xref: /linux/include/net/sock.h (revision cc4589ebfae6f8dbb5cf880a0a67eedab3416492)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Definitions for the AF_INET socket handler.
7  *
8  * Version:	@(#)sock.h	1.0.4	05/13/93
9  *
10  * Authors:	Ross Biro
11  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
13  *		Florian La Roche <flla@stud.uni-sb.de>
14  *
15  * Fixes:
16  *		Alan Cox	:	Volatiles in skbuff pointers. See
17  *					skbuff comments. May be overdone,
18  *					better to prove they can be removed
19  *					than the reverse.
20  *		Alan Cox	:	Added a zapped field for tcp to note
21  *					a socket is reset and must stay shut up
22  *		Alan Cox	:	New fields for options
23  *	Pauline Middelink	:	identd support
24  *		Alan Cox	:	Eliminate low level recv/recvfrom
25  *		David S. Miller	:	New socket lookup architecture.
26  *              Steve Whitehouse:       Default routines for sock_ops
27  *              Arnaldo C. Melo :	removed net_pinfo, tp_pinfo and made
28  *              			protinfo be just a void pointer, as the
29  *              			protocol specific parts were moved to
30  *              			respective headers and ipv4/v6, etc now
31  *              			use private slabcaches for its socks
32  *              Pedro Hortas	:	New flags field for socket options
33  *
34  *
35  *		This program is free software; you can redistribute it and/or
36  *		modify it under the terms of the GNU General Public License
37  *		as published by the Free Software Foundation; either version
38  *		2 of the License, or (at your option) any later version.
39  */
40 #ifndef _SOCK_H
41 #define _SOCK_H
42 
43 #include <linux/kernel.h>
44 #include <linux/list.h>
45 #include <linux/list_nulls.h>
46 #include <linux/timer.h>
47 #include <linux/cache.h>
48 #include <linux/module.h>
49 #include <linux/lockdep.h>
50 #include <linux/netdevice.h>
51 #include <linux/skbuff.h>	/* struct sk_buff */
52 #include <linux/mm.h>
53 #include <linux/security.h>
54 #include <linux/slab.h>
55 
56 #include <linux/filter.h>
57 #include <linux/rculist_nulls.h>
58 #include <linux/poll.h>
59 
60 #include <asm/atomic.h>
61 #include <net/dst.h>
62 #include <net/checksum.h>
63 
64 /*
65  * This structure really needs to be cleaned up.
66  * Most of it is for TCP, and not used by any of
67  * the other protocols.
68  */
69 
70 /* Define this to get the SOCK_DBG debugging facility. */
71 #define SOCK_DEBUGGING
72 #ifdef SOCK_DEBUGGING
73 #define SOCK_DEBUG(sk, msg...) do { if ((sk) && sock_flag((sk), SOCK_DBG)) \
74 					printk(KERN_DEBUG msg); } while (0)
75 #else
76 /* Validate arguments and do nothing */
77 static inline void __attribute__ ((format (printf, 2, 3)))
78 SOCK_DEBUG(struct sock *sk, const char *msg, ...)
79 {
80 }
81 #endif
82 
83 /* This is the per-socket lock.  The spinlock provides a synchronization
84  * between user contexts and software interrupt processing, whereas the
85  * mini-semaphore synchronizes multiple users amongst themselves.
86  */
87 typedef struct {
88 	spinlock_t		slock;
89 	int			owned;
90 	wait_queue_head_t	wq;
91 	/*
92 	 * We express the mutex-alike socket_lock semantics
93 	 * to the lock validator by explicitly managing
94 	 * the slock as a lock variant (in addition to
95 	 * the slock itself):
96 	 */
97 #ifdef CONFIG_DEBUG_LOCK_ALLOC
98 	struct lockdep_map dep_map;
99 #endif
100 } socket_lock_t;
101 
102 struct sock;
103 struct proto;
104 struct net;
105 
106 /**
107  *	struct sock_common - minimal network layer representation of sockets
108  *	@skc_node: main hash linkage for various protocol lookup tables
109  *	@skc_nulls_node: main hash linkage for TCP/UDP/UDP-Lite protocol
110  *	@skc_refcnt: reference count
111  *	@skc_tx_queue_mapping: tx queue number for this connection
112  *	@skc_hash: hash value used with various protocol lookup tables
113  *	@skc_u16hashes: two u16 hash values used by UDP lookup tables
114  *	@skc_family: network address family
115  *	@skc_state: Connection state
116  *	@skc_reuse: %SO_REUSEADDR setting
117  *	@skc_bound_dev_if: bound device index if != 0
118  *	@skc_bind_node: bind hash linkage for various protocol lookup tables
119  *	@skc_portaddr_node: second hash linkage for UDP/UDP-Lite protocol
120  *	@skc_prot: protocol handlers inside a network family
121  *	@skc_net: reference to the network namespace of this socket
122  *
123  *	This is the minimal network layer representation of sockets, the header
124  *	for struct sock and struct inet_timewait_sock.
125  */
126 struct sock_common {
127 	/*
128 	 * first fields are not copied in sock_copy()
129 	 */
130 	union {
131 		struct hlist_node	skc_node;
132 		struct hlist_nulls_node skc_nulls_node;
133 	};
134 	atomic_t		skc_refcnt;
135 	int			skc_tx_queue_mapping;
136 
137 	union  {
138 		unsigned int	skc_hash;
139 		__u16		skc_u16hashes[2];
140 	};
141 	unsigned short		skc_family;
142 	volatile unsigned char	skc_state;
143 	unsigned char		skc_reuse;
144 	int			skc_bound_dev_if;
145 	union {
146 		struct hlist_node	skc_bind_node;
147 		struct hlist_nulls_node skc_portaddr_node;
148 	};
149 	struct proto		*skc_prot;
150 #ifdef CONFIG_NET_NS
151 	struct net	 	*skc_net;
152 #endif
153 };
154 
155 /**
156   *	struct sock - network layer representation of sockets
157   *	@__sk_common: shared layout with inet_timewait_sock
158   *	@sk_shutdown: mask of %SEND_SHUTDOWN and/or %RCV_SHUTDOWN
159   *	@sk_userlocks: %SO_SNDBUF and %SO_RCVBUF settings
160   *	@sk_lock:	synchronizer
161   *	@sk_rcvbuf: size of receive buffer in bytes
162   *	@sk_wq: sock wait queue and async head
163   *	@sk_dst_cache: destination cache
164   *	@sk_dst_lock: destination cache lock
165   *	@sk_policy: flow policy
166   *	@sk_rmem_alloc: receive queue bytes committed
167   *	@sk_receive_queue: incoming packets
168   *	@sk_wmem_alloc: transmit queue bytes committed
169   *	@sk_write_queue: Packet sending queue
170   *	@sk_async_wait_queue: DMA copied packets
171   *	@sk_omem_alloc: "o" is "option" or "other"
172   *	@sk_wmem_queued: persistent queue size
173   *	@sk_forward_alloc: space allocated forward
174   *	@sk_allocation: allocation mode
175   *	@sk_sndbuf: size of send buffer in bytes
176   *	@sk_flags: %SO_LINGER (l_onoff), %SO_BROADCAST, %SO_KEEPALIVE,
177   *		   %SO_OOBINLINE settings, %SO_TIMESTAMPING settings
178   *	@sk_no_check: %SO_NO_CHECK setting, wether or not checkup packets
179   *	@sk_route_caps: route capabilities (e.g. %NETIF_F_TSO)
180   *	@sk_route_nocaps: forbidden route capabilities (e.g NETIF_F_GSO_MASK)
181   *	@sk_gso_type: GSO type (e.g. %SKB_GSO_TCPV4)
182   *	@sk_gso_max_size: Maximum GSO segment size to build
183   *	@sk_lingertime: %SO_LINGER l_linger setting
184   *	@sk_backlog: always used with the per-socket spinlock held
185   *	@sk_callback_lock: used with the callbacks in the end of this struct
186   *	@sk_error_queue: rarely used
187   *	@sk_prot_creator: sk_prot of original sock creator (see ipv6_setsockopt,
188   *			  IPV6_ADDRFORM for instance)
189   *	@sk_err: last error
190   *	@sk_err_soft: errors that don't cause failure but are the cause of a
191   *		      persistent failure not just 'timed out'
192   *	@sk_drops: raw/udp drops counter
193   *	@sk_ack_backlog: current listen backlog
194   *	@sk_max_ack_backlog: listen backlog set in listen()
195   *	@sk_priority: %SO_PRIORITY setting
196   *	@sk_type: socket type (%SOCK_STREAM, etc)
197   *	@sk_protocol: which protocol this socket belongs in this network family
198   *	@sk_peercred: %SO_PEERCRED setting
199   *	@sk_rcvlowat: %SO_RCVLOWAT setting
200   *	@sk_rcvtimeo: %SO_RCVTIMEO setting
201   *	@sk_sndtimeo: %SO_SNDTIMEO setting
202   *	@sk_rxhash: flow hash received from netif layer
203   *	@sk_filter: socket filtering instructions
204   *	@sk_protinfo: private area, net family specific, when not using slab
205   *	@sk_timer: sock cleanup timer
206   *	@sk_stamp: time stamp of last packet received
207   *	@sk_socket: Identd and reporting IO signals
208   *	@sk_user_data: RPC layer private data
209   *	@sk_sndmsg_page: cached page for sendmsg
210   *	@sk_sndmsg_off: cached offset for sendmsg
211   *	@sk_send_head: front of stuff to transmit
212   *	@sk_security: used by security modules
213   *	@sk_mark: generic packet mark
214   *	@sk_write_pending: a write to stream socket waits to start
215   *	@sk_state_change: callback to indicate change in the state of the sock
216   *	@sk_data_ready: callback to indicate there is data to be processed
217   *	@sk_write_space: callback to indicate there is bf sending space available
218   *	@sk_error_report: callback to indicate errors (e.g. %MSG_ERRQUEUE)
219   *	@sk_backlog_rcv: callback to process the backlog
220   *	@sk_destruct: called at sock freeing time, i.e. when all refcnt == 0
221  */
222 struct sock {
223 	/*
224 	 * Now struct inet_timewait_sock also uses sock_common, so please just
225 	 * don't add nothing before this first member (__sk_common) --acme
226 	 */
227 	struct sock_common	__sk_common;
228 #define sk_node			__sk_common.skc_node
229 #define sk_nulls_node		__sk_common.skc_nulls_node
230 #define sk_refcnt		__sk_common.skc_refcnt
231 #define sk_tx_queue_mapping	__sk_common.skc_tx_queue_mapping
232 
233 #define sk_copy_start		__sk_common.skc_hash
234 #define sk_hash			__sk_common.skc_hash
235 #define sk_family		__sk_common.skc_family
236 #define sk_state		__sk_common.skc_state
237 #define sk_reuse		__sk_common.skc_reuse
238 #define sk_bound_dev_if		__sk_common.skc_bound_dev_if
239 #define sk_bind_node		__sk_common.skc_bind_node
240 #define sk_prot			__sk_common.skc_prot
241 #define sk_net			__sk_common.skc_net
242 	kmemcheck_bitfield_begin(flags);
243 	unsigned int		sk_shutdown  : 2,
244 				sk_no_check  : 2,
245 				sk_userlocks : 4,
246 				sk_protocol  : 8,
247 				sk_type      : 16;
248 	kmemcheck_bitfield_end(flags);
249 	int			sk_rcvbuf;
250 	socket_lock_t		sk_lock;
251 	/*
252 	 * The backlog queue is special, it is always used with
253 	 * the per-socket spinlock held and requires low latency
254 	 * access. Therefore we special case it's implementation.
255 	 */
256 	struct {
257 		struct sk_buff *head;
258 		struct sk_buff *tail;
259 		int len;
260 	} sk_backlog;
261 	struct socket_wq	*sk_wq;
262 	struct dst_entry	*sk_dst_cache;
263 #ifdef CONFIG_XFRM
264 	struct xfrm_policy	*sk_policy[2];
265 #endif
266 	spinlock_t		sk_dst_lock;
267 	atomic_t		sk_rmem_alloc;
268 	atomic_t		sk_wmem_alloc;
269 	atomic_t		sk_omem_alloc;
270 	int			sk_sndbuf;
271 	struct sk_buff_head	sk_receive_queue;
272 	struct sk_buff_head	sk_write_queue;
273 #ifdef CONFIG_NET_DMA
274 	struct sk_buff_head	sk_async_wait_queue;
275 #endif
276 	int			sk_wmem_queued;
277 	int			sk_forward_alloc;
278 	gfp_t			sk_allocation;
279 	int			sk_route_caps;
280 	int			sk_route_nocaps;
281 	int			sk_gso_type;
282 	unsigned int		sk_gso_max_size;
283 	int			sk_rcvlowat;
284 #ifdef CONFIG_RPS
285 	__u32			sk_rxhash;
286 #endif
287 	unsigned long 		sk_flags;
288 	unsigned long	        sk_lingertime;
289 	struct sk_buff_head	sk_error_queue;
290 	struct proto		*sk_prot_creator;
291 	rwlock_t		sk_callback_lock;
292 	int			sk_err,
293 				sk_err_soft;
294 	atomic_t		sk_drops;
295 	unsigned short		sk_ack_backlog;
296 	unsigned short		sk_max_ack_backlog;
297 	__u32			sk_priority;
298 	struct pid		*sk_peer_pid;
299 	const struct cred	*sk_peer_cred;
300 	long			sk_rcvtimeo;
301 	long			sk_sndtimeo;
302 	struct sk_filter      	*sk_filter;
303 	void			*sk_protinfo;
304 	struct timer_list	sk_timer;
305 	ktime_t			sk_stamp;
306 	struct socket		*sk_socket;
307 	void			*sk_user_data;
308 	struct page		*sk_sndmsg_page;
309 	struct sk_buff		*sk_send_head;
310 	__u32			sk_sndmsg_off;
311 	int			sk_write_pending;
312 #ifdef CONFIG_SECURITY
313 	void			*sk_security;
314 #endif
315 	__u32			sk_mark;
316 	u32			sk_classid;
317 	void			(*sk_state_change)(struct sock *sk);
318 	void			(*sk_data_ready)(struct sock *sk, int bytes);
319 	void			(*sk_write_space)(struct sock *sk);
320 	void			(*sk_error_report)(struct sock *sk);
321   	int			(*sk_backlog_rcv)(struct sock *sk,
322 						  struct sk_buff *skb);
323 	void                    (*sk_destruct)(struct sock *sk);
324 };
325 
326 /*
327  * Hashed lists helper routines
328  */
329 static inline struct sock *sk_entry(const struct hlist_node *node)
330 {
331 	return hlist_entry(node, struct sock, sk_node);
332 }
333 
334 static inline struct sock *__sk_head(const struct hlist_head *head)
335 {
336 	return hlist_entry(head->first, struct sock, sk_node);
337 }
338 
339 static inline struct sock *sk_head(const struct hlist_head *head)
340 {
341 	return hlist_empty(head) ? NULL : __sk_head(head);
342 }
343 
344 static inline struct sock *__sk_nulls_head(const struct hlist_nulls_head *head)
345 {
346 	return hlist_nulls_entry(head->first, struct sock, sk_nulls_node);
347 }
348 
349 static inline struct sock *sk_nulls_head(const struct hlist_nulls_head *head)
350 {
351 	return hlist_nulls_empty(head) ? NULL : __sk_nulls_head(head);
352 }
353 
354 static inline struct sock *sk_next(const struct sock *sk)
355 {
356 	return sk->sk_node.next ?
357 		hlist_entry(sk->sk_node.next, struct sock, sk_node) : NULL;
358 }
359 
360 static inline struct sock *sk_nulls_next(const struct sock *sk)
361 {
362 	return (!is_a_nulls(sk->sk_nulls_node.next)) ?
363 		hlist_nulls_entry(sk->sk_nulls_node.next,
364 				  struct sock, sk_nulls_node) :
365 		NULL;
366 }
367 
368 static inline int sk_unhashed(const struct sock *sk)
369 {
370 	return hlist_unhashed(&sk->sk_node);
371 }
372 
373 static inline int sk_hashed(const struct sock *sk)
374 {
375 	return !sk_unhashed(sk);
376 }
377 
378 static __inline__ void sk_node_init(struct hlist_node *node)
379 {
380 	node->pprev = NULL;
381 }
382 
383 static __inline__ void sk_nulls_node_init(struct hlist_nulls_node *node)
384 {
385 	node->pprev = NULL;
386 }
387 
388 static __inline__ void __sk_del_node(struct sock *sk)
389 {
390 	__hlist_del(&sk->sk_node);
391 }
392 
393 /* NB: equivalent to hlist_del_init_rcu */
394 static __inline__ int __sk_del_node_init(struct sock *sk)
395 {
396 	if (sk_hashed(sk)) {
397 		__sk_del_node(sk);
398 		sk_node_init(&sk->sk_node);
399 		return 1;
400 	}
401 	return 0;
402 }
403 
404 /* Grab socket reference count. This operation is valid only
405    when sk is ALREADY grabbed f.e. it is found in hash table
406    or a list and the lookup is made under lock preventing hash table
407    modifications.
408  */
409 
410 static inline void sock_hold(struct sock *sk)
411 {
412 	atomic_inc(&sk->sk_refcnt);
413 }
414 
415 /* Ungrab socket in the context, which assumes that socket refcnt
416    cannot hit zero, f.e. it is true in context of any socketcall.
417  */
418 static inline void __sock_put(struct sock *sk)
419 {
420 	atomic_dec(&sk->sk_refcnt);
421 }
422 
423 static __inline__ int sk_del_node_init(struct sock *sk)
424 {
425 	int rc = __sk_del_node_init(sk);
426 
427 	if (rc) {
428 		/* paranoid for a while -acme */
429 		WARN_ON(atomic_read(&sk->sk_refcnt) == 1);
430 		__sock_put(sk);
431 	}
432 	return rc;
433 }
434 #define sk_del_node_init_rcu(sk)	sk_del_node_init(sk)
435 
436 static __inline__ int __sk_nulls_del_node_init_rcu(struct sock *sk)
437 {
438 	if (sk_hashed(sk)) {
439 		hlist_nulls_del_init_rcu(&sk->sk_nulls_node);
440 		return 1;
441 	}
442 	return 0;
443 }
444 
445 static __inline__ int sk_nulls_del_node_init_rcu(struct sock *sk)
446 {
447 	int rc = __sk_nulls_del_node_init_rcu(sk);
448 
449 	if (rc) {
450 		/* paranoid for a while -acme */
451 		WARN_ON(atomic_read(&sk->sk_refcnt) == 1);
452 		__sock_put(sk);
453 	}
454 	return rc;
455 }
456 
457 static __inline__ void __sk_add_node(struct sock *sk, struct hlist_head *list)
458 {
459 	hlist_add_head(&sk->sk_node, list);
460 }
461 
462 static __inline__ void sk_add_node(struct sock *sk, struct hlist_head *list)
463 {
464 	sock_hold(sk);
465 	__sk_add_node(sk, list);
466 }
467 
468 static __inline__ void sk_add_node_rcu(struct sock *sk, struct hlist_head *list)
469 {
470 	sock_hold(sk);
471 	hlist_add_head_rcu(&sk->sk_node, list);
472 }
473 
474 static __inline__ void __sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
475 {
476 	hlist_nulls_add_head_rcu(&sk->sk_nulls_node, list);
477 }
478 
479 static __inline__ void sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
480 {
481 	sock_hold(sk);
482 	__sk_nulls_add_node_rcu(sk, list);
483 }
484 
485 static __inline__ void __sk_del_bind_node(struct sock *sk)
486 {
487 	__hlist_del(&sk->sk_bind_node);
488 }
489 
490 static __inline__ void sk_add_bind_node(struct sock *sk,
491 					struct hlist_head *list)
492 {
493 	hlist_add_head(&sk->sk_bind_node, list);
494 }
495 
496 #define sk_for_each(__sk, node, list) \
497 	hlist_for_each_entry(__sk, node, list, sk_node)
498 #define sk_for_each_rcu(__sk, node, list) \
499 	hlist_for_each_entry_rcu(__sk, node, list, sk_node)
500 #define sk_nulls_for_each(__sk, node, list) \
501 	hlist_nulls_for_each_entry(__sk, node, list, sk_nulls_node)
502 #define sk_nulls_for_each_rcu(__sk, node, list) \
503 	hlist_nulls_for_each_entry_rcu(__sk, node, list, sk_nulls_node)
504 #define sk_for_each_from(__sk, node) \
505 	if (__sk && ({ node = &(__sk)->sk_node; 1; })) \
506 		hlist_for_each_entry_from(__sk, node, sk_node)
507 #define sk_nulls_for_each_from(__sk, node) \
508 	if (__sk && ({ node = &(__sk)->sk_nulls_node; 1; })) \
509 		hlist_nulls_for_each_entry_from(__sk, node, sk_nulls_node)
510 #define sk_for_each_continue(__sk, node) \
511 	if (__sk && ({ node = &(__sk)->sk_node; 1; })) \
512 		hlist_for_each_entry_continue(__sk, node, sk_node)
513 #define sk_for_each_safe(__sk, node, tmp, list) \
514 	hlist_for_each_entry_safe(__sk, node, tmp, list, sk_node)
515 #define sk_for_each_bound(__sk, node, list) \
516 	hlist_for_each_entry(__sk, node, list, sk_bind_node)
517 
518 /* Sock flags */
519 enum sock_flags {
520 	SOCK_DEAD,
521 	SOCK_DONE,
522 	SOCK_URGINLINE,
523 	SOCK_KEEPOPEN,
524 	SOCK_LINGER,
525 	SOCK_DESTROY,
526 	SOCK_BROADCAST,
527 	SOCK_TIMESTAMP,
528 	SOCK_ZAPPED,
529 	SOCK_USE_WRITE_QUEUE, /* whether to call sk->sk_write_space in sock_wfree */
530 	SOCK_DBG, /* %SO_DEBUG setting */
531 	SOCK_RCVTSTAMP, /* %SO_TIMESTAMP setting */
532 	SOCK_RCVTSTAMPNS, /* %SO_TIMESTAMPNS setting */
533 	SOCK_LOCALROUTE, /* route locally only, %SO_DONTROUTE setting */
534 	SOCK_QUEUE_SHRUNK, /* write queue has been shrunk recently */
535 	SOCK_TIMESTAMPING_TX_HARDWARE,  /* %SOF_TIMESTAMPING_TX_HARDWARE */
536 	SOCK_TIMESTAMPING_TX_SOFTWARE,  /* %SOF_TIMESTAMPING_TX_SOFTWARE */
537 	SOCK_TIMESTAMPING_RX_HARDWARE,  /* %SOF_TIMESTAMPING_RX_HARDWARE */
538 	SOCK_TIMESTAMPING_RX_SOFTWARE,  /* %SOF_TIMESTAMPING_RX_SOFTWARE */
539 	SOCK_TIMESTAMPING_SOFTWARE,     /* %SOF_TIMESTAMPING_SOFTWARE */
540 	SOCK_TIMESTAMPING_RAW_HARDWARE, /* %SOF_TIMESTAMPING_RAW_HARDWARE */
541 	SOCK_TIMESTAMPING_SYS_HARDWARE, /* %SOF_TIMESTAMPING_SYS_HARDWARE */
542 	SOCK_FASYNC, /* fasync() active */
543 	SOCK_RXQ_OVFL,
544 };
545 
546 static inline void sock_copy_flags(struct sock *nsk, struct sock *osk)
547 {
548 	nsk->sk_flags = osk->sk_flags;
549 }
550 
551 static inline void sock_set_flag(struct sock *sk, enum sock_flags flag)
552 {
553 	__set_bit(flag, &sk->sk_flags);
554 }
555 
556 static inline void sock_reset_flag(struct sock *sk, enum sock_flags flag)
557 {
558 	__clear_bit(flag, &sk->sk_flags);
559 }
560 
561 static inline int sock_flag(struct sock *sk, enum sock_flags flag)
562 {
563 	return test_bit(flag, &sk->sk_flags);
564 }
565 
566 static inline void sk_acceptq_removed(struct sock *sk)
567 {
568 	sk->sk_ack_backlog--;
569 }
570 
571 static inline void sk_acceptq_added(struct sock *sk)
572 {
573 	sk->sk_ack_backlog++;
574 }
575 
576 static inline int sk_acceptq_is_full(struct sock *sk)
577 {
578 	return sk->sk_ack_backlog > sk->sk_max_ack_backlog;
579 }
580 
581 /*
582  * Compute minimal free write space needed to queue new packets.
583  */
584 static inline int sk_stream_min_wspace(struct sock *sk)
585 {
586 	return sk->sk_wmem_queued >> 1;
587 }
588 
589 static inline int sk_stream_wspace(struct sock *sk)
590 {
591 	return sk->sk_sndbuf - sk->sk_wmem_queued;
592 }
593 
594 extern void sk_stream_write_space(struct sock *sk);
595 
596 static inline int sk_stream_memory_free(struct sock *sk)
597 {
598 	return sk->sk_wmem_queued < sk->sk_sndbuf;
599 }
600 
601 /* OOB backlog add */
602 static inline void __sk_add_backlog(struct sock *sk, struct sk_buff *skb)
603 {
604 	/* dont let skb dst not refcounted, we are going to leave rcu lock */
605 	skb_dst_force(skb);
606 
607 	if (!sk->sk_backlog.tail)
608 		sk->sk_backlog.head = skb;
609 	else
610 		sk->sk_backlog.tail->next = skb;
611 
612 	sk->sk_backlog.tail = skb;
613 	skb->next = NULL;
614 }
615 
616 /*
617  * Take into account size of receive queue and backlog queue
618  */
619 static inline bool sk_rcvqueues_full(const struct sock *sk, const struct sk_buff *skb)
620 {
621 	unsigned int qsize = sk->sk_backlog.len + atomic_read(&sk->sk_rmem_alloc);
622 
623 	return qsize + skb->truesize > sk->sk_rcvbuf;
624 }
625 
626 /* The per-socket spinlock must be held here. */
627 static inline __must_check int sk_add_backlog(struct sock *sk, struct sk_buff *skb)
628 {
629 	if (sk_rcvqueues_full(sk, skb))
630 		return -ENOBUFS;
631 
632 	__sk_add_backlog(sk, skb);
633 	sk->sk_backlog.len += skb->truesize;
634 	return 0;
635 }
636 
637 static inline int sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
638 {
639 	return sk->sk_backlog_rcv(sk, skb);
640 }
641 
642 static inline void sock_rps_record_flow(const struct sock *sk)
643 {
644 #ifdef CONFIG_RPS
645 	struct rps_sock_flow_table *sock_flow_table;
646 
647 	rcu_read_lock();
648 	sock_flow_table = rcu_dereference(rps_sock_flow_table);
649 	rps_record_sock_flow(sock_flow_table, sk->sk_rxhash);
650 	rcu_read_unlock();
651 #endif
652 }
653 
654 static inline void sock_rps_reset_flow(const struct sock *sk)
655 {
656 #ifdef CONFIG_RPS
657 	struct rps_sock_flow_table *sock_flow_table;
658 
659 	rcu_read_lock();
660 	sock_flow_table = rcu_dereference(rps_sock_flow_table);
661 	rps_reset_sock_flow(sock_flow_table, sk->sk_rxhash);
662 	rcu_read_unlock();
663 #endif
664 }
665 
666 static inline void sock_rps_save_rxhash(struct sock *sk, u32 rxhash)
667 {
668 #ifdef CONFIG_RPS
669 	if (unlikely(sk->sk_rxhash != rxhash)) {
670 		sock_rps_reset_flow(sk);
671 		sk->sk_rxhash = rxhash;
672 	}
673 #endif
674 }
675 
676 #define sk_wait_event(__sk, __timeo, __condition)			\
677 	({	int __rc;						\
678 		release_sock(__sk);					\
679 		__rc = __condition;					\
680 		if (!__rc) {						\
681 			*(__timeo) = schedule_timeout(*(__timeo));	\
682 		}							\
683 		lock_sock(__sk);					\
684 		__rc = __condition;					\
685 		__rc;							\
686 	})
687 
688 extern int sk_stream_wait_connect(struct sock *sk, long *timeo_p);
689 extern int sk_stream_wait_memory(struct sock *sk, long *timeo_p);
690 extern void sk_stream_wait_close(struct sock *sk, long timeo_p);
691 extern int sk_stream_error(struct sock *sk, int flags, int err);
692 extern void sk_stream_kill_queues(struct sock *sk);
693 
694 extern int sk_wait_data(struct sock *sk, long *timeo);
695 
696 struct request_sock_ops;
697 struct timewait_sock_ops;
698 struct inet_hashinfo;
699 struct raw_hashinfo;
700 
701 /* Networking protocol blocks we attach to sockets.
702  * socket layer -> transport layer interface
703  * transport -> network interface is defined by struct inet_proto
704  */
705 struct proto {
706 	void			(*close)(struct sock *sk,
707 					long timeout);
708 	int			(*connect)(struct sock *sk,
709 				        struct sockaddr *uaddr,
710 					int addr_len);
711 	int			(*disconnect)(struct sock *sk, int flags);
712 
713 	struct sock *		(*accept) (struct sock *sk, int flags, int *err);
714 
715 	int			(*ioctl)(struct sock *sk, int cmd,
716 					 unsigned long arg);
717 	int			(*init)(struct sock *sk);
718 	void			(*destroy)(struct sock *sk);
719 	void			(*shutdown)(struct sock *sk, int how);
720 	int			(*setsockopt)(struct sock *sk, int level,
721 					int optname, char __user *optval,
722 					unsigned int optlen);
723 	int			(*getsockopt)(struct sock *sk, int level,
724 					int optname, char __user *optval,
725 					int __user *option);
726 #ifdef CONFIG_COMPAT
727 	int			(*compat_setsockopt)(struct sock *sk,
728 					int level,
729 					int optname, char __user *optval,
730 					unsigned int optlen);
731 	int			(*compat_getsockopt)(struct sock *sk,
732 					int level,
733 					int optname, char __user *optval,
734 					int __user *option);
735 #endif
736 	int			(*sendmsg)(struct kiocb *iocb, struct sock *sk,
737 					   struct msghdr *msg, size_t len);
738 	int			(*recvmsg)(struct kiocb *iocb, struct sock *sk,
739 					   struct msghdr *msg,
740 					size_t len, int noblock, int flags,
741 					int *addr_len);
742 	int			(*sendpage)(struct sock *sk, struct page *page,
743 					int offset, size_t size, int flags);
744 	int			(*bind)(struct sock *sk,
745 					struct sockaddr *uaddr, int addr_len);
746 
747 	int			(*backlog_rcv) (struct sock *sk,
748 						struct sk_buff *skb);
749 
750 	/* Keeping track of sk's, looking them up, and port selection methods. */
751 	void			(*hash)(struct sock *sk);
752 	void			(*unhash)(struct sock *sk);
753 	int			(*get_port)(struct sock *sk, unsigned short snum);
754 
755 	/* Keeping track of sockets in use */
756 #ifdef CONFIG_PROC_FS
757 	unsigned int		inuse_idx;
758 #endif
759 
760 	/* Memory pressure */
761 	void			(*enter_memory_pressure)(struct sock *sk);
762 	atomic_t		*memory_allocated;	/* Current allocated memory. */
763 	struct percpu_counter	*sockets_allocated;	/* Current number of sockets. */
764 	/*
765 	 * Pressure flag: try to collapse.
766 	 * Technical note: it is used by multiple contexts non atomically.
767 	 * All the __sk_mem_schedule() is of this nature: accounting
768 	 * is strict, actions are advisory and have some latency.
769 	 */
770 	int			*memory_pressure;
771 	int			*sysctl_mem;
772 	int			*sysctl_wmem;
773 	int			*sysctl_rmem;
774 	int			max_header;
775 	bool			no_autobind;
776 
777 	struct kmem_cache	*slab;
778 	unsigned int		obj_size;
779 	int			slab_flags;
780 
781 	struct percpu_counter	*orphan_count;
782 
783 	struct request_sock_ops	*rsk_prot;
784 	struct timewait_sock_ops *twsk_prot;
785 
786 	union {
787 		struct inet_hashinfo	*hashinfo;
788 		struct udp_table	*udp_table;
789 		struct raw_hashinfo	*raw_hash;
790 	} h;
791 
792 	struct module		*owner;
793 
794 	char			name[32];
795 
796 	struct list_head	node;
797 #ifdef SOCK_REFCNT_DEBUG
798 	atomic_t		socks;
799 #endif
800 };
801 
802 extern int proto_register(struct proto *prot, int alloc_slab);
803 extern void proto_unregister(struct proto *prot);
804 
805 #ifdef SOCK_REFCNT_DEBUG
806 static inline void sk_refcnt_debug_inc(struct sock *sk)
807 {
808 	atomic_inc(&sk->sk_prot->socks);
809 }
810 
811 static inline void sk_refcnt_debug_dec(struct sock *sk)
812 {
813 	atomic_dec(&sk->sk_prot->socks);
814 	printk(KERN_DEBUG "%s socket %p released, %d are still alive\n",
815 	       sk->sk_prot->name, sk, atomic_read(&sk->sk_prot->socks));
816 }
817 
818 static inline void sk_refcnt_debug_release(const struct sock *sk)
819 {
820 	if (atomic_read(&sk->sk_refcnt) != 1)
821 		printk(KERN_DEBUG "Destruction of the %s socket %p delayed, refcnt=%d\n",
822 		       sk->sk_prot->name, sk, atomic_read(&sk->sk_refcnt));
823 }
824 #else /* SOCK_REFCNT_DEBUG */
825 #define sk_refcnt_debug_inc(sk) do { } while (0)
826 #define sk_refcnt_debug_dec(sk) do { } while (0)
827 #define sk_refcnt_debug_release(sk) do { } while (0)
828 #endif /* SOCK_REFCNT_DEBUG */
829 
830 
831 #ifdef CONFIG_PROC_FS
832 /* Called with local bh disabled */
833 extern void sock_prot_inuse_add(struct net *net, struct proto *prot, int inc);
834 extern int sock_prot_inuse_get(struct net *net, struct proto *proto);
835 #else
836 static void inline sock_prot_inuse_add(struct net *net, struct proto *prot,
837 		int inc)
838 {
839 }
840 #endif
841 
842 
843 /* With per-bucket locks this operation is not-atomic, so that
844  * this version is not worse.
845  */
846 static inline void __sk_prot_rehash(struct sock *sk)
847 {
848 	sk->sk_prot->unhash(sk);
849 	sk->sk_prot->hash(sk);
850 }
851 
852 /* About 10 seconds */
853 #define SOCK_DESTROY_TIME (10*HZ)
854 
855 /* Sockets 0-1023 can't be bound to unless you are superuser */
856 #define PROT_SOCK	1024
857 
858 #define SHUTDOWN_MASK	3
859 #define RCV_SHUTDOWN	1
860 #define SEND_SHUTDOWN	2
861 
862 #define SOCK_SNDBUF_LOCK	1
863 #define SOCK_RCVBUF_LOCK	2
864 #define SOCK_BINDADDR_LOCK	4
865 #define SOCK_BINDPORT_LOCK	8
866 
867 /* sock_iocb: used to kick off async processing of socket ios */
868 struct sock_iocb {
869 	struct list_head	list;
870 
871 	int			flags;
872 	int			size;
873 	struct socket		*sock;
874 	struct sock		*sk;
875 	struct scm_cookie	*scm;
876 	struct msghdr		*msg, async_msg;
877 	struct kiocb		*kiocb;
878 };
879 
880 static inline struct sock_iocb *kiocb_to_siocb(struct kiocb *iocb)
881 {
882 	return (struct sock_iocb *)iocb->private;
883 }
884 
885 static inline struct kiocb *siocb_to_kiocb(struct sock_iocb *si)
886 {
887 	return si->kiocb;
888 }
889 
890 struct socket_alloc {
891 	struct socket socket;
892 	struct inode vfs_inode;
893 };
894 
895 static inline struct socket *SOCKET_I(struct inode *inode)
896 {
897 	return &container_of(inode, struct socket_alloc, vfs_inode)->socket;
898 }
899 
900 static inline struct inode *SOCK_INODE(struct socket *socket)
901 {
902 	return &container_of(socket, struct socket_alloc, socket)->vfs_inode;
903 }
904 
905 /*
906  * Functions for memory accounting
907  */
908 extern int __sk_mem_schedule(struct sock *sk, int size, int kind);
909 extern void __sk_mem_reclaim(struct sock *sk);
910 
911 #define SK_MEM_QUANTUM ((int)PAGE_SIZE)
912 #define SK_MEM_QUANTUM_SHIFT ilog2(SK_MEM_QUANTUM)
913 #define SK_MEM_SEND	0
914 #define SK_MEM_RECV	1
915 
916 static inline int sk_mem_pages(int amt)
917 {
918 	return (amt + SK_MEM_QUANTUM - 1) >> SK_MEM_QUANTUM_SHIFT;
919 }
920 
921 static inline int sk_has_account(struct sock *sk)
922 {
923 	/* return true if protocol supports memory accounting */
924 	return !!sk->sk_prot->memory_allocated;
925 }
926 
927 static inline int sk_wmem_schedule(struct sock *sk, int size)
928 {
929 	if (!sk_has_account(sk))
930 		return 1;
931 	return size <= sk->sk_forward_alloc ||
932 		__sk_mem_schedule(sk, size, SK_MEM_SEND);
933 }
934 
935 static inline int sk_rmem_schedule(struct sock *sk, int size)
936 {
937 	if (!sk_has_account(sk))
938 		return 1;
939 	return size <= sk->sk_forward_alloc ||
940 		__sk_mem_schedule(sk, size, SK_MEM_RECV);
941 }
942 
943 static inline void sk_mem_reclaim(struct sock *sk)
944 {
945 	if (!sk_has_account(sk))
946 		return;
947 	if (sk->sk_forward_alloc >= SK_MEM_QUANTUM)
948 		__sk_mem_reclaim(sk);
949 }
950 
951 static inline void sk_mem_reclaim_partial(struct sock *sk)
952 {
953 	if (!sk_has_account(sk))
954 		return;
955 	if (sk->sk_forward_alloc > SK_MEM_QUANTUM)
956 		__sk_mem_reclaim(sk);
957 }
958 
959 static inline void sk_mem_charge(struct sock *sk, int size)
960 {
961 	if (!sk_has_account(sk))
962 		return;
963 	sk->sk_forward_alloc -= size;
964 }
965 
966 static inline void sk_mem_uncharge(struct sock *sk, int size)
967 {
968 	if (!sk_has_account(sk))
969 		return;
970 	sk->sk_forward_alloc += size;
971 }
972 
973 static inline void sk_wmem_free_skb(struct sock *sk, struct sk_buff *skb)
974 {
975 	sock_set_flag(sk, SOCK_QUEUE_SHRUNK);
976 	sk->sk_wmem_queued -= skb->truesize;
977 	sk_mem_uncharge(sk, skb->truesize);
978 	__kfree_skb(skb);
979 }
980 
981 /* Used by processes to "lock" a socket state, so that
982  * interrupts and bottom half handlers won't change it
983  * from under us. It essentially blocks any incoming
984  * packets, so that we won't get any new data or any
985  * packets that change the state of the socket.
986  *
987  * While locked, BH processing will add new packets to
988  * the backlog queue.  This queue is processed by the
989  * owner of the socket lock right before it is released.
990  *
991  * Since ~2.3.5 it is also exclusive sleep lock serializing
992  * accesses from user process context.
993  */
994 #define sock_owned_by_user(sk)	((sk)->sk_lock.owned)
995 
996 /*
997  * Macro so as to not evaluate some arguments when
998  * lockdep is not enabled.
999  *
1000  * Mark both the sk_lock and the sk_lock.slock as a
1001  * per-address-family lock class.
1002  */
1003 #define sock_lock_init_class_and_name(sk, sname, skey, name, key) 	\
1004 do {									\
1005 	sk->sk_lock.owned = 0;						\
1006 	init_waitqueue_head(&sk->sk_lock.wq);				\
1007 	spin_lock_init(&(sk)->sk_lock.slock);				\
1008 	debug_check_no_locks_freed((void *)&(sk)->sk_lock,		\
1009 			sizeof((sk)->sk_lock));				\
1010 	lockdep_set_class_and_name(&(sk)->sk_lock.slock,		\
1011 		       	(skey), (sname));				\
1012 	lockdep_init_map(&(sk)->sk_lock.dep_map, (name), (key), 0);	\
1013 } while (0)
1014 
1015 extern void lock_sock_nested(struct sock *sk, int subclass);
1016 
1017 static inline void lock_sock(struct sock *sk)
1018 {
1019 	lock_sock_nested(sk, 0);
1020 }
1021 
1022 extern void release_sock(struct sock *sk);
1023 
1024 /* BH context may only use the following locking interface. */
1025 #define bh_lock_sock(__sk)	spin_lock(&((__sk)->sk_lock.slock))
1026 #define bh_lock_sock_nested(__sk) \
1027 				spin_lock_nested(&((__sk)->sk_lock.slock), \
1028 				SINGLE_DEPTH_NESTING)
1029 #define bh_unlock_sock(__sk)	spin_unlock(&((__sk)->sk_lock.slock))
1030 
1031 extern bool lock_sock_fast(struct sock *sk);
1032 /**
1033  * unlock_sock_fast - complement of lock_sock_fast
1034  * @sk: socket
1035  * @slow: slow mode
1036  *
1037  * fast unlock socket for user context.
1038  * If slow mode is on, we call regular release_sock()
1039  */
1040 static inline void unlock_sock_fast(struct sock *sk, bool slow)
1041 {
1042 	if (slow)
1043 		release_sock(sk);
1044 	else
1045 		spin_unlock_bh(&sk->sk_lock.slock);
1046 }
1047 
1048 
1049 extern struct sock		*sk_alloc(struct net *net, int family,
1050 					  gfp_t priority,
1051 					  struct proto *prot);
1052 extern void			sk_free(struct sock *sk);
1053 extern void			sk_release_kernel(struct sock *sk);
1054 extern struct sock		*sk_clone(const struct sock *sk,
1055 					  const gfp_t priority);
1056 
1057 extern struct sk_buff		*sock_wmalloc(struct sock *sk,
1058 					      unsigned long size, int force,
1059 					      gfp_t priority);
1060 extern struct sk_buff		*sock_rmalloc(struct sock *sk,
1061 					      unsigned long size, int force,
1062 					      gfp_t priority);
1063 extern void			sock_wfree(struct sk_buff *skb);
1064 extern void			sock_rfree(struct sk_buff *skb);
1065 
1066 extern int			sock_setsockopt(struct socket *sock, int level,
1067 						int op, char __user *optval,
1068 						unsigned int optlen);
1069 
1070 extern int			sock_getsockopt(struct socket *sock, int level,
1071 						int op, char __user *optval,
1072 						int __user *optlen);
1073 extern struct sk_buff 		*sock_alloc_send_skb(struct sock *sk,
1074 						     unsigned long size,
1075 						     int noblock,
1076 						     int *errcode);
1077 extern struct sk_buff 		*sock_alloc_send_pskb(struct sock *sk,
1078 						      unsigned long header_len,
1079 						      unsigned long data_len,
1080 						      int noblock,
1081 						      int *errcode);
1082 extern void *sock_kmalloc(struct sock *sk, int size,
1083 			  gfp_t priority);
1084 extern void sock_kfree_s(struct sock *sk, void *mem, int size);
1085 extern void sk_send_sigurg(struct sock *sk);
1086 
1087 #ifdef CONFIG_CGROUPS
1088 extern void sock_update_classid(struct sock *sk);
1089 #else
1090 static inline void sock_update_classid(struct sock *sk)
1091 {
1092 }
1093 #endif
1094 
1095 /*
1096  * Functions to fill in entries in struct proto_ops when a protocol
1097  * does not implement a particular function.
1098  */
1099 extern int                      sock_no_bind(struct socket *,
1100 					     struct sockaddr *, int);
1101 extern int                      sock_no_connect(struct socket *,
1102 						struct sockaddr *, int, int);
1103 extern int                      sock_no_socketpair(struct socket *,
1104 						   struct socket *);
1105 extern int                      sock_no_accept(struct socket *,
1106 					       struct socket *, int);
1107 extern int                      sock_no_getname(struct socket *,
1108 						struct sockaddr *, int *, int);
1109 extern unsigned int             sock_no_poll(struct file *, struct socket *,
1110 					     struct poll_table_struct *);
1111 extern int                      sock_no_ioctl(struct socket *, unsigned int,
1112 					      unsigned long);
1113 extern int			sock_no_listen(struct socket *, int);
1114 extern int                      sock_no_shutdown(struct socket *, int);
1115 extern int			sock_no_getsockopt(struct socket *, int , int,
1116 						   char __user *, int __user *);
1117 extern int			sock_no_setsockopt(struct socket *, int, int,
1118 						   char __user *, unsigned int);
1119 extern int                      sock_no_sendmsg(struct kiocb *, struct socket *,
1120 						struct msghdr *, size_t);
1121 extern int                      sock_no_recvmsg(struct kiocb *, struct socket *,
1122 						struct msghdr *, size_t, int);
1123 extern int			sock_no_mmap(struct file *file,
1124 					     struct socket *sock,
1125 					     struct vm_area_struct *vma);
1126 extern ssize_t			sock_no_sendpage(struct socket *sock,
1127 						struct page *page,
1128 						int offset, size_t size,
1129 						int flags);
1130 
1131 /*
1132  * Functions to fill in entries in struct proto_ops when a protocol
1133  * uses the inet style.
1134  */
1135 extern int sock_common_getsockopt(struct socket *sock, int level, int optname,
1136 				  char __user *optval, int __user *optlen);
1137 extern int sock_common_recvmsg(struct kiocb *iocb, struct socket *sock,
1138 			       struct msghdr *msg, size_t size, int flags);
1139 extern int sock_common_setsockopt(struct socket *sock, int level, int optname,
1140 				  char __user *optval, unsigned int optlen);
1141 extern int compat_sock_common_getsockopt(struct socket *sock, int level,
1142 		int optname, char __user *optval, int __user *optlen);
1143 extern int compat_sock_common_setsockopt(struct socket *sock, int level,
1144 		int optname, char __user *optval, unsigned int optlen);
1145 
1146 extern void sk_common_release(struct sock *sk);
1147 
1148 /*
1149  *	Default socket callbacks and setup code
1150  */
1151 
1152 /* Initialise core socket variables */
1153 extern void sock_init_data(struct socket *sock, struct sock *sk);
1154 
1155 /**
1156  *	sk_filter_release - release a socket filter
1157  *	@fp: filter to remove
1158  *
1159  *	Remove a filter from a socket and release its resources.
1160  */
1161 
1162 static inline void sk_filter_release(struct sk_filter *fp)
1163 {
1164 	if (atomic_dec_and_test(&fp->refcnt))
1165 		kfree(fp);
1166 }
1167 
1168 static inline void sk_filter_uncharge(struct sock *sk, struct sk_filter *fp)
1169 {
1170 	unsigned int size = sk_filter_len(fp);
1171 
1172 	atomic_sub(size, &sk->sk_omem_alloc);
1173 	sk_filter_release(fp);
1174 }
1175 
1176 static inline void sk_filter_charge(struct sock *sk, struct sk_filter *fp)
1177 {
1178 	atomic_inc(&fp->refcnt);
1179 	atomic_add(sk_filter_len(fp), &sk->sk_omem_alloc);
1180 }
1181 
1182 /*
1183  * Socket reference counting postulates.
1184  *
1185  * * Each user of socket SHOULD hold a reference count.
1186  * * Each access point to socket (an hash table bucket, reference from a list,
1187  *   running timer, skb in flight MUST hold a reference count.
1188  * * When reference count hits 0, it means it will never increase back.
1189  * * When reference count hits 0, it means that no references from
1190  *   outside exist to this socket and current process on current CPU
1191  *   is last user and may/should destroy this socket.
1192  * * sk_free is called from any context: process, BH, IRQ. When
1193  *   it is called, socket has no references from outside -> sk_free
1194  *   may release descendant resources allocated by the socket, but
1195  *   to the time when it is called, socket is NOT referenced by any
1196  *   hash tables, lists etc.
1197  * * Packets, delivered from outside (from network or from another process)
1198  *   and enqueued on receive/error queues SHOULD NOT grab reference count,
1199  *   when they sit in queue. Otherwise, packets will leak to hole, when
1200  *   socket is looked up by one cpu and unhasing is made by another CPU.
1201  *   It is true for udp/raw, netlink (leak to receive and error queues), tcp
1202  *   (leak to backlog). Packet socket does all the processing inside
1203  *   BR_NETPROTO_LOCK, so that it has not this race condition. UNIX sockets
1204  *   use separate SMP lock, so that they are prone too.
1205  */
1206 
1207 /* Ungrab socket and destroy it, if it was the last reference. */
1208 static inline void sock_put(struct sock *sk)
1209 {
1210 	if (atomic_dec_and_test(&sk->sk_refcnt))
1211 		sk_free(sk);
1212 }
1213 
1214 extern int sk_receive_skb(struct sock *sk, struct sk_buff *skb,
1215 			  const int nested);
1216 
1217 static inline void sk_tx_queue_set(struct sock *sk, int tx_queue)
1218 {
1219 	sk->sk_tx_queue_mapping = tx_queue;
1220 }
1221 
1222 static inline void sk_tx_queue_clear(struct sock *sk)
1223 {
1224 	sk->sk_tx_queue_mapping = -1;
1225 }
1226 
1227 static inline int sk_tx_queue_get(const struct sock *sk)
1228 {
1229 	return sk ? sk->sk_tx_queue_mapping : -1;
1230 }
1231 
1232 static inline void sk_set_socket(struct sock *sk, struct socket *sock)
1233 {
1234 	sk_tx_queue_clear(sk);
1235 	sk->sk_socket = sock;
1236 }
1237 
1238 static inline wait_queue_head_t *sk_sleep(struct sock *sk)
1239 {
1240 	return &sk->sk_wq->wait;
1241 }
1242 /* Detach socket from process context.
1243  * Announce socket dead, detach it from wait queue and inode.
1244  * Note that parent inode held reference count on this struct sock,
1245  * we do not release it in this function, because protocol
1246  * probably wants some additional cleanups or even continuing
1247  * to work with this socket (TCP).
1248  */
1249 static inline void sock_orphan(struct sock *sk)
1250 {
1251 	write_lock_bh(&sk->sk_callback_lock);
1252 	sock_set_flag(sk, SOCK_DEAD);
1253 	sk_set_socket(sk, NULL);
1254 	sk->sk_wq  = NULL;
1255 	write_unlock_bh(&sk->sk_callback_lock);
1256 }
1257 
1258 static inline void sock_graft(struct sock *sk, struct socket *parent)
1259 {
1260 	write_lock_bh(&sk->sk_callback_lock);
1261 	rcu_assign_pointer(sk->sk_wq, parent->wq);
1262 	parent->sk = sk;
1263 	sk_set_socket(sk, parent);
1264 	security_sock_graft(sk, parent);
1265 	write_unlock_bh(&sk->sk_callback_lock);
1266 }
1267 
1268 extern int sock_i_uid(struct sock *sk);
1269 extern unsigned long sock_i_ino(struct sock *sk);
1270 
1271 static inline struct dst_entry *
1272 __sk_dst_get(struct sock *sk)
1273 {
1274 	return rcu_dereference_check(sk->sk_dst_cache, rcu_read_lock_held() ||
1275 						       sock_owned_by_user(sk) ||
1276 						       lockdep_is_held(&sk->sk_lock.slock));
1277 }
1278 
1279 static inline struct dst_entry *
1280 sk_dst_get(struct sock *sk)
1281 {
1282 	struct dst_entry *dst;
1283 
1284 	rcu_read_lock();
1285 	dst = rcu_dereference(sk->sk_dst_cache);
1286 	if (dst)
1287 		dst_hold(dst);
1288 	rcu_read_unlock();
1289 	return dst;
1290 }
1291 
1292 extern void sk_reset_txq(struct sock *sk);
1293 
1294 static inline void dst_negative_advice(struct sock *sk)
1295 {
1296 	struct dst_entry *ndst, *dst = __sk_dst_get(sk);
1297 
1298 	if (dst && dst->ops->negative_advice) {
1299 		ndst = dst->ops->negative_advice(dst);
1300 
1301 		if (ndst != dst) {
1302 			rcu_assign_pointer(sk->sk_dst_cache, ndst);
1303 			sk_reset_txq(sk);
1304 		}
1305 	}
1306 }
1307 
1308 static inline void
1309 __sk_dst_set(struct sock *sk, struct dst_entry *dst)
1310 {
1311 	struct dst_entry *old_dst;
1312 
1313 	sk_tx_queue_clear(sk);
1314 	/*
1315 	 * This can be called while sk is owned by the caller only,
1316 	 * with no state that can be checked in a rcu_dereference_check() cond
1317 	 */
1318 	old_dst = rcu_dereference_raw(sk->sk_dst_cache);
1319 	rcu_assign_pointer(sk->sk_dst_cache, dst);
1320 	dst_release(old_dst);
1321 }
1322 
1323 static inline void
1324 sk_dst_set(struct sock *sk, struct dst_entry *dst)
1325 {
1326 	spin_lock(&sk->sk_dst_lock);
1327 	__sk_dst_set(sk, dst);
1328 	spin_unlock(&sk->sk_dst_lock);
1329 }
1330 
1331 static inline void
1332 __sk_dst_reset(struct sock *sk)
1333 {
1334 	__sk_dst_set(sk, NULL);
1335 }
1336 
1337 static inline void
1338 sk_dst_reset(struct sock *sk)
1339 {
1340 	spin_lock(&sk->sk_dst_lock);
1341 	__sk_dst_reset(sk);
1342 	spin_unlock(&sk->sk_dst_lock);
1343 }
1344 
1345 extern struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie);
1346 
1347 extern struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie);
1348 
1349 static inline int sk_can_gso(const struct sock *sk)
1350 {
1351 	return net_gso_ok(sk->sk_route_caps, sk->sk_gso_type);
1352 }
1353 
1354 extern void sk_setup_caps(struct sock *sk, struct dst_entry *dst);
1355 
1356 static inline void sk_nocaps_add(struct sock *sk, int flags)
1357 {
1358 	sk->sk_route_nocaps |= flags;
1359 	sk->sk_route_caps &= ~flags;
1360 }
1361 
1362 static inline int skb_copy_to_page(struct sock *sk, char __user *from,
1363 				   struct sk_buff *skb, struct page *page,
1364 				   int off, int copy)
1365 {
1366 	if (skb->ip_summed == CHECKSUM_NONE) {
1367 		int err = 0;
1368 		__wsum csum = csum_and_copy_from_user(from,
1369 						     page_address(page) + off,
1370 							    copy, 0, &err);
1371 		if (err)
1372 			return err;
1373 		skb->csum = csum_block_add(skb->csum, csum, skb->len);
1374 	} else if (copy_from_user(page_address(page) + off, from, copy))
1375 		return -EFAULT;
1376 
1377 	skb->len	     += copy;
1378 	skb->data_len	     += copy;
1379 	skb->truesize	     += copy;
1380 	sk->sk_wmem_queued   += copy;
1381 	sk_mem_charge(sk, copy);
1382 	return 0;
1383 }
1384 
1385 /**
1386  * sk_wmem_alloc_get - returns write allocations
1387  * @sk: socket
1388  *
1389  * Returns sk_wmem_alloc minus initial offset of one
1390  */
1391 static inline int sk_wmem_alloc_get(const struct sock *sk)
1392 {
1393 	return atomic_read(&sk->sk_wmem_alloc) - 1;
1394 }
1395 
1396 /**
1397  * sk_rmem_alloc_get - returns read allocations
1398  * @sk: socket
1399  *
1400  * Returns sk_rmem_alloc
1401  */
1402 static inline int sk_rmem_alloc_get(const struct sock *sk)
1403 {
1404 	return atomic_read(&sk->sk_rmem_alloc);
1405 }
1406 
1407 /**
1408  * sk_has_allocations - check if allocations are outstanding
1409  * @sk: socket
1410  *
1411  * Returns true if socket has write or read allocations
1412  */
1413 static inline int sk_has_allocations(const struct sock *sk)
1414 {
1415 	return sk_wmem_alloc_get(sk) || sk_rmem_alloc_get(sk);
1416 }
1417 
1418 /**
1419  * wq_has_sleeper - check if there are any waiting processes
1420  * @wq: struct socket_wq
1421  *
1422  * Returns true if socket_wq has waiting processes
1423  *
1424  * The purpose of the wq_has_sleeper and sock_poll_wait is to wrap the memory
1425  * barrier call. They were added due to the race found within the tcp code.
1426  *
1427  * Consider following tcp code paths:
1428  *
1429  * CPU1                  CPU2
1430  *
1431  * sys_select            receive packet
1432  *   ...                 ...
1433  *   __add_wait_queue    update tp->rcv_nxt
1434  *   ...                 ...
1435  *   tp->rcv_nxt check   sock_def_readable
1436  *   ...                 {
1437  *   schedule               rcu_read_lock();
1438  *                          wq = rcu_dereference(sk->sk_wq);
1439  *                          if (wq && waitqueue_active(&wq->wait))
1440  *                              wake_up_interruptible(&wq->wait)
1441  *                          ...
1442  *                       }
1443  *
1444  * The race for tcp fires when the __add_wait_queue changes done by CPU1 stay
1445  * in its cache, and so does the tp->rcv_nxt update on CPU2 side.  The CPU1
1446  * could then endup calling schedule and sleep forever if there are no more
1447  * data on the socket.
1448  *
1449  */
1450 static inline bool wq_has_sleeper(struct socket_wq *wq)
1451 {
1452 
1453 	/*
1454 	 * We need to be sure we are in sync with the
1455 	 * add_wait_queue modifications to the wait queue.
1456 	 *
1457 	 * This memory barrier is paired in the sock_poll_wait.
1458 	 */
1459 	smp_mb();
1460 	return wq && waitqueue_active(&wq->wait);
1461 }
1462 
1463 /**
1464  * sock_poll_wait - place memory barrier behind the poll_wait call.
1465  * @filp:           file
1466  * @wait_address:   socket wait queue
1467  * @p:              poll_table
1468  *
1469  * See the comments in the wq_has_sleeper function.
1470  */
1471 static inline void sock_poll_wait(struct file *filp,
1472 		wait_queue_head_t *wait_address, poll_table *p)
1473 {
1474 	if (p && wait_address) {
1475 		poll_wait(filp, wait_address, p);
1476 		/*
1477 		 * We need to be sure we are in sync with the
1478 		 * socket flags modification.
1479 		 *
1480 		 * This memory barrier is paired in the wq_has_sleeper.
1481 		*/
1482 		smp_mb();
1483 	}
1484 }
1485 
1486 /*
1487  * 	Queue a received datagram if it will fit. Stream and sequenced
1488  *	protocols can't normally use this as they need to fit buffers in
1489  *	and play with them.
1490  *
1491  * 	Inlined as it's very short and called for pretty much every
1492  *	packet ever received.
1493  */
1494 
1495 static inline void skb_set_owner_w(struct sk_buff *skb, struct sock *sk)
1496 {
1497 	skb_orphan(skb);
1498 	skb->sk = sk;
1499 	skb->destructor = sock_wfree;
1500 	/*
1501 	 * We used to take a refcount on sk, but following operation
1502 	 * is enough to guarantee sk_free() wont free this sock until
1503 	 * all in-flight packets are completed
1504 	 */
1505 	atomic_add(skb->truesize, &sk->sk_wmem_alloc);
1506 }
1507 
1508 static inline void skb_set_owner_r(struct sk_buff *skb, struct sock *sk)
1509 {
1510 	skb_orphan(skb);
1511 	skb->sk = sk;
1512 	skb->destructor = sock_rfree;
1513 	atomic_add(skb->truesize, &sk->sk_rmem_alloc);
1514 	sk_mem_charge(sk, skb->truesize);
1515 }
1516 
1517 extern void sk_reset_timer(struct sock *sk, struct timer_list* timer,
1518 			   unsigned long expires);
1519 
1520 extern void sk_stop_timer(struct sock *sk, struct timer_list* timer);
1521 
1522 extern int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
1523 
1524 extern int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb);
1525 
1526 /*
1527  *	Recover an error report and clear atomically
1528  */
1529 
1530 static inline int sock_error(struct sock *sk)
1531 {
1532 	int err;
1533 	if (likely(!sk->sk_err))
1534 		return 0;
1535 	err = xchg(&sk->sk_err, 0);
1536 	return -err;
1537 }
1538 
1539 static inline unsigned long sock_wspace(struct sock *sk)
1540 {
1541 	int amt = 0;
1542 
1543 	if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
1544 		amt = sk->sk_sndbuf - atomic_read(&sk->sk_wmem_alloc);
1545 		if (amt < 0)
1546 			amt = 0;
1547 	}
1548 	return amt;
1549 }
1550 
1551 static inline void sk_wake_async(struct sock *sk, int how, int band)
1552 {
1553 	if (sock_flag(sk, SOCK_FASYNC))
1554 		sock_wake_async(sk->sk_socket, how, band);
1555 }
1556 
1557 #define SOCK_MIN_SNDBUF 2048
1558 #define SOCK_MIN_RCVBUF 256
1559 
1560 static inline void sk_stream_moderate_sndbuf(struct sock *sk)
1561 {
1562 	if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK)) {
1563 		sk->sk_sndbuf = min(sk->sk_sndbuf, sk->sk_wmem_queued >> 1);
1564 		sk->sk_sndbuf = max(sk->sk_sndbuf, SOCK_MIN_SNDBUF);
1565 	}
1566 }
1567 
1568 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp);
1569 
1570 static inline struct page *sk_stream_alloc_page(struct sock *sk)
1571 {
1572 	struct page *page = NULL;
1573 
1574 	page = alloc_pages(sk->sk_allocation, 0);
1575 	if (!page) {
1576 		sk->sk_prot->enter_memory_pressure(sk);
1577 		sk_stream_moderate_sndbuf(sk);
1578 	}
1579 	return page;
1580 }
1581 
1582 /*
1583  *	Default write policy as shown to user space via poll/select/SIGIO
1584  */
1585 static inline int sock_writeable(const struct sock *sk)
1586 {
1587 	return atomic_read(&sk->sk_wmem_alloc) < (sk->sk_sndbuf >> 1);
1588 }
1589 
1590 static inline gfp_t gfp_any(void)
1591 {
1592 	return in_softirq() ? GFP_ATOMIC : GFP_KERNEL;
1593 }
1594 
1595 static inline long sock_rcvtimeo(const struct sock *sk, int noblock)
1596 {
1597 	return noblock ? 0 : sk->sk_rcvtimeo;
1598 }
1599 
1600 static inline long sock_sndtimeo(const struct sock *sk, int noblock)
1601 {
1602 	return noblock ? 0 : sk->sk_sndtimeo;
1603 }
1604 
1605 static inline int sock_rcvlowat(const struct sock *sk, int waitall, int len)
1606 {
1607 	return (waitall ? len : min_t(int, sk->sk_rcvlowat, len)) ? : 1;
1608 }
1609 
1610 /* Alas, with timeout socket operations are not restartable.
1611  * Compare this to poll().
1612  */
1613 static inline int sock_intr_errno(long timeo)
1614 {
1615 	return timeo == MAX_SCHEDULE_TIMEOUT ? -ERESTARTSYS : -EINTR;
1616 }
1617 
1618 extern void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
1619 	struct sk_buff *skb);
1620 
1621 static __inline__ void
1622 sock_recv_timestamp(struct msghdr *msg, struct sock *sk, struct sk_buff *skb)
1623 {
1624 	ktime_t kt = skb->tstamp;
1625 	struct skb_shared_hwtstamps *hwtstamps = skb_hwtstamps(skb);
1626 
1627 	/*
1628 	 * generate control messages if
1629 	 * - receive time stamping in software requested (SOCK_RCVTSTAMP
1630 	 *   or SOCK_TIMESTAMPING_RX_SOFTWARE)
1631 	 * - software time stamp available and wanted
1632 	 *   (SOCK_TIMESTAMPING_SOFTWARE)
1633 	 * - hardware time stamps available and wanted
1634 	 *   (SOCK_TIMESTAMPING_SYS_HARDWARE or
1635 	 *   SOCK_TIMESTAMPING_RAW_HARDWARE)
1636 	 */
1637 	if (sock_flag(sk, SOCK_RCVTSTAMP) ||
1638 	    sock_flag(sk, SOCK_TIMESTAMPING_RX_SOFTWARE) ||
1639 	    (kt.tv64 && sock_flag(sk, SOCK_TIMESTAMPING_SOFTWARE)) ||
1640 	    (hwtstamps->hwtstamp.tv64 &&
1641 	     sock_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE)) ||
1642 	    (hwtstamps->syststamp.tv64 &&
1643 	     sock_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE)))
1644 		__sock_recv_timestamp(msg, sk, skb);
1645 	else
1646 		sk->sk_stamp = kt;
1647 }
1648 
1649 extern void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
1650 				     struct sk_buff *skb);
1651 
1652 static inline void sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
1653 					  struct sk_buff *skb)
1654 {
1655 #define FLAGS_TS_OR_DROPS ((1UL << SOCK_RXQ_OVFL)			| \
1656 			   (1UL << SOCK_RCVTSTAMP)			| \
1657 			   (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE)	| \
1658 			   (1UL << SOCK_TIMESTAMPING_SOFTWARE)		| \
1659 			   (1UL << SOCK_TIMESTAMPING_RAW_HARDWARE) 	| \
1660 			   (1UL << SOCK_TIMESTAMPING_SYS_HARDWARE))
1661 
1662 	if (sk->sk_flags & FLAGS_TS_OR_DROPS)
1663 		__sock_recv_ts_and_drops(msg, sk, skb);
1664 	else
1665 		sk->sk_stamp = skb->tstamp;
1666 }
1667 
1668 /**
1669  * sock_tx_timestamp - checks whether the outgoing packet is to be time stamped
1670  * @msg:	outgoing packet
1671  * @sk:		socket sending this packet
1672  * @shtx:	filled with instructions for time stamping
1673  *
1674  * Currently only depends on SOCK_TIMESTAMPING* flags. Returns error code if
1675  * parameters are invalid.
1676  */
1677 extern int sock_tx_timestamp(struct msghdr *msg,
1678 			     struct sock *sk,
1679 			     union skb_shared_tx *shtx);
1680 
1681 
1682 /**
1683  * sk_eat_skb - Release a skb if it is no longer needed
1684  * @sk: socket to eat this skb from
1685  * @skb: socket buffer to eat
1686  * @copied_early: flag indicating whether DMA operations copied this data early
1687  *
1688  * This routine must be called with interrupts disabled or with the socket
1689  * locked so that the sk_buff queue operation is ok.
1690 */
1691 #ifdef CONFIG_NET_DMA
1692 static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb, int copied_early)
1693 {
1694 	__skb_unlink(skb, &sk->sk_receive_queue);
1695 	if (!copied_early)
1696 		__kfree_skb(skb);
1697 	else
1698 		__skb_queue_tail(&sk->sk_async_wait_queue, skb);
1699 }
1700 #else
1701 static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb, int copied_early)
1702 {
1703 	__skb_unlink(skb, &sk->sk_receive_queue);
1704 	__kfree_skb(skb);
1705 }
1706 #endif
1707 
1708 static inline
1709 struct net *sock_net(const struct sock *sk)
1710 {
1711 	return read_pnet(&sk->sk_net);
1712 }
1713 
1714 static inline
1715 void sock_net_set(struct sock *sk, struct net *net)
1716 {
1717 	write_pnet(&sk->sk_net, net);
1718 }
1719 
1720 /*
1721  * Kernel sockets, f.e. rtnl or icmp_socket, are a part of a namespace.
1722  * They should not hold a referrence to a namespace in order to allow
1723  * to stop it.
1724  * Sockets after sk_change_net should be released using sk_release_kernel
1725  */
1726 static inline void sk_change_net(struct sock *sk, struct net *net)
1727 {
1728 	put_net(sock_net(sk));
1729 	sock_net_set(sk, hold_net(net));
1730 }
1731 
1732 static inline struct sock *skb_steal_sock(struct sk_buff *skb)
1733 {
1734 	if (unlikely(skb->sk)) {
1735 		struct sock *sk = skb->sk;
1736 
1737 		skb->destructor = NULL;
1738 		skb->sk = NULL;
1739 		return sk;
1740 	}
1741 	return NULL;
1742 }
1743 
1744 extern void sock_enable_timestamp(struct sock *sk, int flag);
1745 extern int sock_get_timestamp(struct sock *, struct timeval __user *);
1746 extern int sock_get_timestampns(struct sock *, struct timespec __user *);
1747 
1748 /*
1749  *	Enable debug/info messages
1750  */
1751 extern int net_msg_warn;
1752 #define NETDEBUG(fmt, args...) \
1753 	do { if (net_msg_warn) printk(fmt,##args); } while (0)
1754 
1755 #define LIMIT_NETDEBUG(fmt, args...) \
1756 	do { if (net_msg_warn && net_ratelimit()) printk(fmt,##args); } while(0)
1757 
1758 extern __u32 sysctl_wmem_max;
1759 extern __u32 sysctl_rmem_max;
1760 
1761 extern void sk_init(void);
1762 
1763 extern int sysctl_optmem_max;
1764 
1765 extern __u32 sysctl_wmem_default;
1766 extern __u32 sysctl_rmem_default;
1767 
1768 #endif	/* _SOCK_H */
1769