1 /* SPDX-License-Identifier: GPL-2.0-or-later */ 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * Definitions for the AF_INET socket handler. 8 * 9 * Version: @(#)sock.h 1.0.4 05/13/93 10 * 11 * Authors: Ross Biro 12 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 13 * Corey Minyard <wf-rch!minyard@relay.EU.net> 14 * Florian La Roche <flla@stud.uni-sb.de> 15 * 16 * Fixes: 17 * Alan Cox : Volatiles in skbuff pointers. See 18 * skbuff comments. May be overdone, 19 * better to prove they can be removed 20 * than the reverse. 21 * Alan Cox : Added a zapped field for tcp to note 22 * a socket is reset and must stay shut up 23 * Alan Cox : New fields for options 24 * Pauline Middelink : identd support 25 * Alan Cox : Eliminate low level recv/recvfrom 26 * David S. Miller : New socket lookup architecture. 27 * Steve Whitehouse: Default routines for sock_ops 28 * Arnaldo C. Melo : removed net_pinfo, tp_pinfo and made 29 * protinfo be just a void pointer, as the 30 * protocol specific parts were moved to 31 * respective headers and ipv4/v6, etc now 32 * use private slabcaches for its socks 33 * Pedro Hortas : New flags field for socket options 34 */ 35 #ifndef _SOCK_H 36 #define _SOCK_H 37 38 #include <linux/hardirq.h> 39 #include <linux/kernel.h> 40 #include <linux/list.h> 41 #include <linux/list_nulls.h> 42 #include <linux/timer.h> 43 #include <linux/cache.h> 44 #include <linux/bitops.h> 45 #include <linux/lockdep.h> 46 #include <linux/netdevice.h> 47 #include <linux/skbuff.h> /* struct sk_buff */ 48 #include <linux/mm.h> 49 #include <linux/security.h> 50 #include <linux/slab.h> 51 #include <linux/uaccess.h> 52 #include <linux/page_counter.h> 53 #include <linux/memcontrol.h> 54 #include <linux/static_key.h> 55 #include <linux/sched.h> 56 #include <linux/wait.h> 57 #include <linux/cgroup-defs.h> 58 #include <linux/rbtree.h> 59 #include <linux/rculist_nulls.h> 60 #include <linux/poll.h> 61 #include <linux/sockptr.h> 62 #include <linux/indirect_call_wrapper.h> 63 #include <linux/atomic.h> 64 #include <linux/refcount.h> 65 #include <linux/llist.h> 66 #include <net/dst.h> 67 #include <net/checksum.h> 68 #include <net/tcp_states.h> 69 #include <linux/net_tstamp.h> 70 #include <net/l3mdev.h> 71 #include <uapi/linux/socket.h> 72 73 /* 74 * This structure really needs to be cleaned up. 75 * Most of it is for TCP, and not used by any of 76 * the other protocols. 77 */ 78 79 /* This is the per-socket lock. The spinlock provides a synchronization 80 * between user contexts and software interrupt processing, whereas the 81 * mini-semaphore synchronizes multiple users amongst themselves. 82 */ 83 typedef struct { 84 spinlock_t slock; 85 int owned; 86 wait_queue_head_t wq; 87 /* 88 * We express the mutex-alike socket_lock semantics 89 * to the lock validator by explicitly managing 90 * the slock as a lock variant (in addition to 91 * the slock itself): 92 */ 93 #ifdef CONFIG_DEBUG_LOCK_ALLOC 94 struct lockdep_map dep_map; 95 #endif 96 } socket_lock_t; 97 98 struct sock; 99 struct proto; 100 struct net; 101 102 typedef __u32 __bitwise __portpair; 103 typedef __u64 __bitwise __addrpair; 104 105 /** 106 * struct sock_common - minimal network layer representation of sockets 107 * @skc_daddr: Foreign IPv4 addr 108 * @skc_rcv_saddr: Bound local IPv4 addr 109 * @skc_addrpair: 8-byte-aligned __u64 union of @skc_daddr & @skc_rcv_saddr 110 * @skc_hash: hash value used with various protocol lookup tables 111 * @skc_u16hashes: two u16 hash values used by UDP lookup tables 112 * @skc_dport: placeholder for inet_dport/tw_dport 113 * @skc_num: placeholder for inet_num/tw_num 114 * @skc_portpair: __u32 union of @skc_dport & @skc_num 115 * @skc_family: network address family 116 * @skc_state: Connection state 117 * @skc_reuse: %SO_REUSEADDR setting 118 * @skc_reuseport: %SO_REUSEPORT setting 119 * @skc_ipv6only: socket is IPV6 only 120 * @skc_net_refcnt: socket is using net ref counting 121 * @skc_bound_dev_if: bound device index if != 0 122 * @skc_bind_node: bind hash linkage for various protocol lookup tables 123 * @skc_portaddr_node: second hash linkage for UDP/UDP-Lite protocol 124 * @skc_prot: protocol handlers inside a network family 125 * @skc_net: reference to the network namespace of this socket 126 * @skc_v6_daddr: IPV6 destination address 127 * @skc_v6_rcv_saddr: IPV6 source address 128 * @skc_cookie: socket's cookie value 129 * @skc_node: main hash linkage for various protocol lookup tables 130 * @skc_nulls_node: main hash linkage for TCP/UDP/UDP-Lite protocol 131 * @skc_tx_queue_mapping: tx queue number for this connection 132 * @skc_rx_queue_mapping: rx queue number for this connection 133 * @skc_flags: place holder for sk_flags 134 * %SO_LINGER (l_onoff), %SO_BROADCAST, %SO_KEEPALIVE, 135 * %SO_OOBINLINE settings, %SO_TIMESTAMPING settings 136 * @skc_listener: connection request listener socket (aka rsk_listener) 137 * [union with @skc_flags] 138 * @skc_tw_dr: (aka tw_dr) ptr to &struct inet_timewait_death_row 139 * [union with @skc_flags] 140 * @skc_incoming_cpu: record/match cpu processing incoming packets 141 * @skc_rcv_wnd: (aka rsk_rcv_wnd) TCP receive window size (possibly scaled) 142 * [union with @skc_incoming_cpu] 143 * @skc_tw_rcv_nxt: (aka tw_rcv_nxt) TCP window next expected seq number 144 * [union with @skc_incoming_cpu] 145 * @skc_refcnt: reference count 146 * 147 * This is the minimal network layer representation of sockets, the header 148 * for struct sock and struct inet_timewait_sock. 149 */ 150 struct sock_common { 151 union { 152 __addrpair skc_addrpair; 153 struct { 154 __be32 skc_daddr; 155 __be32 skc_rcv_saddr; 156 }; 157 }; 158 union { 159 unsigned int skc_hash; 160 __u16 skc_u16hashes[2]; 161 }; 162 /* skc_dport && skc_num must be grouped as well */ 163 union { 164 __portpair skc_portpair; 165 struct { 166 __be16 skc_dport; 167 __u16 skc_num; 168 }; 169 }; 170 171 unsigned short skc_family; 172 volatile unsigned char skc_state; 173 unsigned char skc_reuse:4; 174 unsigned char skc_reuseport:1; 175 unsigned char skc_ipv6only:1; 176 unsigned char skc_net_refcnt:1; 177 int skc_bound_dev_if; 178 union { 179 struct hlist_node skc_bind_node; 180 struct hlist_node skc_portaddr_node; 181 }; 182 struct proto *skc_prot; 183 possible_net_t skc_net; 184 185 #if IS_ENABLED(CONFIG_IPV6) 186 struct in6_addr skc_v6_daddr; 187 struct in6_addr skc_v6_rcv_saddr; 188 #endif 189 190 atomic64_t skc_cookie; 191 192 /* following fields are padding to force 193 * offset(struct sock, sk_refcnt) == 128 on 64bit arches 194 * assuming IPV6 is enabled. We use this padding differently 195 * for different kind of 'sockets' 196 */ 197 union { 198 unsigned long skc_flags; 199 struct sock *skc_listener; /* request_sock */ 200 struct inet_timewait_death_row *skc_tw_dr; /* inet_timewait_sock */ 201 }; 202 /* 203 * fields between dontcopy_begin/dontcopy_end 204 * are not copied in sock_copy() 205 */ 206 /* private: */ 207 int skc_dontcopy_begin[0]; 208 /* public: */ 209 union { 210 struct hlist_node skc_node; 211 struct hlist_nulls_node skc_nulls_node; 212 }; 213 unsigned short skc_tx_queue_mapping; 214 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING 215 unsigned short skc_rx_queue_mapping; 216 #endif 217 union { 218 int skc_incoming_cpu; 219 u32 skc_rcv_wnd; 220 u32 skc_tw_rcv_nxt; /* struct tcp_timewait_sock */ 221 }; 222 223 refcount_t skc_refcnt; 224 /* private: */ 225 int skc_dontcopy_end[0]; 226 union { 227 u32 skc_rxhash; 228 u32 skc_window_clamp; 229 u32 skc_tw_snd_nxt; /* struct tcp_timewait_sock */ 230 }; 231 /* public: */ 232 }; 233 234 struct bpf_local_storage; 235 struct sk_filter; 236 237 /** 238 * struct sock - network layer representation of sockets 239 * @__sk_common: shared layout with inet_timewait_sock 240 * @sk_shutdown: mask of %SEND_SHUTDOWN and/or %RCV_SHUTDOWN 241 * @sk_userlocks: %SO_SNDBUF and %SO_RCVBUF settings 242 * @sk_lock: synchronizer 243 * @sk_kern_sock: True if sock is using kernel lock classes 244 * @sk_rcvbuf: size of receive buffer in bytes 245 * @sk_wq: sock wait queue and async head 246 * @sk_rx_dst: receive input route used by early demux 247 * @sk_rx_dst_ifindex: ifindex for @sk_rx_dst 248 * @sk_rx_dst_cookie: cookie for @sk_rx_dst 249 * @sk_dst_cache: destination cache 250 * @sk_dst_pending_confirm: need to confirm neighbour 251 * @sk_policy: flow policy 252 * @psp_assoc: PSP association, if socket is PSP-secured 253 * @sk_receive_queue: incoming packets 254 * @sk_wmem_alloc: transmit queue bytes committed 255 * @sk_tsq_flags: TCP Small Queues flags 256 * @sk_write_queue: Packet sending queue 257 * @sk_omem_alloc: "o" is "option" or "other" 258 * @sk_wmem_queued: persistent queue size 259 * @sk_forward_alloc: space allocated forward 260 * @sk_reserved_mem: space reserved and non-reclaimable for the socket 261 * @sk_napi_id: id of the last napi context to receive data for sk 262 * @sk_ll_usec: usecs to busypoll when there is no data 263 * @sk_allocation: allocation mode 264 * @sk_pacing_rate: Pacing rate (if supported by transport/packet scheduler) 265 * @sk_pacing_status: Pacing status (requested, handled by sch_fq) 266 * @sk_max_pacing_rate: Maximum pacing rate (%SO_MAX_PACING_RATE) 267 * @sk_sndbuf: size of send buffer in bytes 268 * @sk_no_check_tx: %SO_NO_CHECK setting, set checksum in TX packets 269 * @sk_no_check_rx: allow zero checksum in RX packets 270 * @sk_route_caps: route capabilities (e.g. %NETIF_F_TSO) 271 * @sk_gso_disabled: if set, NETIF_F_GSO_MASK is forbidden. 272 * @sk_gso_type: GSO type (e.g. %SKB_GSO_TCPV4) 273 * @sk_gso_max_size: Maximum GSO segment size to build 274 * @sk_gso_max_segs: Maximum number of GSO segments 275 * @sk_pacing_shift: scaling factor for TCP Small Queues 276 * @sk_lingertime: %SO_LINGER l_linger setting 277 * @sk_backlog: always used with the per-socket spinlock held 278 * @sk_callback_lock: used with the callbacks in the end of this struct 279 * @sk_error_queue: rarely used 280 * @sk_prot_creator: sk_prot of original sock creator (see ipv6_setsockopt, 281 * IPV6_ADDRFORM for instance) 282 * @sk_err: last error 283 * @sk_err_soft: errors that don't cause failure but are the cause of a 284 * persistent failure not just 'timed out' 285 * @sk_drops: raw/udp drops counter 286 * @sk_drop_counters: optional pointer to numa_drop_counters 287 * @sk_ack_backlog: current listen backlog 288 * @sk_max_ack_backlog: listen backlog set in listen() 289 * @sk_uid: user id of owner 290 * @sk_ino: inode number (zero if orphaned) 291 * @sk_prefer_busy_poll: prefer busypolling over softirq processing 292 * @sk_busy_poll_budget: napi processing budget when busypolling 293 * @sk_priority: %SO_PRIORITY setting 294 * @sk_type: socket type (%SOCK_STREAM, etc) 295 * @sk_protocol: which protocol this socket belongs in this network family 296 * @sk_peer_lock: lock protecting @sk_peer_pid and @sk_peer_cred 297 * @sk_peer_pid: &struct pid for this socket's peer 298 * @sk_peer_cred: %SO_PEERCRED setting 299 * @sk_rcvlowat: %SO_RCVLOWAT setting 300 * @sk_rcvtimeo: %SO_RCVTIMEO setting 301 * @sk_sndtimeo: %SO_SNDTIMEO setting 302 * @sk_txhash: computed flow hash for use on transmit 303 * @sk_txrehash: enable TX hash rethink 304 * @sk_filter: socket filtering instructions 305 * @sk_timer: sock cleanup timer 306 * @sk_stamp: time stamp of last packet received 307 * @sk_stamp_seq: lock for accessing sk_stamp on 32 bit architectures only 308 * @sk_tsflags: SO_TIMESTAMPING flags 309 * @sk_bpf_cb_flags: used in bpf_setsockopt() 310 * @sk_use_task_frag: allow sk_page_frag() to use current->task_frag. 311 * Sockets that can be used under memory reclaim should 312 * set this to false. 313 * @sk_bind_phc: SO_TIMESTAMPING bind PHC index of PTP virtual clock 314 * for timestamping 315 * @sk_tskey: counter to disambiguate concurrent tstamp requests 316 * @sk_zckey: counter to order MSG_ZEROCOPY notifications 317 * @sk_socket: Identd and reporting IO signals 318 * @sk_user_data: RPC layer private data. Write-protected by @sk_callback_lock. 319 * @sk_frag: cached page frag 320 * @sk_peek_off: current peek_offset value 321 * @sk_send_head: front of stuff to transmit 322 * @tcp_rtx_queue: TCP re-transmit queue [union with @sk_send_head] 323 * @sk_security: used by security modules 324 * @sk_mark: generic packet mark 325 * @sk_cgrp_data: cgroup data for this cgroup 326 * @sk_memcg: this socket's memory cgroup association 327 * @sk_write_pending: a write to stream socket waits to start 328 * @sk_disconnects: number of disconnect operations performed on this sock 329 * @sk_state_change: callback to indicate change in the state of the sock 330 * @sk_data_ready: callback to indicate there is data to be processed 331 * @sk_write_space: callback to indicate there is bf sending space available 332 * @sk_error_report: callback to indicate errors (e.g. %MSG_ERRQUEUE) 333 * @sk_backlog_rcv: callback to process the backlog 334 * @sk_validate_xmit_skb: ptr to an optional validate function 335 * @sk_destruct: called at sock freeing time, i.e. when all refcnt == 0 336 * @sk_reuseport_cb: reuseport group container 337 * @sk_bpf_storage: ptr to cache and control for bpf_sk_storage 338 * @sk_rcu: used during RCU grace period 339 * @sk_clockid: clockid used by time-based scheduling (SO_TXTIME) 340 * @sk_txtime_deadline_mode: set deadline mode for SO_TXTIME 341 * @sk_txtime_report_errors: set report errors mode for SO_TXTIME 342 * @sk_txtime_unused: unused txtime flags 343 * @sk_scm_recv_flags: all flags used by scm_recv() 344 * @sk_scm_credentials: flagged by SO_PASSCRED to recv SCM_CREDENTIALS 345 * @sk_scm_security: flagged by SO_PASSSEC to recv SCM_SECURITY 346 * @sk_scm_pidfd: flagged by SO_PASSPIDFD to recv SCM_PIDFD 347 * @sk_scm_rights: flagged by SO_PASSRIGHTS to recv SCM_RIGHTS 348 * @sk_scm_unused: unused flags for scm_recv() 349 * @ns_tracker: tracker for netns reference 350 * @sk_user_frags: xarray of pages the user is holding a reference on. 351 * @sk_owner: reference to the real owner of the socket that calls 352 * sock_lock_init_class_and_name(). 353 */ 354 struct sock { 355 /* 356 * Now struct inet_timewait_sock also uses sock_common, so please just 357 * don't add nothing before this first member (__sk_common) --acme 358 */ 359 struct sock_common __sk_common; 360 #define sk_node __sk_common.skc_node 361 #define sk_nulls_node __sk_common.skc_nulls_node 362 #define sk_refcnt __sk_common.skc_refcnt 363 #define sk_tx_queue_mapping __sk_common.skc_tx_queue_mapping 364 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING 365 #define sk_rx_queue_mapping __sk_common.skc_rx_queue_mapping 366 #endif 367 368 #define sk_dontcopy_begin __sk_common.skc_dontcopy_begin 369 #define sk_dontcopy_end __sk_common.skc_dontcopy_end 370 #define sk_hash __sk_common.skc_hash 371 #define sk_portpair __sk_common.skc_portpair 372 #define sk_num __sk_common.skc_num 373 #define sk_dport __sk_common.skc_dport 374 #define sk_addrpair __sk_common.skc_addrpair 375 #define sk_daddr __sk_common.skc_daddr 376 #define sk_rcv_saddr __sk_common.skc_rcv_saddr 377 #define sk_family __sk_common.skc_family 378 #define sk_state __sk_common.skc_state 379 #define sk_reuse __sk_common.skc_reuse 380 #define sk_reuseport __sk_common.skc_reuseport 381 #define sk_ipv6only __sk_common.skc_ipv6only 382 #define sk_net_refcnt __sk_common.skc_net_refcnt 383 #define sk_bound_dev_if __sk_common.skc_bound_dev_if 384 #define sk_bind_node __sk_common.skc_bind_node 385 #define sk_prot __sk_common.skc_prot 386 #define sk_net __sk_common.skc_net 387 #define sk_v6_daddr __sk_common.skc_v6_daddr 388 #define sk_v6_rcv_saddr __sk_common.skc_v6_rcv_saddr 389 #define sk_cookie __sk_common.skc_cookie 390 #define sk_incoming_cpu __sk_common.skc_incoming_cpu 391 #define sk_flags __sk_common.skc_flags 392 #define sk_rxhash __sk_common.skc_rxhash 393 394 __cacheline_group_begin(sock_write_rx); 395 396 atomic_t sk_drops; 397 __s32 sk_peek_off; 398 struct sk_buff_head sk_receive_queue; 399 /* 400 * The backlog queue is special, it is always used with 401 * the per-socket spinlock held and requires low latency 402 * access. Therefore we special case it's implementation. 403 * Note : rmem_alloc is in this structure to fill a hole 404 * on 64bit arches, not because its logically part of 405 * backlog. 406 */ 407 struct { 408 atomic_t rmem_alloc; 409 int len; 410 struct sk_buff *head; 411 struct sk_buff *tail; 412 } sk_backlog; 413 #define sk_rmem_alloc sk_backlog.rmem_alloc 414 415 struct sk_buff_head sk_error_queue; 416 __cacheline_group_end(sock_write_rx); 417 418 __cacheline_group_begin(sock_read_rx); 419 /* early demux fields */ 420 struct dst_entry __rcu *sk_rx_dst; 421 int sk_rx_dst_ifindex; 422 u32 sk_rx_dst_cookie; 423 424 #ifdef CONFIG_NET_RX_BUSY_POLL 425 unsigned int sk_ll_usec; 426 unsigned int sk_napi_id; 427 u16 sk_busy_poll_budget; 428 u8 sk_prefer_busy_poll; 429 #endif 430 u8 sk_userlocks; 431 int sk_rcvbuf; 432 433 struct sk_filter __rcu *sk_filter; 434 union { 435 struct socket_wq __rcu *sk_wq; 436 /* private: */ 437 struct socket_wq *sk_wq_raw; 438 /* public: */ 439 }; 440 441 void (*sk_data_ready)(struct sock *sk); 442 long sk_rcvtimeo; 443 int sk_rcvlowat; 444 __cacheline_group_end(sock_read_rx); 445 446 __cacheline_group_begin(sock_read_rxtx); 447 int sk_err; 448 struct socket *sk_socket; 449 #ifdef CONFIG_MEMCG 450 struct mem_cgroup *sk_memcg; 451 #endif 452 #ifdef CONFIG_XFRM 453 struct xfrm_policy __rcu *sk_policy[2]; 454 #endif 455 #if IS_ENABLED(CONFIG_INET_PSP) 456 struct psp_assoc __rcu *psp_assoc; 457 #endif 458 __cacheline_group_end(sock_read_rxtx); 459 460 __cacheline_group_begin(sock_write_rxtx); 461 socket_lock_t sk_lock; 462 u32 sk_reserved_mem; 463 int sk_forward_alloc; 464 u32 sk_tsflags; 465 __cacheline_group_end(sock_write_rxtx); 466 467 __cacheline_group_begin(sock_write_tx); 468 int sk_write_pending; 469 atomic_t sk_omem_alloc; 470 int sk_sndbuf; 471 472 int sk_wmem_queued; 473 refcount_t sk_wmem_alloc; 474 unsigned long sk_tsq_flags; 475 union { 476 struct sk_buff *sk_send_head; 477 struct rb_root tcp_rtx_queue; 478 }; 479 struct sk_buff_head sk_write_queue; 480 u32 sk_dst_pending_confirm; 481 u32 sk_pacing_status; /* see enum sk_pacing */ 482 struct page_frag sk_frag; 483 struct timer_list sk_timer; 484 485 unsigned long sk_pacing_rate; /* bytes per second */ 486 atomic_t sk_zckey; 487 atomic_t sk_tskey; 488 __cacheline_group_end(sock_write_tx); 489 490 __cacheline_group_begin(sock_read_tx); 491 unsigned long sk_max_pacing_rate; 492 long sk_sndtimeo; 493 u32 sk_priority; 494 u32 sk_mark; 495 struct dst_entry __rcu *sk_dst_cache; 496 netdev_features_t sk_route_caps; 497 #ifdef CONFIG_SOCK_VALIDATE_XMIT 498 struct sk_buff* (*sk_validate_xmit_skb)(struct sock *sk, 499 struct net_device *dev, 500 struct sk_buff *skb); 501 #endif 502 u16 sk_gso_type; 503 u16 sk_gso_max_segs; 504 unsigned int sk_gso_max_size; 505 gfp_t sk_allocation; 506 u32 sk_txhash; 507 u8 sk_pacing_shift; 508 bool sk_use_task_frag; 509 __cacheline_group_end(sock_read_tx); 510 511 /* 512 * Because of non atomicity rules, all 513 * changes are protected by socket lock. 514 */ 515 u8 sk_gso_disabled : 1, 516 sk_kern_sock : 1, 517 sk_no_check_tx : 1, 518 sk_no_check_rx : 1; 519 u8 sk_shutdown; 520 u16 sk_type; 521 u16 sk_protocol; 522 unsigned long sk_lingertime; 523 struct proto *sk_prot_creator; 524 rwlock_t sk_callback_lock; 525 int sk_err_soft; 526 u32 sk_ack_backlog; 527 u32 sk_max_ack_backlog; 528 kuid_t sk_uid; 529 unsigned long sk_ino; 530 spinlock_t sk_peer_lock; 531 int sk_bind_phc; 532 struct pid *sk_peer_pid; 533 const struct cred *sk_peer_cred; 534 535 ktime_t sk_stamp; 536 #if BITS_PER_LONG==32 537 seqlock_t sk_stamp_seq; 538 #endif 539 int sk_disconnects; 540 541 union { 542 u8 sk_txrehash; 543 u8 sk_scm_recv_flags; 544 struct { 545 u8 sk_scm_credentials : 1, 546 sk_scm_security : 1, 547 sk_scm_pidfd : 1, 548 sk_scm_rights : 1, 549 sk_scm_unused : 4; 550 }; 551 }; 552 u8 sk_clockid; 553 u8 sk_txtime_deadline_mode : 1, 554 sk_txtime_report_errors : 1, 555 sk_txtime_unused : 6; 556 #define SK_BPF_CB_FLAG_TEST(SK, FLAG) ((SK)->sk_bpf_cb_flags & (FLAG)) 557 u8 sk_bpf_cb_flags; 558 559 void *sk_user_data; 560 #ifdef CONFIG_SECURITY 561 void *sk_security; 562 #endif 563 struct sock_cgroup_data sk_cgrp_data; 564 void (*sk_state_change)(struct sock *sk); 565 void (*sk_write_space)(struct sock *sk); 566 void (*sk_error_report)(struct sock *sk); 567 int (*sk_backlog_rcv)(struct sock *sk, 568 struct sk_buff *skb); 569 void (*sk_destruct)(struct sock *sk); 570 struct sock_reuseport __rcu *sk_reuseport_cb; 571 #ifdef CONFIG_BPF_SYSCALL 572 struct bpf_local_storage __rcu *sk_bpf_storage; 573 #endif 574 struct numa_drop_counters *sk_drop_counters; 575 struct rcu_head sk_rcu; 576 netns_tracker ns_tracker; 577 struct xarray sk_user_frags; 578 579 #if IS_ENABLED(CONFIG_PROVE_LOCKING) && IS_ENABLED(CONFIG_MODULES) 580 struct module *sk_owner; 581 #endif 582 }; 583 584 struct sock_bh_locked { 585 struct sock *sock; 586 local_lock_t bh_lock; 587 }; 588 589 enum sk_pacing { 590 SK_PACING_NONE = 0, 591 SK_PACING_NEEDED = 1, 592 SK_PACING_FQ = 2, 593 }; 594 595 /* flag bits in sk_user_data 596 * 597 * - SK_USER_DATA_NOCOPY: Pointer stored in sk_user_data might 598 * not be suitable for copying when cloning the socket. For instance, 599 * it can point to a reference counted object. sk_user_data bottom 600 * bit is set if pointer must not be copied. 601 * 602 * - SK_USER_DATA_BPF: Mark whether sk_user_data field is 603 * managed/owned by a BPF reuseport array. This bit should be set 604 * when sk_user_data's sk is added to the bpf's reuseport_array. 605 * 606 * - SK_USER_DATA_PSOCK: Mark whether pointer stored in 607 * sk_user_data points to psock type. This bit should be set 608 * when sk_user_data is assigned to a psock object. 609 */ 610 #define SK_USER_DATA_NOCOPY 1UL 611 #define SK_USER_DATA_BPF 2UL 612 #define SK_USER_DATA_PSOCK 4UL 613 #define SK_USER_DATA_PTRMASK ~(SK_USER_DATA_NOCOPY | SK_USER_DATA_BPF |\ 614 SK_USER_DATA_PSOCK) 615 616 /** 617 * sk_user_data_is_nocopy - Test if sk_user_data pointer must not be copied 618 * @sk: socket 619 */ 620 static inline bool sk_user_data_is_nocopy(const struct sock *sk) 621 { 622 return ((uintptr_t)sk->sk_user_data & SK_USER_DATA_NOCOPY); 623 } 624 625 #define __sk_user_data(sk) ((*((void __rcu **)&(sk)->sk_user_data))) 626 627 /** 628 * __locked_read_sk_user_data_with_flags - return the pointer 629 * only if argument flags all has been set in sk_user_data. Otherwise 630 * return NULL 631 * 632 * @sk: socket 633 * @flags: flag bits 634 * 635 * The caller must be holding sk->sk_callback_lock. 636 */ 637 static inline void * 638 __locked_read_sk_user_data_with_flags(const struct sock *sk, 639 uintptr_t flags) 640 { 641 uintptr_t sk_user_data = 642 (uintptr_t)rcu_dereference_check(__sk_user_data(sk), 643 lockdep_is_held(&sk->sk_callback_lock)); 644 645 WARN_ON_ONCE(flags & SK_USER_DATA_PTRMASK); 646 647 if ((sk_user_data & flags) == flags) 648 return (void *)(sk_user_data & SK_USER_DATA_PTRMASK); 649 return NULL; 650 } 651 652 /** 653 * __rcu_dereference_sk_user_data_with_flags - return the pointer 654 * only if argument flags all has been set in sk_user_data. Otherwise 655 * return NULL 656 * 657 * @sk: socket 658 * @flags: flag bits 659 */ 660 static inline void * 661 __rcu_dereference_sk_user_data_with_flags(const struct sock *sk, 662 uintptr_t flags) 663 { 664 uintptr_t sk_user_data = (uintptr_t)rcu_dereference(__sk_user_data(sk)); 665 666 WARN_ON_ONCE(flags & SK_USER_DATA_PTRMASK); 667 668 if ((sk_user_data & flags) == flags) 669 return (void *)(sk_user_data & SK_USER_DATA_PTRMASK); 670 return NULL; 671 } 672 673 #define rcu_dereference_sk_user_data(sk) \ 674 __rcu_dereference_sk_user_data_with_flags(sk, 0) 675 #define __rcu_assign_sk_user_data_with_flags(sk, ptr, flags) \ 676 ({ \ 677 uintptr_t __tmp1 = (uintptr_t)(ptr), \ 678 __tmp2 = (uintptr_t)(flags); \ 679 WARN_ON_ONCE(__tmp1 & ~SK_USER_DATA_PTRMASK); \ 680 WARN_ON_ONCE(__tmp2 & SK_USER_DATA_PTRMASK); \ 681 rcu_assign_pointer(__sk_user_data((sk)), \ 682 __tmp1 | __tmp2); \ 683 }) 684 #define rcu_assign_sk_user_data(sk, ptr) \ 685 __rcu_assign_sk_user_data_with_flags(sk, ptr, 0) 686 687 static inline 688 struct net *sock_net(const struct sock *sk) 689 { 690 return read_pnet(&sk->sk_net); 691 } 692 693 static inline 694 void sock_net_set(struct sock *sk, struct net *net) 695 { 696 write_pnet(&sk->sk_net, net); 697 } 698 699 /* 700 * SK_CAN_REUSE and SK_NO_REUSE on a socket mean that the socket is OK 701 * or not whether his port will be reused by someone else. SK_FORCE_REUSE 702 * on a socket means that the socket will reuse everybody else's port 703 * without looking at the other's sk_reuse value. 704 */ 705 706 #define SK_NO_REUSE 0 707 #define SK_CAN_REUSE 1 708 #define SK_FORCE_REUSE 2 709 710 int sk_set_peek_off(struct sock *sk, int val); 711 712 static inline int sk_peek_offset(const struct sock *sk, int flags) 713 { 714 if (unlikely(flags & MSG_PEEK)) { 715 return READ_ONCE(sk->sk_peek_off); 716 } 717 718 return 0; 719 } 720 721 static inline void sk_peek_offset_bwd(struct sock *sk, int val) 722 { 723 s32 off = READ_ONCE(sk->sk_peek_off); 724 725 if (unlikely(off >= 0)) { 726 off = max_t(s32, off - val, 0); 727 WRITE_ONCE(sk->sk_peek_off, off); 728 } 729 } 730 731 static inline void sk_peek_offset_fwd(struct sock *sk, int val) 732 { 733 sk_peek_offset_bwd(sk, -val); 734 } 735 736 /* 737 * Hashed lists helper routines 738 */ 739 static inline struct sock *sk_entry(const struct hlist_node *node) 740 { 741 return hlist_entry(node, struct sock, sk_node); 742 } 743 744 static inline struct sock *__sk_head(const struct hlist_head *head) 745 { 746 return hlist_entry(head->first, struct sock, sk_node); 747 } 748 749 static inline struct sock *sk_head(const struct hlist_head *head) 750 { 751 return hlist_empty(head) ? NULL : __sk_head(head); 752 } 753 754 static inline struct sock *__sk_nulls_head(const struct hlist_nulls_head *head) 755 { 756 return hlist_nulls_entry(head->first, struct sock, sk_nulls_node); 757 } 758 759 static inline struct sock *sk_nulls_head(const struct hlist_nulls_head *head) 760 { 761 return hlist_nulls_empty(head) ? NULL : __sk_nulls_head(head); 762 } 763 764 static inline struct sock *sk_next(const struct sock *sk) 765 { 766 return hlist_entry_safe(sk->sk_node.next, struct sock, sk_node); 767 } 768 769 static inline struct sock *sk_nulls_next(const struct sock *sk) 770 { 771 return (!is_a_nulls(sk->sk_nulls_node.next)) ? 772 hlist_nulls_entry(sk->sk_nulls_node.next, 773 struct sock, sk_nulls_node) : 774 NULL; 775 } 776 777 static inline bool sk_unhashed(const struct sock *sk) 778 { 779 return hlist_unhashed(&sk->sk_node); 780 } 781 782 static inline bool sk_hashed(const struct sock *sk) 783 { 784 return !sk_unhashed(sk); 785 } 786 787 static inline void sk_node_init(struct hlist_node *node) 788 { 789 node->pprev = NULL; 790 } 791 792 static inline void __sk_del_node(struct sock *sk) 793 { 794 __hlist_del(&sk->sk_node); 795 } 796 797 /* NB: equivalent to hlist_del_init_rcu */ 798 static inline bool __sk_del_node_init(struct sock *sk) 799 { 800 if (sk_hashed(sk)) { 801 __sk_del_node(sk); 802 sk_node_init(&sk->sk_node); 803 return true; 804 } 805 return false; 806 } 807 808 /* Grab socket reference count. This operation is valid only 809 when sk is ALREADY grabbed f.e. it is found in hash table 810 or a list and the lookup is made under lock preventing hash table 811 modifications. 812 */ 813 814 static __always_inline void sock_hold(struct sock *sk) 815 { 816 refcount_inc(&sk->sk_refcnt); 817 } 818 819 /* Ungrab socket in the context, which assumes that socket refcnt 820 cannot hit zero, f.e. it is true in context of any socketcall. 821 */ 822 static __always_inline void __sock_put(struct sock *sk) 823 { 824 refcount_dec(&sk->sk_refcnt); 825 } 826 827 static inline bool sk_del_node_init(struct sock *sk) 828 { 829 bool rc = __sk_del_node_init(sk); 830 831 if (rc) { 832 /* paranoid for a while -acme */ 833 WARN_ON(refcount_read(&sk->sk_refcnt) == 1); 834 __sock_put(sk); 835 } 836 return rc; 837 } 838 #define sk_del_node_init_rcu(sk) sk_del_node_init(sk) 839 840 static inline bool __sk_nulls_del_node_init_rcu(struct sock *sk) 841 { 842 if (sk_hashed(sk)) { 843 hlist_nulls_del_init_rcu(&sk->sk_nulls_node); 844 return true; 845 } 846 return false; 847 } 848 849 static inline bool sk_nulls_del_node_init_rcu(struct sock *sk) 850 { 851 bool rc = __sk_nulls_del_node_init_rcu(sk); 852 853 if (rc) { 854 /* paranoid for a while -acme */ 855 WARN_ON(refcount_read(&sk->sk_refcnt) == 1); 856 __sock_put(sk); 857 } 858 return rc; 859 } 860 861 static inline void __sk_add_node(struct sock *sk, struct hlist_head *list) 862 { 863 hlist_add_head(&sk->sk_node, list); 864 } 865 866 static inline void sk_add_node(struct sock *sk, struct hlist_head *list) 867 { 868 sock_hold(sk); 869 __sk_add_node(sk, list); 870 } 871 872 static inline void sk_add_node_rcu(struct sock *sk, struct hlist_head *list) 873 { 874 sock_hold(sk); 875 if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport && 876 sk->sk_family == AF_INET6) 877 hlist_add_tail_rcu(&sk->sk_node, list); 878 else 879 hlist_add_head_rcu(&sk->sk_node, list); 880 } 881 882 static inline void sk_add_node_tail_rcu(struct sock *sk, struct hlist_head *list) 883 { 884 sock_hold(sk); 885 hlist_add_tail_rcu(&sk->sk_node, list); 886 } 887 888 static inline void __sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list) 889 { 890 hlist_nulls_add_head_rcu(&sk->sk_nulls_node, list); 891 } 892 893 static inline void __sk_nulls_add_node_tail_rcu(struct sock *sk, struct hlist_nulls_head *list) 894 { 895 hlist_nulls_add_tail_rcu(&sk->sk_nulls_node, list); 896 } 897 898 static inline void sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list) 899 { 900 sock_hold(sk); 901 __sk_nulls_add_node_rcu(sk, list); 902 } 903 904 static inline void __sk_del_bind_node(struct sock *sk) 905 { 906 __hlist_del(&sk->sk_bind_node); 907 } 908 909 static inline void sk_add_bind_node(struct sock *sk, 910 struct hlist_head *list) 911 { 912 hlist_add_head(&sk->sk_bind_node, list); 913 } 914 915 #define sk_for_each(__sk, list) \ 916 hlist_for_each_entry(__sk, list, sk_node) 917 #define sk_for_each_rcu(__sk, list) \ 918 hlist_for_each_entry_rcu(__sk, list, sk_node) 919 #define sk_nulls_for_each(__sk, node, list) \ 920 hlist_nulls_for_each_entry(__sk, node, list, sk_nulls_node) 921 #define sk_nulls_for_each_rcu(__sk, node, list) \ 922 hlist_nulls_for_each_entry_rcu(__sk, node, list, sk_nulls_node) 923 #define sk_for_each_from(__sk) \ 924 hlist_for_each_entry_from(__sk, sk_node) 925 #define sk_nulls_for_each_from(__sk, node) \ 926 if (__sk && ({ node = &(__sk)->sk_nulls_node; 1; })) \ 927 hlist_nulls_for_each_entry_from(__sk, node, sk_nulls_node) 928 #define sk_for_each_safe(__sk, tmp, list) \ 929 hlist_for_each_entry_safe(__sk, tmp, list, sk_node) 930 #define sk_for_each_bound(__sk, list) \ 931 hlist_for_each_entry(__sk, list, sk_bind_node) 932 #define sk_for_each_bound_safe(__sk, tmp, list) \ 933 hlist_for_each_entry_safe(__sk, tmp, list, sk_bind_node) 934 935 /** 936 * sk_for_each_entry_offset_rcu - iterate over a list at a given struct offset 937 * @tpos: the type * to use as a loop cursor. 938 * @pos: the &struct hlist_node to use as a loop cursor. 939 * @head: the head for your list. 940 * @offset: offset of hlist_node within the struct. 941 * 942 */ 943 #define sk_for_each_entry_offset_rcu(tpos, pos, head, offset) \ 944 for (pos = rcu_dereference(hlist_first_rcu(head)); \ 945 pos != NULL && \ 946 ({ tpos = (typeof(*tpos) *)((void *)pos - offset); 1;}); \ 947 pos = rcu_dereference(hlist_next_rcu(pos))) 948 949 static inline struct user_namespace *sk_user_ns(const struct sock *sk) 950 { 951 /* Careful only use this in a context where these parameters 952 * can not change and must all be valid, such as recvmsg from 953 * userspace. 954 */ 955 return sk->sk_socket->file->f_cred->user_ns; 956 } 957 958 /* Sock flags */ 959 enum sock_flags { 960 SOCK_DEAD, 961 SOCK_DONE, 962 SOCK_URGINLINE, 963 SOCK_KEEPOPEN, 964 SOCK_LINGER, 965 SOCK_DESTROY, 966 SOCK_BROADCAST, 967 SOCK_TIMESTAMP, 968 SOCK_ZAPPED, 969 SOCK_USE_WRITE_QUEUE, /* whether to call sk->sk_write_space in sock_wfree */ 970 SOCK_DBG, /* %SO_DEBUG setting */ 971 SOCK_RCVTSTAMP, /* %SO_TIMESTAMP setting */ 972 SOCK_RCVTSTAMPNS, /* %SO_TIMESTAMPNS setting */ 973 SOCK_LOCALROUTE, /* route locally only, %SO_DONTROUTE setting */ 974 SOCK_MEMALLOC, /* VM depends on this socket for swapping */ 975 SOCK_TIMESTAMPING_RX_SOFTWARE, /* %SOF_TIMESTAMPING_RX_SOFTWARE */ 976 SOCK_FASYNC, /* fasync() active */ 977 SOCK_RXQ_OVFL, 978 SOCK_ZEROCOPY, /* buffers from userspace */ 979 SOCK_WIFI_STATUS, /* push wifi status to userspace */ 980 SOCK_NOFCS, /* Tell NIC not to do the Ethernet FCS. 981 * Will use last 4 bytes of packet sent from 982 * user-space instead. 983 */ 984 SOCK_FILTER_LOCKED, /* Filter cannot be changed anymore */ 985 SOCK_SELECT_ERR_QUEUE, /* Wake select on error queue */ 986 SOCK_RCU_FREE, /* wait rcu grace period in sk_destruct() */ 987 SOCK_TXTIME, 988 SOCK_XDP, /* XDP is attached */ 989 SOCK_TSTAMP_NEW, /* Indicates 64 bit timestamps always */ 990 SOCK_RCVMARK, /* Receive SO_MARK ancillary data with packet */ 991 SOCK_RCVPRIORITY, /* Receive SO_PRIORITY ancillary data with packet */ 992 SOCK_TIMESTAMPING_ANY, /* Copy of sk_tsflags & TSFLAGS_ANY */ 993 }; 994 995 #define SK_FLAGS_TIMESTAMP ((1UL << SOCK_TIMESTAMP) | (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE)) 996 /* 997 * The highest bit of sk_tsflags is reserved for kernel-internal 998 * SOCKCM_FLAG_TS_OPT_ID. There is a check in core/sock.c to control that 999 * SOF_TIMESTAMPING* values do not reach this reserved area 1000 */ 1001 #define SOCKCM_FLAG_TS_OPT_ID BIT(31) 1002 1003 static inline void sock_copy_flags(struct sock *nsk, const struct sock *osk) 1004 { 1005 nsk->sk_flags = osk->sk_flags; 1006 } 1007 1008 static inline void sock_set_flag(struct sock *sk, enum sock_flags flag) 1009 { 1010 __set_bit(flag, &sk->sk_flags); 1011 } 1012 1013 static inline void sock_reset_flag(struct sock *sk, enum sock_flags flag) 1014 { 1015 __clear_bit(flag, &sk->sk_flags); 1016 } 1017 1018 static inline void sock_valbool_flag(struct sock *sk, enum sock_flags bit, 1019 int valbool) 1020 { 1021 if (valbool) 1022 sock_set_flag(sk, bit); 1023 else 1024 sock_reset_flag(sk, bit); 1025 } 1026 1027 static inline bool sock_flag(const struct sock *sk, enum sock_flags flag) 1028 { 1029 return test_bit(flag, &sk->sk_flags); 1030 } 1031 1032 #ifdef CONFIG_NET 1033 DECLARE_STATIC_KEY_FALSE(memalloc_socks_key); 1034 static inline int sk_memalloc_socks(void) 1035 { 1036 return static_branch_unlikely(&memalloc_socks_key); 1037 } 1038 1039 void __receive_sock(struct file *file); 1040 #else 1041 1042 static inline int sk_memalloc_socks(void) 1043 { 1044 return 0; 1045 } 1046 1047 static inline void __receive_sock(struct file *file) 1048 { } 1049 #endif 1050 1051 static inline gfp_t sk_gfp_mask(const struct sock *sk, gfp_t gfp_mask) 1052 { 1053 return gfp_mask | (sk->sk_allocation & __GFP_MEMALLOC); 1054 } 1055 1056 static inline void sk_acceptq_removed(struct sock *sk) 1057 { 1058 WRITE_ONCE(sk->sk_ack_backlog, sk->sk_ack_backlog - 1); 1059 } 1060 1061 static inline void sk_acceptq_added(struct sock *sk) 1062 { 1063 WRITE_ONCE(sk->sk_ack_backlog, sk->sk_ack_backlog + 1); 1064 } 1065 1066 /* Note: If you think the test should be: 1067 * return READ_ONCE(sk->sk_ack_backlog) >= READ_ONCE(sk->sk_max_ack_backlog); 1068 * Then please take a look at commit 64a146513f8f ("[NET]: Revert incorrect accept queue backlog changes.") 1069 */ 1070 static inline bool sk_acceptq_is_full(const struct sock *sk) 1071 { 1072 return READ_ONCE(sk->sk_ack_backlog) > READ_ONCE(sk->sk_max_ack_backlog); 1073 } 1074 1075 /* 1076 * Compute minimal free write space needed to queue new packets. 1077 */ 1078 static inline int sk_stream_min_wspace(const struct sock *sk) 1079 { 1080 return READ_ONCE(sk->sk_wmem_queued) >> 1; 1081 } 1082 1083 static inline int sk_stream_wspace(const struct sock *sk) 1084 { 1085 return READ_ONCE(sk->sk_sndbuf) - READ_ONCE(sk->sk_wmem_queued); 1086 } 1087 1088 static inline void sk_wmem_queued_add(struct sock *sk, int val) 1089 { 1090 WRITE_ONCE(sk->sk_wmem_queued, sk->sk_wmem_queued + val); 1091 } 1092 1093 static inline void sk_forward_alloc_add(struct sock *sk, int val) 1094 { 1095 /* Paired with lockless reads of sk->sk_forward_alloc */ 1096 WRITE_ONCE(sk->sk_forward_alloc, sk->sk_forward_alloc + val); 1097 } 1098 1099 void sk_stream_write_space(struct sock *sk); 1100 1101 /* OOB backlog add */ 1102 static inline void __sk_add_backlog(struct sock *sk, struct sk_buff *skb) 1103 { 1104 /* dont let skb dst not refcounted, we are going to leave rcu lock */ 1105 skb_dst_force(skb); 1106 1107 if (!sk->sk_backlog.tail) 1108 WRITE_ONCE(sk->sk_backlog.head, skb); 1109 else 1110 sk->sk_backlog.tail->next = skb; 1111 1112 WRITE_ONCE(sk->sk_backlog.tail, skb); 1113 skb->next = NULL; 1114 } 1115 1116 /* 1117 * Take into account size of receive queue and backlog queue 1118 * Do not take into account this skb truesize, 1119 * to allow even a single big packet to come. 1120 */ 1121 static inline bool sk_rcvqueues_full(const struct sock *sk, unsigned int limit) 1122 { 1123 unsigned int qsize = sk->sk_backlog.len + atomic_read(&sk->sk_rmem_alloc); 1124 1125 return qsize > limit; 1126 } 1127 1128 /* The per-socket spinlock must be held here. */ 1129 static inline __must_check int sk_add_backlog(struct sock *sk, struct sk_buff *skb, 1130 unsigned int limit) 1131 { 1132 if (sk_rcvqueues_full(sk, limit)) 1133 return -ENOBUFS; 1134 1135 /* 1136 * If the skb was allocated from pfmemalloc reserves, only 1137 * allow SOCK_MEMALLOC sockets to use it as this socket is 1138 * helping free memory 1139 */ 1140 if (skb_pfmemalloc(skb) && !sock_flag(sk, SOCK_MEMALLOC)) 1141 return -ENOMEM; 1142 1143 __sk_add_backlog(sk, skb); 1144 sk->sk_backlog.len += skb->truesize; 1145 return 0; 1146 } 1147 1148 int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb); 1149 1150 INDIRECT_CALLABLE_DECLARE(int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb)); 1151 INDIRECT_CALLABLE_DECLARE(int tcp_v6_do_rcv(struct sock *sk, struct sk_buff *skb)); 1152 1153 static inline int sk_backlog_rcv(struct sock *sk, struct sk_buff *skb) 1154 { 1155 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) 1156 return __sk_backlog_rcv(sk, skb); 1157 1158 return INDIRECT_CALL_INET(sk->sk_backlog_rcv, 1159 tcp_v6_do_rcv, 1160 tcp_v4_do_rcv, 1161 sk, skb); 1162 } 1163 1164 static inline void sk_incoming_cpu_update(struct sock *sk) 1165 { 1166 int cpu = raw_smp_processor_id(); 1167 1168 if (unlikely(READ_ONCE(sk->sk_incoming_cpu) != cpu)) 1169 WRITE_ONCE(sk->sk_incoming_cpu, cpu); 1170 } 1171 1172 1173 static inline void sock_rps_save_rxhash(struct sock *sk, 1174 const struct sk_buff *skb) 1175 { 1176 #ifdef CONFIG_RPS 1177 /* The following WRITE_ONCE() is paired with the READ_ONCE() 1178 * here, and another one in sock_rps_record_flow(). 1179 */ 1180 if (unlikely(READ_ONCE(sk->sk_rxhash) != skb->hash)) 1181 WRITE_ONCE(sk->sk_rxhash, skb->hash); 1182 #endif 1183 } 1184 1185 static inline void sock_rps_reset_rxhash(struct sock *sk) 1186 { 1187 #ifdef CONFIG_RPS 1188 /* Paired with READ_ONCE() in sock_rps_record_flow() */ 1189 WRITE_ONCE(sk->sk_rxhash, 0); 1190 #endif 1191 } 1192 1193 #define sk_wait_event(__sk, __timeo, __condition, __wait) \ 1194 ({ int __rc, __dis = __sk->sk_disconnects; \ 1195 release_sock(__sk); \ 1196 __rc = __condition; \ 1197 if (!__rc) { \ 1198 *(__timeo) = wait_woken(__wait, \ 1199 TASK_INTERRUPTIBLE, \ 1200 *(__timeo)); \ 1201 } \ 1202 sched_annotate_sleep(); \ 1203 lock_sock(__sk); \ 1204 __rc = __dis == __sk->sk_disconnects ? __condition : -EPIPE; \ 1205 __rc; \ 1206 }) 1207 1208 int sk_stream_wait_connect(struct sock *sk, long *timeo_p); 1209 int sk_stream_wait_memory(struct sock *sk, long *timeo_p); 1210 void sk_stream_wait_close(struct sock *sk, long timeo_p); 1211 int sk_stream_error(struct sock *sk, int flags, int err); 1212 void sk_stream_kill_queues(struct sock *sk); 1213 void sk_set_memalloc(struct sock *sk); 1214 void sk_clear_memalloc(struct sock *sk); 1215 1216 void __sk_flush_backlog(struct sock *sk); 1217 1218 static inline bool sk_flush_backlog(struct sock *sk) 1219 { 1220 if (unlikely(READ_ONCE(sk->sk_backlog.tail))) { 1221 __sk_flush_backlog(sk); 1222 return true; 1223 } 1224 return false; 1225 } 1226 1227 int sk_wait_data(struct sock *sk, long *timeo, const struct sk_buff *skb); 1228 1229 struct request_sock_ops; 1230 struct timewait_sock_ops; 1231 struct inet_hashinfo; 1232 struct raw_hashinfo; 1233 struct smc_hashinfo; 1234 struct module; 1235 struct sk_psock; 1236 1237 /* 1238 * caches using SLAB_TYPESAFE_BY_RCU should let .next pointer from nulls nodes 1239 * un-modified. Special care is taken when initializing object to zero. 1240 */ 1241 static inline void sk_prot_clear_nulls(struct sock *sk, int size) 1242 { 1243 if (offsetof(struct sock, sk_node.next) != 0) 1244 memset(sk, 0, offsetof(struct sock, sk_node.next)); 1245 memset(&sk->sk_node.pprev, 0, 1246 size - offsetof(struct sock, sk_node.pprev)); 1247 } 1248 1249 struct proto_accept_arg { 1250 int flags; 1251 int err; 1252 int is_empty; 1253 bool kern; 1254 }; 1255 1256 /* Networking protocol blocks we attach to sockets. 1257 * socket layer -> transport layer interface 1258 */ 1259 struct proto { 1260 void (*close)(struct sock *sk, 1261 long timeout); 1262 int (*pre_connect)(struct sock *sk, 1263 struct sockaddr *uaddr, 1264 int addr_len); 1265 int (*connect)(struct sock *sk, 1266 struct sockaddr *uaddr, 1267 int addr_len); 1268 int (*disconnect)(struct sock *sk, int flags); 1269 1270 struct sock * (*accept)(struct sock *sk, 1271 struct proto_accept_arg *arg); 1272 1273 int (*ioctl)(struct sock *sk, int cmd, 1274 int *karg); 1275 int (*init)(struct sock *sk); 1276 void (*destroy)(struct sock *sk); 1277 void (*shutdown)(struct sock *sk, int how); 1278 int (*setsockopt)(struct sock *sk, int level, 1279 int optname, sockptr_t optval, 1280 unsigned int optlen); 1281 int (*getsockopt)(struct sock *sk, int level, 1282 int optname, char __user *optval, 1283 int __user *option); 1284 void (*keepalive)(struct sock *sk, int valbool); 1285 #ifdef CONFIG_COMPAT 1286 int (*compat_ioctl)(struct sock *sk, 1287 unsigned int cmd, unsigned long arg); 1288 #endif 1289 int (*sendmsg)(struct sock *sk, struct msghdr *msg, 1290 size_t len); 1291 int (*recvmsg)(struct sock *sk, struct msghdr *msg, 1292 size_t len, int flags, int *addr_len); 1293 void (*splice_eof)(struct socket *sock); 1294 int (*bind)(struct sock *sk, 1295 struct sockaddr *addr, int addr_len); 1296 int (*bind_add)(struct sock *sk, 1297 struct sockaddr *addr, int addr_len); 1298 1299 int (*backlog_rcv) (struct sock *sk, 1300 struct sk_buff *skb); 1301 bool (*bpf_bypass_getsockopt)(int level, 1302 int optname); 1303 1304 void (*release_cb)(struct sock *sk); 1305 1306 /* Keeping track of sk's, looking them up, and port selection methods. */ 1307 int (*hash)(struct sock *sk); 1308 void (*unhash)(struct sock *sk); 1309 void (*rehash)(struct sock *sk); 1310 int (*get_port)(struct sock *sk, unsigned short snum); 1311 void (*put_port)(struct sock *sk); 1312 #ifdef CONFIG_BPF_SYSCALL 1313 int (*psock_update_sk_prot)(struct sock *sk, 1314 struct sk_psock *psock, 1315 bool restore); 1316 #endif 1317 1318 /* Keeping track of sockets in use */ 1319 #ifdef CONFIG_PROC_FS 1320 unsigned int inuse_idx; 1321 #endif 1322 1323 bool (*stream_memory_free)(const struct sock *sk, int wake); 1324 bool (*sock_is_readable)(struct sock *sk); 1325 /* Memory pressure */ 1326 void (*enter_memory_pressure)(struct sock *sk); 1327 void (*leave_memory_pressure)(struct sock *sk); 1328 atomic_long_t *memory_allocated; /* Current allocated memory. */ 1329 int __percpu *per_cpu_fw_alloc; 1330 struct percpu_counter *sockets_allocated; /* Current number of sockets. */ 1331 1332 /* 1333 * Pressure flag: try to collapse. 1334 * Technical note: it is used by multiple contexts non atomically. 1335 * Make sure to use READ_ONCE()/WRITE_ONCE() for all reads/writes. 1336 * All the __sk_mem_schedule() is of this nature: accounting 1337 * is strict, actions are advisory and have some latency. 1338 */ 1339 unsigned long *memory_pressure; 1340 long *sysctl_mem; 1341 1342 int *sysctl_wmem; 1343 int *sysctl_rmem; 1344 u32 sysctl_wmem_offset; 1345 u32 sysctl_rmem_offset; 1346 1347 int max_header; 1348 bool no_autobind; 1349 1350 struct kmem_cache *slab; 1351 unsigned int obj_size; 1352 unsigned int ipv6_pinfo_offset; 1353 slab_flags_t slab_flags; 1354 unsigned int useroffset; /* Usercopy region offset */ 1355 unsigned int usersize; /* Usercopy region size */ 1356 1357 struct request_sock_ops *rsk_prot; 1358 struct timewait_sock_ops *twsk_prot; 1359 1360 union { 1361 struct inet_hashinfo *hashinfo; 1362 struct udp_table *udp_table; 1363 struct raw_hashinfo *raw_hash; 1364 struct smc_hashinfo *smc_hash; 1365 } h; 1366 1367 struct module *owner; 1368 1369 char name[32]; 1370 1371 struct list_head node; 1372 int (*diag_destroy)(struct sock *sk, int err); 1373 } __randomize_layout; 1374 1375 int proto_register(struct proto *prot, int alloc_slab); 1376 void proto_unregister(struct proto *prot); 1377 int sock_load_diag_module(int family, int protocol); 1378 1379 INDIRECT_CALLABLE_DECLARE(bool tcp_stream_memory_free(const struct sock *sk, int wake)); 1380 1381 static inline bool __sk_stream_memory_free(const struct sock *sk, int wake) 1382 { 1383 if (READ_ONCE(sk->sk_wmem_queued) >= READ_ONCE(sk->sk_sndbuf)) 1384 return false; 1385 1386 return sk->sk_prot->stream_memory_free ? 1387 INDIRECT_CALL_INET_1(sk->sk_prot->stream_memory_free, 1388 tcp_stream_memory_free, sk, wake) : true; 1389 } 1390 1391 static inline bool sk_stream_memory_free(const struct sock *sk) 1392 { 1393 return __sk_stream_memory_free(sk, 0); 1394 } 1395 1396 static inline bool __sk_stream_is_writeable(const struct sock *sk, int wake) 1397 { 1398 return sk_stream_wspace(sk) >= sk_stream_min_wspace(sk) && 1399 __sk_stream_memory_free(sk, wake); 1400 } 1401 1402 static inline bool sk_stream_is_writeable(const struct sock *sk) 1403 { 1404 return __sk_stream_is_writeable(sk, 0); 1405 } 1406 1407 static inline int sk_under_cgroup_hierarchy(struct sock *sk, 1408 struct cgroup *ancestor) 1409 { 1410 #ifdef CONFIG_SOCK_CGROUP_DATA 1411 return cgroup_is_descendant(sock_cgroup_ptr(&sk->sk_cgrp_data), 1412 ancestor); 1413 #else 1414 return -ENOTSUPP; 1415 #endif 1416 } 1417 1418 #define SK_ALLOC_PERCPU_COUNTER_BATCH 16 1419 1420 static inline void sk_sockets_allocated_dec(struct sock *sk) 1421 { 1422 percpu_counter_add_batch(sk->sk_prot->sockets_allocated, -1, 1423 SK_ALLOC_PERCPU_COUNTER_BATCH); 1424 } 1425 1426 static inline void sk_sockets_allocated_inc(struct sock *sk) 1427 { 1428 percpu_counter_add_batch(sk->sk_prot->sockets_allocated, 1, 1429 SK_ALLOC_PERCPU_COUNTER_BATCH); 1430 } 1431 1432 static inline u64 1433 sk_sockets_allocated_read_positive(struct sock *sk) 1434 { 1435 return percpu_counter_read_positive(sk->sk_prot->sockets_allocated); 1436 } 1437 1438 static inline int 1439 proto_sockets_allocated_sum_positive(struct proto *prot) 1440 { 1441 return percpu_counter_sum_positive(prot->sockets_allocated); 1442 } 1443 1444 #ifdef CONFIG_PROC_FS 1445 #define PROTO_INUSE_NR 64 /* should be enough for the first time */ 1446 struct prot_inuse { 1447 int all; 1448 int val[PROTO_INUSE_NR]; 1449 }; 1450 1451 static inline void sock_prot_inuse_add(const struct net *net, 1452 const struct proto *prot, int val) 1453 { 1454 this_cpu_add(net->core.prot_inuse->val[prot->inuse_idx], val); 1455 } 1456 1457 static inline void sock_inuse_add(const struct net *net, int val) 1458 { 1459 this_cpu_add(net->core.prot_inuse->all, val); 1460 } 1461 1462 int sock_prot_inuse_get(struct net *net, struct proto *proto); 1463 int sock_inuse_get(struct net *net); 1464 #else 1465 static inline void sock_prot_inuse_add(const struct net *net, 1466 const struct proto *prot, int val) 1467 { 1468 } 1469 1470 static inline void sock_inuse_add(const struct net *net, int val) 1471 { 1472 } 1473 #endif 1474 1475 1476 /* With per-bucket locks this operation is not-atomic, so that 1477 * this version is not worse. 1478 */ 1479 static inline int __sk_prot_rehash(struct sock *sk) 1480 { 1481 sk->sk_prot->unhash(sk); 1482 return sk->sk_prot->hash(sk); 1483 } 1484 1485 /* About 10 seconds */ 1486 #define SOCK_DESTROY_TIME (10*HZ) 1487 1488 /* Sockets 0-1023 can't be bound to unless you are superuser */ 1489 #define PROT_SOCK 1024 1490 1491 #define SHUTDOWN_MASK 3 1492 #define RCV_SHUTDOWN 1 1493 #define SEND_SHUTDOWN 2 1494 1495 #define SOCK_BINDADDR_LOCK 4 1496 #define SOCK_BINDPORT_LOCK 8 1497 1498 struct socket_alloc { 1499 struct socket socket; 1500 struct inode vfs_inode; 1501 }; 1502 1503 static inline struct socket *SOCKET_I(struct inode *inode) 1504 { 1505 return &container_of(inode, struct socket_alloc, vfs_inode)->socket; 1506 } 1507 1508 static inline struct inode *SOCK_INODE(struct socket *socket) 1509 { 1510 return &container_of(socket, struct socket_alloc, socket)->vfs_inode; 1511 } 1512 1513 /* 1514 * Functions for memory accounting 1515 */ 1516 int __sk_mem_raise_allocated(struct sock *sk, int size, int amt, int kind); 1517 int __sk_mem_schedule(struct sock *sk, int size, int kind); 1518 void __sk_mem_reduce_allocated(struct sock *sk, int amount); 1519 void __sk_mem_reclaim(struct sock *sk, int amount); 1520 1521 #define SK_MEM_SEND 0 1522 #define SK_MEM_RECV 1 1523 1524 /* sysctl_mem values are in pages */ 1525 static inline long sk_prot_mem_limits(const struct sock *sk, int index) 1526 { 1527 return READ_ONCE(sk->sk_prot->sysctl_mem[index]); 1528 } 1529 1530 static inline int sk_mem_pages(int amt) 1531 { 1532 return (amt + PAGE_SIZE - 1) >> PAGE_SHIFT; 1533 } 1534 1535 static inline bool sk_has_account(struct sock *sk) 1536 { 1537 /* return true if protocol supports memory accounting */ 1538 return !!sk->sk_prot->memory_allocated; 1539 } 1540 1541 static inline bool sk_wmem_schedule(struct sock *sk, int size) 1542 { 1543 int delta; 1544 1545 if (!sk_has_account(sk)) 1546 return true; 1547 delta = size - sk->sk_forward_alloc; 1548 return delta <= 0 || __sk_mem_schedule(sk, delta, SK_MEM_SEND); 1549 } 1550 1551 static inline bool 1552 __sk_rmem_schedule(struct sock *sk, int size, bool pfmemalloc) 1553 { 1554 int delta; 1555 1556 if (!sk_has_account(sk)) 1557 return true; 1558 delta = size - sk->sk_forward_alloc; 1559 return delta <= 0 || __sk_mem_schedule(sk, delta, SK_MEM_RECV) || 1560 pfmemalloc; 1561 } 1562 1563 static inline bool 1564 sk_rmem_schedule(struct sock *sk, const struct sk_buff *skb, int size) 1565 { 1566 return __sk_rmem_schedule(sk, size, skb_pfmemalloc(skb)); 1567 } 1568 1569 static inline int sk_unused_reserved_mem(const struct sock *sk) 1570 { 1571 int unused_mem; 1572 1573 if (likely(!sk->sk_reserved_mem)) 1574 return 0; 1575 1576 unused_mem = sk->sk_reserved_mem - sk->sk_wmem_queued - 1577 atomic_read(&sk->sk_rmem_alloc); 1578 1579 return unused_mem > 0 ? unused_mem : 0; 1580 } 1581 1582 static inline void sk_mem_reclaim(struct sock *sk) 1583 { 1584 int reclaimable; 1585 1586 if (!sk_has_account(sk)) 1587 return; 1588 1589 reclaimable = sk->sk_forward_alloc - sk_unused_reserved_mem(sk); 1590 1591 if (reclaimable >= (int)PAGE_SIZE) 1592 __sk_mem_reclaim(sk, reclaimable); 1593 } 1594 1595 static inline void sk_mem_reclaim_final(struct sock *sk) 1596 { 1597 sk->sk_reserved_mem = 0; 1598 sk_mem_reclaim(sk); 1599 } 1600 1601 static inline void sk_mem_charge(struct sock *sk, int size) 1602 { 1603 if (!sk_has_account(sk)) 1604 return; 1605 sk_forward_alloc_add(sk, -size); 1606 } 1607 1608 static inline void sk_mem_uncharge(struct sock *sk, int size) 1609 { 1610 if (!sk_has_account(sk)) 1611 return; 1612 sk_forward_alloc_add(sk, size); 1613 sk_mem_reclaim(sk); 1614 } 1615 1616 #if IS_ENABLED(CONFIG_PROVE_LOCKING) && IS_ENABLED(CONFIG_MODULES) 1617 static inline void sk_owner_set(struct sock *sk, struct module *owner) 1618 { 1619 __module_get(owner); 1620 sk->sk_owner = owner; 1621 } 1622 1623 static inline void sk_owner_clear(struct sock *sk) 1624 { 1625 sk->sk_owner = NULL; 1626 } 1627 1628 static inline void sk_owner_put(struct sock *sk) 1629 { 1630 module_put(sk->sk_owner); 1631 } 1632 #else 1633 static inline void sk_owner_set(struct sock *sk, struct module *owner) 1634 { 1635 } 1636 1637 static inline void sk_owner_clear(struct sock *sk) 1638 { 1639 } 1640 1641 static inline void sk_owner_put(struct sock *sk) 1642 { 1643 } 1644 #endif 1645 /* 1646 * Macro so as to not evaluate some arguments when 1647 * lockdep is not enabled. 1648 * 1649 * Mark both the sk_lock and the sk_lock.slock as a 1650 * per-address-family lock class. 1651 */ 1652 #define sock_lock_init_class_and_name(sk, sname, skey, name, key) \ 1653 do { \ 1654 sk_owner_set(sk, THIS_MODULE); \ 1655 sk->sk_lock.owned = 0; \ 1656 init_waitqueue_head(&sk->sk_lock.wq); \ 1657 spin_lock_init(&(sk)->sk_lock.slock); \ 1658 debug_check_no_locks_freed((void *)&(sk)->sk_lock, \ 1659 sizeof((sk)->sk_lock)); \ 1660 lockdep_set_class_and_name(&(sk)->sk_lock.slock, \ 1661 (skey), (sname)); \ 1662 lockdep_init_map(&(sk)->sk_lock.dep_map, (name), (key), 0); \ 1663 } while (0) 1664 1665 static inline bool lockdep_sock_is_held(const struct sock *sk) 1666 { 1667 return lockdep_is_held(&sk->sk_lock) || 1668 lockdep_is_held(&sk->sk_lock.slock); 1669 } 1670 1671 void lock_sock_nested(struct sock *sk, int subclass); 1672 1673 static inline void lock_sock(struct sock *sk) 1674 { 1675 lock_sock_nested(sk, 0); 1676 } 1677 1678 void __lock_sock(struct sock *sk); 1679 void __release_sock(struct sock *sk); 1680 void release_sock(struct sock *sk); 1681 1682 /* BH context may only use the following locking interface. */ 1683 #define bh_lock_sock(__sk) spin_lock(&((__sk)->sk_lock.slock)) 1684 #define bh_lock_sock_nested(__sk) \ 1685 spin_lock_nested(&((__sk)->sk_lock.slock), \ 1686 SINGLE_DEPTH_NESTING) 1687 #define bh_unlock_sock(__sk) spin_unlock(&((__sk)->sk_lock.slock)) 1688 1689 bool __lock_sock_fast(struct sock *sk) __acquires(&sk->sk_lock.slock); 1690 1691 /** 1692 * lock_sock_fast - fast version of lock_sock 1693 * @sk: socket 1694 * 1695 * This version should be used for very small section, where process won't block 1696 * return false if fast path is taken: 1697 * 1698 * sk_lock.slock locked, owned = 0, BH disabled 1699 * 1700 * return true if slow path is taken: 1701 * 1702 * sk_lock.slock unlocked, owned = 1, BH enabled 1703 */ 1704 static inline bool lock_sock_fast(struct sock *sk) 1705 { 1706 /* The sk_lock has mutex_lock() semantics here. */ 1707 mutex_acquire(&sk->sk_lock.dep_map, 0, 0, _RET_IP_); 1708 1709 return __lock_sock_fast(sk); 1710 } 1711 1712 /* fast socket lock variant for caller already holding a [different] socket lock */ 1713 static inline bool lock_sock_fast_nested(struct sock *sk) 1714 { 1715 mutex_acquire(&sk->sk_lock.dep_map, SINGLE_DEPTH_NESTING, 0, _RET_IP_); 1716 1717 return __lock_sock_fast(sk); 1718 } 1719 1720 /** 1721 * unlock_sock_fast - complement of lock_sock_fast 1722 * @sk: socket 1723 * @slow: slow mode 1724 * 1725 * fast unlock socket for user context. 1726 * If slow mode is on, we call regular release_sock() 1727 */ 1728 static inline void unlock_sock_fast(struct sock *sk, bool slow) 1729 __releases(&sk->sk_lock.slock) 1730 { 1731 if (slow) { 1732 release_sock(sk); 1733 __release(&sk->sk_lock.slock); 1734 } else { 1735 mutex_release(&sk->sk_lock.dep_map, _RET_IP_); 1736 spin_unlock_bh(&sk->sk_lock.slock); 1737 } 1738 } 1739 1740 void sockopt_lock_sock(struct sock *sk); 1741 void sockopt_release_sock(struct sock *sk); 1742 bool sockopt_ns_capable(struct user_namespace *ns, int cap); 1743 bool sockopt_capable(int cap); 1744 1745 /* Used by processes to "lock" a socket state, so that 1746 * interrupts and bottom half handlers won't change it 1747 * from under us. It essentially blocks any incoming 1748 * packets, so that we won't get any new data or any 1749 * packets that change the state of the socket. 1750 * 1751 * While locked, BH processing will add new packets to 1752 * the backlog queue. This queue is processed by the 1753 * owner of the socket lock right before it is released. 1754 * 1755 * Since ~2.3.5 it is also exclusive sleep lock serializing 1756 * accesses from user process context. 1757 */ 1758 1759 static inline void sock_owned_by_me(const struct sock *sk) 1760 { 1761 #ifdef CONFIG_LOCKDEP 1762 WARN_ON_ONCE(!lockdep_sock_is_held(sk) && debug_locks); 1763 #endif 1764 } 1765 1766 static inline void sock_not_owned_by_me(const struct sock *sk) 1767 { 1768 #ifdef CONFIG_LOCKDEP 1769 WARN_ON_ONCE(lockdep_sock_is_held(sk) && debug_locks); 1770 #endif 1771 } 1772 1773 static inline bool sock_owned_by_user(const struct sock *sk) 1774 { 1775 sock_owned_by_me(sk); 1776 return sk->sk_lock.owned; 1777 } 1778 1779 static inline bool sock_owned_by_user_nocheck(const struct sock *sk) 1780 { 1781 return sk->sk_lock.owned; 1782 } 1783 1784 static inline void sock_release_ownership(struct sock *sk) 1785 { 1786 DEBUG_NET_WARN_ON_ONCE(!sock_owned_by_user_nocheck(sk)); 1787 sk->sk_lock.owned = 0; 1788 1789 /* The sk_lock has mutex_unlock() semantics: */ 1790 mutex_release(&sk->sk_lock.dep_map, _RET_IP_); 1791 } 1792 1793 /* no reclassification while locks are held */ 1794 static inline bool sock_allow_reclassification(const struct sock *csk) 1795 { 1796 struct sock *sk = (struct sock *)csk; 1797 1798 return !sock_owned_by_user_nocheck(sk) && 1799 !spin_is_locked(&sk->sk_lock.slock); 1800 } 1801 1802 struct sock *sk_alloc(struct net *net, int family, gfp_t priority, 1803 struct proto *prot, int kern); 1804 void sk_free(struct sock *sk); 1805 void sk_net_refcnt_upgrade(struct sock *sk); 1806 void sk_destruct(struct sock *sk); 1807 struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority); 1808 1809 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force, 1810 gfp_t priority); 1811 void __sock_wfree(struct sk_buff *skb); 1812 void sock_wfree(struct sk_buff *skb); 1813 struct sk_buff *sock_omalloc(struct sock *sk, unsigned long size, 1814 gfp_t priority); 1815 void skb_orphan_partial(struct sk_buff *skb); 1816 void sock_rfree(struct sk_buff *skb); 1817 void sock_efree(struct sk_buff *skb); 1818 #ifdef CONFIG_INET 1819 void sock_edemux(struct sk_buff *skb); 1820 void sock_pfree(struct sk_buff *skb); 1821 1822 static inline void skb_set_owner_edemux(struct sk_buff *skb, struct sock *sk) 1823 { 1824 skb_orphan(skb); 1825 if (refcount_inc_not_zero(&sk->sk_refcnt)) { 1826 skb->sk = sk; 1827 skb->destructor = sock_edemux; 1828 } 1829 } 1830 #else 1831 #define sock_edemux sock_efree 1832 #endif 1833 1834 int sk_setsockopt(struct sock *sk, int level, int optname, 1835 sockptr_t optval, unsigned int optlen); 1836 int sock_setsockopt(struct socket *sock, int level, int op, 1837 sockptr_t optval, unsigned int optlen); 1838 int do_sock_setsockopt(struct socket *sock, bool compat, int level, 1839 int optname, sockptr_t optval, int optlen); 1840 int do_sock_getsockopt(struct socket *sock, bool compat, int level, 1841 int optname, sockptr_t optval, sockptr_t optlen); 1842 1843 int sk_getsockopt(struct sock *sk, int level, int optname, 1844 sockptr_t optval, sockptr_t optlen); 1845 int sock_gettstamp(struct socket *sock, void __user *userstamp, 1846 bool timeval, bool time32); 1847 struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len, 1848 unsigned long data_len, int noblock, 1849 int *errcode, int max_page_order); 1850 1851 static inline struct sk_buff *sock_alloc_send_skb(struct sock *sk, 1852 unsigned long size, 1853 int noblock, int *errcode) 1854 { 1855 return sock_alloc_send_pskb(sk, size, 0, noblock, errcode, 0); 1856 } 1857 1858 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority); 1859 void *sock_kmemdup(struct sock *sk, const void *src, 1860 int size, gfp_t priority); 1861 void sock_kfree_s(struct sock *sk, void *mem, int size); 1862 void sock_kzfree_s(struct sock *sk, void *mem, int size); 1863 void sk_send_sigurg(struct sock *sk); 1864 1865 static inline void sock_replace_proto(struct sock *sk, struct proto *proto) 1866 { 1867 if (sk->sk_socket) 1868 clear_bit(SOCK_SUPPORT_ZC, &sk->sk_socket->flags); 1869 WRITE_ONCE(sk->sk_prot, proto); 1870 } 1871 1872 struct sockcm_cookie { 1873 u64 transmit_time; 1874 u32 mark; 1875 u32 tsflags; 1876 u32 ts_opt_id; 1877 u32 priority; 1878 u32 dmabuf_id; 1879 }; 1880 1881 static inline void sockcm_init(struct sockcm_cookie *sockc, 1882 const struct sock *sk) 1883 { 1884 *sockc = (struct sockcm_cookie) { 1885 .mark = READ_ONCE(sk->sk_mark), 1886 .tsflags = READ_ONCE(sk->sk_tsflags), 1887 .priority = READ_ONCE(sk->sk_priority), 1888 }; 1889 } 1890 1891 int __sock_cmsg_send(struct sock *sk, struct cmsghdr *cmsg, 1892 struct sockcm_cookie *sockc); 1893 int sock_cmsg_send(struct sock *sk, struct msghdr *msg, 1894 struct sockcm_cookie *sockc); 1895 1896 /* 1897 * Functions to fill in entries in struct proto_ops when a protocol 1898 * does not implement a particular function. 1899 */ 1900 int sock_no_bind(struct socket *, struct sockaddr *, int); 1901 int sock_no_connect(struct socket *, struct sockaddr *, int, int); 1902 int sock_no_socketpair(struct socket *, struct socket *); 1903 int sock_no_accept(struct socket *, struct socket *, struct proto_accept_arg *); 1904 int sock_no_getname(struct socket *, struct sockaddr *, int); 1905 int sock_no_ioctl(struct socket *, unsigned int, unsigned long); 1906 int sock_no_listen(struct socket *, int); 1907 int sock_no_shutdown(struct socket *, int); 1908 int sock_no_sendmsg(struct socket *, struct msghdr *, size_t); 1909 int sock_no_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t len); 1910 int sock_no_recvmsg(struct socket *, struct msghdr *, size_t, int); 1911 int sock_no_mmap(struct file *file, struct socket *sock, 1912 struct vm_area_struct *vma); 1913 1914 /* 1915 * Functions to fill in entries in struct proto_ops when a protocol 1916 * uses the inet style. 1917 */ 1918 int sock_common_getsockopt(struct socket *sock, int level, int optname, 1919 char __user *optval, int __user *optlen); 1920 int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size, 1921 int flags); 1922 int sock_common_setsockopt(struct socket *sock, int level, int optname, 1923 sockptr_t optval, unsigned int optlen); 1924 1925 void sk_common_release(struct sock *sk); 1926 1927 /* 1928 * Default socket callbacks and setup code 1929 */ 1930 1931 /* Initialise core socket variables using an explicit uid. */ 1932 void sock_init_data_uid(struct socket *sock, struct sock *sk, kuid_t uid); 1933 1934 /* Initialise core socket variables. 1935 * Assumes struct socket *sock is embedded in a struct socket_alloc. 1936 */ 1937 void sock_init_data(struct socket *sock, struct sock *sk); 1938 1939 /* 1940 * Socket reference counting postulates. 1941 * 1942 * * Each user of socket SHOULD hold a reference count. 1943 * * Each access point to socket (an hash table bucket, reference from a list, 1944 * running timer, skb in flight MUST hold a reference count. 1945 * * When reference count hits 0, it means it will never increase back. 1946 * * When reference count hits 0, it means that no references from 1947 * outside exist to this socket and current process on current CPU 1948 * is last user and may/should destroy this socket. 1949 * * sk_free is called from any context: process, BH, IRQ. When 1950 * it is called, socket has no references from outside -> sk_free 1951 * may release descendant resources allocated by the socket, but 1952 * to the time when it is called, socket is NOT referenced by any 1953 * hash tables, lists etc. 1954 * * Packets, delivered from outside (from network or from another process) 1955 * and enqueued on receive/error queues SHOULD NOT grab reference count, 1956 * when they sit in queue. Otherwise, packets will leak to hole, when 1957 * socket is looked up by one cpu and unhasing is made by another CPU. 1958 * It is true for udp/raw, netlink (leak to receive and error queues), tcp 1959 * (leak to backlog). Packet socket does all the processing inside 1960 * BR_NETPROTO_LOCK, so that it has not this race condition. UNIX sockets 1961 * use separate SMP lock, so that they are prone too. 1962 */ 1963 1964 /* Ungrab socket and destroy it, if it was the last reference. */ 1965 static inline void sock_put(struct sock *sk) 1966 { 1967 if (refcount_dec_and_test(&sk->sk_refcnt)) 1968 sk_free(sk); 1969 } 1970 /* Generic version of sock_put(), dealing with all sockets 1971 * (TCP_TIMEWAIT, TCP_NEW_SYN_RECV, ESTABLISHED...) 1972 */ 1973 void sock_gen_put(struct sock *sk); 1974 1975 int __sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested, 1976 unsigned int trim_cap, bool refcounted); 1977 static inline int sk_receive_skb(struct sock *sk, struct sk_buff *skb, 1978 const int nested) 1979 { 1980 return __sk_receive_skb(sk, skb, nested, 1, true); 1981 } 1982 1983 static inline void sk_tx_queue_set(struct sock *sk, int tx_queue) 1984 { 1985 /* sk_tx_queue_mapping accept only upto a 16-bit value */ 1986 if (WARN_ON_ONCE((unsigned short)tx_queue >= USHRT_MAX)) 1987 return; 1988 /* Paired with READ_ONCE() in sk_tx_queue_get() and 1989 * other WRITE_ONCE() because socket lock might be not held. 1990 */ 1991 WRITE_ONCE(sk->sk_tx_queue_mapping, tx_queue); 1992 } 1993 1994 #define NO_QUEUE_MAPPING USHRT_MAX 1995 1996 static inline void sk_tx_queue_clear(struct sock *sk) 1997 { 1998 /* Paired with READ_ONCE() in sk_tx_queue_get() and 1999 * other WRITE_ONCE() because socket lock might be not held. 2000 */ 2001 WRITE_ONCE(sk->sk_tx_queue_mapping, NO_QUEUE_MAPPING); 2002 } 2003 2004 static inline int sk_tx_queue_get(const struct sock *sk) 2005 { 2006 if (sk) { 2007 /* Paired with WRITE_ONCE() in sk_tx_queue_clear() 2008 * and sk_tx_queue_set(). 2009 */ 2010 int val = READ_ONCE(sk->sk_tx_queue_mapping); 2011 2012 if (val != NO_QUEUE_MAPPING) 2013 return val; 2014 } 2015 return -1; 2016 } 2017 2018 static inline void __sk_rx_queue_set(struct sock *sk, 2019 const struct sk_buff *skb, 2020 bool force_set) 2021 { 2022 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING 2023 if (skb_rx_queue_recorded(skb)) { 2024 u16 rx_queue = skb_get_rx_queue(skb); 2025 2026 if (force_set || 2027 unlikely(READ_ONCE(sk->sk_rx_queue_mapping) != rx_queue)) 2028 WRITE_ONCE(sk->sk_rx_queue_mapping, rx_queue); 2029 } 2030 #endif 2031 } 2032 2033 static inline void sk_rx_queue_set(struct sock *sk, const struct sk_buff *skb) 2034 { 2035 __sk_rx_queue_set(sk, skb, true); 2036 } 2037 2038 static inline void sk_rx_queue_update(struct sock *sk, const struct sk_buff *skb) 2039 { 2040 __sk_rx_queue_set(sk, skb, false); 2041 } 2042 2043 static inline void sk_rx_queue_clear(struct sock *sk) 2044 { 2045 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING 2046 WRITE_ONCE(sk->sk_rx_queue_mapping, NO_QUEUE_MAPPING); 2047 #endif 2048 } 2049 2050 static inline int sk_rx_queue_get(const struct sock *sk) 2051 { 2052 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING 2053 if (sk) { 2054 int res = READ_ONCE(sk->sk_rx_queue_mapping); 2055 2056 if (res != NO_QUEUE_MAPPING) 2057 return res; 2058 } 2059 #endif 2060 2061 return -1; 2062 } 2063 2064 static inline void sk_set_socket(struct sock *sk, struct socket *sock) 2065 { 2066 sk->sk_socket = sock; 2067 if (sock) { 2068 WRITE_ONCE(sk->sk_uid, SOCK_INODE(sock)->i_uid); 2069 WRITE_ONCE(sk->sk_ino, SOCK_INODE(sock)->i_ino); 2070 } else { 2071 /* Note: sk_uid is unchanged. */ 2072 WRITE_ONCE(sk->sk_ino, 0); 2073 } 2074 } 2075 2076 static inline wait_queue_head_t *sk_sleep(struct sock *sk) 2077 { 2078 BUILD_BUG_ON(offsetof(struct socket_wq, wait) != 0); 2079 return &rcu_dereference_raw(sk->sk_wq)->wait; 2080 } 2081 /* Detach socket from process context. 2082 * Announce socket dead, detach it from wait queue and inode. 2083 * Note that parent inode held reference count on this struct sock, 2084 * we do not release it in this function, because protocol 2085 * probably wants some additional cleanups or even continuing 2086 * to work with this socket (TCP). 2087 */ 2088 static inline void sock_orphan(struct sock *sk) 2089 { 2090 write_lock_bh(&sk->sk_callback_lock); 2091 sock_set_flag(sk, SOCK_DEAD); 2092 sk_set_socket(sk, NULL); 2093 sk->sk_wq = NULL; 2094 write_unlock_bh(&sk->sk_callback_lock); 2095 } 2096 2097 static inline void sock_graft(struct sock *sk, struct socket *parent) 2098 { 2099 WARN_ON(parent->sk); 2100 write_lock_bh(&sk->sk_callback_lock); 2101 rcu_assign_pointer(sk->sk_wq, &parent->wq); 2102 parent->sk = sk; 2103 sk_set_socket(sk, parent); 2104 security_sock_graft(sk, parent); 2105 write_unlock_bh(&sk->sk_callback_lock); 2106 } 2107 2108 static inline unsigned long sock_i_ino(const struct sock *sk) 2109 { 2110 /* Paired with WRITE_ONCE() in sock_graft() and sock_orphan() */ 2111 return READ_ONCE(sk->sk_ino); 2112 } 2113 2114 static inline kuid_t sk_uid(const struct sock *sk) 2115 { 2116 /* Paired with WRITE_ONCE() in sockfs_setattr() */ 2117 return READ_ONCE(sk->sk_uid); 2118 } 2119 2120 static inline kuid_t sock_net_uid(const struct net *net, const struct sock *sk) 2121 { 2122 return sk ? sk_uid(sk) : make_kuid(net->user_ns, 0); 2123 } 2124 2125 static inline u32 net_tx_rndhash(void) 2126 { 2127 u32 v = get_random_u32(); 2128 2129 return v ?: 1; 2130 } 2131 2132 static inline void sk_set_txhash(struct sock *sk) 2133 { 2134 /* This pairs with READ_ONCE() in skb_set_hash_from_sk() */ 2135 WRITE_ONCE(sk->sk_txhash, net_tx_rndhash()); 2136 } 2137 2138 static inline bool sk_rethink_txhash(struct sock *sk) 2139 { 2140 if (sk->sk_txhash && sk->sk_txrehash == SOCK_TXREHASH_ENABLED) { 2141 sk_set_txhash(sk); 2142 return true; 2143 } 2144 return false; 2145 } 2146 2147 static inline struct dst_entry * 2148 __sk_dst_get(const struct sock *sk) 2149 { 2150 return rcu_dereference_check(sk->sk_dst_cache, 2151 lockdep_sock_is_held(sk)); 2152 } 2153 2154 static inline struct dst_entry * 2155 sk_dst_get(const struct sock *sk) 2156 { 2157 struct dst_entry *dst; 2158 2159 rcu_read_lock(); 2160 dst = rcu_dereference(sk->sk_dst_cache); 2161 if (dst && !rcuref_get(&dst->__rcuref)) 2162 dst = NULL; 2163 rcu_read_unlock(); 2164 return dst; 2165 } 2166 2167 static inline void __dst_negative_advice(struct sock *sk) 2168 { 2169 struct dst_entry *dst = __sk_dst_get(sk); 2170 2171 if (dst && dst->ops->negative_advice) 2172 dst->ops->negative_advice(sk, dst); 2173 } 2174 2175 static inline void dst_negative_advice(struct sock *sk) 2176 { 2177 sk_rethink_txhash(sk); 2178 __dst_negative_advice(sk); 2179 } 2180 2181 static inline void 2182 __sk_dst_set(struct sock *sk, struct dst_entry *dst) 2183 { 2184 struct dst_entry *old_dst; 2185 2186 sk_tx_queue_clear(sk); 2187 WRITE_ONCE(sk->sk_dst_pending_confirm, 0); 2188 old_dst = rcu_dereference_protected(sk->sk_dst_cache, 2189 lockdep_sock_is_held(sk)); 2190 rcu_assign_pointer(sk->sk_dst_cache, dst); 2191 dst_release(old_dst); 2192 } 2193 2194 static inline void 2195 sk_dst_set(struct sock *sk, struct dst_entry *dst) 2196 { 2197 struct dst_entry *old_dst; 2198 2199 sk_tx_queue_clear(sk); 2200 WRITE_ONCE(sk->sk_dst_pending_confirm, 0); 2201 old_dst = unrcu_pointer(xchg(&sk->sk_dst_cache, RCU_INITIALIZER(dst))); 2202 dst_release(old_dst); 2203 } 2204 2205 static inline void 2206 __sk_dst_reset(struct sock *sk) 2207 { 2208 __sk_dst_set(sk, NULL); 2209 } 2210 2211 static inline void 2212 sk_dst_reset(struct sock *sk) 2213 { 2214 sk_dst_set(sk, NULL); 2215 } 2216 2217 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie); 2218 2219 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie); 2220 2221 static inline void sk_dst_confirm(struct sock *sk) 2222 { 2223 if (!READ_ONCE(sk->sk_dst_pending_confirm)) 2224 WRITE_ONCE(sk->sk_dst_pending_confirm, 1); 2225 } 2226 2227 static inline void sock_confirm_neigh(struct sk_buff *skb, struct neighbour *n) 2228 { 2229 if (skb_get_dst_pending_confirm(skb)) { 2230 struct sock *sk = skb->sk; 2231 2232 if (sk && READ_ONCE(sk->sk_dst_pending_confirm)) 2233 WRITE_ONCE(sk->sk_dst_pending_confirm, 0); 2234 neigh_confirm(n); 2235 } 2236 } 2237 2238 bool sk_mc_loop(const struct sock *sk); 2239 2240 static inline bool sk_can_gso(const struct sock *sk) 2241 { 2242 return net_gso_ok(sk->sk_route_caps, sk->sk_gso_type); 2243 } 2244 2245 void sk_setup_caps(struct sock *sk, struct dst_entry *dst); 2246 2247 static inline void sk_gso_disable(struct sock *sk) 2248 { 2249 sk->sk_gso_disabled = 1; 2250 sk->sk_route_caps &= ~NETIF_F_GSO_MASK; 2251 } 2252 2253 static inline int skb_do_copy_data_nocache(struct sock *sk, struct sk_buff *skb, 2254 struct iov_iter *from, char *to, 2255 int copy, int offset) 2256 { 2257 if (skb->ip_summed == CHECKSUM_NONE) { 2258 __wsum csum = 0; 2259 if (!csum_and_copy_from_iter_full(to, copy, &csum, from)) 2260 return -EFAULT; 2261 skb->csum = csum_block_add(skb->csum, csum, offset); 2262 } else if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY) { 2263 if (!copy_from_iter_full_nocache(to, copy, from)) 2264 return -EFAULT; 2265 } else if (!copy_from_iter_full(to, copy, from)) 2266 return -EFAULT; 2267 2268 return 0; 2269 } 2270 2271 static inline int skb_add_data_nocache(struct sock *sk, struct sk_buff *skb, 2272 struct iov_iter *from, int copy) 2273 { 2274 int err, offset = skb->len; 2275 2276 err = skb_do_copy_data_nocache(sk, skb, from, skb_put(skb, copy), 2277 copy, offset); 2278 if (err) 2279 __skb_trim(skb, offset); 2280 2281 return err; 2282 } 2283 2284 static inline int skb_copy_to_page_nocache(struct sock *sk, struct iov_iter *from, 2285 struct sk_buff *skb, 2286 struct page *page, 2287 int off, int copy) 2288 { 2289 int err; 2290 2291 err = skb_do_copy_data_nocache(sk, skb, from, page_address(page) + off, 2292 copy, skb->len); 2293 if (err) 2294 return err; 2295 2296 skb_len_add(skb, copy); 2297 sk_wmem_queued_add(sk, copy); 2298 sk_mem_charge(sk, copy); 2299 return 0; 2300 } 2301 2302 /** 2303 * sk_wmem_alloc_get - returns write allocations 2304 * @sk: socket 2305 * 2306 * Return: sk_wmem_alloc minus initial offset of one 2307 */ 2308 static inline int sk_wmem_alloc_get(const struct sock *sk) 2309 { 2310 return refcount_read(&sk->sk_wmem_alloc) - 1; 2311 } 2312 2313 /** 2314 * sk_rmem_alloc_get - returns read allocations 2315 * @sk: socket 2316 * 2317 * Return: sk_rmem_alloc 2318 */ 2319 static inline int sk_rmem_alloc_get(const struct sock *sk) 2320 { 2321 return atomic_read(&sk->sk_rmem_alloc); 2322 } 2323 2324 /** 2325 * sk_has_allocations - check if allocations are outstanding 2326 * @sk: socket 2327 * 2328 * Return: true if socket has write or read allocations 2329 */ 2330 static inline bool sk_has_allocations(const struct sock *sk) 2331 { 2332 return sk_wmem_alloc_get(sk) || sk_rmem_alloc_get(sk); 2333 } 2334 2335 /** 2336 * skwq_has_sleeper - check if there are any waiting processes 2337 * @wq: struct socket_wq 2338 * 2339 * Return: true if socket_wq has waiting processes 2340 * 2341 * The purpose of the skwq_has_sleeper and sock_poll_wait is to wrap the memory 2342 * barrier call. They were added due to the race found within the tcp code. 2343 * 2344 * Consider following tcp code paths:: 2345 * 2346 * CPU1 CPU2 2347 * sys_select receive packet 2348 * ... ... 2349 * __add_wait_queue update tp->rcv_nxt 2350 * ... ... 2351 * tp->rcv_nxt check sock_def_readable 2352 * ... { 2353 * schedule rcu_read_lock(); 2354 * wq = rcu_dereference(sk->sk_wq); 2355 * if (wq && waitqueue_active(&wq->wait)) 2356 * wake_up_interruptible(&wq->wait) 2357 * ... 2358 * } 2359 * 2360 * The race for tcp fires when the __add_wait_queue changes done by CPU1 stay 2361 * in its cache, and so does the tp->rcv_nxt update on CPU2 side. The CPU1 2362 * could then endup calling schedule and sleep forever if there are no more 2363 * data on the socket. 2364 * 2365 */ 2366 static inline bool skwq_has_sleeper(struct socket_wq *wq) 2367 { 2368 return wq && wq_has_sleeper(&wq->wait); 2369 } 2370 2371 /** 2372 * sock_poll_wait - wrapper for the poll_wait call. 2373 * @filp: file 2374 * @sock: socket to wait on 2375 * @p: poll_table 2376 * 2377 * See the comments in the wq_has_sleeper function. 2378 */ 2379 static inline void sock_poll_wait(struct file *filp, struct socket *sock, 2380 poll_table *p) 2381 { 2382 /* Provides a barrier we need to be sure we are in sync 2383 * with the socket flags modification. 2384 * 2385 * This memory barrier is paired in the wq_has_sleeper. 2386 */ 2387 poll_wait(filp, &sock->wq.wait, p); 2388 } 2389 2390 static inline void skb_set_hash_from_sk(struct sk_buff *skb, struct sock *sk) 2391 { 2392 /* This pairs with WRITE_ONCE() in sk_set_txhash() */ 2393 u32 txhash = READ_ONCE(sk->sk_txhash); 2394 2395 if (txhash) { 2396 skb->l4_hash = 1; 2397 skb->hash = txhash; 2398 } 2399 } 2400 2401 void skb_set_owner_w(struct sk_buff *skb, struct sock *sk); 2402 2403 /* 2404 * Queue a received datagram if it will fit. Stream and sequenced 2405 * protocols can't normally use this as they need to fit buffers in 2406 * and play with them. 2407 * 2408 * Inlined as it's very short and called for pretty much every 2409 * packet ever received. 2410 */ 2411 static inline void skb_set_owner_r(struct sk_buff *skb, struct sock *sk) 2412 { 2413 skb_orphan(skb); 2414 skb->sk = sk; 2415 skb->destructor = sock_rfree; 2416 atomic_add(skb->truesize, &sk->sk_rmem_alloc); 2417 sk_mem_charge(sk, skb->truesize); 2418 } 2419 2420 static inline __must_check bool skb_set_owner_sk_safe(struct sk_buff *skb, struct sock *sk) 2421 { 2422 if (sk && refcount_inc_not_zero(&sk->sk_refcnt)) { 2423 skb_orphan(skb); 2424 skb->destructor = sock_efree; 2425 skb->sk = sk; 2426 return true; 2427 } 2428 return false; 2429 } 2430 2431 static inline struct sk_buff *skb_clone_and_charge_r(struct sk_buff *skb, struct sock *sk) 2432 { 2433 skb = skb_clone(skb, sk_gfp_mask(sk, GFP_ATOMIC)); 2434 if (skb) { 2435 if (sk_rmem_schedule(sk, skb, skb->truesize)) { 2436 skb_set_owner_r(skb, sk); 2437 return skb; 2438 } 2439 __kfree_skb(skb); 2440 } 2441 return NULL; 2442 } 2443 2444 static inline void skb_prepare_for_gro(struct sk_buff *skb) 2445 { 2446 if (skb->destructor != sock_wfree) { 2447 skb_orphan(skb); 2448 return; 2449 } 2450 skb->slow_gro = 1; 2451 } 2452 2453 void sk_reset_timer(struct sock *sk, struct timer_list *timer, 2454 unsigned long expires); 2455 2456 void sk_stop_timer(struct sock *sk, struct timer_list *timer); 2457 2458 void sk_stop_timer_sync(struct sock *sk, struct timer_list *timer); 2459 2460 int __sk_queue_drop_skb(struct sock *sk, struct sk_buff_head *sk_queue, 2461 struct sk_buff *skb, unsigned int flags, 2462 void (*destructor)(struct sock *sk, 2463 struct sk_buff *skb)); 2464 int __sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb); 2465 2466 int sock_queue_rcv_skb_reason(struct sock *sk, struct sk_buff *skb, 2467 enum skb_drop_reason *reason); 2468 2469 static inline int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb) 2470 { 2471 return sock_queue_rcv_skb_reason(sk, skb, NULL); 2472 } 2473 2474 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb); 2475 struct sk_buff *sock_dequeue_err_skb(struct sock *sk); 2476 2477 /* 2478 * Recover an error report and clear atomically 2479 */ 2480 2481 static inline int sock_error(struct sock *sk) 2482 { 2483 int err; 2484 2485 /* Avoid an atomic operation for the common case. 2486 * This is racy since another cpu/thread can change sk_err under us. 2487 */ 2488 if (likely(data_race(!sk->sk_err))) 2489 return 0; 2490 2491 err = xchg(&sk->sk_err, 0); 2492 return -err; 2493 } 2494 2495 void sk_error_report(struct sock *sk); 2496 2497 static inline unsigned long sock_wspace(struct sock *sk) 2498 { 2499 int amt = 0; 2500 2501 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) { 2502 amt = sk->sk_sndbuf - refcount_read(&sk->sk_wmem_alloc); 2503 if (amt < 0) 2504 amt = 0; 2505 } 2506 return amt; 2507 } 2508 2509 /* Note: 2510 * We use sk->sk_wq_raw, from contexts knowing this 2511 * pointer is not NULL and cannot disappear/change. 2512 */ 2513 static inline void sk_set_bit(int nr, struct sock *sk) 2514 { 2515 if ((nr == SOCKWQ_ASYNC_NOSPACE || nr == SOCKWQ_ASYNC_WAITDATA) && 2516 !sock_flag(sk, SOCK_FASYNC)) 2517 return; 2518 2519 set_bit(nr, &sk->sk_wq_raw->flags); 2520 } 2521 2522 static inline void sk_clear_bit(int nr, struct sock *sk) 2523 { 2524 if ((nr == SOCKWQ_ASYNC_NOSPACE || nr == SOCKWQ_ASYNC_WAITDATA) && 2525 !sock_flag(sk, SOCK_FASYNC)) 2526 return; 2527 2528 clear_bit(nr, &sk->sk_wq_raw->flags); 2529 } 2530 2531 static inline void sk_wake_async(const struct sock *sk, int how, int band) 2532 { 2533 if (sock_flag(sk, SOCK_FASYNC)) { 2534 rcu_read_lock(); 2535 sock_wake_async(rcu_dereference(sk->sk_wq), how, band); 2536 rcu_read_unlock(); 2537 } 2538 } 2539 2540 static inline void sk_wake_async_rcu(const struct sock *sk, int how, int band) 2541 { 2542 if (unlikely(sock_flag(sk, SOCK_FASYNC))) 2543 sock_wake_async(rcu_dereference(sk->sk_wq), how, band); 2544 } 2545 2546 /* Since sk_{r,w}mem_alloc sums skb->truesize, even a small frame might 2547 * need sizeof(sk_buff) + MTU + padding, unless net driver perform copybreak. 2548 * Note: for send buffers, TCP works better if we can build two skbs at 2549 * minimum. 2550 */ 2551 #define TCP_SKB_MIN_TRUESIZE (2048 + SKB_DATA_ALIGN(sizeof(struct sk_buff))) 2552 2553 #define SOCK_MIN_SNDBUF (TCP_SKB_MIN_TRUESIZE * 2) 2554 #define SOCK_MIN_RCVBUF TCP_SKB_MIN_TRUESIZE 2555 2556 static inline void sk_stream_moderate_sndbuf(struct sock *sk) 2557 { 2558 u32 val; 2559 2560 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK) 2561 return; 2562 2563 val = min(sk->sk_sndbuf, sk->sk_wmem_queued >> 1); 2564 val = max_t(u32, val, sk_unused_reserved_mem(sk)); 2565 2566 WRITE_ONCE(sk->sk_sndbuf, max_t(u32, val, SOCK_MIN_SNDBUF)); 2567 } 2568 2569 /** 2570 * sk_page_frag - return an appropriate page_frag 2571 * @sk: socket 2572 * 2573 * Use the per task page_frag instead of the per socket one for 2574 * optimization when we know that we're in process context and own 2575 * everything that's associated with %current. 2576 * 2577 * Both direct reclaim and page faults can nest inside other 2578 * socket operations and end up recursing into sk_page_frag() 2579 * while it's already in use: explicitly avoid task page_frag 2580 * when users disable sk_use_task_frag. 2581 * 2582 * Return: a per task page_frag if context allows that, 2583 * otherwise a per socket one. 2584 */ 2585 static inline struct page_frag *sk_page_frag(struct sock *sk) 2586 { 2587 if (sk->sk_use_task_frag) 2588 return ¤t->task_frag; 2589 2590 return &sk->sk_frag; 2591 } 2592 2593 bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag); 2594 2595 /* 2596 * Default write policy as shown to user space via poll/select/SIGIO 2597 */ 2598 static inline bool sock_writeable(const struct sock *sk) 2599 { 2600 return refcount_read(&sk->sk_wmem_alloc) < (READ_ONCE(sk->sk_sndbuf) >> 1); 2601 } 2602 2603 static inline gfp_t gfp_any(void) 2604 { 2605 return in_softirq() ? GFP_ATOMIC : GFP_KERNEL; 2606 } 2607 2608 static inline gfp_t gfp_memcg_charge(void) 2609 { 2610 return in_softirq() ? GFP_ATOMIC : GFP_KERNEL; 2611 } 2612 2613 #ifdef CONFIG_MEMCG 2614 static inline struct mem_cgroup *mem_cgroup_from_sk(const struct sock *sk) 2615 { 2616 return sk->sk_memcg; 2617 } 2618 2619 static inline bool mem_cgroup_sk_enabled(const struct sock *sk) 2620 { 2621 return mem_cgroup_sockets_enabled && mem_cgroup_from_sk(sk); 2622 } 2623 2624 static inline bool mem_cgroup_sk_under_memory_pressure(const struct sock *sk) 2625 { 2626 struct mem_cgroup *memcg = mem_cgroup_from_sk(sk); 2627 2628 #ifdef CONFIG_MEMCG_V1 2629 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) 2630 return !!memcg->tcpmem_pressure; 2631 #endif /* CONFIG_MEMCG_V1 */ 2632 2633 do { 2634 if (time_before64(get_jiffies_64(), mem_cgroup_get_socket_pressure(memcg))) 2635 return true; 2636 } while ((memcg = parent_mem_cgroup(memcg))); 2637 2638 return false; 2639 } 2640 #else 2641 static inline struct mem_cgroup *mem_cgroup_from_sk(const struct sock *sk) 2642 { 2643 return NULL; 2644 } 2645 2646 static inline bool mem_cgroup_sk_enabled(const struct sock *sk) 2647 { 2648 return false; 2649 } 2650 2651 static inline bool mem_cgroup_sk_under_memory_pressure(const struct sock *sk) 2652 { 2653 return false; 2654 } 2655 #endif 2656 2657 static inline long sock_rcvtimeo(const struct sock *sk, bool noblock) 2658 { 2659 return noblock ? 0 : READ_ONCE(sk->sk_rcvtimeo); 2660 } 2661 2662 static inline long sock_sndtimeo(const struct sock *sk, bool noblock) 2663 { 2664 return noblock ? 0 : READ_ONCE(sk->sk_sndtimeo); 2665 } 2666 2667 static inline int sock_rcvlowat(const struct sock *sk, int waitall, int len) 2668 { 2669 int v = waitall ? len : min_t(int, READ_ONCE(sk->sk_rcvlowat), len); 2670 2671 return v ?: 1; 2672 } 2673 2674 /* Alas, with timeout socket operations are not restartable. 2675 * Compare this to poll(). 2676 */ 2677 static inline int sock_intr_errno(long timeo) 2678 { 2679 return timeo == MAX_SCHEDULE_TIMEOUT ? -ERESTARTSYS : -EINTR; 2680 } 2681 2682 struct sock_skb_cb { 2683 u32 dropcount; 2684 }; 2685 2686 /* Store sock_skb_cb at the end of skb->cb[] so protocol families 2687 * using skb->cb[] would keep using it directly and utilize its 2688 * alignment guarantee. 2689 */ 2690 #define SOCK_SKB_CB_OFFSET (sizeof_field(struct sk_buff, cb) - \ 2691 sizeof(struct sock_skb_cb)) 2692 2693 #define SOCK_SKB_CB(__skb) ((struct sock_skb_cb *)((__skb)->cb + \ 2694 SOCK_SKB_CB_OFFSET)) 2695 2696 #define sock_skb_cb_check_size(size) \ 2697 BUILD_BUG_ON((size) > SOCK_SKB_CB_OFFSET) 2698 2699 static inline void sk_drops_add(struct sock *sk, int segs) 2700 { 2701 struct numa_drop_counters *ndc = sk->sk_drop_counters; 2702 2703 if (ndc) 2704 numa_drop_add(ndc, segs); 2705 else 2706 atomic_add(segs, &sk->sk_drops); 2707 } 2708 2709 static inline void sk_drops_inc(struct sock *sk) 2710 { 2711 sk_drops_add(sk, 1); 2712 } 2713 2714 static inline int sk_drops_read(const struct sock *sk) 2715 { 2716 const struct numa_drop_counters *ndc = sk->sk_drop_counters; 2717 2718 if (ndc) { 2719 DEBUG_NET_WARN_ON_ONCE(atomic_read(&sk->sk_drops)); 2720 return numa_drop_read(ndc); 2721 } 2722 return atomic_read(&sk->sk_drops); 2723 } 2724 2725 static inline void sk_drops_reset(struct sock *sk) 2726 { 2727 struct numa_drop_counters *ndc = sk->sk_drop_counters; 2728 2729 if (ndc) 2730 numa_drop_reset(ndc); 2731 atomic_set(&sk->sk_drops, 0); 2732 } 2733 2734 static inline void 2735 sock_skb_set_dropcount(const struct sock *sk, struct sk_buff *skb) 2736 { 2737 SOCK_SKB_CB(skb)->dropcount = sock_flag(sk, SOCK_RXQ_OVFL) ? 2738 sk_drops_read(sk) : 0; 2739 } 2740 2741 static inline void sk_drops_skbadd(struct sock *sk, const struct sk_buff *skb) 2742 { 2743 int segs = max_t(u16, 1, skb_shinfo(skb)->gso_segs); 2744 2745 sk_drops_add(sk, segs); 2746 } 2747 2748 static inline ktime_t sock_read_timestamp(struct sock *sk) 2749 { 2750 #if BITS_PER_LONG==32 2751 unsigned int seq; 2752 ktime_t kt; 2753 2754 do { 2755 seq = read_seqbegin(&sk->sk_stamp_seq); 2756 kt = sk->sk_stamp; 2757 } while (read_seqretry(&sk->sk_stamp_seq, seq)); 2758 2759 return kt; 2760 #else 2761 return READ_ONCE(sk->sk_stamp); 2762 #endif 2763 } 2764 2765 static inline void sock_write_timestamp(struct sock *sk, ktime_t kt) 2766 { 2767 #if BITS_PER_LONG==32 2768 write_seqlock(&sk->sk_stamp_seq); 2769 sk->sk_stamp = kt; 2770 write_sequnlock(&sk->sk_stamp_seq); 2771 #else 2772 WRITE_ONCE(sk->sk_stamp, kt); 2773 #endif 2774 } 2775 2776 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk, 2777 struct sk_buff *skb); 2778 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk, 2779 struct sk_buff *skb); 2780 2781 bool skb_has_tx_timestamp(struct sk_buff *skb, const struct sock *sk); 2782 int skb_get_tx_timestamp(struct sk_buff *skb, struct sock *sk, 2783 struct timespec64 *ts); 2784 2785 static inline void 2786 sock_recv_timestamp(struct msghdr *msg, struct sock *sk, struct sk_buff *skb) 2787 { 2788 struct skb_shared_hwtstamps *hwtstamps = skb_hwtstamps(skb); 2789 u32 tsflags = READ_ONCE(sk->sk_tsflags); 2790 ktime_t kt = skb->tstamp; 2791 /* 2792 * generate control messages if 2793 * - receive time stamping in software requested 2794 * - software time stamp available and wanted 2795 * - hardware time stamps available and wanted 2796 */ 2797 if (sock_flag(sk, SOCK_RCVTSTAMP) || 2798 (tsflags & SOF_TIMESTAMPING_RX_SOFTWARE) || 2799 (kt && tsflags & SOF_TIMESTAMPING_SOFTWARE) || 2800 (hwtstamps->hwtstamp && 2801 (tsflags & SOF_TIMESTAMPING_RAW_HARDWARE))) 2802 __sock_recv_timestamp(msg, sk, skb); 2803 else 2804 sock_write_timestamp(sk, kt); 2805 2806 if (sock_flag(sk, SOCK_WIFI_STATUS) && skb_wifi_acked_valid(skb)) 2807 __sock_recv_wifi_status(msg, sk, skb); 2808 } 2809 2810 void __sock_recv_cmsgs(struct msghdr *msg, struct sock *sk, 2811 struct sk_buff *skb); 2812 2813 #define SK_DEFAULT_STAMP (-1L * NSEC_PER_SEC) 2814 static inline void sock_recv_cmsgs(struct msghdr *msg, struct sock *sk, 2815 struct sk_buff *skb) 2816 { 2817 #define FLAGS_RECV_CMSGS ((1UL << SOCK_RXQ_OVFL) | \ 2818 (1UL << SOCK_RCVTSTAMP) | \ 2819 (1UL << SOCK_RCVMARK) | \ 2820 (1UL << SOCK_RCVPRIORITY) | \ 2821 (1UL << SOCK_TIMESTAMPING_ANY)) 2822 #define TSFLAGS_ANY (SOF_TIMESTAMPING_SOFTWARE | \ 2823 SOF_TIMESTAMPING_RAW_HARDWARE) 2824 2825 if (READ_ONCE(sk->sk_flags) & FLAGS_RECV_CMSGS) 2826 __sock_recv_cmsgs(msg, sk, skb); 2827 else if (unlikely(sock_flag(sk, SOCK_TIMESTAMP))) 2828 sock_write_timestamp(sk, skb->tstamp); 2829 else if (unlikely(sock_read_timestamp(sk) == SK_DEFAULT_STAMP)) 2830 sock_write_timestamp(sk, 0); 2831 } 2832 2833 void __sock_tx_timestamp(__u32 tsflags, __u8 *tx_flags); 2834 2835 /** 2836 * _sock_tx_timestamp - checks whether the outgoing packet is to be time stamped 2837 * @sk: socket sending this packet 2838 * @sockc: pointer to socket cmsg cookie to get timestamping info 2839 * @tx_flags: completed with instructions for time stamping 2840 * @tskey: filled in with next sk_tskey (not for TCP, which uses seqno) 2841 * 2842 * Note: callers should take care of initial ``*tx_flags`` value (usually 0) 2843 */ 2844 static inline void _sock_tx_timestamp(struct sock *sk, 2845 const struct sockcm_cookie *sockc, 2846 __u8 *tx_flags, __u32 *tskey) 2847 { 2848 __u32 tsflags = sockc->tsflags; 2849 2850 if (unlikely(tsflags)) { 2851 __sock_tx_timestamp(tsflags, tx_flags); 2852 if (tsflags & SOF_TIMESTAMPING_OPT_ID && tskey && 2853 tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK) { 2854 if (tsflags & SOCKCM_FLAG_TS_OPT_ID) 2855 *tskey = sockc->ts_opt_id; 2856 else 2857 *tskey = atomic_inc_return(&sk->sk_tskey) - 1; 2858 } 2859 } 2860 } 2861 2862 static inline void sock_tx_timestamp(struct sock *sk, 2863 const struct sockcm_cookie *sockc, 2864 __u8 *tx_flags) 2865 { 2866 _sock_tx_timestamp(sk, sockc, tx_flags, NULL); 2867 } 2868 2869 static inline void skb_setup_tx_timestamp(struct sk_buff *skb, 2870 const struct sockcm_cookie *sockc) 2871 { 2872 _sock_tx_timestamp(skb->sk, sockc, &skb_shinfo(skb)->tx_flags, 2873 &skb_shinfo(skb)->tskey); 2874 } 2875 2876 static inline bool sk_is_inet(const struct sock *sk) 2877 { 2878 int family = READ_ONCE(sk->sk_family); 2879 2880 return family == AF_INET || family == AF_INET6; 2881 } 2882 2883 static inline bool sk_is_tcp(const struct sock *sk) 2884 { 2885 return sk_is_inet(sk) && 2886 sk->sk_type == SOCK_STREAM && 2887 sk->sk_protocol == IPPROTO_TCP; 2888 } 2889 2890 static inline bool sk_is_udp(const struct sock *sk) 2891 { 2892 return sk_is_inet(sk) && 2893 sk->sk_type == SOCK_DGRAM && 2894 sk->sk_protocol == IPPROTO_UDP; 2895 } 2896 2897 static inline bool sk_is_unix(const struct sock *sk) 2898 { 2899 return sk->sk_family == AF_UNIX; 2900 } 2901 2902 static inline bool sk_is_stream_unix(const struct sock *sk) 2903 { 2904 return sk_is_unix(sk) && sk->sk_type == SOCK_STREAM; 2905 } 2906 2907 static inline bool sk_is_vsock(const struct sock *sk) 2908 { 2909 return sk->sk_family == AF_VSOCK; 2910 } 2911 2912 static inline bool sk_may_scm_recv(const struct sock *sk) 2913 { 2914 return (IS_ENABLED(CONFIG_UNIX) && sk->sk_family == AF_UNIX) || 2915 sk->sk_family == AF_NETLINK || 2916 (IS_ENABLED(CONFIG_BT) && sk->sk_family == AF_BLUETOOTH); 2917 } 2918 2919 /** 2920 * sk_eat_skb - Release a skb if it is no longer needed 2921 * @sk: socket to eat this skb from 2922 * @skb: socket buffer to eat 2923 * 2924 * This routine must be called with interrupts disabled or with the socket 2925 * locked so that the sk_buff queue operation is ok. 2926 */ 2927 static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb) 2928 { 2929 __skb_unlink(skb, &sk->sk_receive_queue); 2930 __kfree_skb(skb); 2931 } 2932 2933 static inline bool 2934 skb_sk_is_prefetched(struct sk_buff *skb) 2935 { 2936 #ifdef CONFIG_INET 2937 return skb->destructor == sock_pfree; 2938 #else 2939 return false; 2940 #endif /* CONFIG_INET */ 2941 } 2942 2943 /* This helper checks if a socket is a full socket, 2944 * ie _not_ a timewait or request socket. 2945 */ 2946 static inline bool sk_fullsock(const struct sock *sk) 2947 { 2948 return (1 << sk->sk_state) & ~(TCPF_TIME_WAIT | TCPF_NEW_SYN_RECV); 2949 } 2950 2951 static inline bool 2952 sk_is_refcounted(struct sock *sk) 2953 { 2954 /* Only full sockets have sk->sk_flags. */ 2955 return !sk_fullsock(sk) || !sock_flag(sk, SOCK_RCU_FREE); 2956 } 2957 2958 static inline bool 2959 sk_requests_wifi_status(struct sock *sk) 2960 { 2961 return sk && sk_fullsock(sk) && sock_flag(sk, SOCK_WIFI_STATUS); 2962 } 2963 2964 /* This helper checks if a socket is a LISTEN or NEW_SYN_RECV 2965 * SYNACK messages can be attached to either ones (depending on SYNCOOKIE) 2966 */ 2967 static inline bool sk_listener(const struct sock *sk) 2968 { 2969 return (1 << sk->sk_state) & (TCPF_LISTEN | TCPF_NEW_SYN_RECV); 2970 } 2971 2972 /* This helper checks if a socket is a LISTEN or NEW_SYN_RECV or TIME_WAIT 2973 * TCP SYNACK messages can be attached to LISTEN or NEW_SYN_RECV (depending on SYNCOOKIE) 2974 * TCP RST and ACK can be attached to TIME_WAIT. 2975 */ 2976 static inline bool sk_listener_or_tw(const struct sock *sk) 2977 { 2978 return (1 << READ_ONCE(sk->sk_state)) & 2979 (TCPF_LISTEN | TCPF_NEW_SYN_RECV | TCPF_TIME_WAIT); 2980 } 2981 2982 void sock_enable_timestamp(struct sock *sk, enum sock_flags flag); 2983 int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len, int level, 2984 int type); 2985 2986 bool sk_ns_capable(const struct sock *sk, 2987 struct user_namespace *user_ns, int cap); 2988 bool sk_capable(const struct sock *sk, int cap); 2989 bool sk_net_capable(const struct sock *sk, int cap); 2990 2991 void sk_get_meminfo(const struct sock *sk, u32 *meminfo); 2992 2993 /* Take into consideration the size of the struct sk_buff overhead in the 2994 * determination of these values, since that is non-constant across 2995 * platforms. This makes socket queueing behavior and performance 2996 * not depend upon such differences. 2997 */ 2998 #define _SK_MEM_PACKETS 256 2999 #define _SK_MEM_OVERHEAD SKB_TRUESIZE(256) 3000 #define SK_WMEM_DEFAULT (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS) 3001 #define SK_RMEM_DEFAULT (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS) 3002 3003 extern __u32 sysctl_wmem_max; 3004 extern __u32 sysctl_rmem_max; 3005 3006 extern __u32 sysctl_wmem_default; 3007 extern __u32 sysctl_rmem_default; 3008 3009 #define SKB_FRAG_PAGE_ORDER get_order(32768) 3010 DECLARE_STATIC_KEY_FALSE(net_high_order_alloc_disable_key); 3011 3012 static inline int sk_get_wmem0(const struct sock *sk, const struct proto *proto) 3013 { 3014 /* Does this proto have per netns sysctl_wmem ? */ 3015 if (proto->sysctl_wmem_offset) 3016 return READ_ONCE(*(int *)((void *)sock_net(sk) + proto->sysctl_wmem_offset)); 3017 3018 return READ_ONCE(*proto->sysctl_wmem); 3019 } 3020 3021 static inline int sk_get_rmem0(const struct sock *sk, const struct proto *proto) 3022 { 3023 /* Does this proto have per netns sysctl_rmem ? */ 3024 if (proto->sysctl_rmem_offset) 3025 return READ_ONCE(*(int *)((void *)sock_net(sk) + proto->sysctl_rmem_offset)); 3026 3027 return READ_ONCE(*proto->sysctl_rmem); 3028 } 3029 3030 /* Default TCP Small queue budget is ~1 ms of data (1sec >> 10) 3031 * Some wifi drivers need to tweak it to get more chunks. 3032 * They can use this helper from their ndo_start_xmit() 3033 */ 3034 static inline void sk_pacing_shift_update(struct sock *sk, int val) 3035 { 3036 if (!sk || !sk_fullsock(sk) || READ_ONCE(sk->sk_pacing_shift) == val) 3037 return; 3038 WRITE_ONCE(sk->sk_pacing_shift, val); 3039 } 3040 3041 /* if a socket is bound to a device, check that the given device 3042 * index is either the same or that the socket is bound to an L3 3043 * master device and the given device index is also enslaved to 3044 * that L3 master 3045 */ 3046 static inline bool sk_dev_equal_l3scope(struct sock *sk, int dif) 3047 { 3048 int bound_dev_if = READ_ONCE(sk->sk_bound_dev_if); 3049 int mdif; 3050 3051 if (!bound_dev_if || bound_dev_if == dif) 3052 return true; 3053 3054 mdif = l3mdev_master_ifindex_by_index(sock_net(sk), dif); 3055 if (mdif && mdif == bound_dev_if) 3056 return true; 3057 3058 return false; 3059 } 3060 3061 void sock_def_readable(struct sock *sk); 3062 3063 int sock_bindtoindex(struct sock *sk, int ifindex, bool lock_sk); 3064 void sock_set_timestamp(struct sock *sk, int optname, bool valbool); 3065 int sock_set_timestamping(struct sock *sk, int optname, 3066 struct so_timestamping timestamping); 3067 3068 #if defined(CONFIG_CGROUP_BPF) 3069 void bpf_skops_tx_timestamping(struct sock *sk, struct sk_buff *skb, int op); 3070 #else 3071 static inline void bpf_skops_tx_timestamping(struct sock *sk, struct sk_buff *skb, int op) 3072 { 3073 } 3074 #endif 3075 void sock_no_linger(struct sock *sk); 3076 void sock_set_keepalive(struct sock *sk); 3077 void sock_set_priority(struct sock *sk, u32 priority); 3078 void sock_set_rcvbuf(struct sock *sk, int val); 3079 void sock_set_mark(struct sock *sk, u32 val); 3080 void sock_set_reuseaddr(struct sock *sk); 3081 void sock_set_reuseport(struct sock *sk); 3082 void sock_set_sndtimeo(struct sock *sk, s64 secs); 3083 3084 int sock_bind_add(struct sock *sk, struct sockaddr *addr, int addr_len); 3085 3086 int sock_get_timeout(long timeo, void *optval, bool old_timeval); 3087 int sock_copy_user_timeval(struct __kernel_sock_timeval *tv, 3088 sockptr_t optval, int optlen, bool old_timeval); 3089 3090 int sock_ioctl_inout(struct sock *sk, unsigned int cmd, 3091 void __user *arg, void *karg, size_t size); 3092 int sk_ioctl(struct sock *sk, unsigned int cmd, void __user *arg); 3093 static inline bool sk_is_readable(struct sock *sk) 3094 { 3095 const struct proto *prot = READ_ONCE(sk->sk_prot); 3096 3097 if (prot->sock_is_readable) 3098 return prot->sock_is_readable(sk); 3099 3100 return false; 3101 } 3102 #endif /* _SOCK_H */ 3103