xref: /linux/include/net/sock.h (revision f3d9478b2ce468c3115b02ecae7e975990697f15)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Definitions for the AF_INET socket handler.
7  *
8  * Version:	@(#)sock.h	1.0.4	05/13/93
9  *
10  * Authors:	Ross Biro
11  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
13  *		Florian La Roche <flla@stud.uni-sb.de>
14  *
15  * Fixes:
16  *		Alan Cox	:	Volatiles in skbuff pointers. See
17  *					skbuff comments. May be overdone,
18  *					better to prove they can be removed
19  *					than the reverse.
20  *		Alan Cox	:	Added a zapped field for tcp to note
21  *					a socket is reset and must stay shut up
22  *		Alan Cox	:	New fields for options
23  *	Pauline Middelink	:	identd support
24  *		Alan Cox	:	Eliminate low level recv/recvfrom
25  *		David S. Miller	:	New socket lookup architecture.
26  *              Steve Whitehouse:       Default routines for sock_ops
27  *              Arnaldo C. Melo :	removed net_pinfo, tp_pinfo and made
28  *              			protinfo be just a void pointer, as the
29  *              			protocol specific parts were moved to
30  *              			respective headers and ipv4/v6, etc now
31  *              			use private slabcaches for its socks
32  *              Pedro Hortas	:	New flags field for socket options
33  *
34  *
35  *		This program is free software; you can redistribute it and/or
36  *		modify it under the terms of the GNU General Public License
37  *		as published by the Free Software Foundation; either version
38  *		2 of the License, or (at your option) any later version.
39  */
40 #ifndef _SOCK_H
41 #define _SOCK_H
42 
43 #include <linux/list.h>
44 #include <linux/timer.h>
45 #include <linux/cache.h>
46 #include <linux/module.h>
47 #include <linux/netdevice.h>
48 #include <linux/skbuff.h>	/* struct sk_buff */
49 #include <linux/security.h>
50 
51 #include <linux/filter.h>
52 
53 #include <asm/atomic.h>
54 #include <net/dst.h>
55 #include <net/checksum.h>
56 
57 /*
58  * This structure really needs to be cleaned up.
59  * Most of it is for TCP, and not used by any of
60  * the other protocols.
61  */
62 
63 /* Define this to get the SOCK_DBG debugging facility. */
64 #define SOCK_DEBUGGING
65 #ifdef SOCK_DEBUGGING
66 #define SOCK_DEBUG(sk, msg...) do { if ((sk) && sock_flag((sk), SOCK_DBG)) \
67 					printk(KERN_DEBUG msg); } while (0)
68 #else
69 #define SOCK_DEBUG(sk, msg...) do { } while (0)
70 #endif
71 
72 /* This is the per-socket lock.  The spinlock provides a synchronization
73  * between user contexts and software interrupt processing, whereas the
74  * mini-semaphore synchronizes multiple users amongst themselves.
75  */
76 struct sock_iocb;
77 typedef struct {
78 	spinlock_t		slock;
79 	struct sock_iocb	*owner;
80 	wait_queue_head_t	wq;
81 } socket_lock_t;
82 
83 #define sock_lock_init(__sk) \
84 do {	spin_lock_init(&((__sk)->sk_lock.slock)); \
85 	(__sk)->sk_lock.owner = NULL; \
86 	init_waitqueue_head(&((__sk)->sk_lock.wq)); \
87 } while(0)
88 
89 struct sock;
90 struct proto;
91 
92 /**
93  *	struct sock_common - minimal network layer representation of sockets
94  *	@skc_family: network address family
95  *	@skc_state: Connection state
96  *	@skc_reuse: %SO_REUSEADDR setting
97  *	@skc_bound_dev_if: bound device index if != 0
98  *	@skc_node: main hash linkage for various protocol lookup tables
99  *	@skc_bind_node: bind hash linkage for various protocol lookup tables
100  *	@skc_refcnt: reference count
101  *	@skc_hash: hash value used with various protocol lookup tables
102  *	@skc_prot: protocol handlers inside a network family
103  *
104  *	This is the minimal network layer representation of sockets, the header
105  *	for struct sock and struct inet_timewait_sock.
106  */
107 struct sock_common {
108 	unsigned short		skc_family;
109 	volatile unsigned char	skc_state;
110 	unsigned char		skc_reuse;
111 	int			skc_bound_dev_if;
112 	struct hlist_node	skc_node;
113 	struct hlist_node	skc_bind_node;
114 	atomic_t		skc_refcnt;
115 	unsigned int		skc_hash;
116 	struct proto		*skc_prot;
117 };
118 
119 /**
120   *	struct sock - network layer representation of sockets
121   *	@__sk_common: shared layout with inet_timewait_sock
122   *	@sk_shutdown: mask of %SEND_SHUTDOWN and/or %RCV_SHUTDOWN
123   *	@sk_userlocks: %SO_SNDBUF and %SO_RCVBUF settings
124   *	@sk_lock:	synchronizer
125   *	@sk_rcvbuf: size of receive buffer in bytes
126   *	@sk_sleep: sock wait queue
127   *	@sk_dst_cache: destination cache
128   *	@sk_dst_lock: destination cache lock
129   *	@sk_policy: flow policy
130   *	@sk_rmem_alloc: receive queue bytes committed
131   *	@sk_receive_queue: incoming packets
132   *	@sk_wmem_alloc: transmit queue bytes committed
133   *	@sk_write_queue: Packet sending queue
134   *	@sk_async_wait_queue: DMA copied packets
135   *	@sk_omem_alloc: "o" is "option" or "other"
136   *	@sk_wmem_queued: persistent queue size
137   *	@sk_forward_alloc: space allocated forward
138   *	@sk_allocation: allocation mode
139   *	@sk_sndbuf: size of send buffer in bytes
140   *	@sk_flags: %SO_LINGER (l_onoff), %SO_BROADCAST, %SO_KEEPALIVE, %SO_OOBINLINE settings
141   *	@sk_no_check: %SO_NO_CHECK setting, wether or not checkup packets
142   *	@sk_route_caps: route capabilities (e.g. %NETIF_F_TSO)
143   *	@sk_lingertime: %SO_LINGER l_linger setting
144   *	@sk_backlog: always used with the per-socket spinlock held
145   *	@sk_callback_lock: used with the callbacks in the end of this struct
146   *	@sk_error_queue: rarely used
147   *	@sk_prot_creator: sk_prot of original sock creator (see ipv6_setsockopt, IPV6_ADDRFORM for instance)
148   *	@sk_err: last error
149   *	@sk_err_soft: errors that don't cause failure but are the cause of a persistent failure not just 'timed out'
150   *	@sk_ack_backlog: current listen backlog
151   *	@sk_max_ack_backlog: listen backlog set in listen()
152   *	@sk_priority: %SO_PRIORITY setting
153   *	@sk_type: socket type (%SOCK_STREAM, etc)
154   *	@sk_protocol: which protocol this socket belongs in this network family
155   *	@sk_peercred: %SO_PEERCRED setting
156   *	@sk_rcvlowat: %SO_RCVLOWAT setting
157   *	@sk_rcvtimeo: %SO_RCVTIMEO setting
158   *	@sk_sndtimeo: %SO_SNDTIMEO setting
159   *	@sk_filter: socket filtering instructions
160   *	@sk_protinfo: private area, net family specific, when not using slab
161   *	@sk_timer: sock cleanup timer
162   *	@sk_stamp: time stamp of last packet received
163   *	@sk_socket: Identd and reporting IO signals
164   *	@sk_user_data: RPC layer private data
165   *	@sk_sndmsg_page: cached page for sendmsg
166   *	@sk_sndmsg_off: cached offset for sendmsg
167   *	@sk_send_head: front of stuff to transmit
168   *	@sk_security: used by security modules
169   *	@sk_write_pending: a write to stream socket waits to start
170   *	@sk_state_change: callback to indicate change in the state of the sock
171   *	@sk_data_ready: callback to indicate there is data to be processed
172   *	@sk_write_space: callback to indicate there is bf sending space available
173   *	@sk_error_report: callback to indicate errors (e.g. %MSG_ERRQUEUE)
174   *	@sk_backlog_rcv: callback to process the backlog
175   *	@sk_destruct: called at sock freeing time, i.e. when all refcnt == 0
176  */
177 struct sock {
178 	/*
179 	 * Now struct inet_timewait_sock also uses sock_common, so please just
180 	 * don't add nothing before this first member (__sk_common) --acme
181 	 */
182 	struct sock_common	__sk_common;
183 #define sk_family		__sk_common.skc_family
184 #define sk_state		__sk_common.skc_state
185 #define sk_reuse		__sk_common.skc_reuse
186 #define sk_bound_dev_if		__sk_common.skc_bound_dev_if
187 #define sk_node			__sk_common.skc_node
188 #define sk_bind_node		__sk_common.skc_bind_node
189 #define sk_refcnt		__sk_common.skc_refcnt
190 #define sk_hash			__sk_common.skc_hash
191 #define sk_prot			__sk_common.skc_prot
192 	unsigned char		sk_shutdown : 2,
193 				sk_no_check : 2,
194 				sk_userlocks : 4;
195 	unsigned char		sk_protocol;
196 	unsigned short		sk_type;
197 	int			sk_rcvbuf;
198 	socket_lock_t		sk_lock;
199 	wait_queue_head_t	*sk_sleep;
200 	struct dst_entry	*sk_dst_cache;
201 	struct xfrm_policy	*sk_policy[2];
202 	rwlock_t		sk_dst_lock;
203 	atomic_t		sk_rmem_alloc;
204 	atomic_t		sk_wmem_alloc;
205 	atomic_t		sk_omem_alloc;
206 	struct sk_buff_head	sk_receive_queue;
207 	struct sk_buff_head	sk_write_queue;
208 	struct sk_buff_head	sk_async_wait_queue;
209 	int			sk_wmem_queued;
210 	int			sk_forward_alloc;
211 	gfp_t			sk_allocation;
212 	int			sk_sndbuf;
213 	int			sk_route_caps;
214 	int			sk_rcvlowat;
215 	unsigned long 		sk_flags;
216 	unsigned long	        sk_lingertime;
217 	/*
218 	 * The backlog queue is special, it is always used with
219 	 * the per-socket spinlock held and requires low latency
220 	 * access. Therefore we special case it's implementation.
221 	 */
222 	struct {
223 		struct sk_buff *head;
224 		struct sk_buff *tail;
225 	} sk_backlog;
226 	struct sk_buff_head	sk_error_queue;
227 	struct proto		*sk_prot_creator;
228 	rwlock_t		sk_callback_lock;
229 	int			sk_err,
230 				sk_err_soft;
231 	unsigned short		sk_ack_backlog;
232 	unsigned short		sk_max_ack_backlog;
233 	__u32			sk_priority;
234 	struct ucred		sk_peercred;
235 	long			sk_rcvtimeo;
236 	long			sk_sndtimeo;
237 	struct sk_filter      	*sk_filter;
238 	void			*sk_protinfo;
239 	struct timer_list	sk_timer;
240 	struct timeval		sk_stamp;
241 	struct socket		*sk_socket;
242 	void			*sk_user_data;
243 	struct page		*sk_sndmsg_page;
244 	struct sk_buff		*sk_send_head;
245 	__u32			sk_sndmsg_off;
246 	int			sk_write_pending;
247 	void			*sk_security;
248 	void			(*sk_state_change)(struct sock *sk);
249 	void			(*sk_data_ready)(struct sock *sk, int bytes);
250 	void			(*sk_write_space)(struct sock *sk);
251 	void			(*sk_error_report)(struct sock *sk);
252   	int			(*sk_backlog_rcv)(struct sock *sk,
253 						  struct sk_buff *skb);
254 	void                    (*sk_destruct)(struct sock *sk);
255 };
256 
257 /*
258  * Hashed lists helper routines
259  */
260 static inline struct sock *__sk_head(const struct hlist_head *head)
261 {
262 	return hlist_entry(head->first, struct sock, sk_node);
263 }
264 
265 static inline struct sock *sk_head(const struct hlist_head *head)
266 {
267 	return hlist_empty(head) ? NULL : __sk_head(head);
268 }
269 
270 static inline struct sock *sk_next(const struct sock *sk)
271 {
272 	return sk->sk_node.next ?
273 		hlist_entry(sk->sk_node.next, struct sock, sk_node) : NULL;
274 }
275 
276 static inline int sk_unhashed(const struct sock *sk)
277 {
278 	return hlist_unhashed(&sk->sk_node);
279 }
280 
281 static inline int sk_hashed(const struct sock *sk)
282 {
283 	return !sk_unhashed(sk);
284 }
285 
286 static __inline__ void sk_node_init(struct hlist_node *node)
287 {
288 	node->pprev = NULL;
289 }
290 
291 static __inline__ void __sk_del_node(struct sock *sk)
292 {
293 	__hlist_del(&sk->sk_node);
294 }
295 
296 static __inline__ int __sk_del_node_init(struct sock *sk)
297 {
298 	if (sk_hashed(sk)) {
299 		__sk_del_node(sk);
300 		sk_node_init(&sk->sk_node);
301 		return 1;
302 	}
303 	return 0;
304 }
305 
306 /* Grab socket reference count. This operation is valid only
307    when sk is ALREADY grabbed f.e. it is found in hash table
308    or a list and the lookup is made under lock preventing hash table
309    modifications.
310  */
311 
312 static inline void sock_hold(struct sock *sk)
313 {
314 	atomic_inc(&sk->sk_refcnt);
315 }
316 
317 /* Ungrab socket in the context, which assumes that socket refcnt
318    cannot hit zero, f.e. it is true in context of any socketcall.
319  */
320 static inline void __sock_put(struct sock *sk)
321 {
322 	atomic_dec(&sk->sk_refcnt);
323 }
324 
325 static __inline__ int sk_del_node_init(struct sock *sk)
326 {
327 	int rc = __sk_del_node_init(sk);
328 
329 	if (rc) {
330 		/* paranoid for a while -acme */
331 		WARN_ON(atomic_read(&sk->sk_refcnt) == 1);
332 		__sock_put(sk);
333 	}
334 	return rc;
335 }
336 
337 static __inline__ void __sk_add_node(struct sock *sk, struct hlist_head *list)
338 {
339 	hlist_add_head(&sk->sk_node, list);
340 }
341 
342 static __inline__ void sk_add_node(struct sock *sk, struct hlist_head *list)
343 {
344 	sock_hold(sk);
345 	__sk_add_node(sk, list);
346 }
347 
348 static __inline__ void __sk_del_bind_node(struct sock *sk)
349 {
350 	__hlist_del(&sk->sk_bind_node);
351 }
352 
353 static __inline__ void sk_add_bind_node(struct sock *sk,
354 					struct hlist_head *list)
355 {
356 	hlist_add_head(&sk->sk_bind_node, list);
357 }
358 
359 #define sk_for_each(__sk, node, list) \
360 	hlist_for_each_entry(__sk, node, list, sk_node)
361 #define sk_for_each_from(__sk, node) \
362 	if (__sk && ({ node = &(__sk)->sk_node; 1; })) \
363 		hlist_for_each_entry_from(__sk, node, sk_node)
364 #define sk_for_each_continue(__sk, node) \
365 	if (__sk && ({ node = &(__sk)->sk_node; 1; })) \
366 		hlist_for_each_entry_continue(__sk, node, sk_node)
367 #define sk_for_each_safe(__sk, node, tmp, list) \
368 	hlist_for_each_entry_safe(__sk, node, tmp, list, sk_node)
369 #define sk_for_each_bound(__sk, node, list) \
370 	hlist_for_each_entry(__sk, node, list, sk_bind_node)
371 
372 /* Sock flags */
373 enum sock_flags {
374 	SOCK_DEAD,
375 	SOCK_DONE,
376 	SOCK_URGINLINE,
377 	SOCK_KEEPOPEN,
378 	SOCK_LINGER,
379 	SOCK_DESTROY,
380 	SOCK_BROADCAST,
381 	SOCK_TIMESTAMP,
382 	SOCK_ZAPPED,
383 	SOCK_USE_WRITE_QUEUE, /* whether to call sk->sk_write_space in sock_wfree */
384 	SOCK_DBG, /* %SO_DEBUG setting */
385 	SOCK_RCVTSTAMP, /* %SO_TIMESTAMP setting */
386 	SOCK_NO_LARGESEND, /* whether to sent large segments or not */
387 	SOCK_LOCALROUTE, /* route locally only, %SO_DONTROUTE setting */
388 	SOCK_QUEUE_SHRUNK, /* write queue has been shrunk recently */
389 };
390 
391 static inline void sock_copy_flags(struct sock *nsk, struct sock *osk)
392 {
393 	nsk->sk_flags = osk->sk_flags;
394 }
395 
396 static inline void sock_set_flag(struct sock *sk, enum sock_flags flag)
397 {
398 	__set_bit(flag, &sk->sk_flags);
399 }
400 
401 static inline void sock_reset_flag(struct sock *sk, enum sock_flags flag)
402 {
403 	__clear_bit(flag, &sk->sk_flags);
404 }
405 
406 static inline int sock_flag(struct sock *sk, enum sock_flags flag)
407 {
408 	return test_bit(flag, &sk->sk_flags);
409 }
410 
411 static inline void sk_acceptq_removed(struct sock *sk)
412 {
413 	sk->sk_ack_backlog--;
414 }
415 
416 static inline void sk_acceptq_added(struct sock *sk)
417 {
418 	sk->sk_ack_backlog++;
419 }
420 
421 static inline int sk_acceptq_is_full(struct sock *sk)
422 {
423 	return sk->sk_ack_backlog > sk->sk_max_ack_backlog;
424 }
425 
426 /*
427  * Compute minimal free write space needed to queue new packets.
428  */
429 static inline int sk_stream_min_wspace(struct sock *sk)
430 {
431 	return sk->sk_wmem_queued / 2;
432 }
433 
434 static inline int sk_stream_wspace(struct sock *sk)
435 {
436 	return sk->sk_sndbuf - sk->sk_wmem_queued;
437 }
438 
439 extern void sk_stream_write_space(struct sock *sk);
440 
441 static inline int sk_stream_memory_free(struct sock *sk)
442 {
443 	return sk->sk_wmem_queued < sk->sk_sndbuf;
444 }
445 
446 extern void sk_stream_rfree(struct sk_buff *skb);
447 
448 static inline void sk_stream_set_owner_r(struct sk_buff *skb, struct sock *sk)
449 {
450 	skb->sk = sk;
451 	skb->destructor = sk_stream_rfree;
452 	atomic_add(skb->truesize, &sk->sk_rmem_alloc);
453 	sk->sk_forward_alloc -= skb->truesize;
454 }
455 
456 static inline void sk_stream_free_skb(struct sock *sk, struct sk_buff *skb)
457 {
458 	skb_truesize_check(skb);
459 	sock_set_flag(sk, SOCK_QUEUE_SHRUNK);
460 	sk->sk_wmem_queued   -= skb->truesize;
461 	sk->sk_forward_alloc += skb->truesize;
462 	__kfree_skb(skb);
463 }
464 
465 /* The per-socket spinlock must be held here. */
466 static inline void sk_add_backlog(struct sock *sk, struct sk_buff *skb)
467 {
468 	if (!sk->sk_backlog.tail) {
469 		sk->sk_backlog.head = sk->sk_backlog.tail = skb;
470 	} else {
471 		sk->sk_backlog.tail->next = skb;
472 		sk->sk_backlog.tail = skb;
473 	}
474 	skb->next = NULL;
475 }
476 
477 #define sk_wait_event(__sk, __timeo, __condition)		\
478 ({	int rc;							\
479 	release_sock(__sk);					\
480 	rc = __condition;					\
481 	if (!rc) {						\
482 		*(__timeo) = schedule_timeout(*(__timeo));	\
483 	}							\
484 	lock_sock(__sk);					\
485 	rc = __condition;					\
486 	rc;							\
487 })
488 
489 extern int sk_stream_wait_connect(struct sock *sk, long *timeo_p);
490 extern int sk_stream_wait_memory(struct sock *sk, long *timeo_p);
491 extern void sk_stream_wait_close(struct sock *sk, long timeo_p);
492 extern int sk_stream_error(struct sock *sk, int flags, int err);
493 extern void sk_stream_kill_queues(struct sock *sk);
494 
495 extern int sk_wait_data(struct sock *sk, long *timeo);
496 
497 struct request_sock_ops;
498 struct timewait_sock_ops;
499 
500 /* Networking protocol blocks we attach to sockets.
501  * socket layer -> transport layer interface
502  * transport -> network interface is defined by struct inet_proto
503  */
504 struct proto {
505 	void			(*close)(struct sock *sk,
506 					long timeout);
507 	int			(*connect)(struct sock *sk,
508 				        struct sockaddr *uaddr,
509 					int addr_len);
510 	int			(*disconnect)(struct sock *sk, int flags);
511 
512 	struct sock *		(*accept) (struct sock *sk, int flags, int *err);
513 
514 	int			(*ioctl)(struct sock *sk, int cmd,
515 					 unsigned long arg);
516 	int			(*init)(struct sock *sk);
517 	int			(*destroy)(struct sock *sk);
518 	void			(*shutdown)(struct sock *sk, int how);
519 	int			(*setsockopt)(struct sock *sk, int level,
520 					int optname, char __user *optval,
521 					int optlen);
522 	int			(*getsockopt)(struct sock *sk, int level,
523 					int optname, char __user *optval,
524 					int __user *option);
525 	int			(*compat_setsockopt)(struct sock *sk,
526 					int level,
527 					int optname, char __user *optval,
528 					int optlen);
529 	int			(*compat_getsockopt)(struct sock *sk,
530 					int level,
531 					int optname, char __user *optval,
532 					int __user *option);
533 	int			(*sendmsg)(struct kiocb *iocb, struct sock *sk,
534 					   struct msghdr *msg, size_t len);
535 	int			(*recvmsg)(struct kiocb *iocb, struct sock *sk,
536 					   struct msghdr *msg,
537 					size_t len, int noblock, int flags,
538 					int *addr_len);
539 	int			(*sendpage)(struct sock *sk, struct page *page,
540 					int offset, size_t size, int flags);
541 	int			(*bind)(struct sock *sk,
542 					struct sockaddr *uaddr, int addr_len);
543 
544 	int			(*backlog_rcv) (struct sock *sk,
545 						struct sk_buff *skb);
546 
547 	/* Keeping track of sk's, looking them up, and port selection methods. */
548 	void			(*hash)(struct sock *sk);
549 	void			(*unhash)(struct sock *sk);
550 	int			(*get_port)(struct sock *sk, unsigned short snum);
551 
552 	/* Memory pressure */
553 	void			(*enter_memory_pressure)(void);
554 	atomic_t		*memory_allocated;	/* Current allocated memory. */
555 	atomic_t		*sockets_allocated;	/* Current number of sockets. */
556 	/*
557 	 * Pressure flag: try to collapse.
558 	 * Technical note: it is used by multiple contexts non atomically.
559 	 * All the sk_stream_mem_schedule() is of this nature: accounting
560 	 * is strict, actions are advisory and have some latency.
561 	 */
562 	int			*memory_pressure;
563 	int			*sysctl_mem;
564 	int			*sysctl_wmem;
565 	int			*sysctl_rmem;
566 	int			max_header;
567 
568 	kmem_cache_t		*slab;
569 	unsigned int		obj_size;
570 
571 	atomic_t		*orphan_count;
572 
573 	struct request_sock_ops	*rsk_prot;
574 	struct timewait_sock_ops *twsk_prot;
575 
576 	struct module		*owner;
577 
578 	char			name[32];
579 
580 	struct list_head	node;
581 #ifdef SOCK_REFCNT_DEBUG
582 	atomic_t		socks;
583 #endif
584 	struct {
585 		int inuse;
586 		u8  __pad[SMP_CACHE_BYTES - sizeof(int)];
587 	} stats[NR_CPUS];
588 };
589 
590 extern int proto_register(struct proto *prot, int alloc_slab);
591 extern void proto_unregister(struct proto *prot);
592 
593 #ifdef SOCK_REFCNT_DEBUG
594 static inline void sk_refcnt_debug_inc(struct sock *sk)
595 {
596 	atomic_inc(&sk->sk_prot->socks);
597 }
598 
599 static inline void sk_refcnt_debug_dec(struct sock *sk)
600 {
601 	atomic_dec(&sk->sk_prot->socks);
602 	printk(KERN_DEBUG "%s socket %p released, %d are still alive\n",
603 	       sk->sk_prot->name, sk, atomic_read(&sk->sk_prot->socks));
604 }
605 
606 static inline void sk_refcnt_debug_release(const struct sock *sk)
607 {
608 	if (atomic_read(&sk->sk_refcnt) != 1)
609 		printk(KERN_DEBUG "Destruction of the %s socket %p delayed, refcnt=%d\n",
610 		       sk->sk_prot->name, sk, atomic_read(&sk->sk_refcnt));
611 }
612 #else /* SOCK_REFCNT_DEBUG */
613 #define sk_refcnt_debug_inc(sk) do { } while (0)
614 #define sk_refcnt_debug_dec(sk) do { } while (0)
615 #define sk_refcnt_debug_release(sk) do { } while (0)
616 #endif /* SOCK_REFCNT_DEBUG */
617 
618 /* Called with local bh disabled */
619 static __inline__ void sock_prot_inc_use(struct proto *prot)
620 {
621 	prot->stats[smp_processor_id()].inuse++;
622 }
623 
624 static __inline__ void sock_prot_dec_use(struct proto *prot)
625 {
626 	prot->stats[smp_processor_id()].inuse--;
627 }
628 
629 /* With per-bucket locks this operation is not-atomic, so that
630  * this version is not worse.
631  */
632 static inline void __sk_prot_rehash(struct sock *sk)
633 {
634 	sk->sk_prot->unhash(sk);
635 	sk->sk_prot->hash(sk);
636 }
637 
638 /* About 10 seconds */
639 #define SOCK_DESTROY_TIME (10*HZ)
640 
641 /* Sockets 0-1023 can't be bound to unless you are superuser */
642 #define PROT_SOCK	1024
643 
644 #define SHUTDOWN_MASK	3
645 #define RCV_SHUTDOWN	1
646 #define SEND_SHUTDOWN	2
647 
648 #define SOCK_SNDBUF_LOCK	1
649 #define SOCK_RCVBUF_LOCK	2
650 #define SOCK_BINDADDR_LOCK	4
651 #define SOCK_BINDPORT_LOCK	8
652 
653 /* sock_iocb: used to kick off async processing of socket ios */
654 struct sock_iocb {
655 	struct list_head	list;
656 
657 	int			flags;
658 	int			size;
659 	struct socket		*sock;
660 	struct sock		*sk;
661 	struct scm_cookie	*scm;
662 	struct msghdr		*msg, async_msg;
663 	struct iovec		async_iov;
664 	struct kiocb		*kiocb;
665 };
666 
667 static inline struct sock_iocb *kiocb_to_siocb(struct kiocb *iocb)
668 {
669 	return (struct sock_iocb *)iocb->private;
670 }
671 
672 static inline struct kiocb *siocb_to_kiocb(struct sock_iocb *si)
673 {
674 	return si->kiocb;
675 }
676 
677 struct socket_alloc {
678 	struct socket socket;
679 	struct inode vfs_inode;
680 };
681 
682 static inline struct socket *SOCKET_I(struct inode *inode)
683 {
684 	return &container_of(inode, struct socket_alloc, vfs_inode)->socket;
685 }
686 
687 static inline struct inode *SOCK_INODE(struct socket *socket)
688 {
689 	return &container_of(socket, struct socket_alloc, socket)->vfs_inode;
690 }
691 
692 extern void __sk_stream_mem_reclaim(struct sock *sk);
693 extern int sk_stream_mem_schedule(struct sock *sk, int size, int kind);
694 
695 #define SK_STREAM_MEM_QUANTUM ((int)PAGE_SIZE)
696 
697 static inline int sk_stream_pages(int amt)
698 {
699 	return (amt + SK_STREAM_MEM_QUANTUM - 1) / SK_STREAM_MEM_QUANTUM;
700 }
701 
702 static inline void sk_stream_mem_reclaim(struct sock *sk)
703 {
704 	if (sk->sk_forward_alloc >= SK_STREAM_MEM_QUANTUM)
705 		__sk_stream_mem_reclaim(sk);
706 }
707 
708 static inline void sk_stream_writequeue_purge(struct sock *sk)
709 {
710 	struct sk_buff *skb;
711 
712 	while ((skb = __skb_dequeue(&sk->sk_write_queue)) != NULL)
713 		sk_stream_free_skb(sk, skb);
714 	sk_stream_mem_reclaim(sk);
715 }
716 
717 static inline int sk_stream_rmem_schedule(struct sock *sk, struct sk_buff *skb)
718 {
719 	return (int)skb->truesize <= sk->sk_forward_alloc ||
720 		sk_stream_mem_schedule(sk, skb->truesize, 1);
721 }
722 
723 static inline int sk_stream_wmem_schedule(struct sock *sk, int size)
724 {
725 	return size <= sk->sk_forward_alloc ||
726 	       sk_stream_mem_schedule(sk, size, 0);
727 }
728 
729 /* Used by processes to "lock" a socket state, so that
730  * interrupts and bottom half handlers won't change it
731  * from under us. It essentially blocks any incoming
732  * packets, so that we won't get any new data or any
733  * packets that change the state of the socket.
734  *
735  * While locked, BH processing will add new packets to
736  * the backlog queue.  This queue is processed by the
737  * owner of the socket lock right before it is released.
738  *
739  * Since ~2.3.5 it is also exclusive sleep lock serializing
740  * accesses from user process context.
741  */
742 #define sock_owned_by_user(sk)	((sk)->sk_lock.owner)
743 
744 extern void FASTCALL(lock_sock(struct sock *sk));
745 extern void FASTCALL(release_sock(struct sock *sk));
746 
747 /* BH context may only use the following locking interface. */
748 #define bh_lock_sock(__sk)	spin_lock(&((__sk)->sk_lock.slock))
749 #define bh_unlock_sock(__sk)	spin_unlock(&((__sk)->sk_lock.slock))
750 
751 extern struct sock		*sk_alloc(int family,
752 					  gfp_t priority,
753 					  struct proto *prot, int zero_it);
754 extern void			sk_free(struct sock *sk);
755 extern struct sock		*sk_clone(const struct sock *sk,
756 					  const gfp_t priority);
757 
758 extern struct sk_buff		*sock_wmalloc(struct sock *sk,
759 					      unsigned long size, int force,
760 					      gfp_t priority);
761 extern struct sk_buff		*sock_rmalloc(struct sock *sk,
762 					      unsigned long size, int force,
763 					      gfp_t priority);
764 extern void			sock_wfree(struct sk_buff *skb);
765 extern void			sock_rfree(struct sk_buff *skb);
766 
767 extern int			sock_setsockopt(struct socket *sock, int level,
768 						int op, char __user *optval,
769 						int optlen);
770 
771 extern int			sock_getsockopt(struct socket *sock, int level,
772 						int op, char __user *optval,
773 						int __user *optlen);
774 extern struct sk_buff 		*sock_alloc_send_skb(struct sock *sk,
775 						     unsigned long size,
776 						     int noblock,
777 						     int *errcode);
778 extern void *sock_kmalloc(struct sock *sk, int size,
779 			  gfp_t priority);
780 extern void sock_kfree_s(struct sock *sk, void *mem, int size);
781 extern void sk_send_sigurg(struct sock *sk);
782 
783 /*
784  * Functions to fill in entries in struct proto_ops when a protocol
785  * does not implement a particular function.
786  */
787 extern int                      sock_no_bind(struct socket *,
788 					     struct sockaddr *, int);
789 extern int                      sock_no_connect(struct socket *,
790 						struct sockaddr *, int, int);
791 extern int                      sock_no_socketpair(struct socket *,
792 						   struct socket *);
793 extern int                      sock_no_accept(struct socket *,
794 					       struct socket *, int);
795 extern int                      sock_no_getname(struct socket *,
796 						struct sockaddr *, int *, int);
797 extern unsigned int             sock_no_poll(struct file *, struct socket *,
798 					     struct poll_table_struct *);
799 extern int                      sock_no_ioctl(struct socket *, unsigned int,
800 					      unsigned long);
801 extern int			sock_no_listen(struct socket *, int);
802 extern int                      sock_no_shutdown(struct socket *, int);
803 extern int			sock_no_getsockopt(struct socket *, int , int,
804 						   char __user *, int __user *);
805 extern int			sock_no_setsockopt(struct socket *, int, int,
806 						   char __user *, int);
807 extern int                      sock_no_sendmsg(struct kiocb *, struct socket *,
808 						struct msghdr *, size_t);
809 extern int                      sock_no_recvmsg(struct kiocb *, struct socket *,
810 						struct msghdr *, size_t, int);
811 extern int			sock_no_mmap(struct file *file,
812 					     struct socket *sock,
813 					     struct vm_area_struct *vma);
814 extern ssize_t			sock_no_sendpage(struct socket *sock,
815 						struct page *page,
816 						int offset, size_t size,
817 						int flags);
818 
819 /*
820  * Functions to fill in entries in struct proto_ops when a protocol
821  * uses the inet style.
822  */
823 extern int sock_common_getsockopt(struct socket *sock, int level, int optname,
824 				  char __user *optval, int __user *optlen);
825 extern int sock_common_recvmsg(struct kiocb *iocb, struct socket *sock,
826 			       struct msghdr *msg, size_t size, int flags);
827 extern int sock_common_setsockopt(struct socket *sock, int level, int optname,
828 				  char __user *optval, int optlen);
829 extern int compat_sock_common_getsockopt(struct socket *sock, int level,
830 		int optname, char __user *optval, int __user *optlen);
831 extern int compat_sock_common_setsockopt(struct socket *sock, int level,
832 		int optname, char __user *optval, int optlen);
833 
834 extern void sk_common_release(struct sock *sk);
835 
836 /*
837  *	Default socket callbacks and setup code
838  */
839 
840 /* Initialise core socket variables */
841 extern void sock_init_data(struct socket *sock, struct sock *sk);
842 
843 /**
844  *	sk_filter - run a packet through a socket filter
845  *	@sk: sock associated with &sk_buff
846  *	@skb: buffer to filter
847  *	@needlock: set to 1 if the sock is not locked by caller.
848  *
849  * Run the filter code and then cut skb->data to correct size returned by
850  * sk_run_filter. If pkt_len is 0 we toss packet. If skb->len is smaller
851  * than pkt_len we keep whole skb->data. This is the socket level
852  * wrapper to sk_run_filter. It returns 0 if the packet should
853  * be accepted or -EPERM if the packet should be tossed.
854  *
855  */
856 
857 static inline int sk_filter(struct sock *sk, struct sk_buff *skb, int needlock)
858 {
859 	int err;
860 
861 	err = security_sock_rcv_skb(sk, skb);
862 	if (err)
863 		return err;
864 
865 	if (sk->sk_filter) {
866 		struct sk_filter *filter;
867 
868 		if (needlock)
869 			bh_lock_sock(sk);
870 
871 		filter = sk->sk_filter;
872 		if (filter) {
873 			unsigned int pkt_len = sk_run_filter(skb, filter->insns,
874 							     filter->len);
875 			err = pkt_len ? pskb_trim(skb, pkt_len) : -EPERM;
876 		}
877 
878 		if (needlock)
879 			bh_unlock_sock(sk);
880 	}
881 	return err;
882 }
883 
884 /**
885  *	sk_filter_release: Release a socket filter
886  *	@sk: socket
887  *	@fp: filter to remove
888  *
889  *	Remove a filter from a socket and release its resources.
890  */
891 
892 static inline void sk_filter_release(struct sock *sk, struct sk_filter *fp)
893 {
894 	unsigned int size = sk_filter_len(fp);
895 
896 	atomic_sub(size, &sk->sk_omem_alloc);
897 
898 	if (atomic_dec_and_test(&fp->refcnt))
899 		kfree(fp);
900 }
901 
902 static inline void sk_filter_charge(struct sock *sk, struct sk_filter *fp)
903 {
904 	atomic_inc(&fp->refcnt);
905 	atomic_add(sk_filter_len(fp), &sk->sk_omem_alloc);
906 }
907 
908 /*
909  * Socket reference counting postulates.
910  *
911  * * Each user of socket SHOULD hold a reference count.
912  * * Each access point to socket (an hash table bucket, reference from a list,
913  *   running timer, skb in flight MUST hold a reference count.
914  * * When reference count hits 0, it means it will never increase back.
915  * * When reference count hits 0, it means that no references from
916  *   outside exist to this socket and current process on current CPU
917  *   is last user and may/should destroy this socket.
918  * * sk_free is called from any context: process, BH, IRQ. When
919  *   it is called, socket has no references from outside -> sk_free
920  *   may release descendant resources allocated by the socket, but
921  *   to the time when it is called, socket is NOT referenced by any
922  *   hash tables, lists etc.
923  * * Packets, delivered from outside (from network or from another process)
924  *   and enqueued on receive/error queues SHOULD NOT grab reference count,
925  *   when they sit in queue. Otherwise, packets will leak to hole, when
926  *   socket is looked up by one cpu and unhasing is made by another CPU.
927  *   It is true for udp/raw, netlink (leak to receive and error queues), tcp
928  *   (leak to backlog). Packet socket does all the processing inside
929  *   BR_NETPROTO_LOCK, so that it has not this race condition. UNIX sockets
930  *   use separate SMP lock, so that they are prone too.
931  */
932 
933 /* Ungrab socket and destroy it, if it was the last reference. */
934 static inline void sock_put(struct sock *sk)
935 {
936 	if (atomic_dec_and_test(&sk->sk_refcnt))
937 		sk_free(sk);
938 }
939 
940 extern int sk_receive_skb(struct sock *sk, struct sk_buff *skb);
941 
942 /* Detach socket from process context.
943  * Announce socket dead, detach it from wait queue and inode.
944  * Note that parent inode held reference count on this struct sock,
945  * we do not release it in this function, because protocol
946  * probably wants some additional cleanups or even continuing
947  * to work with this socket (TCP).
948  */
949 static inline void sock_orphan(struct sock *sk)
950 {
951 	write_lock_bh(&sk->sk_callback_lock);
952 	sock_set_flag(sk, SOCK_DEAD);
953 	sk->sk_socket = NULL;
954 	sk->sk_sleep  = NULL;
955 	write_unlock_bh(&sk->sk_callback_lock);
956 }
957 
958 static inline void sock_graft(struct sock *sk, struct socket *parent)
959 {
960 	write_lock_bh(&sk->sk_callback_lock);
961 	sk->sk_sleep = &parent->wait;
962 	parent->sk = sk;
963 	sk->sk_socket = parent;
964 	write_unlock_bh(&sk->sk_callback_lock);
965 }
966 
967 extern int sock_i_uid(struct sock *sk);
968 extern unsigned long sock_i_ino(struct sock *sk);
969 
970 static inline struct dst_entry *
971 __sk_dst_get(struct sock *sk)
972 {
973 	return sk->sk_dst_cache;
974 }
975 
976 static inline struct dst_entry *
977 sk_dst_get(struct sock *sk)
978 {
979 	struct dst_entry *dst;
980 
981 	read_lock(&sk->sk_dst_lock);
982 	dst = sk->sk_dst_cache;
983 	if (dst)
984 		dst_hold(dst);
985 	read_unlock(&sk->sk_dst_lock);
986 	return dst;
987 }
988 
989 static inline void
990 __sk_dst_set(struct sock *sk, struct dst_entry *dst)
991 {
992 	struct dst_entry *old_dst;
993 
994 	old_dst = sk->sk_dst_cache;
995 	sk->sk_dst_cache = dst;
996 	dst_release(old_dst);
997 }
998 
999 static inline void
1000 sk_dst_set(struct sock *sk, struct dst_entry *dst)
1001 {
1002 	write_lock(&sk->sk_dst_lock);
1003 	__sk_dst_set(sk, dst);
1004 	write_unlock(&sk->sk_dst_lock);
1005 }
1006 
1007 static inline void
1008 __sk_dst_reset(struct sock *sk)
1009 {
1010 	struct dst_entry *old_dst;
1011 
1012 	old_dst = sk->sk_dst_cache;
1013 	sk->sk_dst_cache = NULL;
1014 	dst_release(old_dst);
1015 }
1016 
1017 static inline void
1018 sk_dst_reset(struct sock *sk)
1019 {
1020 	write_lock(&sk->sk_dst_lock);
1021 	__sk_dst_reset(sk);
1022 	write_unlock(&sk->sk_dst_lock);
1023 }
1024 
1025 extern struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie);
1026 
1027 extern struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie);
1028 
1029 static inline void sk_setup_caps(struct sock *sk, struct dst_entry *dst)
1030 {
1031 	__sk_dst_set(sk, dst);
1032 	sk->sk_route_caps = dst->dev->features;
1033 	if (sk->sk_route_caps & NETIF_F_TSO) {
1034 		if (sock_flag(sk, SOCK_NO_LARGESEND) || dst->header_len)
1035 			sk->sk_route_caps &= ~NETIF_F_TSO;
1036 	}
1037 }
1038 
1039 static inline void sk_charge_skb(struct sock *sk, struct sk_buff *skb)
1040 {
1041 	sk->sk_wmem_queued   += skb->truesize;
1042 	sk->sk_forward_alloc -= skb->truesize;
1043 }
1044 
1045 static inline int skb_copy_to_page(struct sock *sk, char __user *from,
1046 				   struct sk_buff *skb, struct page *page,
1047 				   int off, int copy)
1048 {
1049 	if (skb->ip_summed == CHECKSUM_NONE) {
1050 		int err = 0;
1051 		unsigned int csum = csum_and_copy_from_user(from,
1052 						     page_address(page) + off,
1053 							    copy, 0, &err);
1054 		if (err)
1055 			return err;
1056 		skb->csum = csum_block_add(skb->csum, csum, skb->len);
1057 	} else if (copy_from_user(page_address(page) + off, from, copy))
1058 		return -EFAULT;
1059 
1060 	skb->len	     += copy;
1061 	skb->data_len	     += copy;
1062 	skb->truesize	     += copy;
1063 	sk->sk_wmem_queued   += copy;
1064 	sk->sk_forward_alloc -= copy;
1065 	return 0;
1066 }
1067 
1068 /*
1069  * 	Queue a received datagram if it will fit. Stream and sequenced
1070  *	protocols can't normally use this as they need to fit buffers in
1071  *	and play with them.
1072  *
1073  * 	Inlined as it's very short and called for pretty much every
1074  *	packet ever received.
1075  */
1076 
1077 static inline void skb_set_owner_w(struct sk_buff *skb, struct sock *sk)
1078 {
1079 	sock_hold(sk);
1080 	skb->sk = sk;
1081 	skb->destructor = sock_wfree;
1082 	atomic_add(skb->truesize, &sk->sk_wmem_alloc);
1083 }
1084 
1085 static inline void skb_set_owner_r(struct sk_buff *skb, struct sock *sk)
1086 {
1087 	skb->sk = sk;
1088 	skb->destructor = sock_rfree;
1089 	atomic_add(skb->truesize, &sk->sk_rmem_alloc);
1090 }
1091 
1092 extern void sk_reset_timer(struct sock *sk, struct timer_list* timer,
1093 			   unsigned long expires);
1094 
1095 extern void sk_stop_timer(struct sock *sk, struct timer_list* timer);
1096 
1097 extern int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
1098 
1099 static inline int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb)
1100 {
1101 	/* Cast skb->rcvbuf to unsigned... It's pointless, but reduces
1102 	   number of warnings when compiling with -W --ANK
1103 	 */
1104 	if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
1105 	    (unsigned)sk->sk_rcvbuf)
1106 		return -ENOMEM;
1107 	skb_set_owner_r(skb, sk);
1108 	skb_queue_tail(&sk->sk_error_queue, skb);
1109 	if (!sock_flag(sk, SOCK_DEAD))
1110 		sk->sk_data_ready(sk, skb->len);
1111 	return 0;
1112 }
1113 
1114 /*
1115  *	Recover an error report and clear atomically
1116  */
1117 
1118 static inline int sock_error(struct sock *sk)
1119 {
1120 	int err;
1121 	if (likely(!sk->sk_err))
1122 		return 0;
1123 	err = xchg(&sk->sk_err, 0);
1124 	return -err;
1125 }
1126 
1127 static inline unsigned long sock_wspace(struct sock *sk)
1128 {
1129 	int amt = 0;
1130 
1131 	if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
1132 		amt = sk->sk_sndbuf - atomic_read(&sk->sk_wmem_alloc);
1133 		if (amt < 0)
1134 			amt = 0;
1135 	}
1136 	return amt;
1137 }
1138 
1139 static inline void sk_wake_async(struct sock *sk, int how, int band)
1140 {
1141 	if (sk->sk_socket && sk->sk_socket->fasync_list)
1142 		sock_wake_async(sk->sk_socket, how, band);
1143 }
1144 
1145 #define SOCK_MIN_SNDBUF 2048
1146 #define SOCK_MIN_RCVBUF 256
1147 
1148 static inline void sk_stream_moderate_sndbuf(struct sock *sk)
1149 {
1150 	if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK)) {
1151 		sk->sk_sndbuf = min(sk->sk_sndbuf, sk->sk_wmem_queued / 2);
1152 		sk->sk_sndbuf = max(sk->sk_sndbuf, SOCK_MIN_SNDBUF);
1153 	}
1154 }
1155 
1156 static inline struct sk_buff *sk_stream_alloc_pskb(struct sock *sk,
1157 						   int size, int mem,
1158 						   gfp_t gfp)
1159 {
1160 	struct sk_buff *skb;
1161 	int hdr_len;
1162 
1163 	hdr_len = SKB_DATA_ALIGN(sk->sk_prot->max_header);
1164 	skb = alloc_skb_fclone(size + hdr_len, gfp);
1165 	if (skb) {
1166 		skb->truesize += mem;
1167 		if (sk_stream_wmem_schedule(sk, skb->truesize)) {
1168 			skb_reserve(skb, hdr_len);
1169 			return skb;
1170 		}
1171 		__kfree_skb(skb);
1172 	} else {
1173 		sk->sk_prot->enter_memory_pressure();
1174 		sk_stream_moderate_sndbuf(sk);
1175 	}
1176 	return NULL;
1177 }
1178 
1179 static inline struct sk_buff *sk_stream_alloc_skb(struct sock *sk,
1180 						  int size,
1181 						  gfp_t gfp)
1182 {
1183 	return sk_stream_alloc_pskb(sk, size, 0, gfp);
1184 }
1185 
1186 static inline struct page *sk_stream_alloc_page(struct sock *sk)
1187 {
1188 	struct page *page = NULL;
1189 
1190 	page = alloc_pages(sk->sk_allocation, 0);
1191 	if (!page) {
1192 		sk->sk_prot->enter_memory_pressure();
1193 		sk_stream_moderate_sndbuf(sk);
1194 	}
1195 	return page;
1196 }
1197 
1198 #define sk_stream_for_retrans_queue(skb, sk)				\
1199 		for (skb = (sk)->sk_write_queue.next;			\
1200 		     (skb != (sk)->sk_send_head) &&			\
1201 		     (skb != (struct sk_buff *)&(sk)->sk_write_queue);	\
1202 		     skb = skb->next)
1203 
1204 /*from STCP for fast SACK Process*/
1205 #define sk_stream_for_retrans_queue_from(skb, sk)			\
1206 		for (; (skb != (sk)->sk_send_head) &&                   \
1207 		     (skb != (struct sk_buff *)&(sk)->sk_write_queue);	\
1208 		     skb = skb->next)
1209 
1210 /*
1211  *	Default write policy as shown to user space via poll/select/SIGIO
1212  */
1213 static inline int sock_writeable(const struct sock *sk)
1214 {
1215 	return atomic_read(&sk->sk_wmem_alloc) < (sk->sk_sndbuf / 2);
1216 }
1217 
1218 static inline gfp_t gfp_any(void)
1219 {
1220 	return in_softirq() ? GFP_ATOMIC : GFP_KERNEL;
1221 }
1222 
1223 static inline long sock_rcvtimeo(const struct sock *sk, int noblock)
1224 {
1225 	return noblock ? 0 : sk->sk_rcvtimeo;
1226 }
1227 
1228 static inline long sock_sndtimeo(const struct sock *sk, int noblock)
1229 {
1230 	return noblock ? 0 : sk->sk_sndtimeo;
1231 }
1232 
1233 static inline int sock_rcvlowat(const struct sock *sk, int waitall, int len)
1234 {
1235 	return (waitall ? len : min_t(int, sk->sk_rcvlowat, len)) ? : 1;
1236 }
1237 
1238 /* Alas, with timeout socket operations are not restartable.
1239  * Compare this to poll().
1240  */
1241 static inline int sock_intr_errno(long timeo)
1242 {
1243 	return timeo == MAX_SCHEDULE_TIMEOUT ? -ERESTARTSYS : -EINTR;
1244 }
1245 
1246 static __inline__ void
1247 sock_recv_timestamp(struct msghdr *msg, struct sock *sk, struct sk_buff *skb)
1248 {
1249 	struct timeval stamp;
1250 
1251 	skb_get_timestamp(skb, &stamp);
1252 	if (sock_flag(sk, SOCK_RCVTSTAMP)) {
1253 		/* Race occurred between timestamp enabling and packet
1254 		   receiving.  Fill in the current time for now. */
1255 		if (stamp.tv_sec == 0)
1256 			do_gettimeofday(&stamp);
1257 		skb_set_timestamp(skb, &stamp);
1258 		put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP, sizeof(struct timeval),
1259 			 &stamp);
1260 	} else
1261 		sk->sk_stamp = stamp;
1262 }
1263 
1264 /**
1265  * sk_eat_skb - Release a skb if it is no longer needed
1266  * @sk: socket to eat this skb from
1267  * @skb: socket buffer to eat
1268  *
1269  * This routine must be called with interrupts disabled or with the socket
1270  * locked so that the sk_buff queue operation is ok.
1271 */
1272 #ifdef CONFIG_NET_DMA
1273 static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb, int copied_early)
1274 {
1275 	__skb_unlink(skb, &sk->sk_receive_queue);
1276 	if (!copied_early)
1277 		__kfree_skb(skb);
1278 	else
1279 		__skb_queue_tail(&sk->sk_async_wait_queue, skb);
1280 }
1281 #else
1282 static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb, int copied_early)
1283 {
1284 	__skb_unlink(skb, &sk->sk_receive_queue);
1285 	__kfree_skb(skb);
1286 }
1287 #endif
1288 
1289 extern void sock_enable_timestamp(struct sock *sk);
1290 extern int sock_get_timestamp(struct sock *, struct timeval __user *);
1291 
1292 /*
1293  *	Enable debug/info messages
1294  */
1295 
1296 #ifdef CONFIG_NETDEBUG
1297 #define NETDEBUG(fmt, args...)	printk(fmt,##args)
1298 #define LIMIT_NETDEBUG(fmt, args...) do { if (net_ratelimit()) printk(fmt,##args); } while(0)
1299 #else
1300 #define NETDEBUG(fmt, args...)	do { } while (0)
1301 #define LIMIT_NETDEBUG(fmt, args...) do { } while(0)
1302 #endif
1303 
1304 /*
1305  * Macros for sleeping on a socket. Use them like this:
1306  *
1307  * SOCK_SLEEP_PRE(sk)
1308  * if (condition)
1309  * 	schedule();
1310  * SOCK_SLEEP_POST(sk)
1311  *
1312  * N.B. These are now obsolete and were, afaik, only ever used in DECnet
1313  * and when the last use of them in DECnet has gone, I'm intending to
1314  * remove them.
1315  */
1316 
1317 #define SOCK_SLEEP_PRE(sk) 	{ struct task_struct *tsk = current; \
1318 				DECLARE_WAITQUEUE(wait, tsk); \
1319 				tsk->state = TASK_INTERRUPTIBLE; \
1320 				add_wait_queue((sk)->sk_sleep, &wait); \
1321 				release_sock(sk);
1322 
1323 #define SOCK_SLEEP_POST(sk)	tsk->state = TASK_RUNNING; \
1324 				remove_wait_queue((sk)->sk_sleep, &wait); \
1325 				lock_sock(sk); \
1326 				}
1327 
1328 static inline void sock_valbool_flag(struct sock *sk, int bit, int valbool)
1329 {
1330 	if (valbool)
1331 		sock_set_flag(sk, bit);
1332 	else
1333 		sock_reset_flag(sk, bit);
1334 }
1335 
1336 extern __u32 sysctl_wmem_max;
1337 extern __u32 sysctl_rmem_max;
1338 
1339 #ifdef CONFIG_NET
1340 int siocdevprivate_ioctl(unsigned int fd, unsigned int cmd, unsigned long arg);
1341 #else
1342 static inline int siocdevprivate_ioctl(unsigned int fd, unsigned int cmd, unsigned long arg)
1343 {
1344 	return -ENODEV;
1345 }
1346 #endif
1347 
1348 extern void sk_init(void);
1349 
1350 #ifdef CONFIG_SYSCTL
1351 extern struct ctl_table core_table[];
1352 #endif
1353 
1354 extern int sysctl_optmem_max;
1355 
1356 extern __u32 sysctl_wmem_default;
1357 extern __u32 sysctl_rmem_default;
1358 
1359 #endif	/* _SOCK_H */
1360