1 /* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * Definitions for the AF_INET socket handler. 7 * 8 * Version: @(#)sock.h 1.0.4 05/13/93 9 * 10 * Authors: Ross Biro 11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 12 * Corey Minyard <wf-rch!minyard@relay.EU.net> 13 * Florian La Roche <flla@stud.uni-sb.de> 14 * 15 * Fixes: 16 * Alan Cox : Volatiles in skbuff pointers. See 17 * skbuff comments. May be overdone, 18 * better to prove they can be removed 19 * than the reverse. 20 * Alan Cox : Added a zapped field for tcp to note 21 * a socket is reset and must stay shut up 22 * Alan Cox : New fields for options 23 * Pauline Middelink : identd support 24 * Alan Cox : Eliminate low level recv/recvfrom 25 * David S. Miller : New socket lookup architecture. 26 * Steve Whitehouse: Default routines for sock_ops 27 * Arnaldo C. Melo : removed net_pinfo, tp_pinfo and made 28 * protinfo be just a void pointer, as the 29 * protocol specific parts were moved to 30 * respective headers and ipv4/v6, etc now 31 * use private slabcaches for its socks 32 * Pedro Hortas : New flags field for socket options 33 * 34 * 35 * This program is free software; you can redistribute it and/or 36 * modify it under the terms of the GNU General Public License 37 * as published by the Free Software Foundation; either version 38 * 2 of the License, or (at your option) any later version. 39 */ 40 #ifndef _SOCK_H 41 #define _SOCK_H 42 43 #include <linux/kernel.h> 44 #include <linux/list.h> 45 #include <linux/timer.h> 46 #include <linux/cache.h> 47 #include <linux/module.h> 48 #include <linux/lockdep.h> 49 #include <linux/netdevice.h> 50 #include <linux/pcounter.h> 51 #include <linux/skbuff.h> /* struct sk_buff */ 52 #include <linux/mm.h> 53 #include <linux/security.h> 54 55 #include <linux/filter.h> 56 57 #include <asm/atomic.h> 58 #include <net/dst.h> 59 #include <net/checksum.h> 60 61 /* 62 * This structure really needs to be cleaned up. 63 * Most of it is for TCP, and not used by any of 64 * the other protocols. 65 */ 66 67 /* Define this to get the SOCK_DBG debugging facility. */ 68 #define SOCK_DEBUGGING 69 #ifdef SOCK_DEBUGGING 70 #define SOCK_DEBUG(sk, msg...) do { if ((sk) && sock_flag((sk), SOCK_DBG)) \ 71 printk(KERN_DEBUG msg); } while (0) 72 #else 73 #define SOCK_DEBUG(sk, msg...) do { } while (0) 74 #endif 75 76 /* This is the per-socket lock. The spinlock provides a synchronization 77 * between user contexts and software interrupt processing, whereas the 78 * mini-semaphore synchronizes multiple users amongst themselves. 79 */ 80 typedef struct { 81 spinlock_t slock; 82 int owned; 83 wait_queue_head_t wq; 84 /* 85 * We express the mutex-alike socket_lock semantics 86 * to the lock validator by explicitly managing 87 * the slock as a lock variant (in addition to 88 * the slock itself): 89 */ 90 #ifdef CONFIG_DEBUG_LOCK_ALLOC 91 struct lockdep_map dep_map; 92 #endif 93 } socket_lock_t; 94 95 struct sock; 96 struct proto; 97 struct net; 98 99 /** 100 * struct sock_common - minimal network layer representation of sockets 101 * @skc_family: network address family 102 * @skc_state: Connection state 103 * @skc_reuse: %SO_REUSEADDR setting 104 * @skc_bound_dev_if: bound device index if != 0 105 * @skc_node: main hash linkage for various protocol lookup tables 106 * @skc_bind_node: bind hash linkage for various protocol lookup tables 107 * @skc_refcnt: reference count 108 * @skc_hash: hash value used with various protocol lookup tables 109 * @skc_prot: protocol handlers inside a network family 110 * @skc_net: reference to the network namespace of this socket 111 * 112 * This is the minimal network layer representation of sockets, the header 113 * for struct sock and struct inet_timewait_sock. 114 */ 115 struct sock_common { 116 unsigned short skc_family; 117 volatile unsigned char skc_state; 118 unsigned char skc_reuse; 119 int skc_bound_dev_if; 120 struct hlist_node skc_node; 121 struct hlist_node skc_bind_node; 122 atomic_t skc_refcnt; 123 unsigned int skc_hash; 124 struct proto *skc_prot; 125 struct net *skc_net; 126 }; 127 128 /** 129 * struct sock - network layer representation of sockets 130 * @__sk_common: shared layout with inet_timewait_sock 131 * @sk_shutdown: mask of %SEND_SHUTDOWN and/or %RCV_SHUTDOWN 132 * @sk_userlocks: %SO_SNDBUF and %SO_RCVBUF settings 133 * @sk_lock: synchronizer 134 * @sk_rcvbuf: size of receive buffer in bytes 135 * @sk_sleep: sock wait queue 136 * @sk_dst_cache: destination cache 137 * @sk_dst_lock: destination cache lock 138 * @sk_policy: flow policy 139 * @sk_rmem_alloc: receive queue bytes committed 140 * @sk_receive_queue: incoming packets 141 * @sk_wmem_alloc: transmit queue bytes committed 142 * @sk_write_queue: Packet sending queue 143 * @sk_async_wait_queue: DMA copied packets 144 * @sk_omem_alloc: "o" is "option" or "other" 145 * @sk_wmem_queued: persistent queue size 146 * @sk_forward_alloc: space allocated forward 147 * @sk_allocation: allocation mode 148 * @sk_sndbuf: size of send buffer in bytes 149 * @sk_flags: %SO_LINGER (l_onoff), %SO_BROADCAST, %SO_KEEPALIVE, 150 * %SO_OOBINLINE settings 151 * @sk_no_check: %SO_NO_CHECK setting, wether or not checkup packets 152 * @sk_route_caps: route capabilities (e.g. %NETIF_F_TSO) 153 * @sk_gso_type: GSO type (e.g. %SKB_GSO_TCPV4) 154 * @sk_lingertime: %SO_LINGER l_linger setting 155 * @sk_backlog: always used with the per-socket spinlock held 156 * @sk_callback_lock: used with the callbacks in the end of this struct 157 * @sk_error_queue: rarely used 158 * @sk_prot_creator: sk_prot of original sock creator (see ipv6_setsockopt, 159 * IPV6_ADDRFORM for instance) 160 * @sk_err: last error 161 * @sk_err_soft: errors that don't cause failure but are the cause of a 162 * persistent failure not just 'timed out' 163 * @sk_drops: raw drops counter 164 * @sk_ack_backlog: current listen backlog 165 * @sk_max_ack_backlog: listen backlog set in listen() 166 * @sk_priority: %SO_PRIORITY setting 167 * @sk_type: socket type (%SOCK_STREAM, etc) 168 * @sk_protocol: which protocol this socket belongs in this network family 169 * @sk_peercred: %SO_PEERCRED setting 170 * @sk_rcvlowat: %SO_RCVLOWAT setting 171 * @sk_rcvtimeo: %SO_RCVTIMEO setting 172 * @sk_sndtimeo: %SO_SNDTIMEO setting 173 * @sk_filter: socket filtering instructions 174 * @sk_protinfo: private area, net family specific, when not using slab 175 * @sk_timer: sock cleanup timer 176 * @sk_stamp: time stamp of last packet received 177 * @sk_socket: Identd and reporting IO signals 178 * @sk_user_data: RPC layer private data 179 * @sk_sndmsg_page: cached page for sendmsg 180 * @sk_sndmsg_off: cached offset for sendmsg 181 * @sk_send_head: front of stuff to transmit 182 * @sk_security: used by security modules 183 * @sk_write_pending: a write to stream socket waits to start 184 * @sk_state_change: callback to indicate change in the state of the sock 185 * @sk_data_ready: callback to indicate there is data to be processed 186 * @sk_write_space: callback to indicate there is bf sending space available 187 * @sk_error_report: callback to indicate errors (e.g. %MSG_ERRQUEUE) 188 * @sk_backlog_rcv: callback to process the backlog 189 * @sk_destruct: called at sock freeing time, i.e. when all refcnt == 0 190 */ 191 struct sock { 192 /* 193 * Now struct inet_timewait_sock also uses sock_common, so please just 194 * don't add nothing before this first member (__sk_common) --acme 195 */ 196 struct sock_common __sk_common; 197 #define sk_family __sk_common.skc_family 198 #define sk_state __sk_common.skc_state 199 #define sk_reuse __sk_common.skc_reuse 200 #define sk_bound_dev_if __sk_common.skc_bound_dev_if 201 #define sk_node __sk_common.skc_node 202 #define sk_bind_node __sk_common.skc_bind_node 203 #define sk_refcnt __sk_common.skc_refcnt 204 #define sk_hash __sk_common.skc_hash 205 #define sk_prot __sk_common.skc_prot 206 #define sk_net __sk_common.skc_net 207 unsigned char sk_shutdown : 2, 208 sk_no_check : 2, 209 sk_userlocks : 4; 210 unsigned char sk_protocol; 211 unsigned short sk_type; 212 int sk_rcvbuf; 213 socket_lock_t sk_lock; 214 /* 215 * The backlog queue is special, it is always used with 216 * the per-socket spinlock held and requires low latency 217 * access. Therefore we special case it's implementation. 218 */ 219 struct { 220 struct sk_buff *head; 221 struct sk_buff *tail; 222 } sk_backlog; 223 wait_queue_head_t *sk_sleep; 224 struct dst_entry *sk_dst_cache; 225 struct xfrm_policy *sk_policy[2]; 226 rwlock_t sk_dst_lock; 227 atomic_t sk_rmem_alloc; 228 atomic_t sk_wmem_alloc; 229 atomic_t sk_omem_alloc; 230 int sk_sndbuf; 231 struct sk_buff_head sk_receive_queue; 232 struct sk_buff_head sk_write_queue; 233 struct sk_buff_head sk_async_wait_queue; 234 int sk_wmem_queued; 235 int sk_forward_alloc; 236 gfp_t sk_allocation; 237 int sk_route_caps; 238 int sk_gso_type; 239 int sk_rcvlowat; 240 unsigned long sk_flags; 241 unsigned long sk_lingertime; 242 struct sk_buff_head sk_error_queue; 243 struct proto *sk_prot_creator; 244 rwlock_t sk_callback_lock; 245 int sk_err, 246 sk_err_soft; 247 atomic_t sk_drops; 248 unsigned short sk_ack_backlog; 249 unsigned short sk_max_ack_backlog; 250 __u32 sk_priority; 251 struct ucred sk_peercred; 252 long sk_rcvtimeo; 253 long sk_sndtimeo; 254 struct sk_filter *sk_filter; 255 void *sk_protinfo; 256 struct timer_list sk_timer; 257 ktime_t sk_stamp; 258 struct socket *sk_socket; 259 void *sk_user_data; 260 struct page *sk_sndmsg_page; 261 struct sk_buff *sk_send_head; 262 __u32 sk_sndmsg_off; 263 int sk_write_pending; 264 void *sk_security; 265 __u32 sk_mark; 266 /* XXX 4 bytes hole on 64 bit */ 267 void (*sk_state_change)(struct sock *sk); 268 void (*sk_data_ready)(struct sock *sk, int bytes); 269 void (*sk_write_space)(struct sock *sk); 270 void (*sk_error_report)(struct sock *sk); 271 int (*sk_backlog_rcv)(struct sock *sk, 272 struct sk_buff *skb); 273 void (*sk_destruct)(struct sock *sk); 274 }; 275 276 /* 277 * Hashed lists helper routines 278 */ 279 static inline struct sock *__sk_head(const struct hlist_head *head) 280 { 281 return hlist_entry(head->first, struct sock, sk_node); 282 } 283 284 static inline struct sock *sk_head(const struct hlist_head *head) 285 { 286 return hlist_empty(head) ? NULL : __sk_head(head); 287 } 288 289 static inline struct sock *sk_next(const struct sock *sk) 290 { 291 return sk->sk_node.next ? 292 hlist_entry(sk->sk_node.next, struct sock, sk_node) : NULL; 293 } 294 295 static inline int sk_unhashed(const struct sock *sk) 296 { 297 return hlist_unhashed(&sk->sk_node); 298 } 299 300 static inline int sk_hashed(const struct sock *sk) 301 { 302 return !sk_unhashed(sk); 303 } 304 305 static __inline__ void sk_node_init(struct hlist_node *node) 306 { 307 node->pprev = NULL; 308 } 309 310 static __inline__ void __sk_del_node(struct sock *sk) 311 { 312 __hlist_del(&sk->sk_node); 313 } 314 315 static __inline__ int __sk_del_node_init(struct sock *sk) 316 { 317 if (sk_hashed(sk)) { 318 __sk_del_node(sk); 319 sk_node_init(&sk->sk_node); 320 return 1; 321 } 322 return 0; 323 } 324 325 /* Grab socket reference count. This operation is valid only 326 when sk is ALREADY grabbed f.e. it is found in hash table 327 or a list and the lookup is made under lock preventing hash table 328 modifications. 329 */ 330 331 static inline void sock_hold(struct sock *sk) 332 { 333 atomic_inc(&sk->sk_refcnt); 334 } 335 336 /* Ungrab socket in the context, which assumes that socket refcnt 337 cannot hit zero, f.e. it is true in context of any socketcall. 338 */ 339 static inline void __sock_put(struct sock *sk) 340 { 341 atomic_dec(&sk->sk_refcnt); 342 } 343 344 static __inline__ int sk_del_node_init(struct sock *sk) 345 { 346 int rc = __sk_del_node_init(sk); 347 348 if (rc) { 349 /* paranoid for a while -acme */ 350 WARN_ON(atomic_read(&sk->sk_refcnt) == 1); 351 __sock_put(sk); 352 } 353 return rc; 354 } 355 356 static __inline__ void __sk_add_node(struct sock *sk, struct hlist_head *list) 357 { 358 hlist_add_head(&sk->sk_node, list); 359 } 360 361 static __inline__ void sk_add_node(struct sock *sk, struct hlist_head *list) 362 { 363 sock_hold(sk); 364 __sk_add_node(sk, list); 365 } 366 367 static __inline__ void __sk_del_bind_node(struct sock *sk) 368 { 369 __hlist_del(&sk->sk_bind_node); 370 } 371 372 static __inline__ void sk_add_bind_node(struct sock *sk, 373 struct hlist_head *list) 374 { 375 hlist_add_head(&sk->sk_bind_node, list); 376 } 377 378 #define sk_for_each(__sk, node, list) \ 379 hlist_for_each_entry(__sk, node, list, sk_node) 380 #define sk_for_each_from(__sk, node) \ 381 if (__sk && ({ node = &(__sk)->sk_node; 1; })) \ 382 hlist_for_each_entry_from(__sk, node, sk_node) 383 #define sk_for_each_continue(__sk, node) \ 384 if (__sk && ({ node = &(__sk)->sk_node; 1; })) \ 385 hlist_for_each_entry_continue(__sk, node, sk_node) 386 #define sk_for_each_safe(__sk, node, tmp, list) \ 387 hlist_for_each_entry_safe(__sk, node, tmp, list, sk_node) 388 #define sk_for_each_bound(__sk, node, list) \ 389 hlist_for_each_entry(__sk, node, list, sk_bind_node) 390 391 /* Sock flags */ 392 enum sock_flags { 393 SOCK_DEAD, 394 SOCK_DONE, 395 SOCK_URGINLINE, 396 SOCK_KEEPOPEN, 397 SOCK_LINGER, 398 SOCK_DESTROY, 399 SOCK_BROADCAST, 400 SOCK_TIMESTAMP, 401 SOCK_ZAPPED, 402 SOCK_USE_WRITE_QUEUE, /* whether to call sk->sk_write_space in sock_wfree */ 403 SOCK_DBG, /* %SO_DEBUG setting */ 404 SOCK_RCVTSTAMP, /* %SO_TIMESTAMP setting */ 405 SOCK_RCVTSTAMPNS, /* %SO_TIMESTAMPNS setting */ 406 SOCK_LOCALROUTE, /* route locally only, %SO_DONTROUTE setting */ 407 SOCK_QUEUE_SHRUNK, /* write queue has been shrunk recently */ 408 }; 409 410 static inline void sock_copy_flags(struct sock *nsk, struct sock *osk) 411 { 412 nsk->sk_flags = osk->sk_flags; 413 } 414 415 static inline void sock_set_flag(struct sock *sk, enum sock_flags flag) 416 { 417 __set_bit(flag, &sk->sk_flags); 418 } 419 420 static inline void sock_reset_flag(struct sock *sk, enum sock_flags flag) 421 { 422 __clear_bit(flag, &sk->sk_flags); 423 } 424 425 static inline int sock_flag(struct sock *sk, enum sock_flags flag) 426 { 427 return test_bit(flag, &sk->sk_flags); 428 } 429 430 static inline void sk_acceptq_removed(struct sock *sk) 431 { 432 sk->sk_ack_backlog--; 433 } 434 435 static inline void sk_acceptq_added(struct sock *sk) 436 { 437 sk->sk_ack_backlog++; 438 } 439 440 static inline int sk_acceptq_is_full(struct sock *sk) 441 { 442 return sk->sk_ack_backlog > sk->sk_max_ack_backlog; 443 } 444 445 /* 446 * Compute minimal free write space needed to queue new packets. 447 */ 448 static inline int sk_stream_min_wspace(struct sock *sk) 449 { 450 return sk->sk_wmem_queued >> 1; 451 } 452 453 static inline int sk_stream_wspace(struct sock *sk) 454 { 455 return sk->sk_sndbuf - sk->sk_wmem_queued; 456 } 457 458 extern void sk_stream_write_space(struct sock *sk); 459 460 static inline int sk_stream_memory_free(struct sock *sk) 461 { 462 return sk->sk_wmem_queued < sk->sk_sndbuf; 463 } 464 465 /* The per-socket spinlock must be held here. */ 466 static inline void sk_add_backlog(struct sock *sk, struct sk_buff *skb) 467 { 468 if (!sk->sk_backlog.tail) { 469 sk->sk_backlog.head = sk->sk_backlog.tail = skb; 470 } else { 471 sk->sk_backlog.tail->next = skb; 472 sk->sk_backlog.tail = skb; 473 } 474 skb->next = NULL; 475 } 476 477 #define sk_wait_event(__sk, __timeo, __condition) \ 478 ({ int __rc; \ 479 release_sock(__sk); \ 480 __rc = __condition; \ 481 if (!__rc) { \ 482 *(__timeo) = schedule_timeout(*(__timeo)); \ 483 } \ 484 lock_sock(__sk); \ 485 __rc = __condition; \ 486 __rc; \ 487 }) 488 489 extern int sk_stream_wait_connect(struct sock *sk, long *timeo_p); 490 extern int sk_stream_wait_memory(struct sock *sk, long *timeo_p); 491 extern void sk_stream_wait_close(struct sock *sk, long timeo_p); 492 extern int sk_stream_error(struct sock *sk, int flags, int err); 493 extern void sk_stream_kill_queues(struct sock *sk); 494 495 extern int sk_wait_data(struct sock *sk, long *timeo); 496 497 struct request_sock_ops; 498 struct timewait_sock_ops; 499 struct inet_hashinfo; 500 501 /* Networking protocol blocks we attach to sockets. 502 * socket layer -> transport layer interface 503 * transport -> network interface is defined by struct inet_proto 504 */ 505 struct proto { 506 void (*close)(struct sock *sk, 507 long timeout); 508 int (*connect)(struct sock *sk, 509 struct sockaddr *uaddr, 510 int addr_len); 511 int (*disconnect)(struct sock *sk, int flags); 512 513 struct sock * (*accept) (struct sock *sk, int flags, int *err); 514 515 int (*ioctl)(struct sock *sk, int cmd, 516 unsigned long arg); 517 int (*init)(struct sock *sk); 518 int (*destroy)(struct sock *sk); 519 void (*shutdown)(struct sock *sk, int how); 520 int (*setsockopt)(struct sock *sk, int level, 521 int optname, char __user *optval, 522 int optlen); 523 int (*getsockopt)(struct sock *sk, int level, 524 int optname, char __user *optval, 525 int __user *option); 526 int (*compat_setsockopt)(struct sock *sk, 527 int level, 528 int optname, char __user *optval, 529 int optlen); 530 int (*compat_getsockopt)(struct sock *sk, 531 int level, 532 int optname, char __user *optval, 533 int __user *option); 534 int (*sendmsg)(struct kiocb *iocb, struct sock *sk, 535 struct msghdr *msg, size_t len); 536 int (*recvmsg)(struct kiocb *iocb, struct sock *sk, 537 struct msghdr *msg, 538 size_t len, int noblock, int flags, 539 int *addr_len); 540 int (*sendpage)(struct sock *sk, struct page *page, 541 int offset, size_t size, int flags); 542 int (*bind)(struct sock *sk, 543 struct sockaddr *uaddr, int addr_len); 544 545 int (*backlog_rcv) (struct sock *sk, 546 struct sk_buff *skb); 547 548 /* Keeping track of sk's, looking them up, and port selection methods. */ 549 void (*hash)(struct sock *sk); 550 void (*unhash)(struct sock *sk); 551 int (*get_port)(struct sock *sk, unsigned short snum); 552 553 /* Keeping track of sockets in use */ 554 #ifdef CONFIG_PROC_FS 555 struct pcounter inuse; 556 #endif 557 558 /* Memory pressure */ 559 void (*enter_memory_pressure)(void); 560 atomic_t *memory_allocated; /* Current allocated memory. */ 561 atomic_t *sockets_allocated; /* Current number of sockets. */ 562 /* 563 * Pressure flag: try to collapse. 564 * Technical note: it is used by multiple contexts non atomically. 565 * All the __sk_mem_schedule() is of this nature: accounting 566 * is strict, actions are advisory and have some latency. 567 */ 568 int *memory_pressure; 569 int *sysctl_mem; 570 int *sysctl_wmem; 571 int *sysctl_rmem; 572 int max_header; 573 574 struct kmem_cache *slab; 575 unsigned int obj_size; 576 577 atomic_t *orphan_count; 578 579 struct request_sock_ops *rsk_prot; 580 struct timewait_sock_ops *twsk_prot; 581 582 struct inet_hashinfo *hashinfo; 583 584 struct module *owner; 585 586 char name[32]; 587 588 struct list_head node; 589 #ifdef SOCK_REFCNT_DEBUG 590 atomic_t socks; 591 #endif 592 }; 593 594 extern int proto_register(struct proto *prot, int alloc_slab); 595 extern void proto_unregister(struct proto *prot); 596 597 #ifdef SOCK_REFCNT_DEBUG 598 static inline void sk_refcnt_debug_inc(struct sock *sk) 599 { 600 atomic_inc(&sk->sk_prot->socks); 601 } 602 603 static inline void sk_refcnt_debug_dec(struct sock *sk) 604 { 605 atomic_dec(&sk->sk_prot->socks); 606 printk(KERN_DEBUG "%s socket %p released, %d are still alive\n", 607 sk->sk_prot->name, sk, atomic_read(&sk->sk_prot->socks)); 608 } 609 610 static inline void sk_refcnt_debug_release(const struct sock *sk) 611 { 612 if (atomic_read(&sk->sk_refcnt) != 1) 613 printk(KERN_DEBUG "Destruction of the %s socket %p delayed, refcnt=%d\n", 614 sk->sk_prot->name, sk, atomic_read(&sk->sk_refcnt)); 615 } 616 #else /* SOCK_REFCNT_DEBUG */ 617 #define sk_refcnt_debug_inc(sk) do { } while (0) 618 #define sk_refcnt_debug_dec(sk) do { } while (0) 619 #define sk_refcnt_debug_release(sk) do { } while (0) 620 #endif /* SOCK_REFCNT_DEBUG */ 621 622 623 #ifdef CONFIG_PROC_FS 624 # define DEFINE_PROTO_INUSE(NAME) DEFINE_PCOUNTER(NAME) 625 # define REF_PROTO_INUSE(NAME) PCOUNTER_MEMBER_INITIALIZER(NAME, .inuse) 626 /* Called with local bh disabled */ 627 static inline void sock_prot_inuse_add(struct proto *prot, int inc) 628 { 629 pcounter_add(&prot->inuse, inc); 630 } 631 static inline int sock_prot_inuse_init(struct proto *proto) 632 { 633 return pcounter_alloc(&proto->inuse); 634 } 635 static inline int sock_prot_inuse_get(struct proto *proto) 636 { 637 return pcounter_getval(&proto->inuse); 638 } 639 static inline void sock_prot_inuse_free(struct proto *proto) 640 { 641 pcounter_free(&proto->inuse); 642 } 643 #else 644 # define DEFINE_PROTO_INUSE(NAME) 645 # define REF_PROTO_INUSE(NAME) 646 static void inline sock_prot_inuse_add(struct proto *prot, int inc) 647 { 648 } 649 static int inline sock_prot_inuse_init(struct proto *proto) 650 { 651 return 0; 652 } 653 static void inline sock_prot_inuse_free(struct proto *proto) 654 { 655 } 656 #endif 657 658 659 /* With per-bucket locks this operation is not-atomic, so that 660 * this version is not worse. 661 */ 662 static inline void __sk_prot_rehash(struct sock *sk) 663 { 664 sk->sk_prot->unhash(sk); 665 sk->sk_prot->hash(sk); 666 } 667 668 /* About 10 seconds */ 669 #define SOCK_DESTROY_TIME (10*HZ) 670 671 /* Sockets 0-1023 can't be bound to unless you are superuser */ 672 #define PROT_SOCK 1024 673 674 #define SHUTDOWN_MASK 3 675 #define RCV_SHUTDOWN 1 676 #define SEND_SHUTDOWN 2 677 678 #define SOCK_SNDBUF_LOCK 1 679 #define SOCK_RCVBUF_LOCK 2 680 #define SOCK_BINDADDR_LOCK 4 681 #define SOCK_BINDPORT_LOCK 8 682 683 /* sock_iocb: used to kick off async processing of socket ios */ 684 struct sock_iocb { 685 struct list_head list; 686 687 int flags; 688 int size; 689 struct socket *sock; 690 struct sock *sk; 691 struct scm_cookie *scm; 692 struct msghdr *msg, async_msg; 693 struct kiocb *kiocb; 694 }; 695 696 static inline struct sock_iocb *kiocb_to_siocb(struct kiocb *iocb) 697 { 698 return (struct sock_iocb *)iocb->private; 699 } 700 701 static inline struct kiocb *siocb_to_kiocb(struct sock_iocb *si) 702 { 703 return si->kiocb; 704 } 705 706 struct socket_alloc { 707 struct socket socket; 708 struct inode vfs_inode; 709 }; 710 711 static inline struct socket *SOCKET_I(struct inode *inode) 712 { 713 return &container_of(inode, struct socket_alloc, vfs_inode)->socket; 714 } 715 716 static inline struct inode *SOCK_INODE(struct socket *socket) 717 { 718 return &container_of(socket, struct socket_alloc, socket)->vfs_inode; 719 } 720 721 /* 722 * Functions for memory accounting 723 */ 724 extern int __sk_mem_schedule(struct sock *sk, int size, int kind); 725 extern void __sk_mem_reclaim(struct sock *sk); 726 727 #define SK_MEM_QUANTUM ((int)PAGE_SIZE) 728 #define SK_MEM_QUANTUM_SHIFT ilog2(SK_MEM_QUANTUM) 729 #define SK_MEM_SEND 0 730 #define SK_MEM_RECV 1 731 732 static inline int sk_mem_pages(int amt) 733 { 734 return (amt + SK_MEM_QUANTUM - 1) >> SK_MEM_QUANTUM_SHIFT; 735 } 736 737 static inline int sk_has_account(struct sock *sk) 738 { 739 /* return true if protocol supports memory accounting */ 740 return !!sk->sk_prot->memory_allocated; 741 } 742 743 static inline int sk_wmem_schedule(struct sock *sk, int size) 744 { 745 if (!sk_has_account(sk)) 746 return 1; 747 return size <= sk->sk_forward_alloc || 748 __sk_mem_schedule(sk, size, SK_MEM_SEND); 749 } 750 751 static inline int sk_rmem_schedule(struct sock *sk, int size) 752 { 753 if (!sk_has_account(sk)) 754 return 1; 755 return size <= sk->sk_forward_alloc || 756 __sk_mem_schedule(sk, size, SK_MEM_RECV); 757 } 758 759 static inline void sk_mem_reclaim(struct sock *sk) 760 { 761 if (!sk_has_account(sk)) 762 return; 763 if (sk->sk_forward_alloc >= SK_MEM_QUANTUM) 764 __sk_mem_reclaim(sk); 765 } 766 767 static inline void sk_mem_reclaim_partial(struct sock *sk) 768 { 769 if (!sk_has_account(sk)) 770 return; 771 if (sk->sk_forward_alloc > SK_MEM_QUANTUM) 772 __sk_mem_reclaim(sk); 773 } 774 775 static inline void sk_mem_charge(struct sock *sk, int size) 776 { 777 if (!sk_has_account(sk)) 778 return; 779 sk->sk_forward_alloc -= size; 780 } 781 782 static inline void sk_mem_uncharge(struct sock *sk, int size) 783 { 784 if (!sk_has_account(sk)) 785 return; 786 sk->sk_forward_alloc += size; 787 } 788 789 static inline void sk_wmem_free_skb(struct sock *sk, struct sk_buff *skb) 790 { 791 skb_truesize_check(skb); 792 sock_set_flag(sk, SOCK_QUEUE_SHRUNK); 793 sk->sk_wmem_queued -= skb->truesize; 794 sk_mem_uncharge(sk, skb->truesize); 795 __kfree_skb(skb); 796 } 797 798 /* Used by processes to "lock" a socket state, so that 799 * interrupts and bottom half handlers won't change it 800 * from under us. It essentially blocks any incoming 801 * packets, so that we won't get any new data or any 802 * packets that change the state of the socket. 803 * 804 * While locked, BH processing will add new packets to 805 * the backlog queue. This queue is processed by the 806 * owner of the socket lock right before it is released. 807 * 808 * Since ~2.3.5 it is also exclusive sleep lock serializing 809 * accesses from user process context. 810 */ 811 #define sock_owned_by_user(sk) ((sk)->sk_lock.owned) 812 813 /* 814 * Macro so as to not evaluate some arguments when 815 * lockdep is not enabled. 816 * 817 * Mark both the sk_lock and the sk_lock.slock as a 818 * per-address-family lock class. 819 */ 820 #define sock_lock_init_class_and_name(sk, sname, skey, name, key) \ 821 do { \ 822 sk->sk_lock.owned = 0; \ 823 init_waitqueue_head(&sk->sk_lock.wq); \ 824 spin_lock_init(&(sk)->sk_lock.slock); \ 825 debug_check_no_locks_freed((void *)&(sk)->sk_lock, \ 826 sizeof((sk)->sk_lock)); \ 827 lockdep_set_class_and_name(&(sk)->sk_lock.slock, \ 828 (skey), (sname)); \ 829 lockdep_init_map(&(sk)->sk_lock.dep_map, (name), (key), 0); \ 830 } while (0) 831 832 extern void lock_sock_nested(struct sock *sk, int subclass); 833 834 static inline void lock_sock(struct sock *sk) 835 { 836 lock_sock_nested(sk, 0); 837 } 838 839 extern void release_sock(struct sock *sk); 840 841 /* BH context may only use the following locking interface. */ 842 #define bh_lock_sock(__sk) spin_lock(&((__sk)->sk_lock.slock)) 843 #define bh_lock_sock_nested(__sk) \ 844 spin_lock_nested(&((__sk)->sk_lock.slock), \ 845 SINGLE_DEPTH_NESTING) 846 #define bh_unlock_sock(__sk) spin_unlock(&((__sk)->sk_lock.slock)) 847 848 extern struct sock *sk_alloc(struct net *net, int family, 849 gfp_t priority, 850 struct proto *prot); 851 extern void sk_free(struct sock *sk); 852 extern struct sock *sk_clone(const struct sock *sk, 853 const gfp_t priority); 854 855 extern struct sk_buff *sock_wmalloc(struct sock *sk, 856 unsigned long size, int force, 857 gfp_t priority); 858 extern struct sk_buff *sock_rmalloc(struct sock *sk, 859 unsigned long size, int force, 860 gfp_t priority); 861 extern void sock_wfree(struct sk_buff *skb); 862 extern void sock_rfree(struct sk_buff *skb); 863 864 extern int sock_setsockopt(struct socket *sock, int level, 865 int op, char __user *optval, 866 int optlen); 867 868 extern int sock_getsockopt(struct socket *sock, int level, 869 int op, char __user *optval, 870 int __user *optlen); 871 extern struct sk_buff *sock_alloc_send_skb(struct sock *sk, 872 unsigned long size, 873 int noblock, 874 int *errcode); 875 extern void *sock_kmalloc(struct sock *sk, int size, 876 gfp_t priority); 877 extern void sock_kfree_s(struct sock *sk, void *mem, int size); 878 extern void sk_send_sigurg(struct sock *sk); 879 880 /* 881 * Functions to fill in entries in struct proto_ops when a protocol 882 * does not implement a particular function. 883 */ 884 extern int sock_no_bind(struct socket *, 885 struct sockaddr *, int); 886 extern int sock_no_connect(struct socket *, 887 struct sockaddr *, int, int); 888 extern int sock_no_socketpair(struct socket *, 889 struct socket *); 890 extern int sock_no_accept(struct socket *, 891 struct socket *, int); 892 extern int sock_no_getname(struct socket *, 893 struct sockaddr *, int *, int); 894 extern unsigned int sock_no_poll(struct file *, struct socket *, 895 struct poll_table_struct *); 896 extern int sock_no_ioctl(struct socket *, unsigned int, 897 unsigned long); 898 extern int sock_no_listen(struct socket *, int); 899 extern int sock_no_shutdown(struct socket *, int); 900 extern int sock_no_getsockopt(struct socket *, int , int, 901 char __user *, int __user *); 902 extern int sock_no_setsockopt(struct socket *, int, int, 903 char __user *, int); 904 extern int sock_no_sendmsg(struct kiocb *, struct socket *, 905 struct msghdr *, size_t); 906 extern int sock_no_recvmsg(struct kiocb *, struct socket *, 907 struct msghdr *, size_t, int); 908 extern int sock_no_mmap(struct file *file, 909 struct socket *sock, 910 struct vm_area_struct *vma); 911 extern ssize_t sock_no_sendpage(struct socket *sock, 912 struct page *page, 913 int offset, size_t size, 914 int flags); 915 916 /* 917 * Functions to fill in entries in struct proto_ops when a protocol 918 * uses the inet style. 919 */ 920 extern int sock_common_getsockopt(struct socket *sock, int level, int optname, 921 char __user *optval, int __user *optlen); 922 extern int sock_common_recvmsg(struct kiocb *iocb, struct socket *sock, 923 struct msghdr *msg, size_t size, int flags); 924 extern int sock_common_setsockopt(struct socket *sock, int level, int optname, 925 char __user *optval, int optlen); 926 extern int compat_sock_common_getsockopt(struct socket *sock, int level, 927 int optname, char __user *optval, int __user *optlen); 928 extern int compat_sock_common_setsockopt(struct socket *sock, int level, 929 int optname, char __user *optval, int optlen); 930 931 extern void sk_common_release(struct sock *sk); 932 933 /* 934 * Default socket callbacks and setup code 935 */ 936 937 /* Initialise core socket variables */ 938 extern void sock_init_data(struct socket *sock, struct sock *sk); 939 940 /** 941 * sk_filter - run a packet through a socket filter 942 * @sk: sock associated with &sk_buff 943 * @skb: buffer to filter 944 * @needlock: set to 1 if the sock is not locked by caller. 945 * 946 * Run the filter code and then cut skb->data to correct size returned by 947 * sk_run_filter. If pkt_len is 0 we toss packet. If skb->len is smaller 948 * than pkt_len we keep whole skb->data. This is the socket level 949 * wrapper to sk_run_filter. It returns 0 if the packet should 950 * be accepted or -EPERM if the packet should be tossed. 951 * 952 */ 953 954 static inline int sk_filter(struct sock *sk, struct sk_buff *skb) 955 { 956 int err; 957 struct sk_filter *filter; 958 959 err = security_sock_rcv_skb(sk, skb); 960 if (err) 961 return err; 962 963 rcu_read_lock_bh(); 964 filter = rcu_dereference(sk->sk_filter); 965 if (filter) { 966 unsigned int pkt_len = sk_run_filter(skb, filter->insns, 967 filter->len); 968 err = pkt_len ? pskb_trim(skb, pkt_len) : -EPERM; 969 } 970 rcu_read_unlock_bh(); 971 972 return err; 973 } 974 975 /** 976 * sk_filter_release: Release a socket filter 977 * @sk: socket 978 * @fp: filter to remove 979 * 980 * Remove a filter from a socket and release its resources. 981 */ 982 983 static inline void sk_filter_release(struct sk_filter *fp) 984 { 985 if (atomic_dec_and_test(&fp->refcnt)) 986 kfree(fp); 987 } 988 989 static inline void sk_filter_uncharge(struct sock *sk, struct sk_filter *fp) 990 { 991 unsigned int size = sk_filter_len(fp); 992 993 atomic_sub(size, &sk->sk_omem_alloc); 994 sk_filter_release(fp); 995 } 996 997 static inline void sk_filter_charge(struct sock *sk, struct sk_filter *fp) 998 { 999 atomic_inc(&fp->refcnt); 1000 atomic_add(sk_filter_len(fp), &sk->sk_omem_alloc); 1001 } 1002 1003 /* 1004 * Socket reference counting postulates. 1005 * 1006 * * Each user of socket SHOULD hold a reference count. 1007 * * Each access point to socket (an hash table bucket, reference from a list, 1008 * running timer, skb in flight MUST hold a reference count. 1009 * * When reference count hits 0, it means it will never increase back. 1010 * * When reference count hits 0, it means that no references from 1011 * outside exist to this socket and current process on current CPU 1012 * is last user and may/should destroy this socket. 1013 * * sk_free is called from any context: process, BH, IRQ. When 1014 * it is called, socket has no references from outside -> sk_free 1015 * may release descendant resources allocated by the socket, but 1016 * to the time when it is called, socket is NOT referenced by any 1017 * hash tables, lists etc. 1018 * * Packets, delivered from outside (from network or from another process) 1019 * and enqueued on receive/error queues SHOULD NOT grab reference count, 1020 * when they sit in queue. Otherwise, packets will leak to hole, when 1021 * socket is looked up by one cpu and unhasing is made by another CPU. 1022 * It is true for udp/raw, netlink (leak to receive and error queues), tcp 1023 * (leak to backlog). Packet socket does all the processing inside 1024 * BR_NETPROTO_LOCK, so that it has not this race condition. UNIX sockets 1025 * use separate SMP lock, so that they are prone too. 1026 */ 1027 1028 /* Ungrab socket and destroy it, if it was the last reference. */ 1029 static inline void sock_put(struct sock *sk) 1030 { 1031 if (atomic_dec_and_test(&sk->sk_refcnt)) 1032 sk_free(sk); 1033 } 1034 1035 extern int sk_receive_skb(struct sock *sk, struct sk_buff *skb, 1036 const int nested); 1037 1038 /* Detach socket from process context. 1039 * Announce socket dead, detach it from wait queue and inode. 1040 * Note that parent inode held reference count on this struct sock, 1041 * we do not release it in this function, because protocol 1042 * probably wants some additional cleanups or even continuing 1043 * to work with this socket (TCP). 1044 */ 1045 static inline void sock_orphan(struct sock *sk) 1046 { 1047 write_lock_bh(&sk->sk_callback_lock); 1048 sock_set_flag(sk, SOCK_DEAD); 1049 sk->sk_socket = NULL; 1050 sk->sk_sleep = NULL; 1051 write_unlock_bh(&sk->sk_callback_lock); 1052 } 1053 1054 static inline void sock_graft(struct sock *sk, struct socket *parent) 1055 { 1056 write_lock_bh(&sk->sk_callback_lock); 1057 sk->sk_sleep = &parent->wait; 1058 parent->sk = sk; 1059 sk->sk_socket = parent; 1060 security_sock_graft(sk, parent); 1061 write_unlock_bh(&sk->sk_callback_lock); 1062 } 1063 1064 extern int sock_i_uid(struct sock *sk); 1065 extern unsigned long sock_i_ino(struct sock *sk); 1066 1067 static inline struct dst_entry * 1068 __sk_dst_get(struct sock *sk) 1069 { 1070 return sk->sk_dst_cache; 1071 } 1072 1073 static inline struct dst_entry * 1074 sk_dst_get(struct sock *sk) 1075 { 1076 struct dst_entry *dst; 1077 1078 read_lock(&sk->sk_dst_lock); 1079 dst = sk->sk_dst_cache; 1080 if (dst) 1081 dst_hold(dst); 1082 read_unlock(&sk->sk_dst_lock); 1083 return dst; 1084 } 1085 1086 static inline void 1087 __sk_dst_set(struct sock *sk, struct dst_entry *dst) 1088 { 1089 struct dst_entry *old_dst; 1090 1091 old_dst = sk->sk_dst_cache; 1092 sk->sk_dst_cache = dst; 1093 dst_release(old_dst); 1094 } 1095 1096 static inline void 1097 sk_dst_set(struct sock *sk, struct dst_entry *dst) 1098 { 1099 write_lock(&sk->sk_dst_lock); 1100 __sk_dst_set(sk, dst); 1101 write_unlock(&sk->sk_dst_lock); 1102 } 1103 1104 static inline void 1105 __sk_dst_reset(struct sock *sk) 1106 { 1107 struct dst_entry *old_dst; 1108 1109 old_dst = sk->sk_dst_cache; 1110 sk->sk_dst_cache = NULL; 1111 dst_release(old_dst); 1112 } 1113 1114 static inline void 1115 sk_dst_reset(struct sock *sk) 1116 { 1117 write_lock(&sk->sk_dst_lock); 1118 __sk_dst_reset(sk); 1119 write_unlock(&sk->sk_dst_lock); 1120 } 1121 1122 extern struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie); 1123 1124 extern struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie); 1125 1126 static inline int sk_can_gso(const struct sock *sk) 1127 { 1128 return net_gso_ok(sk->sk_route_caps, sk->sk_gso_type); 1129 } 1130 1131 extern void sk_setup_caps(struct sock *sk, struct dst_entry *dst); 1132 1133 static inline int skb_copy_to_page(struct sock *sk, char __user *from, 1134 struct sk_buff *skb, struct page *page, 1135 int off, int copy) 1136 { 1137 if (skb->ip_summed == CHECKSUM_NONE) { 1138 int err = 0; 1139 __wsum csum = csum_and_copy_from_user(from, 1140 page_address(page) + off, 1141 copy, 0, &err); 1142 if (err) 1143 return err; 1144 skb->csum = csum_block_add(skb->csum, csum, skb->len); 1145 } else if (copy_from_user(page_address(page) + off, from, copy)) 1146 return -EFAULT; 1147 1148 skb->len += copy; 1149 skb->data_len += copy; 1150 skb->truesize += copy; 1151 sk->sk_wmem_queued += copy; 1152 sk_mem_charge(sk, copy); 1153 return 0; 1154 } 1155 1156 /* 1157 * Queue a received datagram if it will fit. Stream and sequenced 1158 * protocols can't normally use this as they need to fit buffers in 1159 * and play with them. 1160 * 1161 * Inlined as it's very short and called for pretty much every 1162 * packet ever received. 1163 */ 1164 1165 static inline void skb_set_owner_w(struct sk_buff *skb, struct sock *sk) 1166 { 1167 sock_hold(sk); 1168 skb->sk = sk; 1169 skb->destructor = sock_wfree; 1170 atomic_add(skb->truesize, &sk->sk_wmem_alloc); 1171 } 1172 1173 static inline void skb_set_owner_r(struct sk_buff *skb, struct sock *sk) 1174 { 1175 skb->sk = sk; 1176 skb->destructor = sock_rfree; 1177 atomic_add(skb->truesize, &sk->sk_rmem_alloc); 1178 sk_mem_charge(sk, skb->truesize); 1179 } 1180 1181 extern void sk_reset_timer(struct sock *sk, struct timer_list* timer, 1182 unsigned long expires); 1183 1184 extern void sk_stop_timer(struct sock *sk, struct timer_list* timer); 1185 1186 extern int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb); 1187 1188 static inline int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb) 1189 { 1190 /* Cast skb->rcvbuf to unsigned... It's pointless, but reduces 1191 number of warnings when compiling with -W --ANK 1192 */ 1193 if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >= 1194 (unsigned)sk->sk_rcvbuf) 1195 return -ENOMEM; 1196 skb_set_owner_r(skb, sk); 1197 skb_queue_tail(&sk->sk_error_queue, skb); 1198 if (!sock_flag(sk, SOCK_DEAD)) 1199 sk->sk_data_ready(sk, skb->len); 1200 return 0; 1201 } 1202 1203 /* 1204 * Recover an error report and clear atomically 1205 */ 1206 1207 static inline int sock_error(struct sock *sk) 1208 { 1209 int err; 1210 if (likely(!sk->sk_err)) 1211 return 0; 1212 err = xchg(&sk->sk_err, 0); 1213 return -err; 1214 } 1215 1216 static inline unsigned long sock_wspace(struct sock *sk) 1217 { 1218 int amt = 0; 1219 1220 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) { 1221 amt = sk->sk_sndbuf - atomic_read(&sk->sk_wmem_alloc); 1222 if (amt < 0) 1223 amt = 0; 1224 } 1225 return amt; 1226 } 1227 1228 static inline void sk_wake_async(struct sock *sk, int how, int band) 1229 { 1230 if (sk->sk_socket && sk->sk_socket->fasync_list) 1231 sock_wake_async(sk->sk_socket, how, band); 1232 } 1233 1234 #define SOCK_MIN_SNDBUF 2048 1235 #define SOCK_MIN_RCVBUF 256 1236 1237 static inline void sk_stream_moderate_sndbuf(struct sock *sk) 1238 { 1239 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK)) { 1240 sk->sk_sndbuf = min(sk->sk_sndbuf, sk->sk_wmem_queued >> 1); 1241 sk->sk_sndbuf = max(sk->sk_sndbuf, SOCK_MIN_SNDBUF); 1242 } 1243 } 1244 1245 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp); 1246 1247 static inline struct page *sk_stream_alloc_page(struct sock *sk) 1248 { 1249 struct page *page = NULL; 1250 1251 page = alloc_pages(sk->sk_allocation, 0); 1252 if (!page) { 1253 sk->sk_prot->enter_memory_pressure(); 1254 sk_stream_moderate_sndbuf(sk); 1255 } 1256 return page; 1257 } 1258 1259 /* 1260 * Default write policy as shown to user space via poll/select/SIGIO 1261 */ 1262 static inline int sock_writeable(const struct sock *sk) 1263 { 1264 return atomic_read(&sk->sk_wmem_alloc) < (sk->sk_sndbuf >> 1); 1265 } 1266 1267 static inline gfp_t gfp_any(void) 1268 { 1269 return in_atomic() ? GFP_ATOMIC : GFP_KERNEL; 1270 } 1271 1272 static inline long sock_rcvtimeo(const struct sock *sk, int noblock) 1273 { 1274 return noblock ? 0 : sk->sk_rcvtimeo; 1275 } 1276 1277 static inline long sock_sndtimeo(const struct sock *sk, int noblock) 1278 { 1279 return noblock ? 0 : sk->sk_sndtimeo; 1280 } 1281 1282 static inline int sock_rcvlowat(const struct sock *sk, int waitall, int len) 1283 { 1284 return (waitall ? len : min_t(int, sk->sk_rcvlowat, len)) ? : 1; 1285 } 1286 1287 /* Alas, with timeout socket operations are not restartable. 1288 * Compare this to poll(). 1289 */ 1290 static inline int sock_intr_errno(long timeo) 1291 { 1292 return timeo == MAX_SCHEDULE_TIMEOUT ? -ERESTARTSYS : -EINTR; 1293 } 1294 1295 extern void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk, 1296 struct sk_buff *skb); 1297 1298 static __inline__ void 1299 sock_recv_timestamp(struct msghdr *msg, struct sock *sk, struct sk_buff *skb) 1300 { 1301 ktime_t kt = skb->tstamp; 1302 1303 if (sock_flag(sk, SOCK_RCVTSTAMP)) 1304 __sock_recv_timestamp(msg, sk, skb); 1305 else 1306 sk->sk_stamp = kt; 1307 } 1308 1309 /** 1310 * sk_eat_skb - Release a skb if it is no longer needed 1311 * @sk: socket to eat this skb from 1312 * @skb: socket buffer to eat 1313 * @copied_early: flag indicating whether DMA operations copied this data early 1314 * 1315 * This routine must be called with interrupts disabled or with the socket 1316 * locked so that the sk_buff queue operation is ok. 1317 */ 1318 #ifdef CONFIG_NET_DMA 1319 static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb, int copied_early) 1320 { 1321 __skb_unlink(skb, &sk->sk_receive_queue); 1322 if (!copied_early) 1323 __kfree_skb(skb); 1324 else 1325 __skb_queue_tail(&sk->sk_async_wait_queue, skb); 1326 } 1327 #else 1328 static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb, int copied_early) 1329 { 1330 __skb_unlink(skb, &sk->sk_receive_queue); 1331 __kfree_skb(skb); 1332 } 1333 #endif 1334 1335 extern void sock_enable_timestamp(struct sock *sk); 1336 extern int sock_get_timestamp(struct sock *, struct timeval __user *); 1337 extern int sock_get_timestampns(struct sock *, struct timespec __user *); 1338 1339 /* 1340 * Enable debug/info messages 1341 */ 1342 extern int net_msg_warn; 1343 #define NETDEBUG(fmt, args...) \ 1344 do { if (net_msg_warn) printk(fmt,##args); } while (0) 1345 1346 #define LIMIT_NETDEBUG(fmt, args...) \ 1347 do { if (net_msg_warn && net_ratelimit()) printk(fmt,##args); } while(0) 1348 1349 /* 1350 * Macros for sleeping on a socket. Use them like this: 1351 * 1352 * SOCK_SLEEP_PRE(sk) 1353 * if (condition) 1354 * schedule(); 1355 * SOCK_SLEEP_POST(sk) 1356 * 1357 * N.B. These are now obsolete and were, afaik, only ever used in DECnet 1358 * and when the last use of them in DECnet has gone, I'm intending to 1359 * remove them. 1360 */ 1361 1362 #define SOCK_SLEEP_PRE(sk) { struct task_struct *tsk = current; \ 1363 DECLARE_WAITQUEUE(wait, tsk); \ 1364 tsk->state = TASK_INTERRUPTIBLE; \ 1365 add_wait_queue((sk)->sk_sleep, &wait); \ 1366 release_sock(sk); 1367 1368 #define SOCK_SLEEP_POST(sk) tsk->state = TASK_RUNNING; \ 1369 remove_wait_queue((sk)->sk_sleep, &wait); \ 1370 lock_sock(sk); \ 1371 } 1372 1373 extern __u32 sysctl_wmem_max; 1374 extern __u32 sysctl_rmem_max; 1375 1376 extern void sk_init(void); 1377 1378 extern int sysctl_optmem_max; 1379 1380 extern __u32 sysctl_wmem_default; 1381 extern __u32 sysctl_rmem_default; 1382 1383 #endif /* _SOCK_H */ 1384