xref: /linux/include/net/sock.h (revision f2ee442115c9b6219083c019939a9cc0c9abb2f8)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Definitions for the AF_INET socket handler.
7  *
8  * Version:	@(#)sock.h	1.0.4	05/13/93
9  *
10  * Authors:	Ross Biro
11  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
13  *		Florian La Roche <flla@stud.uni-sb.de>
14  *
15  * Fixes:
16  *		Alan Cox	:	Volatiles in skbuff pointers. See
17  *					skbuff comments. May be overdone,
18  *					better to prove they can be removed
19  *					than the reverse.
20  *		Alan Cox	:	Added a zapped field for tcp to note
21  *					a socket is reset and must stay shut up
22  *		Alan Cox	:	New fields for options
23  *	Pauline Middelink	:	identd support
24  *		Alan Cox	:	Eliminate low level recv/recvfrom
25  *		David S. Miller	:	New socket lookup architecture.
26  *              Steve Whitehouse:       Default routines for sock_ops
27  *              Arnaldo C. Melo :	removed net_pinfo, tp_pinfo and made
28  *              			protinfo be just a void pointer, as the
29  *              			protocol specific parts were moved to
30  *              			respective headers and ipv4/v6, etc now
31  *              			use private slabcaches for its socks
32  *              Pedro Hortas	:	New flags field for socket options
33  *
34  *
35  *		This program is free software; you can redistribute it and/or
36  *		modify it under the terms of the GNU General Public License
37  *		as published by the Free Software Foundation; either version
38  *		2 of the License, or (at your option) any later version.
39  */
40 #ifndef _SOCK_H
41 #define _SOCK_H
42 
43 #include <linux/hardirq.h>
44 #include <linux/kernel.h>
45 #include <linux/list.h>
46 #include <linux/list_nulls.h>
47 #include <linux/timer.h>
48 #include <linux/cache.h>
49 #include <linux/lockdep.h>
50 #include <linux/netdevice.h>
51 #include <linux/skbuff.h>	/* struct sk_buff */
52 #include <linux/mm.h>
53 #include <linux/security.h>
54 #include <linux/slab.h>
55 #include <linux/uaccess.h>
56 
57 #include <linux/filter.h>
58 #include <linux/rculist_nulls.h>
59 #include <linux/poll.h>
60 
61 #include <linux/atomic.h>
62 #include <net/dst.h>
63 #include <net/checksum.h>
64 
65 /*
66  * This structure really needs to be cleaned up.
67  * Most of it is for TCP, and not used by any of
68  * the other protocols.
69  */
70 
71 /* Define this to get the SOCK_DBG debugging facility. */
72 #define SOCK_DEBUGGING
73 #ifdef SOCK_DEBUGGING
74 #define SOCK_DEBUG(sk, msg...) do { if ((sk) && sock_flag((sk), SOCK_DBG)) \
75 					printk(KERN_DEBUG msg); } while (0)
76 #else
77 /* Validate arguments and do nothing */
78 static inline __printf(2, 3)
79 void SOCK_DEBUG(struct sock *sk, const char *msg, ...)
80 {
81 }
82 #endif
83 
84 /* This is the per-socket lock.  The spinlock provides a synchronization
85  * between user contexts and software interrupt processing, whereas the
86  * mini-semaphore synchronizes multiple users amongst themselves.
87  */
88 typedef struct {
89 	spinlock_t		slock;
90 	int			owned;
91 	wait_queue_head_t	wq;
92 	/*
93 	 * We express the mutex-alike socket_lock semantics
94 	 * to the lock validator by explicitly managing
95 	 * the slock as a lock variant (in addition to
96 	 * the slock itself):
97 	 */
98 #ifdef CONFIG_DEBUG_LOCK_ALLOC
99 	struct lockdep_map dep_map;
100 #endif
101 } socket_lock_t;
102 
103 struct sock;
104 struct proto;
105 struct net;
106 
107 /**
108  *	struct sock_common - minimal network layer representation of sockets
109  *	@skc_daddr: Foreign IPv4 addr
110  *	@skc_rcv_saddr: Bound local IPv4 addr
111  *	@skc_hash: hash value used with various protocol lookup tables
112  *	@skc_u16hashes: two u16 hash values used by UDP lookup tables
113  *	@skc_family: network address family
114  *	@skc_state: Connection state
115  *	@skc_reuse: %SO_REUSEADDR setting
116  *	@skc_bound_dev_if: bound device index if != 0
117  *	@skc_bind_node: bind hash linkage for various protocol lookup tables
118  *	@skc_portaddr_node: second hash linkage for UDP/UDP-Lite protocol
119  *	@skc_prot: protocol handlers inside a network family
120  *	@skc_net: reference to the network namespace of this socket
121  *	@skc_node: main hash linkage for various protocol lookup tables
122  *	@skc_nulls_node: main hash linkage for TCP/UDP/UDP-Lite protocol
123  *	@skc_tx_queue_mapping: tx queue number for this connection
124  *	@skc_refcnt: reference count
125  *
126  *	This is the minimal network layer representation of sockets, the header
127  *	for struct sock and struct inet_timewait_sock.
128  */
129 struct sock_common {
130 	/* skc_daddr and skc_rcv_saddr must be grouped :
131 	 * cf INET_MATCH() and INET_TW_MATCH()
132 	 */
133 	__be32			skc_daddr;
134 	__be32			skc_rcv_saddr;
135 
136 	union  {
137 		unsigned int	skc_hash;
138 		__u16		skc_u16hashes[2];
139 	};
140 	unsigned short		skc_family;
141 	volatile unsigned char	skc_state;
142 	unsigned char		skc_reuse;
143 	int			skc_bound_dev_if;
144 	union {
145 		struct hlist_node	skc_bind_node;
146 		struct hlist_nulls_node skc_portaddr_node;
147 	};
148 	struct proto		*skc_prot;
149 #ifdef CONFIG_NET_NS
150 	struct net	 	*skc_net;
151 #endif
152 	/*
153 	 * fields between dontcopy_begin/dontcopy_end
154 	 * are not copied in sock_copy()
155 	 */
156 	/* private: */
157 	int			skc_dontcopy_begin[0];
158 	/* public: */
159 	union {
160 		struct hlist_node	skc_node;
161 		struct hlist_nulls_node skc_nulls_node;
162 	};
163 	int			skc_tx_queue_mapping;
164 	atomic_t		skc_refcnt;
165 	/* private: */
166 	int                     skc_dontcopy_end[0];
167 	/* public: */
168 };
169 
170 /**
171   *	struct sock - network layer representation of sockets
172   *	@__sk_common: shared layout with inet_timewait_sock
173   *	@sk_shutdown: mask of %SEND_SHUTDOWN and/or %RCV_SHUTDOWN
174   *	@sk_userlocks: %SO_SNDBUF and %SO_RCVBUF settings
175   *	@sk_lock:	synchronizer
176   *	@sk_rcvbuf: size of receive buffer in bytes
177   *	@sk_wq: sock wait queue and async head
178   *	@sk_dst_cache: destination cache
179   *	@sk_dst_lock: destination cache lock
180   *	@sk_policy: flow policy
181   *	@sk_receive_queue: incoming packets
182   *	@sk_wmem_alloc: transmit queue bytes committed
183   *	@sk_write_queue: Packet sending queue
184   *	@sk_async_wait_queue: DMA copied packets
185   *	@sk_omem_alloc: "o" is "option" or "other"
186   *	@sk_wmem_queued: persistent queue size
187   *	@sk_forward_alloc: space allocated forward
188   *	@sk_allocation: allocation mode
189   *	@sk_sndbuf: size of send buffer in bytes
190   *	@sk_flags: %SO_LINGER (l_onoff), %SO_BROADCAST, %SO_KEEPALIVE,
191   *		   %SO_OOBINLINE settings, %SO_TIMESTAMPING settings
192   *	@sk_no_check: %SO_NO_CHECK setting, wether or not checkup packets
193   *	@sk_route_caps: route capabilities (e.g. %NETIF_F_TSO)
194   *	@sk_route_nocaps: forbidden route capabilities (e.g NETIF_F_GSO_MASK)
195   *	@sk_gso_type: GSO type (e.g. %SKB_GSO_TCPV4)
196   *	@sk_gso_max_size: Maximum GSO segment size to build
197   *	@sk_lingertime: %SO_LINGER l_linger setting
198   *	@sk_backlog: always used with the per-socket spinlock held
199   *	@sk_callback_lock: used with the callbacks in the end of this struct
200   *	@sk_error_queue: rarely used
201   *	@sk_prot_creator: sk_prot of original sock creator (see ipv6_setsockopt,
202   *			  IPV6_ADDRFORM for instance)
203   *	@sk_err: last error
204   *	@sk_err_soft: errors that don't cause failure but are the cause of a
205   *		      persistent failure not just 'timed out'
206   *	@sk_drops: raw/udp drops counter
207   *	@sk_ack_backlog: current listen backlog
208   *	@sk_max_ack_backlog: listen backlog set in listen()
209   *	@sk_priority: %SO_PRIORITY setting
210   *	@sk_type: socket type (%SOCK_STREAM, etc)
211   *	@sk_protocol: which protocol this socket belongs in this network family
212   *	@sk_peer_pid: &struct pid for this socket's peer
213   *	@sk_peer_cred: %SO_PEERCRED setting
214   *	@sk_rcvlowat: %SO_RCVLOWAT setting
215   *	@sk_rcvtimeo: %SO_RCVTIMEO setting
216   *	@sk_sndtimeo: %SO_SNDTIMEO setting
217   *	@sk_rxhash: flow hash received from netif layer
218   *	@sk_filter: socket filtering instructions
219   *	@sk_protinfo: private area, net family specific, when not using slab
220   *	@sk_timer: sock cleanup timer
221   *	@sk_stamp: time stamp of last packet received
222   *	@sk_socket: Identd and reporting IO signals
223   *	@sk_user_data: RPC layer private data
224   *	@sk_sndmsg_page: cached page for sendmsg
225   *	@sk_sndmsg_off: cached offset for sendmsg
226   *	@sk_send_head: front of stuff to transmit
227   *	@sk_security: used by security modules
228   *	@sk_mark: generic packet mark
229   *	@sk_classid: this socket's cgroup classid
230   *	@sk_write_pending: a write to stream socket waits to start
231   *	@sk_state_change: callback to indicate change in the state of the sock
232   *	@sk_data_ready: callback to indicate there is data to be processed
233   *	@sk_write_space: callback to indicate there is bf sending space available
234   *	@sk_error_report: callback to indicate errors (e.g. %MSG_ERRQUEUE)
235   *	@sk_backlog_rcv: callback to process the backlog
236   *	@sk_destruct: called at sock freeing time, i.e. when all refcnt == 0
237  */
238 struct sock {
239 	/*
240 	 * Now struct inet_timewait_sock also uses sock_common, so please just
241 	 * don't add nothing before this first member (__sk_common) --acme
242 	 */
243 	struct sock_common	__sk_common;
244 #define sk_node			__sk_common.skc_node
245 #define sk_nulls_node		__sk_common.skc_nulls_node
246 #define sk_refcnt		__sk_common.skc_refcnt
247 #define sk_tx_queue_mapping	__sk_common.skc_tx_queue_mapping
248 
249 #define sk_dontcopy_begin	__sk_common.skc_dontcopy_begin
250 #define sk_dontcopy_end		__sk_common.skc_dontcopy_end
251 #define sk_hash			__sk_common.skc_hash
252 #define sk_family		__sk_common.skc_family
253 #define sk_state		__sk_common.skc_state
254 #define sk_reuse		__sk_common.skc_reuse
255 #define sk_bound_dev_if		__sk_common.skc_bound_dev_if
256 #define sk_bind_node		__sk_common.skc_bind_node
257 #define sk_prot			__sk_common.skc_prot
258 #define sk_net			__sk_common.skc_net
259 	socket_lock_t		sk_lock;
260 	struct sk_buff_head	sk_receive_queue;
261 	/*
262 	 * The backlog queue is special, it is always used with
263 	 * the per-socket spinlock held and requires low latency
264 	 * access. Therefore we special case it's implementation.
265 	 * Note : rmem_alloc is in this structure to fill a hole
266 	 * on 64bit arches, not because its logically part of
267 	 * backlog.
268 	 */
269 	struct {
270 		atomic_t	rmem_alloc;
271 		int		len;
272 		struct sk_buff	*head;
273 		struct sk_buff	*tail;
274 	} sk_backlog;
275 #define sk_rmem_alloc sk_backlog.rmem_alloc
276 	int			sk_forward_alloc;
277 #ifdef CONFIG_RPS
278 	__u32			sk_rxhash;
279 #endif
280 	atomic_t		sk_drops;
281 	int			sk_rcvbuf;
282 
283 	struct sk_filter __rcu	*sk_filter;
284 	struct socket_wq __rcu	*sk_wq;
285 
286 #ifdef CONFIG_NET_DMA
287 	struct sk_buff_head	sk_async_wait_queue;
288 #endif
289 
290 #ifdef CONFIG_XFRM
291 	struct xfrm_policy	*sk_policy[2];
292 #endif
293 	unsigned long 		sk_flags;
294 	struct dst_entry	*sk_dst_cache;
295 	spinlock_t		sk_dst_lock;
296 	atomic_t		sk_wmem_alloc;
297 	atomic_t		sk_omem_alloc;
298 	int			sk_sndbuf;
299 	struct sk_buff_head	sk_write_queue;
300 	kmemcheck_bitfield_begin(flags);
301 	unsigned int		sk_shutdown  : 2,
302 				sk_no_check  : 2,
303 				sk_userlocks : 4,
304 				sk_protocol  : 8,
305 				sk_type      : 16;
306 	kmemcheck_bitfield_end(flags);
307 	int			sk_wmem_queued;
308 	gfp_t			sk_allocation;
309 	int			sk_route_caps;
310 	int			sk_route_nocaps;
311 	int			sk_gso_type;
312 	unsigned int		sk_gso_max_size;
313 	int			sk_rcvlowat;
314 	unsigned long	        sk_lingertime;
315 	struct sk_buff_head	sk_error_queue;
316 	struct proto		*sk_prot_creator;
317 	rwlock_t		sk_callback_lock;
318 	int			sk_err,
319 				sk_err_soft;
320 	unsigned short		sk_ack_backlog;
321 	unsigned short		sk_max_ack_backlog;
322 	__u32			sk_priority;
323 	struct pid		*sk_peer_pid;
324 	const struct cred	*sk_peer_cred;
325 	long			sk_rcvtimeo;
326 	long			sk_sndtimeo;
327 	void			*sk_protinfo;
328 	struct timer_list	sk_timer;
329 	ktime_t			sk_stamp;
330 	struct socket		*sk_socket;
331 	void			*sk_user_data;
332 	struct page		*sk_sndmsg_page;
333 	struct sk_buff		*sk_send_head;
334 	__u32			sk_sndmsg_off;
335 	int			sk_write_pending;
336 #ifdef CONFIG_SECURITY
337 	void			*sk_security;
338 #endif
339 	__u32			sk_mark;
340 	u32			sk_classid;
341 	void			(*sk_state_change)(struct sock *sk);
342 	void			(*sk_data_ready)(struct sock *sk, int bytes);
343 	void			(*sk_write_space)(struct sock *sk);
344 	void			(*sk_error_report)(struct sock *sk);
345   	int			(*sk_backlog_rcv)(struct sock *sk,
346 						  struct sk_buff *skb);
347 	void                    (*sk_destruct)(struct sock *sk);
348 };
349 
350 /*
351  * Hashed lists helper routines
352  */
353 static inline struct sock *sk_entry(const struct hlist_node *node)
354 {
355 	return hlist_entry(node, struct sock, sk_node);
356 }
357 
358 static inline struct sock *__sk_head(const struct hlist_head *head)
359 {
360 	return hlist_entry(head->first, struct sock, sk_node);
361 }
362 
363 static inline struct sock *sk_head(const struct hlist_head *head)
364 {
365 	return hlist_empty(head) ? NULL : __sk_head(head);
366 }
367 
368 static inline struct sock *__sk_nulls_head(const struct hlist_nulls_head *head)
369 {
370 	return hlist_nulls_entry(head->first, struct sock, sk_nulls_node);
371 }
372 
373 static inline struct sock *sk_nulls_head(const struct hlist_nulls_head *head)
374 {
375 	return hlist_nulls_empty(head) ? NULL : __sk_nulls_head(head);
376 }
377 
378 static inline struct sock *sk_next(const struct sock *sk)
379 {
380 	return sk->sk_node.next ?
381 		hlist_entry(sk->sk_node.next, struct sock, sk_node) : NULL;
382 }
383 
384 static inline struct sock *sk_nulls_next(const struct sock *sk)
385 {
386 	return (!is_a_nulls(sk->sk_nulls_node.next)) ?
387 		hlist_nulls_entry(sk->sk_nulls_node.next,
388 				  struct sock, sk_nulls_node) :
389 		NULL;
390 }
391 
392 static inline int sk_unhashed(const struct sock *sk)
393 {
394 	return hlist_unhashed(&sk->sk_node);
395 }
396 
397 static inline int sk_hashed(const struct sock *sk)
398 {
399 	return !sk_unhashed(sk);
400 }
401 
402 static __inline__ void sk_node_init(struct hlist_node *node)
403 {
404 	node->pprev = NULL;
405 }
406 
407 static __inline__ void sk_nulls_node_init(struct hlist_nulls_node *node)
408 {
409 	node->pprev = NULL;
410 }
411 
412 static __inline__ void __sk_del_node(struct sock *sk)
413 {
414 	__hlist_del(&sk->sk_node);
415 }
416 
417 /* NB: equivalent to hlist_del_init_rcu */
418 static __inline__ int __sk_del_node_init(struct sock *sk)
419 {
420 	if (sk_hashed(sk)) {
421 		__sk_del_node(sk);
422 		sk_node_init(&sk->sk_node);
423 		return 1;
424 	}
425 	return 0;
426 }
427 
428 /* Grab socket reference count. This operation is valid only
429    when sk is ALREADY grabbed f.e. it is found in hash table
430    or a list and the lookup is made under lock preventing hash table
431    modifications.
432  */
433 
434 static inline void sock_hold(struct sock *sk)
435 {
436 	atomic_inc(&sk->sk_refcnt);
437 }
438 
439 /* Ungrab socket in the context, which assumes that socket refcnt
440    cannot hit zero, f.e. it is true in context of any socketcall.
441  */
442 static inline void __sock_put(struct sock *sk)
443 {
444 	atomic_dec(&sk->sk_refcnt);
445 }
446 
447 static __inline__ int sk_del_node_init(struct sock *sk)
448 {
449 	int rc = __sk_del_node_init(sk);
450 
451 	if (rc) {
452 		/* paranoid for a while -acme */
453 		WARN_ON(atomic_read(&sk->sk_refcnt) == 1);
454 		__sock_put(sk);
455 	}
456 	return rc;
457 }
458 #define sk_del_node_init_rcu(sk)	sk_del_node_init(sk)
459 
460 static __inline__ int __sk_nulls_del_node_init_rcu(struct sock *sk)
461 {
462 	if (sk_hashed(sk)) {
463 		hlist_nulls_del_init_rcu(&sk->sk_nulls_node);
464 		return 1;
465 	}
466 	return 0;
467 }
468 
469 static __inline__ int sk_nulls_del_node_init_rcu(struct sock *sk)
470 {
471 	int rc = __sk_nulls_del_node_init_rcu(sk);
472 
473 	if (rc) {
474 		/* paranoid for a while -acme */
475 		WARN_ON(atomic_read(&sk->sk_refcnt) == 1);
476 		__sock_put(sk);
477 	}
478 	return rc;
479 }
480 
481 static __inline__ void __sk_add_node(struct sock *sk, struct hlist_head *list)
482 {
483 	hlist_add_head(&sk->sk_node, list);
484 }
485 
486 static __inline__ void sk_add_node(struct sock *sk, struct hlist_head *list)
487 {
488 	sock_hold(sk);
489 	__sk_add_node(sk, list);
490 }
491 
492 static __inline__ void sk_add_node_rcu(struct sock *sk, struct hlist_head *list)
493 {
494 	sock_hold(sk);
495 	hlist_add_head_rcu(&sk->sk_node, list);
496 }
497 
498 static __inline__ void __sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
499 {
500 	hlist_nulls_add_head_rcu(&sk->sk_nulls_node, list);
501 }
502 
503 static __inline__ void sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
504 {
505 	sock_hold(sk);
506 	__sk_nulls_add_node_rcu(sk, list);
507 }
508 
509 static __inline__ void __sk_del_bind_node(struct sock *sk)
510 {
511 	__hlist_del(&sk->sk_bind_node);
512 }
513 
514 static __inline__ void sk_add_bind_node(struct sock *sk,
515 					struct hlist_head *list)
516 {
517 	hlist_add_head(&sk->sk_bind_node, list);
518 }
519 
520 #define sk_for_each(__sk, node, list) \
521 	hlist_for_each_entry(__sk, node, list, sk_node)
522 #define sk_for_each_rcu(__sk, node, list) \
523 	hlist_for_each_entry_rcu(__sk, node, list, sk_node)
524 #define sk_nulls_for_each(__sk, node, list) \
525 	hlist_nulls_for_each_entry(__sk, node, list, sk_nulls_node)
526 #define sk_nulls_for_each_rcu(__sk, node, list) \
527 	hlist_nulls_for_each_entry_rcu(__sk, node, list, sk_nulls_node)
528 #define sk_for_each_from(__sk, node) \
529 	if (__sk && ({ node = &(__sk)->sk_node; 1; })) \
530 		hlist_for_each_entry_from(__sk, node, sk_node)
531 #define sk_nulls_for_each_from(__sk, node) \
532 	if (__sk && ({ node = &(__sk)->sk_nulls_node; 1; })) \
533 		hlist_nulls_for_each_entry_from(__sk, node, sk_nulls_node)
534 #define sk_for_each_safe(__sk, node, tmp, list) \
535 	hlist_for_each_entry_safe(__sk, node, tmp, list, sk_node)
536 #define sk_for_each_bound(__sk, node, list) \
537 	hlist_for_each_entry(__sk, node, list, sk_bind_node)
538 
539 /* Sock flags */
540 enum sock_flags {
541 	SOCK_DEAD,
542 	SOCK_DONE,
543 	SOCK_URGINLINE,
544 	SOCK_KEEPOPEN,
545 	SOCK_LINGER,
546 	SOCK_DESTROY,
547 	SOCK_BROADCAST,
548 	SOCK_TIMESTAMP,
549 	SOCK_ZAPPED,
550 	SOCK_USE_WRITE_QUEUE, /* whether to call sk->sk_write_space in sock_wfree */
551 	SOCK_DBG, /* %SO_DEBUG setting */
552 	SOCK_RCVTSTAMP, /* %SO_TIMESTAMP setting */
553 	SOCK_RCVTSTAMPNS, /* %SO_TIMESTAMPNS setting */
554 	SOCK_LOCALROUTE, /* route locally only, %SO_DONTROUTE setting */
555 	SOCK_QUEUE_SHRUNK, /* write queue has been shrunk recently */
556 	SOCK_TIMESTAMPING_TX_HARDWARE,  /* %SOF_TIMESTAMPING_TX_HARDWARE */
557 	SOCK_TIMESTAMPING_TX_SOFTWARE,  /* %SOF_TIMESTAMPING_TX_SOFTWARE */
558 	SOCK_TIMESTAMPING_RX_HARDWARE,  /* %SOF_TIMESTAMPING_RX_HARDWARE */
559 	SOCK_TIMESTAMPING_RX_SOFTWARE,  /* %SOF_TIMESTAMPING_RX_SOFTWARE */
560 	SOCK_TIMESTAMPING_SOFTWARE,     /* %SOF_TIMESTAMPING_SOFTWARE */
561 	SOCK_TIMESTAMPING_RAW_HARDWARE, /* %SOF_TIMESTAMPING_RAW_HARDWARE */
562 	SOCK_TIMESTAMPING_SYS_HARDWARE, /* %SOF_TIMESTAMPING_SYS_HARDWARE */
563 	SOCK_FASYNC, /* fasync() active */
564 	SOCK_RXQ_OVFL,
565 	SOCK_ZEROCOPY, /* buffers from userspace */
566 };
567 
568 static inline void sock_copy_flags(struct sock *nsk, struct sock *osk)
569 {
570 	nsk->sk_flags = osk->sk_flags;
571 }
572 
573 static inline void sock_set_flag(struct sock *sk, enum sock_flags flag)
574 {
575 	__set_bit(flag, &sk->sk_flags);
576 }
577 
578 static inline void sock_reset_flag(struct sock *sk, enum sock_flags flag)
579 {
580 	__clear_bit(flag, &sk->sk_flags);
581 }
582 
583 static inline int sock_flag(struct sock *sk, enum sock_flags flag)
584 {
585 	return test_bit(flag, &sk->sk_flags);
586 }
587 
588 static inline void sk_acceptq_removed(struct sock *sk)
589 {
590 	sk->sk_ack_backlog--;
591 }
592 
593 static inline void sk_acceptq_added(struct sock *sk)
594 {
595 	sk->sk_ack_backlog++;
596 }
597 
598 static inline int sk_acceptq_is_full(struct sock *sk)
599 {
600 	return sk->sk_ack_backlog > sk->sk_max_ack_backlog;
601 }
602 
603 /*
604  * Compute minimal free write space needed to queue new packets.
605  */
606 static inline int sk_stream_min_wspace(struct sock *sk)
607 {
608 	return sk->sk_wmem_queued >> 1;
609 }
610 
611 static inline int sk_stream_wspace(struct sock *sk)
612 {
613 	return sk->sk_sndbuf - sk->sk_wmem_queued;
614 }
615 
616 extern void sk_stream_write_space(struct sock *sk);
617 
618 static inline int sk_stream_memory_free(struct sock *sk)
619 {
620 	return sk->sk_wmem_queued < sk->sk_sndbuf;
621 }
622 
623 /* OOB backlog add */
624 static inline void __sk_add_backlog(struct sock *sk, struct sk_buff *skb)
625 {
626 	/* dont let skb dst not refcounted, we are going to leave rcu lock */
627 	skb_dst_force(skb);
628 
629 	if (!sk->sk_backlog.tail)
630 		sk->sk_backlog.head = skb;
631 	else
632 		sk->sk_backlog.tail->next = skb;
633 
634 	sk->sk_backlog.tail = skb;
635 	skb->next = NULL;
636 }
637 
638 /*
639  * Take into account size of receive queue and backlog queue
640  */
641 static inline bool sk_rcvqueues_full(const struct sock *sk, const struct sk_buff *skb)
642 {
643 	unsigned int qsize = sk->sk_backlog.len + atomic_read(&sk->sk_rmem_alloc);
644 
645 	return qsize + skb->truesize > sk->sk_rcvbuf;
646 }
647 
648 /* The per-socket spinlock must be held here. */
649 static inline __must_check int sk_add_backlog(struct sock *sk, struct sk_buff *skb)
650 {
651 	if (sk_rcvqueues_full(sk, skb))
652 		return -ENOBUFS;
653 
654 	__sk_add_backlog(sk, skb);
655 	sk->sk_backlog.len += skb->truesize;
656 	return 0;
657 }
658 
659 static inline int sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
660 {
661 	return sk->sk_backlog_rcv(sk, skb);
662 }
663 
664 static inline void sock_rps_record_flow(const struct sock *sk)
665 {
666 #ifdef CONFIG_RPS
667 	struct rps_sock_flow_table *sock_flow_table;
668 
669 	rcu_read_lock();
670 	sock_flow_table = rcu_dereference(rps_sock_flow_table);
671 	rps_record_sock_flow(sock_flow_table, sk->sk_rxhash);
672 	rcu_read_unlock();
673 #endif
674 }
675 
676 static inline void sock_rps_reset_flow(const struct sock *sk)
677 {
678 #ifdef CONFIG_RPS
679 	struct rps_sock_flow_table *sock_flow_table;
680 
681 	rcu_read_lock();
682 	sock_flow_table = rcu_dereference(rps_sock_flow_table);
683 	rps_reset_sock_flow(sock_flow_table, sk->sk_rxhash);
684 	rcu_read_unlock();
685 #endif
686 }
687 
688 static inline void sock_rps_save_rxhash(struct sock *sk,
689 					const struct sk_buff *skb)
690 {
691 #ifdef CONFIG_RPS
692 	if (unlikely(sk->sk_rxhash != skb->rxhash)) {
693 		sock_rps_reset_flow(sk);
694 		sk->sk_rxhash = skb->rxhash;
695 	}
696 #endif
697 }
698 
699 static inline void sock_rps_reset_rxhash(struct sock *sk)
700 {
701 #ifdef CONFIG_RPS
702 	sock_rps_reset_flow(sk);
703 	sk->sk_rxhash = 0;
704 #endif
705 }
706 
707 #define sk_wait_event(__sk, __timeo, __condition)			\
708 	({	int __rc;						\
709 		release_sock(__sk);					\
710 		__rc = __condition;					\
711 		if (!__rc) {						\
712 			*(__timeo) = schedule_timeout(*(__timeo));	\
713 		}							\
714 		lock_sock(__sk);					\
715 		__rc = __condition;					\
716 		__rc;							\
717 	})
718 
719 extern int sk_stream_wait_connect(struct sock *sk, long *timeo_p);
720 extern int sk_stream_wait_memory(struct sock *sk, long *timeo_p);
721 extern void sk_stream_wait_close(struct sock *sk, long timeo_p);
722 extern int sk_stream_error(struct sock *sk, int flags, int err);
723 extern void sk_stream_kill_queues(struct sock *sk);
724 
725 extern int sk_wait_data(struct sock *sk, long *timeo);
726 
727 struct request_sock_ops;
728 struct timewait_sock_ops;
729 struct inet_hashinfo;
730 struct raw_hashinfo;
731 struct module;
732 
733 /* Networking protocol blocks we attach to sockets.
734  * socket layer -> transport layer interface
735  * transport -> network interface is defined by struct inet_proto
736  */
737 struct proto {
738 	void			(*close)(struct sock *sk,
739 					long timeout);
740 	int			(*connect)(struct sock *sk,
741 				        struct sockaddr *uaddr,
742 					int addr_len);
743 	int			(*disconnect)(struct sock *sk, int flags);
744 
745 	struct sock *		(*accept) (struct sock *sk, int flags, int *err);
746 
747 	int			(*ioctl)(struct sock *sk, int cmd,
748 					 unsigned long arg);
749 	int			(*init)(struct sock *sk);
750 	void			(*destroy)(struct sock *sk);
751 	void			(*shutdown)(struct sock *sk, int how);
752 	int			(*setsockopt)(struct sock *sk, int level,
753 					int optname, char __user *optval,
754 					unsigned int optlen);
755 	int			(*getsockopt)(struct sock *sk, int level,
756 					int optname, char __user *optval,
757 					int __user *option);
758 #ifdef CONFIG_COMPAT
759 	int			(*compat_setsockopt)(struct sock *sk,
760 					int level,
761 					int optname, char __user *optval,
762 					unsigned int optlen);
763 	int			(*compat_getsockopt)(struct sock *sk,
764 					int level,
765 					int optname, char __user *optval,
766 					int __user *option);
767 	int			(*compat_ioctl)(struct sock *sk,
768 					unsigned int cmd, unsigned long arg);
769 #endif
770 	int			(*sendmsg)(struct kiocb *iocb, struct sock *sk,
771 					   struct msghdr *msg, size_t len);
772 	int			(*recvmsg)(struct kiocb *iocb, struct sock *sk,
773 					   struct msghdr *msg,
774 					size_t len, int noblock, int flags,
775 					int *addr_len);
776 	int			(*sendpage)(struct sock *sk, struct page *page,
777 					int offset, size_t size, int flags);
778 	int			(*bind)(struct sock *sk,
779 					struct sockaddr *uaddr, int addr_len);
780 
781 	int			(*backlog_rcv) (struct sock *sk,
782 						struct sk_buff *skb);
783 
784 	/* Keeping track of sk's, looking them up, and port selection methods. */
785 	void			(*hash)(struct sock *sk);
786 	void			(*unhash)(struct sock *sk);
787 	void			(*rehash)(struct sock *sk);
788 	int			(*get_port)(struct sock *sk, unsigned short snum);
789 	void			(*clear_sk)(struct sock *sk, int size);
790 
791 	/* Keeping track of sockets in use */
792 #ifdef CONFIG_PROC_FS
793 	unsigned int		inuse_idx;
794 #endif
795 
796 	/* Memory pressure */
797 	void			(*enter_memory_pressure)(struct sock *sk);
798 	atomic_long_t		*memory_allocated;	/* Current allocated memory. */
799 	struct percpu_counter	*sockets_allocated;	/* Current number of sockets. */
800 	/*
801 	 * Pressure flag: try to collapse.
802 	 * Technical note: it is used by multiple contexts non atomically.
803 	 * All the __sk_mem_schedule() is of this nature: accounting
804 	 * is strict, actions are advisory and have some latency.
805 	 */
806 	int			*memory_pressure;
807 	long			*sysctl_mem;
808 	int			*sysctl_wmem;
809 	int			*sysctl_rmem;
810 	int			max_header;
811 	bool			no_autobind;
812 
813 	struct kmem_cache	*slab;
814 	unsigned int		obj_size;
815 	int			slab_flags;
816 
817 	struct percpu_counter	*orphan_count;
818 
819 	struct request_sock_ops	*rsk_prot;
820 	struct timewait_sock_ops *twsk_prot;
821 
822 	union {
823 		struct inet_hashinfo	*hashinfo;
824 		struct udp_table	*udp_table;
825 		struct raw_hashinfo	*raw_hash;
826 	} h;
827 
828 	struct module		*owner;
829 
830 	char			name[32];
831 
832 	struct list_head	node;
833 #ifdef SOCK_REFCNT_DEBUG
834 	atomic_t		socks;
835 #endif
836 };
837 
838 extern int proto_register(struct proto *prot, int alloc_slab);
839 extern void proto_unregister(struct proto *prot);
840 
841 #ifdef SOCK_REFCNT_DEBUG
842 static inline void sk_refcnt_debug_inc(struct sock *sk)
843 {
844 	atomic_inc(&sk->sk_prot->socks);
845 }
846 
847 static inline void sk_refcnt_debug_dec(struct sock *sk)
848 {
849 	atomic_dec(&sk->sk_prot->socks);
850 	printk(KERN_DEBUG "%s socket %p released, %d are still alive\n",
851 	       sk->sk_prot->name, sk, atomic_read(&sk->sk_prot->socks));
852 }
853 
854 static inline void sk_refcnt_debug_release(const struct sock *sk)
855 {
856 	if (atomic_read(&sk->sk_refcnt) != 1)
857 		printk(KERN_DEBUG "Destruction of the %s socket %p delayed, refcnt=%d\n",
858 		       sk->sk_prot->name, sk, atomic_read(&sk->sk_refcnt));
859 }
860 #else /* SOCK_REFCNT_DEBUG */
861 #define sk_refcnt_debug_inc(sk) do { } while (0)
862 #define sk_refcnt_debug_dec(sk) do { } while (0)
863 #define sk_refcnt_debug_release(sk) do { } while (0)
864 #endif /* SOCK_REFCNT_DEBUG */
865 
866 
867 #ifdef CONFIG_PROC_FS
868 /* Called with local bh disabled */
869 extern void sock_prot_inuse_add(struct net *net, struct proto *prot, int inc);
870 extern int sock_prot_inuse_get(struct net *net, struct proto *proto);
871 #else
872 static void inline sock_prot_inuse_add(struct net *net, struct proto *prot,
873 		int inc)
874 {
875 }
876 #endif
877 
878 
879 /* With per-bucket locks this operation is not-atomic, so that
880  * this version is not worse.
881  */
882 static inline void __sk_prot_rehash(struct sock *sk)
883 {
884 	sk->sk_prot->unhash(sk);
885 	sk->sk_prot->hash(sk);
886 }
887 
888 void sk_prot_clear_portaddr_nulls(struct sock *sk, int size);
889 
890 /* About 10 seconds */
891 #define SOCK_DESTROY_TIME (10*HZ)
892 
893 /* Sockets 0-1023 can't be bound to unless you are superuser */
894 #define PROT_SOCK	1024
895 
896 #define SHUTDOWN_MASK	3
897 #define RCV_SHUTDOWN	1
898 #define SEND_SHUTDOWN	2
899 
900 #define SOCK_SNDBUF_LOCK	1
901 #define SOCK_RCVBUF_LOCK	2
902 #define SOCK_BINDADDR_LOCK	4
903 #define SOCK_BINDPORT_LOCK	8
904 
905 /* sock_iocb: used to kick off async processing of socket ios */
906 struct sock_iocb {
907 	struct list_head	list;
908 
909 	int			flags;
910 	int			size;
911 	struct socket		*sock;
912 	struct sock		*sk;
913 	struct scm_cookie	*scm;
914 	struct msghdr		*msg, async_msg;
915 	struct kiocb		*kiocb;
916 };
917 
918 static inline struct sock_iocb *kiocb_to_siocb(struct kiocb *iocb)
919 {
920 	return (struct sock_iocb *)iocb->private;
921 }
922 
923 static inline struct kiocb *siocb_to_kiocb(struct sock_iocb *si)
924 {
925 	return si->kiocb;
926 }
927 
928 struct socket_alloc {
929 	struct socket socket;
930 	struct inode vfs_inode;
931 };
932 
933 static inline struct socket *SOCKET_I(struct inode *inode)
934 {
935 	return &container_of(inode, struct socket_alloc, vfs_inode)->socket;
936 }
937 
938 static inline struct inode *SOCK_INODE(struct socket *socket)
939 {
940 	return &container_of(socket, struct socket_alloc, socket)->vfs_inode;
941 }
942 
943 /*
944  * Functions for memory accounting
945  */
946 extern int __sk_mem_schedule(struct sock *sk, int size, int kind);
947 extern void __sk_mem_reclaim(struct sock *sk);
948 
949 #define SK_MEM_QUANTUM ((int)PAGE_SIZE)
950 #define SK_MEM_QUANTUM_SHIFT ilog2(SK_MEM_QUANTUM)
951 #define SK_MEM_SEND	0
952 #define SK_MEM_RECV	1
953 
954 static inline int sk_mem_pages(int amt)
955 {
956 	return (amt + SK_MEM_QUANTUM - 1) >> SK_MEM_QUANTUM_SHIFT;
957 }
958 
959 static inline int sk_has_account(struct sock *sk)
960 {
961 	/* return true if protocol supports memory accounting */
962 	return !!sk->sk_prot->memory_allocated;
963 }
964 
965 static inline int sk_wmem_schedule(struct sock *sk, int size)
966 {
967 	if (!sk_has_account(sk))
968 		return 1;
969 	return size <= sk->sk_forward_alloc ||
970 		__sk_mem_schedule(sk, size, SK_MEM_SEND);
971 }
972 
973 static inline int sk_rmem_schedule(struct sock *sk, int size)
974 {
975 	if (!sk_has_account(sk))
976 		return 1;
977 	return size <= sk->sk_forward_alloc ||
978 		__sk_mem_schedule(sk, size, SK_MEM_RECV);
979 }
980 
981 static inline void sk_mem_reclaim(struct sock *sk)
982 {
983 	if (!sk_has_account(sk))
984 		return;
985 	if (sk->sk_forward_alloc >= SK_MEM_QUANTUM)
986 		__sk_mem_reclaim(sk);
987 }
988 
989 static inline void sk_mem_reclaim_partial(struct sock *sk)
990 {
991 	if (!sk_has_account(sk))
992 		return;
993 	if (sk->sk_forward_alloc > SK_MEM_QUANTUM)
994 		__sk_mem_reclaim(sk);
995 }
996 
997 static inline void sk_mem_charge(struct sock *sk, int size)
998 {
999 	if (!sk_has_account(sk))
1000 		return;
1001 	sk->sk_forward_alloc -= size;
1002 }
1003 
1004 static inline void sk_mem_uncharge(struct sock *sk, int size)
1005 {
1006 	if (!sk_has_account(sk))
1007 		return;
1008 	sk->sk_forward_alloc += size;
1009 }
1010 
1011 static inline void sk_wmem_free_skb(struct sock *sk, struct sk_buff *skb)
1012 {
1013 	sock_set_flag(sk, SOCK_QUEUE_SHRUNK);
1014 	sk->sk_wmem_queued -= skb->truesize;
1015 	sk_mem_uncharge(sk, skb->truesize);
1016 	__kfree_skb(skb);
1017 }
1018 
1019 /* Used by processes to "lock" a socket state, so that
1020  * interrupts and bottom half handlers won't change it
1021  * from under us. It essentially blocks any incoming
1022  * packets, so that we won't get any new data or any
1023  * packets that change the state of the socket.
1024  *
1025  * While locked, BH processing will add new packets to
1026  * the backlog queue.  This queue is processed by the
1027  * owner of the socket lock right before it is released.
1028  *
1029  * Since ~2.3.5 it is also exclusive sleep lock serializing
1030  * accesses from user process context.
1031  */
1032 #define sock_owned_by_user(sk)	((sk)->sk_lock.owned)
1033 
1034 /*
1035  * Macro so as to not evaluate some arguments when
1036  * lockdep is not enabled.
1037  *
1038  * Mark both the sk_lock and the sk_lock.slock as a
1039  * per-address-family lock class.
1040  */
1041 #define sock_lock_init_class_and_name(sk, sname, skey, name, key) 	\
1042 do {									\
1043 	sk->sk_lock.owned = 0;						\
1044 	init_waitqueue_head(&sk->sk_lock.wq);				\
1045 	spin_lock_init(&(sk)->sk_lock.slock);				\
1046 	debug_check_no_locks_freed((void *)&(sk)->sk_lock,		\
1047 			sizeof((sk)->sk_lock));				\
1048 	lockdep_set_class_and_name(&(sk)->sk_lock.slock,		\
1049 		       	(skey), (sname));				\
1050 	lockdep_init_map(&(sk)->sk_lock.dep_map, (name), (key), 0);	\
1051 } while (0)
1052 
1053 extern void lock_sock_nested(struct sock *sk, int subclass);
1054 
1055 static inline void lock_sock(struct sock *sk)
1056 {
1057 	lock_sock_nested(sk, 0);
1058 }
1059 
1060 extern void release_sock(struct sock *sk);
1061 
1062 /* BH context may only use the following locking interface. */
1063 #define bh_lock_sock(__sk)	spin_lock(&((__sk)->sk_lock.slock))
1064 #define bh_lock_sock_nested(__sk) \
1065 				spin_lock_nested(&((__sk)->sk_lock.slock), \
1066 				SINGLE_DEPTH_NESTING)
1067 #define bh_unlock_sock(__sk)	spin_unlock(&((__sk)->sk_lock.slock))
1068 
1069 extern bool lock_sock_fast(struct sock *sk);
1070 /**
1071  * unlock_sock_fast - complement of lock_sock_fast
1072  * @sk: socket
1073  * @slow: slow mode
1074  *
1075  * fast unlock socket for user context.
1076  * If slow mode is on, we call regular release_sock()
1077  */
1078 static inline void unlock_sock_fast(struct sock *sk, bool slow)
1079 {
1080 	if (slow)
1081 		release_sock(sk);
1082 	else
1083 		spin_unlock_bh(&sk->sk_lock.slock);
1084 }
1085 
1086 
1087 extern struct sock		*sk_alloc(struct net *net, int family,
1088 					  gfp_t priority,
1089 					  struct proto *prot);
1090 extern void			sk_free(struct sock *sk);
1091 extern void			sk_release_kernel(struct sock *sk);
1092 extern struct sock		*sk_clone(const struct sock *sk,
1093 					  const gfp_t priority);
1094 
1095 extern struct sk_buff		*sock_wmalloc(struct sock *sk,
1096 					      unsigned long size, int force,
1097 					      gfp_t priority);
1098 extern struct sk_buff		*sock_rmalloc(struct sock *sk,
1099 					      unsigned long size, int force,
1100 					      gfp_t priority);
1101 extern void			sock_wfree(struct sk_buff *skb);
1102 extern void			sock_rfree(struct sk_buff *skb);
1103 
1104 extern int			sock_setsockopt(struct socket *sock, int level,
1105 						int op, char __user *optval,
1106 						unsigned int optlen);
1107 
1108 extern int			sock_getsockopt(struct socket *sock, int level,
1109 						int op, char __user *optval,
1110 						int __user *optlen);
1111 extern struct sk_buff 		*sock_alloc_send_skb(struct sock *sk,
1112 						     unsigned long size,
1113 						     int noblock,
1114 						     int *errcode);
1115 extern struct sk_buff 		*sock_alloc_send_pskb(struct sock *sk,
1116 						      unsigned long header_len,
1117 						      unsigned long data_len,
1118 						      int noblock,
1119 						      int *errcode);
1120 extern void *sock_kmalloc(struct sock *sk, int size,
1121 			  gfp_t priority);
1122 extern void sock_kfree_s(struct sock *sk, void *mem, int size);
1123 extern void sk_send_sigurg(struct sock *sk);
1124 
1125 #ifdef CONFIG_CGROUPS
1126 extern void sock_update_classid(struct sock *sk);
1127 #else
1128 static inline void sock_update_classid(struct sock *sk)
1129 {
1130 }
1131 #endif
1132 
1133 /*
1134  * Functions to fill in entries in struct proto_ops when a protocol
1135  * does not implement a particular function.
1136  */
1137 extern int                      sock_no_bind(struct socket *,
1138 					     struct sockaddr *, int);
1139 extern int                      sock_no_connect(struct socket *,
1140 						struct sockaddr *, int, int);
1141 extern int                      sock_no_socketpair(struct socket *,
1142 						   struct socket *);
1143 extern int                      sock_no_accept(struct socket *,
1144 					       struct socket *, int);
1145 extern int                      sock_no_getname(struct socket *,
1146 						struct sockaddr *, int *, int);
1147 extern unsigned int             sock_no_poll(struct file *, struct socket *,
1148 					     struct poll_table_struct *);
1149 extern int                      sock_no_ioctl(struct socket *, unsigned int,
1150 					      unsigned long);
1151 extern int			sock_no_listen(struct socket *, int);
1152 extern int                      sock_no_shutdown(struct socket *, int);
1153 extern int			sock_no_getsockopt(struct socket *, int , int,
1154 						   char __user *, int __user *);
1155 extern int			sock_no_setsockopt(struct socket *, int, int,
1156 						   char __user *, unsigned int);
1157 extern int                      sock_no_sendmsg(struct kiocb *, struct socket *,
1158 						struct msghdr *, size_t);
1159 extern int                      sock_no_recvmsg(struct kiocb *, struct socket *,
1160 						struct msghdr *, size_t, int);
1161 extern int			sock_no_mmap(struct file *file,
1162 					     struct socket *sock,
1163 					     struct vm_area_struct *vma);
1164 extern ssize_t			sock_no_sendpage(struct socket *sock,
1165 						struct page *page,
1166 						int offset, size_t size,
1167 						int flags);
1168 
1169 /*
1170  * Functions to fill in entries in struct proto_ops when a protocol
1171  * uses the inet style.
1172  */
1173 extern int sock_common_getsockopt(struct socket *sock, int level, int optname,
1174 				  char __user *optval, int __user *optlen);
1175 extern int sock_common_recvmsg(struct kiocb *iocb, struct socket *sock,
1176 			       struct msghdr *msg, size_t size, int flags);
1177 extern int sock_common_setsockopt(struct socket *sock, int level, int optname,
1178 				  char __user *optval, unsigned int optlen);
1179 extern int compat_sock_common_getsockopt(struct socket *sock, int level,
1180 		int optname, char __user *optval, int __user *optlen);
1181 extern int compat_sock_common_setsockopt(struct socket *sock, int level,
1182 		int optname, char __user *optval, unsigned int optlen);
1183 
1184 extern void sk_common_release(struct sock *sk);
1185 
1186 /*
1187  *	Default socket callbacks and setup code
1188  */
1189 
1190 /* Initialise core socket variables */
1191 extern void sock_init_data(struct socket *sock, struct sock *sk);
1192 
1193 extern void sk_filter_release_rcu(struct rcu_head *rcu);
1194 
1195 /**
1196  *	sk_filter_release - release a socket filter
1197  *	@fp: filter to remove
1198  *
1199  *	Remove a filter from a socket and release its resources.
1200  */
1201 
1202 static inline void sk_filter_release(struct sk_filter *fp)
1203 {
1204 	if (atomic_dec_and_test(&fp->refcnt))
1205 		call_rcu(&fp->rcu, sk_filter_release_rcu);
1206 }
1207 
1208 static inline void sk_filter_uncharge(struct sock *sk, struct sk_filter *fp)
1209 {
1210 	unsigned int size = sk_filter_len(fp);
1211 
1212 	atomic_sub(size, &sk->sk_omem_alloc);
1213 	sk_filter_release(fp);
1214 }
1215 
1216 static inline void sk_filter_charge(struct sock *sk, struct sk_filter *fp)
1217 {
1218 	atomic_inc(&fp->refcnt);
1219 	atomic_add(sk_filter_len(fp), &sk->sk_omem_alloc);
1220 }
1221 
1222 /*
1223  * Socket reference counting postulates.
1224  *
1225  * * Each user of socket SHOULD hold a reference count.
1226  * * Each access point to socket (an hash table bucket, reference from a list,
1227  *   running timer, skb in flight MUST hold a reference count.
1228  * * When reference count hits 0, it means it will never increase back.
1229  * * When reference count hits 0, it means that no references from
1230  *   outside exist to this socket and current process on current CPU
1231  *   is last user and may/should destroy this socket.
1232  * * sk_free is called from any context: process, BH, IRQ. When
1233  *   it is called, socket has no references from outside -> sk_free
1234  *   may release descendant resources allocated by the socket, but
1235  *   to the time when it is called, socket is NOT referenced by any
1236  *   hash tables, lists etc.
1237  * * Packets, delivered from outside (from network or from another process)
1238  *   and enqueued on receive/error queues SHOULD NOT grab reference count,
1239  *   when they sit in queue. Otherwise, packets will leak to hole, when
1240  *   socket is looked up by one cpu and unhasing is made by another CPU.
1241  *   It is true for udp/raw, netlink (leak to receive and error queues), tcp
1242  *   (leak to backlog). Packet socket does all the processing inside
1243  *   BR_NETPROTO_LOCK, so that it has not this race condition. UNIX sockets
1244  *   use separate SMP lock, so that they are prone too.
1245  */
1246 
1247 /* Ungrab socket and destroy it, if it was the last reference. */
1248 static inline void sock_put(struct sock *sk)
1249 {
1250 	if (atomic_dec_and_test(&sk->sk_refcnt))
1251 		sk_free(sk);
1252 }
1253 
1254 extern int sk_receive_skb(struct sock *sk, struct sk_buff *skb,
1255 			  const int nested);
1256 
1257 static inline void sk_tx_queue_set(struct sock *sk, int tx_queue)
1258 {
1259 	sk->sk_tx_queue_mapping = tx_queue;
1260 }
1261 
1262 static inline void sk_tx_queue_clear(struct sock *sk)
1263 {
1264 	sk->sk_tx_queue_mapping = -1;
1265 }
1266 
1267 static inline int sk_tx_queue_get(const struct sock *sk)
1268 {
1269 	return sk ? sk->sk_tx_queue_mapping : -1;
1270 }
1271 
1272 static inline void sk_set_socket(struct sock *sk, struct socket *sock)
1273 {
1274 	sk_tx_queue_clear(sk);
1275 	sk->sk_socket = sock;
1276 }
1277 
1278 static inline wait_queue_head_t *sk_sleep(struct sock *sk)
1279 {
1280 	BUILD_BUG_ON(offsetof(struct socket_wq, wait) != 0);
1281 	return &rcu_dereference_raw(sk->sk_wq)->wait;
1282 }
1283 /* Detach socket from process context.
1284  * Announce socket dead, detach it from wait queue and inode.
1285  * Note that parent inode held reference count on this struct sock,
1286  * we do not release it in this function, because protocol
1287  * probably wants some additional cleanups or even continuing
1288  * to work with this socket (TCP).
1289  */
1290 static inline void sock_orphan(struct sock *sk)
1291 {
1292 	write_lock_bh(&sk->sk_callback_lock);
1293 	sock_set_flag(sk, SOCK_DEAD);
1294 	sk_set_socket(sk, NULL);
1295 	sk->sk_wq  = NULL;
1296 	write_unlock_bh(&sk->sk_callback_lock);
1297 }
1298 
1299 static inline void sock_graft(struct sock *sk, struct socket *parent)
1300 {
1301 	write_lock_bh(&sk->sk_callback_lock);
1302 	sk->sk_wq = parent->wq;
1303 	parent->sk = sk;
1304 	sk_set_socket(sk, parent);
1305 	security_sock_graft(sk, parent);
1306 	write_unlock_bh(&sk->sk_callback_lock);
1307 }
1308 
1309 extern int sock_i_uid(struct sock *sk);
1310 extern unsigned long sock_i_ino(struct sock *sk);
1311 
1312 static inline struct dst_entry *
1313 __sk_dst_get(struct sock *sk)
1314 {
1315 	return rcu_dereference_check(sk->sk_dst_cache, sock_owned_by_user(sk) ||
1316 						       lockdep_is_held(&sk->sk_lock.slock));
1317 }
1318 
1319 static inline struct dst_entry *
1320 sk_dst_get(struct sock *sk)
1321 {
1322 	struct dst_entry *dst;
1323 
1324 	rcu_read_lock();
1325 	dst = rcu_dereference(sk->sk_dst_cache);
1326 	if (dst)
1327 		dst_hold(dst);
1328 	rcu_read_unlock();
1329 	return dst;
1330 }
1331 
1332 extern void sk_reset_txq(struct sock *sk);
1333 
1334 static inline void dst_negative_advice(struct sock *sk)
1335 {
1336 	struct dst_entry *ndst, *dst = __sk_dst_get(sk);
1337 
1338 	if (dst && dst->ops->negative_advice) {
1339 		ndst = dst->ops->negative_advice(dst);
1340 
1341 		if (ndst != dst) {
1342 			rcu_assign_pointer(sk->sk_dst_cache, ndst);
1343 			sk_reset_txq(sk);
1344 		}
1345 	}
1346 }
1347 
1348 static inline void
1349 __sk_dst_set(struct sock *sk, struct dst_entry *dst)
1350 {
1351 	struct dst_entry *old_dst;
1352 
1353 	sk_tx_queue_clear(sk);
1354 	/*
1355 	 * This can be called while sk is owned by the caller only,
1356 	 * with no state that can be checked in a rcu_dereference_check() cond
1357 	 */
1358 	old_dst = rcu_dereference_raw(sk->sk_dst_cache);
1359 	rcu_assign_pointer(sk->sk_dst_cache, dst);
1360 	dst_release(old_dst);
1361 }
1362 
1363 static inline void
1364 sk_dst_set(struct sock *sk, struct dst_entry *dst)
1365 {
1366 	spin_lock(&sk->sk_dst_lock);
1367 	__sk_dst_set(sk, dst);
1368 	spin_unlock(&sk->sk_dst_lock);
1369 }
1370 
1371 static inline void
1372 __sk_dst_reset(struct sock *sk)
1373 {
1374 	__sk_dst_set(sk, NULL);
1375 }
1376 
1377 static inline void
1378 sk_dst_reset(struct sock *sk)
1379 {
1380 	spin_lock(&sk->sk_dst_lock);
1381 	__sk_dst_reset(sk);
1382 	spin_unlock(&sk->sk_dst_lock);
1383 }
1384 
1385 extern struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie);
1386 
1387 extern struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie);
1388 
1389 static inline int sk_can_gso(const struct sock *sk)
1390 {
1391 	return net_gso_ok(sk->sk_route_caps, sk->sk_gso_type);
1392 }
1393 
1394 extern void sk_setup_caps(struct sock *sk, struct dst_entry *dst);
1395 
1396 static inline void sk_nocaps_add(struct sock *sk, int flags)
1397 {
1398 	sk->sk_route_nocaps |= flags;
1399 	sk->sk_route_caps &= ~flags;
1400 }
1401 
1402 static inline int skb_do_copy_data_nocache(struct sock *sk, struct sk_buff *skb,
1403 					   char __user *from, char *to,
1404 					   int copy, int offset)
1405 {
1406 	if (skb->ip_summed == CHECKSUM_NONE) {
1407 		int err = 0;
1408 		__wsum csum = csum_and_copy_from_user(from, to, copy, 0, &err);
1409 		if (err)
1410 			return err;
1411 		skb->csum = csum_block_add(skb->csum, csum, offset);
1412 	} else if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY) {
1413 		if (!access_ok(VERIFY_READ, from, copy) ||
1414 		    __copy_from_user_nocache(to, from, copy))
1415 			return -EFAULT;
1416 	} else if (copy_from_user(to, from, copy))
1417 		return -EFAULT;
1418 
1419 	return 0;
1420 }
1421 
1422 static inline int skb_add_data_nocache(struct sock *sk, struct sk_buff *skb,
1423 				       char __user *from, int copy)
1424 {
1425 	int err, offset = skb->len;
1426 
1427 	err = skb_do_copy_data_nocache(sk, skb, from, skb_put(skb, copy),
1428 				       copy, offset);
1429 	if (err)
1430 		__skb_trim(skb, offset);
1431 
1432 	return err;
1433 }
1434 
1435 static inline int skb_copy_to_page_nocache(struct sock *sk, char __user *from,
1436 					   struct sk_buff *skb,
1437 					   struct page *page,
1438 					   int off, int copy)
1439 {
1440 	int err;
1441 
1442 	err = skb_do_copy_data_nocache(sk, skb, from, page_address(page) + off,
1443 				       copy, skb->len);
1444 	if (err)
1445 		return err;
1446 
1447 	skb->len	     += copy;
1448 	skb->data_len	     += copy;
1449 	skb->truesize	     += copy;
1450 	sk->sk_wmem_queued   += copy;
1451 	sk_mem_charge(sk, copy);
1452 	return 0;
1453 }
1454 
1455 static inline int skb_copy_to_page(struct sock *sk, char __user *from,
1456 				   struct sk_buff *skb, struct page *page,
1457 				   int off, int copy)
1458 {
1459 	if (skb->ip_summed == CHECKSUM_NONE) {
1460 		int err = 0;
1461 		__wsum csum = csum_and_copy_from_user(from,
1462 						     page_address(page) + off,
1463 							    copy, 0, &err);
1464 		if (err)
1465 			return err;
1466 		skb->csum = csum_block_add(skb->csum, csum, skb->len);
1467 	} else if (copy_from_user(page_address(page) + off, from, copy))
1468 		return -EFAULT;
1469 
1470 	skb->len	     += copy;
1471 	skb->data_len	     += copy;
1472 	skb->truesize	     += copy;
1473 	sk->sk_wmem_queued   += copy;
1474 	sk_mem_charge(sk, copy);
1475 	return 0;
1476 }
1477 
1478 /**
1479  * sk_wmem_alloc_get - returns write allocations
1480  * @sk: socket
1481  *
1482  * Returns sk_wmem_alloc minus initial offset of one
1483  */
1484 static inline int sk_wmem_alloc_get(const struct sock *sk)
1485 {
1486 	return atomic_read(&sk->sk_wmem_alloc) - 1;
1487 }
1488 
1489 /**
1490  * sk_rmem_alloc_get - returns read allocations
1491  * @sk: socket
1492  *
1493  * Returns sk_rmem_alloc
1494  */
1495 static inline int sk_rmem_alloc_get(const struct sock *sk)
1496 {
1497 	return atomic_read(&sk->sk_rmem_alloc);
1498 }
1499 
1500 /**
1501  * sk_has_allocations - check if allocations are outstanding
1502  * @sk: socket
1503  *
1504  * Returns true if socket has write or read allocations
1505  */
1506 static inline int sk_has_allocations(const struct sock *sk)
1507 {
1508 	return sk_wmem_alloc_get(sk) || sk_rmem_alloc_get(sk);
1509 }
1510 
1511 /**
1512  * wq_has_sleeper - check if there are any waiting processes
1513  * @wq: struct socket_wq
1514  *
1515  * Returns true if socket_wq has waiting processes
1516  *
1517  * The purpose of the wq_has_sleeper and sock_poll_wait is to wrap the memory
1518  * barrier call. They were added due to the race found within the tcp code.
1519  *
1520  * Consider following tcp code paths:
1521  *
1522  * CPU1                  CPU2
1523  *
1524  * sys_select            receive packet
1525  *   ...                 ...
1526  *   __add_wait_queue    update tp->rcv_nxt
1527  *   ...                 ...
1528  *   tp->rcv_nxt check   sock_def_readable
1529  *   ...                 {
1530  *   schedule               rcu_read_lock();
1531  *                          wq = rcu_dereference(sk->sk_wq);
1532  *                          if (wq && waitqueue_active(&wq->wait))
1533  *                              wake_up_interruptible(&wq->wait)
1534  *                          ...
1535  *                       }
1536  *
1537  * The race for tcp fires when the __add_wait_queue changes done by CPU1 stay
1538  * in its cache, and so does the tp->rcv_nxt update on CPU2 side.  The CPU1
1539  * could then endup calling schedule and sleep forever if there are no more
1540  * data on the socket.
1541  *
1542  */
1543 static inline bool wq_has_sleeper(struct socket_wq *wq)
1544 {
1545 
1546 	/*
1547 	 * We need to be sure we are in sync with the
1548 	 * add_wait_queue modifications to the wait queue.
1549 	 *
1550 	 * This memory barrier is paired in the sock_poll_wait.
1551 	 */
1552 	smp_mb();
1553 	return wq && waitqueue_active(&wq->wait);
1554 }
1555 
1556 /**
1557  * sock_poll_wait - place memory barrier behind the poll_wait call.
1558  * @filp:           file
1559  * @wait_address:   socket wait queue
1560  * @p:              poll_table
1561  *
1562  * See the comments in the wq_has_sleeper function.
1563  */
1564 static inline void sock_poll_wait(struct file *filp,
1565 		wait_queue_head_t *wait_address, poll_table *p)
1566 {
1567 	if (p && wait_address) {
1568 		poll_wait(filp, wait_address, p);
1569 		/*
1570 		 * We need to be sure we are in sync with the
1571 		 * socket flags modification.
1572 		 *
1573 		 * This memory barrier is paired in the wq_has_sleeper.
1574 		*/
1575 		smp_mb();
1576 	}
1577 }
1578 
1579 /*
1580  * 	Queue a received datagram if it will fit. Stream and sequenced
1581  *	protocols can't normally use this as they need to fit buffers in
1582  *	and play with them.
1583  *
1584  * 	Inlined as it's very short and called for pretty much every
1585  *	packet ever received.
1586  */
1587 
1588 static inline void skb_set_owner_w(struct sk_buff *skb, struct sock *sk)
1589 {
1590 	skb_orphan(skb);
1591 	skb->sk = sk;
1592 	skb->destructor = sock_wfree;
1593 	/*
1594 	 * We used to take a refcount on sk, but following operation
1595 	 * is enough to guarantee sk_free() wont free this sock until
1596 	 * all in-flight packets are completed
1597 	 */
1598 	atomic_add(skb->truesize, &sk->sk_wmem_alloc);
1599 }
1600 
1601 static inline void skb_set_owner_r(struct sk_buff *skb, struct sock *sk)
1602 {
1603 	skb_orphan(skb);
1604 	skb->sk = sk;
1605 	skb->destructor = sock_rfree;
1606 	atomic_add(skb->truesize, &sk->sk_rmem_alloc);
1607 	sk_mem_charge(sk, skb->truesize);
1608 }
1609 
1610 extern void sk_reset_timer(struct sock *sk, struct timer_list* timer,
1611 			   unsigned long expires);
1612 
1613 extern void sk_stop_timer(struct sock *sk, struct timer_list* timer);
1614 
1615 extern int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
1616 
1617 extern int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb);
1618 
1619 /*
1620  *	Recover an error report and clear atomically
1621  */
1622 
1623 static inline int sock_error(struct sock *sk)
1624 {
1625 	int err;
1626 	if (likely(!sk->sk_err))
1627 		return 0;
1628 	err = xchg(&sk->sk_err, 0);
1629 	return -err;
1630 }
1631 
1632 static inline unsigned long sock_wspace(struct sock *sk)
1633 {
1634 	int amt = 0;
1635 
1636 	if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
1637 		amt = sk->sk_sndbuf - atomic_read(&sk->sk_wmem_alloc);
1638 		if (amt < 0)
1639 			amt = 0;
1640 	}
1641 	return amt;
1642 }
1643 
1644 static inline void sk_wake_async(struct sock *sk, int how, int band)
1645 {
1646 	if (sock_flag(sk, SOCK_FASYNC))
1647 		sock_wake_async(sk->sk_socket, how, band);
1648 }
1649 
1650 #define SOCK_MIN_SNDBUF 2048
1651 /*
1652  * Since sk_rmem_alloc sums skb->truesize, even a small frame might need
1653  * sizeof(sk_buff) + MTU + padding, unless net driver perform copybreak
1654  */
1655 #define SOCK_MIN_RCVBUF (2048 + sizeof(struct sk_buff))
1656 
1657 static inline void sk_stream_moderate_sndbuf(struct sock *sk)
1658 {
1659 	if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK)) {
1660 		sk->sk_sndbuf = min(sk->sk_sndbuf, sk->sk_wmem_queued >> 1);
1661 		sk->sk_sndbuf = max(sk->sk_sndbuf, SOCK_MIN_SNDBUF);
1662 	}
1663 }
1664 
1665 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp);
1666 
1667 static inline struct page *sk_stream_alloc_page(struct sock *sk)
1668 {
1669 	struct page *page = NULL;
1670 
1671 	page = alloc_pages(sk->sk_allocation, 0);
1672 	if (!page) {
1673 		sk->sk_prot->enter_memory_pressure(sk);
1674 		sk_stream_moderate_sndbuf(sk);
1675 	}
1676 	return page;
1677 }
1678 
1679 /*
1680  *	Default write policy as shown to user space via poll/select/SIGIO
1681  */
1682 static inline int sock_writeable(const struct sock *sk)
1683 {
1684 	return atomic_read(&sk->sk_wmem_alloc) < (sk->sk_sndbuf >> 1);
1685 }
1686 
1687 static inline gfp_t gfp_any(void)
1688 {
1689 	return in_softirq() ? GFP_ATOMIC : GFP_KERNEL;
1690 }
1691 
1692 static inline long sock_rcvtimeo(const struct sock *sk, int noblock)
1693 {
1694 	return noblock ? 0 : sk->sk_rcvtimeo;
1695 }
1696 
1697 static inline long sock_sndtimeo(const struct sock *sk, int noblock)
1698 {
1699 	return noblock ? 0 : sk->sk_sndtimeo;
1700 }
1701 
1702 static inline int sock_rcvlowat(const struct sock *sk, int waitall, int len)
1703 {
1704 	return (waitall ? len : min_t(int, sk->sk_rcvlowat, len)) ? : 1;
1705 }
1706 
1707 /* Alas, with timeout socket operations are not restartable.
1708  * Compare this to poll().
1709  */
1710 static inline int sock_intr_errno(long timeo)
1711 {
1712 	return timeo == MAX_SCHEDULE_TIMEOUT ? -ERESTARTSYS : -EINTR;
1713 }
1714 
1715 extern void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
1716 	struct sk_buff *skb);
1717 
1718 static __inline__ void
1719 sock_recv_timestamp(struct msghdr *msg, struct sock *sk, struct sk_buff *skb)
1720 {
1721 	ktime_t kt = skb->tstamp;
1722 	struct skb_shared_hwtstamps *hwtstamps = skb_hwtstamps(skb);
1723 
1724 	/*
1725 	 * generate control messages if
1726 	 * - receive time stamping in software requested (SOCK_RCVTSTAMP
1727 	 *   or SOCK_TIMESTAMPING_RX_SOFTWARE)
1728 	 * - software time stamp available and wanted
1729 	 *   (SOCK_TIMESTAMPING_SOFTWARE)
1730 	 * - hardware time stamps available and wanted
1731 	 *   (SOCK_TIMESTAMPING_SYS_HARDWARE or
1732 	 *   SOCK_TIMESTAMPING_RAW_HARDWARE)
1733 	 */
1734 	if (sock_flag(sk, SOCK_RCVTSTAMP) ||
1735 	    sock_flag(sk, SOCK_TIMESTAMPING_RX_SOFTWARE) ||
1736 	    (kt.tv64 && sock_flag(sk, SOCK_TIMESTAMPING_SOFTWARE)) ||
1737 	    (hwtstamps->hwtstamp.tv64 &&
1738 	     sock_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE)) ||
1739 	    (hwtstamps->syststamp.tv64 &&
1740 	     sock_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE)))
1741 		__sock_recv_timestamp(msg, sk, skb);
1742 	else
1743 		sk->sk_stamp = kt;
1744 }
1745 
1746 extern void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
1747 				     struct sk_buff *skb);
1748 
1749 static inline void sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
1750 					  struct sk_buff *skb)
1751 {
1752 #define FLAGS_TS_OR_DROPS ((1UL << SOCK_RXQ_OVFL)			| \
1753 			   (1UL << SOCK_RCVTSTAMP)			| \
1754 			   (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE)	| \
1755 			   (1UL << SOCK_TIMESTAMPING_SOFTWARE)		| \
1756 			   (1UL << SOCK_TIMESTAMPING_RAW_HARDWARE) 	| \
1757 			   (1UL << SOCK_TIMESTAMPING_SYS_HARDWARE))
1758 
1759 	if (sk->sk_flags & FLAGS_TS_OR_DROPS)
1760 		__sock_recv_ts_and_drops(msg, sk, skb);
1761 	else
1762 		sk->sk_stamp = skb->tstamp;
1763 }
1764 
1765 /**
1766  * sock_tx_timestamp - checks whether the outgoing packet is to be time stamped
1767  * @sk:		socket sending this packet
1768  * @tx_flags:	filled with instructions for time stamping
1769  *
1770  * Currently only depends on SOCK_TIMESTAMPING* flags. Returns error code if
1771  * parameters are invalid.
1772  */
1773 extern int sock_tx_timestamp(struct sock *sk, __u8 *tx_flags);
1774 
1775 /**
1776  * sk_eat_skb - Release a skb if it is no longer needed
1777  * @sk: socket to eat this skb from
1778  * @skb: socket buffer to eat
1779  * @copied_early: flag indicating whether DMA operations copied this data early
1780  *
1781  * This routine must be called with interrupts disabled or with the socket
1782  * locked so that the sk_buff queue operation is ok.
1783 */
1784 #ifdef CONFIG_NET_DMA
1785 static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb, int copied_early)
1786 {
1787 	__skb_unlink(skb, &sk->sk_receive_queue);
1788 	if (!copied_early)
1789 		__kfree_skb(skb);
1790 	else
1791 		__skb_queue_tail(&sk->sk_async_wait_queue, skb);
1792 }
1793 #else
1794 static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb, int copied_early)
1795 {
1796 	__skb_unlink(skb, &sk->sk_receive_queue);
1797 	__kfree_skb(skb);
1798 }
1799 #endif
1800 
1801 static inline
1802 struct net *sock_net(const struct sock *sk)
1803 {
1804 	return read_pnet(&sk->sk_net);
1805 }
1806 
1807 static inline
1808 void sock_net_set(struct sock *sk, struct net *net)
1809 {
1810 	write_pnet(&sk->sk_net, net);
1811 }
1812 
1813 /*
1814  * Kernel sockets, f.e. rtnl or icmp_socket, are a part of a namespace.
1815  * They should not hold a reference to a namespace in order to allow
1816  * to stop it.
1817  * Sockets after sk_change_net should be released using sk_release_kernel
1818  */
1819 static inline void sk_change_net(struct sock *sk, struct net *net)
1820 {
1821 	put_net(sock_net(sk));
1822 	sock_net_set(sk, hold_net(net));
1823 }
1824 
1825 static inline struct sock *skb_steal_sock(struct sk_buff *skb)
1826 {
1827 	if (unlikely(skb->sk)) {
1828 		struct sock *sk = skb->sk;
1829 
1830 		skb->destructor = NULL;
1831 		skb->sk = NULL;
1832 		return sk;
1833 	}
1834 	return NULL;
1835 }
1836 
1837 extern void sock_enable_timestamp(struct sock *sk, int flag);
1838 extern int sock_get_timestamp(struct sock *, struct timeval __user *);
1839 extern int sock_get_timestampns(struct sock *, struct timespec __user *);
1840 
1841 /*
1842  *	Enable debug/info messages
1843  */
1844 extern int net_msg_warn;
1845 #define NETDEBUG(fmt, args...) \
1846 	do { if (net_msg_warn) printk(fmt,##args); } while (0)
1847 
1848 #define LIMIT_NETDEBUG(fmt, args...) \
1849 	do { if (net_msg_warn && net_ratelimit()) printk(fmt,##args); } while(0)
1850 
1851 extern __u32 sysctl_wmem_max;
1852 extern __u32 sysctl_rmem_max;
1853 
1854 extern void sk_init(void);
1855 
1856 extern int sysctl_optmem_max;
1857 
1858 extern __u32 sysctl_wmem_default;
1859 extern __u32 sysctl_rmem_default;
1860 
1861 #endif	/* _SOCK_H */
1862