xref: /linux/include/net/sock.h (revision e3617433c3da3d0859a4bc67f3f975e87f650ebf)
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Definitions for the AF_INET socket handler.
8  *
9  * Version:	@(#)sock.h	1.0.4	05/13/93
10  *
11  * Authors:	Ross Biro
12  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
13  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
14  *		Florian La Roche <flla@stud.uni-sb.de>
15  *
16  * Fixes:
17  *		Alan Cox	:	Volatiles in skbuff pointers. See
18  *					skbuff comments. May be overdone,
19  *					better to prove they can be removed
20  *					than the reverse.
21  *		Alan Cox	:	Added a zapped field for tcp to note
22  *					a socket is reset and must stay shut up
23  *		Alan Cox	:	New fields for options
24  *	Pauline Middelink	:	identd support
25  *		Alan Cox	:	Eliminate low level recv/recvfrom
26  *		David S. Miller	:	New socket lookup architecture.
27  *              Steve Whitehouse:       Default routines for sock_ops
28  *              Arnaldo C. Melo :	removed net_pinfo, tp_pinfo and made
29  *              			protinfo be just a void pointer, as the
30  *              			protocol specific parts were moved to
31  *              			respective headers and ipv4/v6, etc now
32  *              			use private slabcaches for its socks
33  *              Pedro Hortas	:	New flags field for socket options
34  */
35 #ifndef _SOCK_H
36 #define _SOCK_H
37 
38 #include <linux/hardirq.h>
39 #include <linux/kernel.h>
40 #include <linux/list.h>
41 #include <linux/list_nulls.h>
42 #include <linux/timer.h>
43 #include <linux/cache.h>
44 #include <linux/bitops.h>
45 #include <linux/lockdep.h>
46 #include <linux/netdevice.h>
47 #include <linux/skbuff.h>	/* struct sk_buff */
48 #include <linux/mm.h>
49 #include <linux/security.h>
50 #include <linux/slab.h>
51 #include <linux/uaccess.h>
52 #include <linux/page_counter.h>
53 #include <linux/memcontrol.h>
54 #include <linux/static_key.h>
55 #include <linux/sched.h>
56 #include <linux/wait.h>
57 #include <linux/cgroup-defs.h>
58 #include <linux/rbtree.h>
59 #include <linux/filter.h>
60 #include <linux/rculist_nulls.h>
61 #include <linux/poll.h>
62 #include <linux/sockptr.h>
63 #include <linux/indirect_call_wrapper.h>
64 #include <linux/atomic.h>
65 #include <linux/refcount.h>
66 #include <linux/llist.h>
67 #include <net/dst.h>
68 #include <net/checksum.h>
69 #include <net/tcp_states.h>
70 #include <linux/net_tstamp.h>
71 #include <net/l3mdev.h>
72 #include <uapi/linux/socket.h>
73 
74 /*
75  * This structure really needs to be cleaned up.
76  * Most of it is for TCP, and not used by any of
77  * the other protocols.
78  */
79 
80 /* Define this to get the SOCK_DBG debugging facility. */
81 #define SOCK_DEBUGGING
82 #ifdef SOCK_DEBUGGING
83 #define SOCK_DEBUG(sk, msg...) do { if ((sk) && sock_flag((sk), SOCK_DBG)) \
84 					printk(KERN_DEBUG msg); } while (0)
85 #else
86 /* Validate arguments and do nothing */
87 static inline __printf(2, 3)
88 void SOCK_DEBUG(const struct sock *sk, const char *msg, ...)
89 {
90 }
91 #endif
92 
93 /* This is the per-socket lock.  The spinlock provides a synchronization
94  * between user contexts and software interrupt processing, whereas the
95  * mini-semaphore synchronizes multiple users amongst themselves.
96  */
97 typedef struct {
98 	spinlock_t		slock;
99 	int			owned;
100 	wait_queue_head_t	wq;
101 	/*
102 	 * We express the mutex-alike socket_lock semantics
103 	 * to the lock validator by explicitly managing
104 	 * the slock as a lock variant (in addition to
105 	 * the slock itself):
106 	 */
107 #ifdef CONFIG_DEBUG_LOCK_ALLOC
108 	struct lockdep_map dep_map;
109 #endif
110 } socket_lock_t;
111 
112 struct sock;
113 struct proto;
114 struct net;
115 
116 typedef __u32 __bitwise __portpair;
117 typedef __u64 __bitwise __addrpair;
118 
119 /**
120  *	struct sock_common - minimal network layer representation of sockets
121  *	@skc_daddr: Foreign IPv4 addr
122  *	@skc_rcv_saddr: Bound local IPv4 addr
123  *	@skc_addrpair: 8-byte-aligned __u64 union of @skc_daddr & @skc_rcv_saddr
124  *	@skc_hash: hash value used with various protocol lookup tables
125  *	@skc_u16hashes: two u16 hash values used by UDP lookup tables
126  *	@skc_dport: placeholder for inet_dport/tw_dport
127  *	@skc_num: placeholder for inet_num/tw_num
128  *	@skc_portpair: __u32 union of @skc_dport & @skc_num
129  *	@skc_family: network address family
130  *	@skc_state: Connection state
131  *	@skc_reuse: %SO_REUSEADDR setting
132  *	@skc_reuseport: %SO_REUSEPORT setting
133  *	@skc_ipv6only: socket is IPV6 only
134  *	@skc_net_refcnt: socket is using net ref counting
135  *	@skc_bound_dev_if: bound device index if != 0
136  *	@skc_bind_node: bind hash linkage for various protocol lookup tables
137  *	@skc_portaddr_node: second hash linkage for UDP/UDP-Lite protocol
138  *	@skc_prot: protocol handlers inside a network family
139  *	@skc_net: reference to the network namespace of this socket
140  *	@skc_v6_daddr: IPV6 destination address
141  *	@skc_v6_rcv_saddr: IPV6 source address
142  *	@skc_cookie: socket's cookie value
143  *	@skc_node: main hash linkage for various protocol lookup tables
144  *	@skc_nulls_node: main hash linkage for TCP/UDP/UDP-Lite protocol
145  *	@skc_tx_queue_mapping: tx queue number for this connection
146  *	@skc_rx_queue_mapping: rx queue number for this connection
147  *	@skc_flags: place holder for sk_flags
148  *		%SO_LINGER (l_onoff), %SO_BROADCAST, %SO_KEEPALIVE,
149  *		%SO_OOBINLINE settings, %SO_TIMESTAMPING settings
150  *	@skc_listener: connection request listener socket (aka rsk_listener)
151  *		[union with @skc_flags]
152  *	@skc_tw_dr: (aka tw_dr) ptr to &struct inet_timewait_death_row
153  *		[union with @skc_flags]
154  *	@skc_incoming_cpu: record/match cpu processing incoming packets
155  *	@skc_rcv_wnd: (aka rsk_rcv_wnd) TCP receive window size (possibly scaled)
156  *		[union with @skc_incoming_cpu]
157  *	@skc_tw_rcv_nxt: (aka tw_rcv_nxt) TCP window next expected seq number
158  *		[union with @skc_incoming_cpu]
159  *	@skc_refcnt: reference count
160  *
161  *	This is the minimal network layer representation of sockets, the header
162  *	for struct sock and struct inet_timewait_sock.
163  */
164 struct sock_common {
165 	/* skc_daddr and skc_rcv_saddr must be grouped on a 8 bytes aligned
166 	 * address on 64bit arches : cf INET_MATCH()
167 	 */
168 	union {
169 		__addrpair	skc_addrpair;
170 		struct {
171 			__be32	skc_daddr;
172 			__be32	skc_rcv_saddr;
173 		};
174 	};
175 	union  {
176 		unsigned int	skc_hash;
177 		__u16		skc_u16hashes[2];
178 	};
179 	/* skc_dport && skc_num must be grouped as well */
180 	union {
181 		__portpair	skc_portpair;
182 		struct {
183 			__be16	skc_dport;
184 			__u16	skc_num;
185 		};
186 	};
187 
188 	unsigned short		skc_family;
189 	volatile unsigned char	skc_state;
190 	unsigned char		skc_reuse:4;
191 	unsigned char		skc_reuseport:1;
192 	unsigned char		skc_ipv6only:1;
193 	unsigned char		skc_net_refcnt:1;
194 	int			skc_bound_dev_if;
195 	union {
196 		struct hlist_node	skc_bind_node;
197 		struct hlist_node	skc_portaddr_node;
198 	};
199 	struct proto		*skc_prot;
200 	possible_net_t		skc_net;
201 
202 #if IS_ENABLED(CONFIG_IPV6)
203 	struct in6_addr		skc_v6_daddr;
204 	struct in6_addr		skc_v6_rcv_saddr;
205 #endif
206 
207 	atomic64_t		skc_cookie;
208 
209 	/* following fields are padding to force
210 	 * offset(struct sock, sk_refcnt) == 128 on 64bit arches
211 	 * assuming IPV6 is enabled. We use this padding differently
212 	 * for different kind of 'sockets'
213 	 */
214 	union {
215 		unsigned long	skc_flags;
216 		struct sock	*skc_listener; /* request_sock */
217 		struct inet_timewait_death_row *skc_tw_dr; /* inet_timewait_sock */
218 	};
219 	/*
220 	 * fields between dontcopy_begin/dontcopy_end
221 	 * are not copied in sock_copy()
222 	 */
223 	/* private: */
224 	int			skc_dontcopy_begin[0];
225 	/* public: */
226 	union {
227 		struct hlist_node	skc_node;
228 		struct hlist_nulls_node skc_nulls_node;
229 	};
230 	unsigned short		skc_tx_queue_mapping;
231 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
232 	unsigned short		skc_rx_queue_mapping;
233 #endif
234 	union {
235 		int		skc_incoming_cpu;
236 		u32		skc_rcv_wnd;
237 		u32		skc_tw_rcv_nxt; /* struct tcp_timewait_sock  */
238 	};
239 
240 	refcount_t		skc_refcnt;
241 	/* private: */
242 	int                     skc_dontcopy_end[0];
243 	union {
244 		u32		skc_rxhash;
245 		u32		skc_window_clamp;
246 		u32		skc_tw_snd_nxt; /* struct tcp_timewait_sock */
247 	};
248 	/* public: */
249 };
250 
251 struct bpf_local_storage;
252 
253 /**
254   *	struct sock - network layer representation of sockets
255   *	@__sk_common: shared layout with inet_timewait_sock
256   *	@sk_shutdown: mask of %SEND_SHUTDOWN and/or %RCV_SHUTDOWN
257   *	@sk_userlocks: %SO_SNDBUF and %SO_RCVBUF settings
258   *	@sk_lock:	synchronizer
259   *	@sk_kern_sock: True if sock is using kernel lock classes
260   *	@sk_rcvbuf: size of receive buffer in bytes
261   *	@sk_wq: sock wait queue and async head
262   *	@sk_rx_dst: receive input route used by early demux
263   *	@sk_rx_dst_ifindex: ifindex for @sk_rx_dst
264   *	@sk_rx_dst_cookie: cookie for @sk_rx_dst
265   *	@sk_dst_cache: destination cache
266   *	@sk_dst_pending_confirm: need to confirm neighbour
267   *	@sk_policy: flow policy
268   *	@sk_receive_queue: incoming packets
269   *	@sk_wmem_alloc: transmit queue bytes committed
270   *	@sk_tsq_flags: TCP Small Queues flags
271   *	@sk_write_queue: Packet sending queue
272   *	@sk_omem_alloc: "o" is "option" or "other"
273   *	@sk_wmem_queued: persistent queue size
274   *	@sk_forward_alloc: space allocated forward
275   *	@sk_reserved_mem: space reserved and non-reclaimable for the socket
276   *	@sk_napi_id: id of the last napi context to receive data for sk
277   *	@sk_ll_usec: usecs to busypoll when there is no data
278   *	@sk_allocation: allocation mode
279   *	@sk_pacing_rate: Pacing rate (if supported by transport/packet scheduler)
280   *	@sk_pacing_status: Pacing status (requested, handled by sch_fq)
281   *	@sk_max_pacing_rate: Maximum pacing rate (%SO_MAX_PACING_RATE)
282   *	@sk_sndbuf: size of send buffer in bytes
283   *	@__sk_flags_offset: empty field used to determine location of bitfield
284   *	@sk_padding: unused element for alignment
285   *	@sk_no_check_tx: %SO_NO_CHECK setting, set checksum in TX packets
286   *	@sk_no_check_rx: allow zero checksum in RX packets
287   *	@sk_route_caps: route capabilities (e.g. %NETIF_F_TSO)
288   *	@sk_gso_disabled: if set, NETIF_F_GSO_MASK is forbidden.
289   *	@sk_gso_type: GSO type (e.g. %SKB_GSO_TCPV4)
290   *	@sk_gso_max_size: Maximum GSO segment size to build
291   *	@sk_gso_max_segs: Maximum number of GSO segments
292   *	@sk_pacing_shift: scaling factor for TCP Small Queues
293   *	@sk_lingertime: %SO_LINGER l_linger setting
294   *	@sk_backlog: always used with the per-socket spinlock held
295   *	@defer_list: head of llist storing skbs to be freed
296   *	@sk_callback_lock: used with the callbacks in the end of this struct
297   *	@sk_error_queue: rarely used
298   *	@sk_prot_creator: sk_prot of original sock creator (see ipv6_setsockopt,
299   *			  IPV6_ADDRFORM for instance)
300   *	@sk_err: last error
301   *	@sk_err_soft: errors that don't cause failure but are the cause of a
302   *		      persistent failure not just 'timed out'
303   *	@sk_drops: raw/udp drops counter
304   *	@sk_ack_backlog: current listen backlog
305   *	@sk_max_ack_backlog: listen backlog set in listen()
306   *	@sk_uid: user id of owner
307   *	@sk_prefer_busy_poll: prefer busypolling over softirq processing
308   *	@sk_busy_poll_budget: napi processing budget when busypolling
309   *	@sk_priority: %SO_PRIORITY setting
310   *	@sk_type: socket type (%SOCK_STREAM, etc)
311   *	@sk_protocol: which protocol this socket belongs in this network family
312   *	@sk_peer_lock: lock protecting @sk_peer_pid and @sk_peer_cred
313   *	@sk_peer_pid: &struct pid for this socket's peer
314   *	@sk_peer_cred: %SO_PEERCRED setting
315   *	@sk_rcvlowat: %SO_RCVLOWAT setting
316   *	@sk_rcvtimeo: %SO_RCVTIMEO setting
317   *	@sk_sndtimeo: %SO_SNDTIMEO setting
318   *	@sk_txhash: computed flow hash for use on transmit
319   *	@sk_filter: socket filtering instructions
320   *	@sk_timer: sock cleanup timer
321   *	@sk_stamp: time stamp of last packet received
322   *	@sk_stamp_seq: lock for accessing sk_stamp on 32 bit architectures only
323   *	@sk_tsflags: SO_TIMESTAMPING flags
324   *	@sk_bind_phc: SO_TIMESTAMPING bind PHC index of PTP virtual clock
325   *	              for timestamping
326   *	@sk_tskey: counter to disambiguate concurrent tstamp requests
327   *	@sk_zckey: counter to order MSG_ZEROCOPY notifications
328   *	@sk_socket: Identd and reporting IO signals
329   *	@sk_user_data: RPC layer private data
330   *	@sk_frag: cached page frag
331   *	@sk_peek_off: current peek_offset value
332   *	@sk_send_head: front of stuff to transmit
333   *	@tcp_rtx_queue: TCP re-transmit queue [union with @sk_send_head]
334   *	@sk_security: used by security modules
335   *	@sk_mark: generic packet mark
336   *	@sk_cgrp_data: cgroup data for this cgroup
337   *	@sk_memcg: this socket's memory cgroup association
338   *	@sk_write_pending: a write to stream socket waits to start
339   *	@sk_state_change: callback to indicate change in the state of the sock
340   *	@sk_data_ready: callback to indicate there is data to be processed
341   *	@sk_write_space: callback to indicate there is bf sending space available
342   *	@sk_error_report: callback to indicate errors (e.g. %MSG_ERRQUEUE)
343   *	@sk_backlog_rcv: callback to process the backlog
344   *	@sk_validate_xmit_skb: ptr to an optional validate function
345   *	@sk_destruct: called at sock freeing time, i.e. when all refcnt == 0
346   *	@sk_reuseport_cb: reuseport group container
347   *	@sk_bpf_storage: ptr to cache and control for bpf_sk_storage
348   *	@sk_rcu: used during RCU grace period
349   *	@sk_clockid: clockid used by time-based scheduling (SO_TXTIME)
350   *	@sk_txtime_deadline_mode: set deadline mode for SO_TXTIME
351   *	@sk_txtime_report_errors: set report errors mode for SO_TXTIME
352   *	@sk_txtime_unused: unused txtime flags
353   */
354 struct sock {
355 	/*
356 	 * Now struct inet_timewait_sock also uses sock_common, so please just
357 	 * don't add nothing before this first member (__sk_common) --acme
358 	 */
359 	struct sock_common	__sk_common;
360 #define sk_node			__sk_common.skc_node
361 #define sk_nulls_node		__sk_common.skc_nulls_node
362 #define sk_refcnt		__sk_common.skc_refcnt
363 #define sk_tx_queue_mapping	__sk_common.skc_tx_queue_mapping
364 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
365 #define sk_rx_queue_mapping	__sk_common.skc_rx_queue_mapping
366 #endif
367 
368 #define sk_dontcopy_begin	__sk_common.skc_dontcopy_begin
369 #define sk_dontcopy_end		__sk_common.skc_dontcopy_end
370 #define sk_hash			__sk_common.skc_hash
371 #define sk_portpair		__sk_common.skc_portpair
372 #define sk_num			__sk_common.skc_num
373 #define sk_dport		__sk_common.skc_dport
374 #define sk_addrpair		__sk_common.skc_addrpair
375 #define sk_daddr		__sk_common.skc_daddr
376 #define sk_rcv_saddr		__sk_common.skc_rcv_saddr
377 #define sk_family		__sk_common.skc_family
378 #define sk_state		__sk_common.skc_state
379 #define sk_reuse		__sk_common.skc_reuse
380 #define sk_reuseport		__sk_common.skc_reuseport
381 #define sk_ipv6only		__sk_common.skc_ipv6only
382 #define sk_net_refcnt		__sk_common.skc_net_refcnt
383 #define sk_bound_dev_if		__sk_common.skc_bound_dev_if
384 #define sk_bind_node		__sk_common.skc_bind_node
385 #define sk_prot			__sk_common.skc_prot
386 #define sk_net			__sk_common.skc_net
387 #define sk_v6_daddr		__sk_common.skc_v6_daddr
388 #define sk_v6_rcv_saddr	__sk_common.skc_v6_rcv_saddr
389 #define sk_cookie		__sk_common.skc_cookie
390 #define sk_incoming_cpu		__sk_common.skc_incoming_cpu
391 #define sk_flags		__sk_common.skc_flags
392 #define sk_rxhash		__sk_common.skc_rxhash
393 
394 	/* early demux fields */
395 	struct dst_entry	*sk_rx_dst;
396 	int			sk_rx_dst_ifindex;
397 	u32			sk_rx_dst_cookie;
398 
399 	socket_lock_t		sk_lock;
400 	atomic_t		sk_drops;
401 	int			sk_rcvlowat;
402 	struct sk_buff_head	sk_error_queue;
403 	struct sk_buff_head	sk_receive_queue;
404 	/*
405 	 * The backlog queue is special, it is always used with
406 	 * the per-socket spinlock held and requires low latency
407 	 * access. Therefore we special case it's implementation.
408 	 * Note : rmem_alloc is in this structure to fill a hole
409 	 * on 64bit arches, not because its logically part of
410 	 * backlog.
411 	 */
412 	struct {
413 		atomic_t	rmem_alloc;
414 		int		len;
415 		struct sk_buff	*head;
416 		struct sk_buff	*tail;
417 	} sk_backlog;
418 	struct llist_head defer_list;
419 
420 #define sk_rmem_alloc sk_backlog.rmem_alloc
421 
422 	int			sk_forward_alloc;
423 	u32			sk_reserved_mem;
424 #ifdef CONFIG_NET_RX_BUSY_POLL
425 	unsigned int		sk_ll_usec;
426 	/* ===== mostly read cache line ===== */
427 	unsigned int		sk_napi_id;
428 #endif
429 	int			sk_rcvbuf;
430 
431 	struct sk_filter __rcu	*sk_filter;
432 	union {
433 		struct socket_wq __rcu	*sk_wq;
434 		/* private: */
435 		struct socket_wq	*sk_wq_raw;
436 		/* public: */
437 	};
438 #ifdef CONFIG_XFRM
439 	struct xfrm_policy __rcu *sk_policy[2];
440 #endif
441 
442 	struct dst_entry __rcu	*sk_dst_cache;
443 	atomic_t		sk_omem_alloc;
444 	int			sk_sndbuf;
445 
446 	/* ===== cache line for TX ===== */
447 	int			sk_wmem_queued;
448 	refcount_t		sk_wmem_alloc;
449 	unsigned long		sk_tsq_flags;
450 	union {
451 		struct sk_buff	*sk_send_head;
452 		struct rb_root	tcp_rtx_queue;
453 	};
454 	struct sk_buff_head	sk_write_queue;
455 	__s32			sk_peek_off;
456 	int			sk_write_pending;
457 	__u32			sk_dst_pending_confirm;
458 	u32			sk_pacing_status; /* see enum sk_pacing */
459 	long			sk_sndtimeo;
460 	struct timer_list	sk_timer;
461 	__u32			sk_priority;
462 	__u32			sk_mark;
463 	unsigned long		sk_pacing_rate; /* bytes per second */
464 	unsigned long		sk_max_pacing_rate;
465 	struct page_frag	sk_frag;
466 	netdev_features_t	sk_route_caps;
467 	int			sk_gso_type;
468 	unsigned int		sk_gso_max_size;
469 	gfp_t			sk_allocation;
470 	__u32			sk_txhash;
471 
472 	/*
473 	 * Because of non atomicity rules, all
474 	 * changes are protected by socket lock.
475 	 */
476 	u8			sk_gso_disabled : 1,
477 				sk_kern_sock : 1,
478 				sk_no_check_tx : 1,
479 				sk_no_check_rx : 1,
480 				sk_userlocks : 4;
481 	u8			sk_pacing_shift;
482 	u16			sk_type;
483 	u16			sk_protocol;
484 	u16			sk_gso_max_segs;
485 	unsigned long	        sk_lingertime;
486 	struct proto		*sk_prot_creator;
487 	rwlock_t		sk_callback_lock;
488 	int			sk_err,
489 				sk_err_soft;
490 	u32			sk_ack_backlog;
491 	u32			sk_max_ack_backlog;
492 	kuid_t			sk_uid;
493 #ifdef CONFIG_NET_RX_BUSY_POLL
494 	u8			sk_prefer_busy_poll;
495 	u16			sk_busy_poll_budget;
496 #endif
497 	spinlock_t		sk_peer_lock;
498 	int			sk_bind_phc;
499 	struct pid		*sk_peer_pid;
500 	const struct cred	*sk_peer_cred;
501 
502 	long			sk_rcvtimeo;
503 	ktime_t			sk_stamp;
504 #if BITS_PER_LONG==32
505 	seqlock_t		sk_stamp_seq;
506 #endif
507 	u16			sk_tsflags;
508 	u8			sk_shutdown;
509 	u32			sk_tskey;
510 	atomic_t		sk_zckey;
511 
512 	u8			sk_clockid;
513 	u8			sk_txtime_deadline_mode : 1,
514 				sk_txtime_report_errors : 1,
515 				sk_txtime_unused : 6;
516 
517 	struct socket		*sk_socket;
518 	void			*sk_user_data;
519 #ifdef CONFIG_SECURITY
520 	void			*sk_security;
521 #endif
522 	struct sock_cgroup_data	sk_cgrp_data;
523 	struct mem_cgroup	*sk_memcg;
524 	void			(*sk_state_change)(struct sock *sk);
525 	void			(*sk_data_ready)(struct sock *sk);
526 	void			(*sk_write_space)(struct sock *sk);
527 	void			(*sk_error_report)(struct sock *sk);
528 	int			(*sk_backlog_rcv)(struct sock *sk,
529 						  struct sk_buff *skb);
530 #ifdef CONFIG_SOCK_VALIDATE_XMIT
531 	struct sk_buff*		(*sk_validate_xmit_skb)(struct sock *sk,
532 							struct net_device *dev,
533 							struct sk_buff *skb);
534 #endif
535 	void                    (*sk_destruct)(struct sock *sk);
536 	struct sock_reuseport __rcu	*sk_reuseport_cb;
537 #ifdef CONFIG_BPF_SYSCALL
538 	struct bpf_local_storage __rcu	*sk_bpf_storage;
539 #endif
540 	struct rcu_head		sk_rcu;
541 };
542 
543 enum sk_pacing {
544 	SK_PACING_NONE		= 0,
545 	SK_PACING_NEEDED	= 1,
546 	SK_PACING_FQ		= 2,
547 };
548 
549 /* Pointer stored in sk_user_data might not be suitable for copying
550  * when cloning the socket. For instance, it can point to a reference
551  * counted object. sk_user_data bottom bit is set if pointer must not
552  * be copied.
553  */
554 #define SK_USER_DATA_NOCOPY	1UL
555 #define SK_USER_DATA_BPF	2UL	/* Managed by BPF */
556 #define SK_USER_DATA_PTRMASK	~(SK_USER_DATA_NOCOPY | SK_USER_DATA_BPF)
557 
558 /**
559  * sk_user_data_is_nocopy - Test if sk_user_data pointer must not be copied
560  * @sk: socket
561  */
562 static inline bool sk_user_data_is_nocopy(const struct sock *sk)
563 {
564 	return ((uintptr_t)sk->sk_user_data & SK_USER_DATA_NOCOPY);
565 }
566 
567 #define __sk_user_data(sk) ((*((void __rcu **)&(sk)->sk_user_data)))
568 
569 #define rcu_dereference_sk_user_data(sk)				\
570 ({									\
571 	void *__tmp = rcu_dereference(__sk_user_data((sk)));		\
572 	(void *)((uintptr_t)__tmp & SK_USER_DATA_PTRMASK);		\
573 })
574 #define rcu_assign_sk_user_data(sk, ptr)				\
575 ({									\
576 	uintptr_t __tmp = (uintptr_t)(ptr);				\
577 	WARN_ON_ONCE(__tmp & ~SK_USER_DATA_PTRMASK);			\
578 	rcu_assign_pointer(__sk_user_data((sk)), __tmp);		\
579 })
580 #define rcu_assign_sk_user_data_nocopy(sk, ptr)				\
581 ({									\
582 	uintptr_t __tmp = (uintptr_t)(ptr);				\
583 	WARN_ON_ONCE(__tmp & ~SK_USER_DATA_PTRMASK);			\
584 	rcu_assign_pointer(__sk_user_data((sk)),			\
585 			   __tmp | SK_USER_DATA_NOCOPY);		\
586 })
587 
588 /*
589  * SK_CAN_REUSE and SK_NO_REUSE on a socket mean that the socket is OK
590  * or not whether his port will be reused by someone else. SK_FORCE_REUSE
591  * on a socket means that the socket will reuse everybody else's port
592  * without looking at the other's sk_reuse value.
593  */
594 
595 #define SK_NO_REUSE	0
596 #define SK_CAN_REUSE	1
597 #define SK_FORCE_REUSE	2
598 
599 int sk_set_peek_off(struct sock *sk, int val);
600 
601 static inline int sk_peek_offset(struct sock *sk, int flags)
602 {
603 	if (unlikely(flags & MSG_PEEK)) {
604 		return READ_ONCE(sk->sk_peek_off);
605 	}
606 
607 	return 0;
608 }
609 
610 static inline void sk_peek_offset_bwd(struct sock *sk, int val)
611 {
612 	s32 off = READ_ONCE(sk->sk_peek_off);
613 
614 	if (unlikely(off >= 0)) {
615 		off = max_t(s32, off - val, 0);
616 		WRITE_ONCE(sk->sk_peek_off, off);
617 	}
618 }
619 
620 static inline void sk_peek_offset_fwd(struct sock *sk, int val)
621 {
622 	sk_peek_offset_bwd(sk, -val);
623 }
624 
625 /*
626  * Hashed lists helper routines
627  */
628 static inline struct sock *sk_entry(const struct hlist_node *node)
629 {
630 	return hlist_entry(node, struct sock, sk_node);
631 }
632 
633 static inline struct sock *__sk_head(const struct hlist_head *head)
634 {
635 	return hlist_entry(head->first, struct sock, sk_node);
636 }
637 
638 static inline struct sock *sk_head(const struct hlist_head *head)
639 {
640 	return hlist_empty(head) ? NULL : __sk_head(head);
641 }
642 
643 static inline struct sock *__sk_nulls_head(const struct hlist_nulls_head *head)
644 {
645 	return hlist_nulls_entry(head->first, struct sock, sk_nulls_node);
646 }
647 
648 static inline struct sock *sk_nulls_head(const struct hlist_nulls_head *head)
649 {
650 	return hlist_nulls_empty(head) ? NULL : __sk_nulls_head(head);
651 }
652 
653 static inline struct sock *sk_next(const struct sock *sk)
654 {
655 	return hlist_entry_safe(sk->sk_node.next, struct sock, sk_node);
656 }
657 
658 static inline struct sock *sk_nulls_next(const struct sock *sk)
659 {
660 	return (!is_a_nulls(sk->sk_nulls_node.next)) ?
661 		hlist_nulls_entry(sk->sk_nulls_node.next,
662 				  struct sock, sk_nulls_node) :
663 		NULL;
664 }
665 
666 static inline bool sk_unhashed(const struct sock *sk)
667 {
668 	return hlist_unhashed(&sk->sk_node);
669 }
670 
671 static inline bool sk_hashed(const struct sock *sk)
672 {
673 	return !sk_unhashed(sk);
674 }
675 
676 static inline void sk_node_init(struct hlist_node *node)
677 {
678 	node->pprev = NULL;
679 }
680 
681 static inline void sk_nulls_node_init(struct hlist_nulls_node *node)
682 {
683 	node->pprev = NULL;
684 }
685 
686 static inline void __sk_del_node(struct sock *sk)
687 {
688 	__hlist_del(&sk->sk_node);
689 }
690 
691 /* NB: equivalent to hlist_del_init_rcu */
692 static inline bool __sk_del_node_init(struct sock *sk)
693 {
694 	if (sk_hashed(sk)) {
695 		__sk_del_node(sk);
696 		sk_node_init(&sk->sk_node);
697 		return true;
698 	}
699 	return false;
700 }
701 
702 /* Grab socket reference count. This operation is valid only
703    when sk is ALREADY grabbed f.e. it is found in hash table
704    or a list and the lookup is made under lock preventing hash table
705    modifications.
706  */
707 
708 static __always_inline void sock_hold(struct sock *sk)
709 {
710 	refcount_inc(&sk->sk_refcnt);
711 }
712 
713 /* Ungrab socket in the context, which assumes that socket refcnt
714    cannot hit zero, f.e. it is true in context of any socketcall.
715  */
716 static __always_inline void __sock_put(struct sock *sk)
717 {
718 	refcount_dec(&sk->sk_refcnt);
719 }
720 
721 static inline bool sk_del_node_init(struct sock *sk)
722 {
723 	bool rc = __sk_del_node_init(sk);
724 
725 	if (rc) {
726 		/* paranoid for a while -acme */
727 		WARN_ON(refcount_read(&sk->sk_refcnt) == 1);
728 		__sock_put(sk);
729 	}
730 	return rc;
731 }
732 #define sk_del_node_init_rcu(sk)	sk_del_node_init(sk)
733 
734 static inline bool __sk_nulls_del_node_init_rcu(struct sock *sk)
735 {
736 	if (sk_hashed(sk)) {
737 		hlist_nulls_del_init_rcu(&sk->sk_nulls_node);
738 		return true;
739 	}
740 	return false;
741 }
742 
743 static inline bool sk_nulls_del_node_init_rcu(struct sock *sk)
744 {
745 	bool rc = __sk_nulls_del_node_init_rcu(sk);
746 
747 	if (rc) {
748 		/* paranoid for a while -acme */
749 		WARN_ON(refcount_read(&sk->sk_refcnt) == 1);
750 		__sock_put(sk);
751 	}
752 	return rc;
753 }
754 
755 static inline void __sk_add_node(struct sock *sk, struct hlist_head *list)
756 {
757 	hlist_add_head(&sk->sk_node, list);
758 }
759 
760 static inline void sk_add_node(struct sock *sk, struct hlist_head *list)
761 {
762 	sock_hold(sk);
763 	__sk_add_node(sk, list);
764 }
765 
766 static inline void sk_add_node_rcu(struct sock *sk, struct hlist_head *list)
767 {
768 	sock_hold(sk);
769 	if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport &&
770 	    sk->sk_family == AF_INET6)
771 		hlist_add_tail_rcu(&sk->sk_node, list);
772 	else
773 		hlist_add_head_rcu(&sk->sk_node, list);
774 }
775 
776 static inline void sk_add_node_tail_rcu(struct sock *sk, struct hlist_head *list)
777 {
778 	sock_hold(sk);
779 	hlist_add_tail_rcu(&sk->sk_node, list);
780 }
781 
782 static inline void __sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
783 {
784 	hlist_nulls_add_head_rcu(&sk->sk_nulls_node, list);
785 }
786 
787 static inline void __sk_nulls_add_node_tail_rcu(struct sock *sk, struct hlist_nulls_head *list)
788 {
789 	hlist_nulls_add_tail_rcu(&sk->sk_nulls_node, list);
790 }
791 
792 static inline void sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
793 {
794 	sock_hold(sk);
795 	__sk_nulls_add_node_rcu(sk, list);
796 }
797 
798 static inline void __sk_del_bind_node(struct sock *sk)
799 {
800 	__hlist_del(&sk->sk_bind_node);
801 }
802 
803 static inline void sk_add_bind_node(struct sock *sk,
804 					struct hlist_head *list)
805 {
806 	hlist_add_head(&sk->sk_bind_node, list);
807 }
808 
809 #define sk_for_each(__sk, list) \
810 	hlist_for_each_entry(__sk, list, sk_node)
811 #define sk_for_each_rcu(__sk, list) \
812 	hlist_for_each_entry_rcu(__sk, list, sk_node)
813 #define sk_nulls_for_each(__sk, node, list) \
814 	hlist_nulls_for_each_entry(__sk, node, list, sk_nulls_node)
815 #define sk_nulls_for_each_rcu(__sk, node, list) \
816 	hlist_nulls_for_each_entry_rcu(__sk, node, list, sk_nulls_node)
817 #define sk_for_each_from(__sk) \
818 	hlist_for_each_entry_from(__sk, sk_node)
819 #define sk_nulls_for_each_from(__sk, node) \
820 	if (__sk && ({ node = &(__sk)->sk_nulls_node; 1; })) \
821 		hlist_nulls_for_each_entry_from(__sk, node, sk_nulls_node)
822 #define sk_for_each_safe(__sk, tmp, list) \
823 	hlist_for_each_entry_safe(__sk, tmp, list, sk_node)
824 #define sk_for_each_bound(__sk, list) \
825 	hlist_for_each_entry(__sk, list, sk_bind_node)
826 
827 /**
828  * sk_for_each_entry_offset_rcu - iterate over a list at a given struct offset
829  * @tpos:	the type * to use as a loop cursor.
830  * @pos:	the &struct hlist_node to use as a loop cursor.
831  * @head:	the head for your list.
832  * @offset:	offset of hlist_node within the struct.
833  *
834  */
835 #define sk_for_each_entry_offset_rcu(tpos, pos, head, offset)		       \
836 	for (pos = rcu_dereference(hlist_first_rcu(head));		       \
837 	     pos != NULL &&						       \
838 		({ tpos = (typeof(*tpos) *)((void *)pos - offset); 1;});       \
839 	     pos = rcu_dereference(hlist_next_rcu(pos)))
840 
841 static inline struct user_namespace *sk_user_ns(struct sock *sk)
842 {
843 	/* Careful only use this in a context where these parameters
844 	 * can not change and must all be valid, such as recvmsg from
845 	 * userspace.
846 	 */
847 	return sk->sk_socket->file->f_cred->user_ns;
848 }
849 
850 /* Sock flags */
851 enum sock_flags {
852 	SOCK_DEAD,
853 	SOCK_DONE,
854 	SOCK_URGINLINE,
855 	SOCK_KEEPOPEN,
856 	SOCK_LINGER,
857 	SOCK_DESTROY,
858 	SOCK_BROADCAST,
859 	SOCK_TIMESTAMP,
860 	SOCK_ZAPPED,
861 	SOCK_USE_WRITE_QUEUE, /* whether to call sk->sk_write_space in sock_wfree */
862 	SOCK_DBG, /* %SO_DEBUG setting */
863 	SOCK_RCVTSTAMP, /* %SO_TIMESTAMP setting */
864 	SOCK_RCVTSTAMPNS, /* %SO_TIMESTAMPNS setting */
865 	SOCK_LOCALROUTE, /* route locally only, %SO_DONTROUTE setting */
866 	SOCK_MEMALLOC, /* VM depends on this socket for swapping */
867 	SOCK_TIMESTAMPING_RX_SOFTWARE,  /* %SOF_TIMESTAMPING_RX_SOFTWARE */
868 	SOCK_FASYNC, /* fasync() active */
869 	SOCK_RXQ_OVFL,
870 	SOCK_ZEROCOPY, /* buffers from userspace */
871 	SOCK_WIFI_STATUS, /* push wifi status to userspace */
872 	SOCK_NOFCS, /* Tell NIC not to do the Ethernet FCS.
873 		     * Will use last 4 bytes of packet sent from
874 		     * user-space instead.
875 		     */
876 	SOCK_FILTER_LOCKED, /* Filter cannot be changed anymore */
877 	SOCK_SELECT_ERR_QUEUE, /* Wake select on error queue */
878 	SOCK_RCU_FREE, /* wait rcu grace period in sk_destruct() */
879 	SOCK_TXTIME,
880 	SOCK_XDP, /* XDP is attached */
881 	SOCK_TSTAMP_NEW, /* Indicates 64 bit timestamps always */
882 };
883 
884 #define SK_FLAGS_TIMESTAMP ((1UL << SOCK_TIMESTAMP) | (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE))
885 
886 static inline void sock_copy_flags(struct sock *nsk, struct sock *osk)
887 {
888 	nsk->sk_flags = osk->sk_flags;
889 }
890 
891 static inline void sock_set_flag(struct sock *sk, enum sock_flags flag)
892 {
893 	__set_bit(flag, &sk->sk_flags);
894 }
895 
896 static inline void sock_reset_flag(struct sock *sk, enum sock_flags flag)
897 {
898 	__clear_bit(flag, &sk->sk_flags);
899 }
900 
901 static inline void sock_valbool_flag(struct sock *sk, enum sock_flags bit,
902 				     int valbool)
903 {
904 	if (valbool)
905 		sock_set_flag(sk, bit);
906 	else
907 		sock_reset_flag(sk, bit);
908 }
909 
910 static inline bool sock_flag(const struct sock *sk, enum sock_flags flag)
911 {
912 	return test_bit(flag, &sk->sk_flags);
913 }
914 
915 #ifdef CONFIG_NET
916 DECLARE_STATIC_KEY_FALSE(memalloc_socks_key);
917 static inline int sk_memalloc_socks(void)
918 {
919 	return static_branch_unlikely(&memalloc_socks_key);
920 }
921 
922 void __receive_sock(struct file *file);
923 #else
924 
925 static inline int sk_memalloc_socks(void)
926 {
927 	return 0;
928 }
929 
930 static inline void __receive_sock(struct file *file)
931 { }
932 #endif
933 
934 static inline gfp_t sk_gfp_mask(const struct sock *sk, gfp_t gfp_mask)
935 {
936 	return gfp_mask | (sk->sk_allocation & __GFP_MEMALLOC);
937 }
938 
939 static inline void sk_acceptq_removed(struct sock *sk)
940 {
941 	WRITE_ONCE(sk->sk_ack_backlog, sk->sk_ack_backlog - 1);
942 }
943 
944 static inline void sk_acceptq_added(struct sock *sk)
945 {
946 	WRITE_ONCE(sk->sk_ack_backlog, sk->sk_ack_backlog + 1);
947 }
948 
949 /* Note: If you think the test should be:
950  *	return READ_ONCE(sk->sk_ack_backlog) >= READ_ONCE(sk->sk_max_ack_backlog);
951  * Then please take a look at commit 64a146513f8f ("[NET]: Revert incorrect accept queue backlog changes.")
952  */
953 static inline bool sk_acceptq_is_full(const struct sock *sk)
954 {
955 	return READ_ONCE(sk->sk_ack_backlog) > READ_ONCE(sk->sk_max_ack_backlog);
956 }
957 
958 /*
959  * Compute minimal free write space needed to queue new packets.
960  */
961 static inline int sk_stream_min_wspace(const struct sock *sk)
962 {
963 	return READ_ONCE(sk->sk_wmem_queued) >> 1;
964 }
965 
966 static inline int sk_stream_wspace(const struct sock *sk)
967 {
968 	return READ_ONCE(sk->sk_sndbuf) - READ_ONCE(sk->sk_wmem_queued);
969 }
970 
971 static inline void sk_wmem_queued_add(struct sock *sk, int val)
972 {
973 	WRITE_ONCE(sk->sk_wmem_queued, sk->sk_wmem_queued + val);
974 }
975 
976 void sk_stream_write_space(struct sock *sk);
977 
978 /* OOB backlog add */
979 static inline void __sk_add_backlog(struct sock *sk, struct sk_buff *skb)
980 {
981 	/* dont let skb dst not refcounted, we are going to leave rcu lock */
982 	skb_dst_force(skb);
983 
984 	if (!sk->sk_backlog.tail)
985 		WRITE_ONCE(sk->sk_backlog.head, skb);
986 	else
987 		sk->sk_backlog.tail->next = skb;
988 
989 	WRITE_ONCE(sk->sk_backlog.tail, skb);
990 	skb->next = NULL;
991 }
992 
993 /*
994  * Take into account size of receive queue and backlog queue
995  * Do not take into account this skb truesize,
996  * to allow even a single big packet to come.
997  */
998 static inline bool sk_rcvqueues_full(const struct sock *sk, unsigned int limit)
999 {
1000 	unsigned int qsize = sk->sk_backlog.len + atomic_read(&sk->sk_rmem_alloc);
1001 
1002 	return qsize > limit;
1003 }
1004 
1005 /* The per-socket spinlock must be held here. */
1006 static inline __must_check int sk_add_backlog(struct sock *sk, struct sk_buff *skb,
1007 					      unsigned int limit)
1008 {
1009 	if (sk_rcvqueues_full(sk, limit))
1010 		return -ENOBUFS;
1011 
1012 	/*
1013 	 * If the skb was allocated from pfmemalloc reserves, only
1014 	 * allow SOCK_MEMALLOC sockets to use it as this socket is
1015 	 * helping free memory
1016 	 */
1017 	if (skb_pfmemalloc(skb) && !sock_flag(sk, SOCK_MEMALLOC))
1018 		return -ENOMEM;
1019 
1020 	__sk_add_backlog(sk, skb);
1021 	sk->sk_backlog.len += skb->truesize;
1022 	return 0;
1023 }
1024 
1025 int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb);
1026 
1027 INDIRECT_CALLABLE_DECLARE(int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb));
1028 INDIRECT_CALLABLE_DECLARE(int tcp_v6_do_rcv(struct sock *sk, struct sk_buff *skb));
1029 
1030 static inline int sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
1031 {
1032 	if (sk_memalloc_socks() && skb_pfmemalloc(skb))
1033 		return __sk_backlog_rcv(sk, skb);
1034 
1035 	return INDIRECT_CALL_INET(sk->sk_backlog_rcv,
1036 				  tcp_v6_do_rcv,
1037 				  tcp_v4_do_rcv,
1038 				  sk, skb);
1039 }
1040 
1041 static inline void sk_incoming_cpu_update(struct sock *sk)
1042 {
1043 	int cpu = raw_smp_processor_id();
1044 
1045 	if (unlikely(READ_ONCE(sk->sk_incoming_cpu) != cpu))
1046 		WRITE_ONCE(sk->sk_incoming_cpu, cpu);
1047 }
1048 
1049 static inline void sock_rps_record_flow_hash(__u32 hash)
1050 {
1051 #ifdef CONFIG_RPS
1052 	struct rps_sock_flow_table *sock_flow_table;
1053 
1054 	rcu_read_lock();
1055 	sock_flow_table = rcu_dereference(rps_sock_flow_table);
1056 	rps_record_sock_flow(sock_flow_table, hash);
1057 	rcu_read_unlock();
1058 #endif
1059 }
1060 
1061 static inline void sock_rps_record_flow(const struct sock *sk)
1062 {
1063 #ifdef CONFIG_RPS
1064 	if (static_branch_unlikely(&rfs_needed)) {
1065 		/* Reading sk->sk_rxhash might incur an expensive cache line
1066 		 * miss.
1067 		 *
1068 		 * TCP_ESTABLISHED does cover almost all states where RFS
1069 		 * might be useful, and is cheaper [1] than testing :
1070 		 *	IPv4: inet_sk(sk)->inet_daddr
1071 		 * 	IPv6: ipv6_addr_any(&sk->sk_v6_daddr)
1072 		 * OR	an additional socket flag
1073 		 * [1] : sk_state and sk_prot are in the same cache line.
1074 		 */
1075 		if (sk->sk_state == TCP_ESTABLISHED)
1076 			sock_rps_record_flow_hash(sk->sk_rxhash);
1077 	}
1078 #endif
1079 }
1080 
1081 static inline void sock_rps_save_rxhash(struct sock *sk,
1082 					const struct sk_buff *skb)
1083 {
1084 #ifdef CONFIG_RPS
1085 	if (unlikely(sk->sk_rxhash != skb->hash))
1086 		sk->sk_rxhash = skb->hash;
1087 #endif
1088 }
1089 
1090 static inline void sock_rps_reset_rxhash(struct sock *sk)
1091 {
1092 #ifdef CONFIG_RPS
1093 	sk->sk_rxhash = 0;
1094 #endif
1095 }
1096 
1097 #define sk_wait_event(__sk, __timeo, __condition, __wait)		\
1098 	({	int __rc;						\
1099 		release_sock(__sk);					\
1100 		__rc = __condition;					\
1101 		if (!__rc) {						\
1102 			*(__timeo) = wait_woken(__wait,			\
1103 						TASK_INTERRUPTIBLE,	\
1104 						*(__timeo));		\
1105 		}							\
1106 		sched_annotate_sleep();					\
1107 		lock_sock(__sk);					\
1108 		__rc = __condition;					\
1109 		__rc;							\
1110 	})
1111 
1112 int sk_stream_wait_connect(struct sock *sk, long *timeo_p);
1113 int sk_stream_wait_memory(struct sock *sk, long *timeo_p);
1114 void sk_stream_wait_close(struct sock *sk, long timeo_p);
1115 int sk_stream_error(struct sock *sk, int flags, int err);
1116 void sk_stream_kill_queues(struct sock *sk);
1117 void sk_set_memalloc(struct sock *sk);
1118 void sk_clear_memalloc(struct sock *sk);
1119 
1120 void __sk_flush_backlog(struct sock *sk);
1121 
1122 static inline bool sk_flush_backlog(struct sock *sk)
1123 {
1124 	if (unlikely(READ_ONCE(sk->sk_backlog.tail))) {
1125 		__sk_flush_backlog(sk);
1126 		return true;
1127 	}
1128 	return false;
1129 }
1130 
1131 int sk_wait_data(struct sock *sk, long *timeo, const struct sk_buff *skb);
1132 
1133 struct request_sock_ops;
1134 struct timewait_sock_ops;
1135 struct inet_hashinfo;
1136 struct raw_hashinfo;
1137 struct smc_hashinfo;
1138 struct module;
1139 struct sk_psock;
1140 
1141 /*
1142  * caches using SLAB_TYPESAFE_BY_RCU should let .next pointer from nulls nodes
1143  * un-modified. Special care is taken when initializing object to zero.
1144  */
1145 static inline void sk_prot_clear_nulls(struct sock *sk, int size)
1146 {
1147 	if (offsetof(struct sock, sk_node.next) != 0)
1148 		memset(sk, 0, offsetof(struct sock, sk_node.next));
1149 	memset(&sk->sk_node.pprev, 0,
1150 	       size - offsetof(struct sock, sk_node.pprev));
1151 }
1152 
1153 /* Networking protocol blocks we attach to sockets.
1154  * socket layer -> transport layer interface
1155  */
1156 struct proto {
1157 	void			(*close)(struct sock *sk,
1158 					long timeout);
1159 	int			(*pre_connect)(struct sock *sk,
1160 					struct sockaddr *uaddr,
1161 					int addr_len);
1162 	int			(*connect)(struct sock *sk,
1163 					struct sockaddr *uaddr,
1164 					int addr_len);
1165 	int			(*disconnect)(struct sock *sk, int flags);
1166 
1167 	struct sock *		(*accept)(struct sock *sk, int flags, int *err,
1168 					  bool kern);
1169 
1170 	int			(*ioctl)(struct sock *sk, int cmd,
1171 					 unsigned long arg);
1172 	int			(*init)(struct sock *sk);
1173 	void			(*destroy)(struct sock *sk);
1174 	void			(*shutdown)(struct sock *sk, int how);
1175 	int			(*setsockopt)(struct sock *sk, int level,
1176 					int optname, sockptr_t optval,
1177 					unsigned int optlen);
1178 	int			(*getsockopt)(struct sock *sk, int level,
1179 					int optname, char __user *optval,
1180 					int __user *option);
1181 	void			(*keepalive)(struct sock *sk, int valbool);
1182 #ifdef CONFIG_COMPAT
1183 	int			(*compat_ioctl)(struct sock *sk,
1184 					unsigned int cmd, unsigned long arg);
1185 #endif
1186 	int			(*sendmsg)(struct sock *sk, struct msghdr *msg,
1187 					   size_t len);
1188 	int			(*recvmsg)(struct sock *sk, struct msghdr *msg,
1189 					   size_t len, int noblock, int flags,
1190 					   int *addr_len);
1191 	int			(*sendpage)(struct sock *sk, struct page *page,
1192 					int offset, size_t size, int flags);
1193 	int			(*bind)(struct sock *sk,
1194 					struct sockaddr *addr, int addr_len);
1195 	int			(*bind_add)(struct sock *sk,
1196 					struct sockaddr *addr, int addr_len);
1197 
1198 	int			(*backlog_rcv) (struct sock *sk,
1199 						struct sk_buff *skb);
1200 	bool			(*bpf_bypass_getsockopt)(int level,
1201 							 int optname);
1202 
1203 	void		(*release_cb)(struct sock *sk);
1204 
1205 	/* Keeping track of sk's, looking them up, and port selection methods. */
1206 	int			(*hash)(struct sock *sk);
1207 	void			(*unhash)(struct sock *sk);
1208 	void			(*rehash)(struct sock *sk);
1209 	int			(*get_port)(struct sock *sk, unsigned short snum);
1210 #ifdef CONFIG_BPF_SYSCALL
1211 	int			(*psock_update_sk_prot)(struct sock *sk,
1212 							struct sk_psock *psock,
1213 							bool restore);
1214 #endif
1215 
1216 	/* Keeping track of sockets in use */
1217 #ifdef CONFIG_PROC_FS
1218 	unsigned int		inuse_idx;
1219 #endif
1220 
1221 #if IS_ENABLED(CONFIG_MPTCP)
1222 	int			(*forward_alloc_get)(const struct sock *sk);
1223 #endif
1224 
1225 	bool			(*stream_memory_free)(const struct sock *sk, int wake);
1226 	bool			(*sock_is_readable)(struct sock *sk);
1227 	/* Memory pressure */
1228 	void			(*enter_memory_pressure)(struct sock *sk);
1229 	void			(*leave_memory_pressure)(struct sock *sk);
1230 	atomic_long_t		*memory_allocated;	/* Current allocated memory. */
1231 	struct percpu_counter	*sockets_allocated;	/* Current number of sockets. */
1232 
1233 	/*
1234 	 * Pressure flag: try to collapse.
1235 	 * Technical note: it is used by multiple contexts non atomically.
1236 	 * All the __sk_mem_schedule() is of this nature: accounting
1237 	 * is strict, actions are advisory and have some latency.
1238 	 */
1239 	unsigned long		*memory_pressure;
1240 	long			*sysctl_mem;
1241 
1242 	int			*sysctl_wmem;
1243 	int			*sysctl_rmem;
1244 	u32			sysctl_wmem_offset;
1245 	u32			sysctl_rmem_offset;
1246 
1247 	int			max_header;
1248 	bool			no_autobind;
1249 
1250 	struct kmem_cache	*slab;
1251 	unsigned int		obj_size;
1252 	slab_flags_t		slab_flags;
1253 	unsigned int		useroffset;	/* Usercopy region offset */
1254 	unsigned int		usersize;	/* Usercopy region size */
1255 
1256 	unsigned int __percpu	*orphan_count;
1257 
1258 	struct request_sock_ops	*rsk_prot;
1259 	struct timewait_sock_ops *twsk_prot;
1260 
1261 	union {
1262 		struct inet_hashinfo	*hashinfo;
1263 		struct udp_table	*udp_table;
1264 		struct raw_hashinfo	*raw_hash;
1265 		struct smc_hashinfo	*smc_hash;
1266 	} h;
1267 
1268 	struct module		*owner;
1269 
1270 	char			name[32];
1271 
1272 	struct list_head	node;
1273 #ifdef SOCK_REFCNT_DEBUG
1274 	atomic_t		socks;
1275 #endif
1276 	int			(*diag_destroy)(struct sock *sk, int err);
1277 } __randomize_layout;
1278 
1279 int proto_register(struct proto *prot, int alloc_slab);
1280 void proto_unregister(struct proto *prot);
1281 int sock_load_diag_module(int family, int protocol);
1282 
1283 #ifdef SOCK_REFCNT_DEBUG
1284 static inline void sk_refcnt_debug_inc(struct sock *sk)
1285 {
1286 	atomic_inc(&sk->sk_prot->socks);
1287 }
1288 
1289 static inline void sk_refcnt_debug_dec(struct sock *sk)
1290 {
1291 	atomic_dec(&sk->sk_prot->socks);
1292 	printk(KERN_DEBUG "%s socket %p released, %d are still alive\n",
1293 	       sk->sk_prot->name, sk, atomic_read(&sk->sk_prot->socks));
1294 }
1295 
1296 static inline void sk_refcnt_debug_release(const struct sock *sk)
1297 {
1298 	if (refcount_read(&sk->sk_refcnt) != 1)
1299 		printk(KERN_DEBUG "Destruction of the %s socket %p delayed, refcnt=%d\n",
1300 		       sk->sk_prot->name, sk, refcount_read(&sk->sk_refcnt));
1301 }
1302 #else /* SOCK_REFCNT_DEBUG */
1303 #define sk_refcnt_debug_inc(sk) do { } while (0)
1304 #define sk_refcnt_debug_dec(sk) do { } while (0)
1305 #define sk_refcnt_debug_release(sk) do { } while (0)
1306 #endif /* SOCK_REFCNT_DEBUG */
1307 
1308 INDIRECT_CALLABLE_DECLARE(bool tcp_stream_memory_free(const struct sock *sk, int wake));
1309 
1310 static inline int sk_forward_alloc_get(const struct sock *sk)
1311 {
1312 #if IS_ENABLED(CONFIG_MPTCP)
1313 	if (sk->sk_prot->forward_alloc_get)
1314 		return sk->sk_prot->forward_alloc_get(sk);
1315 #endif
1316 	return sk->sk_forward_alloc;
1317 }
1318 
1319 static inline bool __sk_stream_memory_free(const struct sock *sk, int wake)
1320 {
1321 	if (READ_ONCE(sk->sk_wmem_queued) >= READ_ONCE(sk->sk_sndbuf))
1322 		return false;
1323 
1324 	return sk->sk_prot->stream_memory_free ?
1325 		INDIRECT_CALL_INET_1(sk->sk_prot->stream_memory_free,
1326 				     tcp_stream_memory_free, sk, wake) : true;
1327 }
1328 
1329 static inline bool sk_stream_memory_free(const struct sock *sk)
1330 {
1331 	return __sk_stream_memory_free(sk, 0);
1332 }
1333 
1334 static inline bool __sk_stream_is_writeable(const struct sock *sk, int wake)
1335 {
1336 	return sk_stream_wspace(sk) >= sk_stream_min_wspace(sk) &&
1337 	       __sk_stream_memory_free(sk, wake);
1338 }
1339 
1340 static inline bool sk_stream_is_writeable(const struct sock *sk)
1341 {
1342 	return __sk_stream_is_writeable(sk, 0);
1343 }
1344 
1345 static inline int sk_under_cgroup_hierarchy(struct sock *sk,
1346 					    struct cgroup *ancestor)
1347 {
1348 #ifdef CONFIG_SOCK_CGROUP_DATA
1349 	return cgroup_is_descendant(sock_cgroup_ptr(&sk->sk_cgrp_data),
1350 				    ancestor);
1351 #else
1352 	return -ENOTSUPP;
1353 #endif
1354 }
1355 
1356 static inline bool sk_has_memory_pressure(const struct sock *sk)
1357 {
1358 	return sk->sk_prot->memory_pressure != NULL;
1359 }
1360 
1361 static inline bool sk_under_memory_pressure(const struct sock *sk)
1362 {
1363 	if (!sk->sk_prot->memory_pressure)
1364 		return false;
1365 
1366 	if (mem_cgroup_sockets_enabled && sk->sk_memcg &&
1367 	    mem_cgroup_under_socket_pressure(sk->sk_memcg))
1368 		return true;
1369 
1370 	return !!*sk->sk_prot->memory_pressure;
1371 }
1372 
1373 static inline long
1374 sk_memory_allocated(const struct sock *sk)
1375 {
1376 	return atomic_long_read(sk->sk_prot->memory_allocated);
1377 }
1378 
1379 static inline long
1380 sk_memory_allocated_add(struct sock *sk, int amt)
1381 {
1382 	return atomic_long_add_return(amt, sk->sk_prot->memory_allocated);
1383 }
1384 
1385 static inline void
1386 sk_memory_allocated_sub(struct sock *sk, int amt)
1387 {
1388 	atomic_long_sub(amt, sk->sk_prot->memory_allocated);
1389 }
1390 
1391 #define SK_ALLOC_PERCPU_COUNTER_BATCH 16
1392 
1393 static inline void sk_sockets_allocated_dec(struct sock *sk)
1394 {
1395 	percpu_counter_add_batch(sk->sk_prot->sockets_allocated, -1,
1396 				 SK_ALLOC_PERCPU_COUNTER_BATCH);
1397 }
1398 
1399 static inline void sk_sockets_allocated_inc(struct sock *sk)
1400 {
1401 	percpu_counter_add_batch(sk->sk_prot->sockets_allocated, 1,
1402 				 SK_ALLOC_PERCPU_COUNTER_BATCH);
1403 }
1404 
1405 static inline u64
1406 sk_sockets_allocated_read_positive(struct sock *sk)
1407 {
1408 	return percpu_counter_read_positive(sk->sk_prot->sockets_allocated);
1409 }
1410 
1411 static inline int
1412 proto_sockets_allocated_sum_positive(struct proto *prot)
1413 {
1414 	return percpu_counter_sum_positive(prot->sockets_allocated);
1415 }
1416 
1417 static inline long
1418 proto_memory_allocated(struct proto *prot)
1419 {
1420 	return atomic_long_read(prot->memory_allocated);
1421 }
1422 
1423 static inline bool
1424 proto_memory_pressure(struct proto *prot)
1425 {
1426 	if (!prot->memory_pressure)
1427 		return false;
1428 	return !!*prot->memory_pressure;
1429 }
1430 
1431 
1432 #ifdef CONFIG_PROC_FS
1433 #define PROTO_INUSE_NR	64	/* should be enough for the first time */
1434 struct prot_inuse {
1435 	int all;
1436 	int val[PROTO_INUSE_NR];
1437 };
1438 
1439 static inline void sock_prot_inuse_add(const struct net *net,
1440 				       const struct proto *prot, int val)
1441 {
1442 	this_cpu_add(net->core.prot_inuse->val[prot->inuse_idx], val);
1443 }
1444 
1445 static inline void sock_inuse_add(const struct net *net, int val)
1446 {
1447 	this_cpu_add(net->core.prot_inuse->all, val);
1448 }
1449 
1450 int sock_prot_inuse_get(struct net *net, struct proto *proto);
1451 int sock_inuse_get(struct net *net);
1452 #else
1453 static inline void sock_prot_inuse_add(const struct net *net,
1454 				       const struct proto *prot, int val)
1455 {
1456 }
1457 
1458 static inline void sock_inuse_add(const struct net *net, int val)
1459 {
1460 }
1461 #endif
1462 
1463 
1464 /* With per-bucket locks this operation is not-atomic, so that
1465  * this version is not worse.
1466  */
1467 static inline int __sk_prot_rehash(struct sock *sk)
1468 {
1469 	sk->sk_prot->unhash(sk);
1470 	return sk->sk_prot->hash(sk);
1471 }
1472 
1473 /* About 10 seconds */
1474 #define SOCK_DESTROY_TIME (10*HZ)
1475 
1476 /* Sockets 0-1023 can't be bound to unless you are superuser */
1477 #define PROT_SOCK	1024
1478 
1479 #define SHUTDOWN_MASK	3
1480 #define RCV_SHUTDOWN	1
1481 #define SEND_SHUTDOWN	2
1482 
1483 #define SOCK_BINDADDR_LOCK	4
1484 #define SOCK_BINDPORT_LOCK	8
1485 
1486 struct socket_alloc {
1487 	struct socket socket;
1488 	struct inode vfs_inode;
1489 };
1490 
1491 static inline struct socket *SOCKET_I(struct inode *inode)
1492 {
1493 	return &container_of(inode, struct socket_alloc, vfs_inode)->socket;
1494 }
1495 
1496 static inline struct inode *SOCK_INODE(struct socket *socket)
1497 {
1498 	return &container_of(socket, struct socket_alloc, socket)->vfs_inode;
1499 }
1500 
1501 /*
1502  * Functions for memory accounting
1503  */
1504 int __sk_mem_raise_allocated(struct sock *sk, int size, int amt, int kind);
1505 int __sk_mem_schedule(struct sock *sk, int size, int kind);
1506 void __sk_mem_reduce_allocated(struct sock *sk, int amount);
1507 void __sk_mem_reclaim(struct sock *sk, int amount);
1508 
1509 /* We used to have PAGE_SIZE here, but systems with 64KB pages
1510  * do not necessarily have 16x time more memory than 4KB ones.
1511  */
1512 #define SK_MEM_QUANTUM 4096
1513 #define SK_MEM_QUANTUM_SHIFT ilog2(SK_MEM_QUANTUM)
1514 #define SK_MEM_SEND	0
1515 #define SK_MEM_RECV	1
1516 
1517 /* sysctl_mem values are in pages, we convert them in SK_MEM_QUANTUM units */
1518 static inline long sk_prot_mem_limits(const struct sock *sk, int index)
1519 {
1520 	long val = sk->sk_prot->sysctl_mem[index];
1521 
1522 #if PAGE_SIZE > SK_MEM_QUANTUM
1523 	val <<= PAGE_SHIFT - SK_MEM_QUANTUM_SHIFT;
1524 #elif PAGE_SIZE < SK_MEM_QUANTUM
1525 	val >>= SK_MEM_QUANTUM_SHIFT - PAGE_SHIFT;
1526 #endif
1527 	return val;
1528 }
1529 
1530 static inline int sk_mem_pages(int amt)
1531 {
1532 	return (amt + SK_MEM_QUANTUM - 1) >> SK_MEM_QUANTUM_SHIFT;
1533 }
1534 
1535 static inline bool sk_has_account(struct sock *sk)
1536 {
1537 	/* return true if protocol supports memory accounting */
1538 	return !!sk->sk_prot->memory_allocated;
1539 }
1540 
1541 static inline bool sk_wmem_schedule(struct sock *sk, int size)
1542 {
1543 	if (!sk_has_account(sk))
1544 		return true;
1545 	return size <= sk->sk_forward_alloc ||
1546 		__sk_mem_schedule(sk, size, SK_MEM_SEND);
1547 }
1548 
1549 static inline bool
1550 sk_rmem_schedule(struct sock *sk, struct sk_buff *skb, int size)
1551 {
1552 	if (!sk_has_account(sk))
1553 		return true;
1554 	return size <= sk->sk_forward_alloc ||
1555 		__sk_mem_schedule(sk, size, SK_MEM_RECV) ||
1556 		skb_pfmemalloc(skb);
1557 }
1558 
1559 static inline int sk_unused_reserved_mem(const struct sock *sk)
1560 {
1561 	int unused_mem;
1562 
1563 	if (likely(!sk->sk_reserved_mem))
1564 		return 0;
1565 
1566 	unused_mem = sk->sk_reserved_mem - sk->sk_wmem_queued -
1567 			atomic_read(&sk->sk_rmem_alloc);
1568 
1569 	return unused_mem > 0 ? unused_mem : 0;
1570 }
1571 
1572 static inline void sk_mem_reclaim(struct sock *sk)
1573 {
1574 	int reclaimable;
1575 
1576 	if (!sk_has_account(sk))
1577 		return;
1578 
1579 	reclaimable = sk->sk_forward_alloc - sk_unused_reserved_mem(sk);
1580 
1581 	if (reclaimable >= SK_MEM_QUANTUM)
1582 		__sk_mem_reclaim(sk, reclaimable);
1583 }
1584 
1585 static inline void sk_mem_reclaim_final(struct sock *sk)
1586 {
1587 	sk->sk_reserved_mem = 0;
1588 	sk_mem_reclaim(sk);
1589 }
1590 
1591 static inline void sk_mem_reclaim_partial(struct sock *sk)
1592 {
1593 	int reclaimable;
1594 
1595 	if (!sk_has_account(sk))
1596 		return;
1597 
1598 	reclaimable = sk->sk_forward_alloc - sk_unused_reserved_mem(sk);
1599 
1600 	if (reclaimable > SK_MEM_QUANTUM)
1601 		__sk_mem_reclaim(sk, reclaimable - 1);
1602 }
1603 
1604 static inline void sk_mem_charge(struct sock *sk, int size)
1605 {
1606 	if (!sk_has_account(sk))
1607 		return;
1608 	sk->sk_forward_alloc -= size;
1609 }
1610 
1611 /* the following macros control memory reclaiming in sk_mem_uncharge()
1612  */
1613 #define SK_RECLAIM_THRESHOLD	(1 << 21)
1614 #define SK_RECLAIM_CHUNK	(1 << 20)
1615 
1616 static inline void sk_mem_uncharge(struct sock *sk, int size)
1617 {
1618 	int reclaimable;
1619 
1620 	if (!sk_has_account(sk))
1621 		return;
1622 	sk->sk_forward_alloc += size;
1623 	reclaimable = sk->sk_forward_alloc - sk_unused_reserved_mem(sk);
1624 
1625 	/* Avoid a possible overflow.
1626 	 * TCP send queues can make this happen, if sk_mem_reclaim()
1627 	 * is not called and more than 2 GBytes are released at once.
1628 	 *
1629 	 * If we reach 2 MBytes, reclaim 1 MBytes right now, there is
1630 	 * no need to hold that much forward allocation anyway.
1631 	 */
1632 	if (unlikely(reclaimable >= SK_RECLAIM_THRESHOLD))
1633 		__sk_mem_reclaim(sk, SK_RECLAIM_CHUNK);
1634 }
1635 
1636 static inline void sock_release_ownership(struct sock *sk)
1637 {
1638 	if (sk->sk_lock.owned) {
1639 		sk->sk_lock.owned = 0;
1640 
1641 		/* The sk_lock has mutex_unlock() semantics: */
1642 		mutex_release(&sk->sk_lock.dep_map, _RET_IP_);
1643 	}
1644 }
1645 
1646 /*
1647  * Macro so as to not evaluate some arguments when
1648  * lockdep is not enabled.
1649  *
1650  * Mark both the sk_lock and the sk_lock.slock as a
1651  * per-address-family lock class.
1652  */
1653 #define sock_lock_init_class_and_name(sk, sname, skey, name, key)	\
1654 do {									\
1655 	sk->sk_lock.owned = 0;						\
1656 	init_waitqueue_head(&sk->sk_lock.wq);				\
1657 	spin_lock_init(&(sk)->sk_lock.slock);				\
1658 	debug_check_no_locks_freed((void *)&(sk)->sk_lock,		\
1659 			sizeof((sk)->sk_lock));				\
1660 	lockdep_set_class_and_name(&(sk)->sk_lock.slock,		\
1661 				(skey), (sname));				\
1662 	lockdep_init_map(&(sk)->sk_lock.dep_map, (name), (key), 0);	\
1663 } while (0)
1664 
1665 static inline bool lockdep_sock_is_held(const struct sock *sk)
1666 {
1667 	return lockdep_is_held(&sk->sk_lock) ||
1668 	       lockdep_is_held(&sk->sk_lock.slock);
1669 }
1670 
1671 void lock_sock_nested(struct sock *sk, int subclass);
1672 
1673 static inline void lock_sock(struct sock *sk)
1674 {
1675 	lock_sock_nested(sk, 0);
1676 }
1677 
1678 void __lock_sock(struct sock *sk);
1679 void __release_sock(struct sock *sk);
1680 void release_sock(struct sock *sk);
1681 
1682 /* BH context may only use the following locking interface. */
1683 #define bh_lock_sock(__sk)	spin_lock(&((__sk)->sk_lock.slock))
1684 #define bh_lock_sock_nested(__sk) \
1685 				spin_lock_nested(&((__sk)->sk_lock.slock), \
1686 				SINGLE_DEPTH_NESTING)
1687 #define bh_unlock_sock(__sk)	spin_unlock(&((__sk)->sk_lock.slock))
1688 
1689 bool __lock_sock_fast(struct sock *sk) __acquires(&sk->sk_lock.slock);
1690 
1691 /**
1692  * lock_sock_fast - fast version of lock_sock
1693  * @sk: socket
1694  *
1695  * This version should be used for very small section, where process wont block
1696  * return false if fast path is taken:
1697  *
1698  *   sk_lock.slock locked, owned = 0, BH disabled
1699  *
1700  * return true if slow path is taken:
1701  *
1702  *   sk_lock.slock unlocked, owned = 1, BH enabled
1703  */
1704 static inline bool lock_sock_fast(struct sock *sk)
1705 {
1706 	/* The sk_lock has mutex_lock() semantics here. */
1707 	mutex_acquire(&sk->sk_lock.dep_map, 0, 0, _RET_IP_);
1708 
1709 	return __lock_sock_fast(sk);
1710 }
1711 
1712 /* fast socket lock variant for caller already holding a [different] socket lock */
1713 static inline bool lock_sock_fast_nested(struct sock *sk)
1714 {
1715 	mutex_acquire(&sk->sk_lock.dep_map, SINGLE_DEPTH_NESTING, 0, _RET_IP_);
1716 
1717 	return __lock_sock_fast(sk);
1718 }
1719 
1720 /**
1721  * unlock_sock_fast - complement of lock_sock_fast
1722  * @sk: socket
1723  * @slow: slow mode
1724  *
1725  * fast unlock socket for user context.
1726  * If slow mode is on, we call regular release_sock()
1727  */
1728 static inline void unlock_sock_fast(struct sock *sk, bool slow)
1729 	__releases(&sk->sk_lock.slock)
1730 {
1731 	if (slow) {
1732 		release_sock(sk);
1733 		__release(&sk->sk_lock.slock);
1734 	} else {
1735 		mutex_release(&sk->sk_lock.dep_map, _RET_IP_);
1736 		spin_unlock_bh(&sk->sk_lock.slock);
1737 	}
1738 }
1739 
1740 /* Used by processes to "lock" a socket state, so that
1741  * interrupts and bottom half handlers won't change it
1742  * from under us. It essentially blocks any incoming
1743  * packets, so that we won't get any new data or any
1744  * packets that change the state of the socket.
1745  *
1746  * While locked, BH processing will add new packets to
1747  * the backlog queue.  This queue is processed by the
1748  * owner of the socket lock right before it is released.
1749  *
1750  * Since ~2.3.5 it is also exclusive sleep lock serializing
1751  * accesses from user process context.
1752  */
1753 
1754 static inline void sock_owned_by_me(const struct sock *sk)
1755 {
1756 #ifdef CONFIG_LOCKDEP
1757 	WARN_ON_ONCE(!lockdep_sock_is_held(sk) && debug_locks);
1758 #endif
1759 }
1760 
1761 static inline bool sock_owned_by_user(const struct sock *sk)
1762 {
1763 	sock_owned_by_me(sk);
1764 	return sk->sk_lock.owned;
1765 }
1766 
1767 static inline bool sock_owned_by_user_nocheck(const struct sock *sk)
1768 {
1769 	return sk->sk_lock.owned;
1770 }
1771 
1772 /* no reclassification while locks are held */
1773 static inline bool sock_allow_reclassification(const struct sock *csk)
1774 {
1775 	struct sock *sk = (struct sock *)csk;
1776 
1777 	return !sk->sk_lock.owned && !spin_is_locked(&sk->sk_lock.slock);
1778 }
1779 
1780 struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
1781 		      struct proto *prot, int kern);
1782 void sk_free(struct sock *sk);
1783 void sk_destruct(struct sock *sk);
1784 struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority);
1785 void sk_free_unlock_clone(struct sock *sk);
1786 
1787 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
1788 			     gfp_t priority);
1789 void __sock_wfree(struct sk_buff *skb);
1790 void sock_wfree(struct sk_buff *skb);
1791 struct sk_buff *sock_omalloc(struct sock *sk, unsigned long size,
1792 			     gfp_t priority);
1793 void skb_orphan_partial(struct sk_buff *skb);
1794 void sock_rfree(struct sk_buff *skb);
1795 void sock_efree(struct sk_buff *skb);
1796 #ifdef CONFIG_INET
1797 void sock_edemux(struct sk_buff *skb);
1798 void sock_pfree(struct sk_buff *skb);
1799 #else
1800 #define sock_edemux sock_efree
1801 #endif
1802 
1803 int sock_setsockopt(struct socket *sock, int level, int op,
1804 		    sockptr_t optval, unsigned int optlen);
1805 
1806 int sock_getsockopt(struct socket *sock, int level, int op,
1807 		    char __user *optval, int __user *optlen);
1808 int sock_gettstamp(struct socket *sock, void __user *userstamp,
1809 		   bool timeval, bool time32);
1810 struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
1811 				    int noblock, int *errcode);
1812 struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
1813 				     unsigned long data_len, int noblock,
1814 				     int *errcode, int max_page_order);
1815 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority);
1816 void sock_kfree_s(struct sock *sk, void *mem, int size);
1817 void sock_kzfree_s(struct sock *sk, void *mem, int size);
1818 void sk_send_sigurg(struct sock *sk);
1819 
1820 struct sockcm_cookie {
1821 	u64 transmit_time;
1822 	u32 mark;
1823 	u16 tsflags;
1824 };
1825 
1826 static inline void sockcm_init(struct sockcm_cookie *sockc,
1827 			       const struct sock *sk)
1828 {
1829 	*sockc = (struct sockcm_cookie) { .tsflags = sk->sk_tsflags };
1830 }
1831 
1832 int __sock_cmsg_send(struct sock *sk, struct msghdr *msg, struct cmsghdr *cmsg,
1833 		     struct sockcm_cookie *sockc);
1834 int sock_cmsg_send(struct sock *sk, struct msghdr *msg,
1835 		   struct sockcm_cookie *sockc);
1836 
1837 /*
1838  * Functions to fill in entries in struct proto_ops when a protocol
1839  * does not implement a particular function.
1840  */
1841 int sock_no_bind(struct socket *, struct sockaddr *, int);
1842 int sock_no_connect(struct socket *, struct sockaddr *, int, int);
1843 int sock_no_socketpair(struct socket *, struct socket *);
1844 int sock_no_accept(struct socket *, struct socket *, int, bool);
1845 int sock_no_getname(struct socket *, struct sockaddr *, int);
1846 int sock_no_ioctl(struct socket *, unsigned int, unsigned long);
1847 int sock_no_listen(struct socket *, int);
1848 int sock_no_shutdown(struct socket *, int);
1849 int sock_no_sendmsg(struct socket *, struct msghdr *, size_t);
1850 int sock_no_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t len);
1851 int sock_no_recvmsg(struct socket *, struct msghdr *, size_t, int);
1852 int sock_no_mmap(struct file *file, struct socket *sock,
1853 		 struct vm_area_struct *vma);
1854 ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset,
1855 			 size_t size, int flags);
1856 ssize_t sock_no_sendpage_locked(struct sock *sk, struct page *page,
1857 				int offset, size_t size, int flags);
1858 
1859 /*
1860  * Functions to fill in entries in struct proto_ops when a protocol
1861  * uses the inet style.
1862  */
1863 int sock_common_getsockopt(struct socket *sock, int level, int optname,
1864 				  char __user *optval, int __user *optlen);
1865 int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
1866 			int flags);
1867 int sock_common_setsockopt(struct socket *sock, int level, int optname,
1868 			   sockptr_t optval, unsigned int optlen);
1869 
1870 void sk_common_release(struct sock *sk);
1871 
1872 /*
1873  *	Default socket callbacks and setup code
1874  */
1875 
1876 /* Initialise core socket variables */
1877 void sock_init_data(struct socket *sock, struct sock *sk);
1878 
1879 /*
1880  * Socket reference counting postulates.
1881  *
1882  * * Each user of socket SHOULD hold a reference count.
1883  * * Each access point to socket (an hash table bucket, reference from a list,
1884  *   running timer, skb in flight MUST hold a reference count.
1885  * * When reference count hits 0, it means it will never increase back.
1886  * * When reference count hits 0, it means that no references from
1887  *   outside exist to this socket and current process on current CPU
1888  *   is last user and may/should destroy this socket.
1889  * * sk_free is called from any context: process, BH, IRQ. When
1890  *   it is called, socket has no references from outside -> sk_free
1891  *   may release descendant resources allocated by the socket, but
1892  *   to the time when it is called, socket is NOT referenced by any
1893  *   hash tables, lists etc.
1894  * * Packets, delivered from outside (from network or from another process)
1895  *   and enqueued on receive/error queues SHOULD NOT grab reference count,
1896  *   when they sit in queue. Otherwise, packets will leak to hole, when
1897  *   socket is looked up by one cpu and unhasing is made by another CPU.
1898  *   It is true for udp/raw, netlink (leak to receive and error queues), tcp
1899  *   (leak to backlog). Packet socket does all the processing inside
1900  *   BR_NETPROTO_LOCK, so that it has not this race condition. UNIX sockets
1901  *   use separate SMP lock, so that they are prone too.
1902  */
1903 
1904 /* Ungrab socket and destroy it, if it was the last reference. */
1905 static inline void sock_put(struct sock *sk)
1906 {
1907 	if (refcount_dec_and_test(&sk->sk_refcnt))
1908 		sk_free(sk);
1909 }
1910 /* Generic version of sock_put(), dealing with all sockets
1911  * (TCP_TIMEWAIT, TCP_NEW_SYN_RECV, ESTABLISHED...)
1912  */
1913 void sock_gen_put(struct sock *sk);
1914 
1915 int __sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested,
1916 		     unsigned int trim_cap, bool refcounted);
1917 static inline int sk_receive_skb(struct sock *sk, struct sk_buff *skb,
1918 				 const int nested)
1919 {
1920 	return __sk_receive_skb(sk, skb, nested, 1, true);
1921 }
1922 
1923 static inline void sk_tx_queue_set(struct sock *sk, int tx_queue)
1924 {
1925 	/* sk_tx_queue_mapping accept only upto a 16-bit value */
1926 	if (WARN_ON_ONCE((unsigned short)tx_queue >= USHRT_MAX))
1927 		return;
1928 	sk->sk_tx_queue_mapping = tx_queue;
1929 }
1930 
1931 #define NO_QUEUE_MAPPING	USHRT_MAX
1932 
1933 static inline void sk_tx_queue_clear(struct sock *sk)
1934 {
1935 	sk->sk_tx_queue_mapping = NO_QUEUE_MAPPING;
1936 }
1937 
1938 static inline int sk_tx_queue_get(const struct sock *sk)
1939 {
1940 	if (sk && sk->sk_tx_queue_mapping != NO_QUEUE_MAPPING)
1941 		return sk->sk_tx_queue_mapping;
1942 
1943 	return -1;
1944 }
1945 
1946 static inline void sk_rx_queue_set(struct sock *sk, const struct sk_buff *skb)
1947 {
1948 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
1949 	if (skb_rx_queue_recorded(skb)) {
1950 		u16 rx_queue = skb_get_rx_queue(skb);
1951 
1952 		if (unlikely(READ_ONCE(sk->sk_rx_queue_mapping) != rx_queue))
1953 			WRITE_ONCE(sk->sk_rx_queue_mapping, rx_queue);
1954 	}
1955 #endif
1956 }
1957 
1958 static inline void sk_rx_queue_clear(struct sock *sk)
1959 {
1960 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
1961 	WRITE_ONCE(sk->sk_rx_queue_mapping, NO_QUEUE_MAPPING);
1962 #endif
1963 }
1964 
1965 static inline int sk_rx_queue_get(const struct sock *sk)
1966 {
1967 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
1968 	if (sk) {
1969 		int res = READ_ONCE(sk->sk_rx_queue_mapping);
1970 
1971 		if (res != NO_QUEUE_MAPPING)
1972 			return res;
1973 	}
1974 #endif
1975 
1976 	return -1;
1977 }
1978 
1979 static inline void sk_set_socket(struct sock *sk, struct socket *sock)
1980 {
1981 	sk->sk_socket = sock;
1982 }
1983 
1984 static inline wait_queue_head_t *sk_sleep(struct sock *sk)
1985 {
1986 	BUILD_BUG_ON(offsetof(struct socket_wq, wait) != 0);
1987 	return &rcu_dereference_raw(sk->sk_wq)->wait;
1988 }
1989 /* Detach socket from process context.
1990  * Announce socket dead, detach it from wait queue and inode.
1991  * Note that parent inode held reference count on this struct sock,
1992  * we do not release it in this function, because protocol
1993  * probably wants some additional cleanups or even continuing
1994  * to work with this socket (TCP).
1995  */
1996 static inline void sock_orphan(struct sock *sk)
1997 {
1998 	write_lock_bh(&sk->sk_callback_lock);
1999 	sock_set_flag(sk, SOCK_DEAD);
2000 	sk_set_socket(sk, NULL);
2001 	sk->sk_wq  = NULL;
2002 	write_unlock_bh(&sk->sk_callback_lock);
2003 }
2004 
2005 static inline void sock_graft(struct sock *sk, struct socket *parent)
2006 {
2007 	WARN_ON(parent->sk);
2008 	write_lock_bh(&sk->sk_callback_lock);
2009 	rcu_assign_pointer(sk->sk_wq, &parent->wq);
2010 	parent->sk = sk;
2011 	sk_set_socket(sk, parent);
2012 	sk->sk_uid = SOCK_INODE(parent)->i_uid;
2013 	security_sock_graft(sk, parent);
2014 	write_unlock_bh(&sk->sk_callback_lock);
2015 }
2016 
2017 kuid_t sock_i_uid(struct sock *sk);
2018 unsigned long sock_i_ino(struct sock *sk);
2019 
2020 static inline kuid_t sock_net_uid(const struct net *net, const struct sock *sk)
2021 {
2022 	return sk ? sk->sk_uid : make_kuid(net->user_ns, 0);
2023 }
2024 
2025 static inline u32 net_tx_rndhash(void)
2026 {
2027 	u32 v = prandom_u32();
2028 
2029 	return v ?: 1;
2030 }
2031 
2032 static inline void sk_set_txhash(struct sock *sk)
2033 {
2034 	/* This pairs with READ_ONCE() in skb_set_hash_from_sk() */
2035 	WRITE_ONCE(sk->sk_txhash, net_tx_rndhash());
2036 }
2037 
2038 static inline bool sk_rethink_txhash(struct sock *sk)
2039 {
2040 	if (sk->sk_txhash) {
2041 		sk_set_txhash(sk);
2042 		return true;
2043 	}
2044 	return false;
2045 }
2046 
2047 static inline struct dst_entry *
2048 __sk_dst_get(struct sock *sk)
2049 {
2050 	return rcu_dereference_check(sk->sk_dst_cache,
2051 				     lockdep_sock_is_held(sk));
2052 }
2053 
2054 static inline struct dst_entry *
2055 sk_dst_get(struct sock *sk)
2056 {
2057 	struct dst_entry *dst;
2058 
2059 	rcu_read_lock();
2060 	dst = rcu_dereference(sk->sk_dst_cache);
2061 	if (dst && !atomic_inc_not_zero(&dst->__refcnt))
2062 		dst = NULL;
2063 	rcu_read_unlock();
2064 	return dst;
2065 }
2066 
2067 static inline void __dst_negative_advice(struct sock *sk)
2068 {
2069 	struct dst_entry *ndst, *dst = __sk_dst_get(sk);
2070 
2071 	if (dst && dst->ops->negative_advice) {
2072 		ndst = dst->ops->negative_advice(dst);
2073 
2074 		if (ndst != dst) {
2075 			rcu_assign_pointer(sk->sk_dst_cache, ndst);
2076 			sk_tx_queue_clear(sk);
2077 			sk->sk_dst_pending_confirm = 0;
2078 		}
2079 	}
2080 }
2081 
2082 static inline void dst_negative_advice(struct sock *sk)
2083 {
2084 	sk_rethink_txhash(sk);
2085 	__dst_negative_advice(sk);
2086 }
2087 
2088 static inline void
2089 __sk_dst_set(struct sock *sk, struct dst_entry *dst)
2090 {
2091 	struct dst_entry *old_dst;
2092 
2093 	sk_tx_queue_clear(sk);
2094 	sk->sk_dst_pending_confirm = 0;
2095 	old_dst = rcu_dereference_protected(sk->sk_dst_cache,
2096 					    lockdep_sock_is_held(sk));
2097 	rcu_assign_pointer(sk->sk_dst_cache, dst);
2098 	dst_release(old_dst);
2099 }
2100 
2101 static inline void
2102 sk_dst_set(struct sock *sk, struct dst_entry *dst)
2103 {
2104 	struct dst_entry *old_dst;
2105 
2106 	sk_tx_queue_clear(sk);
2107 	sk->sk_dst_pending_confirm = 0;
2108 	old_dst = xchg((__force struct dst_entry **)&sk->sk_dst_cache, dst);
2109 	dst_release(old_dst);
2110 }
2111 
2112 static inline void
2113 __sk_dst_reset(struct sock *sk)
2114 {
2115 	__sk_dst_set(sk, NULL);
2116 }
2117 
2118 static inline void
2119 sk_dst_reset(struct sock *sk)
2120 {
2121 	sk_dst_set(sk, NULL);
2122 }
2123 
2124 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie);
2125 
2126 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie);
2127 
2128 static inline void sk_dst_confirm(struct sock *sk)
2129 {
2130 	if (!READ_ONCE(sk->sk_dst_pending_confirm))
2131 		WRITE_ONCE(sk->sk_dst_pending_confirm, 1);
2132 }
2133 
2134 static inline void sock_confirm_neigh(struct sk_buff *skb, struct neighbour *n)
2135 {
2136 	if (skb_get_dst_pending_confirm(skb)) {
2137 		struct sock *sk = skb->sk;
2138 		unsigned long now = jiffies;
2139 
2140 		/* avoid dirtying neighbour */
2141 		if (READ_ONCE(n->confirmed) != now)
2142 			WRITE_ONCE(n->confirmed, now);
2143 		if (sk && READ_ONCE(sk->sk_dst_pending_confirm))
2144 			WRITE_ONCE(sk->sk_dst_pending_confirm, 0);
2145 	}
2146 }
2147 
2148 bool sk_mc_loop(struct sock *sk);
2149 
2150 static inline bool sk_can_gso(const struct sock *sk)
2151 {
2152 	return net_gso_ok(sk->sk_route_caps, sk->sk_gso_type);
2153 }
2154 
2155 void sk_setup_caps(struct sock *sk, struct dst_entry *dst);
2156 
2157 static inline void sk_gso_disable(struct sock *sk)
2158 {
2159 	sk->sk_gso_disabled = 1;
2160 	sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
2161 }
2162 
2163 static inline int skb_do_copy_data_nocache(struct sock *sk, struct sk_buff *skb,
2164 					   struct iov_iter *from, char *to,
2165 					   int copy, int offset)
2166 {
2167 	if (skb->ip_summed == CHECKSUM_NONE) {
2168 		__wsum csum = 0;
2169 		if (!csum_and_copy_from_iter_full(to, copy, &csum, from))
2170 			return -EFAULT;
2171 		skb->csum = csum_block_add(skb->csum, csum, offset);
2172 	} else if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY) {
2173 		if (!copy_from_iter_full_nocache(to, copy, from))
2174 			return -EFAULT;
2175 	} else if (!copy_from_iter_full(to, copy, from))
2176 		return -EFAULT;
2177 
2178 	return 0;
2179 }
2180 
2181 static inline int skb_add_data_nocache(struct sock *sk, struct sk_buff *skb,
2182 				       struct iov_iter *from, int copy)
2183 {
2184 	int err, offset = skb->len;
2185 
2186 	err = skb_do_copy_data_nocache(sk, skb, from, skb_put(skb, copy),
2187 				       copy, offset);
2188 	if (err)
2189 		__skb_trim(skb, offset);
2190 
2191 	return err;
2192 }
2193 
2194 static inline int skb_copy_to_page_nocache(struct sock *sk, struct iov_iter *from,
2195 					   struct sk_buff *skb,
2196 					   struct page *page,
2197 					   int off, int copy)
2198 {
2199 	int err;
2200 
2201 	err = skb_do_copy_data_nocache(sk, skb, from, page_address(page) + off,
2202 				       copy, skb->len);
2203 	if (err)
2204 		return err;
2205 
2206 	skb->len	     += copy;
2207 	skb->data_len	     += copy;
2208 	skb->truesize	     += copy;
2209 	sk_wmem_queued_add(sk, copy);
2210 	sk_mem_charge(sk, copy);
2211 	return 0;
2212 }
2213 
2214 /**
2215  * sk_wmem_alloc_get - returns write allocations
2216  * @sk: socket
2217  *
2218  * Return: sk_wmem_alloc minus initial offset of one
2219  */
2220 static inline int sk_wmem_alloc_get(const struct sock *sk)
2221 {
2222 	return refcount_read(&sk->sk_wmem_alloc) - 1;
2223 }
2224 
2225 /**
2226  * sk_rmem_alloc_get - returns read allocations
2227  * @sk: socket
2228  *
2229  * Return: sk_rmem_alloc
2230  */
2231 static inline int sk_rmem_alloc_get(const struct sock *sk)
2232 {
2233 	return atomic_read(&sk->sk_rmem_alloc);
2234 }
2235 
2236 /**
2237  * sk_has_allocations - check if allocations are outstanding
2238  * @sk: socket
2239  *
2240  * Return: true if socket has write or read allocations
2241  */
2242 static inline bool sk_has_allocations(const struct sock *sk)
2243 {
2244 	return sk_wmem_alloc_get(sk) || sk_rmem_alloc_get(sk);
2245 }
2246 
2247 /**
2248  * skwq_has_sleeper - check if there are any waiting processes
2249  * @wq: struct socket_wq
2250  *
2251  * Return: true if socket_wq has waiting processes
2252  *
2253  * The purpose of the skwq_has_sleeper and sock_poll_wait is to wrap the memory
2254  * barrier call. They were added due to the race found within the tcp code.
2255  *
2256  * Consider following tcp code paths::
2257  *
2258  *   CPU1                CPU2
2259  *   sys_select          receive packet
2260  *   ...                 ...
2261  *   __add_wait_queue    update tp->rcv_nxt
2262  *   ...                 ...
2263  *   tp->rcv_nxt check   sock_def_readable
2264  *   ...                 {
2265  *   schedule               rcu_read_lock();
2266  *                          wq = rcu_dereference(sk->sk_wq);
2267  *                          if (wq && waitqueue_active(&wq->wait))
2268  *                              wake_up_interruptible(&wq->wait)
2269  *                          ...
2270  *                       }
2271  *
2272  * The race for tcp fires when the __add_wait_queue changes done by CPU1 stay
2273  * in its cache, and so does the tp->rcv_nxt update on CPU2 side.  The CPU1
2274  * could then endup calling schedule and sleep forever if there are no more
2275  * data on the socket.
2276  *
2277  */
2278 static inline bool skwq_has_sleeper(struct socket_wq *wq)
2279 {
2280 	return wq && wq_has_sleeper(&wq->wait);
2281 }
2282 
2283 /**
2284  * sock_poll_wait - place memory barrier behind the poll_wait call.
2285  * @filp:           file
2286  * @sock:           socket to wait on
2287  * @p:              poll_table
2288  *
2289  * See the comments in the wq_has_sleeper function.
2290  */
2291 static inline void sock_poll_wait(struct file *filp, struct socket *sock,
2292 				  poll_table *p)
2293 {
2294 	if (!poll_does_not_wait(p)) {
2295 		poll_wait(filp, &sock->wq.wait, p);
2296 		/* We need to be sure we are in sync with the
2297 		 * socket flags modification.
2298 		 *
2299 		 * This memory barrier is paired in the wq_has_sleeper.
2300 		 */
2301 		smp_mb();
2302 	}
2303 }
2304 
2305 static inline void skb_set_hash_from_sk(struct sk_buff *skb, struct sock *sk)
2306 {
2307 	/* This pairs with WRITE_ONCE() in sk_set_txhash() */
2308 	u32 txhash = READ_ONCE(sk->sk_txhash);
2309 
2310 	if (txhash) {
2311 		skb->l4_hash = 1;
2312 		skb->hash = txhash;
2313 	}
2314 }
2315 
2316 void skb_set_owner_w(struct sk_buff *skb, struct sock *sk);
2317 
2318 /*
2319  *	Queue a received datagram if it will fit. Stream and sequenced
2320  *	protocols can't normally use this as they need to fit buffers in
2321  *	and play with them.
2322  *
2323  *	Inlined as it's very short and called for pretty much every
2324  *	packet ever received.
2325  */
2326 static inline void skb_set_owner_r(struct sk_buff *skb, struct sock *sk)
2327 {
2328 	skb_orphan(skb);
2329 	skb->sk = sk;
2330 	skb->destructor = sock_rfree;
2331 	atomic_add(skb->truesize, &sk->sk_rmem_alloc);
2332 	sk_mem_charge(sk, skb->truesize);
2333 }
2334 
2335 static inline __must_check bool skb_set_owner_sk_safe(struct sk_buff *skb, struct sock *sk)
2336 {
2337 	if (sk && refcount_inc_not_zero(&sk->sk_refcnt)) {
2338 		skb_orphan(skb);
2339 		skb->destructor = sock_efree;
2340 		skb->sk = sk;
2341 		return true;
2342 	}
2343 	return false;
2344 }
2345 
2346 static inline void skb_prepare_for_gro(struct sk_buff *skb)
2347 {
2348 	if (skb->destructor != sock_wfree) {
2349 		skb_orphan(skb);
2350 		return;
2351 	}
2352 	skb->slow_gro = 1;
2353 }
2354 
2355 void sk_reset_timer(struct sock *sk, struct timer_list *timer,
2356 		    unsigned long expires);
2357 
2358 void sk_stop_timer(struct sock *sk, struct timer_list *timer);
2359 
2360 void sk_stop_timer_sync(struct sock *sk, struct timer_list *timer);
2361 
2362 int __sk_queue_drop_skb(struct sock *sk, struct sk_buff_head *sk_queue,
2363 			struct sk_buff *skb, unsigned int flags,
2364 			void (*destructor)(struct sock *sk,
2365 					   struct sk_buff *skb));
2366 int __sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
2367 int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
2368 
2369 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb);
2370 struct sk_buff *sock_dequeue_err_skb(struct sock *sk);
2371 
2372 /*
2373  *	Recover an error report and clear atomically
2374  */
2375 
2376 static inline int sock_error(struct sock *sk)
2377 {
2378 	int err;
2379 
2380 	/* Avoid an atomic operation for the common case.
2381 	 * This is racy since another cpu/thread can change sk_err under us.
2382 	 */
2383 	if (likely(data_race(!sk->sk_err)))
2384 		return 0;
2385 
2386 	err = xchg(&sk->sk_err, 0);
2387 	return -err;
2388 }
2389 
2390 void sk_error_report(struct sock *sk);
2391 
2392 static inline unsigned long sock_wspace(struct sock *sk)
2393 {
2394 	int amt = 0;
2395 
2396 	if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
2397 		amt = sk->sk_sndbuf - refcount_read(&sk->sk_wmem_alloc);
2398 		if (amt < 0)
2399 			amt = 0;
2400 	}
2401 	return amt;
2402 }
2403 
2404 /* Note:
2405  *  We use sk->sk_wq_raw, from contexts knowing this
2406  *  pointer is not NULL and cannot disappear/change.
2407  */
2408 static inline void sk_set_bit(int nr, struct sock *sk)
2409 {
2410 	if ((nr == SOCKWQ_ASYNC_NOSPACE || nr == SOCKWQ_ASYNC_WAITDATA) &&
2411 	    !sock_flag(sk, SOCK_FASYNC))
2412 		return;
2413 
2414 	set_bit(nr, &sk->sk_wq_raw->flags);
2415 }
2416 
2417 static inline void sk_clear_bit(int nr, struct sock *sk)
2418 {
2419 	if ((nr == SOCKWQ_ASYNC_NOSPACE || nr == SOCKWQ_ASYNC_WAITDATA) &&
2420 	    !sock_flag(sk, SOCK_FASYNC))
2421 		return;
2422 
2423 	clear_bit(nr, &sk->sk_wq_raw->flags);
2424 }
2425 
2426 static inline void sk_wake_async(const struct sock *sk, int how, int band)
2427 {
2428 	if (sock_flag(sk, SOCK_FASYNC)) {
2429 		rcu_read_lock();
2430 		sock_wake_async(rcu_dereference(sk->sk_wq), how, band);
2431 		rcu_read_unlock();
2432 	}
2433 }
2434 
2435 /* Since sk_{r,w}mem_alloc sums skb->truesize, even a small frame might
2436  * need sizeof(sk_buff) + MTU + padding, unless net driver perform copybreak.
2437  * Note: for send buffers, TCP works better if we can build two skbs at
2438  * minimum.
2439  */
2440 #define TCP_SKB_MIN_TRUESIZE	(2048 + SKB_DATA_ALIGN(sizeof(struct sk_buff)))
2441 
2442 #define SOCK_MIN_SNDBUF		(TCP_SKB_MIN_TRUESIZE * 2)
2443 #define SOCK_MIN_RCVBUF		 TCP_SKB_MIN_TRUESIZE
2444 
2445 static inline void sk_stream_moderate_sndbuf(struct sock *sk)
2446 {
2447 	u32 val;
2448 
2449 	if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
2450 		return;
2451 
2452 	val = min(sk->sk_sndbuf, sk->sk_wmem_queued >> 1);
2453 	val = max_t(u32, val, sk_unused_reserved_mem(sk));
2454 
2455 	WRITE_ONCE(sk->sk_sndbuf, max_t(u32, val, SOCK_MIN_SNDBUF));
2456 }
2457 
2458 /**
2459  * sk_page_frag - return an appropriate page_frag
2460  * @sk: socket
2461  *
2462  * Use the per task page_frag instead of the per socket one for
2463  * optimization when we know that we're in the normal context and owns
2464  * everything that's associated with %current.
2465  *
2466  * gfpflags_allow_blocking() isn't enough here as direct reclaim may nest
2467  * inside other socket operations and end up recursing into sk_page_frag()
2468  * while it's already in use.
2469  *
2470  * Return: a per task page_frag if context allows that,
2471  * otherwise a per socket one.
2472  */
2473 static inline struct page_frag *sk_page_frag(struct sock *sk)
2474 {
2475 	if (gfpflags_normal_context(sk->sk_allocation))
2476 		return &current->task_frag;
2477 
2478 	return &sk->sk_frag;
2479 }
2480 
2481 bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag);
2482 
2483 /*
2484  *	Default write policy as shown to user space via poll/select/SIGIO
2485  */
2486 static inline bool sock_writeable(const struct sock *sk)
2487 {
2488 	return refcount_read(&sk->sk_wmem_alloc) < (READ_ONCE(sk->sk_sndbuf) >> 1);
2489 }
2490 
2491 static inline gfp_t gfp_any(void)
2492 {
2493 	return in_softirq() ? GFP_ATOMIC : GFP_KERNEL;
2494 }
2495 
2496 static inline gfp_t gfp_memcg_charge(void)
2497 {
2498 	return in_softirq() ? GFP_NOWAIT : GFP_KERNEL;
2499 }
2500 
2501 static inline long sock_rcvtimeo(const struct sock *sk, bool noblock)
2502 {
2503 	return noblock ? 0 : sk->sk_rcvtimeo;
2504 }
2505 
2506 static inline long sock_sndtimeo(const struct sock *sk, bool noblock)
2507 {
2508 	return noblock ? 0 : sk->sk_sndtimeo;
2509 }
2510 
2511 static inline int sock_rcvlowat(const struct sock *sk, int waitall, int len)
2512 {
2513 	int v = waitall ? len : min_t(int, READ_ONCE(sk->sk_rcvlowat), len);
2514 
2515 	return v ?: 1;
2516 }
2517 
2518 /* Alas, with timeout socket operations are not restartable.
2519  * Compare this to poll().
2520  */
2521 static inline int sock_intr_errno(long timeo)
2522 {
2523 	return timeo == MAX_SCHEDULE_TIMEOUT ? -ERESTARTSYS : -EINTR;
2524 }
2525 
2526 struct sock_skb_cb {
2527 	u32 dropcount;
2528 };
2529 
2530 /* Store sock_skb_cb at the end of skb->cb[] so protocol families
2531  * using skb->cb[] would keep using it directly and utilize its
2532  * alignement guarantee.
2533  */
2534 #define SOCK_SKB_CB_OFFSET ((sizeof_field(struct sk_buff, cb) - \
2535 			    sizeof(struct sock_skb_cb)))
2536 
2537 #define SOCK_SKB_CB(__skb) ((struct sock_skb_cb *)((__skb)->cb + \
2538 			    SOCK_SKB_CB_OFFSET))
2539 
2540 #define sock_skb_cb_check_size(size) \
2541 	BUILD_BUG_ON((size) > SOCK_SKB_CB_OFFSET)
2542 
2543 static inline void
2544 sock_skb_set_dropcount(const struct sock *sk, struct sk_buff *skb)
2545 {
2546 	SOCK_SKB_CB(skb)->dropcount = sock_flag(sk, SOCK_RXQ_OVFL) ?
2547 						atomic_read(&sk->sk_drops) : 0;
2548 }
2549 
2550 static inline void sk_drops_add(struct sock *sk, const struct sk_buff *skb)
2551 {
2552 	int segs = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
2553 
2554 	atomic_add(segs, &sk->sk_drops);
2555 }
2556 
2557 static inline ktime_t sock_read_timestamp(struct sock *sk)
2558 {
2559 #if BITS_PER_LONG==32
2560 	unsigned int seq;
2561 	ktime_t kt;
2562 
2563 	do {
2564 		seq = read_seqbegin(&sk->sk_stamp_seq);
2565 		kt = sk->sk_stamp;
2566 	} while (read_seqretry(&sk->sk_stamp_seq, seq));
2567 
2568 	return kt;
2569 #else
2570 	return READ_ONCE(sk->sk_stamp);
2571 #endif
2572 }
2573 
2574 static inline void sock_write_timestamp(struct sock *sk, ktime_t kt)
2575 {
2576 #if BITS_PER_LONG==32
2577 	write_seqlock(&sk->sk_stamp_seq);
2578 	sk->sk_stamp = kt;
2579 	write_sequnlock(&sk->sk_stamp_seq);
2580 #else
2581 	WRITE_ONCE(sk->sk_stamp, kt);
2582 #endif
2583 }
2584 
2585 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
2586 			   struct sk_buff *skb);
2587 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
2588 			     struct sk_buff *skb);
2589 
2590 static inline void
2591 sock_recv_timestamp(struct msghdr *msg, struct sock *sk, struct sk_buff *skb)
2592 {
2593 	ktime_t kt = skb->tstamp;
2594 	struct skb_shared_hwtstamps *hwtstamps = skb_hwtstamps(skb);
2595 
2596 	/*
2597 	 * generate control messages if
2598 	 * - receive time stamping in software requested
2599 	 * - software time stamp available and wanted
2600 	 * - hardware time stamps available and wanted
2601 	 */
2602 	if (sock_flag(sk, SOCK_RCVTSTAMP) ||
2603 	    (sk->sk_tsflags & SOF_TIMESTAMPING_RX_SOFTWARE) ||
2604 	    (kt && sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) ||
2605 	    (hwtstamps->hwtstamp &&
2606 	     (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE)))
2607 		__sock_recv_timestamp(msg, sk, skb);
2608 	else
2609 		sock_write_timestamp(sk, kt);
2610 
2611 	if (sock_flag(sk, SOCK_WIFI_STATUS) && skb->wifi_acked_valid)
2612 		__sock_recv_wifi_status(msg, sk, skb);
2613 }
2614 
2615 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
2616 			      struct sk_buff *skb);
2617 
2618 #define SK_DEFAULT_STAMP (-1L * NSEC_PER_SEC)
2619 static inline void sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
2620 					  struct sk_buff *skb)
2621 {
2622 #define FLAGS_TS_OR_DROPS ((1UL << SOCK_RXQ_OVFL)			| \
2623 			   (1UL << SOCK_RCVTSTAMP))
2624 #define TSFLAGS_ANY	  (SOF_TIMESTAMPING_SOFTWARE			| \
2625 			   SOF_TIMESTAMPING_RAW_HARDWARE)
2626 
2627 	if (sk->sk_flags & FLAGS_TS_OR_DROPS || sk->sk_tsflags & TSFLAGS_ANY)
2628 		__sock_recv_ts_and_drops(msg, sk, skb);
2629 	else if (unlikely(sock_flag(sk, SOCK_TIMESTAMP)))
2630 		sock_write_timestamp(sk, skb->tstamp);
2631 	else if (unlikely(sk->sk_stamp == SK_DEFAULT_STAMP))
2632 		sock_write_timestamp(sk, 0);
2633 }
2634 
2635 void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags);
2636 
2637 /**
2638  * _sock_tx_timestamp - checks whether the outgoing packet is to be time stamped
2639  * @sk:		socket sending this packet
2640  * @tsflags:	timestamping flags to use
2641  * @tx_flags:	completed with instructions for time stamping
2642  * @tskey:      filled in with next sk_tskey (not for TCP, which uses seqno)
2643  *
2644  * Note: callers should take care of initial ``*tx_flags`` value (usually 0)
2645  */
2646 static inline void _sock_tx_timestamp(struct sock *sk, __u16 tsflags,
2647 				      __u8 *tx_flags, __u32 *tskey)
2648 {
2649 	if (unlikely(tsflags)) {
2650 		__sock_tx_timestamp(tsflags, tx_flags);
2651 		if (tsflags & SOF_TIMESTAMPING_OPT_ID && tskey &&
2652 		    tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK)
2653 			*tskey = sk->sk_tskey++;
2654 	}
2655 	if (unlikely(sock_flag(sk, SOCK_WIFI_STATUS)))
2656 		*tx_flags |= SKBTX_WIFI_STATUS;
2657 }
2658 
2659 static inline void sock_tx_timestamp(struct sock *sk, __u16 tsflags,
2660 				     __u8 *tx_flags)
2661 {
2662 	_sock_tx_timestamp(sk, tsflags, tx_flags, NULL);
2663 }
2664 
2665 static inline void skb_setup_tx_timestamp(struct sk_buff *skb, __u16 tsflags)
2666 {
2667 	_sock_tx_timestamp(skb->sk, tsflags, &skb_shinfo(skb)->tx_flags,
2668 			   &skb_shinfo(skb)->tskey);
2669 }
2670 
2671 static inline bool sk_is_tcp(const struct sock *sk)
2672 {
2673 	return sk->sk_type == SOCK_STREAM && sk->sk_protocol == IPPROTO_TCP;
2674 }
2675 
2676 /**
2677  * sk_eat_skb - Release a skb if it is no longer needed
2678  * @sk: socket to eat this skb from
2679  * @skb: socket buffer to eat
2680  *
2681  * This routine must be called with interrupts disabled or with the socket
2682  * locked so that the sk_buff queue operation is ok.
2683 */
2684 static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb)
2685 {
2686 	__skb_unlink(skb, &sk->sk_receive_queue);
2687 	__kfree_skb(skb);
2688 }
2689 
2690 static inline
2691 struct net *sock_net(const struct sock *sk)
2692 {
2693 	return read_pnet(&sk->sk_net);
2694 }
2695 
2696 static inline
2697 void sock_net_set(struct sock *sk, struct net *net)
2698 {
2699 	write_pnet(&sk->sk_net, net);
2700 }
2701 
2702 static inline bool
2703 skb_sk_is_prefetched(struct sk_buff *skb)
2704 {
2705 #ifdef CONFIG_INET
2706 	return skb->destructor == sock_pfree;
2707 #else
2708 	return false;
2709 #endif /* CONFIG_INET */
2710 }
2711 
2712 /* This helper checks if a socket is a full socket,
2713  * ie _not_ a timewait or request socket.
2714  */
2715 static inline bool sk_fullsock(const struct sock *sk)
2716 {
2717 	return (1 << sk->sk_state) & ~(TCPF_TIME_WAIT | TCPF_NEW_SYN_RECV);
2718 }
2719 
2720 static inline bool
2721 sk_is_refcounted(struct sock *sk)
2722 {
2723 	/* Only full sockets have sk->sk_flags. */
2724 	return !sk_fullsock(sk) || !sock_flag(sk, SOCK_RCU_FREE);
2725 }
2726 
2727 /**
2728  * skb_steal_sock - steal a socket from an sk_buff
2729  * @skb: sk_buff to steal the socket from
2730  * @refcounted: is set to true if the socket is reference-counted
2731  */
2732 static inline struct sock *
2733 skb_steal_sock(struct sk_buff *skb, bool *refcounted)
2734 {
2735 	if (skb->sk) {
2736 		struct sock *sk = skb->sk;
2737 
2738 		*refcounted = true;
2739 		if (skb_sk_is_prefetched(skb))
2740 			*refcounted = sk_is_refcounted(sk);
2741 		skb->destructor = NULL;
2742 		skb->sk = NULL;
2743 		return sk;
2744 	}
2745 	*refcounted = false;
2746 	return NULL;
2747 }
2748 
2749 /* Checks if this SKB belongs to an HW offloaded socket
2750  * and whether any SW fallbacks are required based on dev.
2751  * Check decrypted mark in case skb_orphan() cleared socket.
2752  */
2753 static inline struct sk_buff *sk_validate_xmit_skb(struct sk_buff *skb,
2754 						   struct net_device *dev)
2755 {
2756 #ifdef CONFIG_SOCK_VALIDATE_XMIT
2757 	struct sock *sk = skb->sk;
2758 
2759 	if (sk && sk_fullsock(sk) && sk->sk_validate_xmit_skb) {
2760 		skb = sk->sk_validate_xmit_skb(sk, dev, skb);
2761 #ifdef CONFIG_TLS_DEVICE
2762 	} else if (unlikely(skb->decrypted)) {
2763 		pr_warn_ratelimited("unencrypted skb with no associated socket - dropping\n");
2764 		kfree_skb(skb);
2765 		skb = NULL;
2766 #endif
2767 	}
2768 #endif
2769 
2770 	return skb;
2771 }
2772 
2773 /* This helper checks if a socket is a LISTEN or NEW_SYN_RECV
2774  * SYNACK messages can be attached to either ones (depending on SYNCOOKIE)
2775  */
2776 static inline bool sk_listener(const struct sock *sk)
2777 {
2778 	return (1 << sk->sk_state) & (TCPF_LISTEN | TCPF_NEW_SYN_RECV);
2779 }
2780 
2781 void sock_enable_timestamp(struct sock *sk, enum sock_flags flag);
2782 int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len, int level,
2783 		       int type);
2784 
2785 bool sk_ns_capable(const struct sock *sk,
2786 		   struct user_namespace *user_ns, int cap);
2787 bool sk_capable(const struct sock *sk, int cap);
2788 bool sk_net_capable(const struct sock *sk, int cap);
2789 
2790 void sk_get_meminfo(const struct sock *sk, u32 *meminfo);
2791 
2792 /* Take into consideration the size of the struct sk_buff overhead in the
2793  * determination of these values, since that is non-constant across
2794  * platforms.  This makes socket queueing behavior and performance
2795  * not depend upon such differences.
2796  */
2797 #define _SK_MEM_PACKETS		256
2798 #define _SK_MEM_OVERHEAD	SKB_TRUESIZE(256)
2799 #define SK_WMEM_MAX		(_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
2800 #define SK_RMEM_MAX		(_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
2801 
2802 extern __u32 sysctl_wmem_max;
2803 extern __u32 sysctl_rmem_max;
2804 
2805 extern int sysctl_tstamp_allow_data;
2806 extern int sysctl_optmem_max;
2807 
2808 extern __u32 sysctl_wmem_default;
2809 extern __u32 sysctl_rmem_default;
2810 
2811 #define SKB_FRAG_PAGE_ORDER	get_order(32768)
2812 DECLARE_STATIC_KEY_FALSE(net_high_order_alloc_disable_key);
2813 
2814 static inline int sk_get_wmem0(const struct sock *sk, const struct proto *proto)
2815 {
2816 	/* Does this proto have per netns sysctl_wmem ? */
2817 	if (proto->sysctl_wmem_offset)
2818 		return *(int *)((void *)sock_net(sk) + proto->sysctl_wmem_offset);
2819 
2820 	return *proto->sysctl_wmem;
2821 }
2822 
2823 static inline int sk_get_rmem0(const struct sock *sk, const struct proto *proto)
2824 {
2825 	/* Does this proto have per netns sysctl_rmem ? */
2826 	if (proto->sysctl_rmem_offset)
2827 		return *(int *)((void *)sock_net(sk) + proto->sysctl_rmem_offset);
2828 
2829 	return *proto->sysctl_rmem;
2830 }
2831 
2832 /* Default TCP Small queue budget is ~1 ms of data (1sec >> 10)
2833  * Some wifi drivers need to tweak it to get more chunks.
2834  * They can use this helper from their ndo_start_xmit()
2835  */
2836 static inline void sk_pacing_shift_update(struct sock *sk, int val)
2837 {
2838 	if (!sk || !sk_fullsock(sk) || READ_ONCE(sk->sk_pacing_shift) == val)
2839 		return;
2840 	WRITE_ONCE(sk->sk_pacing_shift, val);
2841 }
2842 
2843 /* if a socket is bound to a device, check that the given device
2844  * index is either the same or that the socket is bound to an L3
2845  * master device and the given device index is also enslaved to
2846  * that L3 master
2847  */
2848 static inline bool sk_dev_equal_l3scope(struct sock *sk, int dif)
2849 {
2850 	int mdif;
2851 
2852 	if (!sk->sk_bound_dev_if || sk->sk_bound_dev_if == dif)
2853 		return true;
2854 
2855 	mdif = l3mdev_master_ifindex_by_index(sock_net(sk), dif);
2856 	if (mdif && mdif == sk->sk_bound_dev_if)
2857 		return true;
2858 
2859 	return false;
2860 }
2861 
2862 void sock_def_readable(struct sock *sk);
2863 
2864 int sock_bindtoindex(struct sock *sk, int ifindex, bool lock_sk);
2865 void sock_set_timestamp(struct sock *sk, int optname, bool valbool);
2866 int sock_set_timestamping(struct sock *sk, int optname,
2867 			  struct so_timestamping timestamping);
2868 
2869 void sock_enable_timestamps(struct sock *sk);
2870 void sock_no_linger(struct sock *sk);
2871 void sock_set_keepalive(struct sock *sk);
2872 void sock_set_priority(struct sock *sk, u32 priority);
2873 void sock_set_rcvbuf(struct sock *sk, int val);
2874 void sock_set_mark(struct sock *sk, u32 val);
2875 void sock_set_reuseaddr(struct sock *sk);
2876 void sock_set_reuseport(struct sock *sk);
2877 void sock_set_sndtimeo(struct sock *sk, s64 secs);
2878 
2879 int sock_bind_add(struct sock *sk, struct sockaddr *addr, int addr_len);
2880 
2881 int sock_get_timeout(long timeo, void *optval, bool old_timeval);
2882 int sock_copy_user_timeval(struct __kernel_sock_timeval *tv,
2883 			   sockptr_t optval, int optlen, bool old_timeval);
2884 
2885 static inline bool sk_is_readable(struct sock *sk)
2886 {
2887 	if (sk->sk_prot->sock_is_readable)
2888 		return sk->sk_prot->sock_is_readable(sk);
2889 	return false;
2890 }
2891 #endif	/* _SOCK_H */
2892