xref: /linux/include/net/sock.h (revision daa2be74b1b2302004945b2a5e32424e177cc7da)
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Definitions for the AF_INET socket handler.
8  *
9  * Version:	@(#)sock.h	1.0.4	05/13/93
10  *
11  * Authors:	Ross Biro
12  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
13  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
14  *		Florian La Roche <flla@stud.uni-sb.de>
15  *
16  * Fixes:
17  *		Alan Cox	:	Volatiles in skbuff pointers. See
18  *					skbuff comments. May be overdone,
19  *					better to prove they can be removed
20  *					than the reverse.
21  *		Alan Cox	:	Added a zapped field for tcp to note
22  *					a socket is reset and must stay shut up
23  *		Alan Cox	:	New fields for options
24  *	Pauline Middelink	:	identd support
25  *		Alan Cox	:	Eliminate low level recv/recvfrom
26  *		David S. Miller	:	New socket lookup architecture.
27  *              Steve Whitehouse:       Default routines for sock_ops
28  *              Arnaldo C. Melo :	removed net_pinfo, tp_pinfo and made
29  *              			protinfo be just a void pointer, as the
30  *              			protocol specific parts were moved to
31  *              			respective headers and ipv4/v6, etc now
32  *              			use private slabcaches for its socks
33  *              Pedro Hortas	:	New flags field for socket options
34  */
35 #ifndef _SOCK_H
36 #define _SOCK_H
37 
38 #include <linux/hardirq.h>
39 #include <linux/kernel.h>
40 #include <linux/list.h>
41 #include <linux/list_nulls.h>
42 #include <linux/timer.h>
43 #include <linux/cache.h>
44 #include <linux/bitops.h>
45 #include <linux/lockdep.h>
46 #include <linux/netdevice.h>
47 #include <linux/skbuff.h>	/* struct sk_buff */
48 #include <linux/mm.h>
49 #include <linux/security.h>
50 #include <linux/slab.h>
51 #include <linux/uaccess.h>
52 #include <linux/page_counter.h>
53 #include <linux/memcontrol.h>
54 #include <linux/static_key.h>
55 #include <linux/sched.h>
56 #include <linux/wait.h>
57 #include <linux/cgroup-defs.h>
58 #include <linux/rbtree.h>
59 #include <linux/rculist_nulls.h>
60 #include <linux/poll.h>
61 #include <linux/sockptr.h>
62 #include <linux/indirect_call_wrapper.h>
63 #include <linux/atomic.h>
64 #include <linux/refcount.h>
65 #include <linux/llist.h>
66 #include <net/dst.h>
67 #include <net/checksum.h>
68 #include <net/tcp_states.h>
69 #include <linux/net_tstamp.h>
70 #include <net/l3mdev.h>
71 #include <uapi/linux/socket.h>
72 
73 /*
74  * This structure really needs to be cleaned up.
75  * Most of it is for TCP, and not used by any of
76  * the other protocols.
77  */
78 
79 /* This is the per-socket lock.  The spinlock provides a synchronization
80  * between user contexts and software interrupt processing, whereas the
81  * mini-semaphore synchronizes multiple users amongst themselves.
82  */
83 typedef struct {
84 	spinlock_t		slock;
85 	int			owned;
86 	wait_queue_head_t	wq;
87 	/*
88 	 * We express the mutex-alike socket_lock semantics
89 	 * to the lock validator by explicitly managing
90 	 * the slock as a lock variant (in addition to
91 	 * the slock itself):
92 	 */
93 #ifdef CONFIG_DEBUG_LOCK_ALLOC
94 	struct lockdep_map dep_map;
95 #endif
96 } socket_lock_t;
97 
98 struct sock;
99 struct proto;
100 struct net;
101 
102 typedef __u32 __bitwise __portpair;
103 typedef __u64 __bitwise __addrpair;
104 
105 /**
106  *	struct sock_common - minimal network layer representation of sockets
107  *	@skc_daddr: Foreign IPv4 addr
108  *	@skc_rcv_saddr: Bound local IPv4 addr
109  *	@skc_addrpair: 8-byte-aligned __u64 union of @skc_daddr & @skc_rcv_saddr
110  *	@skc_hash: hash value used with various protocol lookup tables
111  *	@skc_u16hashes: two u16 hash values used by UDP lookup tables
112  *	@skc_dport: placeholder for inet_dport/tw_dport
113  *	@skc_num: placeholder for inet_num/tw_num
114  *	@skc_portpair: __u32 union of @skc_dport & @skc_num
115  *	@skc_family: network address family
116  *	@skc_state: Connection state
117  *	@skc_reuse: %SO_REUSEADDR setting
118  *	@skc_reuseport: %SO_REUSEPORT setting
119  *	@skc_ipv6only: socket is IPV6 only
120  *	@skc_net_refcnt: socket is using net ref counting
121  *	@skc_bound_dev_if: bound device index if != 0
122  *	@skc_bind_node: bind hash linkage for various protocol lookup tables
123  *	@skc_portaddr_node: second hash linkage for UDP/UDP-Lite protocol
124  *	@skc_prot: protocol handlers inside a network family
125  *	@skc_net: reference to the network namespace of this socket
126  *	@skc_v6_daddr: IPV6 destination address
127  *	@skc_v6_rcv_saddr: IPV6 source address
128  *	@skc_cookie: socket's cookie value
129  *	@skc_node: main hash linkage for various protocol lookup tables
130  *	@skc_nulls_node: main hash linkage for TCP/UDP/UDP-Lite protocol
131  *	@skc_tx_queue_mapping: tx queue number for this connection
132  *	@skc_rx_queue_mapping: rx queue number for this connection
133  *	@skc_flags: place holder for sk_flags
134  *		%SO_LINGER (l_onoff), %SO_BROADCAST, %SO_KEEPALIVE,
135  *		%SO_OOBINLINE settings, %SO_TIMESTAMPING settings
136  *	@skc_listener: connection request listener socket (aka rsk_listener)
137  *		[union with @skc_flags]
138  *	@skc_tw_dr: (aka tw_dr) ptr to &struct inet_timewait_death_row
139  *		[union with @skc_flags]
140  *	@skc_incoming_cpu: record/match cpu processing incoming packets
141  *	@skc_rcv_wnd: (aka rsk_rcv_wnd) TCP receive window size (possibly scaled)
142  *		[union with @skc_incoming_cpu]
143  *	@skc_tw_rcv_nxt: (aka tw_rcv_nxt) TCP window next expected seq number
144  *		[union with @skc_incoming_cpu]
145  *	@skc_refcnt: reference count
146  *
147  *	This is the minimal network layer representation of sockets, the header
148  *	for struct sock and struct inet_timewait_sock.
149  */
150 struct sock_common {
151 	union {
152 		__addrpair	skc_addrpair;
153 		struct {
154 			__be32	skc_daddr;
155 			__be32	skc_rcv_saddr;
156 		};
157 	};
158 	union  {
159 		unsigned int	skc_hash;
160 		__u16		skc_u16hashes[2];
161 	};
162 	/* skc_dport && skc_num must be grouped as well */
163 	union {
164 		__portpair	skc_portpair;
165 		struct {
166 			__be16	skc_dport;
167 			__u16	skc_num;
168 		};
169 	};
170 
171 	unsigned short		skc_family;
172 	volatile unsigned char	skc_state;
173 	unsigned char		skc_reuse:4;
174 	unsigned char		skc_reuseport:1;
175 	unsigned char		skc_ipv6only:1;
176 	unsigned char		skc_net_refcnt:1;
177 	int			skc_bound_dev_if;
178 	union {
179 		struct hlist_node	skc_bind_node;
180 		struct hlist_node	skc_portaddr_node;
181 	};
182 	struct proto		*skc_prot;
183 	possible_net_t		skc_net;
184 
185 #if IS_ENABLED(CONFIG_IPV6)
186 	struct in6_addr		skc_v6_daddr;
187 	struct in6_addr		skc_v6_rcv_saddr;
188 #endif
189 
190 	atomic64_t		skc_cookie;
191 
192 	/* following fields are padding to force
193 	 * offset(struct sock, sk_refcnt) == 128 on 64bit arches
194 	 * assuming IPV6 is enabled. We use this padding differently
195 	 * for different kind of 'sockets'
196 	 */
197 	union {
198 		unsigned long	skc_flags;
199 		struct sock	*skc_listener; /* request_sock */
200 		struct inet_timewait_death_row *skc_tw_dr; /* inet_timewait_sock */
201 	};
202 	/*
203 	 * fields between dontcopy_begin/dontcopy_end
204 	 * are not copied in sock_copy()
205 	 */
206 	/* private: */
207 	int			skc_dontcopy_begin[0];
208 	/* public: */
209 	union {
210 		struct hlist_node	skc_node;
211 		struct hlist_nulls_node skc_nulls_node;
212 	};
213 	unsigned short		skc_tx_queue_mapping;
214 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
215 	unsigned short		skc_rx_queue_mapping;
216 #endif
217 	union {
218 		int		skc_incoming_cpu;
219 		u32		skc_rcv_wnd;
220 		u32		skc_tw_rcv_nxt; /* struct tcp_timewait_sock  */
221 	};
222 
223 	refcount_t		skc_refcnt;
224 	/* private: */
225 	int                     skc_dontcopy_end[0];
226 	union {
227 		u32		skc_rxhash;
228 		u32		skc_window_clamp;
229 		u32		skc_tw_snd_nxt; /* struct tcp_timewait_sock */
230 	};
231 	/* public: */
232 };
233 
234 struct bpf_local_storage;
235 struct sk_filter;
236 
237 /**
238   *	struct sock - network layer representation of sockets
239   *	@__sk_common: shared layout with inet_timewait_sock
240   *	@sk_shutdown: mask of %SEND_SHUTDOWN and/or %RCV_SHUTDOWN
241   *	@sk_userlocks: %SO_SNDBUF and %SO_RCVBUF settings
242   *	@sk_lock:	synchronizer
243   *	@sk_kern_sock: True if sock is using kernel lock classes
244   *	@sk_rcvbuf: size of receive buffer in bytes
245   *	@sk_wq: sock wait queue and async head
246   *	@sk_rx_dst: receive input route used by early demux
247   *	@sk_rx_dst_ifindex: ifindex for @sk_rx_dst
248   *	@sk_rx_dst_cookie: cookie for @sk_rx_dst
249   *	@sk_dst_cache: destination cache
250   *	@sk_dst_pending_confirm: need to confirm neighbour
251   *	@sk_policy: flow policy
252   *	@sk_receive_queue: incoming packets
253   *	@sk_wmem_alloc: transmit queue bytes committed
254   *	@sk_tsq_flags: TCP Small Queues flags
255   *	@sk_write_queue: Packet sending queue
256   *	@sk_omem_alloc: "o" is "option" or "other"
257   *	@sk_wmem_queued: persistent queue size
258   *	@sk_forward_alloc: space allocated forward
259   *	@sk_reserved_mem: space reserved and non-reclaimable for the socket
260   *	@sk_napi_id: id of the last napi context to receive data for sk
261   *	@sk_ll_usec: usecs to busypoll when there is no data
262   *	@sk_allocation: allocation mode
263   *	@sk_pacing_rate: Pacing rate (if supported by transport/packet scheduler)
264   *	@sk_pacing_status: Pacing status (requested, handled by sch_fq)
265   *	@sk_max_pacing_rate: Maximum pacing rate (%SO_MAX_PACING_RATE)
266   *	@sk_sndbuf: size of send buffer in bytes
267   *	@sk_no_check_tx: %SO_NO_CHECK setting, set checksum in TX packets
268   *	@sk_no_check_rx: allow zero checksum in RX packets
269   *	@sk_route_caps: route capabilities (e.g. %NETIF_F_TSO)
270   *	@sk_gso_disabled: if set, NETIF_F_GSO_MASK is forbidden.
271   *	@sk_gso_type: GSO type (e.g. %SKB_GSO_TCPV4)
272   *	@sk_gso_max_size: Maximum GSO segment size to build
273   *	@sk_gso_max_segs: Maximum number of GSO segments
274   *	@sk_pacing_shift: scaling factor for TCP Small Queues
275   *	@sk_lingertime: %SO_LINGER l_linger setting
276   *	@sk_backlog: always used with the per-socket spinlock held
277   *	@sk_callback_lock: used with the callbacks in the end of this struct
278   *	@sk_error_queue: rarely used
279   *	@sk_prot_creator: sk_prot of original sock creator (see ipv6_setsockopt,
280   *			  IPV6_ADDRFORM for instance)
281   *	@sk_err: last error
282   *	@sk_err_soft: errors that don't cause failure but are the cause of a
283   *		      persistent failure not just 'timed out'
284   *	@sk_drops: raw/udp drops counter
285   *	@sk_ack_backlog: current listen backlog
286   *	@sk_max_ack_backlog: listen backlog set in listen()
287   *	@sk_uid: user id of owner
288   *	@sk_prefer_busy_poll: prefer busypolling over softirq processing
289   *	@sk_busy_poll_budget: napi processing budget when busypolling
290   *	@sk_priority: %SO_PRIORITY setting
291   *	@sk_type: socket type (%SOCK_STREAM, etc)
292   *	@sk_protocol: which protocol this socket belongs in this network family
293   *	@sk_peer_lock: lock protecting @sk_peer_pid and @sk_peer_cred
294   *	@sk_peer_pid: &struct pid for this socket's peer
295   *	@sk_peer_cred: %SO_PEERCRED setting
296   *	@sk_rcvlowat: %SO_RCVLOWAT setting
297   *	@sk_rcvtimeo: %SO_RCVTIMEO setting
298   *	@sk_sndtimeo: %SO_SNDTIMEO setting
299   *	@sk_txhash: computed flow hash for use on transmit
300   *	@sk_txrehash: enable TX hash rethink
301   *	@sk_filter: socket filtering instructions
302   *	@sk_timer: sock cleanup timer
303   *	@sk_stamp: time stamp of last packet received
304   *	@sk_stamp_seq: lock for accessing sk_stamp on 32 bit architectures only
305   *	@sk_tsflags: SO_TIMESTAMPING flags
306   *	@sk_use_task_frag: allow sk_page_frag() to use current->task_frag.
307   *			   Sockets that can be used under memory reclaim should
308   *			   set this to false.
309   *	@sk_bind_phc: SO_TIMESTAMPING bind PHC index of PTP virtual clock
310   *	              for timestamping
311   *	@sk_tskey: counter to disambiguate concurrent tstamp requests
312   *	@sk_zckey: counter to order MSG_ZEROCOPY notifications
313   *	@sk_socket: Identd and reporting IO signals
314   *	@sk_user_data: RPC layer private data. Write-protected by @sk_callback_lock.
315   *	@sk_frag: cached page frag
316   *	@sk_peek_off: current peek_offset value
317   *	@sk_send_head: front of stuff to transmit
318   *	@tcp_rtx_queue: TCP re-transmit queue [union with @sk_send_head]
319   *	@sk_security: used by security modules
320   *	@sk_mark: generic packet mark
321   *	@sk_cgrp_data: cgroup data for this cgroup
322   *	@sk_memcg: this socket's memory cgroup association
323   *	@sk_write_pending: a write to stream socket waits to start
324   *	@sk_disconnects: number of disconnect operations performed on this sock
325   *	@sk_state_change: callback to indicate change in the state of the sock
326   *	@sk_data_ready: callback to indicate there is data to be processed
327   *	@sk_write_space: callback to indicate there is bf sending space available
328   *	@sk_error_report: callback to indicate errors (e.g. %MSG_ERRQUEUE)
329   *	@sk_backlog_rcv: callback to process the backlog
330   *	@sk_validate_xmit_skb: ptr to an optional validate function
331   *	@sk_destruct: called at sock freeing time, i.e. when all refcnt == 0
332   *	@sk_reuseport_cb: reuseport group container
333   *	@sk_bpf_storage: ptr to cache and control for bpf_sk_storage
334   *	@sk_rcu: used during RCU grace period
335   *	@sk_clockid: clockid used by time-based scheduling (SO_TXTIME)
336   *	@sk_txtime_deadline_mode: set deadline mode for SO_TXTIME
337   *	@sk_txtime_report_errors: set report errors mode for SO_TXTIME
338   *	@sk_txtime_unused: unused txtime flags
339   *	@ns_tracker: tracker for netns reference
340   */
341 struct sock {
342 	/*
343 	 * Now struct inet_timewait_sock also uses sock_common, so please just
344 	 * don't add nothing before this first member (__sk_common) --acme
345 	 */
346 	struct sock_common	__sk_common;
347 #define sk_node			__sk_common.skc_node
348 #define sk_nulls_node		__sk_common.skc_nulls_node
349 #define sk_refcnt		__sk_common.skc_refcnt
350 #define sk_tx_queue_mapping	__sk_common.skc_tx_queue_mapping
351 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
352 #define sk_rx_queue_mapping	__sk_common.skc_rx_queue_mapping
353 #endif
354 
355 #define sk_dontcopy_begin	__sk_common.skc_dontcopy_begin
356 #define sk_dontcopy_end		__sk_common.skc_dontcopy_end
357 #define sk_hash			__sk_common.skc_hash
358 #define sk_portpair		__sk_common.skc_portpair
359 #define sk_num			__sk_common.skc_num
360 #define sk_dport		__sk_common.skc_dport
361 #define sk_addrpair		__sk_common.skc_addrpair
362 #define sk_daddr		__sk_common.skc_daddr
363 #define sk_rcv_saddr		__sk_common.skc_rcv_saddr
364 #define sk_family		__sk_common.skc_family
365 #define sk_state		__sk_common.skc_state
366 #define sk_reuse		__sk_common.skc_reuse
367 #define sk_reuseport		__sk_common.skc_reuseport
368 #define sk_ipv6only		__sk_common.skc_ipv6only
369 #define sk_net_refcnt		__sk_common.skc_net_refcnt
370 #define sk_bound_dev_if		__sk_common.skc_bound_dev_if
371 #define sk_bind_node		__sk_common.skc_bind_node
372 #define sk_prot			__sk_common.skc_prot
373 #define sk_net			__sk_common.skc_net
374 #define sk_v6_daddr		__sk_common.skc_v6_daddr
375 #define sk_v6_rcv_saddr	__sk_common.skc_v6_rcv_saddr
376 #define sk_cookie		__sk_common.skc_cookie
377 #define sk_incoming_cpu		__sk_common.skc_incoming_cpu
378 #define sk_flags		__sk_common.skc_flags
379 #define sk_rxhash		__sk_common.skc_rxhash
380 
381 	__cacheline_group_begin(sock_write_rx);
382 
383 	atomic_t		sk_drops;
384 	__s32			sk_peek_off;
385 	struct sk_buff_head	sk_error_queue;
386 	struct sk_buff_head	sk_receive_queue;
387 	/*
388 	 * The backlog queue is special, it is always used with
389 	 * the per-socket spinlock held and requires low latency
390 	 * access. Therefore we special case it's implementation.
391 	 * Note : rmem_alloc is in this structure to fill a hole
392 	 * on 64bit arches, not because its logically part of
393 	 * backlog.
394 	 */
395 	struct {
396 		atomic_t	rmem_alloc;
397 		int		len;
398 		struct sk_buff	*head;
399 		struct sk_buff	*tail;
400 	} sk_backlog;
401 #define sk_rmem_alloc sk_backlog.rmem_alloc
402 
403 	__cacheline_group_end(sock_write_rx);
404 
405 	__cacheline_group_begin(sock_read_rx);
406 	/* early demux fields */
407 	struct dst_entry __rcu	*sk_rx_dst;
408 	int			sk_rx_dst_ifindex;
409 	u32			sk_rx_dst_cookie;
410 
411 #ifdef CONFIG_NET_RX_BUSY_POLL
412 	unsigned int		sk_ll_usec;
413 	unsigned int		sk_napi_id;
414 	u16			sk_busy_poll_budget;
415 	u8			sk_prefer_busy_poll;
416 #endif
417 	u8			sk_userlocks;
418 	int			sk_rcvbuf;
419 
420 	struct sk_filter __rcu	*sk_filter;
421 	union {
422 		struct socket_wq __rcu	*sk_wq;
423 		/* private: */
424 		struct socket_wq	*sk_wq_raw;
425 		/* public: */
426 	};
427 
428 	void			(*sk_data_ready)(struct sock *sk);
429 	long			sk_rcvtimeo;
430 	int			sk_rcvlowat;
431 	__cacheline_group_end(sock_read_rx);
432 
433 	__cacheline_group_begin(sock_read_rxtx);
434 	int			sk_err;
435 	struct socket		*sk_socket;
436 	struct mem_cgroup	*sk_memcg;
437 #ifdef CONFIG_XFRM
438 	struct xfrm_policy __rcu *sk_policy[2];
439 #endif
440 	__cacheline_group_end(sock_read_rxtx);
441 
442 	__cacheline_group_begin(sock_write_rxtx);
443 	socket_lock_t		sk_lock;
444 	u32			sk_reserved_mem;
445 	int			sk_forward_alloc;
446 	u32			sk_tsflags;
447 	__cacheline_group_end(sock_write_rxtx);
448 
449 	__cacheline_group_begin(sock_write_tx);
450 	int			sk_write_pending;
451 	atomic_t		sk_omem_alloc;
452 	int			sk_sndbuf;
453 
454 	int			sk_wmem_queued;
455 	refcount_t		sk_wmem_alloc;
456 	unsigned long		sk_tsq_flags;
457 	union {
458 		struct sk_buff	*sk_send_head;
459 		struct rb_root	tcp_rtx_queue;
460 	};
461 	struct sk_buff_head	sk_write_queue;
462 	u32			sk_dst_pending_confirm;
463 	u32			sk_pacing_status; /* see enum sk_pacing */
464 	struct page_frag	sk_frag;
465 	struct timer_list	sk_timer;
466 
467 	unsigned long		sk_pacing_rate; /* bytes per second */
468 	atomic_t		sk_zckey;
469 	atomic_t		sk_tskey;
470 	__cacheline_group_end(sock_write_tx);
471 
472 	__cacheline_group_begin(sock_read_tx);
473 	unsigned long		sk_max_pacing_rate;
474 	long			sk_sndtimeo;
475 	u32			sk_priority;
476 	u32			sk_mark;
477 	struct dst_entry __rcu	*sk_dst_cache;
478 	netdev_features_t	sk_route_caps;
479 #ifdef CONFIG_SOCK_VALIDATE_XMIT
480 	struct sk_buff*		(*sk_validate_xmit_skb)(struct sock *sk,
481 							struct net_device *dev,
482 							struct sk_buff *skb);
483 #endif
484 	u16			sk_gso_type;
485 	u16			sk_gso_max_segs;
486 	unsigned int		sk_gso_max_size;
487 	gfp_t			sk_allocation;
488 	u32			sk_txhash;
489 	u8			sk_pacing_shift;
490 	bool			sk_use_task_frag;
491 	__cacheline_group_end(sock_read_tx);
492 
493 	/*
494 	 * Because of non atomicity rules, all
495 	 * changes are protected by socket lock.
496 	 */
497 	u8			sk_gso_disabled : 1,
498 				sk_kern_sock : 1,
499 				sk_no_check_tx : 1,
500 				sk_no_check_rx : 1;
501 	u8			sk_shutdown;
502 	u16			sk_type;
503 	u16			sk_protocol;
504 	unsigned long	        sk_lingertime;
505 	struct proto		*sk_prot_creator;
506 	rwlock_t		sk_callback_lock;
507 	int			sk_err_soft;
508 	u32			sk_ack_backlog;
509 	u32			sk_max_ack_backlog;
510 	kuid_t			sk_uid;
511 	spinlock_t		sk_peer_lock;
512 	int			sk_bind_phc;
513 	struct pid		*sk_peer_pid;
514 	const struct cred	*sk_peer_cred;
515 
516 	ktime_t			sk_stamp;
517 #if BITS_PER_LONG==32
518 	seqlock_t		sk_stamp_seq;
519 #endif
520 	int			sk_disconnects;
521 
522 	u8			sk_txrehash;
523 	u8			sk_clockid;
524 	u8			sk_txtime_deadline_mode : 1,
525 				sk_txtime_report_errors : 1,
526 				sk_txtime_unused : 6;
527 
528 	void			*sk_user_data;
529 #ifdef CONFIG_SECURITY
530 	void			*sk_security;
531 #endif
532 	struct sock_cgroup_data	sk_cgrp_data;
533 	void			(*sk_state_change)(struct sock *sk);
534 	void			(*sk_write_space)(struct sock *sk);
535 	void			(*sk_error_report)(struct sock *sk);
536 	int			(*sk_backlog_rcv)(struct sock *sk,
537 						  struct sk_buff *skb);
538 	void                    (*sk_destruct)(struct sock *sk);
539 	struct sock_reuseport __rcu	*sk_reuseport_cb;
540 #ifdef CONFIG_BPF_SYSCALL
541 	struct bpf_local_storage __rcu	*sk_bpf_storage;
542 #endif
543 	struct rcu_head		sk_rcu;
544 	netns_tracker		ns_tracker;
545 };
546 
547 struct sock_bh_locked {
548 	struct sock *sock;
549 	local_lock_t bh_lock;
550 };
551 
552 enum sk_pacing {
553 	SK_PACING_NONE		= 0,
554 	SK_PACING_NEEDED	= 1,
555 	SK_PACING_FQ		= 2,
556 };
557 
558 /* flag bits in sk_user_data
559  *
560  * - SK_USER_DATA_NOCOPY:      Pointer stored in sk_user_data might
561  *   not be suitable for copying when cloning the socket. For instance,
562  *   it can point to a reference counted object. sk_user_data bottom
563  *   bit is set if pointer must not be copied.
564  *
565  * - SK_USER_DATA_BPF:         Mark whether sk_user_data field is
566  *   managed/owned by a BPF reuseport array. This bit should be set
567  *   when sk_user_data's sk is added to the bpf's reuseport_array.
568  *
569  * - SK_USER_DATA_PSOCK:       Mark whether pointer stored in
570  *   sk_user_data points to psock type. This bit should be set
571  *   when sk_user_data is assigned to a psock object.
572  */
573 #define SK_USER_DATA_NOCOPY	1UL
574 #define SK_USER_DATA_BPF	2UL
575 #define SK_USER_DATA_PSOCK	4UL
576 #define SK_USER_DATA_PTRMASK	~(SK_USER_DATA_NOCOPY | SK_USER_DATA_BPF |\
577 				  SK_USER_DATA_PSOCK)
578 
579 /**
580  * sk_user_data_is_nocopy - Test if sk_user_data pointer must not be copied
581  * @sk: socket
582  */
583 static inline bool sk_user_data_is_nocopy(const struct sock *sk)
584 {
585 	return ((uintptr_t)sk->sk_user_data & SK_USER_DATA_NOCOPY);
586 }
587 
588 #define __sk_user_data(sk) ((*((void __rcu **)&(sk)->sk_user_data)))
589 
590 /**
591  * __locked_read_sk_user_data_with_flags - return the pointer
592  * only if argument flags all has been set in sk_user_data. Otherwise
593  * return NULL
594  *
595  * @sk: socket
596  * @flags: flag bits
597  *
598  * The caller must be holding sk->sk_callback_lock.
599  */
600 static inline void *
601 __locked_read_sk_user_data_with_flags(const struct sock *sk,
602 				      uintptr_t flags)
603 {
604 	uintptr_t sk_user_data =
605 		(uintptr_t)rcu_dereference_check(__sk_user_data(sk),
606 						 lockdep_is_held(&sk->sk_callback_lock));
607 
608 	WARN_ON_ONCE(flags & SK_USER_DATA_PTRMASK);
609 
610 	if ((sk_user_data & flags) == flags)
611 		return (void *)(sk_user_data & SK_USER_DATA_PTRMASK);
612 	return NULL;
613 }
614 
615 /**
616  * __rcu_dereference_sk_user_data_with_flags - return the pointer
617  * only if argument flags all has been set in sk_user_data. Otherwise
618  * return NULL
619  *
620  * @sk: socket
621  * @flags: flag bits
622  */
623 static inline void *
624 __rcu_dereference_sk_user_data_with_flags(const struct sock *sk,
625 					  uintptr_t flags)
626 {
627 	uintptr_t sk_user_data = (uintptr_t)rcu_dereference(__sk_user_data(sk));
628 
629 	WARN_ON_ONCE(flags & SK_USER_DATA_PTRMASK);
630 
631 	if ((sk_user_data & flags) == flags)
632 		return (void *)(sk_user_data & SK_USER_DATA_PTRMASK);
633 	return NULL;
634 }
635 
636 #define rcu_dereference_sk_user_data(sk)				\
637 	__rcu_dereference_sk_user_data_with_flags(sk, 0)
638 #define __rcu_assign_sk_user_data_with_flags(sk, ptr, flags)		\
639 ({									\
640 	uintptr_t __tmp1 = (uintptr_t)(ptr),				\
641 		  __tmp2 = (uintptr_t)(flags);				\
642 	WARN_ON_ONCE(__tmp1 & ~SK_USER_DATA_PTRMASK);			\
643 	WARN_ON_ONCE(__tmp2 & SK_USER_DATA_PTRMASK);			\
644 	rcu_assign_pointer(__sk_user_data((sk)),			\
645 			   __tmp1 | __tmp2);				\
646 })
647 #define rcu_assign_sk_user_data(sk, ptr)				\
648 	__rcu_assign_sk_user_data_with_flags(sk, ptr, 0)
649 
650 static inline
651 struct net *sock_net(const struct sock *sk)
652 {
653 	return read_pnet(&sk->sk_net);
654 }
655 
656 static inline
657 void sock_net_set(struct sock *sk, struct net *net)
658 {
659 	write_pnet(&sk->sk_net, net);
660 }
661 
662 /*
663  * SK_CAN_REUSE and SK_NO_REUSE on a socket mean that the socket is OK
664  * or not whether his port will be reused by someone else. SK_FORCE_REUSE
665  * on a socket means that the socket will reuse everybody else's port
666  * without looking at the other's sk_reuse value.
667  */
668 
669 #define SK_NO_REUSE	0
670 #define SK_CAN_REUSE	1
671 #define SK_FORCE_REUSE	2
672 
673 int sk_set_peek_off(struct sock *sk, int val);
674 
675 static inline int sk_peek_offset(const struct sock *sk, int flags)
676 {
677 	if (unlikely(flags & MSG_PEEK)) {
678 		return READ_ONCE(sk->sk_peek_off);
679 	}
680 
681 	return 0;
682 }
683 
684 static inline void sk_peek_offset_bwd(struct sock *sk, int val)
685 {
686 	s32 off = READ_ONCE(sk->sk_peek_off);
687 
688 	if (unlikely(off >= 0)) {
689 		off = max_t(s32, off - val, 0);
690 		WRITE_ONCE(sk->sk_peek_off, off);
691 	}
692 }
693 
694 static inline void sk_peek_offset_fwd(struct sock *sk, int val)
695 {
696 	sk_peek_offset_bwd(sk, -val);
697 }
698 
699 /*
700  * Hashed lists helper routines
701  */
702 static inline struct sock *sk_entry(const struct hlist_node *node)
703 {
704 	return hlist_entry(node, struct sock, sk_node);
705 }
706 
707 static inline struct sock *__sk_head(const struct hlist_head *head)
708 {
709 	return hlist_entry(head->first, struct sock, sk_node);
710 }
711 
712 static inline struct sock *sk_head(const struct hlist_head *head)
713 {
714 	return hlist_empty(head) ? NULL : __sk_head(head);
715 }
716 
717 static inline struct sock *__sk_nulls_head(const struct hlist_nulls_head *head)
718 {
719 	return hlist_nulls_entry(head->first, struct sock, sk_nulls_node);
720 }
721 
722 static inline struct sock *sk_nulls_head(const struct hlist_nulls_head *head)
723 {
724 	return hlist_nulls_empty(head) ? NULL : __sk_nulls_head(head);
725 }
726 
727 static inline struct sock *sk_next(const struct sock *sk)
728 {
729 	return hlist_entry_safe(sk->sk_node.next, struct sock, sk_node);
730 }
731 
732 static inline struct sock *sk_nulls_next(const struct sock *sk)
733 {
734 	return (!is_a_nulls(sk->sk_nulls_node.next)) ?
735 		hlist_nulls_entry(sk->sk_nulls_node.next,
736 				  struct sock, sk_nulls_node) :
737 		NULL;
738 }
739 
740 static inline bool sk_unhashed(const struct sock *sk)
741 {
742 	return hlist_unhashed(&sk->sk_node);
743 }
744 
745 static inline bool sk_hashed(const struct sock *sk)
746 {
747 	return !sk_unhashed(sk);
748 }
749 
750 static inline void sk_node_init(struct hlist_node *node)
751 {
752 	node->pprev = NULL;
753 }
754 
755 static inline void __sk_del_node(struct sock *sk)
756 {
757 	__hlist_del(&sk->sk_node);
758 }
759 
760 /* NB: equivalent to hlist_del_init_rcu */
761 static inline bool __sk_del_node_init(struct sock *sk)
762 {
763 	if (sk_hashed(sk)) {
764 		__sk_del_node(sk);
765 		sk_node_init(&sk->sk_node);
766 		return true;
767 	}
768 	return false;
769 }
770 
771 /* Grab socket reference count. This operation is valid only
772    when sk is ALREADY grabbed f.e. it is found in hash table
773    or a list and the lookup is made under lock preventing hash table
774    modifications.
775  */
776 
777 static __always_inline void sock_hold(struct sock *sk)
778 {
779 	refcount_inc(&sk->sk_refcnt);
780 }
781 
782 /* Ungrab socket in the context, which assumes that socket refcnt
783    cannot hit zero, f.e. it is true in context of any socketcall.
784  */
785 static __always_inline void __sock_put(struct sock *sk)
786 {
787 	refcount_dec(&sk->sk_refcnt);
788 }
789 
790 static inline bool sk_del_node_init(struct sock *sk)
791 {
792 	bool rc = __sk_del_node_init(sk);
793 
794 	if (rc) {
795 		/* paranoid for a while -acme */
796 		WARN_ON(refcount_read(&sk->sk_refcnt) == 1);
797 		__sock_put(sk);
798 	}
799 	return rc;
800 }
801 #define sk_del_node_init_rcu(sk)	sk_del_node_init(sk)
802 
803 static inline bool __sk_nulls_del_node_init_rcu(struct sock *sk)
804 {
805 	if (sk_hashed(sk)) {
806 		hlist_nulls_del_init_rcu(&sk->sk_nulls_node);
807 		return true;
808 	}
809 	return false;
810 }
811 
812 static inline bool sk_nulls_del_node_init_rcu(struct sock *sk)
813 {
814 	bool rc = __sk_nulls_del_node_init_rcu(sk);
815 
816 	if (rc) {
817 		/* paranoid for a while -acme */
818 		WARN_ON(refcount_read(&sk->sk_refcnt) == 1);
819 		__sock_put(sk);
820 	}
821 	return rc;
822 }
823 
824 static inline void __sk_add_node(struct sock *sk, struct hlist_head *list)
825 {
826 	hlist_add_head(&sk->sk_node, list);
827 }
828 
829 static inline void sk_add_node(struct sock *sk, struct hlist_head *list)
830 {
831 	sock_hold(sk);
832 	__sk_add_node(sk, list);
833 }
834 
835 static inline void sk_add_node_rcu(struct sock *sk, struct hlist_head *list)
836 {
837 	sock_hold(sk);
838 	if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport &&
839 	    sk->sk_family == AF_INET6)
840 		hlist_add_tail_rcu(&sk->sk_node, list);
841 	else
842 		hlist_add_head_rcu(&sk->sk_node, list);
843 }
844 
845 static inline void sk_add_node_tail_rcu(struct sock *sk, struct hlist_head *list)
846 {
847 	sock_hold(sk);
848 	hlist_add_tail_rcu(&sk->sk_node, list);
849 }
850 
851 static inline void __sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
852 {
853 	hlist_nulls_add_head_rcu(&sk->sk_nulls_node, list);
854 }
855 
856 static inline void __sk_nulls_add_node_tail_rcu(struct sock *sk, struct hlist_nulls_head *list)
857 {
858 	hlist_nulls_add_tail_rcu(&sk->sk_nulls_node, list);
859 }
860 
861 static inline void sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
862 {
863 	sock_hold(sk);
864 	__sk_nulls_add_node_rcu(sk, list);
865 }
866 
867 static inline void __sk_del_bind_node(struct sock *sk)
868 {
869 	__hlist_del(&sk->sk_bind_node);
870 }
871 
872 static inline void sk_add_bind_node(struct sock *sk,
873 					struct hlist_head *list)
874 {
875 	hlist_add_head(&sk->sk_bind_node, list);
876 }
877 
878 #define sk_for_each(__sk, list) \
879 	hlist_for_each_entry(__sk, list, sk_node)
880 #define sk_for_each_rcu(__sk, list) \
881 	hlist_for_each_entry_rcu(__sk, list, sk_node)
882 #define sk_nulls_for_each(__sk, node, list) \
883 	hlist_nulls_for_each_entry(__sk, node, list, sk_nulls_node)
884 #define sk_nulls_for_each_rcu(__sk, node, list) \
885 	hlist_nulls_for_each_entry_rcu(__sk, node, list, sk_nulls_node)
886 #define sk_for_each_from(__sk) \
887 	hlist_for_each_entry_from(__sk, sk_node)
888 #define sk_nulls_for_each_from(__sk, node) \
889 	if (__sk && ({ node = &(__sk)->sk_nulls_node; 1; })) \
890 		hlist_nulls_for_each_entry_from(__sk, node, sk_nulls_node)
891 #define sk_for_each_safe(__sk, tmp, list) \
892 	hlist_for_each_entry_safe(__sk, tmp, list, sk_node)
893 #define sk_for_each_bound(__sk, list) \
894 	hlist_for_each_entry(__sk, list, sk_bind_node)
895 
896 /**
897  * sk_for_each_entry_offset_rcu - iterate over a list at a given struct offset
898  * @tpos:	the type * to use as a loop cursor.
899  * @pos:	the &struct hlist_node to use as a loop cursor.
900  * @head:	the head for your list.
901  * @offset:	offset of hlist_node within the struct.
902  *
903  */
904 #define sk_for_each_entry_offset_rcu(tpos, pos, head, offset)		       \
905 	for (pos = rcu_dereference(hlist_first_rcu(head));		       \
906 	     pos != NULL &&						       \
907 		({ tpos = (typeof(*tpos) *)((void *)pos - offset); 1;});       \
908 	     pos = rcu_dereference(hlist_next_rcu(pos)))
909 
910 static inline struct user_namespace *sk_user_ns(const struct sock *sk)
911 {
912 	/* Careful only use this in a context where these parameters
913 	 * can not change and must all be valid, such as recvmsg from
914 	 * userspace.
915 	 */
916 	return sk->sk_socket->file->f_cred->user_ns;
917 }
918 
919 /* Sock flags */
920 enum sock_flags {
921 	SOCK_DEAD,
922 	SOCK_DONE,
923 	SOCK_URGINLINE,
924 	SOCK_KEEPOPEN,
925 	SOCK_LINGER,
926 	SOCK_DESTROY,
927 	SOCK_BROADCAST,
928 	SOCK_TIMESTAMP,
929 	SOCK_ZAPPED,
930 	SOCK_USE_WRITE_QUEUE, /* whether to call sk->sk_write_space in sock_wfree */
931 	SOCK_DBG, /* %SO_DEBUG setting */
932 	SOCK_RCVTSTAMP, /* %SO_TIMESTAMP setting */
933 	SOCK_RCVTSTAMPNS, /* %SO_TIMESTAMPNS setting */
934 	SOCK_LOCALROUTE, /* route locally only, %SO_DONTROUTE setting */
935 	SOCK_MEMALLOC, /* VM depends on this socket for swapping */
936 	SOCK_TIMESTAMPING_RX_SOFTWARE,  /* %SOF_TIMESTAMPING_RX_SOFTWARE */
937 	SOCK_FASYNC, /* fasync() active */
938 	SOCK_RXQ_OVFL,
939 	SOCK_ZEROCOPY, /* buffers from userspace */
940 	SOCK_WIFI_STATUS, /* push wifi status to userspace */
941 	SOCK_NOFCS, /* Tell NIC not to do the Ethernet FCS.
942 		     * Will use last 4 bytes of packet sent from
943 		     * user-space instead.
944 		     */
945 	SOCK_FILTER_LOCKED, /* Filter cannot be changed anymore */
946 	SOCK_SELECT_ERR_QUEUE, /* Wake select on error queue */
947 	SOCK_RCU_FREE, /* wait rcu grace period in sk_destruct() */
948 	SOCK_TXTIME,
949 	SOCK_XDP, /* XDP is attached */
950 	SOCK_TSTAMP_NEW, /* Indicates 64 bit timestamps always */
951 	SOCK_RCVMARK, /* Receive SO_MARK  ancillary data with packet */
952 };
953 
954 #define SK_FLAGS_TIMESTAMP ((1UL << SOCK_TIMESTAMP) | (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE))
955 
956 static inline void sock_copy_flags(struct sock *nsk, const struct sock *osk)
957 {
958 	nsk->sk_flags = osk->sk_flags;
959 }
960 
961 static inline void sock_set_flag(struct sock *sk, enum sock_flags flag)
962 {
963 	__set_bit(flag, &sk->sk_flags);
964 }
965 
966 static inline void sock_reset_flag(struct sock *sk, enum sock_flags flag)
967 {
968 	__clear_bit(flag, &sk->sk_flags);
969 }
970 
971 static inline void sock_valbool_flag(struct sock *sk, enum sock_flags bit,
972 				     int valbool)
973 {
974 	if (valbool)
975 		sock_set_flag(sk, bit);
976 	else
977 		sock_reset_flag(sk, bit);
978 }
979 
980 static inline bool sock_flag(const struct sock *sk, enum sock_flags flag)
981 {
982 	return test_bit(flag, &sk->sk_flags);
983 }
984 
985 #ifdef CONFIG_NET
986 DECLARE_STATIC_KEY_FALSE(memalloc_socks_key);
987 static inline int sk_memalloc_socks(void)
988 {
989 	return static_branch_unlikely(&memalloc_socks_key);
990 }
991 
992 void __receive_sock(struct file *file);
993 #else
994 
995 static inline int sk_memalloc_socks(void)
996 {
997 	return 0;
998 }
999 
1000 static inline void __receive_sock(struct file *file)
1001 { }
1002 #endif
1003 
1004 static inline gfp_t sk_gfp_mask(const struct sock *sk, gfp_t gfp_mask)
1005 {
1006 	return gfp_mask | (sk->sk_allocation & __GFP_MEMALLOC);
1007 }
1008 
1009 static inline void sk_acceptq_removed(struct sock *sk)
1010 {
1011 	WRITE_ONCE(sk->sk_ack_backlog, sk->sk_ack_backlog - 1);
1012 }
1013 
1014 static inline void sk_acceptq_added(struct sock *sk)
1015 {
1016 	WRITE_ONCE(sk->sk_ack_backlog, sk->sk_ack_backlog + 1);
1017 }
1018 
1019 /* Note: If you think the test should be:
1020  *	return READ_ONCE(sk->sk_ack_backlog) >= READ_ONCE(sk->sk_max_ack_backlog);
1021  * Then please take a look at commit 64a146513f8f ("[NET]: Revert incorrect accept queue backlog changes.")
1022  */
1023 static inline bool sk_acceptq_is_full(const struct sock *sk)
1024 {
1025 	return READ_ONCE(sk->sk_ack_backlog) > READ_ONCE(sk->sk_max_ack_backlog);
1026 }
1027 
1028 /*
1029  * Compute minimal free write space needed to queue new packets.
1030  */
1031 static inline int sk_stream_min_wspace(const struct sock *sk)
1032 {
1033 	return READ_ONCE(sk->sk_wmem_queued) >> 1;
1034 }
1035 
1036 static inline int sk_stream_wspace(const struct sock *sk)
1037 {
1038 	return READ_ONCE(sk->sk_sndbuf) - READ_ONCE(sk->sk_wmem_queued);
1039 }
1040 
1041 static inline void sk_wmem_queued_add(struct sock *sk, int val)
1042 {
1043 	WRITE_ONCE(sk->sk_wmem_queued, sk->sk_wmem_queued + val);
1044 }
1045 
1046 static inline void sk_forward_alloc_add(struct sock *sk, int val)
1047 {
1048 	/* Paired with lockless reads of sk->sk_forward_alloc */
1049 	WRITE_ONCE(sk->sk_forward_alloc, sk->sk_forward_alloc + val);
1050 }
1051 
1052 void sk_stream_write_space(struct sock *sk);
1053 
1054 /* OOB backlog add */
1055 static inline void __sk_add_backlog(struct sock *sk, struct sk_buff *skb)
1056 {
1057 	/* dont let skb dst not refcounted, we are going to leave rcu lock */
1058 	skb_dst_force(skb);
1059 
1060 	if (!sk->sk_backlog.tail)
1061 		WRITE_ONCE(sk->sk_backlog.head, skb);
1062 	else
1063 		sk->sk_backlog.tail->next = skb;
1064 
1065 	WRITE_ONCE(sk->sk_backlog.tail, skb);
1066 	skb->next = NULL;
1067 }
1068 
1069 /*
1070  * Take into account size of receive queue and backlog queue
1071  * Do not take into account this skb truesize,
1072  * to allow even a single big packet to come.
1073  */
1074 static inline bool sk_rcvqueues_full(const struct sock *sk, unsigned int limit)
1075 {
1076 	unsigned int qsize = sk->sk_backlog.len + atomic_read(&sk->sk_rmem_alloc);
1077 
1078 	return qsize > limit;
1079 }
1080 
1081 /* The per-socket spinlock must be held here. */
1082 static inline __must_check int sk_add_backlog(struct sock *sk, struct sk_buff *skb,
1083 					      unsigned int limit)
1084 {
1085 	if (sk_rcvqueues_full(sk, limit))
1086 		return -ENOBUFS;
1087 
1088 	/*
1089 	 * If the skb was allocated from pfmemalloc reserves, only
1090 	 * allow SOCK_MEMALLOC sockets to use it as this socket is
1091 	 * helping free memory
1092 	 */
1093 	if (skb_pfmemalloc(skb) && !sock_flag(sk, SOCK_MEMALLOC))
1094 		return -ENOMEM;
1095 
1096 	__sk_add_backlog(sk, skb);
1097 	sk->sk_backlog.len += skb->truesize;
1098 	return 0;
1099 }
1100 
1101 int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb);
1102 
1103 INDIRECT_CALLABLE_DECLARE(int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb));
1104 INDIRECT_CALLABLE_DECLARE(int tcp_v6_do_rcv(struct sock *sk, struct sk_buff *skb));
1105 
1106 static inline int sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
1107 {
1108 	if (sk_memalloc_socks() && skb_pfmemalloc(skb))
1109 		return __sk_backlog_rcv(sk, skb);
1110 
1111 	return INDIRECT_CALL_INET(sk->sk_backlog_rcv,
1112 				  tcp_v6_do_rcv,
1113 				  tcp_v4_do_rcv,
1114 				  sk, skb);
1115 }
1116 
1117 static inline void sk_incoming_cpu_update(struct sock *sk)
1118 {
1119 	int cpu = raw_smp_processor_id();
1120 
1121 	if (unlikely(READ_ONCE(sk->sk_incoming_cpu) != cpu))
1122 		WRITE_ONCE(sk->sk_incoming_cpu, cpu);
1123 }
1124 
1125 
1126 static inline void sock_rps_save_rxhash(struct sock *sk,
1127 					const struct sk_buff *skb)
1128 {
1129 #ifdef CONFIG_RPS
1130 	/* The following WRITE_ONCE() is paired with the READ_ONCE()
1131 	 * here, and another one in sock_rps_record_flow().
1132 	 */
1133 	if (unlikely(READ_ONCE(sk->sk_rxhash) != skb->hash))
1134 		WRITE_ONCE(sk->sk_rxhash, skb->hash);
1135 #endif
1136 }
1137 
1138 static inline void sock_rps_reset_rxhash(struct sock *sk)
1139 {
1140 #ifdef CONFIG_RPS
1141 	/* Paired with READ_ONCE() in sock_rps_record_flow() */
1142 	WRITE_ONCE(sk->sk_rxhash, 0);
1143 #endif
1144 }
1145 
1146 #define sk_wait_event(__sk, __timeo, __condition, __wait)		\
1147 	({	int __rc, __dis = __sk->sk_disconnects;			\
1148 		release_sock(__sk);					\
1149 		__rc = __condition;					\
1150 		if (!__rc) {						\
1151 			*(__timeo) = wait_woken(__wait,			\
1152 						TASK_INTERRUPTIBLE,	\
1153 						*(__timeo));		\
1154 		}							\
1155 		sched_annotate_sleep();					\
1156 		lock_sock(__sk);					\
1157 		__rc = __dis == __sk->sk_disconnects ? __condition : -EPIPE; \
1158 		__rc;							\
1159 	})
1160 
1161 int sk_stream_wait_connect(struct sock *sk, long *timeo_p);
1162 int sk_stream_wait_memory(struct sock *sk, long *timeo_p);
1163 void sk_stream_wait_close(struct sock *sk, long timeo_p);
1164 int sk_stream_error(struct sock *sk, int flags, int err);
1165 void sk_stream_kill_queues(struct sock *sk);
1166 void sk_set_memalloc(struct sock *sk);
1167 void sk_clear_memalloc(struct sock *sk);
1168 
1169 void __sk_flush_backlog(struct sock *sk);
1170 
1171 static inline bool sk_flush_backlog(struct sock *sk)
1172 {
1173 	if (unlikely(READ_ONCE(sk->sk_backlog.tail))) {
1174 		__sk_flush_backlog(sk);
1175 		return true;
1176 	}
1177 	return false;
1178 }
1179 
1180 int sk_wait_data(struct sock *sk, long *timeo, const struct sk_buff *skb);
1181 
1182 struct request_sock_ops;
1183 struct timewait_sock_ops;
1184 struct inet_hashinfo;
1185 struct raw_hashinfo;
1186 struct smc_hashinfo;
1187 struct module;
1188 struct sk_psock;
1189 
1190 /*
1191  * caches using SLAB_TYPESAFE_BY_RCU should let .next pointer from nulls nodes
1192  * un-modified. Special care is taken when initializing object to zero.
1193  */
1194 static inline void sk_prot_clear_nulls(struct sock *sk, int size)
1195 {
1196 	if (offsetof(struct sock, sk_node.next) != 0)
1197 		memset(sk, 0, offsetof(struct sock, sk_node.next));
1198 	memset(&sk->sk_node.pprev, 0,
1199 	       size - offsetof(struct sock, sk_node.pprev));
1200 }
1201 
1202 struct proto_accept_arg {
1203 	int flags;
1204 	int err;
1205 	int is_empty;
1206 	bool kern;
1207 };
1208 
1209 /* Networking protocol blocks we attach to sockets.
1210  * socket layer -> transport layer interface
1211  */
1212 struct proto {
1213 	void			(*close)(struct sock *sk,
1214 					long timeout);
1215 	int			(*pre_connect)(struct sock *sk,
1216 					struct sockaddr *uaddr,
1217 					int addr_len);
1218 	int			(*connect)(struct sock *sk,
1219 					struct sockaddr *uaddr,
1220 					int addr_len);
1221 	int			(*disconnect)(struct sock *sk, int flags);
1222 
1223 	struct sock *		(*accept)(struct sock *sk,
1224 					  struct proto_accept_arg *arg);
1225 
1226 	int			(*ioctl)(struct sock *sk, int cmd,
1227 					 int *karg);
1228 	int			(*init)(struct sock *sk);
1229 	void			(*destroy)(struct sock *sk);
1230 	void			(*shutdown)(struct sock *sk, int how);
1231 	int			(*setsockopt)(struct sock *sk, int level,
1232 					int optname, sockptr_t optval,
1233 					unsigned int optlen);
1234 	int			(*getsockopt)(struct sock *sk, int level,
1235 					int optname, char __user *optval,
1236 					int __user *option);
1237 	void			(*keepalive)(struct sock *sk, int valbool);
1238 #ifdef CONFIG_COMPAT
1239 	int			(*compat_ioctl)(struct sock *sk,
1240 					unsigned int cmd, unsigned long arg);
1241 #endif
1242 	int			(*sendmsg)(struct sock *sk, struct msghdr *msg,
1243 					   size_t len);
1244 	int			(*recvmsg)(struct sock *sk, struct msghdr *msg,
1245 					   size_t len, int flags, int *addr_len);
1246 	void			(*splice_eof)(struct socket *sock);
1247 	int			(*bind)(struct sock *sk,
1248 					struct sockaddr *addr, int addr_len);
1249 	int			(*bind_add)(struct sock *sk,
1250 					struct sockaddr *addr, int addr_len);
1251 
1252 	int			(*backlog_rcv) (struct sock *sk,
1253 						struct sk_buff *skb);
1254 	bool			(*bpf_bypass_getsockopt)(int level,
1255 							 int optname);
1256 
1257 	void		(*release_cb)(struct sock *sk);
1258 
1259 	/* Keeping track of sk's, looking them up, and port selection methods. */
1260 	int			(*hash)(struct sock *sk);
1261 	void			(*unhash)(struct sock *sk);
1262 	void			(*rehash)(struct sock *sk);
1263 	int			(*get_port)(struct sock *sk, unsigned short snum);
1264 	void			(*put_port)(struct sock *sk);
1265 #ifdef CONFIG_BPF_SYSCALL
1266 	int			(*psock_update_sk_prot)(struct sock *sk,
1267 							struct sk_psock *psock,
1268 							bool restore);
1269 #endif
1270 
1271 	/* Keeping track of sockets in use */
1272 #ifdef CONFIG_PROC_FS
1273 	unsigned int		inuse_idx;
1274 #endif
1275 
1276 #if IS_ENABLED(CONFIG_MPTCP)
1277 	int			(*forward_alloc_get)(const struct sock *sk);
1278 #endif
1279 
1280 	bool			(*stream_memory_free)(const struct sock *sk, int wake);
1281 	bool			(*sock_is_readable)(struct sock *sk);
1282 	/* Memory pressure */
1283 	void			(*enter_memory_pressure)(struct sock *sk);
1284 	void			(*leave_memory_pressure)(struct sock *sk);
1285 	atomic_long_t		*memory_allocated;	/* Current allocated memory. */
1286 	int  __percpu		*per_cpu_fw_alloc;
1287 	struct percpu_counter	*sockets_allocated;	/* Current number of sockets. */
1288 
1289 	/*
1290 	 * Pressure flag: try to collapse.
1291 	 * Technical note: it is used by multiple contexts non atomically.
1292 	 * Make sure to use READ_ONCE()/WRITE_ONCE() for all reads/writes.
1293 	 * All the __sk_mem_schedule() is of this nature: accounting
1294 	 * is strict, actions are advisory and have some latency.
1295 	 */
1296 	unsigned long		*memory_pressure;
1297 	long			*sysctl_mem;
1298 
1299 	int			*sysctl_wmem;
1300 	int			*sysctl_rmem;
1301 	u32			sysctl_wmem_offset;
1302 	u32			sysctl_rmem_offset;
1303 
1304 	int			max_header;
1305 	bool			no_autobind;
1306 
1307 	struct kmem_cache	*slab;
1308 	unsigned int		obj_size;
1309 	unsigned int		ipv6_pinfo_offset;
1310 	slab_flags_t		slab_flags;
1311 	unsigned int		useroffset;	/* Usercopy region offset */
1312 	unsigned int		usersize;	/* Usercopy region size */
1313 
1314 	unsigned int __percpu	*orphan_count;
1315 
1316 	struct request_sock_ops	*rsk_prot;
1317 	struct timewait_sock_ops *twsk_prot;
1318 
1319 	union {
1320 		struct inet_hashinfo	*hashinfo;
1321 		struct udp_table	*udp_table;
1322 		struct raw_hashinfo	*raw_hash;
1323 		struct smc_hashinfo	*smc_hash;
1324 	} h;
1325 
1326 	struct module		*owner;
1327 
1328 	char			name[32];
1329 
1330 	struct list_head	node;
1331 	int			(*diag_destroy)(struct sock *sk, int err);
1332 } __randomize_layout;
1333 
1334 int proto_register(struct proto *prot, int alloc_slab);
1335 void proto_unregister(struct proto *prot);
1336 int sock_load_diag_module(int family, int protocol);
1337 
1338 INDIRECT_CALLABLE_DECLARE(bool tcp_stream_memory_free(const struct sock *sk, int wake));
1339 
1340 static inline int sk_forward_alloc_get(const struct sock *sk)
1341 {
1342 #if IS_ENABLED(CONFIG_MPTCP)
1343 	if (sk->sk_prot->forward_alloc_get)
1344 		return sk->sk_prot->forward_alloc_get(sk);
1345 #endif
1346 	return READ_ONCE(sk->sk_forward_alloc);
1347 }
1348 
1349 static inline bool __sk_stream_memory_free(const struct sock *sk, int wake)
1350 {
1351 	if (READ_ONCE(sk->sk_wmem_queued) >= READ_ONCE(sk->sk_sndbuf))
1352 		return false;
1353 
1354 	return sk->sk_prot->stream_memory_free ?
1355 		INDIRECT_CALL_INET_1(sk->sk_prot->stream_memory_free,
1356 				     tcp_stream_memory_free, sk, wake) : true;
1357 }
1358 
1359 static inline bool sk_stream_memory_free(const struct sock *sk)
1360 {
1361 	return __sk_stream_memory_free(sk, 0);
1362 }
1363 
1364 static inline bool __sk_stream_is_writeable(const struct sock *sk, int wake)
1365 {
1366 	return sk_stream_wspace(sk) >= sk_stream_min_wspace(sk) &&
1367 	       __sk_stream_memory_free(sk, wake);
1368 }
1369 
1370 static inline bool sk_stream_is_writeable(const struct sock *sk)
1371 {
1372 	return __sk_stream_is_writeable(sk, 0);
1373 }
1374 
1375 static inline int sk_under_cgroup_hierarchy(struct sock *sk,
1376 					    struct cgroup *ancestor)
1377 {
1378 #ifdef CONFIG_SOCK_CGROUP_DATA
1379 	return cgroup_is_descendant(sock_cgroup_ptr(&sk->sk_cgrp_data),
1380 				    ancestor);
1381 #else
1382 	return -ENOTSUPP;
1383 #endif
1384 }
1385 
1386 #define SK_ALLOC_PERCPU_COUNTER_BATCH 16
1387 
1388 static inline void sk_sockets_allocated_dec(struct sock *sk)
1389 {
1390 	percpu_counter_add_batch(sk->sk_prot->sockets_allocated, -1,
1391 				 SK_ALLOC_PERCPU_COUNTER_BATCH);
1392 }
1393 
1394 static inline void sk_sockets_allocated_inc(struct sock *sk)
1395 {
1396 	percpu_counter_add_batch(sk->sk_prot->sockets_allocated, 1,
1397 				 SK_ALLOC_PERCPU_COUNTER_BATCH);
1398 }
1399 
1400 static inline u64
1401 sk_sockets_allocated_read_positive(struct sock *sk)
1402 {
1403 	return percpu_counter_read_positive(sk->sk_prot->sockets_allocated);
1404 }
1405 
1406 static inline int
1407 proto_sockets_allocated_sum_positive(struct proto *prot)
1408 {
1409 	return percpu_counter_sum_positive(prot->sockets_allocated);
1410 }
1411 
1412 #ifdef CONFIG_PROC_FS
1413 #define PROTO_INUSE_NR	64	/* should be enough for the first time */
1414 struct prot_inuse {
1415 	int all;
1416 	int val[PROTO_INUSE_NR];
1417 };
1418 
1419 static inline void sock_prot_inuse_add(const struct net *net,
1420 				       const struct proto *prot, int val)
1421 {
1422 	this_cpu_add(net->core.prot_inuse->val[prot->inuse_idx], val);
1423 }
1424 
1425 static inline void sock_inuse_add(const struct net *net, int val)
1426 {
1427 	this_cpu_add(net->core.prot_inuse->all, val);
1428 }
1429 
1430 int sock_prot_inuse_get(struct net *net, struct proto *proto);
1431 int sock_inuse_get(struct net *net);
1432 #else
1433 static inline void sock_prot_inuse_add(const struct net *net,
1434 				       const struct proto *prot, int val)
1435 {
1436 }
1437 
1438 static inline void sock_inuse_add(const struct net *net, int val)
1439 {
1440 }
1441 #endif
1442 
1443 
1444 /* With per-bucket locks this operation is not-atomic, so that
1445  * this version is not worse.
1446  */
1447 static inline int __sk_prot_rehash(struct sock *sk)
1448 {
1449 	sk->sk_prot->unhash(sk);
1450 	return sk->sk_prot->hash(sk);
1451 }
1452 
1453 /* About 10 seconds */
1454 #define SOCK_DESTROY_TIME (10*HZ)
1455 
1456 /* Sockets 0-1023 can't be bound to unless you are superuser */
1457 #define PROT_SOCK	1024
1458 
1459 #define SHUTDOWN_MASK	3
1460 #define RCV_SHUTDOWN	1
1461 #define SEND_SHUTDOWN	2
1462 
1463 #define SOCK_BINDADDR_LOCK	4
1464 #define SOCK_BINDPORT_LOCK	8
1465 
1466 struct socket_alloc {
1467 	struct socket socket;
1468 	struct inode vfs_inode;
1469 };
1470 
1471 static inline struct socket *SOCKET_I(struct inode *inode)
1472 {
1473 	return &container_of(inode, struct socket_alloc, vfs_inode)->socket;
1474 }
1475 
1476 static inline struct inode *SOCK_INODE(struct socket *socket)
1477 {
1478 	return &container_of(socket, struct socket_alloc, socket)->vfs_inode;
1479 }
1480 
1481 /*
1482  * Functions for memory accounting
1483  */
1484 int __sk_mem_raise_allocated(struct sock *sk, int size, int amt, int kind);
1485 int __sk_mem_schedule(struct sock *sk, int size, int kind);
1486 void __sk_mem_reduce_allocated(struct sock *sk, int amount);
1487 void __sk_mem_reclaim(struct sock *sk, int amount);
1488 
1489 #define SK_MEM_SEND	0
1490 #define SK_MEM_RECV	1
1491 
1492 /* sysctl_mem values are in pages */
1493 static inline long sk_prot_mem_limits(const struct sock *sk, int index)
1494 {
1495 	return READ_ONCE(sk->sk_prot->sysctl_mem[index]);
1496 }
1497 
1498 static inline int sk_mem_pages(int amt)
1499 {
1500 	return (amt + PAGE_SIZE - 1) >> PAGE_SHIFT;
1501 }
1502 
1503 static inline bool sk_has_account(struct sock *sk)
1504 {
1505 	/* return true if protocol supports memory accounting */
1506 	return !!sk->sk_prot->memory_allocated;
1507 }
1508 
1509 static inline bool sk_wmem_schedule(struct sock *sk, int size)
1510 {
1511 	int delta;
1512 
1513 	if (!sk_has_account(sk))
1514 		return true;
1515 	delta = size - sk->sk_forward_alloc;
1516 	return delta <= 0 || __sk_mem_schedule(sk, delta, SK_MEM_SEND);
1517 }
1518 
1519 static inline bool
1520 sk_rmem_schedule(struct sock *sk, struct sk_buff *skb, int size)
1521 {
1522 	int delta;
1523 
1524 	if (!sk_has_account(sk))
1525 		return true;
1526 	delta = size - sk->sk_forward_alloc;
1527 	return delta <= 0 || __sk_mem_schedule(sk, delta, SK_MEM_RECV) ||
1528 		skb_pfmemalloc(skb);
1529 }
1530 
1531 static inline int sk_unused_reserved_mem(const struct sock *sk)
1532 {
1533 	int unused_mem;
1534 
1535 	if (likely(!sk->sk_reserved_mem))
1536 		return 0;
1537 
1538 	unused_mem = sk->sk_reserved_mem - sk->sk_wmem_queued -
1539 			atomic_read(&sk->sk_rmem_alloc);
1540 
1541 	return unused_mem > 0 ? unused_mem : 0;
1542 }
1543 
1544 static inline void sk_mem_reclaim(struct sock *sk)
1545 {
1546 	int reclaimable;
1547 
1548 	if (!sk_has_account(sk))
1549 		return;
1550 
1551 	reclaimable = sk->sk_forward_alloc - sk_unused_reserved_mem(sk);
1552 
1553 	if (reclaimable >= (int)PAGE_SIZE)
1554 		__sk_mem_reclaim(sk, reclaimable);
1555 }
1556 
1557 static inline void sk_mem_reclaim_final(struct sock *sk)
1558 {
1559 	sk->sk_reserved_mem = 0;
1560 	sk_mem_reclaim(sk);
1561 }
1562 
1563 static inline void sk_mem_charge(struct sock *sk, int size)
1564 {
1565 	if (!sk_has_account(sk))
1566 		return;
1567 	sk_forward_alloc_add(sk, -size);
1568 }
1569 
1570 static inline void sk_mem_uncharge(struct sock *sk, int size)
1571 {
1572 	if (!sk_has_account(sk))
1573 		return;
1574 	sk_forward_alloc_add(sk, size);
1575 	sk_mem_reclaim(sk);
1576 }
1577 
1578 /*
1579  * Macro so as to not evaluate some arguments when
1580  * lockdep is not enabled.
1581  *
1582  * Mark both the sk_lock and the sk_lock.slock as a
1583  * per-address-family lock class.
1584  */
1585 #define sock_lock_init_class_and_name(sk, sname, skey, name, key)	\
1586 do {									\
1587 	sk->sk_lock.owned = 0;						\
1588 	init_waitqueue_head(&sk->sk_lock.wq);				\
1589 	spin_lock_init(&(sk)->sk_lock.slock);				\
1590 	debug_check_no_locks_freed((void *)&(sk)->sk_lock,		\
1591 			sizeof((sk)->sk_lock));				\
1592 	lockdep_set_class_and_name(&(sk)->sk_lock.slock,		\
1593 				(skey), (sname));				\
1594 	lockdep_init_map(&(sk)->sk_lock.dep_map, (name), (key), 0);	\
1595 } while (0)
1596 
1597 static inline bool lockdep_sock_is_held(const struct sock *sk)
1598 {
1599 	return lockdep_is_held(&sk->sk_lock) ||
1600 	       lockdep_is_held(&sk->sk_lock.slock);
1601 }
1602 
1603 void lock_sock_nested(struct sock *sk, int subclass);
1604 
1605 static inline void lock_sock(struct sock *sk)
1606 {
1607 	lock_sock_nested(sk, 0);
1608 }
1609 
1610 void __lock_sock(struct sock *sk);
1611 void __release_sock(struct sock *sk);
1612 void release_sock(struct sock *sk);
1613 
1614 /* BH context may only use the following locking interface. */
1615 #define bh_lock_sock(__sk)	spin_lock(&((__sk)->sk_lock.slock))
1616 #define bh_lock_sock_nested(__sk) \
1617 				spin_lock_nested(&((__sk)->sk_lock.slock), \
1618 				SINGLE_DEPTH_NESTING)
1619 #define bh_unlock_sock(__sk)	spin_unlock(&((__sk)->sk_lock.slock))
1620 
1621 bool __lock_sock_fast(struct sock *sk) __acquires(&sk->sk_lock.slock);
1622 
1623 /**
1624  * lock_sock_fast - fast version of lock_sock
1625  * @sk: socket
1626  *
1627  * This version should be used for very small section, where process wont block
1628  * return false if fast path is taken:
1629  *
1630  *   sk_lock.slock locked, owned = 0, BH disabled
1631  *
1632  * return true if slow path is taken:
1633  *
1634  *   sk_lock.slock unlocked, owned = 1, BH enabled
1635  */
1636 static inline bool lock_sock_fast(struct sock *sk)
1637 {
1638 	/* The sk_lock has mutex_lock() semantics here. */
1639 	mutex_acquire(&sk->sk_lock.dep_map, 0, 0, _RET_IP_);
1640 
1641 	return __lock_sock_fast(sk);
1642 }
1643 
1644 /* fast socket lock variant for caller already holding a [different] socket lock */
1645 static inline bool lock_sock_fast_nested(struct sock *sk)
1646 {
1647 	mutex_acquire(&sk->sk_lock.dep_map, SINGLE_DEPTH_NESTING, 0, _RET_IP_);
1648 
1649 	return __lock_sock_fast(sk);
1650 }
1651 
1652 /**
1653  * unlock_sock_fast - complement of lock_sock_fast
1654  * @sk: socket
1655  * @slow: slow mode
1656  *
1657  * fast unlock socket for user context.
1658  * If slow mode is on, we call regular release_sock()
1659  */
1660 static inline void unlock_sock_fast(struct sock *sk, bool slow)
1661 	__releases(&sk->sk_lock.slock)
1662 {
1663 	if (slow) {
1664 		release_sock(sk);
1665 		__release(&sk->sk_lock.slock);
1666 	} else {
1667 		mutex_release(&sk->sk_lock.dep_map, _RET_IP_);
1668 		spin_unlock_bh(&sk->sk_lock.slock);
1669 	}
1670 }
1671 
1672 void sockopt_lock_sock(struct sock *sk);
1673 void sockopt_release_sock(struct sock *sk);
1674 bool sockopt_ns_capable(struct user_namespace *ns, int cap);
1675 bool sockopt_capable(int cap);
1676 
1677 /* Used by processes to "lock" a socket state, so that
1678  * interrupts and bottom half handlers won't change it
1679  * from under us. It essentially blocks any incoming
1680  * packets, so that we won't get any new data or any
1681  * packets that change the state of the socket.
1682  *
1683  * While locked, BH processing will add new packets to
1684  * the backlog queue.  This queue is processed by the
1685  * owner of the socket lock right before it is released.
1686  *
1687  * Since ~2.3.5 it is also exclusive sleep lock serializing
1688  * accesses from user process context.
1689  */
1690 
1691 static inline void sock_owned_by_me(const struct sock *sk)
1692 {
1693 #ifdef CONFIG_LOCKDEP
1694 	WARN_ON_ONCE(!lockdep_sock_is_held(sk) && debug_locks);
1695 #endif
1696 }
1697 
1698 static inline void sock_not_owned_by_me(const struct sock *sk)
1699 {
1700 #ifdef CONFIG_LOCKDEP
1701 	WARN_ON_ONCE(lockdep_sock_is_held(sk) && debug_locks);
1702 #endif
1703 }
1704 
1705 static inline bool sock_owned_by_user(const struct sock *sk)
1706 {
1707 	sock_owned_by_me(sk);
1708 	return sk->sk_lock.owned;
1709 }
1710 
1711 static inline bool sock_owned_by_user_nocheck(const struct sock *sk)
1712 {
1713 	return sk->sk_lock.owned;
1714 }
1715 
1716 static inline void sock_release_ownership(struct sock *sk)
1717 {
1718 	DEBUG_NET_WARN_ON_ONCE(!sock_owned_by_user_nocheck(sk));
1719 	sk->sk_lock.owned = 0;
1720 
1721 	/* The sk_lock has mutex_unlock() semantics: */
1722 	mutex_release(&sk->sk_lock.dep_map, _RET_IP_);
1723 }
1724 
1725 /* no reclassification while locks are held */
1726 static inline bool sock_allow_reclassification(const struct sock *csk)
1727 {
1728 	struct sock *sk = (struct sock *)csk;
1729 
1730 	return !sock_owned_by_user_nocheck(sk) &&
1731 		!spin_is_locked(&sk->sk_lock.slock);
1732 }
1733 
1734 struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
1735 		      struct proto *prot, int kern);
1736 void sk_free(struct sock *sk);
1737 void sk_destruct(struct sock *sk);
1738 struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority);
1739 void sk_free_unlock_clone(struct sock *sk);
1740 
1741 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
1742 			     gfp_t priority);
1743 void __sock_wfree(struct sk_buff *skb);
1744 void sock_wfree(struct sk_buff *skb);
1745 struct sk_buff *sock_omalloc(struct sock *sk, unsigned long size,
1746 			     gfp_t priority);
1747 void skb_orphan_partial(struct sk_buff *skb);
1748 void sock_rfree(struct sk_buff *skb);
1749 void sock_efree(struct sk_buff *skb);
1750 #ifdef CONFIG_INET
1751 void sock_edemux(struct sk_buff *skb);
1752 void sock_pfree(struct sk_buff *skb);
1753 #else
1754 #define sock_edemux sock_efree
1755 #endif
1756 
1757 int sk_setsockopt(struct sock *sk, int level, int optname,
1758 		  sockptr_t optval, unsigned int optlen);
1759 int sock_setsockopt(struct socket *sock, int level, int op,
1760 		    sockptr_t optval, unsigned int optlen);
1761 int do_sock_setsockopt(struct socket *sock, bool compat, int level,
1762 		       int optname, sockptr_t optval, int optlen);
1763 int do_sock_getsockopt(struct socket *sock, bool compat, int level,
1764 		       int optname, sockptr_t optval, sockptr_t optlen);
1765 
1766 int sk_getsockopt(struct sock *sk, int level, int optname,
1767 		  sockptr_t optval, sockptr_t optlen);
1768 int sock_gettstamp(struct socket *sock, void __user *userstamp,
1769 		   bool timeval, bool time32);
1770 struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
1771 				     unsigned long data_len, int noblock,
1772 				     int *errcode, int max_page_order);
1773 
1774 static inline struct sk_buff *sock_alloc_send_skb(struct sock *sk,
1775 						  unsigned long size,
1776 						  int noblock, int *errcode)
1777 {
1778 	return sock_alloc_send_pskb(sk, size, 0, noblock, errcode, 0);
1779 }
1780 
1781 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority);
1782 void sock_kfree_s(struct sock *sk, void *mem, int size);
1783 void sock_kzfree_s(struct sock *sk, void *mem, int size);
1784 void sk_send_sigurg(struct sock *sk);
1785 
1786 static inline void sock_replace_proto(struct sock *sk, struct proto *proto)
1787 {
1788 	if (sk->sk_socket)
1789 		clear_bit(SOCK_SUPPORT_ZC, &sk->sk_socket->flags);
1790 	WRITE_ONCE(sk->sk_prot, proto);
1791 }
1792 
1793 struct sockcm_cookie {
1794 	u64 transmit_time;
1795 	u32 mark;
1796 	u32 tsflags;
1797 };
1798 
1799 static inline void sockcm_init(struct sockcm_cookie *sockc,
1800 			       const struct sock *sk)
1801 {
1802 	*sockc = (struct sockcm_cookie) {
1803 		.tsflags = READ_ONCE(sk->sk_tsflags)
1804 	};
1805 }
1806 
1807 int __sock_cmsg_send(struct sock *sk, struct cmsghdr *cmsg,
1808 		     struct sockcm_cookie *sockc);
1809 int sock_cmsg_send(struct sock *sk, struct msghdr *msg,
1810 		   struct sockcm_cookie *sockc);
1811 
1812 /*
1813  * Functions to fill in entries in struct proto_ops when a protocol
1814  * does not implement a particular function.
1815  */
1816 int sock_no_bind(struct socket *, struct sockaddr *, int);
1817 int sock_no_connect(struct socket *, struct sockaddr *, int, int);
1818 int sock_no_socketpair(struct socket *, struct socket *);
1819 int sock_no_accept(struct socket *, struct socket *, struct proto_accept_arg *);
1820 int sock_no_getname(struct socket *, struct sockaddr *, int);
1821 int sock_no_ioctl(struct socket *, unsigned int, unsigned long);
1822 int sock_no_listen(struct socket *, int);
1823 int sock_no_shutdown(struct socket *, int);
1824 int sock_no_sendmsg(struct socket *, struct msghdr *, size_t);
1825 int sock_no_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t len);
1826 int sock_no_recvmsg(struct socket *, struct msghdr *, size_t, int);
1827 int sock_no_mmap(struct file *file, struct socket *sock,
1828 		 struct vm_area_struct *vma);
1829 
1830 /*
1831  * Functions to fill in entries in struct proto_ops when a protocol
1832  * uses the inet style.
1833  */
1834 int sock_common_getsockopt(struct socket *sock, int level, int optname,
1835 				  char __user *optval, int __user *optlen);
1836 int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
1837 			int flags);
1838 int sock_common_setsockopt(struct socket *sock, int level, int optname,
1839 			   sockptr_t optval, unsigned int optlen);
1840 
1841 void sk_common_release(struct sock *sk);
1842 
1843 /*
1844  *	Default socket callbacks and setup code
1845  */
1846 
1847 /* Initialise core socket variables using an explicit uid. */
1848 void sock_init_data_uid(struct socket *sock, struct sock *sk, kuid_t uid);
1849 
1850 /* Initialise core socket variables.
1851  * Assumes struct socket *sock is embedded in a struct socket_alloc.
1852  */
1853 void sock_init_data(struct socket *sock, struct sock *sk);
1854 
1855 /*
1856  * Socket reference counting postulates.
1857  *
1858  * * Each user of socket SHOULD hold a reference count.
1859  * * Each access point to socket (an hash table bucket, reference from a list,
1860  *   running timer, skb in flight MUST hold a reference count.
1861  * * When reference count hits 0, it means it will never increase back.
1862  * * When reference count hits 0, it means that no references from
1863  *   outside exist to this socket and current process on current CPU
1864  *   is last user and may/should destroy this socket.
1865  * * sk_free is called from any context: process, BH, IRQ. When
1866  *   it is called, socket has no references from outside -> sk_free
1867  *   may release descendant resources allocated by the socket, but
1868  *   to the time when it is called, socket is NOT referenced by any
1869  *   hash tables, lists etc.
1870  * * Packets, delivered from outside (from network or from another process)
1871  *   and enqueued on receive/error queues SHOULD NOT grab reference count,
1872  *   when they sit in queue. Otherwise, packets will leak to hole, when
1873  *   socket is looked up by one cpu and unhasing is made by another CPU.
1874  *   It is true for udp/raw, netlink (leak to receive and error queues), tcp
1875  *   (leak to backlog). Packet socket does all the processing inside
1876  *   BR_NETPROTO_LOCK, so that it has not this race condition. UNIX sockets
1877  *   use separate SMP lock, so that they are prone too.
1878  */
1879 
1880 /* Ungrab socket and destroy it, if it was the last reference. */
1881 static inline void sock_put(struct sock *sk)
1882 {
1883 	if (refcount_dec_and_test(&sk->sk_refcnt))
1884 		sk_free(sk);
1885 }
1886 /* Generic version of sock_put(), dealing with all sockets
1887  * (TCP_TIMEWAIT, TCP_NEW_SYN_RECV, ESTABLISHED...)
1888  */
1889 void sock_gen_put(struct sock *sk);
1890 
1891 int __sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested,
1892 		     unsigned int trim_cap, bool refcounted);
1893 static inline int sk_receive_skb(struct sock *sk, struct sk_buff *skb,
1894 				 const int nested)
1895 {
1896 	return __sk_receive_skb(sk, skb, nested, 1, true);
1897 }
1898 
1899 static inline void sk_tx_queue_set(struct sock *sk, int tx_queue)
1900 {
1901 	/* sk_tx_queue_mapping accept only upto a 16-bit value */
1902 	if (WARN_ON_ONCE((unsigned short)tx_queue >= USHRT_MAX))
1903 		return;
1904 	/* Paired with READ_ONCE() in sk_tx_queue_get() and
1905 	 * other WRITE_ONCE() because socket lock might be not held.
1906 	 */
1907 	WRITE_ONCE(sk->sk_tx_queue_mapping, tx_queue);
1908 }
1909 
1910 #define NO_QUEUE_MAPPING	USHRT_MAX
1911 
1912 static inline void sk_tx_queue_clear(struct sock *sk)
1913 {
1914 	/* Paired with READ_ONCE() in sk_tx_queue_get() and
1915 	 * other WRITE_ONCE() because socket lock might be not held.
1916 	 */
1917 	WRITE_ONCE(sk->sk_tx_queue_mapping, NO_QUEUE_MAPPING);
1918 }
1919 
1920 static inline int sk_tx_queue_get(const struct sock *sk)
1921 {
1922 	if (sk) {
1923 		/* Paired with WRITE_ONCE() in sk_tx_queue_clear()
1924 		 * and sk_tx_queue_set().
1925 		 */
1926 		int val = READ_ONCE(sk->sk_tx_queue_mapping);
1927 
1928 		if (val != NO_QUEUE_MAPPING)
1929 			return val;
1930 	}
1931 	return -1;
1932 }
1933 
1934 static inline void __sk_rx_queue_set(struct sock *sk,
1935 				     const struct sk_buff *skb,
1936 				     bool force_set)
1937 {
1938 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
1939 	if (skb_rx_queue_recorded(skb)) {
1940 		u16 rx_queue = skb_get_rx_queue(skb);
1941 
1942 		if (force_set ||
1943 		    unlikely(READ_ONCE(sk->sk_rx_queue_mapping) != rx_queue))
1944 			WRITE_ONCE(sk->sk_rx_queue_mapping, rx_queue);
1945 	}
1946 #endif
1947 }
1948 
1949 static inline void sk_rx_queue_set(struct sock *sk, const struct sk_buff *skb)
1950 {
1951 	__sk_rx_queue_set(sk, skb, true);
1952 }
1953 
1954 static inline void sk_rx_queue_update(struct sock *sk, const struct sk_buff *skb)
1955 {
1956 	__sk_rx_queue_set(sk, skb, false);
1957 }
1958 
1959 static inline void sk_rx_queue_clear(struct sock *sk)
1960 {
1961 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
1962 	WRITE_ONCE(sk->sk_rx_queue_mapping, NO_QUEUE_MAPPING);
1963 #endif
1964 }
1965 
1966 static inline int sk_rx_queue_get(const struct sock *sk)
1967 {
1968 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
1969 	if (sk) {
1970 		int res = READ_ONCE(sk->sk_rx_queue_mapping);
1971 
1972 		if (res != NO_QUEUE_MAPPING)
1973 			return res;
1974 	}
1975 #endif
1976 
1977 	return -1;
1978 }
1979 
1980 static inline void sk_set_socket(struct sock *sk, struct socket *sock)
1981 {
1982 	sk->sk_socket = sock;
1983 }
1984 
1985 static inline wait_queue_head_t *sk_sleep(struct sock *sk)
1986 {
1987 	BUILD_BUG_ON(offsetof(struct socket_wq, wait) != 0);
1988 	return &rcu_dereference_raw(sk->sk_wq)->wait;
1989 }
1990 /* Detach socket from process context.
1991  * Announce socket dead, detach it from wait queue and inode.
1992  * Note that parent inode held reference count on this struct sock,
1993  * we do not release it in this function, because protocol
1994  * probably wants some additional cleanups or even continuing
1995  * to work with this socket (TCP).
1996  */
1997 static inline void sock_orphan(struct sock *sk)
1998 {
1999 	write_lock_bh(&sk->sk_callback_lock);
2000 	sock_set_flag(sk, SOCK_DEAD);
2001 	sk_set_socket(sk, NULL);
2002 	sk->sk_wq  = NULL;
2003 	write_unlock_bh(&sk->sk_callback_lock);
2004 }
2005 
2006 static inline void sock_graft(struct sock *sk, struct socket *parent)
2007 {
2008 	WARN_ON(parent->sk);
2009 	write_lock_bh(&sk->sk_callback_lock);
2010 	rcu_assign_pointer(sk->sk_wq, &parent->wq);
2011 	parent->sk = sk;
2012 	sk_set_socket(sk, parent);
2013 	sk->sk_uid = SOCK_INODE(parent)->i_uid;
2014 	security_sock_graft(sk, parent);
2015 	write_unlock_bh(&sk->sk_callback_lock);
2016 }
2017 
2018 kuid_t sock_i_uid(struct sock *sk);
2019 unsigned long __sock_i_ino(struct sock *sk);
2020 unsigned long sock_i_ino(struct sock *sk);
2021 
2022 static inline kuid_t sock_net_uid(const struct net *net, const struct sock *sk)
2023 {
2024 	return sk ? sk->sk_uid : make_kuid(net->user_ns, 0);
2025 }
2026 
2027 static inline u32 net_tx_rndhash(void)
2028 {
2029 	u32 v = get_random_u32();
2030 
2031 	return v ?: 1;
2032 }
2033 
2034 static inline void sk_set_txhash(struct sock *sk)
2035 {
2036 	/* This pairs with READ_ONCE() in skb_set_hash_from_sk() */
2037 	WRITE_ONCE(sk->sk_txhash, net_tx_rndhash());
2038 }
2039 
2040 static inline bool sk_rethink_txhash(struct sock *sk)
2041 {
2042 	if (sk->sk_txhash && sk->sk_txrehash == SOCK_TXREHASH_ENABLED) {
2043 		sk_set_txhash(sk);
2044 		return true;
2045 	}
2046 	return false;
2047 }
2048 
2049 static inline struct dst_entry *
2050 __sk_dst_get(const struct sock *sk)
2051 {
2052 	return rcu_dereference_check(sk->sk_dst_cache,
2053 				     lockdep_sock_is_held(sk));
2054 }
2055 
2056 static inline struct dst_entry *
2057 sk_dst_get(const struct sock *sk)
2058 {
2059 	struct dst_entry *dst;
2060 
2061 	rcu_read_lock();
2062 	dst = rcu_dereference(sk->sk_dst_cache);
2063 	if (dst && !rcuref_get(&dst->__rcuref))
2064 		dst = NULL;
2065 	rcu_read_unlock();
2066 	return dst;
2067 }
2068 
2069 static inline void __dst_negative_advice(struct sock *sk)
2070 {
2071 	struct dst_entry *dst = __sk_dst_get(sk);
2072 
2073 	if (dst && dst->ops->negative_advice)
2074 		dst->ops->negative_advice(sk, dst);
2075 }
2076 
2077 static inline void dst_negative_advice(struct sock *sk)
2078 {
2079 	sk_rethink_txhash(sk);
2080 	__dst_negative_advice(sk);
2081 }
2082 
2083 static inline void
2084 __sk_dst_set(struct sock *sk, struct dst_entry *dst)
2085 {
2086 	struct dst_entry *old_dst;
2087 
2088 	sk_tx_queue_clear(sk);
2089 	WRITE_ONCE(sk->sk_dst_pending_confirm, 0);
2090 	old_dst = rcu_dereference_protected(sk->sk_dst_cache,
2091 					    lockdep_sock_is_held(sk));
2092 	rcu_assign_pointer(sk->sk_dst_cache, dst);
2093 	dst_release(old_dst);
2094 }
2095 
2096 static inline void
2097 sk_dst_set(struct sock *sk, struct dst_entry *dst)
2098 {
2099 	struct dst_entry *old_dst;
2100 
2101 	sk_tx_queue_clear(sk);
2102 	WRITE_ONCE(sk->sk_dst_pending_confirm, 0);
2103 	old_dst = unrcu_pointer(xchg(&sk->sk_dst_cache, RCU_INITIALIZER(dst)));
2104 	dst_release(old_dst);
2105 }
2106 
2107 static inline void
2108 __sk_dst_reset(struct sock *sk)
2109 {
2110 	__sk_dst_set(sk, NULL);
2111 }
2112 
2113 static inline void
2114 sk_dst_reset(struct sock *sk)
2115 {
2116 	sk_dst_set(sk, NULL);
2117 }
2118 
2119 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie);
2120 
2121 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie);
2122 
2123 static inline void sk_dst_confirm(struct sock *sk)
2124 {
2125 	if (!READ_ONCE(sk->sk_dst_pending_confirm))
2126 		WRITE_ONCE(sk->sk_dst_pending_confirm, 1);
2127 }
2128 
2129 static inline void sock_confirm_neigh(struct sk_buff *skb, struct neighbour *n)
2130 {
2131 	if (skb_get_dst_pending_confirm(skb)) {
2132 		struct sock *sk = skb->sk;
2133 
2134 		if (sk && READ_ONCE(sk->sk_dst_pending_confirm))
2135 			WRITE_ONCE(sk->sk_dst_pending_confirm, 0);
2136 		neigh_confirm(n);
2137 	}
2138 }
2139 
2140 bool sk_mc_loop(const struct sock *sk);
2141 
2142 static inline bool sk_can_gso(const struct sock *sk)
2143 {
2144 	return net_gso_ok(sk->sk_route_caps, sk->sk_gso_type);
2145 }
2146 
2147 void sk_setup_caps(struct sock *sk, struct dst_entry *dst);
2148 
2149 static inline void sk_gso_disable(struct sock *sk)
2150 {
2151 	sk->sk_gso_disabled = 1;
2152 	sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
2153 }
2154 
2155 static inline int skb_do_copy_data_nocache(struct sock *sk, struct sk_buff *skb,
2156 					   struct iov_iter *from, char *to,
2157 					   int copy, int offset)
2158 {
2159 	if (skb->ip_summed == CHECKSUM_NONE) {
2160 		__wsum csum = 0;
2161 		if (!csum_and_copy_from_iter_full(to, copy, &csum, from))
2162 			return -EFAULT;
2163 		skb->csum = csum_block_add(skb->csum, csum, offset);
2164 	} else if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY) {
2165 		if (!copy_from_iter_full_nocache(to, copy, from))
2166 			return -EFAULT;
2167 	} else if (!copy_from_iter_full(to, copy, from))
2168 		return -EFAULT;
2169 
2170 	return 0;
2171 }
2172 
2173 static inline int skb_add_data_nocache(struct sock *sk, struct sk_buff *skb,
2174 				       struct iov_iter *from, int copy)
2175 {
2176 	int err, offset = skb->len;
2177 
2178 	err = skb_do_copy_data_nocache(sk, skb, from, skb_put(skb, copy),
2179 				       copy, offset);
2180 	if (err)
2181 		__skb_trim(skb, offset);
2182 
2183 	return err;
2184 }
2185 
2186 static inline int skb_copy_to_page_nocache(struct sock *sk, struct iov_iter *from,
2187 					   struct sk_buff *skb,
2188 					   struct page *page,
2189 					   int off, int copy)
2190 {
2191 	int err;
2192 
2193 	err = skb_do_copy_data_nocache(sk, skb, from, page_address(page) + off,
2194 				       copy, skb->len);
2195 	if (err)
2196 		return err;
2197 
2198 	skb_len_add(skb, copy);
2199 	sk_wmem_queued_add(sk, copy);
2200 	sk_mem_charge(sk, copy);
2201 	return 0;
2202 }
2203 
2204 /**
2205  * sk_wmem_alloc_get - returns write allocations
2206  * @sk: socket
2207  *
2208  * Return: sk_wmem_alloc minus initial offset of one
2209  */
2210 static inline int sk_wmem_alloc_get(const struct sock *sk)
2211 {
2212 	return refcount_read(&sk->sk_wmem_alloc) - 1;
2213 }
2214 
2215 /**
2216  * sk_rmem_alloc_get - returns read allocations
2217  * @sk: socket
2218  *
2219  * Return: sk_rmem_alloc
2220  */
2221 static inline int sk_rmem_alloc_get(const struct sock *sk)
2222 {
2223 	return atomic_read(&sk->sk_rmem_alloc);
2224 }
2225 
2226 /**
2227  * sk_has_allocations - check if allocations are outstanding
2228  * @sk: socket
2229  *
2230  * Return: true if socket has write or read allocations
2231  */
2232 static inline bool sk_has_allocations(const struct sock *sk)
2233 {
2234 	return sk_wmem_alloc_get(sk) || sk_rmem_alloc_get(sk);
2235 }
2236 
2237 /**
2238  * skwq_has_sleeper - check if there are any waiting processes
2239  * @wq: struct socket_wq
2240  *
2241  * Return: true if socket_wq has waiting processes
2242  *
2243  * The purpose of the skwq_has_sleeper and sock_poll_wait is to wrap the memory
2244  * barrier call. They were added due to the race found within the tcp code.
2245  *
2246  * Consider following tcp code paths::
2247  *
2248  *   CPU1                CPU2
2249  *   sys_select          receive packet
2250  *   ...                 ...
2251  *   __add_wait_queue    update tp->rcv_nxt
2252  *   ...                 ...
2253  *   tp->rcv_nxt check   sock_def_readable
2254  *   ...                 {
2255  *   schedule               rcu_read_lock();
2256  *                          wq = rcu_dereference(sk->sk_wq);
2257  *                          if (wq && waitqueue_active(&wq->wait))
2258  *                              wake_up_interruptible(&wq->wait)
2259  *                          ...
2260  *                       }
2261  *
2262  * The race for tcp fires when the __add_wait_queue changes done by CPU1 stay
2263  * in its cache, and so does the tp->rcv_nxt update on CPU2 side.  The CPU1
2264  * could then endup calling schedule and sleep forever if there are no more
2265  * data on the socket.
2266  *
2267  */
2268 static inline bool skwq_has_sleeper(struct socket_wq *wq)
2269 {
2270 	return wq && wq_has_sleeper(&wq->wait);
2271 }
2272 
2273 /**
2274  * sock_poll_wait - place memory barrier behind the poll_wait call.
2275  * @filp:           file
2276  * @sock:           socket to wait on
2277  * @p:              poll_table
2278  *
2279  * See the comments in the wq_has_sleeper function.
2280  */
2281 static inline void sock_poll_wait(struct file *filp, struct socket *sock,
2282 				  poll_table *p)
2283 {
2284 	if (!poll_does_not_wait(p)) {
2285 		poll_wait(filp, &sock->wq.wait, p);
2286 		/* We need to be sure we are in sync with the
2287 		 * socket flags modification.
2288 		 *
2289 		 * This memory barrier is paired in the wq_has_sleeper.
2290 		 */
2291 		smp_mb();
2292 	}
2293 }
2294 
2295 static inline void skb_set_hash_from_sk(struct sk_buff *skb, struct sock *sk)
2296 {
2297 	/* This pairs with WRITE_ONCE() in sk_set_txhash() */
2298 	u32 txhash = READ_ONCE(sk->sk_txhash);
2299 
2300 	if (txhash) {
2301 		skb->l4_hash = 1;
2302 		skb->hash = txhash;
2303 	}
2304 }
2305 
2306 void skb_set_owner_w(struct sk_buff *skb, struct sock *sk);
2307 
2308 /*
2309  *	Queue a received datagram if it will fit. Stream and sequenced
2310  *	protocols can't normally use this as they need to fit buffers in
2311  *	and play with them.
2312  *
2313  *	Inlined as it's very short and called for pretty much every
2314  *	packet ever received.
2315  */
2316 static inline void skb_set_owner_r(struct sk_buff *skb, struct sock *sk)
2317 {
2318 	skb_orphan(skb);
2319 	skb->sk = sk;
2320 	skb->destructor = sock_rfree;
2321 	atomic_add(skb->truesize, &sk->sk_rmem_alloc);
2322 	sk_mem_charge(sk, skb->truesize);
2323 }
2324 
2325 static inline __must_check bool skb_set_owner_sk_safe(struct sk_buff *skb, struct sock *sk)
2326 {
2327 	if (sk && refcount_inc_not_zero(&sk->sk_refcnt)) {
2328 		skb_orphan(skb);
2329 		skb->destructor = sock_efree;
2330 		skb->sk = sk;
2331 		return true;
2332 	}
2333 	return false;
2334 }
2335 
2336 static inline struct sk_buff *skb_clone_and_charge_r(struct sk_buff *skb, struct sock *sk)
2337 {
2338 	skb = skb_clone(skb, sk_gfp_mask(sk, GFP_ATOMIC));
2339 	if (skb) {
2340 		if (sk_rmem_schedule(sk, skb, skb->truesize)) {
2341 			skb_set_owner_r(skb, sk);
2342 			return skb;
2343 		}
2344 		__kfree_skb(skb);
2345 	}
2346 	return NULL;
2347 }
2348 
2349 static inline void skb_prepare_for_gro(struct sk_buff *skb)
2350 {
2351 	if (skb->destructor != sock_wfree) {
2352 		skb_orphan(skb);
2353 		return;
2354 	}
2355 	skb->slow_gro = 1;
2356 }
2357 
2358 void sk_reset_timer(struct sock *sk, struct timer_list *timer,
2359 		    unsigned long expires);
2360 
2361 void sk_stop_timer(struct sock *sk, struct timer_list *timer);
2362 
2363 void sk_stop_timer_sync(struct sock *sk, struct timer_list *timer);
2364 
2365 int __sk_queue_drop_skb(struct sock *sk, struct sk_buff_head *sk_queue,
2366 			struct sk_buff *skb, unsigned int flags,
2367 			void (*destructor)(struct sock *sk,
2368 					   struct sk_buff *skb));
2369 int __sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
2370 
2371 int sock_queue_rcv_skb_reason(struct sock *sk, struct sk_buff *skb,
2372 			      enum skb_drop_reason *reason);
2373 
2374 static inline int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
2375 {
2376 	return sock_queue_rcv_skb_reason(sk, skb, NULL);
2377 }
2378 
2379 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb);
2380 struct sk_buff *sock_dequeue_err_skb(struct sock *sk);
2381 
2382 /*
2383  *	Recover an error report and clear atomically
2384  */
2385 
2386 static inline int sock_error(struct sock *sk)
2387 {
2388 	int err;
2389 
2390 	/* Avoid an atomic operation for the common case.
2391 	 * This is racy since another cpu/thread can change sk_err under us.
2392 	 */
2393 	if (likely(data_race(!sk->sk_err)))
2394 		return 0;
2395 
2396 	err = xchg(&sk->sk_err, 0);
2397 	return -err;
2398 }
2399 
2400 void sk_error_report(struct sock *sk);
2401 
2402 static inline unsigned long sock_wspace(struct sock *sk)
2403 {
2404 	int amt = 0;
2405 
2406 	if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
2407 		amt = sk->sk_sndbuf - refcount_read(&sk->sk_wmem_alloc);
2408 		if (amt < 0)
2409 			amt = 0;
2410 	}
2411 	return amt;
2412 }
2413 
2414 /* Note:
2415  *  We use sk->sk_wq_raw, from contexts knowing this
2416  *  pointer is not NULL and cannot disappear/change.
2417  */
2418 static inline void sk_set_bit(int nr, struct sock *sk)
2419 {
2420 	if ((nr == SOCKWQ_ASYNC_NOSPACE || nr == SOCKWQ_ASYNC_WAITDATA) &&
2421 	    !sock_flag(sk, SOCK_FASYNC))
2422 		return;
2423 
2424 	set_bit(nr, &sk->sk_wq_raw->flags);
2425 }
2426 
2427 static inline void sk_clear_bit(int nr, struct sock *sk)
2428 {
2429 	if ((nr == SOCKWQ_ASYNC_NOSPACE || nr == SOCKWQ_ASYNC_WAITDATA) &&
2430 	    !sock_flag(sk, SOCK_FASYNC))
2431 		return;
2432 
2433 	clear_bit(nr, &sk->sk_wq_raw->flags);
2434 }
2435 
2436 static inline void sk_wake_async(const struct sock *sk, int how, int band)
2437 {
2438 	if (sock_flag(sk, SOCK_FASYNC)) {
2439 		rcu_read_lock();
2440 		sock_wake_async(rcu_dereference(sk->sk_wq), how, band);
2441 		rcu_read_unlock();
2442 	}
2443 }
2444 
2445 static inline void sk_wake_async_rcu(const struct sock *sk, int how, int band)
2446 {
2447 	if (unlikely(sock_flag(sk, SOCK_FASYNC)))
2448 		sock_wake_async(rcu_dereference(sk->sk_wq), how, band);
2449 }
2450 
2451 /* Since sk_{r,w}mem_alloc sums skb->truesize, even a small frame might
2452  * need sizeof(sk_buff) + MTU + padding, unless net driver perform copybreak.
2453  * Note: for send buffers, TCP works better if we can build two skbs at
2454  * minimum.
2455  */
2456 #define TCP_SKB_MIN_TRUESIZE	(2048 + SKB_DATA_ALIGN(sizeof(struct sk_buff)))
2457 
2458 #define SOCK_MIN_SNDBUF		(TCP_SKB_MIN_TRUESIZE * 2)
2459 #define SOCK_MIN_RCVBUF		 TCP_SKB_MIN_TRUESIZE
2460 
2461 static inline void sk_stream_moderate_sndbuf(struct sock *sk)
2462 {
2463 	u32 val;
2464 
2465 	if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
2466 		return;
2467 
2468 	val = min(sk->sk_sndbuf, sk->sk_wmem_queued >> 1);
2469 	val = max_t(u32, val, sk_unused_reserved_mem(sk));
2470 
2471 	WRITE_ONCE(sk->sk_sndbuf, max_t(u32, val, SOCK_MIN_SNDBUF));
2472 }
2473 
2474 /**
2475  * sk_page_frag - return an appropriate page_frag
2476  * @sk: socket
2477  *
2478  * Use the per task page_frag instead of the per socket one for
2479  * optimization when we know that we're in process context and own
2480  * everything that's associated with %current.
2481  *
2482  * Both direct reclaim and page faults can nest inside other
2483  * socket operations and end up recursing into sk_page_frag()
2484  * while it's already in use: explicitly avoid task page_frag
2485  * when users disable sk_use_task_frag.
2486  *
2487  * Return: a per task page_frag if context allows that,
2488  * otherwise a per socket one.
2489  */
2490 static inline struct page_frag *sk_page_frag(struct sock *sk)
2491 {
2492 	if (sk->sk_use_task_frag)
2493 		return &current->task_frag;
2494 
2495 	return &sk->sk_frag;
2496 }
2497 
2498 bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag);
2499 
2500 /*
2501  *	Default write policy as shown to user space via poll/select/SIGIO
2502  */
2503 static inline bool sock_writeable(const struct sock *sk)
2504 {
2505 	return refcount_read(&sk->sk_wmem_alloc) < (READ_ONCE(sk->sk_sndbuf) >> 1);
2506 }
2507 
2508 static inline gfp_t gfp_any(void)
2509 {
2510 	return in_softirq() ? GFP_ATOMIC : GFP_KERNEL;
2511 }
2512 
2513 static inline gfp_t gfp_memcg_charge(void)
2514 {
2515 	return in_softirq() ? GFP_ATOMIC : GFP_KERNEL;
2516 }
2517 
2518 static inline long sock_rcvtimeo(const struct sock *sk, bool noblock)
2519 {
2520 	return noblock ? 0 : sk->sk_rcvtimeo;
2521 }
2522 
2523 static inline long sock_sndtimeo(const struct sock *sk, bool noblock)
2524 {
2525 	return noblock ? 0 : sk->sk_sndtimeo;
2526 }
2527 
2528 static inline int sock_rcvlowat(const struct sock *sk, int waitall, int len)
2529 {
2530 	int v = waitall ? len : min_t(int, READ_ONCE(sk->sk_rcvlowat), len);
2531 
2532 	return v ?: 1;
2533 }
2534 
2535 /* Alas, with timeout socket operations are not restartable.
2536  * Compare this to poll().
2537  */
2538 static inline int sock_intr_errno(long timeo)
2539 {
2540 	return timeo == MAX_SCHEDULE_TIMEOUT ? -ERESTARTSYS : -EINTR;
2541 }
2542 
2543 struct sock_skb_cb {
2544 	u32 dropcount;
2545 };
2546 
2547 /* Store sock_skb_cb at the end of skb->cb[] so protocol families
2548  * using skb->cb[] would keep using it directly and utilize its
2549  * alignement guarantee.
2550  */
2551 #define SOCK_SKB_CB_OFFSET ((sizeof_field(struct sk_buff, cb) - \
2552 			    sizeof(struct sock_skb_cb)))
2553 
2554 #define SOCK_SKB_CB(__skb) ((struct sock_skb_cb *)((__skb)->cb + \
2555 			    SOCK_SKB_CB_OFFSET))
2556 
2557 #define sock_skb_cb_check_size(size) \
2558 	BUILD_BUG_ON((size) > SOCK_SKB_CB_OFFSET)
2559 
2560 static inline void
2561 sock_skb_set_dropcount(const struct sock *sk, struct sk_buff *skb)
2562 {
2563 	SOCK_SKB_CB(skb)->dropcount = sock_flag(sk, SOCK_RXQ_OVFL) ?
2564 						atomic_read(&sk->sk_drops) : 0;
2565 }
2566 
2567 static inline void sk_drops_add(struct sock *sk, const struct sk_buff *skb)
2568 {
2569 	int segs = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
2570 
2571 	atomic_add(segs, &sk->sk_drops);
2572 }
2573 
2574 static inline ktime_t sock_read_timestamp(struct sock *sk)
2575 {
2576 #if BITS_PER_LONG==32
2577 	unsigned int seq;
2578 	ktime_t kt;
2579 
2580 	do {
2581 		seq = read_seqbegin(&sk->sk_stamp_seq);
2582 		kt = sk->sk_stamp;
2583 	} while (read_seqretry(&sk->sk_stamp_seq, seq));
2584 
2585 	return kt;
2586 #else
2587 	return READ_ONCE(sk->sk_stamp);
2588 #endif
2589 }
2590 
2591 static inline void sock_write_timestamp(struct sock *sk, ktime_t kt)
2592 {
2593 #if BITS_PER_LONG==32
2594 	write_seqlock(&sk->sk_stamp_seq);
2595 	sk->sk_stamp = kt;
2596 	write_sequnlock(&sk->sk_stamp_seq);
2597 #else
2598 	WRITE_ONCE(sk->sk_stamp, kt);
2599 #endif
2600 }
2601 
2602 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
2603 			   struct sk_buff *skb);
2604 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
2605 			     struct sk_buff *skb);
2606 
2607 static inline void
2608 sock_recv_timestamp(struct msghdr *msg, struct sock *sk, struct sk_buff *skb)
2609 {
2610 	struct skb_shared_hwtstamps *hwtstamps = skb_hwtstamps(skb);
2611 	u32 tsflags = READ_ONCE(sk->sk_tsflags);
2612 	ktime_t kt = skb->tstamp;
2613 	/*
2614 	 * generate control messages if
2615 	 * - receive time stamping in software requested
2616 	 * - software time stamp available and wanted
2617 	 * - hardware time stamps available and wanted
2618 	 */
2619 	if (sock_flag(sk, SOCK_RCVTSTAMP) ||
2620 	    (tsflags & SOF_TIMESTAMPING_RX_SOFTWARE) ||
2621 	    (kt && tsflags & SOF_TIMESTAMPING_SOFTWARE) ||
2622 	    (hwtstamps->hwtstamp &&
2623 	     (tsflags & SOF_TIMESTAMPING_RAW_HARDWARE)))
2624 		__sock_recv_timestamp(msg, sk, skb);
2625 	else
2626 		sock_write_timestamp(sk, kt);
2627 
2628 	if (sock_flag(sk, SOCK_WIFI_STATUS) && skb_wifi_acked_valid(skb))
2629 		__sock_recv_wifi_status(msg, sk, skb);
2630 }
2631 
2632 void __sock_recv_cmsgs(struct msghdr *msg, struct sock *sk,
2633 		       struct sk_buff *skb);
2634 
2635 #define SK_DEFAULT_STAMP (-1L * NSEC_PER_SEC)
2636 static inline void sock_recv_cmsgs(struct msghdr *msg, struct sock *sk,
2637 				   struct sk_buff *skb)
2638 {
2639 #define FLAGS_RECV_CMSGS ((1UL << SOCK_RXQ_OVFL)			| \
2640 			   (1UL << SOCK_RCVTSTAMP)			| \
2641 			   (1UL << SOCK_RCVMARK))
2642 #define TSFLAGS_ANY	  (SOF_TIMESTAMPING_SOFTWARE			| \
2643 			   SOF_TIMESTAMPING_RAW_HARDWARE)
2644 
2645 	if (sk->sk_flags & FLAGS_RECV_CMSGS ||
2646 	    READ_ONCE(sk->sk_tsflags) & TSFLAGS_ANY)
2647 		__sock_recv_cmsgs(msg, sk, skb);
2648 	else if (unlikely(sock_flag(sk, SOCK_TIMESTAMP)))
2649 		sock_write_timestamp(sk, skb->tstamp);
2650 	else if (unlikely(sock_read_timestamp(sk) == SK_DEFAULT_STAMP))
2651 		sock_write_timestamp(sk, 0);
2652 }
2653 
2654 void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags);
2655 
2656 /**
2657  * _sock_tx_timestamp - checks whether the outgoing packet is to be time stamped
2658  * @sk:		socket sending this packet
2659  * @tsflags:	timestamping flags to use
2660  * @tx_flags:	completed with instructions for time stamping
2661  * @tskey:      filled in with next sk_tskey (not for TCP, which uses seqno)
2662  *
2663  * Note: callers should take care of initial ``*tx_flags`` value (usually 0)
2664  */
2665 static inline void _sock_tx_timestamp(struct sock *sk, __u16 tsflags,
2666 				      __u8 *tx_flags, __u32 *tskey)
2667 {
2668 	if (unlikely(tsflags)) {
2669 		__sock_tx_timestamp(tsflags, tx_flags);
2670 		if (tsflags & SOF_TIMESTAMPING_OPT_ID && tskey &&
2671 		    tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK)
2672 			*tskey = atomic_inc_return(&sk->sk_tskey) - 1;
2673 	}
2674 	if (unlikely(sock_flag(sk, SOCK_WIFI_STATUS)))
2675 		*tx_flags |= SKBTX_WIFI_STATUS;
2676 }
2677 
2678 static inline void sock_tx_timestamp(struct sock *sk, __u16 tsflags,
2679 				     __u8 *tx_flags)
2680 {
2681 	_sock_tx_timestamp(sk, tsflags, tx_flags, NULL);
2682 }
2683 
2684 static inline void skb_setup_tx_timestamp(struct sk_buff *skb, __u16 tsflags)
2685 {
2686 	_sock_tx_timestamp(skb->sk, tsflags, &skb_shinfo(skb)->tx_flags,
2687 			   &skb_shinfo(skb)->tskey);
2688 }
2689 
2690 static inline bool sk_is_inet(const struct sock *sk)
2691 {
2692 	int family = READ_ONCE(sk->sk_family);
2693 
2694 	return family == AF_INET || family == AF_INET6;
2695 }
2696 
2697 static inline bool sk_is_tcp(const struct sock *sk)
2698 {
2699 	return sk_is_inet(sk) &&
2700 	       sk->sk_type == SOCK_STREAM &&
2701 	       sk->sk_protocol == IPPROTO_TCP;
2702 }
2703 
2704 static inline bool sk_is_udp(const struct sock *sk)
2705 {
2706 	return sk_is_inet(sk) &&
2707 	       sk->sk_type == SOCK_DGRAM &&
2708 	       sk->sk_protocol == IPPROTO_UDP;
2709 }
2710 
2711 static inline bool sk_is_stream_unix(const struct sock *sk)
2712 {
2713 	return sk->sk_family == AF_UNIX && sk->sk_type == SOCK_STREAM;
2714 }
2715 
2716 /**
2717  * sk_eat_skb - Release a skb if it is no longer needed
2718  * @sk: socket to eat this skb from
2719  * @skb: socket buffer to eat
2720  *
2721  * This routine must be called with interrupts disabled or with the socket
2722  * locked so that the sk_buff queue operation is ok.
2723 */
2724 static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb)
2725 {
2726 	__skb_unlink(skb, &sk->sk_receive_queue);
2727 	__kfree_skb(skb);
2728 }
2729 
2730 static inline bool
2731 skb_sk_is_prefetched(struct sk_buff *skb)
2732 {
2733 #ifdef CONFIG_INET
2734 	return skb->destructor == sock_pfree;
2735 #else
2736 	return false;
2737 #endif /* CONFIG_INET */
2738 }
2739 
2740 /* This helper checks if a socket is a full socket,
2741  * ie _not_ a timewait or request socket.
2742  */
2743 static inline bool sk_fullsock(const struct sock *sk)
2744 {
2745 	return (1 << sk->sk_state) & ~(TCPF_TIME_WAIT | TCPF_NEW_SYN_RECV);
2746 }
2747 
2748 static inline bool
2749 sk_is_refcounted(struct sock *sk)
2750 {
2751 	/* Only full sockets have sk->sk_flags. */
2752 	return !sk_fullsock(sk) || !sock_flag(sk, SOCK_RCU_FREE);
2753 }
2754 
2755 /* Checks if this SKB belongs to an HW offloaded socket
2756  * and whether any SW fallbacks are required based on dev.
2757  * Check decrypted mark in case skb_orphan() cleared socket.
2758  */
2759 static inline struct sk_buff *sk_validate_xmit_skb(struct sk_buff *skb,
2760 						   struct net_device *dev)
2761 {
2762 #ifdef CONFIG_SOCK_VALIDATE_XMIT
2763 	struct sock *sk = skb->sk;
2764 
2765 	if (sk && sk_fullsock(sk) && sk->sk_validate_xmit_skb) {
2766 		skb = sk->sk_validate_xmit_skb(sk, dev, skb);
2767 	} else if (unlikely(skb_is_decrypted(skb))) {
2768 		pr_warn_ratelimited("unencrypted skb with no associated socket - dropping\n");
2769 		kfree_skb(skb);
2770 		skb = NULL;
2771 	}
2772 #endif
2773 
2774 	return skb;
2775 }
2776 
2777 /* This helper checks if a socket is a LISTEN or NEW_SYN_RECV
2778  * SYNACK messages can be attached to either ones (depending on SYNCOOKIE)
2779  */
2780 static inline bool sk_listener(const struct sock *sk)
2781 {
2782 	return (1 << sk->sk_state) & (TCPF_LISTEN | TCPF_NEW_SYN_RECV);
2783 }
2784 
2785 void sock_enable_timestamp(struct sock *sk, enum sock_flags flag);
2786 int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len, int level,
2787 		       int type);
2788 
2789 bool sk_ns_capable(const struct sock *sk,
2790 		   struct user_namespace *user_ns, int cap);
2791 bool sk_capable(const struct sock *sk, int cap);
2792 bool sk_net_capable(const struct sock *sk, int cap);
2793 
2794 void sk_get_meminfo(const struct sock *sk, u32 *meminfo);
2795 
2796 /* Take into consideration the size of the struct sk_buff overhead in the
2797  * determination of these values, since that is non-constant across
2798  * platforms.  This makes socket queueing behavior and performance
2799  * not depend upon such differences.
2800  */
2801 #define _SK_MEM_PACKETS		256
2802 #define _SK_MEM_OVERHEAD	SKB_TRUESIZE(256)
2803 #define SK_WMEM_MAX		(_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
2804 #define SK_RMEM_MAX		(_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
2805 
2806 extern __u32 sysctl_wmem_max;
2807 extern __u32 sysctl_rmem_max;
2808 
2809 extern int sysctl_tstamp_allow_data;
2810 
2811 extern __u32 sysctl_wmem_default;
2812 extern __u32 sysctl_rmem_default;
2813 
2814 #define SKB_FRAG_PAGE_ORDER	get_order(32768)
2815 DECLARE_STATIC_KEY_FALSE(net_high_order_alloc_disable_key);
2816 
2817 static inline int sk_get_wmem0(const struct sock *sk, const struct proto *proto)
2818 {
2819 	/* Does this proto have per netns sysctl_wmem ? */
2820 	if (proto->sysctl_wmem_offset)
2821 		return READ_ONCE(*(int *)((void *)sock_net(sk) + proto->sysctl_wmem_offset));
2822 
2823 	return READ_ONCE(*proto->sysctl_wmem);
2824 }
2825 
2826 static inline int sk_get_rmem0(const struct sock *sk, const struct proto *proto)
2827 {
2828 	/* Does this proto have per netns sysctl_rmem ? */
2829 	if (proto->sysctl_rmem_offset)
2830 		return READ_ONCE(*(int *)((void *)sock_net(sk) + proto->sysctl_rmem_offset));
2831 
2832 	return READ_ONCE(*proto->sysctl_rmem);
2833 }
2834 
2835 /* Default TCP Small queue budget is ~1 ms of data (1sec >> 10)
2836  * Some wifi drivers need to tweak it to get more chunks.
2837  * They can use this helper from their ndo_start_xmit()
2838  */
2839 static inline void sk_pacing_shift_update(struct sock *sk, int val)
2840 {
2841 	if (!sk || !sk_fullsock(sk) || READ_ONCE(sk->sk_pacing_shift) == val)
2842 		return;
2843 	WRITE_ONCE(sk->sk_pacing_shift, val);
2844 }
2845 
2846 /* if a socket is bound to a device, check that the given device
2847  * index is either the same or that the socket is bound to an L3
2848  * master device and the given device index is also enslaved to
2849  * that L3 master
2850  */
2851 static inline bool sk_dev_equal_l3scope(struct sock *sk, int dif)
2852 {
2853 	int bound_dev_if = READ_ONCE(sk->sk_bound_dev_if);
2854 	int mdif;
2855 
2856 	if (!bound_dev_if || bound_dev_if == dif)
2857 		return true;
2858 
2859 	mdif = l3mdev_master_ifindex_by_index(sock_net(sk), dif);
2860 	if (mdif && mdif == bound_dev_if)
2861 		return true;
2862 
2863 	return false;
2864 }
2865 
2866 void sock_def_readable(struct sock *sk);
2867 
2868 int sock_bindtoindex(struct sock *sk, int ifindex, bool lock_sk);
2869 void sock_set_timestamp(struct sock *sk, int optname, bool valbool);
2870 int sock_set_timestamping(struct sock *sk, int optname,
2871 			  struct so_timestamping timestamping);
2872 
2873 void sock_enable_timestamps(struct sock *sk);
2874 void sock_no_linger(struct sock *sk);
2875 void sock_set_keepalive(struct sock *sk);
2876 void sock_set_priority(struct sock *sk, u32 priority);
2877 void sock_set_rcvbuf(struct sock *sk, int val);
2878 void sock_set_mark(struct sock *sk, u32 val);
2879 void sock_set_reuseaddr(struct sock *sk);
2880 void sock_set_reuseport(struct sock *sk);
2881 void sock_set_sndtimeo(struct sock *sk, s64 secs);
2882 
2883 int sock_bind_add(struct sock *sk, struct sockaddr *addr, int addr_len);
2884 
2885 int sock_get_timeout(long timeo, void *optval, bool old_timeval);
2886 int sock_copy_user_timeval(struct __kernel_sock_timeval *tv,
2887 			   sockptr_t optval, int optlen, bool old_timeval);
2888 
2889 int sock_ioctl_inout(struct sock *sk, unsigned int cmd,
2890 		     void __user *arg, void *karg, size_t size);
2891 int sk_ioctl(struct sock *sk, unsigned int cmd, void __user *arg);
2892 static inline bool sk_is_readable(struct sock *sk)
2893 {
2894 	if (sk->sk_prot->sock_is_readable)
2895 		return sk->sk_prot->sock_is_readable(sk);
2896 	return false;
2897 }
2898 #endif	/* _SOCK_H */
2899