154 * @sk_protocol: which protocol this socket belongs in this network family 155 * @sk_peercred: %SO_PEERCRED setting 156 * @sk_rcvlowat: %SO_RCVLOWAT setting 157 * @sk_rcvtimeo: %SO_RCVTIMEO setting 158 * @sk_sndtimeo: %SO_SNDTIMEO setting 159 * @sk_filter: socket filtering instructions 160 * @sk_protinfo: private area, net family specific, when not using slab 161 * @sk_timer: sock cleanup timer 162 * @sk_stamp: time stamp of last packet received 163 * @sk_socket: Identd and reporting IO signals 164 * @sk_user_data: RPC layer private data 165 * @sk_sndmsg_page: cached page for sendmsg 166 * @sk_sndmsg_off: cached offset for sendmsg 167 * @sk_send_head: front of stuff to transmit 168 * @sk_security: used by security modules 169 * @sk_write_pending: a write to stream socket waits to start 170 * @sk_state_change: callback to indicate change in the state of the sock 171 * @sk_data_ready: callback to indicate there is data to be processed 172 * @sk_write_space: callback to indicate there is bf sending space available 173 * @sk_error_report: callback to indicate errors (e.g. %MSG_ERRQUEUE) 174 * @sk_backlog_rcv: callback to process the backlog 175 * @sk_destruct: called at sock freeing time, i.e. when all refcnt == 0 176 */ 177 struct sock { 178 /* 179 * Now struct inet_timewait_sock also uses sock_common, so please just 180 * don't add nothing before this first member (__sk_common) --acme 181 */ 182 struct sock_common __sk_common; 183 #define sk_family __sk_common.skc_family 184 #define sk_state __sk_common.skc_state 185 #define sk_reuse __sk_common.skc_reuse 186 #define sk_bound_dev_if __sk_common.skc_bound_dev_if 187 #define sk_node __sk_common.skc_node 188 #define sk_bind_node __sk_common.skc_bind_node 189 #define sk_refcnt __sk_common.skc_refcnt 190 #define sk_hash __sk_common.skc_hash 191 #define sk_prot __sk_common.skc_prot 192 unsigned char sk_shutdown : 2, 193 sk_no_check : 2, 194 sk_userlocks : 4; 195 unsigned char sk_protocol; 196 unsigned short sk_type; 197 int sk_rcvbuf; 198 socket_lock_t sk_lock; 199 wait_queue_head_t *sk_sleep; 200 struct dst_entry *sk_dst_cache; 201 struct xfrm_policy *sk_policy[2]; 202 rwlock_t sk_dst_lock; 203 atomic_t sk_rmem_alloc; 204 atomic_t sk_wmem_alloc; 205 atomic_t sk_omem_alloc; 206 struct sk_buff_head sk_receive_queue; 207 struct sk_buff_head sk_write_queue; 208 struct sk_buff_head sk_async_wait_queue; 209 int sk_wmem_queued; 210 int sk_forward_alloc; 211 gfp_t sk_allocation; 212 int sk_sndbuf; 213 int sk_route_caps; 214 int sk_rcvlowat; 215 unsigned long sk_flags; 216 unsigned long sk_lingertime; 217 /* 218 * The backlog queue is special, it is always used with 219 * the per-socket spinlock held and requires low latency 220 * access. Therefore we special case it's implementation. 221 */ 222 struct { 223 struct sk_buff *head; 224 struct sk_buff *tail; 225 } sk_backlog; 226 struct sk_buff_head sk_error_queue; 227 struct proto *sk_prot_creator; 228 rwlock_t sk_callback_lock; 229 int sk_err, 230 sk_err_soft; 231 unsigned short sk_ack_backlog; 232 unsigned short sk_max_ack_backlog; 233 __u32 sk_priority; 234 struct ucred sk_peercred; 235 long sk_rcvtimeo; 236 long sk_sndtimeo; 237 struct sk_filter *sk_filter; 238 void *sk_protinfo; 239 struct timer_list sk_timer; 240 struct timeval sk_stamp; 241 struct socket *sk_socket; 242 void *sk_user_data; 243 struct page *sk_sndmsg_page; 244 struct sk_buff *sk_send_head; 245 __u32 sk_sndmsg_off; 246 int sk_write_pending; 247 void *sk_security; 248 void (*sk_state_change)(struct sock *sk); 249 void (*sk_data_ready)(struct sock *sk, int bytes); 250 void (*sk_write_space)(struct sock *sk); 251 void (*sk_error_report)(struct sock *sk); 252 int (*sk_backlog_rcv)(struct sock *sk, 253 struct sk_buff *skb); 254 void (*sk_destruct)(struct sock *sk); 255 }; 256 257 /* 258 * Hashed lists helper routines 259 */ 260 static inline struct sock *__sk_head(const struct hlist_head *head) 261 { 262 return hlist_entry(head->first, struct sock, sk_node); 263 } 264 265 static inline struct sock *sk_head(const struct hlist_head *head) 266 { 267 return hlist_empty(head) ? NULL : __sk_head(head); 268 } 269 270 static inline struct sock *sk_next(const struct sock *sk) 271 { 272 return sk->sk_node.next ? 273 hlist_entry(sk->sk_node.next, struct sock, sk_node) : NULL; 274 } 275 276 static inline int sk_unhashed(const struct sock *sk) 277 { 278 return hlist_unhashed(&sk->sk_node); 279 } 280 281 static inline int sk_hashed(const struct sock *sk) 282 { 283 return !sk_unhashed(sk); 284 } 285 286 static __inline__ void sk_node_init(struct hlist_node *node) 287 { 288 node->pprev = NULL; 289 } 290 291 static __inline__ void __sk_del_node(struct sock *sk) 292 { 293 __hlist_del(&sk->sk_node); 294 } 295 296 static __inline__ int __sk_del_node_init(struct sock *sk) 297 { 298 if (sk_hashed(sk)) { 299 __sk_del_node(sk); 300 sk_node_init(&sk->sk_node); 301 return 1; 302 } 303 return 0; 304 } 305 306 /* Grab socket reference count. This operation is valid only 307 when sk is ALREADY grabbed f.e. it is found in hash table 308 or a list and the lookup is made under lock preventing hash table 309 modifications. 310 */ 311 312 static inline void sock_hold(struct sock *sk) 313 { 314 atomic_inc(&sk->sk_refcnt); 315 } 316 317 /* Ungrab socket in the context, which assumes that socket refcnt 318 cannot hit zero, f.e. it is true in context of any socketcall. 319 */ 320 static inline void __sock_put(struct sock *sk) 321 { 322 atomic_dec(&sk->sk_refcnt); 323 } 324 325 static __inline__ int sk_del_node_init(struct sock *sk) 326 { 327 int rc = __sk_del_node_init(sk); 328 329 if (rc) { 330 /* paranoid for a while -acme */ 331 WARN_ON(atomic_read(&sk->sk_refcnt) == 1); 332 __sock_put(sk); 333 } 334 return rc; 335 } 336 337 static __inline__ void __sk_add_node(struct sock *sk, struct hlist_head *list) 338 { 339 hlist_add_head(&sk->sk_node, list); 340 } 341 342 static __inline__ void sk_add_node(struct sock *sk, struct hlist_head *list) 343 { 344 sock_hold(sk); 345 __sk_add_node(sk, list); 346 } 347 348 static __inline__ void __sk_del_bind_node(struct sock *sk) 349 { 350 __hlist_del(&sk->sk_bind_node); 351 } 352 353 static __inline__ void sk_add_bind_node(struct sock *sk, 354 struct hlist_head *list) 355 { 356 hlist_add_head(&sk->sk_bind_node, list); 357 } 358 359 #define sk_for_each(__sk, node, list) \ 360 hlist_for_each_entry(__sk, node, list, sk_node) 361 #define sk_for_each_from(__sk, node) \ 362 if (__sk && ({ node = &(__sk)->sk_node; 1; })) \ 363 hlist_for_each_entry_from(__sk, node, sk_node) 364 #define sk_for_each_continue(__sk, node) \ 365 if (__sk && ({ node = &(__sk)->sk_node; 1; })) \ 366 hlist_for_each_entry_continue(__sk, node, sk_node) 367 #define sk_for_each_safe(__sk, node, tmp, list) \ 368 hlist_for_each_entry_safe(__sk, node, tmp, list, sk_node) 369 #define sk_for_each_bound(__sk, node, list) \ 370 hlist_for_each_entry(__sk, node, list, sk_bind_node) 371 372 /* Sock flags */ 373 enum sock_flags { 374 SOCK_DEAD, 375 SOCK_DONE, 376 SOCK_URGINLINE, 377 SOCK_KEEPOPEN, 378 SOCK_LINGER, 379 SOCK_DESTROY, 380 SOCK_BROADCAST, 381 SOCK_TIMESTAMP, 382 SOCK_ZAPPED, 383 SOCK_USE_WRITE_QUEUE, /* whether to call sk->sk_write_space in sock_wfree */ 384 SOCK_DBG, /* %SO_DEBUG setting */ 385 SOCK_RCVTSTAMP, /* %SO_TIMESTAMP setting */ 386 SOCK_NO_LARGESEND, /* whether to sent large segments or not */ 387 SOCK_LOCALROUTE, /* route locally only, %SO_DONTROUTE setting */ 388 SOCK_QUEUE_SHRUNK, /* write queue has been shrunk recently */ 389 }; 390 391 static inline void sock_copy_flags(struct sock *nsk, struct sock *osk) 392 { 393 nsk->sk_flags = osk->sk_flags; 394 } 395 396 static inline void sock_set_flag(struct sock *sk, enum sock_flags flag) 397 { 398 __set_bit(flag, &sk->sk_flags); 399 } 400 401 static inline void sock_reset_flag(struct sock *sk, enum sock_flags flag) 402 { 403 __clear_bit(flag, &sk->sk_flags); 404 } 405 406 static inline int sock_flag(struct sock *sk, enum sock_flags flag) 407 { 408 return test_bit(flag, &sk->sk_flags); 409 } 410 411 static inline void sk_acceptq_removed(struct sock *sk) 412 { 413 sk->sk_ack_backlog--; 414 } 415 416 static inline void sk_acceptq_added(struct sock *sk) 417 { 418 sk->sk_ack_backlog++; 419 } 420 421 static inline int sk_acceptq_is_full(struct sock *sk) 422 { 423 return sk->sk_ack_backlog > sk->sk_max_ack_backlog; 424 } 425 426 /* 427 * Compute minimal free write space needed to queue new packets. 428 */ 429 static inline int sk_stream_min_wspace(struct sock *sk) 430 { 431 return sk->sk_wmem_queued / 2; 432 } 433 434 static inline int sk_stream_wspace(struct sock *sk) 435 { 436 return sk->sk_sndbuf - sk->sk_wmem_queued; 437 } 438 439 extern void sk_stream_write_space(struct sock *sk); 440 441 static inline int sk_stream_memory_free(struct sock *sk) 442 { 443 return sk->sk_wmem_queued < sk->sk_sndbuf; 444 } 445 446 extern void sk_stream_rfree(struct sk_buff *skb); 447 448 static inline void sk_stream_set_owner_r(struct sk_buff *skb, struct sock *sk) 449 { 450 skb->sk = sk; 451 skb->destructor = sk_stream_rfree; 452 atomic_add(skb->truesize, &sk->sk_rmem_alloc); 453 sk->sk_forward_alloc -= skb->truesize; 454 } 455 456 static inline void sk_stream_free_skb(struct sock *sk, struct sk_buff *skb) 457 { 458 skb_truesize_check(skb); 459 sock_set_flag(sk, SOCK_QUEUE_SHRUNK); 460 sk->sk_wmem_queued -= skb->truesize; 461 sk->sk_forward_alloc += skb->truesize; 462 __kfree_skb(skb); 463 } 464 465 /* The per-socket spinlock must be held here. */ 466 static inline void sk_add_backlog(struct sock *sk, struct sk_buff *skb) 467 { 468 if (!sk->sk_backlog.tail) { 469 sk->sk_backlog.head = sk->sk_backlog.tail = skb; 470 } else { 471 sk->sk_backlog.tail->next = skb; 472 sk->sk_backlog.tail = skb; 473 } 474 skb->next = NULL; 475 } 476 477 #define sk_wait_event(__sk, __timeo, __condition) \ 478 ({ int rc; \ 479 release_sock(__sk); \ 480 rc = __condition; \ 481 if (!rc) { \ 482 *(__timeo) = schedule_timeout(*(__timeo)); \ 483 } \ 484 lock_sock(__sk); \ 485 rc = __condition; \ 486 rc; \ 487 }) 488 489 extern int sk_stream_wait_connect(struct sock *sk, long *timeo_p); 490 extern int sk_stream_wait_memory(struct sock *sk, long *timeo_p); 491 extern void sk_stream_wait_close(struct sock *sk, long timeo_p); 492 extern int sk_stream_error(struct sock *sk, int flags, int err); 493 extern void sk_stream_kill_queues(struct sock *sk); 494 495 extern int sk_wait_data(struct sock *sk, long *timeo); 496 497 struct request_sock_ops; 498 struct timewait_sock_ops; 499 500 /* Networking protocol blocks we attach to sockets. 501 * socket layer -> transport layer interface 502 * transport -> network interface is defined by struct inet_proto 503 */ 504 struct proto { 505 void (*close)(struct sock *sk, 506 long timeout); 507 int (*connect)(struct sock *sk, 508 struct sockaddr *uaddr, 509 int addr_len); 510 int (*disconnect)(struct sock *sk, int flags); 511 512 struct sock * (*accept) (struct sock *sk, int flags, int *err); 513 514 int (*ioctl)(struct sock *sk, int cmd, 515 unsigned long arg); 516 int (*init)(struct sock *sk); 517 int (*destroy)(struct sock *sk); 518 void (*shutdown)(struct sock *sk, int how); 519 int (*setsockopt)(struct sock *sk, int level, 520 int optname, char __user *optval, 521 int optlen); 522 int (*getsockopt)(struct sock *sk, int level, 523 int optname, char __user *optval, 524 int __user *option); 525 int (*compat_setsockopt)(struct sock *sk, 526 int level, 527 int optname, char __user *optval, 528 int optlen); 529 int (*compat_getsockopt)(struct sock *sk, 530 int level, 531 int optname, char __user *optval, 532 int __user *option); 533 int (*sendmsg)(struct kiocb *iocb, struct sock *sk, 534 struct msghdr *msg, size_t len); 535 int (*recvmsg)(struct kiocb *iocb, struct sock *sk, 536 struct msghdr *msg, 537 size_t len, int noblock, int flags, 538 int *addr_len); 539 int (*sendpage)(struct sock *sk, struct page *page, 540 int offset, size_t size, int flags); 541 int (*bind)(struct sock *sk, 542 struct sockaddr *uaddr, int addr_len); 543 544 int (*backlog_rcv) (struct sock *sk, 545 struct sk_buff *skb); 546 547 /* Keeping track of sk's, looking them up, and port selection methods. */ 548 void (*hash)(struct sock *sk); 549 void (*unhash)(struct sock *sk); 550 int (*get_port)(struct sock *sk, unsigned short snum); 551 552 /* Memory pressure */ 553 void (*enter_memory_pressure)(void); 554 atomic_t *memory_allocated; /* Current allocated memory. */ 555 atomic_t *sockets_allocated; /* Current number of sockets. */ 556 /* 557 * Pressure flag: try to collapse. 558 * Technical note: it is used by multiple contexts non atomically. 559 * All the sk_stream_mem_schedule() is of this nature: accounting 560 * is strict, actions are advisory and have some latency. 561 */ 562 int *memory_pressure; 563 int *sysctl_mem; 564 int *sysctl_wmem; 565 int *sysctl_rmem; 566 int max_header; 567 568 kmem_cache_t *slab; 569 unsigned int obj_size; 570 571 atomic_t *orphan_count; 572 573 struct request_sock_ops *rsk_prot; 574 struct timewait_sock_ops *twsk_prot; 575 576 struct module *owner; 577 578 char name[32]; 579 580 struct list_head node; 581 #ifdef SOCK_REFCNT_DEBUG 582 atomic_t socks; 583 #endif 584 struct { 585 int inuse; 586 u8 __pad[SMP_CACHE_BYTES - sizeof(int)]; 587 } stats[NR_CPUS]; 588 }; 589 590 extern int proto_register(struct proto *prot, int alloc_slab); 591 extern void proto_unregister(struct proto *prot); 592 593 #ifdef SOCK_REFCNT_DEBUG 594 static inline void sk_refcnt_debug_inc(struct sock *sk) 595 { 596 atomic_inc(&sk->sk_prot->socks); 597 } 598 599 static inline void sk_refcnt_debug_dec(struct sock *sk) 600 { 601 atomic_dec(&sk->sk_prot->socks); 602 printk(KERN_DEBUG "%s socket %p released, %d are still alive\n", 603 sk->sk_prot->name, sk, atomic_read(&sk->sk_prot->socks)); 604 } 605 606 static inline void sk_refcnt_debug_release(const struct sock *sk) 607 { 608 if (atomic_read(&sk->sk_refcnt) != 1) 609 printk(KERN_DEBUG "Destruction of the %s socket %p delayed, refcnt=%d\n", 610 sk->sk_prot->name, sk, atomic_read(&sk->sk_refcnt)); 611 } 612 #else /* SOCK_REFCNT_DEBUG */ 613 #define sk_refcnt_debug_inc(sk) do { } while (0) 614 #define sk_refcnt_debug_dec(sk) do { } while (0) 615 #define sk_refcnt_debug_release(sk) do { } while (0) 616 #endif /* SOCK_REFCNT_DEBUG */ 617 618 /* Called with local bh disabled */ 619 static __inline__ void sock_prot_inc_use(struct proto *prot) 620 { 621 prot->stats[smp_processor_id()].inuse++; 622 } 623 624 static __inline__ void sock_prot_dec_use(struct proto *prot) 625 { 626 prot->stats[smp_processor_id()].inuse--; 627 } 628 629 /* With per-bucket locks this operation is not-atomic, so that 630 * this version is not worse. 631 */ 632 static inline void __sk_prot_rehash(struct sock *sk) 633 { 634 sk->sk_prot->unhash(sk); 635 sk->sk_prot->hash(sk); 636 } 637 638 /* About 10 seconds */ 639 #define SOCK_DESTROY_TIME (10*HZ) 640 641 /* Sockets 0-1023 can't be bound to unless you are superuser */ 642 #define PROT_SOCK 1024 643 644 #define SHUTDOWN_MASK 3 645 #define RCV_SHUTDOWN 1 646 #define SEND_SHUTDOWN 2 647 648 #define SOCK_SNDBUF_LOCK 1 649 #define SOCK_RCVBUF_LOCK 2 650 #define SOCK_BINDADDR_LOCK 4 651 #define SOCK_BINDPORT_LOCK 8 652 653 /* sock_iocb: used to kick off async processing of socket ios */ 654 struct sock_iocb { 655 struct list_head list; 656 657 int flags; 658 int size; 659 struct socket *sock; 660 struct sock *sk; 661 struct scm_cookie *scm; 662 struct msghdr *msg, async_msg; 663 struct iovec async_iov; 664 struct kiocb *kiocb; 665 }; 666 667 static inline struct sock_iocb *kiocb_to_siocb(struct kiocb *iocb) 668 { 669 return (struct sock_iocb *)iocb->private; 670 } 671 672 static inline struct kiocb *siocb_to_kiocb(struct sock_iocb *si) 673 { 674 return si->kiocb; 675 } 676 677 struct socket_alloc { 678 struct socket socket; 679 struct inode vfs_inode; 680 }; 681 682 static inline struct socket *SOCKET_I(struct inode *inode) 683 { 684 return &container_of(inode, struct socket_alloc, vfs_inode)->socket; 685 } 686 687 static inline struct inode *SOCK_INODE(struct socket *socket) 688 { 689 return &container_of(socket, struct socket_alloc, socket)->vfs_inode; 690 } 691 692 extern void __sk_stream_mem_reclaim(struct sock *sk); 693 extern int sk_stream_mem_schedule(struct sock *sk, int size, int kind); 694 695 #define SK_STREAM_MEM_QUANTUM ((int)PAGE_SIZE) 696 697 static inline int sk_stream_pages(int amt) 698 { 699 return (amt + SK_STREAM_MEM_QUANTUM - 1) / SK_STREAM_MEM_QUANTUM; 700 } 701 702 static inline void sk_stream_mem_reclaim(struct sock *sk) 703 { 704 if (sk->sk_forward_alloc >= SK_STREAM_MEM_QUANTUM) 705 __sk_stream_mem_reclaim(sk); 706 } 707 708 static inline void sk_stream_writequeue_purge(struct sock *sk) 709 { 710 struct sk_buff *skb; 711 712 while ((skb = __skb_dequeue(&sk->sk_write_queue)) != NULL) 713 sk_stream_free_skb(sk, skb); 714 sk_stream_mem_reclaim(sk); 715 } 716 717 static inline int sk_stream_rmem_schedule(struct sock *sk, struct sk_buff *skb) 718 { 719 return (int)skb->truesize <= sk->sk_forward_alloc || 720 sk_stream_mem_schedule(sk, skb->truesize, 1); 721 } 722 723 static inline int sk_stream_wmem_schedule(struct sock *sk, int size) 724 { 725 return size <= sk->sk_forward_alloc || 726 sk_stream_mem_schedule(sk, size, 0); 727 } 728 729 /* Used by processes to "lock" a socket state, so that 730 * interrupts and bottom half handlers won't change it 731 * from under us. It essentially blocks any incoming 732 * packets, so that we won't get any new data or any 733 * packets that change the state of the socket. 734 * 735 * While locked, BH processing will add new packets to 736 * the backlog queue. This queue is processed by the 737 * owner of the socket lock right before it is released. 738 * 739 * Since ~2.3.5 it is also exclusive sleep lock serializing 740 * accesses from user process context. 741 */ 742 #define sock_owned_by_user(sk) ((sk)->sk_lock.owner) 743 744 extern void FASTCALL(lock_sock(struct sock *sk)); 745 extern void FASTCALL(release_sock(struct sock *sk)); 746 747 /* BH context may only use the following locking interface. */ 748 #define bh_lock_sock(__sk) spin_lock(&((__sk)->sk_lock.slock)) 749 #define bh_unlock_sock(__sk) spin_unlock(&((__sk)->sk_lock.slock)) 750 751 extern struct sock *sk_alloc(int family, 752 gfp_t priority, 753 struct proto *prot, int zero_it); 754 extern void sk_free(struct sock *sk); 755 extern struct sock *sk_clone(const struct sock *sk, 756 const gfp_t priority); 757 758 extern struct sk_buff *sock_wmalloc(struct sock *sk, 759 unsigned long size, int force, 760 gfp_t priority); 761 extern struct sk_buff *sock_rmalloc(struct sock *sk, 762 unsigned long size, int force, 763 gfp_t priority); 764 extern void sock_wfree(struct sk_buff *skb); 765 extern void sock_rfree(struct sk_buff *skb); 766 767 extern int sock_setsockopt(struct socket *sock, int level, 768 int op, char __user *optval, 769 int optlen); 770 771 extern int sock_getsockopt(struct socket *sock, int level, 772 int op, char __user *optval, 773 int __user *optlen); 774 extern struct sk_buff *sock_alloc_send_skb(struct sock *sk, 775 unsigned long size, 776 int noblock, 777 int *errcode); 778 extern void *sock_kmalloc(struct sock *sk, int size, 779 gfp_t priority); 780 extern void sock_kfree_s(struct sock *sk, void *mem, int size); 781 extern void sk_send_sigurg(struct sock *sk); 782 783 /* 784 * Functions to fill in entries in struct proto_ops when a protocol 785 * does not implement a particular function. 786 */ 787 extern int sock_no_bind(struct socket *, 788 struct sockaddr *, int); 789 extern int sock_no_connect(struct socket *, 790 struct sockaddr *, int, int); 791 extern int sock_no_socketpair(struct socket *, 792 struct socket *); 793 extern int sock_no_accept(struct socket *, 794 struct socket *, int); 795 extern int sock_no_getname(struct socket *, 796 struct sockaddr *, int *, int); 797 extern unsigned int sock_no_poll(struct file *, struct socket *, 798 struct poll_table_struct *); 799 extern int sock_no_ioctl(struct socket *, unsigned int, 800 unsigned long); 801 extern int sock_no_listen(struct socket *, int); 802 extern int sock_no_shutdown(struct socket *, int); 803 extern int sock_no_getsockopt(struct socket *, int , int, 804 char __user *, int __user *); 805 extern int sock_no_setsockopt(struct socket *, int, int, 806 char __user *, int); 807 extern int sock_no_sendmsg(struct kiocb *, struct socket *, 808 struct msghdr *, size_t); 809 extern int sock_no_recvmsg(struct kiocb *, struct socket *, 810 struct msghdr *, size_t, int); 811 extern int sock_no_mmap(struct file *file, 812 struct socket *sock, 813 struct vm_area_struct *vma); 814 extern ssize_t sock_no_sendpage(struct socket *sock, 815 struct page *page, 816 int offset, size_t size, 817 int flags); 818 819 /* 820 * Functions to fill in entries in struct proto_ops when a protocol 821 * uses the inet style. 822 */ 823 extern int sock_common_getsockopt(struct socket *sock, int level, int optname, 824 char __user *optval, int __user *optlen); 825 extern int sock_common_recvmsg(struct kiocb *iocb, struct socket *sock, 826 struct msghdr *msg, size_t size, int flags); 827 extern int sock_common_setsockopt(struct socket *sock, int level, int optname, 828 char __user *optval, int optlen); 829 extern int compat_sock_common_getsockopt(struct socket *sock, int level, 830 int optname, char __user *optval, int __user *optlen); 831 extern int compat_sock_common_setsockopt(struct socket *sock, int level, 832 int optname, char __user *optval, int optlen); 833 834 extern void sk_common_release(struct sock *sk); 835 836 /* 837 * Default socket callbacks and setup code 838 */ 839 840 /* Initialise core socket variables */ 841 extern void sock_init_data(struct socket *sock, struct sock *sk); 842 843 /** 844 * sk_filter - run a packet through a socket filter 845 * @sk: sock associated with &sk_buff 846 * @skb: buffer to filter 847 * @needlock: set to 1 if the sock is not locked by caller. 848 * 849 * Run the filter code and then cut skb->data to correct size returned by 850 * sk_run_filter. If pkt_len is 0 we toss packet. If skb->len is smaller 851 * than pkt_len we keep whole skb->data. This is the socket level 852 * wrapper to sk_run_filter. It returns 0 if the packet should 853 * be accepted or -EPERM if the packet should be tossed. 854 * 855 */ 856 857 static inline int sk_filter(struct sock *sk, struct sk_buff *skb, int needlock) 858 { 859 int err; 860 861 err = security_sock_rcv_skb(sk, skb); 862 if (err) 863 return err; 864 865 if (sk->sk_filter) { 866 struct sk_filter *filter; 867 868 if (needlock) 869 bh_lock_sock(sk); 870 871 filter = sk->sk_filter; 872 if (filter) { 873 unsigned int pkt_len = sk_run_filter(skb, filter->insns, 874 filter->len); 875 err = pkt_len ? pskb_trim(skb, pkt_len) : -EPERM; 876 } 877 878 if (needlock) 879 bh_unlock_sock(sk); 880 } 881 return err; 882 } 883 884 /** 885 * sk_filter_release: Release a socket filter 886 * @sk: socket 887 * @fp: filter to remove 888 * 889 * Remove a filter from a socket and release its resources. 890 */ 891 892 static inline void sk_filter_release(struct sock *sk, struct sk_filter *fp) 893 { 894 unsigned int size = sk_filter_len(fp); 895 896 atomic_sub(size, &sk->sk_omem_alloc); 897 898 if (atomic_dec_and_test(&fp->refcnt)) 899 kfree(fp); 900 } 901 902 static inline void sk_filter_charge(struct sock *sk, struct sk_filter *fp) 903 { 904 atomic_inc(&fp->refcnt); 905 atomic_add(sk_filter_len(fp), &sk->sk_omem_alloc); 906 } 907 908 /* 909 * Socket reference counting postulates. 910 * 911 * * Each user of socket SHOULD hold a reference count. 912 * * Each access point to socket (an hash table bucket, reference from a list, 913 * running timer, skb in flight MUST hold a reference count. 914 * * When reference count hits 0, it means it will never increase back. 915 * * When reference count hits 0, it means that no references from 916 * outside exist to this socket and current process on current CPU 917 * is last user and may/should destroy this socket. 918 * * sk_free is called from any context: process, BH, IRQ. When 919 * it is called, socket has no references from outside -> sk_free 920 * may release descendant resources allocated by the socket, but 921 * to the time when it is called, socket is NOT referenced by any 922 * hash tables, lists etc. 923 * * Packets, delivered from outside (from network or from another process) 924 * and enqueued on receive/error queues SHOULD NOT grab reference count, 925 * when they sit in queue. Otherwise, packets will leak to hole, when 926 * socket is looked up by one cpu and unhasing is made by another CPU. 927 * It is true for udp/raw, netlink (leak to receive and error queues), tcp 928 * (leak to backlog). Packet socket does all the processing inside 929 * BR_NETPROTO_LOCK, so that it has not this race condition. UNIX sockets 930 * use separate SMP lock, so that they are prone too. 931 */ 932 933 /* Ungrab socket and destroy it, if it was the last reference. */ 934 static inline void sock_put(struct sock *sk) 935 { 936 if (atomic_dec_and_test(&sk->sk_refcnt)) 937 sk_free(sk); 938 } 939 940 extern int sk_receive_skb(struct sock *sk, struct sk_buff *skb); 941 942 /* Detach socket from process context. 943 * Announce socket dead, detach it from wait queue and inode. 944 * Note that parent inode held reference count on this struct sock, 945 * we do not release it in this function, because protocol 946 * probably wants some additional cleanups or even continuing 947 * to work with this socket (TCP). 948 */ 949 static inline void sock_orphan(struct sock *sk) 950 { 951 write_lock_bh(&sk->sk_callback_lock); 952 sock_set_flag(sk, SOCK_DEAD); 953 sk->sk_socket = NULL; 954 sk->sk_sleep = NULL; 955 write_unlock_bh(&sk->sk_callback_lock); 956 } 957 958 static inline void sock_graft(struct sock *sk, struct socket *parent) 959 { 960 write_lock_bh(&sk->sk_callback_lock); 961 sk->sk_sleep = &parent->wait; 962 parent->sk = sk; 963 sk->sk_socket = parent; 964 write_unlock_bh(&sk->sk_callback_lock); 965 } 966 967 extern int sock_i_uid(struct sock *sk); 968 extern unsigned long sock_i_ino(struct sock *sk); 969 970 static inline struct dst_entry * 971 __sk_dst_get(struct sock *sk) 972 { 973 return sk->sk_dst_cache; 974 } 975 976 static inline struct dst_entry * 977 sk_dst_get(struct sock *sk) 978 { 979 struct dst_entry *dst; 980 981 read_lock(&sk->sk_dst_lock); 982 dst = sk->sk_dst_cache; 983 if (dst) 984 dst_hold(dst); 985 read_unlock(&sk->sk_dst_lock); 986 return dst; 987 } 988 989 static inline void 990 __sk_dst_set(struct sock *sk, struct dst_entry *dst) 991 { 992 struct dst_entry *old_dst; 993 994 old_dst = sk->sk_dst_cache; 995 sk->sk_dst_cache = dst; 996 dst_release(old_dst); 997 } 998 999 static inline void 1000 sk_dst_set(struct sock *sk, struct dst_entry *dst) 1001 { 1002 write_lock(&sk->sk_dst_lock); 1003 __sk_dst_set(sk, dst); 1004 write_unlock(&sk->sk_dst_lock); 1005 } 1006 1007 static inline void 1008 __sk_dst_reset(struct sock *sk) 1009 { 1010 struct dst_entry *old_dst; 1011 1012 old_dst = sk->sk_dst_cache; 1013 sk->sk_dst_cache = NULL; 1014 dst_release(old_dst); 1015 } 1016 1017 static inline void 1018 sk_dst_reset(struct sock *sk) 1019 { 1020 write_lock(&sk->sk_dst_lock); 1021 __sk_dst_reset(sk); 1022 write_unlock(&sk->sk_dst_lock); 1023 } 1024 1025 extern struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie); 1026 1027 extern struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie); 1028 1029 static inline void sk_setup_caps(struct sock *sk, struct dst_entry *dst) 1030 { 1031 __sk_dst_set(sk, dst); 1032 sk->sk_route_caps = dst->dev->features; 1033 if (sk->sk_route_caps & NETIF_F_TSO) { 1034 if (sock_flag(sk, SOCK_NO_LARGESEND) || dst->header_len) 1035 sk->sk_route_caps &= ~NETIF_F_TSO; 1036 } 1037 } 1038 1039 static inline void sk_charge_skb(struct sock *sk, struct sk_buff *skb) 1040 { 1041 sk->sk_wmem_queued += skb->truesize; 1042 sk->sk_forward_alloc -= skb->truesize; 1043 } 1044 1045 static inline int skb_copy_to_page(struct sock *sk, char __user *from, 1046 struct sk_buff *skb, struct page *page, 1047 int off, int copy) 1048 { 1049 if (skb->ip_summed == CHECKSUM_NONE) { 1050 int err = 0; 1051 unsigned int csum = csum_and_copy_from_user(from, 1052 page_address(page) + off, 1053 copy, 0, &err); 1054 if (err) 1055 return err; 1056 skb->csum = csum_block_add(skb->csum, csum, skb->len); 1057 } else if (copy_from_user(page_address(page) + off, from, copy)) 1058 return -EFAULT; 1059 1060 skb->len += copy; 1061 skb->data_len += copy; 1062 skb->truesize += copy; 1063 sk->sk_wmem_queued += copy; 1064 sk->sk_forward_alloc -= copy; 1065 return 0; 1066 } 1067 1068 /* 1069 * Queue a received datagram if it will fit. Stream and sequenced 1070 * protocols can't normally use this as they need to fit buffers in 1071 * and play with them. 1072 * 1073 * Inlined as it's very short and called for pretty much every 1074 * packet ever received. 1075 */ 1076 1077 static inline void skb_set_owner_w(struct sk_buff *skb, struct sock *sk) 1078 { 1079 sock_hold(sk); 1080 skb->sk = sk; 1081 skb->destructor = sock_wfree; 1082 atomic_add(skb->truesize, &sk->sk_wmem_alloc); 1083 } 1084 1085 static inline void skb_set_owner_r(struct sk_buff *skb, struct sock *sk) 1086 { 1087 skb->sk = sk; 1088 skb->destructor = sock_rfree; 1089 atomic_add(skb->truesize, &sk->sk_rmem_alloc); 1090 } 1091 1092 extern void sk_reset_timer(struct sock *sk, struct timer_list* timer, 1093 unsigned long expires); 1094 1095 extern void sk_stop_timer(struct sock *sk, struct timer_list* timer); 1096 1097 extern int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb); 1098 1099 static inline int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb) 1100 { 1101 /* Cast skb->rcvbuf to unsigned... It's pointless, but reduces 1102 number of warnings when compiling with -W --ANK 1103 */ 1104 if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >= 1105 (unsigned)sk->sk_rcvbuf) 1106 return -ENOMEM; 1107 skb_set_owner_r(skb, sk); 1108 skb_queue_tail(&sk->sk_error_queue, skb); 1109 if (!sock_flag(sk, SOCK_DEAD)) 1110 sk->sk_data_ready(sk, skb->len); 1111 return 0; 1112 } 1113 1114 /* 1115 * Recover an error report and clear atomically 1116 */ 1117 1118 static inline int sock_error(struct sock *sk) 1119 { 1120 int err; 1121 if (likely(!sk->sk_err)) 1122 return 0; 1123 err = xchg(&sk->sk_err, 0); 1124 return -err; 1125 } 1126 1127 static inline unsigned long sock_wspace(struct sock *sk) 1128 { 1129 int amt = 0; 1130 1131 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) { 1132 amt = sk->sk_sndbuf - atomic_read(&sk->sk_wmem_alloc); 1133 if (amt < 0) 1134 amt = 0; 1135 } 1136 return amt; 1137 } 1138 1139 static inline void sk_wake_async(struct sock *sk, int how, int band) 1140 { 1141 if (sk->sk_socket && sk->sk_socket->fasync_list) 1142 sock_wake_async(sk->sk_socket, how, band); 1143 } 1144 1145 #define SOCK_MIN_SNDBUF 2048 1146 #define SOCK_MIN_RCVBUF 256 1147 1148 static inline void sk_stream_moderate_sndbuf(struct sock *sk) 1149 { 1150 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK)) { 1151 sk->sk_sndbuf = min(sk->sk_sndbuf, sk->sk_wmem_queued / 2); 1152 sk->sk_sndbuf = max(sk->sk_sndbuf, SOCK_MIN_SNDBUF); 1153 } 1154 } 1155 1156 static inline struct sk_buff *sk_stream_alloc_pskb(struct sock *sk, 1157 int size, int mem, 1158 gfp_t gfp) 1159 { 1160 struct sk_buff *skb; 1161 int hdr_len; 1162 1163 hdr_len = SKB_DATA_ALIGN(sk->sk_prot->max_header); 1164 skb = alloc_skb_fclone(size + hdr_len, gfp); 1165 if (skb) { 1166 skb->truesize += mem; 1167 if (sk_stream_wmem_schedule(sk, skb->truesize)) { 1168 skb_reserve(skb, hdr_len); 1169 return skb; 1170 } 1171 __kfree_skb(skb); 1172 } else { 1173 sk->sk_prot->enter_memory_pressure(); 1174 sk_stream_moderate_sndbuf(sk); 1175 } 1176 return NULL; 1177 } 1178 1179 static inline struct sk_buff *sk_stream_alloc_skb(struct sock *sk, 1180 int size, 1181 gfp_t gfp) 1182 { 1183 return sk_stream_alloc_pskb(sk, size, 0, gfp); 1184 } 1185 1186 static inline struct page *sk_stream_alloc_page(struct sock *sk) 1187 { 1188 struct page *page = NULL; 1189 1190 page = alloc_pages(sk->sk_allocation, 0); 1191 if (!page) { 1192 sk->sk_prot->enter_memory_pressure(); 1193 sk_stream_moderate_sndbuf(sk); 1194 } 1195 return page; 1196 } 1197 1198 #define sk_stream_for_retrans_queue(skb, sk) \ 1199 for (skb = (sk)->sk_write_queue.next; \ 1200 (skb != (sk)->sk_send_head) && \ 1201 (skb != (struct sk_buff *)&(sk)->sk_write_queue); \ 1202 skb = skb->next) 1203 1204 /*from STCP for fast SACK Process*/ 1205 #define sk_stream_for_retrans_queue_from(skb, sk) \ 1206 for (; (skb != (sk)->sk_send_head) && \ 1207 (skb != (struct sk_buff *)&(sk)->sk_write_queue); \ 1208 skb = skb->next) 1209 1210 /* 1211 * Default write policy as shown to user space via poll/select/SIGIO 1212 */ 1213 static inline int sock_writeable(const struct sock *sk) 1214 { 1215 return atomic_read(&sk->sk_wmem_alloc) < (sk->sk_sndbuf / 2); 1216 } 1217 1218 static inline gfp_t gfp_any(void) 1219 { 1220 return in_softirq() ? GFP_ATOMIC : GFP_KERNEL; 1221 } 1222 1223 static inline long sock_rcvtimeo(const struct sock *sk, int noblock) 1224 { 1225 return noblock ? 0 : sk->sk_rcvtimeo; 1226 } 1227 1228 static inline long sock_sndtimeo(const struct sock *sk, int noblock) 1229 { 1230 return noblock ? 0 : sk->sk_sndtimeo; 1231 } 1232 1233 static inline int sock_rcvlowat(const struct sock *sk, int waitall, int len) 1234 { 1235 return (waitall ? len : min_t(int, sk->sk_rcvlowat, len)) ? : 1; 1236 } 1237 1238 /* Alas, with timeout socket operations are not restartable. 1239 * Compare this to poll(). 1240 */ 1241 static inline int sock_intr_errno(long timeo) 1242 { 1243 return timeo == MAX_SCHEDULE_TIMEOUT ? -ERESTARTSYS : -EINTR; 1244 } 1245 1246 static __inline__ void 1247 sock_recv_timestamp(struct msghdr *msg, struct sock *sk, struct sk_buff *skb) 1248 { 1249 struct timeval stamp; 1250 1251 skb_get_timestamp(skb, &stamp); 1252 if (sock_flag(sk, SOCK_RCVTSTAMP)) { 1253 /* Race occurred between timestamp enabling and packet 1254 receiving. Fill in the current time for now. */ 1255 if (stamp.tv_sec == 0) 1256 do_gettimeofday(&stamp); 1257 skb_set_timestamp(skb, &stamp); 1258 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP, sizeof(struct timeval), 1259 &stamp); 1260 } else 1261 sk->sk_stamp = stamp; 1262 } 1263 1264 /** 1265 * sk_eat_skb - Release a skb if it is no longer needed 1266 * @sk: socket to eat this skb from 1267 * @skb: socket buffer to eat 1268 * 1269 * This routine must be called with interrupts disabled or with the socket 1270 * locked so that the sk_buff queue operation is ok. 1271 */ 1272 #ifdef CONFIG_NET_DMA 1273 static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb, int copied_early) 1274 { 1275 __skb_unlink(skb, &sk->sk_receive_queue); 1276 if (!copied_early) 1277 __kfree_skb(skb); 1278 else 1279 __skb_queue_tail(&sk->sk_async_wait_queue, skb); 1280 } 1281 #else 1282 static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb, int copied_early) 1283 { 1284 __skb_unlink(skb, &sk->sk_receive_queue); 1285 __kfree_skb(skb); 1286 } 1287 #endif 1288 1289 extern void sock_enable_timestamp(struct sock *sk); 1290 extern int sock_get_timestamp(struct sock *, struct timeval __user *); 1291 1292 /* 1293 * Enable debug/info messages 1294 */ 1295 1296 #ifdef CONFIG_NETDEBUG 1297 #define NETDEBUG(fmt, args...) printk(fmt,##args) 1298 #define LIMIT_NETDEBUG(fmt, args...) do { if (net_ratelimit()) printk(fmt,##args); } while(0) 1299 #else 1300 #define NETDEBUG(fmt, args...) do { } while (0) 1301 #define LIMIT_NETDEBUG(fmt, args...) do { } while(0) 1302 #endif 1303 1304 /* 1305 * Macros for sleeping on a socket. Use them like this: 1306 * 1307 * SOCK_SLEEP_PRE(sk) 1308 * if (condition) 1309 * schedule(); 1310 * SOCK_SLEEP_POST(sk) 1311 * 1312 * N.B. These are now obsolete and were, afaik, only ever used in DECnet 1313 * and when the last use of them in DECnet has gone, I'm intending to 1314 * remove them. 1315 */ 1316 1317 #define SOCK_SLEEP_PRE(sk) { struct task_struct *tsk = current; \ 1318 DECLARE_WAITQUEUE(wait, tsk); \ 1319 tsk->state = TASK_INTERRUPTIBLE; \ 1320 add_wait_queue((sk)->sk_sleep, &wait); \ 1321 release_sock(sk); 1322 1323 #define SOCK_SLEEP_POST(sk) tsk->state = TASK_RUNNING; \ 1324 remove_wait_queue((sk)->sk_sleep, &wait); \ 1325 lock_sock(sk); \ 1326 } 1327 1328 static inline void sock_valbool_flag(struct sock *sk, int bit, int valbool) 1329 { 1330 if (valbool) 1331 sock_set_flag(sk, bit); 1332 else 1333 sock_reset_flag(sk, bit); 1334 } 1335 1336 extern __u32 sysctl_wmem_max; 1337 extern __u32 sysctl_rmem_max; 1338 1339 #ifdef CONFIG_NET 1340 int siocdevprivate_ioctl(unsigned int fd, unsigned int cmd, unsigned long arg); 1341 #else 1342 static inline int siocdevprivate_ioctl(unsigned int fd, unsigned int cmd, unsigned long arg) 1343 { 1344 return -ENODEV; 1345 } 1346 #endif 1347 1348 extern void sk_init(void); 1349 1350 #ifdef CONFIG_SYSCTL 1351 extern struct ctl_table core_table[]; 1352 #endif 1353 1354 extern int sysctl_optmem_max; 1355 1356 extern __u32 sysctl_wmem_default; 1357 extern __u32 sysctl_rmem_default; 1358 1359 #endif /* _SOCK_H */ 1360