1 /* SPDX-License-Identifier: GPL-2.0-or-later */ 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * Definitions for the AF_INET socket handler. 8 * 9 * Version: @(#)sock.h 1.0.4 05/13/93 10 * 11 * Authors: Ross Biro 12 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 13 * Corey Minyard <wf-rch!minyard@relay.EU.net> 14 * Florian La Roche <flla@stud.uni-sb.de> 15 * 16 * Fixes: 17 * Alan Cox : Volatiles in skbuff pointers. See 18 * skbuff comments. May be overdone, 19 * better to prove they can be removed 20 * than the reverse. 21 * Alan Cox : Added a zapped field for tcp to note 22 * a socket is reset and must stay shut up 23 * Alan Cox : New fields for options 24 * Pauline Middelink : identd support 25 * Alan Cox : Eliminate low level recv/recvfrom 26 * David S. Miller : New socket lookup architecture. 27 * Steve Whitehouse: Default routines for sock_ops 28 * Arnaldo C. Melo : removed net_pinfo, tp_pinfo and made 29 * protinfo be just a void pointer, as the 30 * protocol specific parts were moved to 31 * respective headers and ipv4/v6, etc now 32 * use private slabcaches for its socks 33 * Pedro Hortas : New flags field for socket options 34 */ 35 #ifndef _SOCK_H 36 #define _SOCK_H 37 38 #include <linux/hardirq.h> 39 #include <linux/kernel.h> 40 #include <linux/list.h> 41 #include <linux/list_nulls.h> 42 #include <linux/timer.h> 43 #include <linux/cache.h> 44 #include <linux/bitops.h> 45 #include <linux/lockdep.h> 46 #include <linux/netdevice.h> 47 #include <linux/skbuff.h> /* struct sk_buff */ 48 #include <linux/mm.h> 49 #include <linux/security.h> 50 #include <linux/slab.h> 51 #include <linux/uaccess.h> 52 #include <linux/page_counter.h> 53 #include <linux/memcontrol.h> 54 #include <linux/static_key.h> 55 #include <linux/sched.h> 56 #include <linux/wait.h> 57 #include <linux/cgroup-defs.h> 58 #include <linux/rbtree.h> 59 #include <linux/rculist_nulls.h> 60 #include <linux/poll.h> 61 #include <linux/sockptr.h> 62 #include <linux/indirect_call_wrapper.h> 63 #include <linux/atomic.h> 64 #include <linux/refcount.h> 65 #include <linux/llist.h> 66 #include <net/dst.h> 67 #include <net/checksum.h> 68 #include <net/tcp_states.h> 69 #include <linux/net_tstamp.h> 70 #include <net/l3mdev.h> 71 #include <uapi/linux/socket.h> 72 73 /* 74 * This structure really needs to be cleaned up. 75 * Most of it is for TCP, and not used by any of 76 * the other protocols. 77 */ 78 79 /* This is the per-socket lock. The spinlock provides a synchronization 80 * between user contexts and software interrupt processing, whereas the 81 * mini-semaphore synchronizes multiple users amongst themselves. 82 */ 83 typedef struct { 84 spinlock_t slock; 85 int owned; 86 wait_queue_head_t wq; 87 /* 88 * We express the mutex-alike socket_lock semantics 89 * to the lock validator by explicitly managing 90 * the slock as a lock variant (in addition to 91 * the slock itself): 92 */ 93 #ifdef CONFIG_DEBUG_LOCK_ALLOC 94 struct lockdep_map dep_map; 95 #endif 96 } socket_lock_t; 97 98 struct sock; 99 struct proto; 100 struct net; 101 102 typedef __u32 __bitwise __portpair; 103 typedef __u64 __bitwise __addrpair; 104 105 /** 106 * struct sock_common - minimal network layer representation of sockets 107 * @skc_daddr: Foreign IPv4 addr 108 * @skc_rcv_saddr: Bound local IPv4 addr 109 * @skc_addrpair: 8-byte-aligned __u64 union of @skc_daddr & @skc_rcv_saddr 110 * @skc_hash: hash value used with various protocol lookup tables 111 * @skc_u16hashes: two u16 hash values used by UDP lookup tables 112 * @skc_dport: placeholder for inet_dport/tw_dport 113 * @skc_num: placeholder for inet_num/tw_num 114 * @skc_portpair: __u32 union of @skc_dport & @skc_num 115 * @skc_family: network address family 116 * @skc_state: Connection state 117 * @skc_reuse: %SO_REUSEADDR setting 118 * @skc_reuseport: %SO_REUSEPORT setting 119 * @skc_ipv6only: socket is IPV6 only 120 * @skc_net_refcnt: socket is using net ref counting 121 * @skc_bound_dev_if: bound device index if != 0 122 * @skc_bind_node: bind hash linkage for various protocol lookup tables 123 * @skc_portaddr_node: second hash linkage for UDP/UDP-Lite protocol 124 * @skc_prot: protocol handlers inside a network family 125 * @skc_net: reference to the network namespace of this socket 126 * @skc_v6_daddr: IPV6 destination address 127 * @skc_v6_rcv_saddr: IPV6 source address 128 * @skc_cookie: socket's cookie value 129 * @skc_node: main hash linkage for various protocol lookup tables 130 * @skc_nulls_node: main hash linkage for TCP/UDP/UDP-Lite protocol 131 * @skc_tx_queue_mapping: tx queue number for this connection 132 * @skc_rx_queue_mapping: rx queue number for this connection 133 * @skc_flags: place holder for sk_flags 134 * %SO_LINGER (l_onoff), %SO_BROADCAST, %SO_KEEPALIVE, 135 * %SO_OOBINLINE settings, %SO_TIMESTAMPING settings 136 * @skc_listener: connection request listener socket (aka rsk_listener) 137 * [union with @skc_flags] 138 * @skc_tw_dr: (aka tw_dr) ptr to &struct inet_timewait_death_row 139 * [union with @skc_flags] 140 * @skc_incoming_cpu: record/match cpu processing incoming packets 141 * @skc_rcv_wnd: (aka rsk_rcv_wnd) TCP receive window size (possibly scaled) 142 * [union with @skc_incoming_cpu] 143 * @skc_tw_rcv_nxt: (aka tw_rcv_nxt) TCP window next expected seq number 144 * [union with @skc_incoming_cpu] 145 * @skc_refcnt: reference count 146 * 147 * This is the minimal network layer representation of sockets, the header 148 * for struct sock and struct inet_timewait_sock. 149 */ 150 struct sock_common { 151 union { 152 __addrpair skc_addrpair; 153 struct { 154 __be32 skc_daddr; 155 __be32 skc_rcv_saddr; 156 }; 157 }; 158 union { 159 unsigned int skc_hash; 160 __u16 skc_u16hashes[2]; 161 }; 162 /* skc_dport && skc_num must be grouped as well */ 163 union { 164 __portpair skc_portpair; 165 struct { 166 __be16 skc_dport; 167 __u16 skc_num; 168 }; 169 }; 170 171 unsigned short skc_family; 172 volatile unsigned char skc_state; 173 unsigned char skc_reuse:4; 174 unsigned char skc_reuseport:1; 175 unsigned char skc_ipv6only:1; 176 unsigned char skc_net_refcnt:1; 177 int skc_bound_dev_if; 178 union { 179 struct hlist_node skc_bind_node; 180 struct hlist_node skc_portaddr_node; 181 }; 182 struct proto *skc_prot; 183 possible_net_t skc_net; 184 185 #if IS_ENABLED(CONFIG_IPV6) 186 struct in6_addr skc_v6_daddr; 187 struct in6_addr skc_v6_rcv_saddr; 188 #endif 189 190 atomic64_t skc_cookie; 191 192 /* following fields are padding to force 193 * offset(struct sock, sk_refcnt) == 128 on 64bit arches 194 * assuming IPV6 is enabled. We use this padding differently 195 * for different kind of 'sockets' 196 */ 197 union { 198 unsigned long skc_flags; 199 struct sock *skc_listener; /* request_sock */ 200 struct inet_timewait_death_row *skc_tw_dr; /* inet_timewait_sock */ 201 }; 202 /* 203 * fields between dontcopy_begin/dontcopy_end 204 * are not copied in sock_copy() 205 */ 206 /* private: */ 207 int skc_dontcopy_begin[0]; 208 /* public: */ 209 union { 210 struct hlist_node skc_node; 211 struct hlist_nulls_node skc_nulls_node; 212 }; 213 unsigned short skc_tx_queue_mapping; 214 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING 215 unsigned short skc_rx_queue_mapping; 216 #endif 217 union { 218 int skc_incoming_cpu; 219 u32 skc_rcv_wnd; 220 u32 skc_tw_rcv_nxt; /* struct tcp_timewait_sock */ 221 }; 222 223 refcount_t skc_refcnt; 224 /* private: */ 225 int skc_dontcopy_end[0]; 226 union { 227 u32 skc_rxhash; 228 u32 skc_window_clamp; 229 u32 skc_tw_snd_nxt; /* struct tcp_timewait_sock */ 230 }; 231 /* public: */ 232 }; 233 234 struct bpf_local_storage; 235 struct sk_filter; 236 237 /** 238 * struct sock - network layer representation of sockets 239 * @__sk_common: shared layout with inet_timewait_sock 240 * @sk_shutdown: mask of %SEND_SHUTDOWN and/or %RCV_SHUTDOWN 241 * @sk_userlocks: %SO_SNDBUF and %SO_RCVBUF settings 242 * @sk_lock: synchronizer 243 * @sk_kern_sock: True if sock is using kernel lock classes 244 * @sk_rcvbuf: size of receive buffer in bytes 245 * @sk_wq: sock wait queue and async head 246 * @sk_rx_dst: receive input route used by early demux 247 * @sk_rx_dst_ifindex: ifindex for @sk_rx_dst 248 * @sk_rx_dst_cookie: cookie for @sk_rx_dst 249 * @sk_dst_cache: destination cache 250 * @sk_dst_pending_confirm: need to confirm neighbour 251 * @sk_policy: flow policy 252 * @psp_assoc: PSP association, if socket is PSP-secured 253 * @sk_receive_queue: incoming packets 254 * @sk_wmem_alloc: transmit queue bytes committed 255 * @sk_tsq_flags: TCP Small Queues flags 256 * @sk_write_queue: Packet sending queue 257 * @sk_omem_alloc: "o" is "option" or "other" 258 * @sk_wmem_queued: persistent queue size 259 * @sk_forward_alloc: space allocated forward 260 * @sk_reserved_mem: space reserved and non-reclaimable for the socket 261 * @sk_napi_id: id of the last napi context to receive data for sk 262 * @sk_ll_usec: usecs to busypoll when there is no data 263 * @sk_allocation: allocation mode 264 * @sk_pacing_rate: Pacing rate (if supported by transport/packet scheduler) 265 * @sk_pacing_status: Pacing status (requested, handled by sch_fq) 266 * @sk_max_pacing_rate: Maximum pacing rate (%SO_MAX_PACING_RATE) 267 * @sk_sndbuf: size of send buffer in bytes 268 * @sk_no_check_tx: %SO_NO_CHECK setting, set checksum in TX packets 269 * @sk_no_check_rx: allow zero checksum in RX packets 270 * @sk_route_caps: route capabilities (e.g. %NETIF_F_TSO) 271 * @sk_gso_disabled: if set, NETIF_F_GSO_MASK is forbidden. 272 * @sk_gso_type: GSO type (e.g. %SKB_GSO_TCPV4) 273 * @sk_gso_max_size: Maximum GSO segment size to build 274 * @sk_gso_max_segs: Maximum number of GSO segments 275 * @sk_pacing_shift: scaling factor for TCP Small Queues 276 * @sk_lingertime: %SO_LINGER l_linger setting 277 * @sk_backlog: always used with the per-socket spinlock held 278 * @sk_callback_lock: used with the callbacks in the end of this struct 279 * @sk_error_queue: rarely used 280 * @sk_prot_creator: sk_prot of original sock creator (see ipv6_setsockopt, 281 * IPV6_ADDRFORM for instance) 282 * @sk_err: last error 283 * @sk_err_soft: errors that don't cause failure but are the cause of a 284 * persistent failure not just 'timed out' 285 * @sk_drops: raw/udp drops counter 286 * @sk_drop_counters: optional pointer to numa_drop_counters 287 * @sk_ack_backlog: current listen backlog 288 * @sk_max_ack_backlog: listen backlog set in listen() 289 * @sk_uid: user id of owner 290 * @sk_ino: inode number (zero if orphaned) 291 * @sk_prefer_busy_poll: prefer busypolling over softirq processing 292 * @sk_busy_poll_budget: napi processing budget when busypolling 293 * @sk_priority: %SO_PRIORITY setting 294 * @sk_type: socket type (%SOCK_STREAM, etc) 295 * @sk_protocol: which protocol this socket belongs in this network family 296 * @sk_peer_lock: lock protecting @sk_peer_pid and @sk_peer_cred 297 * @sk_peer_pid: &struct pid for this socket's peer 298 * @sk_peer_cred: %SO_PEERCRED setting 299 * @sk_rcvlowat: %SO_RCVLOWAT setting 300 * @sk_rcvtimeo: %SO_RCVTIMEO setting 301 * @sk_sndtimeo: %SO_SNDTIMEO setting 302 * @sk_txhash: computed flow hash for use on transmit 303 * @sk_txrehash: enable TX hash rethink 304 * @sk_filter: socket filtering instructions 305 * @sk_timer: sock cleanup timer 306 * @sk_stamp: time stamp of last packet received 307 * @sk_stamp_seq: lock for accessing sk_stamp on 32 bit architectures only 308 * @sk_tsflags: SO_TIMESTAMPING flags 309 * @sk_bpf_cb_flags: used in bpf_setsockopt() 310 * @sk_use_task_frag: allow sk_page_frag() to use current->task_frag. 311 * Sockets that can be used under memory reclaim should 312 * set this to false. 313 * @sk_bind_phc: SO_TIMESTAMPING bind PHC index of PTP virtual clock 314 * for timestamping 315 * @sk_tskey: counter to disambiguate concurrent tstamp requests 316 * @sk_tx_queue_mapping_jiffies: time in jiffies of last @sk_tx_queue_mapping refresh. 317 * @sk_zckey: counter to order MSG_ZEROCOPY notifications 318 * @sk_socket: Identd and reporting IO signals 319 * @sk_user_data: RPC layer private data. Write-protected by @sk_callback_lock. 320 * @sk_frag: cached page frag 321 * @sk_peek_off: current peek_offset value 322 * @sk_send_head: front of stuff to transmit 323 * @tcp_rtx_queue: TCP re-transmit queue [union with @sk_send_head] 324 * @sk_security: used by security modules 325 * @sk_mark: generic packet mark 326 * @sk_cgrp_data: cgroup data for this cgroup 327 * @sk_memcg: this socket's memory cgroup association 328 * @sk_write_pending: a write to stream socket waits to start 329 * @sk_disconnects: number of disconnect operations performed on this sock 330 * @sk_state_change: callback to indicate change in the state of the sock 331 * @sk_data_ready: callback to indicate there is data to be processed 332 * @sk_write_space: callback to indicate there is bf sending space available 333 * @sk_error_report: callback to indicate errors (e.g. %MSG_ERRQUEUE) 334 * @sk_backlog_rcv: callback to process the backlog 335 * @sk_validate_xmit_skb: ptr to an optional validate function 336 * @sk_destruct: called at sock freeing time, i.e. when all refcnt == 0 337 * @sk_reuseport_cb: reuseport group container 338 * @sk_bpf_storage: ptr to cache and control for bpf_sk_storage 339 * @sk_rcu: used during RCU grace period 340 * @sk_clockid: clockid used by time-based scheduling (SO_TXTIME) 341 * @sk_txtime_deadline_mode: set deadline mode for SO_TXTIME 342 * @sk_txtime_report_errors: set report errors mode for SO_TXTIME 343 * @sk_txtime_unused: unused txtime flags 344 * @sk_scm_recv_flags: all flags used by scm_recv() 345 * @sk_scm_credentials: flagged by SO_PASSCRED to recv SCM_CREDENTIALS 346 * @sk_scm_security: flagged by SO_PASSSEC to recv SCM_SECURITY 347 * @sk_scm_pidfd: flagged by SO_PASSPIDFD to recv SCM_PIDFD 348 * @sk_scm_rights: flagged by SO_PASSRIGHTS to recv SCM_RIGHTS 349 * @sk_scm_unused: unused flags for scm_recv() 350 * @ns_tracker: tracker for netns reference 351 * @sk_user_frags: xarray of pages the user is holding a reference on. 352 * @sk_owner: reference to the real owner of the socket that calls 353 * sock_lock_init_class_and_name(). 354 */ 355 struct sock { 356 /* 357 * Now struct inet_timewait_sock also uses sock_common, so please just 358 * don't add nothing before this first member (__sk_common) --acme 359 */ 360 struct sock_common __sk_common; 361 #define sk_node __sk_common.skc_node 362 #define sk_nulls_node __sk_common.skc_nulls_node 363 #define sk_refcnt __sk_common.skc_refcnt 364 #define sk_tx_queue_mapping __sk_common.skc_tx_queue_mapping 365 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING 366 #define sk_rx_queue_mapping __sk_common.skc_rx_queue_mapping 367 #endif 368 369 #define sk_dontcopy_begin __sk_common.skc_dontcopy_begin 370 #define sk_dontcopy_end __sk_common.skc_dontcopy_end 371 #define sk_hash __sk_common.skc_hash 372 #define sk_portpair __sk_common.skc_portpair 373 #define sk_num __sk_common.skc_num 374 #define sk_dport __sk_common.skc_dport 375 #define sk_addrpair __sk_common.skc_addrpair 376 #define sk_daddr __sk_common.skc_daddr 377 #define sk_rcv_saddr __sk_common.skc_rcv_saddr 378 #define sk_family __sk_common.skc_family 379 #define sk_state __sk_common.skc_state 380 #define sk_reuse __sk_common.skc_reuse 381 #define sk_reuseport __sk_common.skc_reuseport 382 #define sk_ipv6only __sk_common.skc_ipv6only 383 #define sk_net_refcnt __sk_common.skc_net_refcnt 384 #define sk_bound_dev_if __sk_common.skc_bound_dev_if 385 #define sk_bind_node __sk_common.skc_bind_node 386 #define sk_prot __sk_common.skc_prot 387 #define sk_net __sk_common.skc_net 388 #define sk_v6_daddr __sk_common.skc_v6_daddr 389 #define sk_v6_rcv_saddr __sk_common.skc_v6_rcv_saddr 390 #define sk_cookie __sk_common.skc_cookie 391 #define sk_incoming_cpu __sk_common.skc_incoming_cpu 392 #define sk_flags __sk_common.skc_flags 393 #define sk_rxhash __sk_common.skc_rxhash 394 395 __cacheline_group_begin(sock_write_rx); 396 397 atomic_t sk_drops; 398 __s32 sk_peek_off; 399 struct sk_buff_head sk_error_queue; 400 struct sk_buff_head sk_receive_queue; 401 /* 402 * The backlog queue is special, it is always used with 403 * the per-socket spinlock held and requires low latency 404 * access. Therefore we special case it's implementation. 405 * Note : rmem_alloc is in this structure to fill a hole 406 * on 64bit arches, not because its logically part of 407 * backlog. 408 */ 409 struct { 410 atomic_t rmem_alloc; 411 int len; 412 struct sk_buff *head; 413 struct sk_buff *tail; 414 } sk_backlog; 415 #define sk_rmem_alloc sk_backlog.rmem_alloc 416 417 __cacheline_group_end(sock_write_rx); 418 419 __cacheline_group_begin(sock_read_rx); 420 /* early demux fields */ 421 struct dst_entry __rcu *sk_rx_dst; 422 int sk_rx_dst_ifindex; 423 u32 sk_rx_dst_cookie; 424 425 #ifdef CONFIG_NET_RX_BUSY_POLL 426 unsigned int sk_ll_usec; 427 unsigned int sk_napi_id; 428 u16 sk_busy_poll_budget; 429 u8 sk_prefer_busy_poll; 430 #endif 431 u8 sk_userlocks; 432 int sk_rcvbuf; 433 434 struct sk_filter __rcu *sk_filter; 435 union { 436 struct socket_wq __rcu *sk_wq; 437 /* private: */ 438 struct socket_wq *sk_wq_raw; 439 /* public: */ 440 }; 441 442 void (*sk_data_ready)(struct sock *sk); 443 long sk_rcvtimeo; 444 int sk_rcvlowat; 445 __cacheline_group_end(sock_read_rx); 446 447 __cacheline_group_begin(sock_read_rxtx); 448 int sk_err; 449 struct socket *sk_socket; 450 #ifdef CONFIG_MEMCG 451 struct mem_cgroup *sk_memcg; 452 #endif 453 #ifdef CONFIG_XFRM 454 struct xfrm_policy __rcu *sk_policy[2]; 455 #endif 456 #if IS_ENABLED(CONFIG_INET_PSP) 457 struct psp_assoc __rcu *psp_assoc; 458 #endif 459 __cacheline_group_end(sock_read_rxtx); 460 461 __cacheline_group_begin(sock_write_rxtx); 462 socket_lock_t sk_lock; 463 u32 sk_reserved_mem; 464 int sk_forward_alloc; 465 u32 sk_tsflags; 466 __cacheline_group_end(sock_write_rxtx); 467 468 __cacheline_group_begin(sock_write_tx); 469 int sk_write_pending; 470 atomic_t sk_omem_alloc; 471 int sk_err_soft; 472 473 int sk_wmem_queued; 474 refcount_t sk_wmem_alloc; 475 unsigned long sk_tsq_flags; 476 union { 477 struct sk_buff *sk_send_head; 478 struct rb_root tcp_rtx_queue; 479 }; 480 struct sk_buff_head sk_write_queue; 481 u32 sk_dst_pending_confirm; 482 u32 sk_pacing_status; /* see enum sk_pacing */ 483 struct page_frag sk_frag; 484 struct timer_list sk_timer; 485 486 unsigned long sk_pacing_rate; /* bytes per second */ 487 atomic_t sk_zckey; 488 atomic_t sk_tskey; 489 unsigned long sk_tx_queue_mapping_jiffies; 490 __cacheline_group_end(sock_write_tx); 491 492 __cacheline_group_begin(sock_read_tx); 493 unsigned long sk_max_pacing_rate; 494 long sk_sndtimeo; 495 u32 sk_priority; 496 u32 sk_mark; 497 kuid_t sk_uid; 498 u16 sk_protocol; 499 u16 sk_type; 500 struct dst_entry __rcu *sk_dst_cache; 501 netdev_features_t sk_route_caps; 502 #ifdef CONFIG_SOCK_VALIDATE_XMIT 503 struct sk_buff* (*sk_validate_xmit_skb)(struct sock *sk, 504 struct net_device *dev, 505 struct sk_buff *skb); 506 #endif 507 u16 sk_gso_type; 508 u16 sk_gso_max_segs; 509 unsigned int sk_gso_max_size; 510 gfp_t sk_allocation; 511 u32 sk_txhash; 512 int sk_sndbuf; 513 u8 sk_pacing_shift; 514 bool sk_use_task_frag; 515 __cacheline_group_end(sock_read_tx); 516 517 /* 518 * Because of non atomicity rules, all 519 * changes are protected by socket lock. 520 */ 521 u8 sk_gso_disabled : 1, 522 sk_kern_sock : 1, 523 sk_no_check_tx : 1, 524 sk_no_check_rx : 1; 525 u8 sk_shutdown; 526 unsigned long sk_lingertime; 527 struct proto *sk_prot_creator; 528 rwlock_t sk_callback_lock; 529 u32 sk_ack_backlog; 530 u32 sk_max_ack_backlog; 531 unsigned long sk_ino; 532 spinlock_t sk_peer_lock; 533 int sk_bind_phc; 534 struct pid *sk_peer_pid; 535 const struct cred *sk_peer_cred; 536 537 ktime_t sk_stamp; 538 #if BITS_PER_LONG==32 539 seqlock_t sk_stamp_seq; 540 #endif 541 int sk_disconnects; 542 543 union { 544 u8 sk_txrehash; 545 u8 sk_scm_recv_flags; 546 struct { 547 u8 sk_scm_credentials : 1, 548 sk_scm_security : 1, 549 sk_scm_pidfd : 1, 550 sk_scm_rights : 1, 551 sk_scm_unused : 4; 552 }; 553 }; 554 u8 sk_clockid; 555 u8 sk_txtime_deadline_mode : 1, 556 sk_txtime_report_errors : 1, 557 sk_txtime_unused : 6; 558 #define SK_BPF_CB_FLAG_TEST(SK, FLAG) ((SK)->sk_bpf_cb_flags & (FLAG)) 559 u8 sk_bpf_cb_flags; 560 561 void *sk_user_data; 562 #ifdef CONFIG_SECURITY 563 void *sk_security; 564 #endif 565 struct sock_cgroup_data sk_cgrp_data; 566 void (*sk_state_change)(struct sock *sk); 567 void (*sk_write_space)(struct sock *sk); 568 void (*sk_error_report)(struct sock *sk); 569 int (*sk_backlog_rcv)(struct sock *sk, 570 struct sk_buff *skb); 571 void (*sk_destruct)(struct sock *sk); 572 struct sock_reuseport __rcu *sk_reuseport_cb; 573 #ifdef CONFIG_BPF_SYSCALL 574 struct bpf_local_storage __rcu *sk_bpf_storage; 575 #endif 576 struct numa_drop_counters *sk_drop_counters; 577 struct rcu_head sk_rcu; 578 netns_tracker ns_tracker; 579 struct xarray sk_user_frags; 580 581 #if IS_ENABLED(CONFIG_PROVE_LOCKING) && IS_ENABLED(CONFIG_MODULES) 582 struct module *sk_owner; 583 #endif 584 }; 585 586 struct sock_bh_locked { 587 struct sock *sock; 588 local_lock_t bh_lock; 589 }; 590 591 enum sk_pacing { 592 SK_PACING_NONE = 0, 593 SK_PACING_NEEDED = 1, 594 SK_PACING_FQ = 2, 595 }; 596 597 /* flag bits in sk_user_data 598 * 599 * - SK_USER_DATA_NOCOPY: Pointer stored in sk_user_data might 600 * not be suitable for copying when cloning the socket. For instance, 601 * it can point to a reference counted object. sk_user_data bottom 602 * bit is set if pointer must not be copied. 603 * 604 * - SK_USER_DATA_BPF: Mark whether sk_user_data field is 605 * managed/owned by a BPF reuseport array. This bit should be set 606 * when sk_user_data's sk is added to the bpf's reuseport_array. 607 * 608 * - SK_USER_DATA_PSOCK: Mark whether pointer stored in 609 * sk_user_data points to psock type. This bit should be set 610 * when sk_user_data is assigned to a psock object. 611 */ 612 #define SK_USER_DATA_NOCOPY 1UL 613 #define SK_USER_DATA_BPF 2UL 614 #define SK_USER_DATA_PSOCK 4UL 615 #define SK_USER_DATA_PTRMASK ~(SK_USER_DATA_NOCOPY | SK_USER_DATA_BPF |\ 616 SK_USER_DATA_PSOCK) 617 618 /** 619 * sk_user_data_is_nocopy - Test if sk_user_data pointer must not be copied 620 * @sk: socket 621 */ 622 static inline bool sk_user_data_is_nocopy(const struct sock *sk) 623 { 624 return ((uintptr_t)sk->sk_user_data & SK_USER_DATA_NOCOPY); 625 } 626 627 #define __sk_user_data(sk) ((*((void __rcu **)&(sk)->sk_user_data))) 628 629 /** 630 * __locked_read_sk_user_data_with_flags - return the pointer 631 * only if argument flags all has been set in sk_user_data. Otherwise 632 * return NULL 633 * 634 * @sk: socket 635 * @flags: flag bits 636 * 637 * The caller must be holding sk->sk_callback_lock. 638 */ 639 static inline void * 640 __locked_read_sk_user_data_with_flags(const struct sock *sk, 641 uintptr_t flags) 642 { 643 uintptr_t sk_user_data = 644 (uintptr_t)rcu_dereference_check(__sk_user_data(sk), 645 lockdep_is_held(&sk->sk_callback_lock)); 646 647 WARN_ON_ONCE(flags & SK_USER_DATA_PTRMASK); 648 649 if ((sk_user_data & flags) == flags) 650 return (void *)(sk_user_data & SK_USER_DATA_PTRMASK); 651 return NULL; 652 } 653 654 /** 655 * __rcu_dereference_sk_user_data_with_flags - return the pointer 656 * only if argument flags all has been set in sk_user_data. Otherwise 657 * return NULL 658 * 659 * @sk: socket 660 * @flags: flag bits 661 */ 662 static inline void * 663 __rcu_dereference_sk_user_data_with_flags(const struct sock *sk, 664 uintptr_t flags) 665 { 666 uintptr_t sk_user_data = (uintptr_t)rcu_dereference(__sk_user_data(sk)); 667 668 WARN_ON_ONCE(flags & SK_USER_DATA_PTRMASK); 669 670 if ((sk_user_data & flags) == flags) 671 return (void *)(sk_user_data & SK_USER_DATA_PTRMASK); 672 return NULL; 673 } 674 675 #define rcu_dereference_sk_user_data(sk) \ 676 __rcu_dereference_sk_user_data_with_flags(sk, 0) 677 #define __rcu_assign_sk_user_data_with_flags(sk, ptr, flags) \ 678 ({ \ 679 uintptr_t __tmp1 = (uintptr_t)(ptr), \ 680 __tmp2 = (uintptr_t)(flags); \ 681 WARN_ON_ONCE(__tmp1 & ~SK_USER_DATA_PTRMASK); \ 682 WARN_ON_ONCE(__tmp2 & SK_USER_DATA_PTRMASK); \ 683 rcu_assign_pointer(__sk_user_data((sk)), \ 684 __tmp1 | __tmp2); \ 685 }) 686 #define rcu_assign_sk_user_data(sk, ptr) \ 687 __rcu_assign_sk_user_data_with_flags(sk, ptr, 0) 688 689 static inline 690 struct net *sock_net(const struct sock *sk) 691 { 692 return read_pnet(&sk->sk_net); 693 } 694 695 static inline 696 void sock_net_set(struct sock *sk, struct net *net) 697 { 698 write_pnet(&sk->sk_net, net); 699 } 700 701 /* 702 * SK_CAN_REUSE and SK_NO_REUSE on a socket mean that the socket is OK 703 * or not whether his port will be reused by someone else. SK_FORCE_REUSE 704 * on a socket means that the socket will reuse everybody else's port 705 * without looking at the other's sk_reuse value. 706 */ 707 708 #define SK_NO_REUSE 0 709 #define SK_CAN_REUSE 1 710 #define SK_FORCE_REUSE 2 711 712 int sk_set_peek_off(struct sock *sk, int val); 713 714 static inline int sk_peek_offset(const struct sock *sk, int flags) 715 { 716 if (unlikely(flags & MSG_PEEK)) { 717 return READ_ONCE(sk->sk_peek_off); 718 } 719 720 return 0; 721 } 722 723 static inline void sk_peek_offset_bwd(struct sock *sk, int val) 724 { 725 s32 off = READ_ONCE(sk->sk_peek_off); 726 727 if (unlikely(off >= 0)) { 728 off = max_t(s32, off - val, 0); 729 WRITE_ONCE(sk->sk_peek_off, off); 730 } 731 } 732 733 static inline void sk_peek_offset_fwd(struct sock *sk, int val) 734 { 735 sk_peek_offset_bwd(sk, -val); 736 } 737 738 /* 739 * Hashed lists helper routines 740 */ 741 static inline struct sock *sk_entry(const struct hlist_node *node) 742 { 743 return hlist_entry(node, struct sock, sk_node); 744 } 745 746 static inline struct sock *__sk_head(const struct hlist_head *head) 747 { 748 return hlist_entry(head->first, struct sock, sk_node); 749 } 750 751 static inline struct sock *sk_head(const struct hlist_head *head) 752 { 753 return hlist_empty(head) ? NULL : __sk_head(head); 754 } 755 756 static inline struct sock *__sk_nulls_head(const struct hlist_nulls_head *head) 757 { 758 return hlist_nulls_entry(head->first, struct sock, sk_nulls_node); 759 } 760 761 static inline struct sock *sk_nulls_head(const struct hlist_nulls_head *head) 762 { 763 return hlist_nulls_empty(head) ? NULL : __sk_nulls_head(head); 764 } 765 766 static inline struct sock *sk_next(const struct sock *sk) 767 { 768 return hlist_entry_safe(sk->sk_node.next, struct sock, sk_node); 769 } 770 771 static inline struct sock *sk_nulls_next(const struct sock *sk) 772 { 773 return (!is_a_nulls(sk->sk_nulls_node.next)) ? 774 hlist_nulls_entry(sk->sk_nulls_node.next, 775 struct sock, sk_nulls_node) : 776 NULL; 777 } 778 779 static inline bool sk_unhashed(const struct sock *sk) 780 { 781 return hlist_unhashed(&sk->sk_node); 782 } 783 784 static inline bool sk_hashed(const struct sock *sk) 785 { 786 return !sk_unhashed(sk); 787 } 788 789 static inline void sk_node_init(struct hlist_node *node) 790 { 791 node->pprev = NULL; 792 } 793 794 static inline void __sk_del_node(struct sock *sk) 795 { 796 __hlist_del(&sk->sk_node); 797 } 798 799 /* NB: equivalent to hlist_del_init_rcu */ 800 static inline bool __sk_del_node_init(struct sock *sk) 801 { 802 if (sk_hashed(sk)) { 803 __sk_del_node(sk); 804 sk_node_init(&sk->sk_node); 805 return true; 806 } 807 return false; 808 } 809 810 /* Grab socket reference count. This operation is valid only 811 when sk is ALREADY grabbed f.e. it is found in hash table 812 or a list and the lookup is made under lock preventing hash table 813 modifications. 814 */ 815 816 static __always_inline void sock_hold(struct sock *sk) 817 { 818 refcount_inc(&sk->sk_refcnt); 819 } 820 821 /* Ungrab socket in the context, which assumes that socket refcnt 822 cannot hit zero, f.e. it is true in context of any socketcall. 823 */ 824 static __always_inline void __sock_put(struct sock *sk) 825 { 826 refcount_dec(&sk->sk_refcnt); 827 } 828 829 static inline bool sk_del_node_init(struct sock *sk) 830 { 831 bool rc = __sk_del_node_init(sk); 832 833 if (rc) 834 __sock_put(sk); 835 836 return rc; 837 } 838 #define sk_del_node_init_rcu(sk) sk_del_node_init(sk) 839 840 static inline bool __sk_nulls_del_node_init_rcu(struct sock *sk) 841 { 842 if (sk_hashed(sk)) { 843 hlist_nulls_del_init_rcu(&sk->sk_nulls_node); 844 return true; 845 } 846 return false; 847 } 848 849 static inline bool sk_nulls_del_node_init_rcu(struct sock *sk) 850 { 851 bool rc = __sk_nulls_del_node_init_rcu(sk); 852 853 if (rc) 854 __sock_put(sk); 855 856 return rc; 857 } 858 859 static inline void __sk_add_node(struct sock *sk, struct hlist_head *list) 860 { 861 hlist_add_head(&sk->sk_node, list); 862 } 863 864 static inline void sk_add_node(struct sock *sk, struct hlist_head *list) 865 { 866 sock_hold(sk); 867 __sk_add_node(sk, list); 868 } 869 870 static inline void sk_add_node_rcu(struct sock *sk, struct hlist_head *list) 871 { 872 sock_hold(sk); 873 if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport && 874 sk->sk_family == AF_INET6) 875 hlist_add_tail_rcu(&sk->sk_node, list); 876 else 877 hlist_add_head_rcu(&sk->sk_node, list); 878 } 879 880 static inline void sk_add_node_tail_rcu(struct sock *sk, struct hlist_head *list) 881 { 882 sock_hold(sk); 883 hlist_add_tail_rcu(&sk->sk_node, list); 884 } 885 886 static inline void __sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list) 887 { 888 hlist_nulls_add_head_rcu(&sk->sk_nulls_node, list); 889 } 890 891 static inline void __sk_nulls_add_node_tail_rcu(struct sock *sk, struct hlist_nulls_head *list) 892 { 893 hlist_nulls_add_tail_rcu(&sk->sk_nulls_node, list); 894 } 895 896 static inline void sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list) 897 { 898 sock_hold(sk); 899 __sk_nulls_add_node_rcu(sk, list); 900 } 901 902 static inline void __sk_del_bind_node(struct sock *sk) 903 { 904 __hlist_del(&sk->sk_bind_node); 905 } 906 907 static inline void sk_add_bind_node(struct sock *sk, 908 struct hlist_head *list) 909 { 910 hlist_add_head(&sk->sk_bind_node, list); 911 } 912 913 #define sk_for_each(__sk, list) \ 914 hlist_for_each_entry(__sk, list, sk_node) 915 #define sk_for_each_rcu(__sk, list) \ 916 hlist_for_each_entry_rcu(__sk, list, sk_node) 917 #define sk_nulls_for_each(__sk, node, list) \ 918 hlist_nulls_for_each_entry(__sk, node, list, sk_nulls_node) 919 #define sk_nulls_for_each_rcu(__sk, node, list) \ 920 hlist_nulls_for_each_entry_rcu(__sk, node, list, sk_nulls_node) 921 #define sk_for_each_from(__sk) \ 922 hlist_for_each_entry_from(__sk, sk_node) 923 #define sk_nulls_for_each_from(__sk, node) \ 924 if (__sk && ({ node = &(__sk)->sk_nulls_node; 1; })) \ 925 hlist_nulls_for_each_entry_from(__sk, node, sk_nulls_node) 926 #define sk_for_each_safe(__sk, tmp, list) \ 927 hlist_for_each_entry_safe(__sk, tmp, list, sk_node) 928 #define sk_for_each_bound(__sk, list) \ 929 hlist_for_each_entry(__sk, list, sk_bind_node) 930 #define sk_for_each_bound_safe(__sk, tmp, list) \ 931 hlist_for_each_entry_safe(__sk, tmp, list, sk_bind_node) 932 933 /** 934 * sk_for_each_entry_offset_rcu - iterate over a list at a given struct offset 935 * @tpos: the type * to use as a loop cursor. 936 * @pos: the &struct hlist_node to use as a loop cursor. 937 * @head: the head for your list. 938 * @offset: offset of hlist_node within the struct. 939 * 940 */ 941 #define sk_for_each_entry_offset_rcu(tpos, pos, head, offset) \ 942 for (pos = rcu_dereference(hlist_first_rcu(head)); \ 943 pos != NULL && \ 944 ({ tpos = (typeof(*tpos) *)((void *)pos - offset); 1;}); \ 945 pos = rcu_dereference(hlist_next_rcu(pos))) 946 947 static inline struct user_namespace *sk_user_ns(const struct sock *sk) 948 { 949 /* Careful only use this in a context where these parameters 950 * can not change and must all be valid, such as recvmsg from 951 * userspace. 952 */ 953 return sk->sk_socket->file->f_cred->user_ns; 954 } 955 956 /* Sock flags */ 957 enum sock_flags { 958 SOCK_DEAD, 959 SOCK_DONE, 960 SOCK_URGINLINE, 961 SOCK_KEEPOPEN, 962 SOCK_LINGER, 963 SOCK_DESTROY, 964 SOCK_BROADCAST, 965 SOCK_TIMESTAMP, 966 SOCK_ZAPPED, 967 SOCK_USE_WRITE_QUEUE, /* whether to call sk->sk_write_space in sock_wfree */ 968 SOCK_DBG, /* %SO_DEBUG setting */ 969 SOCK_RCVTSTAMP, /* %SO_TIMESTAMP setting */ 970 SOCK_RCVTSTAMPNS, /* %SO_TIMESTAMPNS setting */ 971 SOCK_LOCALROUTE, /* route locally only, %SO_DONTROUTE setting */ 972 SOCK_MEMALLOC, /* VM depends on this socket for swapping */ 973 SOCK_TIMESTAMPING_RX_SOFTWARE, /* %SOF_TIMESTAMPING_RX_SOFTWARE */ 974 SOCK_FASYNC, /* fasync() active */ 975 SOCK_RXQ_OVFL, 976 SOCK_ZEROCOPY, /* buffers from userspace */ 977 SOCK_WIFI_STATUS, /* push wifi status to userspace */ 978 SOCK_NOFCS, /* Tell NIC not to do the Ethernet FCS. 979 * Will use last 4 bytes of packet sent from 980 * user-space instead. 981 */ 982 SOCK_FILTER_LOCKED, /* Filter cannot be changed anymore */ 983 SOCK_SELECT_ERR_QUEUE, /* Wake select on error queue */ 984 SOCK_RCU_FREE, /* wait rcu grace period in sk_destruct() */ 985 SOCK_TXTIME, 986 SOCK_XDP, /* XDP is attached */ 987 SOCK_TSTAMP_NEW, /* Indicates 64 bit timestamps always */ 988 SOCK_RCVMARK, /* Receive SO_MARK ancillary data with packet */ 989 SOCK_RCVPRIORITY, /* Receive SO_PRIORITY ancillary data with packet */ 990 SOCK_TIMESTAMPING_ANY, /* Copy of sk_tsflags & TSFLAGS_ANY */ 991 }; 992 993 #define SK_FLAGS_TIMESTAMP ((1UL << SOCK_TIMESTAMP) | (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE)) 994 /* 995 * The highest bit of sk_tsflags is reserved for kernel-internal 996 * SOCKCM_FLAG_TS_OPT_ID. There is a check in core/sock.c to control that 997 * SOF_TIMESTAMPING* values do not reach this reserved area 998 */ 999 #define SOCKCM_FLAG_TS_OPT_ID BIT(31) 1000 1001 static inline void sock_copy_flags(struct sock *nsk, const struct sock *osk) 1002 { 1003 nsk->sk_flags = osk->sk_flags; 1004 } 1005 1006 static inline void sock_set_flag(struct sock *sk, enum sock_flags flag) 1007 { 1008 __set_bit(flag, &sk->sk_flags); 1009 } 1010 1011 static inline void sock_reset_flag(struct sock *sk, enum sock_flags flag) 1012 { 1013 __clear_bit(flag, &sk->sk_flags); 1014 } 1015 1016 static inline void sock_valbool_flag(struct sock *sk, enum sock_flags bit, 1017 int valbool) 1018 { 1019 if (valbool) 1020 sock_set_flag(sk, bit); 1021 else 1022 sock_reset_flag(sk, bit); 1023 } 1024 1025 static inline bool sock_flag(const struct sock *sk, enum sock_flags flag) 1026 { 1027 return test_bit(flag, &sk->sk_flags); 1028 } 1029 1030 #ifdef CONFIG_NET 1031 DECLARE_STATIC_KEY_FALSE(memalloc_socks_key); 1032 static inline int sk_memalloc_socks(void) 1033 { 1034 return static_branch_unlikely(&memalloc_socks_key); 1035 } 1036 1037 void __receive_sock(struct file *file); 1038 #else 1039 1040 static inline int sk_memalloc_socks(void) 1041 { 1042 return 0; 1043 } 1044 1045 static inline void __receive_sock(struct file *file) 1046 { } 1047 #endif 1048 1049 static inline gfp_t sk_gfp_mask(const struct sock *sk, gfp_t gfp_mask) 1050 { 1051 return gfp_mask | (sk->sk_allocation & __GFP_MEMALLOC); 1052 } 1053 1054 static inline void sk_acceptq_removed(struct sock *sk) 1055 { 1056 WRITE_ONCE(sk->sk_ack_backlog, sk->sk_ack_backlog - 1); 1057 } 1058 1059 static inline void sk_acceptq_added(struct sock *sk) 1060 { 1061 WRITE_ONCE(sk->sk_ack_backlog, sk->sk_ack_backlog + 1); 1062 } 1063 1064 /* Note: If you think the test should be: 1065 * return READ_ONCE(sk->sk_ack_backlog) >= READ_ONCE(sk->sk_max_ack_backlog); 1066 * Then please take a look at commit 64a146513f8f ("[NET]: Revert incorrect accept queue backlog changes.") 1067 */ 1068 static inline bool sk_acceptq_is_full(const struct sock *sk) 1069 { 1070 return READ_ONCE(sk->sk_ack_backlog) > READ_ONCE(sk->sk_max_ack_backlog); 1071 } 1072 1073 /* 1074 * Compute minimal free write space needed to queue new packets. 1075 */ 1076 static inline int sk_stream_min_wspace(const struct sock *sk) 1077 { 1078 return READ_ONCE(sk->sk_wmem_queued) >> 1; 1079 } 1080 1081 static inline int sk_stream_wspace(const struct sock *sk) 1082 { 1083 return READ_ONCE(sk->sk_sndbuf) - READ_ONCE(sk->sk_wmem_queued); 1084 } 1085 1086 static inline void sk_wmem_queued_add(struct sock *sk, int val) 1087 { 1088 WRITE_ONCE(sk->sk_wmem_queued, sk->sk_wmem_queued + val); 1089 } 1090 1091 static inline void sk_forward_alloc_add(struct sock *sk, int val) 1092 { 1093 /* Paired with lockless reads of sk->sk_forward_alloc */ 1094 WRITE_ONCE(sk->sk_forward_alloc, sk->sk_forward_alloc + val); 1095 } 1096 1097 void sk_stream_write_space(struct sock *sk); 1098 1099 /* OOB backlog add */ 1100 static inline void __sk_add_backlog(struct sock *sk, struct sk_buff *skb) 1101 { 1102 /* dont let skb dst not refcounted, we are going to leave rcu lock */ 1103 skb_dst_force(skb); 1104 1105 if (!sk->sk_backlog.tail) 1106 WRITE_ONCE(sk->sk_backlog.head, skb); 1107 else 1108 sk->sk_backlog.tail->next = skb; 1109 1110 WRITE_ONCE(sk->sk_backlog.tail, skb); 1111 skb->next = NULL; 1112 } 1113 1114 /* 1115 * Take into account size of receive queue and backlog queue 1116 * Do not take into account this skb truesize, 1117 * to allow even a single big packet to come. 1118 */ 1119 static inline bool sk_rcvqueues_full(const struct sock *sk, unsigned int limit) 1120 { 1121 unsigned int qsize = sk->sk_backlog.len + atomic_read(&sk->sk_rmem_alloc); 1122 1123 return qsize > limit; 1124 } 1125 1126 /* The per-socket spinlock must be held here. */ 1127 static inline __must_check int sk_add_backlog(struct sock *sk, struct sk_buff *skb, 1128 unsigned int limit) 1129 { 1130 if (sk_rcvqueues_full(sk, limit)) 1131 return -ENOBUFS; 1132 1133 /* 1134 * If the skb was allocated from pfmemalloc reserves, only 1135 * allow SOCK_MEMALLOC sockets to use it as this socket is 1136 * helping free memory 1137 */ 1138 if (skb_pfmemalloc(skb) && !sock_flag(sk, SOCK_MEMALLOC)) 1139 return -ENOMEM; 1140 1141 __sk_add_backlog(sk, skb); 1142 sk->sk_backlog.len += skb->truesize; 1143 return 0; 1144 } 1145 1146 int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb); 1147 1148 INDIRECT_CALLABLE_DECLARE(int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb)); 1149 INDIRECT_CALLABLE_DECLARE(int tcp_v6_do_rcv(struct sock *sk, struct sk_buff *skb)); 1150 1151 static inline int sk_backlog_rcv(struct sock *sk, struct sk_buff *skb) 1152 { 1153 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) 1154 return __sk_backlog_rcv(sk, skb); 1155 1156 return INDIRECT_CALL_INET(sk->sk_backlog_rcv, 1157 tcp_v6_do_rcv, 1158 tcp_v4_do_rcv, 1159 sk, skb); 1160 } 1161 1162 static inline void sk_incoming_cpu_update(struct sock *sk) 1163 { 1164 int cpu = raw_smp_processor_id(); 1165 1166 if (unlikely(READ_ONCE(sk->sk_incoming_cpu) != cpu)) 1167 WRITE_ONCE(sk->sk_incoming_cpu, cpu); 1168 } 1169 1170 1171 static inline void sock_rps_save_rxhash(struct sock *sk, 1172 const struct sk_buff *skb) 1173 { 1174 #ifdef CONFIG_RPS 1175 /* The following WRITE_ONCE() is paired with the READ_ONCE() 1176 * here, and another one in sock_rps_record_flow(). 1177 */ 1178 if (unlikely(READ_ONCE(sk->sk_rxhash) != skb->hash)) 1179 WRITE_ONCE(sk->sk_rxhash, skb->hash); 1180 #endif 1181 } 1182 1183 static inline void sock_rps_reset_rxhash(struct sock *sk) 1184 { 1185 #ifdef CONFIG_RPS 1186 /* Paired with READ_ONCE() in sock_rps_record_flow() */ 1187 WRITE_ONCE(sk->sk_rxhash, 0); 1188 #endif 1189 } 1190 1191 #define sk_wait_event(__sk, __timeo, __condition, __wait) \ 1192 ({ int __rc, __dis = __sk->sk_disconnects; \ 1193 release_sock(__sk); \ 1194 __rc = __condition; \ 1195 if (!__rc) { \ 1196 *(__timeo) = wait_woken(__wait, \ 1197 TASK_INTERRUPTIBLE, \ 1198 *(__timeo)); \ 1199 } \ 1200 sched_annotate_sleep(); \ 1201 lock_sock(__sk); \ 1202 __rc = __dis == __sk->sk_disconnects ? __condition : -EPIPE; \ 1203 __rc; \ 1204 }) 1205 1206 int sk_stream_wait_connect(struct sock *sk, long *timeo_p); 1207 int sk_stream_wait_memory(struct sock *sk, long *timeo_p); 1208 void sk_stream_wait_close(struct sock *sk, long timeo_p); 1209 int sk_stream_error(struct sock *sk, int flags, int err); 1210 void sk_stream_kill_queues(struct sock *sk); 1211 void sk_set_memalloc(struct sock *sk); 1212 void sk_clear_memalloc(struct sock *sk); 1213 1214 void __sk_flush_backlog(struct sock *sk); 1215 1216 static inline bool sk_flush_backlog(struct sock *sk) 1217 { 1218 if (unlikely(READ_ONCE(sk->sk_backlog.tail))) { 1219 __sk_flush_backlog(sk); 1220 return true; 1221 } 1222 return false; 1223 } 1224 1225 int sk_wait_data(struct sock *sk, long *timeo, const struct sk_buff *skb); 1226 1227 struct request_sock_ops; 1228 struct timewait_sock_ops; 1229 struct inet_hashinfo; 1230 struct raw_hashinfo; 1231 struct smc_hashinfo; 1232 struct module; 1233 struct sk_psock; 1234 1235 /* 1236 * caches using SLAB_TYPESAFE_BY_RCU should let .next pointer from nulls nodes 1237 * un-modified. Special care is taken when initializing object to zero. 1238 */ 1239 static inline void sk_prot_clear_nulls(struct sock *sk, int size) 1240 { 1241 if (offsetof(struct sock, sk_node.next) != 0) 1242 memset(sk, 0, offsetof(struct sock, sk_node.next)); 1243 memset(&sk->sk_node.pprev, 0, 1244 size - offsetof(struct sock, sk_node.pprev)); 1245 } 1246 1247 struct proto_accept_arg { 1248 int flags; 1249 int err; 1250 int is_empty; 1251 bool kern; 1252 }; 1253 1254 /* Networking protocol blocks we attach to sockets. 1255 * socket layer -> transport layer interface 1256 */ 1257 struct proto { 1258 void (*close)(struct sock *sk, 1259 long timeout); 1260 int (*pre_connect)(struct sock *sk, 1261 struct sockaddr *uaddr, 1262 int addr_len); 1263 int (*connect)(struct sock *sk, 1264 struct sockaddr *uaddr, 1265 int addr_len); 1266 int (*disconnect)(struct sock *sk, int flags); 1267 1268 struct sock * (*accept)(struct sock *sk, 1269 struct proto_accept_arg *arg); 1270 1271 int (*ioctl)(struct sock *sk, int cmd, 1272 int *karg); 1273 int (*init)(struct sock *sk); 1274 void (*destroy)(struct sock *sk); 1275 void (*shutdown)(struct sock *sk, int how); 1276 int (*setsockopt)(struct sock *sk, int level, 1277 int optname, sockptr_t optval, 1278 unsigned int optlen); 1279 int (*getsockopt)(struct sock *sk, int level, 1280 int optname, char __user *optval, 1281 int __user *option); 1282 void (*keepalive)(struct sock *sk, int valbool); 1283 #ifdef CONFIG_COMPAT 1284 int (*compat_ioctl)(struct sock *sk, 1285 unsigned int cmd, unsigned long arg); 1286 #endif 1287 int (*sendmsg)(struct sock *sk, struct msghdr *msg, 1288 size_t len); 1289 int (*recvmsg)(struct sock *sk, struct msghdr *msg, 1290 size_t len, int flags, int *addr_len); 1291 void (*splice_eof)(struct socket *sock); 1292 int (*bind)(struct sock *sk, 1293 struct sockaddr *addr, int addr_len); 1294 int (*bind_add)(struct sock *sk, 1295 struct sockaddr *addr, int addr_len); 1296 1297 int (*backlog_rcv) (struct sock *sk, 1298 struct sk_buff *skb); 1299 bool (*bpf_bypass_getsockopt)(int level, 1300 int optname); 1301 1302 void (*release_cb)(struct sock *sk); 1303 1304 /* Keeping track of sk's, looking them up, and port selection methods. */ 1305 int (*hash)(struct sock *sk); 1306 void (*unhash)(struct sock *sk); 1307 void (*rehash)(struct sock *sk); 1308 int (*get_port)(struct sock *sk, unsigned short snum); 1309 void (*put_port)(struct sock *sk); 1310 #ifdef CONFIG_BPF_SYSCALL 1311 int (*psock_update_sk_prot)(struct sock *sk, 1312 struct sk_psock *psock, 1313 bool restore); 1314 #endif 1315 1316 /* Keeping track of sockets in use */ 1317 #ifdef CONFIG_PROC_FS 1318 unsigned int inuse_idx; 1319 #endif 1320 1321 bool (*stream_memory_free)(const struct sock *sk, int wake); 1322 bool (*sock_is_readable)(struct sock *sk); 1323 /* Memory pressure */ 1324 void (*enter_memory_pressure)(struct sock *sk); 1325 void (*leave_memory_pressure)(struct sock *sk); 1326 atomic_long_t *memory_allocated; /* Current allocated memory. */ 1327 int __percpu *per_cpu_fw_alloc; 1328 struct percpu_counter *sockets_allocated; /* Current number of sockets. */ 1329 1330 /* 1331 * Pressure flag: try to collapse. 1332 * Technical note: it is used by multiple contexts non atomically. 1333 * Make sure to use READ_ONCE()/WRITE_ONCE() for all reads/writes. 1334 * All the __sk_mem_schedule() is of this nature: accounting 1335 * is strict, actions are advisory and have some latency. 1336 */ 1337 unsigned long *memory_pressure; 1338 long *sysctl_mem; 1339 1340 int *sysctl_wmem; 1341 int *sysctl_rmem; 1342 u32 sysctl_wmem_offset; 1343 u32 sysctl_rmem_offset; 1344 1345 int max_header; 1346 bool no_autobind; 1347 1348 struct kmem_cache *slab; 1349 unsigned int obj_size; 1350 unsigned int ipv6_pinfo_offset; 1351 slab_flags_t slab_flags; 1352 unsigned int useroffset; /* Usercopy region offset */ 1353 unsigned int usersize; /* Usercopy region size */ 1354 1355 struct request_sock_ops *rsk_prot; 1356 struct timewait_sock_ops *twsk_prot; 1357 1358 union { 1359 struct inet_hashinfo *hashinfo; 1360 struct udp_table *udp_table; 1361 struct raw_hashinfo *raw_hash; 1362 struct smc_hashinfo *smc_hash; 1363 } h; 1364 1365 struct module *owner; 1366 1367 char name[32]; 1368 1369 struct list_head node; 1370 int (*diag_destroy)(struct sock *sk, int err); 1371 } __randomize_layout; 1372 1373 int proto_register(struct proto *prot, int alloc_slab); 1374 void proto_unregister(struct proto *prot); 1375 int sock_load_diag_module(int family, int protocol); 1376 1377 INDIRECT_CALLABLE_DECLARE(bool tcp_stream_memory_free(const struct sock *sk, int wake)); 1378 1379 static inline bool __sk_stream_memory_free(const struct sock *sk, int wake) 1380 { 1381 if (READ_ONCE(sk->sk_wmem_queued) >= READ_ONCE(sk->sk_sndbuf)) 1382 return false; 1383 1384 return sk->sk_prot->stream_memory_free ? 1385 INDIRECT_CALL_INET_1(sk->sk_prot->stream_memory_free, 1386 tcp_stream_memory_free, sk, wake) : true; 1387 } 1388 1389 static inline bool sk_stream_memory_free(const struct sock *sk) 1390 { 1391 return __sk_stream_memory_free(sk, 0); 1392 } 1393 1394 static inline bool __sk_stream_is_writeable(const struct sock *sk, int wake) 1395 { 1396 return sk_stream_wspace(sk) >= sk_stream_min_wspace(sk) && 1397 __sk_stream_memory_free(sk, wake); 1398 } 1399 1400 static inline bool sk_stream_is_writeable(const struct sock *sk) 1401 { 1402 return __sk_stream_is_writeable(sk, 0); 1403 } 1404 1405 static inline int sk_under_cgroup_hierarchy(struct sock *sk, 1406 struct cgroup *ancestor) 1407 { 1408 #ifdef CONFIG_SOCK_CGROUP_DATA 1409 return cgroup_is_descendant(sock_cgroup_ptr(&sk->sk_cgrp_data), 1410 ancestor); 1411 #else 1412 return -ENOTSUPP; 1413 #endif 1414 } 1415 1416 #define SK_ALLOC_PERCPU_COUNTER_BATCH 16 1417 1418 static inline void sk_sockets_allocated_dec(struct sock *sk) 1419 { 1420 percpu_counter_add_batch(sk->sk_prot->sockets_allocated, -1, 1421 SK_ALLOC_PERCPU_COUNTER_BATCH); 1422 } 1423 1424 static inline void sk_sockets_allocated_inc(struct sock *sk) 1425 { 1426 percpu_counter_add_batch(sk->sk_prot->sockets_allocated, 1, 1427 SK_ALLOC_PERCPU_COUNTER_BATCH); 1428 } 1429 1430 static inline u64 1431 sk_sockets_allocated_read_positive(struct sock *sk) 1432 { 1433 return percpu_counter_read_positive(sk->sk_prot->sockets_allocated); 1434 } 1435 1436 static inline int 1437 proto_sockets_allocated_sum_positive(struct proto *prot) 1438 { 1439 return percpu_counter_sum_positive(prot->sockets_allocated); 1440 } 1441 1442 #ifdef CONFIG_PROC_FS 1443 #define PROTO_INUSE_NR 64 /* should be enough for the first time */ 1444 struct prot_inuse { 1445 int all; 1446 int val[PROTO_INUSE_NR]; 1447 }; 1448 1449 static inline void sock_prot_inuse_add(const struct net *net, 1450 const struct proto *prot, int val) 1451 { 1452 this_cpu_add(net->core.prot_inuse->val[prot->inuse_idx], val); 1453 } 1454 1455 static inline void sock_inuse_add(const struct net *net, int val) 1456 { 1457 this_cpu_add(net->core.prot_inuse->all, val); 1458 } 1459 1460 int sock_prot_inuse_get(struct net *net, struct proto *proto); 1461 int sock_inuse_get(struct net *net); 1462 #else 1463 static inline void sock_prot_inuse_add(const struct net *net, 1464 const struct proto *prot, int val) 1465 { 1466 } 1467 1468 static inline void sock_inuse_add(const struct net *net, int val) 1469 { 1470 } 1471 #endif 1472 1473 1474 /* With per-bucket locks this operation is not-atomic, so that 1475 * this version is not worse. 1476 */ 1477 static inline int __sk_prot_rehash(struct sock *sk) 1478 { 1479 sk->sk_prot->unhash(sk); 1480 return sk->sk_prot->hash(sk); 1481 } 1482 1483 /* About 10 seconds */ 1484 #define SOCK_DESTROY_TIME (10*HZ) 1485 1486 /* Sockets 0-1023 can't be bound to unless you are superuser */ 1487 #define PROT_SOCK 1024 1488 1489 #define SHUTDOWN_MASK 3 1490 #define RCV_SHUTDOWN 1 1491 #define SEND_SHUTDOWN 2 1492 1493 #define SOCK_BINDADDR_LOCK 4 1494 #define SOCK_BINDPORT_LOCK 8 1495 /** 1496 * define SOCK_CONNECT_BIND - &sock->sk_userlocks flag for auto-bind at connect() time 1497 */ 1498 #define SOCK_CONNECT_BIND 16 1499 1500 struct socket_alloc { 1501 struct socket socket; 1502 struct inode vfs_inode; 1503 }; 1504 1505 static inline struct socket *SOCKET_I(struct inode *inode) 1506 { 1507 return &container_of(inode, struct socket_alloc, vfs_inode)->socket; 1508 } 1509 1510 static inline struct inode *SOCK_INODE(struct socket *socket) 1511 { 1512 return &container_of(socket, struct socket_alloc, socket)->vfs_inode; 1513 } 1514 1515 /* 1516 * Functions for memory accounting 1517 */ 1518 int __sk_mem_raise_allocated(struct sock *sk, int size, int amt, int kind); 1519 int __sk_mem_schedule(struct sock *sk, int size, int kind); 1520 void __sk_mem_reduce_allocated(struct sock *sk, int amount); 1521 void __sk_mem_reclaim(struct sock *sk, int amount); 1522 1523 #define SK_MEM_SEND 0 1524 #define SK_MEM_RECV 1 1525 1526 /* sysctl_mem values are in pages */ 1527 static inline long sk_prot_mem_limits(const struct sock *sk, int index) 1528 { 1529 return READ_ONCE(sk->sk_prot->sysctl_mem[index]); 1530 } 1531 1532 static inline int sk_mem_pages(int amt) 1533 { 1534 return (amt + PAGE_SIZE - 1) >> PAGE_SHIFT; 1535 } 1536 1537 static inline bool sk_has_account(struct sock *sk) 1538 { 1539 /* return true if protocol supports memory accounting */ 1540 return !!sk->sk_prot->memory_allocated; 1541 } 1542 1543 static inline bool sk_wmem_schedule(struct sock *sk, int size) 1544 { 1545 int delta; 1546 1547 if (!sk_has_account(sk)) 1548 return true; 1549 delta = size - sk->sk_forward_alloc; 1550 return delta <= 0 || __sk_mem_schedule(sk, delta, SK_MEM_SEND); 1551 } 1552 1553 static inline bool 1554 __sk_rmem_schedule(struct sock *sk, int size, bool pfmemalloc) 1555 { 1556 int delta; 1557 1558 if (!sk_has_account(sk)) 1559 return true; 1560 delta = size - sk->sk_forward_alloc; 1561 return delta <= 0 || __sk_mem_schedule(sk, delta, SK_MEM_RECV) || 1562 pfmemalloc; 1563 } 1564 1565 static inline bool 1566 sk_rmem_schedule(struct sock *sk, const struct sk_buff *skb, int size) 1567 { 1568 return __sk_rmem_schedule(sk, size, skb_pfmemalloc(skb)); 1569 } 1570 1571 static inline int sk_unused_reserved_mem(const struct sock *sk) 1572 { 1573 int unused_mem; 1574 1575 if (likely(!sk->sk_reserved_mem)) 1576 return 0; 1577 1578 unused_mem = sk->sk_reserved_mem - sk->sk_wmem_queued - 1579 atomic_read(&sk->sk_rmem_alloc); 1580 1581 return unused_mem > 0 ? unused_mem : 0; 1582 } 1583 1584 static inline void sk_mem_reclaim(struct sock *sk) 1585 { 1586 int reclaimable; 1587 1588 if (!sk_has_account(sk)) 1589 return; 1590 1591 reclaimable = sk->sk_forward_alloc - sk_unused_reserved_mem(sk); 1592 1593 if (reclaimable >= (int)PAGE_SIZE) 1594 __sk_mem_reclaim(sk, reclaimable); 1595 } 1596 1597 static inline void sk_mem_reclaim_final(struct sock *sk) 1598 { 1599 sk->sk_reserved_mem = 0; 1600 sk_mem_reclaim(sk); 1601 } 1602 1603 static inline void sk_mem_charge(struct sock *sk, int size) 1604 { 1605 if (!sk_has_account(sk)) 1606 return; 1607 sk_forward_alloc_add(sk, -size); 1608 } 1609 1610 static inline void sk_mem_uncharge(struct sock *sk, int size) 1611 { 1612 if (!sk_has_account(sk)) 1613 return; 1614 sk_forward_alloc_add(sk, size); 1615 sk_mem_reclaim(sk); 1616 } 1617 1618 #if IS_ENABLED(CONFIG_PROVE_LOCKING) && IS_ENABLED(CONFIG_MODULES) 1619 static inline void sk_owner_set(struct sock *sk, struct module *owner) 1620 { 1621 __module_get(owner); 1622 sk->sk_owner = owner; 1623 } 1624 1625 static inline void sk_owner_clear(struct sock *sk) 1626 { 1627 sk->sk_owner = NULL; 1628 } 1629 1630 static inline void sk_owner_put(struct sock *sk) 1631 { 1632 module_put(sk->sk_owner); 1633 } 1634 #else 1635 static inline void sk_owner_set(struct sock *sk, struct module *owner) 1636 { 1637 } 1638 1639 static inline void sk_owner_clear(struct sock *sk) 1640 { 1641 } 1642 1643 static inline void sk_owner_put(struct sock *sk) 1644 { 1645 } 1646 #endif 1647 /* 1648 * Macro so as to not evaluate some arguments when 1649 * lockdep is not enabled. 1650 * 1651 * Mark both the sk_lock and the sk_lock.slock as a 1652 * per-address-family lock class. 1653 */ 1654 #define sock_lock_init_class_and_name(sk, sname, skey, name, key) \ 1655 do { \ 1656 sk_owner_set(sk, THIS_MODULE); \ 1657 sk->sk_lock.owned = 0; \ 1658 init_waitqueue_head(&sk->sk_lock.wq); \ 1659 spin_lock_init(&(sk)->sk_lock.slock); \ 1660 debug_check_no_locks_freed((void *)&(sk)->sk_lock, \ 1661 sizeof((sk)->sk_lock)); \ 1662 lockdep_set_class_and_name(&(sk)->sk_lock.slock, \ 1663 (skey), (sname)); \ 1664 lockdep_init_map(&(sk)->sk_lock.dep_map, (name), (key), 0); \ 1665 } while (0) 1666 1667 static inline bool lockdep_sock_is_held(const struct sock *sk) 1668 { 1669 return lockdep_is_held(&sk->sk_lock) || 1670 lockdep_is_held(&sk->sk_lock.slock); 1671 } 1672 1673 void lock_sock_nested(struct sock *sk, int subclass); 1674 1675 static inline void lock_sock(struct sock *sk) 1676 { 1677 lock_sock_nested(sk, 0); 1678 } 1679 1680 void __lock_sock(struct sock *sk); 1681 void __release_sock(struct sock *sk); 1682 void release_sock(struct sock *sk); 1683 1684 /* BH context may only use the following locking interface. */ 1685 #define bh_lock_sock(__sk) spin_lock(&((__sk)->sk_lock.slock)) 1686 #define bh_lock_sock_nested(__sk) \ 1687 spin_lock_nested(&((__sk)->sk_lock.slock), \ 1688 SINGLE_DEPTH_NESTING) 1689 #define bh_unlock_sock(__sk) spin_unlock(&((__sk)->sk_lock.slock)) 1690 1691 bool __lock_sock_fast(struct sock *sk) __acquires(&sk->sk_lock.slock); 1692 1693 /** 1694 * lock_sock_fast - fast version of lock_sock 1695 * @sk: socket 1696 * 1697 * This version should be used for very small section, where process won't block 1698 * return false if fast path is taken: 1699 * 1700 * sk_lock.slock locked, owned = 0, BH disabled 1701 * 1702 * return true if slow path is taken: 1703 * 1704 * sk_lock.slock unlocked, owned = 1, BH enabled 1705 */ 1706 static inline bool lock_sock_fast(struct sock *sk) 1707 { 1708 /* The sk_lock has mutex_lock() semantics here. */ 1709 mutex_acquire(&sk->sk_lock.dep_map, 0, 0, _RET_IP_); 1710 1711 return __lock_sock_fast(sk); 1712 } 1713 1714 /* fast socket lock variant for caller already holding a [different] socket lock */ 1715 static inline bool lock_sock_fast_nested(struct sock *sk) 1716 { 1717 mutex_acquire(&sk->sk_lock.dep_map, SINGLE_DEPTH_NESTING, 0, _RET_IP_); 1718 1719 return __lock_sock_fast(sk); 1720 } 1721 1722 /** 1723 * unlock_sock_fast - complement of lock_sock_fast 1724 * @sk: socket 1725 * @slow: slow mode 1726 * 1727 * fast unlock socket for user context. 1728 * If slow mode is on, we call regular release_sock() 1729 */ 1730 static inline void unlock_sock_fast(struct sock *sk, bool slow) 1731 __releases(&sk->sk_lock.slock) 1732 { 1733 if (slow) { 1734 release_sock(sk); 1735 __release(&sk->sk_lock.slock); 1736 } else { 1737 mutex_release(&sk->sk_lock.dep_map, _RET_IP_); 1738 spin_unlock_bh(&sk->sk_lock.slock); 1739 } 1740 } 1741 1742 void sockopt_lock_sock(struct sock *sk); 1743 void sockopt_release_sock(struct sock *sk); 1744 bool sockopt_ns_capable(struct user_namespace *ns, int cap); 1745 bool sockopt_capable(int cap); 1746 1747 /* Used by processes to "lock" a socket state, so that 1748 * interrupts and bottom half handlers won't change it 1749 * from under us. It essentially blocks any incoming 1750 * packets, so that we won't get any new data or any 1751 * packets that change the state of the socket. 1752 * 1753 * While locked, BH processing will add new packets to 1754 * the backlog queue. This queue is processed by the 1755 * owner of the socket lock right before it is released. 1756 * 1757 * Since ~2.3.5 it is also exclusive sleep lock serializing 1758 * accesses from user process context. 1759 */ 1760 1761 static inline void sock_owned_by_me(const struct sock *sk) 1762 { 1763 #ifdef CONFIG_LOCKDEP 1764 WARN_ON_ONCE(!lockdep_sock_is_held(sk) && debug_locks); 1765 #endif 1766 } 1767 1768 static inline void sock_not_owned_by_me(const struct sock *sk) 1769 { 1770 #ifdef CONFIG_LOCKDEP 1771 WARN_ON_ONCE(lockdep_sock_is_held(sk) && debug_locks); 1772 #endif 1773 } 1774 1775 static inline bool sock_owned_by_user(const struct sock *sk) 1776 { 1777 sock_owned_by_me(sk); 1778 return sk->sk_lock.owned; 1779 } 1780 1781 static inline bool sock_owned_by_user_nocheck(const struct sock *sk) 1782 { 1783 return sk->sk_lock.owned; 1784 } 1785 1786 static inline void sock_release_ownership(struct sock *sk) 1787 { 1788 DEBUG_NET_WARN_ON_ONCE(!sock_owned_by_user_nocheck(sk)); 1789 sk->sk_lock.owned = 0; 1790 1791 /* The sk_lock has mutex_unlock() semantics: */ 1792 mutex_release(&sk->sk_lock.dep_map, _RET_IP_); 1793 } 1794 1795 /* no reclassification while locks are held */ 1796 static inline bool sock_allow_reclassification(const struct sock *csk) 1797 { 1798 struct sock *sk = (struct sock *)csk; 1799 1800 return !sock_owned_by_user_nocheck(sk) && 1801 !spin_is_locked(&sk->sk_lock.slock); 1802 } 1803 1804 struct sock *sk_alloc(struct net *net, int family, gfp_t priority, 1805 struct proto *prot, int kern); 1806 void sk_free(struct sock *sk); 1807 void sk_net_refcnt_upgrade(struct sock *sk); 1808 void sk_destruct(struct sock *sk); 1809 struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority); 1810 1811 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force, 1812 gfp_t priority); 1813 void __sock_wfree(struct sk_buff *skb); 1814 void sock_wfree(struct sk_buff *skb); 1815 struct sk_buff *sock_omalloc(struct sock *sk, unsigned long size, 1816 gfp_t priority); 1817 void skb_orphan_partial(struct sk_buff *skb); 1818 void sock_rfree(struct sk_buff *skb); 1819 void sock_efree(struct sk_buff *skb); 1820 #ifdef CONFIG_INET 1821 void sock_edemux(struct sk_buff *skb); 1822 void sock_pfree(struct sk_buff *skb); 1823 1824 static inline void skb_set_owner_edemux(struct sk_buff *skb, struct sock *sk) 1825 { 1826 skb_orphan(skb); 1827 if (refcount_inc_not_zero(&sk->sk_refcnt)) { 1828 skb->sk = sk; 1829 skb->destructor = sock_edemux; 1830 } 1831 } 1832 #else 1833 #define sock_edemux sock_efree 1834 #endif 1835 1836 int sk_setsockopt(struct sock *sk, int level, int optname, 1837 sockptr_t optval, unsigned int optlen); 1838 int sock_setsockopt(struct socket *sock, int level, int op, 1839 sockptr_t optval, unsigned int optlen); 1840 int do_sock_setsockopt(struct socket *sock, bool compat, int level, 1841 int optname, sockptr_t optval, int optlen); 1842 int do_sock_getsockopt(struct socket *sock, bool compat, int level, 1843 int optname, sockptr_t optval, sockptr_t optlen); 1844 1845 int sk_getsockopt(struct sock *sk, int level, int optname, 1846 sockptr_t optval, sockptr_t optlen); 1847 int sock_gettstamp(struct socket *sock, void __user *userstamp, 1848 bool timeval, bool time32); 1849 struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len, 1850 unsigned long data_len, int noblock, 1851 int *errcode, int max_page_order); 1852 1853 static inline struct sk_buff *sock_alloc_send_skb(struct sock *sk, 1854 unsigned long size, 1855 int noblock, int *errcode) 1856 { 1857 return sock_alloc_send_pskb(sk, size, 0, noblock, errcode, 0); 1858 } 1859 1860 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority); 1861 void *sock_kmemdup(struct sock *sk, const void *src, 1862 int size, gfp_t priority); 1863 void sock_kfree_s(struct sock *sk, void *mem, int size); 1864 void sock_kzfree_s(struct sock *sk, void *mem, int size); 1865 void sk_send_sigurg(struct sock *sk); 1866 1867 static inline void sock_replace_proto(struct sock *sk, struct proto *proto) 1868 { 1869 if (sk->sk_socket) 1870 clear_bit(SOCK_SUPPORT_ZC, &sk->sk_socket->flags); 1871 WRITE_ONCE(sk->sk_prot, proto); 1872 } 1873 1874 struct sockcm_cookie { 1875 u64 transmit_time; 1876 u32 mark; 1877 u32 tsflags; 1878 u32 ts_opt_id; 1879 u32 priority; 1880 u32 dmabuf_id; 1881 }; 1882 1883 static inline void sockcm_init(struct sockcm_cookie *sockc, 1884 const struct sock *sk) 1885 { 1886 *sockc = (struct sockcm_cookie) { 1887 .mark = READ_ONCE(sk->sk_mark), 1888 .tsflags = READ_ONCE(sk->sk_tsflags), 1889 .priority = READ_ONCE(sk->sk_priority), 1890 }; 1891 } 1892 1893 int __sock_cmsg_send(struct sock *sk, struct cmsghdr *cmsg, 1894 struct sockcm_cookie *sockc); 1895 int sock_cmsg_send(struct sock *sk, struct msghdr *msg, 1896 struct sockcm_cookie *sockc); 1897 1898 /* 1899 * Functions to fill in entries in struct proto_ops when a protocol 1900 * does not implement a particular function. 1901 */ 1902 int sock_no_bind(struct socket *, struct sockaddr *, int); 1903 int sock_no_connect(struct socket *, struct sockaddr *, int, int); 1904 int sock_no_socketpair(struct socket *, struct socket *); 1905 int sock_no_accept(struct socket *, struct socket *, struct proto_accept_arg *); 1906 int sock_no_getname(struct socket *, struct sockaddr *, int); 1907 int sock_no_ioctl(struct socket *, unsigned int, unsigned long); 1908 int sock_no_listen(struct socket *, int); 1909 int sock_no_shutdown(struct socket *, int); 1910 int sock_no_sendmsg(struct socket *, struct msghdr *, size_t); 1911 int sock_no_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t len); 1912 int sock_no_recvmsg(struct socket *, struct msghdr *, size_t, int); 1913 int sock_no_mmap(struct file *file, struct socket *sock, 1914 struct vm_area_struct *vma); 1915 1916 /* 1917 * Functions to fill in entries in struct proto_ops when a protocol 1918 * uses the inet style. 1919 */ 1920 int sock_common_getsockopt(struct socket *sock, int level, int optname, 1921 char __user *optval, int __user *optlen); 1922 int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size, 1923 int flags); 1924 int sock_common_setsockopt(struct socket *sock, int level, int optname, 1925 sockptr_t optval, unsigned int optlen); 1926 1927 void sk_common_release(struct sock *sk); 1928 1929 /* 1930 * Default socket callbacks and setup code 1931 */ 1932 1933 /* Initialise core socket variables using an explicit uid. */ 1934 void sock_init_data_uid(struct socket *sock, struct sock *sk, kuid_t uid); 1935 1936 /* Initialise core socket variables. 1937 * Assumes struct socket *sock is embedded in a struct socket_alloc. 1938 */ 1939 void sock_init_data(struct socket *sock, struct sock *sk); 1940 1941 /* 1942 * Socket reference counting postulates. 1943 * 1944 * * Each user of socket SHOULD hold a reference count. 1945 * * Each access point to socket (an hash table bucket, reference from a list, 1946 * running timer, skb in flight MUST hold a reference count. 1947 * * When reference count hits 0, it means it will never increase back. 1948 * * When reference count hits 0, it means that no references from 1949 * outside exist to this socket and current process on current CPU 1950 * is last user and may/should destroy this socket. 1951 * * sk_free is called from any context: process, BH, IRQ. When 1952 * it is called, socket has no references from outside -> sk_free 1953 * may release descendant resources allocated by the socket, but 1954 * to the time when it is called, socket is NOT referenced by any 1955 * hash tables, lists etc. 1956 * * Packets, delivered from outside (from network or from another process) 1957 * and enqueued on receive/error queues SHOULD NOT grab reference count, 1958 * when they sit in queue. Otherwise, packets will leak to hole, when 1959 * socket is looked up by one cpu and unhasing is made by another CPU. 1960 * It is true for udp/raw, netlink (leak to receive and error queues), tcp 1961 * (leak to backlog). Packet socket does all the processing inside 1962 * BR_NETPROTO_LOCK, so that it has not this race condition. UNIX sockets 1963 * use separate SMP lock, so that they are prone too. 1964 */ 1965 1966 /* Ungrab socket and destroy it, if it was the last reference. */ 1967 static inline void sock_put(struct sock *sk) 1968 { 1969 if (refcount_dec_and_test(&sk->sk_refcnt)) 1970 sk_free(sk); 1971 } 1972 /* Generic version of sock_put(), dealing with all sockets 1973 * (TCP_TIMEWAIT, TCP_NEW_SYN_RECV, ESTABLISHED...) 1974 */ 1975 void sock_gen_put(struct sock *sk); 1976 1977 int __sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested, 1978 unsigned int trim_cap, bool refcounted); 1979 static inline int sk_receive_skb(struct sock *sk, struct sk_buff *skb, 1980 const int nested) 1981 { 1982 return __sk_receive_skb(sk, skb, nested, 1, true); 1983 } 1984 1985 static inline void sk_tx_queue_set(struct sock *sk, int tx_queue) 1986 { 1987 /* sk_tx_queue_mapping accept only upto a 16-bit value */ 1988 if (WARN_ON_ONCE((unsigned short)tx_queue >= USHRT_MAX)) 1989 return; 1990 /* Paired with READ_ONCE() in sk_tx_queue_get() and 1991 * other WRITE_ONCE() because socket lock might be not held. 1992 */ 1993 if (READ_ONCE(sk->sk_tx_queue_mapping) != tx_queue) { 1994 WRITE_ONCE(sk->sk_tx_queue_mapping, tx_queue); 1995 WRITE_ONCE(sk->sk_tx_queue_mapping_jiffies, jiffies); 1996 return; 1997 } 1998 1999 /* Refresh sk_tx_queue_mapping_jiffies if too old. */ 2000 if (time_is_before_jiffies(READ_ONCE(sk->sk_tx_queue_mapping_jiffies) + HZ)) 2001 WRITE_ONCE(sk->sk_tx_queue_mapping_jiffies, jiffies); 2002 } 2003 2004 #define NO_QUEUE_MAPPING USHRT_MAX 2005 2006 static inline void sk_tx_queue_clear(struct sock *sk) 2007 { 2008 /* Paired with READ_ONCE() in sk_tx_queue_get() and 2009 * other WRITE_ONCE() because socket lock might be not held. 2010 */ 2011 WRITE_ONCE(sk->sk_tx_queue_mapping, NO_QUEUE_MAPPING); 2012 } 2013 2014 int sk_tx_queue_get(const struct sock *sk); 2015 2016 static inline void __sk_rx_queue_set(struct sock *sk, 2017 const struct sk_buff *skb, 2018 bool force_set) 2019 { 2020 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING 2021 if (skb_rx_queue_recorded(skb)) { 2022 u16 rx_queue = skb_get_rx_queue(skb); 2023 2024 if (force_set || 2025 unlikely(READ_ONCE(sk->sk_rx_queue_mapping) != rx_queue)) 2026 WRITE_ONCE(sk->sk_rx_queue_mapping, rx_queue); 2027 } 2028 #endif 2029 } 2030 2031 static inline void sk_rx_queue_set(struct sock *sk, const struct sk_buff *skb) 2032 { 2033 __sk_rx_queue_set(sk, skb, true); 2034 } 2035 2036 static inline void sk_rx_queue_update(struct sock *sk, const struct sk_buff *skb) 2037 { 2038 __sk_rx_queue_set(sk, skb, false); 2039 } 2040 2041 static inline void sk_rx_queue_clear(struct sock *sk) 2042 { 2043 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING 2044 WRITE_ONCE(sk->sk_rx_queue_mapping, NO_QUEUE_MAPPING); 2045 #endif 2046 } 2047 2048 static inline int sk_rx_queue_get(const struct sock *sk) 2049 { 2050 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING 2051 if (sk) { 2052 int res = READ_ONCE(sk->sk_rx_queue_mapping); 2053 2054 if (res != NO_QUEUE_MAPPING) 2055 return res; 2056 } 2057 #endif 2058 2059 return -1; 2060 } 2061 2062 static inline void sk_set_socket(struct sock *sk, struct socket *sock) 2063 { 2064 sk->sk_socket = sock; 2065 if (sock) { 2066 WRITE_ONCE(sk->sk_uid, SOCK_INODE(sock)->i_uid); 2067 WRITE_ONCE(sk->sk_ino, SOCK_INODE(sock)->i_ino); 2068 } else { 2069 /* Note: sk_uid is unchanged. */ 2070 WRITE_ONCE(sk->sk_ino, 0); 2071 } 2072 } 2073 2074 static inline wait_queue_head_t *sk_sleep(struct sock *sk) 2075 { 2076 BUILD_BUG_ON(offsetof(struct socket_wq, wait) != 0); 2077 return &rcu_dereference_raw(sk->sk_wq)->wait; 2078 } 2079 /* Detach socket from process context. 2080 * Announce socket dead, detach it from wait queue and inode. 2081 * Note that parent inode held reference count on this struct sock, 2082 * we do not release it in this function, because protocol 2083 * probably wants some additional cleanups or even continuing 2084 * to work with this socket (TCP). 2085 */ 2086 static inline void sock_orphan(struct sock *sk) 2087 { 2088 write_lock_bh(&sk->sk_callback_lock); 2089 sock_set_flag(sk, SOCK_DEAD); 2090 sk_set_socket(sk, NULL); 2091 sk->sk_wq = NULL; 2092 write_unlock_bh(&sk->sk_callback_lock); 2093 } 2094 2095 static inline void sock_graft(struct sock *sk, struct socket *parent) 2096 { 2097 WARN_ON(parent->sk); 2098 write_lock_bh(&sk->sk_callback_lock); 2099 rcu_assign_pointer(sk->sk_wq, &parent->wq); 2100 parent->sk = sk; 2101 sk_set_socket(sk, parent); 2102 security_sock_graft(sk, parent); 2103 write_unlock_bh(&sk->sk_callback_lock); 2104 } 2105 2106 static inline unsigned long sock_i_ino(const struct sock *sk) 2107 { 2108 /* Paired with WRITE_ONCE() in sock_graft() and sock_orphan() */ 2109 return READ_ONCE(sk->sk_ino); 2110 } 2111 2112 static inline kuid_t sk_uid(const struct sock *sk) 2113 { 2114 /* Paired with WRITE_ONCE() in sockfs_setattr() */ 2115 return READ_ONCE(sk->sk_uid); 2116 } 2117 2118 static inline kuid_t sock_net_uid(const struct net *net, const struct sock *sk) 2119 { 2120 return sk ? sk_uid(sk) : make_kuid(net->user_ns, 0); 2121 } 2122 2123 static inline u32 net_tx_rndhash(void) 2124 { 2125 u32 v = get_random_u32(); 2126 2127 return v ?: 1; 2128 } 2129 2130 static inline void sk_set_txhash(struct sock *sk) 2131 { 2132 /* This pairs with READ_ONCE() in skb_set_hash_from_sk() */ 2133 WRITE_ONCE(sk->sk_txhash, net_tx_rndhash()); 2134 } 2135 2136 static inline bool sk_rethink_txhash(struct sock *sk) 2137 { 2138 if (sk->sk_txhash && sk->sk_txrehash == SOCK_TXREHASH_ENABLED) { 2139 sk_set_txhash(sk); 2140 return true; 2141 } 2142 return false; 2143 } 2144 2145 static inline struct dst_entry * 2146 __sk_dst_get(const struct sock *sk) 2147 { 2148 return rcu_dereference_check(sk->sk_dst_cache, 2149 lockdep_sock_is_held(sk)); 2150 } 2151 2152 static inline struct dst_entry * 2153 sk_dst_get(const struct sock *sk) 2154 { 2155 struct dst_entry *dst; 2156 2157 rcu_read_lock(); 2158 dst = rcu_dereference(sk->sk_dst_cache); 2159 if (dst && !rcuref_get(&dst->__rcuref)) 2160 dst = NULL; 2161 rcu_read_unlock(); 2162 return dst; 2163 } 2164 2165 static inline void __dst_negative_advice(struct sock *sk) 2166 { 2167 struct dst_entry *dst = __sk_dst_get(sk); 2168 2169 if (dst && dst->ops->negative_advice) 2170 dst->ops->negative_advice(sk, dst); 2171 } 2172 2173 static inline void dst_negative_advice(struct sock *sk) 2174 { 2175 sk_rethink_txhash(sk); 2176 __dst_negative_advice(sk); 2177 } 2178 2179 static inline void 2180 __sk_dst_set(struct sock *sk, struct dst_entry *dst) 2181 { 2182 struct dst_entry *old_dst; 2183 2184 sk_tx_queue_clear(sk); 2185 WRITE_ONCE(sk->sk_dst_pending_confirm, 0); 2186 old_dst = rcu_dereference_protected(sk->sk_dst_cache, 2187 lockdep_sock_is_held(sk)); 2188 rcu_assign_pointer(sk->sk_dst_cache, dst); 2189 dst_release(old_dst); 2190 } 2191 2192 static inline void 2193 sk_dst_set(struct sock *sk, struct dst_entry *dst) 2194 { 2195 struct dst_entry *old_dst; 2196 2197 sk_tx_queue_clear(sk); 2198 WRITE_ONCE(sk->sk_dst_pending_confirm, 0); 2199 old_dst = unrcu_pointer(xchg(&sk->sk_dst_cache, RCU_INITIALIZER(dst))); 2200 dst_release(old_dst); 2201 } 2202 2203 static inline void 2204 __sk_dst_reset(struct sock *sk) 2205 { 2206 __sk_dst_set(sk, NULL); 2207 } 2208 2209 static inline void 2210 sk_dst_reset(struct sock *sk) 2211 { 2212 sk_dst_set(sk, NULL); 2213 } 2214 2215 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie); 2216 2217 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie); 2218 2219 static inline void sk_dst_confirm(struct sock *sk) 2220 { 2221 if (!READ_ONCE(sk->sk_dst_pending_confirm)) 2222 WRITE_ONCE(sk->sk_dst_pending_confirm, 1); 2223 } 2224 2225 static inline void sock_confirm_neigh(struct sk_buff *skb, struct neighbour *n) 2226 { 2227 if (skb_get_dst_pending_confirm(skb)) { 2228 struct sock *sk = skb->sk; 2229 2230 if (sk && READ_ONCE(sk->sk_dst_pending_confirm)) 2231 WRITE_ONCE(sk->sk_dst_pending_confirm, 0); 2232 neigh_confirm(n); 2233 } 2234 } 2235 2236 bool sk_mc_loop(const struct sock *sk); 2237 2238 static inline bool sk_can_gso(const struct sock *sk) 2239 { 2240 return net_gso_ok(sk->sk_route_caps, sk->sk_gso_type); 2241 } 2242 2243 void sk_setup_caps(struct sock *sk, struct dst_entry *dst); 2244 2245 static inline void sk_gso_disable(struct sock *sk) 2246 { 2247 sk->sk_gso_disabled = 1; 2248 sk->sk_route_caps &= ~NETIF_F_GSO_MASK; 2249 } 2250 2251 static inline int skb_do_copy_data_nocache(struct sock *sk, struct sk_buff *skb, 2252 struct iov_iter *from, char *to, 2253 int copy, int offset) 2254 { 2255 if (skb->ip_summed == CHECKSUM_NONE) { 2256 __wsum csum = 0; 2257 if (!csum_and_copy_from_iter_full(to, copy, &csum, from)) 2258 return -EFAULT; 2259 skb->csum = csum_block_add(skb->csum, csum, offset); 2260 } else if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY) { 2261 if (!copy_from_iter_full_nocache(to, copy, from)) 2262 return -EFAULT; 2263 } else if (!copy_from_iter_full(to, copy, from)) 2264 return -EFAULT; 2265 2266 return 0; 2267 } 2268 2269 static inline int skb_add_data_nocache(struct sock *sk, struct sk_buff *skb, 2270 struct iov_iter *from, int copy) 2271 { 2272 int err, offset = skb->len; 2273 2274 err = skb_do_copy_data_nocache(sk, skb, from, skb_put(skb, copy), 2275 copy, offset); 2276 if (err) 2277 __skb_trim(skb, offset); 2278 2279 return err; 2280 } 2281 2282 static inline int skb_copy_to_page_nocache(struct sock *sk, struct iov_iter *from, 2283 struct sk_buff *skb, 2284 struct page *page, 2285 int off, int copy) 2286 { 2287 int err; 2288 2289 err = skb_do_copy_data_nocache(sk, skb, from, page_address(page) + off, 2290 copy, skb->len); 2291 if (err) 2292 return err; 2293 2294 skb_len_add(skb, copy); 2295 sk_wmem_queued_add(sk, copy); 2296 sk_mem_charge(sk, copy); 2297 return 0; 2298 } 2299 2300 #define SK_WMEM_ALLOC_BIAS 1 2301 /** 2302 * sk_wmem_alloc_get - returns write allocations 2303 * @sk: socket 2304 * 2305 * Return: sk_wmem_alloc minus initial offset of one 2306 */ 2307 static inline int sk_wmem_alloc_get(const struct sock *sk) 2308 { 2309 return refcount_read(&sk->sk_wmem_alloc) - SK_WMEM_ALLOC_BIAS; 2310 } 2311 2312 /** 2313 * sk_rmem_alloc_get - returns read allocations 2314 * @sk: socket 2315 * 2316 * Return: sk_rmem_alloc 2317 */ 2318 static inline int sk_rmem_alloc_get(const struct sock *sk) 2319 { 2320 return atomic_read(&sk->sk_rmem_alloc); 2321 } 2322 2323 /** 2324 * sk_has_allocations - check if allocations are outstanding 2325 * @sk: socket 2326 * 2327 * Return: true if socket has write or read allocations 2328 */ 2329 static inline bool sk_has_allocations(const struct sock *sk) 2330 { 2331 return sk_wmem_alloc_get(sk) || sk_rmem_alloc_get(sk); 2332 } 2333 2334 /** 2335 * skwq_has_sleeper - check if there are any waiting processes 2336 * @wq: struct socket_wq 2337 * 2338 * Return: true if socket_wq has waiting processes 2339 * 2340 * The purpose of the skwq_has_sleeper and sock_poll_wait is to wrap the memory 2341 * barrier call. They were added due to the race found within the tcp code. 2342 * 2343 * Consider following tcp code paths:: 2344 * 2345 * CPU1 CPU2 2346 * sys_select receive packet 2347 * ... ... 2348 * __add_wait_queue update tp->rcv_nxt 2349 * ... ... 2350 * tp->rcv_nxt check sock_def_readable 2351 * ... { 2352 * schedule rcu_read_lock(); 2353 * wq = rcu_dereference(sk->sk_wq); 2354 * if (wq && waitqueue_active(&wq->wait)) 2355 * wake_up_interruptible(&wq->wait) 2356 * ... 2357 * } 2358 * 2359 * The race for tcp fires when the __add_wait_queue changes done by CPU1 stay 2360 * in its cache, and so does the tp->rcv_nxt update on CPU2 side. The CPU1 2361 * could then endup calling schedule and sleep forever if there are no more 2362 * data on the socket. 2363 * 2364 */ 2365 static inline bool skwq_has_sleeper(struct socket_wq *wq) 2366 { 2367 return wq && wq_has_sleeper(&wq->wait); 2368 } 2369 2370 /** 2371 * sock_poll_wait - wrapper for the poll_wait call. 2372 * @filp: file 2373 * @sock: socket to wait on 2374 * @p: poll_table 2375 * 2376 * See the comments in the wq_has_sleeper function. 2377 */ 2378 static inline void sock_poll_wait(struct file *filp, struct socket *sock, 2379 poll_table *p) 2380 { 2381 /* Provides a barrier we need to be sure we are in sync 2382 * with the socket flags modification. 2383 * 2384 * This memory barrier is paired in the wq_has_sleeper. 2385 */ 2386 poll_wait(filp, &sock->wq.wait, p); 2387 } 2388 2389 static inline void skb_set_hash_from_sk(struct sk_buff *skb, struct sock *sk) 2390 { 2391 /* This pairs with WRITE_ONCE() in sk_set_txhash() */ 2392 u32 txhash = READ_ONCE(sk->sk_txhash); 2393 2394 if (txhash) { 2395 skb->l4_hash = 1; 2396 skb->hash = txhash; 2397 } 2398 } 2399 2400 void skb_set_owner_w(struct sk_buff *skb, struct sock *sk); 2401 2402 /* 2403 * Queue a received datagram if it will fit. Stream and sequenced 2404 * protocols can't normally use this as they need to fit buffers in 2405 * and play with them. 2406 * 2407 * Inlined as it's very short and called for pretty much every 2408 * packet ever received. 2409 */ 2410 static inline void skb_set_owner_r(struct sk_buff *skb, struct sock *sk) 2411 { 2412 skb_orphan(skb); 2413 skb->sk = sk; 2414 skb->destructor = sock_rfree; 2415 atomic_add(skb->truesize, &sk->sk_rmem_alloc); 2416 sk_mem_charge(sk, skb->truesize); 2417 } 2418 2419 static inline __must_check bool skb_set_owner_sk_safe(struct sk_buff *skb, struct sock *sk) 2420 { 2421 if (sk && refcount_inc_not_zero(&sk->sk_refcnt)) { 2422 skb_orphan(skb); 2423 skb->destructor = sock_efree; 2424 skb->sk = sk; 2425 return true; 2426 } 2427 return false; 2428 } 2429 2430 static inline struct sk_buff *skb_clone_and_charge_r(struct sk_buff *skb, struct sock *sk) 2431 { 2432 skb = skb_clone(skb, sk_gfp_mask(sk, GFP_ATOMIC)); 2433 if (skb) { 2434 if (sk_rmem_schedule(sk, skb, skb->truesize)) { 2435 skb_set_owner_r(skb, sk); 2436 return skb; 2437 } 2438 __kfree_skb(skb); 2439 } 2440 return NULL; 2441 } 2442 2443 static inline void skb_prepare_for_gro(struct sk_buff *skb) 2444 { 2445 if (skb->destructor != sock_wfree) { 2446 skb_orphan(skb); 2447 return; 2448 } 2449 skb->slow_gro = 1; 2450 } 2451 2452 void sk_reset_timer(struct sock *sk, struct timer_list *timer, 2453 unsigned long expires); 2454 2455 void sk_stop_timer(struct sock *sk, struct timer_list *timer); 2456 2457 void sk_stop_timer_sync(struct sock *sk, struct timer_list *timer); 2458 2459 int __sk_queue_drop_skb(struct sock *sk, struct sk_buff_head *sk_queue, 2460 struct sk_buff *skb, unsigned int flags, 2461 void (*destructor)(struct sock *sk, 2462 struct sk_buff *skb)); 2463 int __sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb); 2464 2465 int sock_queue_rcv_skb_reason(struct sock *sk, struct sk_buff *skb, 2466 enum skb_drop_reason *reason); 2467 2468 static inline int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb) 2469 { 2470 return sock_queue_rcv_skb_reason(sk, skb, NULL); 2471 } 2472 2473 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb); 2474 struct sk_buff *sock_dequeue_err_skb(struct sock *sk); 2475 2476 /* 2477 * Recover an error report and clear atomically 2478 */ 2479 2480 static inline int sock_error(struct sock *sk) 2481 { 2482 int err; 2483 2484 /* Avoid an atomic operation for the common case. 2485 * This is racy since another cpu/thread can change sk_err under us. 2486 */ 2487 if (likely(data_race(!sk->sk_err))) 2488 return 0; 2489 2490 err = xchg(&sk->sk_err, 0); 2491 return -err; 2492 } 2493 2494 void sk_error_report(struct sock *sk); 2495 2496 static inline unsigned long sock_wspace(struct sock *sk) 2497 { 2498 int amt = 0; 2499 2500 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) { 2501 amt = sk->sk_sndbuf - refcount_read(&sk->sk_wmem_alloc); 2502 if (amt < 0) 2503 amt = 0; 2504 } 2505 return amt; 2506 } 2507 2508 /* Note: 2509 * We use sk->sk_wq_raw, from contexts knowing this 2510 * pointer is not NULL and cannot disappear/change. 2511 */ 2512 static inline void sk_set_bit(int nr, struct sock *sk) 2513 { 2514 if ((nr == SOCKWQ_ASYNC_NOSPACE || nr == SOCKWQ_ASYNC_WAITDATA) && 2515 !sock_flag(sk, SOCK_FASYNC)) 2516 return; 2517 2518 set_bit(nr, &sk->sk_wq_raw->flags); 2519 } 2520 2521 static inline void sk_clear_bit(int nr, struct sock *sk) 2522 { 2523 if ((nr == SOCKWQ_ASYNC_NOSPACE || nr == SOCKWQ_ASYNC_WAITDATA) && 2524 !sock_flag(sk, SOCK_FASYNC)) 2525 return; 2526 2527 clear_bit(nr, &sk->sk_wq_raw->flags); 2528 } 2529 2530 static inline void sk_wake_async(const struct sock *sk, int how, int band) 2531 { 2532 if (sock_flag(sk, SOCK_FASYNC)) { 2533 rcu_read_lock(); 2534 sock_wake_async(rcu_dereference(sk->sk_wq), how, band); 2535 rcu_read_unlock(); 2536 } 2537 } 2538 2539 static inline void sk_wake_async_rcu(const struct sock *sk, int how, int band) 2540 { 2541 if (unlikely(sock_flag(sk, SOCK_FASYNC))) 2542 sock_wake_async(rcu_dereference(sk->sk_wq), how, band); 2543 } 2544 2545 /* Since sk_{r,w}mem_alloc sums skb->truesize, even a small frame might 2546 * need sizeof(sk_buff) + MTU + padding, unless net driver perform copybreak. 2547 * Note: for send buffers, TCP works better if we can build two skbs at 2548 * minimum. 2549 */ 2550 #define TCP_SKB_MIN_TRUESIZE (2048 + SKB_DATA_ALIGN(sizeof(struct sk_buff))) 2551 2552 #define SOCK_MIN_SNDBUF (TCP_SKB_MIN_TRUESIZE * 2) 2553 #define SOCK_MIN_RCVBUF TCP_SKB_MIN_TRUESIZE 2554 2555 static inline void sk_stream_moderate_sndbuf(struct sock *sk) 2556 { 2557 u32 val; 2558 2559 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK) 2560 return; 2561 2562 val = min(sk->sk_sndbuf, sk->sk_wmem_queued >> 1); 2563 val = max_t(u32, val, sk_unused_reserved_mem(sk)); 2564 2565 WRITE_ONCE(sk->sk_sndbuf, max_t(u32, val, SOCK_MIN_SNDBUF)); 2566 } 2567 2568 /** 2569 * sk_page_frag - return an appropriate page_frag 2570 * @sk: socket 2571 * 2572 * Use the per task page_frag instead of the per socket one for 2573 * optimization when we know that we're in process context and own 2574 * everything that's associated with %current. 2575 * 2576 * Both direct reclaim and page faults can nest inside other 2577 * socket operations and end up recursing into sk_page_frag() 2578 * while it's already in use: explicitly avoid task page_frag 2579 * when users disable sk_use_task_frag. 2580 * 2581 * Return: a per task page_frag if context allows that, 2582 * otherwise a per socket one. 2583 */ 2584 static inline struct page_frag *sk_page_frag(struct sock *sk) 2585 { 2586 if (sk->sk_use_task_frag) 2587 return ¤t->task_frag; 2588 2589 return &sk->sk_frag; 2590 } 2591 2592 bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag); 2593 2594 /* 2595 * Default write policy as shown to user space via poll/select/SIGIO 2596 */ 2597 static inline bool sock_writeable(const struct sock *sk) 2598 { 2599 return refcount_read(&sk->sk_wmem_alloc) < (READ_ONCE(sk->sk_sndbuf) >> 1); 2600 } 2601 2602 static inline gfp_t gfp_any(void) 2603 { 2604 return in_softirq() ? GFP_ATOMIC : GFP_KERNEL; 2605 } 2606 2607 static inline gfp_t gfp_memcg_charge(void) 2608 { 2609 return in_softirq() ? GFP_ATOMIC : GFP_KERNEL; 2610 } 2611 2612 #ifdef CONFIG_MEMCG 2613 static inline struct mem_cgroup *mem_cgroup_from_sk(const struct sock *sk) 2614 { 2615 return sk->sk_memcg; 2616 } 2617 2618 static inline bool mem_cgroup_sk_enabled(const struct sock *sk) 2619 { 2620 return mem_cgroup_sockets_enabled && mem_cgroup_from_sk(sk); 2621 } 2622 2623 static inline bool mem_cgroup_sk_under_memory_pressure(const struct sock *sk) 2624 { 2625 struct mem_cgroup *memcg = mem_cgroup_from_sk(sk); 2626 2627 #ifdef CONFIG_MEMCG_V1 2628 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) 2629 return !!memcg->tcpmem_pressure; 2630 #endif /* CONFIG_MEMCG_V1 */ 2631 2632 do { 2633 if (time_before64(get_jiffies_64(), mem_cgroup_get_socket_pressure(memcg))) 2634 return true; 2635 } while ((memcg = parent_mem_cgroup(memcg))); 2636 2637 return false; 2638 } 2639 #else 2640 static inline struct mem_cgroup *mem_cgroup_from_sk(const struct sock *sk) 2641 { 2642 return NULL; 2643 } 2644 2645 static inline bool mem_cgroup_sk_enabled(const struct sock *sk) 2646 { 2647 return false; 2648 } 2649 2650 static inline bool mem_cgroup_sk_under_memory_pressure(const struct sock *sk) 2651 { 2652 return false; 2653 } 2654 #endif 2655 2656 static inline long sock_rcvtimeo(const struct sock *sk, bool noblock) 2657 { 2658 return noblock ? 0 : READ_ONCE(sk->sk_rcvtimeo); 2659 } 2660 2661 static inline long sock_sndtimeo(const struct sock *sk, bool noblock) 2662 { 2663 return noblock ? 0 : READ_ONCE(sk->sk_sndtimeo); 2664 } 2665 2666 static inline int sock_rcvlowat(const struct sock *sk, int waitall, int len) 2667 { 2668 int v = waitall ? len : min_t(int, READ_ONCE(sk->sk_rcvlowat), len); 2669 2670 return v ?: 1; 2671 } 2672 2673 /* Alas, with timeout socket operations are not restartable. 2674 * Compare this to poll(). 2675 */ 2676 static inline int sock_intr_errno(long timeo) 2677 { 2678 return timeo == MAX_SCHEDULE_TIMEOUT ? -ERESTARTSYS : -EINTR; 2679 } 2680 2681 struct sock_skb_cb { 2682 u32 dropcount; 2683 }; 2684 2685 /* Store sock_skb_cb at the end of skb->cb[] so protocol families 2686 * using skb->cb[] would keep using it directly and utilize its 2687 * alignment guarantee. 2688 */ 2689 #define SOCK_SKB_CB_OFFSET (sizeof_field(struct sk_buff, cb) - \ 2690 sizeof(struct sock_skb_cb)) 2691 2692 #define SOCK_SKB_CB(__skb) ((struct sock_skb_cb *)((__skb)->cb + \ 2693 SOCK_SKB_CB_OFFSET)) 2694 2695 #define sock_skb_cb_check_size(size) \ 2696 BUILD_BUG_ON((size) > SOCK_SKB_CB_OFFSET) 2697 2698 static inline void sk_drops_add(struct sock *sk, int segs) 2699 { 2700 struct numa_drop_counters *ndc = sk->sk_drop_counters; 2701 2702 if (ndc) 2703 numa_drop_add(ndc, segs); 2704 else 2705 atomic_add(segs, &sk->sk_drops); 2706 } 2707 2708 static inline void sk_drops_inc(struct sock *sk) 2709 { 2710 sk_drops_add(sk, 1); 2711 } 2712 2713 static inline int sk_drops_read(const struct sock *sk) 2714 { 2715 const struct numa_drop_counters *ndc = sk->sk_drop_counters; 2716 2717 if (ndc) { 2718 DEBUG_NET_WARN_ON_ONCE(atomic_read(&sk->sk_drops)); 2719 return numa_drop_read(ndc); 2720 } 2721 return atomic_read(&sk->sk_drops); 2722 } 2723 2724 static inline void sk_drops_reset(struct sock *sk) 2725 { 2726 struct numa_drop_counters *ndc = sk->sk_drop_counters; 2727 2728 if (ndc) 2729 numa_drop_reset(ndc); 2730 atomic_set(&sk->sk_drops, 0); 2731 } 2732 2733 static inline void 2734 sock_skb_set_dropcount(const struct sock *sk, struct sk_buff *skb) 2735 { 2736 SOCK_SKB_CB(skb)->dropcount = sock_flag(sk, SOCK_RXQ_OVFL) ? 2737 sk_drops_read(sk) : 0; 2738 } 2739 2740 static inline void sk_drops_skbadd(struct sock *sk, const struct sk_buff *skb) 2741 { 2742 int segs = max_t(u16, 1, skb_shinfo(skb)->gso_segs); 2743 2744 sk_drops_add(sk, segs); 2745 } 2746 2747 static inline ktime_t sock_read_timestamp(struct sock *sk) 2748 { 2749 #if BITS_PER_LONG==32 2750 unsigned int seq; 2751 ktime_t kt; 2752 2753 do { 2754 seq = read_seqbegin(&sk->sk_stamp_seq); 2755 kt = sk->sk_stamp; 2756 } while (read_seqretry(&sk->sk_stamp_seq, seq)); 2757 2758 return kt; 2759 #else 2760 return READ_ONCE(sk->sk_stamp); 2761 #endif 2762 } 2763 2764 static inline void sock_write_timestamp(struct sock *sk, ktime_t kt) 2765 { 2766 #if BITS_PER_LONG==32 2767 write_seqlock(&sk->sk_stamp_seq); 2768 sk->sk_stamp = kt; 2769 write_sequnlock(&sk->sk_stamp_seq); 2770 #else 2771 WRITE_ONCE(sk->sk_stamp, kt); 2772 #endif 2773 } 2774 2775 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk, 2776 struct sk_buff *skb); 2777 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk, 2778 struct sk_buff *skb); 2779 2780 bool skb_has_tx_timestamp(struct sk_buff *skb, const struct sock *sk); 2781 int skb_get_tx_timestamp(struct sk_buff *skb, struct sock *sk, 2782 struct timespec64 *ts); 2783 2784 static inline void 2785 sock_recv_timestamp(struct msghdr *msg, struct sock *sk, struct sk_buff *skb) 2786 { 2787 struct skb_shared_hwtstamps *hwtstamps = skb_hwtstamps(skb); 2788 u32 tsflags = READ_ONCE(sk->sk_tsflags); 2789 ktime_t kt = skb->tstamp; 2790 /* 2791 * generate control messages if 2792 * - receive time stamping in software requested 2793 * - software time stamp available and wanted 2794 * - hardware time stamps available and wanted 2795 */ 2796 if (sock_flag(sk, SOCK_RCVTSTAMP) || 2797 (tsflags & SOF_TIMESTAMPING_RX_SOFTWARE) || 2798 (kt && tsflags & SOF_TIMESTAMPING_SOFTWARE) || 2799 (hwtstamps->hwtstamp && 2800 (tsflags & SOF_TIMESTAMPING_RAW_HARDWARE))) 2801 __sock_recv_timestamp(msg, sk, skb); 2802 else 2803 sock_write_timestamp(sk, kt); 2804 2805 if (sock_flag(sk, SOCK_WIFI_STATUS) && skb_wifi_acked_valid(skb)) 2806 __sock_recv_wifi_status(msg, sk, skb); 2807 } 2808 2809 void __sock_recv_cmsgs(struct msghdr *msg, struct sock *sk, 2810 struct sk_buff *skb); 2811 2812 #define SK_DEFAULT_STAMP (-1L * NSEC_PER_SEC) 2813 static inline void sock_recv_cmsgs(struct msghdr *msg, struct sock *sk, 2814 struct sk_buff *skb) 2815 { 2816 #define FLAGS_RECV_CMSGS ((1UL << SOCK_RXQ_OVFL) | \ 2817 (1UL << SOCK_RCVTSTAMP) | \ 2818 (1UL << SOCK_RCVMARK) | \ 2819 (1UL << SOCK_RCVPRIORITY) | \ 2820 (1UL << SOCK_TIMESTAMPING_ANY)) 2821 #define TSFLAGS_ANY (SOF_TIMESTAMPING_SOFTWARE | \ 2822 SOF_TIMESTAMPING_RAW_HARDWARE) 2823 2824 if (READ_ONCE(sk->sk_flags) & FLAGS_RECV_CMSGS) 2825 __sock_recv_cmsgs(msg, sk, skb); 2826 else if (unlikely(sock_flag(sk, SOCK_TIMESTAMP))) 2827 sock_write_timestamp(sk, skb->tstamp); 2828 else if (unlikely(sock_read_timestamp(sk) == SK_DEFAULT_STAMP)) 2829 sock_write_timestamp(sk, 0); 2830 } 2831 2832 void __sock_tx_timestamp(__u32 tsflags, __u8 *tx_flags); 2833 2834 /** 2835 * _sock_tx_timestamp - checks whether the outgoing packet is to be time stamped 2836 * @sk: socket sending this packet 2837 * @sockc: pointer to socket cmsg cookie to get timestamping info 2838 * @tx_flags: completed with instructions for time stamping 2839 * @tskey: filled in with next sk_tskey (not for TCP, which uses seqno) 2840 * 2841 * Note: callers should take care of initial ``*tx_flags`` value (usually 0) 2842 */ 2843 static inline void _sock_tx_timestamp(struct sock *sk, 2844 const struct sockcm_cookie *sockc, 2845 __u8 *tx_flags, __u32 *tskey) 2846 { 2847 __u32 tsflags = sockc->tsflags; 2848 2849 if (unlikely(tsflags)) { 2850 __sock_tx_timestamp(tsflags, tx_flags); 2851 if (tsflags & SOF_TIMESTAMPING_OPT_ID && tskey && 2852 tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK) { 2853 if (tsflags & SOCKCM_FLAG_TS_OPT_ID) 2854 *tskey = sockc->ts_opt_id; 2855 else 2856 *tskey = atomic_inc_return(&sk->sk_tskey) - 1; 2857 } 2858 } 2859 } 2860 2861 static inline void sock_tx_timestamp(struct sock *sk, 2862 const struct sockcm_cookie *sockc, 2863 __u8 *tx_flags) 2864 { 2865 _sock_tx_timestamp(sk, sockc, tx_flags, NULL); 2866 } 2867 2868 static inline void skb_setup_tx_timestamp(struct sk_buff *skb, 2869 const struct sockcm_cookie *sockc) 2870 { 2871 _sock_tx_timestamp(skb->sk, sockc, &skb_shinfo(skb)->tx_flags, 2872 &skb_shinfo(skb)->tskey); 2873 } 2874 2875 static inline bool sk_is_inet(const struct sock *sk) 2876 { 2877 int family = READ_ONCE(sk->sk_family); 2878 2879 return family == AF_INET || family == AF_INET6; 2880 } 2881 2882 static inline bool sk_is_tcp(const struct sock *sk) 2883 { 2884 return sk_is_inet(sk) && 2885 sk->sk_type == SOCK_STREAM && 2886 sk->sk_protocol == IPPROTO_TCP; 2887 } 2888 2889 static inline bool sk_is_udp(const struct sock *sk) 2890 { 2891 return sk_is_inet(sk) && 2892 sk->sk_type == SOCK_DGRAM && 2893 sk->sk_protocol == IPPROTO_UDP; 2894 } 2895 2896 static inline bool sk_is_unix(const struct sock *sk) 2897 { 2898 return sk->sk_family == AF_UNIX; 2899 } 2900 2901 static inline bool sk_is_stream_unix(const struct sock *sk) 2902 { 2903 return sk_is_unix(sk) && sk->sk_type == SOCK_STREAM; 2904 } 2905 2906 static inline bool sk_is_vsock(const struct sock *sk) 2907 { 2908 return sk->sk_family == AF_VSOCK; 2909 } 2910 2911 static inline bool sk_may_scm_recv(const struct sock *sk) 2912 { 2913 return (IS_ENABLED(CONFIG_UNIX) && sk->sk_family == AF_UNIX) || 2914 sk->sk_family == AF_NETLINK || 2915 (IS_ENABLED(CONFIG_BT) && sk->sk_family == AF_BLUETOOTH); 2916 } 2917 2918 /** 2919 * sk_eat_skb - Release a skb if it is no longer needed 2920 * @sk: socket to eat this skb from 2921 * @skb: socket buffer to eat 2922 * 2923 * This routine must be called with interrupts disabled or with the socket 2924 * locked so that the sk_buff queue operation is ok. 2925 */ 2926 static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb) 2927 { 2928 __skb_unlink(skb, &sk->sk_receive_queue); 2929 __kfree_skb(skb); 2930 } 2931 2932 static inline bool 2933 skb_sk_is_prefetched(struct sk_buff *skb) 2934 { 2935 #ifdef CONFIG_INET 2936 return skb->destructor == sock_pfree; 2937 #else 2938 return false; 2939 #endif /* CONFIG_INET */ 2940 } 2941 2942 /* This helper checks if a socket is a full socket, 2943 * ie _not_ a timewait or request socket. 2944 */ 2945 static inline bool sk_fullsock(const struct sock *sk) 2946 { 2947 return (1 << sk->sk_state) & ~(TCPF_TIME_WAIT | TCPF_NEW_SYN_RECV); 2948 } 2949 2950 static inline bool 2951 sk_is_refcounted(struct sock *sk) 2952 { 2953 /* Only full sockets have sk->sk_flags. */ 2954 return !sk_fullsock(sk) || !sock_flag(sk, SOCK_RCU_FREE); 2955 } 2956 2957 static inline bool 2958 sk_requests_wifi_status(struct sock *sk) 2959 { 2960 return sk && sk_fullsock(sk) && sock_flag(sk, SOCK_WIFI_STATUS); 2961 } 2962 2963 /* This helper checks if a socket is a LISTEN or NEW_SYN_RECV 2964 * SYNACK messages can be attached to either ones (depending on SYNCOOKIE) 2965 */ 2966 static inline bool sk_listener(const struct sock *sk) 2967 { 2968 return (1 << sk->sk_state) & (TCPF_LISTEN | TCPF_NEW_SYN_RECV); 2969 } 2970 2971 /* This helper checks if a socket is a LISTEN or NEW_SYN_RECV or TIME_WAIT 2972 * TCP SYNACK messages can be attached to LISTEN or NEW_SYN_RECV (depending on SYNCOOKIE) 2973 * TCP RST and ACK can be attached to TIME_WAIT. 2974 */ 2975 static inline bool sk_listener_or_tw(const struct sock *sk) 2976 { 2977 return (1 << READ_ONCE(sk->sk_state)) & 2978 (TCPF_LISTEN | TCPF_NEW_SYN_RECV | TCPF_TIME_WAIT); 2979 } 2980 2981 void sock_enable_timestamp(struct sock *sk, enum sock_flags flag); 2982 int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len, int level, 2983 int type); 2984 2985 bool sk_ns_capable(const struct sock *sk, 2986 struct user_namespace *user_ns, int cap); 2987 bool sk_capable(const struct sock *sk, int cap); 2988 bool sk_net_capable(const struct sock *sk, int cap); 2989 2990 void sk_get_meminfo(const struct sock *sk, u32 *meminfo); 2991 2992 /* Take into consideration the size of the struct sk_buff overhead in the 2993 * determination of these values, since that is non-constant across 2994 * platforms. This makes socket queueing behavior and performance 2995 * not depend upon such differences. 2996 */ 2997 #define _SK_MEM_PACKETS 256 2998 #define _SK_MEM_OVERHEAD SKB_TRUESIZE(256) 2999 #define SK_WMEM_DEFAULT (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS) 3000 #define SK_RMEM_DEFAULT (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS) 3001 3002 extern __u32 sysctl_wmem_max; 3003 extern __u32 sysctl_rmem_max; 3004 3005 extern __u32 sysctl_wmem_default; 3006 extern __u32 sysctl_rmem_default; 3007 3008 #define SKB_FRAG_PAGE_ORDER get_order(32768) 3009 DECLARE_STATIC_KEY_FALSE(net_high_order_alloc_disable_key); 3010 3011 static inline int sk_get_wmem0(const struct sock *sk, const struct proto *proto) 3012 { 3013 /* Does this proto have per netns sysctl_wmem ? */ 3014 if (proto->sysctl_wmem_offset) 3015 return READ_ONCE(*(int *)((void *)sock_net(sk) + proto->sysctl_wmem_offset)); 3016 3017 return READ_ONCE(*proto->sysctl_wmem); 3018 } 3019 3020 static inline int sk_get_rmem0(const struct sock *sk, const struct proto *proto) 3021 { 3022 /* Does this proto have per netns sysctl_rmem ? */ 3023 if (proto->sysctl_rmem_offset) 3024 return READ_ONCE(*(int *)((void *)sock_net(sk) + proto->sysctl_rmem_offset)); 3025 3026 return READ_ONCE(*proto->sysctl_rmem); 3027 } 3028 3029 /* Default TCP Small queue budget is ~1 ms of data (1sec >> 10) 3030 * Some wifi drivers need to tweak it to get more chunks. 3031 * They can use this helper from their ndo_start_xmit() 3032 */ 3033 static inline void sk_pacing_shift_update(struct sock *sk, int val) 3034 { 3035 if (!sk || !sk_fullsock(sk) || READ_ONCE(sk->sk_pacing_shift) == val) 3036 return; 3037 WRITE_ONCE(sk->sk_pacing_shift, val); 3038 } 3039 3040 /* if a socket is bound to a device, check that the given device 3041 * index is either the same or that the socket is bound to an L3 3042 * master device and the given device index is also enslaved to 3043 * that L3 master 3044 */ 3045 static inline bool sk_dev_equal_l3scope(struct sock *sk, int dif) 3046 { 3047 int bound_dev_if = READ_ONCE(sk->sk_bound_dev_if); 3048 int mdif; 3049 3050 if (!bound_dev_if || bound_dev_if == dif) 3051 return true; 3052 3053 mdif = l3mdev_master_ifindex_by_index(sock_net(sk), dif); 3054 if (mdif && mdif == bound_dev_if) 3055 return true; 3056 3057 return false; 3058 } 3059 3060 void sock_def_readable(struct sock *sk); 3061 3062 int sock_bindtoindex(struct sock *sk, int ifindex, bool lock_sk); 3063 void sock_set_timestamp(struct sock *sk, int optname, bool valbool); 3064 int sock_set_timestamping(struct sock *sk, int optname, 3065 struct so_timestamping timestamping); 3066 3067 #if defined(CONFIG_CGROUP_BPF) 3068 void bpf_skops_tx_timestamping(struct sock *sk, struct sk_buff *skb, int op); 3069 #else 3070 static inline void bpf_skops_tx_timestamping(struct sock *sk, struct sk_buff *skb, int op) 3071 { 3072 } 3073 #endif 3074 void sock_no_linger(struct sock *sk); 3075 void sock_set_keepalive(struct sock *sk); 3076 void sock_set_priority(struct sock *sk, u32 priority); 3077 void sock_set_rcvbuf(struct sock *sk, int val); 3078 void sock_set_mark(struct sock *sk, u32 val); 3079 void sock_set_reuseaddr(struct sock *sk); 3080 void sock_set_reuseport(struct sock *sk); 3081 void sock_set_sndtimeo(struct sock *sk, s64 secs); 3082 3083 int sock_bind_add(struct sock *sk, struct sockaddr *addr, int addr_len); 3084 3085 int sock_get_timeout(long timeo, void *optval, bool old_timeval); 3086 int sock_copy_user_timeval(struct __kernel_sock_timeval *tv, 3087 sockptr_t optval, int optlen, bool old_timeval); 3088 3089 int sock_ioctl_inout(struct sock *sk, unsigned int cmd, 3090 void __user *arg, void *karg, size_t size); 3091 int sk_ioctl(struct sock *sk, unsigned int cmd, void __user *arg); 3092 static inline bool sk_is_readable(struct sock *sk) 3093 { 3094 const struct proto *prot = READ_ONCE(sk->sk_prot); 3095 3096 if (prot->sock_is_readable) 3097 return prot->sock_is_readable(sk); 3098 3099 return false; 3100 } 3101 #endif /* _SOCK_H */ 3102