xref: /linux/include/net/sock.h (revision cb299ba8b5ef2239429484072fea394cd7581bd7)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Definitions for the AF_INET socket handler.
7  *
8  * Version:	@(#)sock.h	1.0.4	05/13/93
9  *
10  * Authors:	Ross Biro
11  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
13  *		Florian La Roche <flla@stud.uni-sb.de>
14  *
15  * Fixes:
16  *		Alan Cox	:	Volatiles in skbuff pointers. See
17  *					skbuff comments. May be overdone,
18  *					better to prove they can be removed
19  *					than the reverse.
20  *		Alan Cox	:	Added a zapped field for tcp to note
21  *					a socket is reset and must stay shut up
22  *		Alan Cox	:	New fields for options
23  *	Pauline Middelink	:	identd support
24  *		Alan Cox	:	Eliminate low level recv/recvfrom
25  *		David S. Miller	:	New socket lookup architecture.
26  *              Steve Whitehouse:       Default routines for sock_ops
27  *              Arnaldo C. Melo :	removed net_pinfo, tp_pinfo and made
28  *              			protinfo be just a void pointer, as the
29  *              			protocol specific parts were moved to
30  *              			respective headers and ipv4/v6, etc now
31  *              			use private slabcaches for its socks
32  *              Pedro Hortas	:	New flags field for socket options
33  *
34  *
35  *		This program is free software; you can redistribute it and/or
36  *		modify it under the terms of the GNU General Public License
37  *		as published by the Free Software Foundation; either version
38  *		2 of the License, or (at your option) any later version.
39  */
40 #ifndef _SOCK_H
41 #define _SOCK_H
42 
43 #include <linux/kernel.h>
44 #include <linux/list.h>
45 #include <linux/list_nulls.h>
46 #include <linux/timer.h>
47 #include <linux/cache.h>
48 #include <linux/module.h>
49 #include <linux/lockdep.h>
50 #include <linux/netdevice.h>
51 #include <linux/skbuff.h>	/* struct sk_buff */
52 #include <linux/mm.h>
53 #include <linux/security.h>
54 #include <linux/slab.h>
55 
56 #include <linux/filter.h>
57 #include <linux/rculist_nulls.h>
58 #include <linux/poll.h>
59 
60 #include <asm/atomic.h>
61 #include <net/dst.h>
62 #include <net/checksum.h>
63 
64 /*
65  * This structure really needs to be cleaned up.
66  * Most of it is for TCP, and not used by any of
67  * the other protocols.
68  */
69 
70 /* Define this to get the SOCK_DBG debugging facility. */
71 #define SOCK_DEBUGGING
72 #ifdef SOCK_DEBUGGING
73 #define SOCK_DEBUG(sk, msg...) do { if ((sk) && sock_flag((sk), SOCK_DBG)) \
74 					printk(KERN_DEBUG msg); } while (0)
75 #else
76 /* Validate arguments and do nothing */
77 static inline void __attribute__ ((format (printf, 2, 3)))
78 SOCK_DEBUG(struct sock *sk, const char *msg, ...)
79 {
80 }
81 #endif
82 
83 /* This is the per-socket lock.  The spinlock provides a synchronization
84  * between user contexts and software interrupt processing, whereas the
85  * mini-semaphore synchronizes multiple users amongst themselves.
86  */
87 typedef struct {
88 	spinlock_t		slock;
89 	int			owned;
90 	wait_queue_head_t	wq;
91 	/*
92 	 * We express the mutex-alike socket_lock semantics
93 	 * to the lock validator by explicitly managing
94 	 * the slock as a lock variant (in addition to
95 	 * the slock itself):
96 	 */
97 #ifdef CONFIG_DEBUG_LOCK_ALLOC
98 	struct lockdep_map dep_map;
99 #endif
100 } socket_lock_t;
101 
102 struct sock;
103 struct proto;
104 struct net;
105 
106 /**
107  *	struct sock_common - minimal network layer representation of sockets
108  *	@skc_node: main hash linkage for various protocol lookup tables
109  *	@skc_nulls_node: main hash linkage for TCP/UDP/UDP-Lite protocol
110  *	@skc_refcnt: reference count
111  *	@skc_tx_queue_mapping: tx queue number for this connection
112  *	@skc_hash: hash value used with various protocol lookup tables
113  *	@skc_u16hashes: two u16 hash values used by UDP lookup tables
114  *	@skc_family: network address family
115  *	@skc_state: Connection state
116  *	@skc_reuse: %SO_REUSEADDR setting
117  *	@skc_bound_dev_if: bound device index if != 0
118  *	@skc_bind_node: bind hash linkage for various protocol lookup tables
119  *	@skc_portaddr_node: second hash linkage for UDP/UDP-Lite protocol
120  *	@skc_prot: protocol handlers inside a network family
121  *	@skc_net: reference to the network namespace of this socket
122  *
123  *	This is the minimal network layer representation of sockets, the header
124  *	for struct sock and struct inet_timewait_sock.
125  */
126 struct sock_common {
127 	/*
128 	 * first fields are not copied in sock_copy()
129 	 */
130 	union {
131 		struct hlist_node	skc_node;
132 		struct hlist_nulls_node skc_nulls_node;
133 	};
134 	atomic_t		skc_refcnt;
135 	int			skc_tx_queue_mapping;
136 
137 	union  {
138 		unsigned int	skc_hash;
139 		__u16		skc_u16hashes[2];
140 	};
141 	unsigned short		skc_family;
142 	volatile unsigned char	skc_state;
143 	unsigned char		skc_reuse;
144 	int			skc_bound_dev_if;
145 	union {
146 		struct hlist_node	skc_bind_node;
147 		struct hlist_nulls_node skc_portaddr_node;
148 	};
149 	struct proto		*skc_prot;
150 #ifdef CONFIG_NET_NS
151 	struct net	 	*skc_net;
152 #endif
153 };
154 
155 /**
156   *	struct sock - network layer representation of sockets
157   *	@__sk_common: shared layout with inet_timewait_sock
158   *	@sk_shutdown: mask of %SEND_SHUTDOWN and/or %RCV_SHUTDOWN
159   *	@sk_userlocks: %SO_SNDBUF and %SO_RCVBUF settings
160   *	@sk_lock:	synchronizer
161   *	@sk_rcvbuf: size of receive buffer in bytes
162   *	@sk_wq: sock wait queue and async head
163   *	@sk_dst_cache: destination cache
164   *	@sk_dst_lock: destination cache lock
165   *	@sk_policy: flow policy
166   *	@sk_rmem_alloc: receive queue bytes committed
167   *	@sk_receive_queue: incoming packets
168   *	@sk_wmem_alloc: transmit queue bytes committed
169   *	@sk_write_queue: Packet sending queue
170   *	@sk_async_wait_queue: DMA copied packets
171   *	@sk_omem_alloc: "o" is "option" or "other"
172   *	@sk_wmem_queued: persistent queue size
173   *	@sk_forward_alloc: space allocated forward
174   *	@sk_allocation: allocation mode
175   *	@sk_sndbuf: size of send buffer in bytes
176   *	@sk_flags: %SO_LINGER (l_onoff), %SO_BROADCAST, %SO_KEEPALIVE,
177   *		   %SO_OOBINLINE settings, %SO_TIMESTAMPING settings
178   *	@sk_no_check: %SO_NO_CHECK setting, wether or not checkup packets
179   *	@sk_route_caps: route capabilities (e.g. %NETIF_F_TSO)
180   *	@sk_route_nocaps: forbidden route capabilities (e.g NETIF_F_GSO_MASK)
181   *	@sk_gso_type: GSO type (e.g. %SKB_GSO_TCPV4)
182   *	@sk_gso_max_size: Maximum GSO segment size to build
183   *	@sk_lingertime: %SO_LINGER l_linger setting
184   *	@sk_backlog: always used with the per-socket spinlock held
185   *	@sk_callback_lock: used with the callbacks in the end of this struct
186   *	@sk_error_queue: rarely used
187   *	@sk_prot_creator: sk_prot of original sock creator (see ipv6_setsockopt,
188   *			  IPV6_ADDRFORM for instance)
189   *	@sk_err: last error
190   *	@sk_err_soft: errors that don't cause failure but are the cause of a
191   *		      persistent failure not just 'timed out'
192   *	@sk_drops: raw/udp drops counter
193   *	@sk_ack_backlog: current listen backlog
194   *	@sk_max_ack_backlog: listen backlog set in listen()
195   *	@sk_priority: %SO_PRIORITY setting
196   *	@sk_type: socket type (%SOCK_STREAM, etc)
197   *	@sk_protocol: which protocol this socket belongs in this network family
198   *	@sk_peer_pid: &struct pid for this socket's peer
199   *	@sk_peer_cred: %SO_PEERCRED setting
200   *	@sk_rcvlowat: %SO_RCVLOWAT setting
201   *	@sk_rcvtimeo: %SO_RCVTIMEO setting
202   *	@sk_sndtimeo: %SO_SNDTIMEO setting
203   *	@sk_rxhash: flow hash received from netif layer
204   *	@sk_filter: socket filtering instructions
205   *	@sk_protinfo: private area, net family specific, when not using slab
206   *	@sk_timer: sock cleanup timer
207   *	@sk_stamp: time stamp of last packet received
208   *	@sk_socket: Identd and reporting IO signals
209   *	@sk_user_data: RPC layer private data
210   *	@sk_sndmsg_page: cached page for sendmsg
211   *	@sk_sndmsg_off: cached offset for sendmsg
212   *	@sk_send_head: front of stuff to transmit
213   *	@sk_security: used by security modules
214   *	@sk_mark: generic packet mark
215   *	@sk_classid: this socket's cgroup classid
216   *	@sk_write_pending: a write to stream socket waits to start
217   *	@sk_state_change: callback to indicate change in the state of the sock
218   *	@sk_data_ready: callback to indicate there is data to be processed
219   *	@sk_write_space: callback to indicate there is bf sending space available
220   *	@sk_error_report: callback to indicate errors (e.g. %MSG_ERRQUEUE)
221   *	@sk_backlog_rcv: callback to process the backlog
222   *	@sk_destruct: called at sock freeing time, i.e. when all refcnt == 0
223  */
224 struct sock {
225 	/*
226 	 * Now struct inet_timewait_sock also uses sock_common, so please just
227 	 * don't add nothing before this first member (__sk_common) --acme
228 	 */
229 	struct sock_common	__sk_common;
230 #define sk_node			__sk_common.skc_node
231 #define sk_nulls_node		__sk_common.skc_nulls_node
232 #define sk_refcnt		__sk_common.skc_refcnt
233 #define sk_tx_queue_mapping	__sk_common.skc_tx_queue_mapping
234 
235 #define sk_copy_start		__sk_common.skc_hash
236 #define sk_hash			__sk_common.skc_hash
237 #define sk_family		__sk_common.skc_family
238 #define sk_state		__sk_common.skc_state
239 #define sk_reuse		__sk_common.skc_reuse
240 #define sk_bound_dev_if		__sk_common.skc_bound_dev_if
241 #define sk_bind_node		__sk_common.skc_bind_node
242 #define sk_prot			__sk_common.skc_prot
243 #define sk_net			__sk_common.skc_net
244 	kmemcheck_bitfield_begin(flags);
245 	unsigned int		sk_shutdown  : 2,
246 				sk_no_check  : 2,
247 				sk_userlocks : 4,
248 				sk_protocol  : 8,
249 				sk_type      : 16;
250 	kmemcheck_bitfield_end(flags);
251 	int			sk_rcvbuf;
252 	socket_lock_t		sk_lock;
253 	/*
254 	 * The backlog queue is special, it is always used with
255 	 * the per-socket spinlock held and requires low latency
256 	 * access. Therefore we special case it's implementation.
257 	 */
258 	struct {
259 		struct sk_buff *head;
260 		struct sk_buff *tail;
261 		int len;
262 	} sk_backlog;
263 	struct socket_wq	*sk_wq;
264 	struct dst_entry	*sk_dst_cache;
265 #ifdef CONFIG_XFRM
266 	struct xfrm_policy	*sk_policy[2];
267 #endif
268 	spinlock_t		sk_dst_lock;
269 	atomic_t		sk_rmem_alloc;
270 	atomic_t		sk_wmem_alloc;
271 	atomic_t		sk_omem_alloc;
272 	int			sk_sndbuf;
273 	struct sk_buff_head	sk_receive_queue;
274 	struct sk_buff_head	sk_write_queue;
275 #ifdef CONFIG_NET_DMA
276 	struct sk_buff_head	sk_async_wait_queue;
277 #endif
278 	int			sk_wmem_queued;
279 	int			sk_forward_alloc;
280 	gfp_t			sk_allocation;
281 	int			sk_route_caps;
282 	int			sk_route_nocaps;
283 	int			sk_gso_type;
284 	unsigned int		sk_gso_max_size;
285 	int			sk_rcvlowat;
286 #ifdef CONFIG_RPS
287 	__u32			sk_rxhash;
288 #endif
289 	unsigned long 		sk_flags;
290 	unsigned long	        sk_lingertime;
291 	struct sk_buff_head	sk_error_queue;
292 	struct proto		*sk_prot_creator;
293 	rwlock_t		sk_callback_lock;
294 	int			sk_err,
295 				sk_err_soft;
296 	atomic_t		sk_drops;
297 	unsigned short		sk_ack_backlog;
298 	unsigned short		sk_max_ack_backlog;
299 	__u32			sk_priority;
300 	struct pid		*sk_peer_pid;
301 	const struct cred	*sk_peer_cred;
302 	long			sk_rcvtimeo;
303 	long			sk_sndtimeo;
304 	struct sk_filter      	*sk_filter;
305 	void			*sk_protinfo;
306 	struct timer_list	sk_timer;
307 	ktime_t			sk_stamp;
308 	struct socket		*sk_socket;
309 	void			*sk_user_data;
310 	struct page		*sk_sndmsg_page;
311 	struct sk_buff		*sk_send_head;
312 	__u32			sk_sndmsg_off;
313 	int			sk_write_pending;
314 #ifdef CONFIG_SECURITY
315 	void			*sk_security;
316 #endif
317 	__u32			sk_mark;
318 	u32			sk_classid;
319 	void			(*sk_state_change)(struct sock *sk);
320 	void			(*sk_data_ready)(struct sock *sk, int bytes);
321 	void			(*sk_write_space)(struct sock *sk);
322 	void			(*sk_error_report)(struct sock *sk);
323   	int			(*sk_backlog_rcv)(struct sock *sk,
324 						  struct sk_buff *skb);
325 	void                    (*sk_destruct)(struct sock *sk);
326 };
327 
328 /*
329  * Hashed lists helper routines
330  */
331 static inline struct sock *sk_entry(const struct hlist_node *node)
332 {
333 	return hlist_entry(node, struct sock, sk_node);
334 }
335 
336 static inline struct sock *__sk_head(const struct hlist_head *head)
337 {
338 	return hlist_entry(head->first, struct sock, sk_node);
339 }
340 
341 static inline struct sock *sk_head(const struct hlist_head *head)
342 {
343 	return hlist_empty(head) ? NULL : __sk_head(head);
344 }
345 
346 static inline struct sock *__sk_nulls_head(const struct hlist_nulls_head *head)
347 {
348 	return hlist_nulls_entry(head->first, struct sock, sk_nulls_node);
349 }
350 
351 static inline struct sock *sk_nulls_head(const struct hlist_nulls_head *head)
352 {
353 	return hlist_nulls_empty(head) ? NULL : __sk_nulls_head(head);
354 }
355 
356 static inline struct sock *sk_next(const struct sock *sk)
357 {
358 	return sk->sk_node.next ?
359 		hlist_entry(sk->sk_node.next, struct sock, sk_node) : NULL;
360 }
361 
362 static inline struct sock *sk_nulls_next(const struct sock *sk)
363 {
364 	return (!is_a_nulls(sk->sk_nulls_node.next)) ?
365 		hlist_nulls_entry(sk->sk_nulls_node.next,
366 				  struct sock, sk_nulls_node) :
367 		NULL;
368 }
369 
370 static inline int sk_unhashed(const struct sock *sk)
371 {
372 	return hlist_unhashed(&sk->sk_node);
373 }
374 
375 static inline int sk_hashed(const struct sock *sk)
376 {
377 	return !sk_unhashed(sk);
378 }
379 
380 static __inline__ void sk_node_init(struct hlist_node *node)
381 {
382 	node->pprev = NULL;
383 }
384 
385 static __inline__ void sk_nulls_node_init(struct hlist_nulls_node *node)
386 {
387 	node->pprev = NULL;
388 }
389 
390 static __inline__ void __sk_del_node(struct sock *sk)
391 {
392 	__hlist_del(&sk->sk_node);
393 }
394 
395 /* NB: equivalent to hlist_del_init_rcu */
396 static __inline__ int __sk_del_node_init(struct sock *sk)
397 {
398 	if (sk_hashed(sk)) {
399 		__sk_del_node(sk);
400 		sk_node_init(&sk->sk_node);
401 		return 1;
402 	}
403 	return 0;
404 }
405 
406 /* Grab socket reference count. This operation is valid only
407    when sk is ALREADY grabbed f.e. it is found in hash table
408    or a list and the lookup is made under lock preventing hash table
409    modifications.
410  */
411 
412 static inline void sock_hold(struct sock *sk)
413 {
414 	atomic_inc(&sk->sk_refcnt);
415 }
416 
417 /* Ungrab socket in the context, which assumes that socket refcnt
418    cannot hit zero, f.e. it is true in context of any socketcall.
419  */
420 static inline void __sock_put(struct sock *sk)
421 {
422 	atomic_dec(&sk->sk_refcnt);
423 }
424 
425 static __inline__ int sk_del_node_init(struct sock *sk)
426 {
427 	int rc = __sk_del_node_init(sk);
428 
429 	if (rc) {
430 		/* paranoid for a while -acme */
431 		WARN_ON(atomic_read(&sk->sk_refcnt) == 1);
432 		__sock_put(sk);
433 	}
434 	return rc;
435 }
436 #define sk_del_node_init_rcu(sk)	sk_del_node_init(sk)
437 
438 static __inline__ int __sk_nulls_del_node_init_rcu(struct sock *sk)
439 {
440 	if (sk_hashed(sk)) {
441 		hlist_nulls_del_init_rcu(&sk->sk_nulls_node);
442 		return 1;
443 	}
444 	return 0;
445 }
446 
447 static __inline__ int sk_nulls_del_node_init_rcu(struct sock *sk)
448 {
449 	int rc = __sk_nulls_del_node_init_rcu(sk);
450 
451 	if (rc) {
452 		/* paranoid for a while -acme */
453 		WARN_ON(atomic_read(&sk->sk_refcnt) == 1);
454 		__sock_put(sk);
455 	}
456 	return rc;
457 }
458 
459 static __inline__ void __sk_add_node(struct sock *sk, struct hlist_head *list)
460 {
461 	hlist_add_head(&sk->sk_node, list);
462 }
463 
464 static __inline__ void sk_add_node(struct sock *sk, struct hlist_head *list)
465 {
466 	sock_hold(sk);
467 	__sk_add_node(sk, list);
468 }
469 
470 static __inline__ void sk_add_node_rcu(struct sock *sk, struct hlist_head *list)
471 {
472 	sock_hold(sk);
473 	hlist_add_head_rcu(&sk->sk_node, list);
474 }
475 
476 static __inline__ void __sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
477 {
478 	hlist_nulls_add_head_rcu(&sk->sk_nulls_node, list);
479 }
480 
481 static __inline__ void sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
482 {
483 	sock_hold(sk);
484 	__sk_nulls_add_node_rcu(sk, list);
485 }
486 
487 static __inline__ void __sk_del_bind_node(struct sock *sk)
488 {
489 	__hlist_del(&sk->sk_bind_node);
490 }
491 
492 static __inline__ void sk_add_bind_node(struct sock *sk,
493 					struct hlist_head *list)
494 {
495 	hlist_add_head(&sk->sk_bind_node, list);
496 }
497 
498 #define sk_for_each(__sk, node, list) \
499 	hlist_for_each_entry(__sk, node, list, sk_node)
500 #define sk_for_each_rcu(__sk, node, list) \
501 	hlist_for_each_entry_rcu(__sk, node, list, sk_node)
502 #define sk_nulls_for_each(__sk, node, list) \
503 	hlist_nulls_for_each_entry(__sk, node, list, sk_nulls_node)
504 #define sk_nulls_for_each_rcu(__sk, node, list) \
505 	hlist_nulls_for_each_entry_rcu(__sk, node, list, sk_nulls_node)
506 #define sk_for_each_from(__sk, node) \
507 	if (__sk && ({ node = &(__sk)->sk_node; 1; })) \
508 		hlist_for_each_entry_from(__sk, node, sk_node)
509 #define sk_nulls_for_each_from(__sk, node) \
510 	if (__sk && ({ node = &(__sk)->sk_nulls_node; 1; })) \
511 		hlist_nulls_for_each_entry_from(__sk, node, sk_nulls_node)
512 #define sk_for_each_continue(__sk, node) \
513 	if (__sk && ({ node = &(__sk)->sk_node; 1; })) \
514 		hlist_for_each_entry_continue(__sk, node, sk_node)
515 #define sk_for_each_safe(__sk, node, tmp, list) \
516 	hlist_for_each_entry_safe(__sk, node, tmp, list, sk_node)
517 #define sk_for_each_bound(__sk, node, list) \
518 	hlist_for_each_entry(__sk, node, list, sk_bind_node)
519 
520 /* Sock flags */
521 enum sock_flags {
522 	SOCK_DEAD,
523 	SOCK_DONE,
524 	SOCK_URGINLINE,
525 	SOCK_KEEPOPEN,
526 	SOCK_LINGER,
527 	SOCK_DESTROY,
528 	SOCK_BROADCAST,
529 	SOCK_TIMESTAMP,
530 	SOCK_ZAPPED,
531 	SOCK_USE_WRITE_QUEUE, /* whether to call sk->sk_write_space in sock_wfree */
532 	SOCK_DBG, /* %SO_DEBUG setting */
533 	SOCK_RCVTSTAMP, /* %SO_TIMESTAMP setting */
534 	SOCK_RCVTSTAMPNS, /* %SO_TIMESTAMPNS setting */
535 	SOCK_LOCALROUTE, /* route locally only, %SO_DONTROUTE setting */
536 	SOCK_QUEUE_SHRUNK, /* write queue has been shrunk recently */
537 	SOCK_TIMESTAMPING_TX_HARDWARE,  /* %SOF_TIMESTAMPING_TX_HARDWARE */
538 	SOCK_TIMESTAMPING_TX_SOFTWARE,  /* %SOF_TIMESTAMPING_TX_SOFTWARE */
539 	SOCK_TIMESTAMPING_RX_HARDWARE,  /* %SOF_TIMESTAMPING_RX_HARDWARE */
540 	SOCK_TIMESTAMPING_RX_SOFTWARE,  /* %SOF_TIMESTAMPING_RX_SOFTWARE */
541 	SOCK_TIMESTAMPING_SOFTWARE,     /* %SOF_TIMESTAMPING_SOFTWARE */
542 	SOCK_TIMESTAMPING_RAW_HARDWARE, /* %SOF_TIMESTAMPING_RAW_HARDWARE */
543 	SOCK_TIMESTAMPING_SYS_HARDWARE, /* %SOF_TIMESTAMPING_SYS_HARDWARE */
544 	SOCK_FASYNC, /* fasync() active */
545 	SOCK_RXQ_OVFL,
546 };
547 
548 static inline void sock_copy_flags(struct sock *nsk, struct sock *osk)
549 {
550 	nsk->sk_flags = osk->sk_flags;
551 }
552 
553 static inline void sock_set_flag(struct sock *sk, enum sock_flags flag)
554 {
555 	__set_bit(flag, &sk->sk_flags);
556 }
557 
558 static inline void sock_reset_flag(struct sock *sk, enum sock_flags flag)
559 {
560 	__clear_bit(flag, &sk->sk_flags);
561 }
562 
563 static inline int sock_flag(struct sock *sk, enum sock_flags flag)
564 {
565 	return test_bit(flag, &sk->sk_flags);
566 }
567 
568 static inline void sk_acceptq_removed(struct sock *sk)
569 {
570 	sk->sk_ack_backlog--;
571 }
572 
573 static inline void sk_acceptq_added(struct sock *sk)
574 {
575 	sk->sk_ack_backlog++;
576 }
577 
578 static inline int sk_acceptq_is_full(struct sock *sk)
579 {
580 	return sk->sk_ack_backlog > sk->sk_max_ack_backlog;
581 }
582 
583 /*
584  * Compute minimal free write space needed to queue new packets.
585  */
586 static inline int sk_stream_min_wspace(struct sock *sk)
587 {
588 	return sk->sk_wmem_queued >> 1;
589 }
590 
591 static inline int sk_stream_wspace(struct sock *sk)
592 {
593 	return sk->sk_sndbuf - sk->sk_wmem_queued;
594 }
595 
596 extern void sk_stream_write_space(struct sock *sk);
597 
598 static inline int sk_stream_memory_free(struct sock *sk)
599 {
600 	return sk->sk_wmem_queued < sk->sk_sndbuf;
601 }
602 
603 /* OOB backlog add */
604 static inline void __sk_add_backlog(struct sock *sk, struct sk_buff *skb)
605 {
606 	/* dont let skb dst not refcounted, we are going to leave rcu lock */
607 	skb_dst_force(skb);
608 
609 	if (!sk->sk_backlog.tail)
610 		sk->sk_backlog.head = skb;
611 	else
612 		sk->sk_backlog.tail->next = skb;
613 
614 	sk->sk_backlog.tail = skb;
615 	skb->next = NULL;
616 }
617 
618 /*
619  * Take into account size of receive queue and backlog queue
620  */
621 static inline bool sk_rcvqueues_full(const struct sock *sk, const struct sk_buff *skb)
622 {
623 	unsigned int qsize = sk->sk_backlog.len + atomic_read(&sk->sk_rmem_alloc);
624 
625 	return qsize + skb->truesize > sk->sk_rcvbuf;
626 }
627 
628 /* The per-socket spinlock must be held here. */
629 static inline __must_check int sk_add_backlog(struct sock *sk, struct sk_buff *skb)
630 {
631 	if (sk_rcvqueues_full(sk, skb))
632 		return -ENOBUFS;
633 
634 	__sk_add_backlog(sk, skb);
635 	sk->sk_backlog.len += skb->truesize;
636 	return 0;
637 }
638 
639 static inline int sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
640 {
641 	return sk->sk_backlog_rcv(sk, skb);
642 }
643 
644 static inline void sock_rps_record_flow(const struct sock *sk)
645 {
646 #ifdef CONFIG_RPS
647 	struct rps_sock_flow_table *sock_flow_table;
648 
649 	rcu_read_lock();
650 	sock_flow_table = rcu_dereference(rps_sock_flow_table);
651 	rps_record_sock_flow(sock_flow_table, sk->sk_rxhash);
652 	rcu_read_unlock();
653 #endif
654 }
655 
656 static inline void sock_rps_reset_flow(const struct sock *sk)
657 {
658 #ifdef CONFIG_RPS
659 	struct rps_sock_flow_table *sock_flow_table;
660 
661 	rcu_read_lock();
662 	sock_flow_table = rcu_dereference(rps_sock_flow_table);
663 	rps_reset_sock_flow(sock_flow_table, sk->sk_rxhash);
664 	rcu_read_unlock();
665 #endif
666 }
667 
668 static inline void sock_rps_save_rxhash(struct sock *sk, u32 rxhash)
669 {
670 #ifdef CONFIG_RPS
671 	if (unlikely(sk->sk_rxhash != rxhash)) {
672 		sock_rps_reset_flow(sk);
673 		sk->sk_rxhash = rxhash;
674 	}
675 #endif
676 }
677 
678 #define sk_wait_event(__sk, __timeo, __condition)			\
679 	({	int __rc;						\
680 		release_sock(__sk);					\
681 		__rc = __condition;					\
682 		if (!__rc) {						\
683 			*(__timeo) = schedule_timeout(*(__timeo));	\
684 		}							\
685 		lock_sock(__sk);					\
686 		__rc = __condition;					\
687 		__rc;							\
688 	})
689 
690 extern int sk_stream_wait_connect(struct sock *sk, long *timeo_p);
691 extern int sk_stream_wait_memory(struct sock *sk, long *timeo_p);
692 extern void sk_stream_wait_close(struct sock *sk, long timeo_p);
693 extern int sk_stream_error(struct sock *sk, int flags, int err);
694 extern void sk_stream_kill_queues(struct sock *sk);
695 
696 extern int sk_wait_data(struct sock *sk, long *timeo);
697 
698 struct request_sock_ops;
699 struct timewait_sock_ops;
700 struct inet_hashinfo;
701 struct raw_hashinfo;
702 
703 /* Networking protocol blocks we attach to sockets.
704  * socket layer -> transport layer interface
705  * transport -> network interface is defined by struct inet_proto
706  */
707 struct proto {
708 	void			(*close)(struct sock *sk,
709 					long timeout);
710 	int			(*connect)(struct sock *sk,
711 				        struct sockaddr *uaddr,
712 					int addr_len);
713 	int			(*disconnect)(struct sock *sk, int flags);
714 
715 	struct sock *		(*accept) (struct sock *sk, int flags, int *err);
716 
717 	int			(*ioctl)(struct sock *sk, int cmd,
718 					 unsigned long arg);
719 	int			(*init)(struct sock *sk);
720 	void			(*destroy)(struct sock *sk);
721 	void			(*shutdown)(struct sock *sk, int how);
722 	int			(*setsockopt)(struct sock *sk, int level,
723 					int optname, char __user *optval,
724 					unsigned int optlen);
725 	int			(*getsockopt)(struct sock *sk, int level,
726 					int optname, char __user *optval,
727 					int __user *option);
728 #ifdef CONFIG_COMPAT
729 	int			(*compat_setsockopt)(struct sock *sk,
730 					int level,
731 					int optname, char __user *optval,
732 					unsigned int optlen);
733 	int			(*compat_getsockopt)(struct sock *sk,
734 					int level,
735 					int optname, char __user *optval,
736 					int __user *option);
737 #endif
738 	int			(*sendmsg)(struct kiocb *iocb, struct sock *sk,
739 					   struct msghdr *msg, size_t len);
740 	int			(*recvmsg)(struct kiocb *iocb, struct sock *sk,
741 					   struct msghdr *msg,
742 					size_t len, int noblock, int flags,
743 					int *addr_len);
744 	int			(*sendpage)(struct sock *sk, struct page *page,
745 					int offset, size_t size, int flags);
746 	int			(*bind)(struct sock *sk,
747 					struct sockaddr *uaddr, int addr_len);
748 
749 	int			(*backlog_rcv) (struct sock *sk,
750 						struct sk_buff *skb);
751 
752 	/* Keeping track of sk's, looking them up, and port selection methods. */
753 	void			(*hash)(struct sock *sk);
754 	void			(*unhash)(struct sock *sk);
755 	void			(*rehash)(struct sock *sk);
756 	int			(*get_port)(struct sock *sk, unsigned short snum);
757 
758 	/* Keeping track of sockets in use */
759 #ifdef CONFIG_PROC_FS
760 	unsigned int		inuse_idx;
761 #endif
762 
763 	/* Memory pressure */
764 	void			(*enter_memory_pressure)(struct sock *sk);
765 	atomic_t		*memory_allocated;	/* Current allocated memory. */
766 	struct percpu_counter	*sockets_allocated;	/* Current number of sockets. */
767 	/*
768 	 * Pressure flag: try to collapse.
769 	 * Technical note: it is used by multiple contexts non atomically.
770 	 * All the __sk_mem_schedule() is of this nature: accounting
771 	 * is strict, actions are advisory and have some latency.
772 	 */
773 	int			*memory_pressure;
774 	int			*sysctl_mem;
775 	int			*sysctl_wmem;
776 	int			*sysctl_rmem;
777 	int			max_header;
778 	bool			no_autobind;
779 
780 	struct kmem_cache	*slab;
781 	unsigned int		obj_size;
782 	int			slab_flags;
783 
784 	struct percpu_counter	*orphan_count;
785 
786 	struct request_sock_ops	*rsk_prot;
787 	struct timewait_sock_ops *twsk_prot;
788 
789 	union {
790 		struct inet_hashinfo	*hashinfo;
791 		struct udp_table	*udp_table;
792 		struct raw_hashinfo	*raw_hash;
793 	} h;
794 
795 	struct module		*owner;
796 
797 	char			name[32];
798 
799 	struct list_head	node;
800 #ifdef SOCK_REFCNT_DEBUG
801 	atomic_t		socks;
802 #endif
803 };
804 
805 extern int proto_register(struct proto *prot, int alloc_slab);
806 extern void proto_unregister(struct proto *prot);
807 
808 #ifdef SOCK_REFCNT_DEBUG
809 static inline void sk_refcnt_debug_inc(struct sock *sk)
810 {
811 	atomic_inc(&sk->sk_prot->socks);
812 }
813 
814 static inline void sk_refcnt_debug_dec(struct sock *sk)
815 {
816 	atomic_dec(&sk->sk_prot->socks);
817 	printk(KERN_DEBUG "%s socket %p released, %d are still alive\n",
818 	       sk->sk_prot->name, sk, atomic_read(&sk->sk_prot->socks));
819 }
820 
821 static inline void sk_refcnt_debug_release(const struct sock *sk)
822 {
823 	if (atomic_read(&sk->sk_refcnt) != 1)
824 		printk(KERN_DEBUG "Destruction of the %s socket %p delayed, refcnt=%d\n",
825 		       sk->sk_prot->name, sk, atomic_read(&sk->sk_refcnt));
826 }
827 #else /* SOCK_REFCNT_DEBUG */
828 #define sk_refcnt_debug_inc(sk) do { } while (0)
829 #define sk_refcnt_debug_dec(sk) do { } while (0)
830 #define sk_refcnt_debug_release(sk) do { } while (0)
831 #endif /* SOCK_REFCNT_DEBUG */
832 
833 
834 #ifdef CONFIG_PROC_FS
835 /* Called with local bh disabled */
836 extern void sock_prot_inuse_add(struct net *net, struct proto *prot, int inc);
837 extern int sock_prot_inuse_get(struct net *net, struct proto *proto);
838 #else
839 static void inline sock_prot_inuse_add(struct net *net, struct proto *prot,
840 		int inc)
841 {
842 }
843 #endif
844 
845 
846 /* With per-bucket locks this operation is not-atomic, so that
847  * this version is not worse.
848  */
849 static inline void __sk_prot_rehash(struct sock *sk)
850 {
851 	sk->sk_prot->unhash(sk);
852 	sk->sk_prot->hash(sk);
853 }
854 
855 /* About 10 seconds */
856 #define SOCK_DESTROY_TIME (10*HZ)
857 
858 /* Sockets 0-1023 can't be bound to unless you are superuser */
859 #define PROT_SOCK	1024
860 
861 #define SHUTDOWN_MASK	3
862 #define RCV_SHUTDOWN	1
863 #define SEND_SHUTDOWN	2
864 
865 #define SOCK_SNDBUF_LOCK	1
866 #define SOCK_RCVBUF_LOCK	2
867 #define SOCK_BINDADDR_LOCK	4
868 #define SOCK_BINDPORT_LOCK	8
869 
870 /* sock_iocb: used to kick off async processing of socket ios */
871 struct sock_iocb {
872 	struct list_head	list;
873 
874 	int			flags;
875 	int			size;
876 	struct socket		*sock;
877 	struct sock		*sk;
878 	struct scm_cookie	*scm;
879 	struct msghdr		*msg, async_msg;
880 	struct kiocb		*kiocb;
881 };
882 
883 static inline struct sock_iocb *kiocb_to_siocb(struct kiocb *iocb)
884 {
885 	return (struct sock_iocb *)iocb->private;
886 }
887 
888 static inline struct kiocb *siocb_to_kiocb(struct sock_iocb *si)
889 {
890 	return si->kiocb;
891 }
892 
893 struct socket_alloc {
894 	struct socket socket;
895 	struct inode vfs_inode;
896 };
897 
898 static inline struct socket *SOCKET_I(struct inode *inode)
899 {
900 	return &container_of(inode, struct socket_alloc, vfs_inode)->socket;
901 }
902 
903 static inline struct inode *SOCK_INODE(struct socket *socket)
904 {
905 	return &container_of(socket, struct socket_alloc, socket)->vfs_inode;
906 }
907 
908 /*
909  * Functions for memory accounting
910  */
911 extern int __sk_mem_schedule(struct sock *sk, int size, int kind);
912 extern void __sk_mem_reclaim(struct sock *sk);
913 
914 #define SK_MEM_QUANTUM ((int)PAGE_SIZE)
915 #define SK_MEM_QUANTUM_SHIFT ilog2(SK_MEM_QUANTUM)
916 #define SK_MEM_SEND	0
917 #define SK_MEM_RECV	1
918 
919 static inline int sk_mem_pages(int amt)
920 {
921 	return (amt + SK_MEM_QUANTUM - 1) >> SK_MEM_QUANTUM_SHIFT;
922 }
923 
924 static inline int sk_has_account(struct sock *sk)
925 {
926 	/* return true if protocol supports memory accounting */
927 	return !!sk->sk_prot->memory_allocated;
928 }
929 
930 static inline int sk_wmem_schedule(struct sock *sk, int size)
931 {
932 	if (!sk_has_account(sk))
933 		return 1;
934 	return size <= sk->sk_forward_alloc ||
935 		__sk_mem_schedule(sk, size, SK_MEM_SEND);
936 }
937 
938 static inline int sk_rmem_schedule(struct sock *sk, int size)
939 {
940 	if (!sk_has_account(sk))
941 		return 1;
942 	return size <= sk->sk_forward_alloc ||
943 		__sk_mem_schedule(sk, size, SK_MEM_RECV);
944 }
945 
946 static inline void sk_mem_reclaim(struct sock *sk)
947 {
948 	if (!sk_has_account(sk))
949 		return;
950 	if (sk->sk_forward_alloc >= SK_MEM_QUANTUM)
951 		__sk_mem_reclaim(sk);
952 }
953 
954 static inline void sk_mem_reclaim_partial(struct sock *sk)
955 {
956 	if (!sk_has_account(sk))
957 		return;
958 	if (sk->sk_forward_alloc > SK_MEM_QUANTUM)
959 		__sk_mem_reclaim(sk);
960 }
961 
962 static inline void sk_mem_charge(struct sock *sk, int size)
963 {
964 	if (!sk_has_account(sk))
965 		return;
966 	sk->sk_forward_alloc -= size;
967 }
968 
969 static inline void sk_mem_uncharge(struct sock *sk, int size)
970 {
971 	if (!sk_has_account(sk))
972 		return;
973 	sk->sk_forward_alloc += size;
974 }
975 
976 static inline void sk_wmem_free_skb(struct sock *sk, struct sk_buff *skb)
977 {
978 	sock_set_flag(sk, SOCK_QUEUE_SHRUNK);
979 	sk->sk_wmem_queued -= skb->truesize;
980 	sk_mem_uncharge(sk, skb->truesize);
981 	__kfree_skb(skb);
982 }
983 
984 /* Used by processes to "lock" a socket state, so that
985  * interrupts and bottom half handlers won't change it
986  * from under us. It essentially blocks any incoming
987  * packets, so that we won't get any new data or any
988  * packets that change the state of the socket.
989  *
990  * While locked, BH processing will add new packets to
991  * the backlog queue.  This queue is processed by the
992  * owner of the socket lock right before it is released.
993  *
994  * Since ~2.3.5 it is also exclusive sleep lock serializing
995  * accesses from user process context.
996  */
997 #define sock_owned_by_user(sk)	((sk)->sk_lock.owned)
998 
999 /*
1000  * Macro so as to not evaluate some arguments when
1001  * lockdep is not enabled.
1002  *
1003  * Mark both the sk_lock and the sk_lock.slock as a
1004  * per-address-family lock class.
1005  */
1006 #define sock_lock_init_class_and_name(sk, sname, skey, name, key) 	\
1007 do {									\
1008 	sk->sk_lock.owned = 0;						\
1009 	init_waitqueue_head(&sk->sk_lock.wq);				\
1010 	spin_lock_init(&(sk)->sk_lock.slock);				\
1011 	debug_check_no_locks_freed((void *)&(sk)->sk_lock,		\
1012 			sizeof((sk)->sk_lock));				\
1013 	lockdep_set_class_and_name(&(sk)->sk_lock.slock,		\
1014 		       	(skey), (sname));				\
1015 	lockdep_init_map(&(sk)->sk_lock.dep_map, (name), (key), 0);	\
1016 } while (0)
1017 
1018 extern void lock_sock_nested(struct sock *sk, int subclass);
1019 
1020 static inline void lock_sock(struct sock *sk)
1021 {
1022 	lock_sock_nested(sk, 0);
1023 }
1024 
1025 extern void release_sock(struct sock *sk);
1026 
1027 /* BH context may only use the following locking interface. */
1028 #define bh_lock_sock(__sk)	spin_lock(&((__sk)->sk_lock.slock))
1029 #define bh_lock_sock_nested(__sk) \
1030 				spin_lock_nested(&((__sk)->sk_lock.slock), \
1031 				SINGLE_DEPTH_NESTING)
1032 #define bh_unlock_sock(__sk)	spin_unlock(&((__sk)->sk_lock.slock))
1033 
1034 extern bool lock_sock_fast(struct sock *sk);
1035 /**
1036  * unlock_sock_fast - complement of lock_sock_fast
1037  * @sk: socket
1038  * @slow: slow mode
1039  *
1040  * fast unlock socket for user context.
1041  * If slow mode is on, we call regular release_sock()
1042  */
1043 static inline void unlock_sock_fast(struct sock *sk, bool slow)
1044 {
1045 	if (slow)
1046 		release_sock(sk);
1047 	else
1048 		spin_unlock_bh(&sk->sk_lock.slock);
1049 }
1050 
1051 
1052 extern struct sock		*sk_alloc(struct net *net, int family,
1053 					  gfp_t priority,
1054 					  struct proto *prot);
1055 extern void			sk_free(struct sock *sk);
1056 extern void			sk_release_kernel(struct sock *sk);
1057 extern struct sock		*sk_clone(const struct sock *sk,
1058 					  const gfp_t priority);
1059 
1060 extern struct sk_buff		*sock_wmalloc(struct sock *sk,
1061 					      unsigned long size, int force,
1062 					      gfp_t priority);
1063 extern struct sk_buff		*sock_rmalloc(struct sock *sk,
1064 					      unsigned long size, int force,
1065 					      gfp_t priority);
1066 extern void			sock_wfree(struct sk_buff *skb);
1067 extern void			sock_rfree(struct sk_buff *skb);
1068 
1069 extern int			sock_setsockopt(struct socket *sock, int level,
1070 						int op, char __user *optval,
1071 						unsigned int optlen);
1072 
1073 extern int			sock_getsockopt(struct socket *sock, int level,
1074 						int op, char __user *optval,
1075 						int __user *optlen);
1076 extern struct sk_buff 		*sock_alloc_send_skb(struct sock *sk,
1077 						     unsigned long size,
1078 						     int noblock,
1079 						     int *errcode);
1080 extern struct sk_buff 		*sock_alloc_send_pskb(struct sock *sk,
1081 						      unsigned long header_len,
1082 						      unsigned long data_len,
1083 						      int noblock,
1084 						      int *errcode);
1085 extern void *sock_kmalloc(struct sock *sk, int size,
1086 			  gfp_t priority);
1087 extern void sock_kfree_s(struct sock *sk, void *mem, int size);
1088 extern void sk_send_sigurg(struct sock *sk);
1089 
1090 #ifdef CONFIG_CGROUPS
1091 extern void sock_update_classid(struct sock *sk);
1092 #else
1093 static inline void sock_update_classid(struct sock *sk)
1094 {
1095 }
1096 #endif
1097 
1098 /*
1099  * Functions to fill in entries in struct proto_ops when a protocol
1100  * does not implement a particular function.
1101  */
1102 extern int                      sock_no_bind(struct socket *,
1103 					     struct sockaddr *, int);
1104 extern int                      sock_no_connect(struct socket *,
1105 						struct sockaddr *, int, int);
1106 extern int                      sock_no_socketpair(struct socket *,
1107 						   struct socket *);
1108 extern int                      sock_no_accept(struct socket *,
1109 					       struct socket *, int);
1110 extern int                      sock_no_getname(struct socket *,
1111 						struct sockaddr *, int *, int);
1112 extern unsigned int             sock_no_poll(struct file *, struct socket *,
1113 					     struct poll_table_struct *);
1114 extern int                      sock_no_ioctl(struct socket *, unsigned int,
1115 					      unsigned long);
1116 extern int			sock_no_listen(struct socket *, int);
1117 extern int                      sock_no_shutdown(struct socket *, int);
1118 extern int			sock_no_getsockopt(struct socket *, int , int,
1119 						   char __user *, int __user *);
1120 extern int			sock_no_setsockopt(struct socket *, int, int,
1121 						   char __user *, unsigned int);
1122 extern int                      sock_no_sendmsg(struct kiocb *, struct socket *,
1123 						struct msghdr *, size_t);
1124 extern int                      sock_no_recvmsg(struct kiocb *, struct socket *,
1125 						struct msghdr *, size_t, int);
1126 extern int			sock_no_mmap(struct file *file,
1127 					     struct socket *sock,
1128 					     struct vm_area_struct *vma);
1129 extern ssize_t			sock_no_sendpage(struct socket *sock,
1130 						struct page *page,
1131 						int offset, size_t size,
1132 						int flags);
1133 
1134 /*
1135  * Functions to fill in entries in struct proto_ops when a protocol
1136  * uses the inet style.
1137  */
1138 extern int sock_common_getsockopt(struct socket *sock, int level, int optname,
1139 				  char __user *optval, int __user *optlen);
1140 extern int sock_common_recvmsg(struct kiocb *iocb, struct socket *sock,
1141 			       struct msghdr *msg, size_t size, int flags);
1142 extern int sock_common_setsockopt(struct socket *sock, int level, int optname,
1143 				  char __user *optval, unsigned int optlen);
1144 extern int compat_sock_common_getsockopt(struct socket *sock, int level,
1145 		int optname, char __user *optval, int __user *optlen);
1146 extern int compat_sock_common_setsockopt(struct socket *sock, int level,
1147 		int optname, char __user *optval, unsigned int optlen);
1148 
1149 extern void sk_common_release(struct sock *sk);
1150 
1151 /*
1152  *	Default socket callbacks and setup code
1153  */
1154 
1155 /* Initialise core socket variables */
1156 extern void sock_init_data(struct socket *sock, struct sock *sk);
1157 
1158 /**
1159  *	sk_filter_release - release a socket filter
1160  *	@fp: filter to remove
1161  *
1162  *	Remove a filter from a socket and release its resources.
1163  */
1164 
1165 static inline void sk_filter_release(struct sk_filter *fp)
1166 {
1167 	if (atomic_dec_and_test(&fp->refcnt))
1168 		kfree(fp);
1169 }
1170 
1171 static inline void sk_filter_uncharge(struct sock *sk, struct sk_filter *fp)
1172 {
1173 	unsigned int size = sk_filter_len(fp);
1174 
1175 	atomic_sub(size, &sk->sk_omem_alloc);
1176 	sk_filter_release(fp);
1177 }
1178 
1179 static inline void sk_filter_charge(struct sock *sk, struct sk_filter *fp)
1180 {
1181 	atomic_inc(&fp->refcnt);
1182 	atomic_add(sk_filter_len(fp), &sk->sk_omem_alloc);
1183 }
1184 
1185 /*
1186  * Socket reference counting postulates.
1187  *
1188  * * Each user of socket SHOULD hold a reference count.
1189  * * Each access point to socket (an hash table bucket, reference from a list,
1190  *   running timer, skb in flight MUST hold a reference count.
1191  * * When reference count hits 0, it means it will never increase back.
1192  * * When reference count hits 0, it means that no references from
1193  *   outside exist to this socket and current process on current CPU
1194  *   is last user and may/should destroy this socket.
1195  * * sk_free is called from any context: process, BH, IRQ. When
1196  *   it is called, socket has no references from outside -> sk_free
1197  *   may release descendant resources allocated by the socket, but
1198  *   to the time when it is called, socket is NOT referenced by any
1199  *   hash tables, lists etc.
1200  * * Packets, delivered from outside (from network or from another process)
1201  *   and enqueued on receive/error queues SHOULD NOT grab reference count,
1202  *   when they sit in queue. Otherwise, packets will leak to hole, when
1203  *   socket is looked up by one cpu and unhasing is made by another CPU.
1204  *   It is true for udp/raw, netlink (leak to receive and error queues), tcp
1205  *   (leak to backlog). Packet socket does all the processing inside
1206  *   BR_NETPROTO_LOCK, so that it has not this race condition. UNIX sockets
1207  *   use separate SMP lock, so that they are prone too.
1208  */
1209 
1210 /* Ungrab socket and destroy it, if it was the last reference. */
1211 static inline void sock_put(struct sock *sk)
1212 {
1213 	if (atomic_dec_and_test(&sk->sk_refcnt))
1214 		sk_free(sk);
1215 }
1216 
1217 extern int sk_receive_skb(struct sock *sk, struct sk_buff *skb,
1218 			  const int nested);
1219 
1220 static inline void sk_tx_queue_set(struct sock *sk, int tx_queue)
1221 {
1222 	sk->sk_tx_queue_mapping = tx_queue;
1223 }
1224 
1225 static inline void sk_tx_queue_clear(struct sock *sk)
1226 {
1227 	sk->sk_tx_queue_mapping = -1;
1228 }
1229 
1230 static inline int sk_tx_queue_get(const struct sock *sk)
1231 {
1232 	return sk ? sk->sk_tx_queue_mapping : -1;
1233 }
1234 
1235 static inline void sk_set_socket(struct sock *sk, struct socket *sock)
1236 {
1237 	sk_tx_queue_clear(sk);
1238 	sk->sk_socket = sock;
1239 }
1240 
1241 static inline wait_queue_head_t *sk_sleep(struct sock *sk)
1242 {
1243 	return &sk->sk_wq->wait;
1244 }
1245 /* Detach socket from process context.
1246  * Announce socket dead, detach it from wait queue and inode.
1247  * Note that parent inode held reference count on this struct sock,
1248  * we do not release it in this function, because protocol
1249  * probably wants some additional cleanups or even continuing
1250  * to work with this socket (TCP).
1251  */
1252 static inline void sock_orphan(struct sock *sk)
1253 {
1254 	write_lock_bh(&sk->sk_callback_lock);
1255 	sock_set_flag(sk, SOCK_DEAD);
1256 	sk_set_socket(sk, NULL);
1257 	sk->sk_wq  = NULL;
1258 	write_unlock_bh(&sk->sk_callback_lock);
1259 }
1260 
1261 static inline void sock_graft(struct sock *sk, struct socket *parent)
1262 {
1263 	write_lock_bh(&sk->sk_callback_lock);
1264 	rcu_assign_pointer(sk->sk_wq, parent->wq);
1265 	parent->sk = sk;
1266 	sk_set_socket(sk, parent);
1267 	security_sock_graft(sk, parent);
1268 	write_unlock_bh(&sk->sk_callback_lock);
1269 }
1270 
1271 extern int sock_i_uid(struct sock *sk);
1272 extern unsigned long sock_i_ino(struct sock *sk);
1273 
1274 static inline struct dst_entry *
1275 __sk_dst_get(struct sock *sk)
1276 {
1277 	return rcu_dereference_check(sk->sk_dst_cache, rcu_read_lock_held() ||
1278 						       sock_owned_by_user(sk) ||
1279 						       lockdep_is_held(&sk->sk_lock.slock));
1280 }
1281 
1282 static inline struct dst_entry *
1283 sk_dst_get(struct sock *sk)
1284 {
1285 	struct dst_entry *dst;
1286 
1287 	rcu_read_lock();
1288 	dst = rcu_dereference(sk->sk_dst_cache);
1289 	if (dst)
1290 		dst_hold(dst);
1291 	rcu_read_unlock();
1292 	return dst;
1293 }
1294 
1295 extern void sk_reset_txq(struct sock *sk);
1296 
1297 static inline void dst_negative_advice(struct sock *sk)
1298 {
1299 	struct dst_entry *ndst, *dst = __sk_dst_get(sk);
1300 
1301 	if (dst && dst->ops->negative_advice) {
1302 		ndst = dst->ops->negative_advice(dst);
1303 
1304 		if (ndst != dst) {
1305 			rcu_assign_pointer(sk->sk_dst_cache, ndst);
1306 			sk_reset_txq(sk);
1307 		}
1308 	}
1309 }
1310 
1311 static inline void
1312 __sk_dst_set(struct sock *sk, struct dst_entry *dst)
1313 {
1314 	struct dst_entry *old_dst;
1315 
1316 	sk_tx_queue_clear(sk);
1317 	/*
1318 	 * This can be called while sk is owned by the caller only,
1319 	 * with no state that can be checked in a rcu_dereference_check() cond
1320 	 */
1321 	old_dst = rcu_dereference_raw(sk->sk_dst_cache);
1322 	rcu_assign_pointer(sk->sk_dst_cache, dst);
1323 	dst_release(old_dst);
1324 }
1325 
1326 static inline void
1327 sk_dst_set(struct sock *sk, struct dst_entry *dst)
1328 {
1329 	spin_lock(&sk->sk_dst_lock);
1330 	__sk_dst_set(sk, dst);
1331 	spin_unlock(&sk->sk_dst_lock);
1332 }
1333 
1334 static inline void
1335 __sk_dst_reset(struct sock *sk)
1336 {
1337 	__sk_dst_set(sk, NULL);
1338 }
1339 
1340 static inline void
1341 sk_dst_reset(struct sock *sk)
1342 {
1343 	spin_lock(&sk->sk_dst_lock);
1344 	__sk_dst_reset(sk);
1345 	spin_unlock(&sk->sk_dst_lock);
1346 }
1347 
1348 extern struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie);
1349 
1350 extern struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie);
1351 
1352 static inline int sk_can_gso(const struct sock *sk)
1353 {
1354 	return net_gso_ok(sk->sk_route_caps, sk->sk_gso_type);
1355 }
1356 
1357 extern void sk_setup_caps(struct sock *sk, struct dst_entry *dst);
1358 
1359 static inline void sk_nocaps_add(struct sock *sk, int flags)
1360 {
1361 	sk->sk_route_nocaps |= flags;
1362 	sk->sk_route_caps &= ~flags;
1363 }
1364 
1365 static inline int skb_copy_to_page(struct sock *sk, char __user *from,
1366 				   struct sk_buff *skb, struct page *page,
1367 				   int off, int copy)
1368 {
1369 	if (skb->ip_summed == CHECKSUM_NONE) {
1370 		int err = 0;
1371 		__wsum csum = csum_and_copy_from_user(from,
1372 						     page_address(page) + off,
1373 							    copy, 0, &err);
1374 		if (err)
1375 			return err;
1376 		skb->csum = csum_block_add(skb->csum, csum, skb->len);
1377 	} else if (copy_from_user(page_address(page) + off, from, copy))
1378 		return -EFAULT;
1379 
1380 	skb->len	     += copy;
1381 	skb->data_len	     += copy;
1382 	skb->truesize	     += copy;
1383 	sk->sk_wmem_queued   += copy;
1384 	sk_mem_charge(sk, copy);
1385 	return 0;
1386 }
1387 
1388 /**
1389  * sk_wmem_alloc_get - returns write allocations
1390  * @sk: socket
1391  *
1392  * Returns sk_wmem_alloc minus initial offset of one
1393  */
1394 static inline int sk_wmem_alloc_get(const struct sock *sk)
1395 {
1396 	return atomic_read(&sk->sk_wmem_alloc) - 1;
1397 }
1398 
1399 /**
1400  * sk_rmem_alloc_get - returns read allocations
1401  * @sk: socket
1402  *
1403  * Returns sk_rmem_alloc
1404  */
1405 static inline int sk_rmem_alloc_get(const struct sock *sk)
1406 {
1407 	return atomic_read(&sk->sk_rmem_alloc);
1408 }
1409 
1410 /**
1411  * sk_has_allocations - check if allocations are outstanding
1412  * @sk: socket
1413  *
1414  * Returns true if socket has write or read allocations
1415  */
1416 static inline int sk_has_allocations(const struct sock *sk)
1417 {
1418 	return sk_wmem_alloc_get(sk) || sk_rmem_alloc_get(sk);
1419 }
1420 
1421 /**
1422  * wq_has_sleeper - check if there are any waiting processes
1423  * @wq: struct socket_wq
1424  *
1425  * Returns true if socket_wq has waiting processes
1426  *
1427  * The purpose of the wq_has_sleeper and sock_poll_wait is to wrap the memory
1428  * barrier call. They were added due to the race found within the tcp code.
1429  *
1430  * Consider following tcp code paths:
1431  *
1432  * CPU1                  CPU2
1433  *
1434  * sys_select            receive packet
1435  *   ...                 ...
1436  *   __add_wait_queue    update tp->rcv_nxt
1437  *   ...                 ...
1438  *   tp->rcv_nxt check   sock_def_readable
1439  *   ...                 {
1440  *   schedule               rcu_read_lock();
1441  *                          wq = rcu_dereference(sk->sk_wq);
1442  *                          if (wq && waitqueue_active(&wq->wait))
1443  *                              wake_up_interruptible(&wq->wait)
1444  *                          ...
1445  *                       }
1446  *
1447  * The race for tcp fires when the __add_wait_queue changes done by CPU1 stay
1448  * in its cache, and so does the tp->rcv_nxt update on CPU2 side.  The CPU1
1449  * could then endup calling schedule and sleep forever if there are no more
1450  * data on the socket.
1451  *
1452  */
1453 static inline bool wq_has_sleeper(struct socket_wq *wq)
1454 {
1455 
1456 	/*
1457 	 * We need to be sure we are in sync with the
1458 	 * add_wait_queue modifications to the wait queue.
1459 	 *
1460 	 * This memory barrier is paired in the sock_poll_wait.
1461 	 */
1462 	smp_mb();
1463 	return wq && waitqueue_active(&wq->wait);
1464 }
1465 
1466 /**
1467  * sock_poll_wait - place memory barrier behind the poll_wait call.
1468  * @filp:           file
1469  * @wait_address:   socket wait queue
1470  * @p:              poll_table
1471  *
1472  * See the comments in the wq_has_sleeper function.
1473  */
1474 static inline void sock_poll_wait(struct file *filp,
1475 		wait_queue_head_t *wait_address, poll_table *p)
1476 {
1477 	if (p && wait_address) {
1478 		poll_wait(filp, wait_address, p);
1479 		/*
1480 		 * We need to be sure we are in sync with the
1481 		 * socket flags modification.
1482 		 *
1483 		 * This memory barrier is paired in the wq_has_sleeper.
1484 		*/
1485 		smp_mb();
1486 	}
1487 }
1488 
1489 /*
1490  * 	Queue a received datagram if it will fit. Stream and sequenced
1491  *	protocols can't normally use this as they need to fit buffers in
1492  *	and play with them.
1493  *
1494  * 	Inlined as it's very short and called for pretty much every
1495  *	packet ever received.
1496  */
1497 
1498 static inline void skb_set_owner_w(struct sk_buff *skb, struct sock *sk)
1499 {
1500 	skb_orphan(skb);
1501 	skb->sk = sk;
1502 	skb->destructor = sock_wfree;
1503 	/*
1504 	 * We used to take a refcount on sk, but following operation
1505 	 * is enough to guarantee sk_free() wont free this sock until
1506 	 * all in-flight packets are completed
1507 	 */
1508 	atomic_add(skb->truesize, &sk->sk_wmem_alloc);
1509 }
1510 
1511 static inline void skb_set_owner_r(struct sk_buff *skb, struct sock *sk)
1512 {
1513 	skb_orphan(skb);
1514 	skb->sk = sk;
1515 	skb->destructor = sock_rfree;
1516 	atomic_add(skb->truesize, &sk->sk_rmem_alloc);
1517 	sk_mem_charge(sk, skb->truesize);
1518 }
1519 
1520 extern void sk_reset_timer(struct sock *sk, struct timer_list* timer,
1521 			   unsigned long expires);
1522 
1523 extern void sk_stop_timer(struct sock *sk, struct timer_list* timer);
1524 
1525 extern int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
1526 
1527 extern int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb);
1528 
1529 /*
1530  *	Recover an error report and clear atomically
1531  */
1532 
1533 static inline int sock_error(struct sock *sk)
1534 {
1535 	int err;
1536 	if (likely(!sk->sk_err))
1537 		return 0;
1538 	err = xchg(&sk->sk_err, 0);
1539 	return -err;
1540 }
1541 
1542 static inline unsigned long sock_wspace(struct sock *sk)
1543 {
1544 	int amt = 0;
1545 
1546 	if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
1547 		amt = sk->sk_sndbuf - atomic_read(&sk->sk_wmem_alloc);
1548 		if (amt < 0)
1549 			amt = 0;
1550 	}
1551 	return amt;
1552 }
1553 
1554 static inline void sk_wake_async(struct sock *sk, int how, int band)
1555 {
1556 	if (sock_flag(sk, SOCK_FASYNC))
1557 		sock_wake_async(sk->sk_socket, how, band);
1558 }
1559 
1560 #define SOCK_MIN_SNDBUF 2048
1561 /*
1562  * Since sk_rmem_alloc sums skb->truesize, even a small frame might need
1563  * sizeof(sk_buff) + MTU + padding, unless net driver perform copybreak
1564  */
1565 #define SOCK_MIN_RCVBUF (2048 + sizeof(struct sk_buff))
1566 
1567 static inline void sk_stream_moderate_sndbuf(struct sock *sk)
1568 {
1569 	if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK)) {
1570 		sk->sk_sndbuf = min(sk->sk_sndbuf, sk->sk_wmem_queued >> 1);
1571 		sk->sk_sndbuf = max(sk->sk_sndbuf, SOCK_MIN_SNDBUF);
1572 	}
1573 }
1574 
1575 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp);
1576 
1577 static inline struct page *sk_stream_alloc_page(struct sock *sk)
1578 {
1579 	struct page *page = NULL;
1580 
1581 	page = alloc_pages(sk->sk_allocation, 0);
1582 	if (!page) {
1583 		sk->sk_prot->enter_memory_pressure(sk);
1584 		sk_stream_moderate_sndbuf(sk);
1585 	}
1586 	return page;
1587 }
1588 
1589 /*
1590  *	Default write policy as shown to user space via poll/select/SIGIO
1591  */
1592 static inline int sock_writeable(const struct sock *sk)
1593 {
1594 	return atomic_read(&sk->sk_wmem_alloc) < (sk->sk_sndbuf >> 1);
1595 }
1596 
1597 static inline gfp_t gfp_any(void)
1598 {
1599 	return in_softirq() ? GFP_ATOMIC : GFP_KERNEL;
1600 }
1601 
1602 static inline long sock_rcvtimeo(const struct sock *sk, int noblock)
1603 {
1604 	return noblock ? 0 : sk->sk_rcvtimeo;
1605 }
1606 
1607 static inline long sock_sndtimeo(const struct sock *sk, int noblock)
1608 {
1609 	return noblock ? 0 : sk->sk_sndtimeo;
1610 }
1611 
1612 static inline int sock_rcvlowat(const struct sock *sk, int waitall, int len)
1613 {
1614 	return (waitall ? len : min_t(int, sk->sk_rcvlowat, len)) ? : 1;
1615 }
1616 
1617 /* Alas, with timeout socket operations are not restartable.
1618  * Compare this to poll().
1619  */
1620 static inline int sock_intr_errno(long timeo)
1621 {
1622 	return timeo == MAX_SCHEDULE_TIMEOUT ? -ERESTARTSYS : -EINTR;
1623 }
1624 
1625 extern void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
1626 	struct sk_buff *skb);
1627 
1628 static __inline__ void
1629 sock_recv_timestamp(struct msghdr *msg, struct sock *sk, struct sk_buff *skb)
1630 {
1631 	ktime_t kt = skb->tstamp;
1632 	struct skb_shared_hwtstamps *hwtstamps = skb_hwtstamps(skb);
1633 
1634 	/*
1635 	 * generate control messages if
1636 	 * - receive time stamping in software requested (SOCK_RCVTSTAMP
1637 	 *   or SOCK_TIMESTAMPING_RX_SOFTWARE)
1638 	 * - software time stamp available and wanted
1639 	 *   (SOCK_TIMESTAMPING_SOFTWARE)
1640 	 * - hardware time stamps available and wanted
1641 	 *   (SOCK_TIMESTAMPING_SYS_HARDWARE or
1642 	 *   SOCK_TIMESTAMPING_RAW_HARDWARE)
1643 	 */
1644 	if (sock_flag(sk, SOCK_RCVTSTAMP) ||
1645 	    sock_flag(sk, SOCK_TIMESTAMPING_RX_SOFTWARE) ||
1646 	    (kt.tv64 && sock_flag(sk, SOCK_TIMESTAMPING_SOFTWARE)) ||
1647 	    (hwtstamps->hwtstamp.tv64 &&
1648 	     sock_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE)) ||
1649 	    (hwtstamps->syststamp.tv64 &&
1650 	     sock_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE)))
1651 		__sock_recv_timestamp(msg, sk, skb);
1652 	else
1653 		sk->sk_stamp = kt;
1654 }
1655 
1656 extern void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
1657 				     struct sk_buff *skb);
1658 
1659 static inline void sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
1660 					  struct sk_buff *skb)
1661 {
1662 #define FLAGS_TS_OR_DROPS ((1UL << SOCK_RXQ_OVFL)			| \
1663 			   (1UL << SOCK_RCVTSTAMP)			| \
1664 			   (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE)	| \
1665 			   (1UL << SOCK_TIMESTAMPING_SOFTWARE)		| \
1666 			   (1UL << SOCK_TIMESTAMPING_RAW_HARDWARE) 	| \
1667 			   (1UL << SOCK_TIMESTAMPING_SYS_HARDWARE))
1668 
1669 	if (sk->sk_flags & FLAGS_TS_OR_DROPS)
1670 		__sock_recv_ts_and_drops(msg, sk, skb);
1671 	else
1672 		sk->sk_stamp = skb->tstamp;
1673 }
1674 
1675 /**
1676  * sock_tx_timestamp - checks whether the outgoing packet is to be time stamped
1677  * @sk:		socket sending this packet
1678  * @tx_flags:	filled with instructions for time stamping
1679  *
1680  * Currently only depends on SOCK_TIMESTAMPING* flags. Returns error code if
1681  * parameters are invalid.
1682  */
1683 extern int sock_tx_timestamp(struct sock *sk, __u8 *tx_flags);
1684 
1685 /**
1686  * sk_eat_skb - Release a skb if it is no longer needed
1687  * @sk: socket to eat this skb from
1688  * @skb: socket buffer to eat
1689  * @copied_early: flag indicating whether DMA operations copied this data early
1690  *
1691  * This routine must be called with interrupts disabled or with the socket
1692  * locked so that the sk_buff queue operation is ok.
1693 */
1694 #ifdef CONFIG_NET_DMA
1695 static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb, int copied_early)
1696 {
1697 	__skb_unlink(skb, &sk->sk_receive_queue);
1698 	if (!copied_early)
1699 		__kfree_skb(skb);
1700 	else
1701 		__skb_queue_tail(&sk->sk_async_wait_queue, skb);
1702 }
1703 #else
1704 static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb, int copied_early)
1705 {
1706 	__skb_unlink(skb, &sk->sk_receive_queue);
1707 	__kfree_skb(skb);
1708 }
1709 #endif
1710 
1711 static inline
1712 struct net *sock_net(const struct sock *sk)
1713 {
1714 	return read_pnet(&sk->sk_net);
1715 }
1716 
1717 static inline
1718 void sock_net_set(struct sock *sk, struct net *net)
1719 {
1720 	write_pnet(&sk->sk_net, net);
1721 }
1722 
1723 /*
1724  * Kernel sockets, f.e. rtnl or icmp_socket, are a part of a namespace.
1725  * They should not hold a referrence to a namespace in order to allow
1726  * to stop it.
1727  * Sockets after sk_change_net should be released using sk_release_kernel
1728  */
1729 static inline void sk_change_net(struct sock *sk, struct net *net)
1730 {
1731 	put_net(sock_net(sk));
1732 	sock_net_set(sk, hold_net(net));
1733 }
1734 
1735 static inline struct sock *skb_steal_sock(struct sk_buff *skb)
1736 {
1737 	if (unlikely(skb->sk)) {
1738 		struct sock *sk = skb->sk;
1739 
1740 		skb->destructor = NULL;
1741 		skb->sk = NULL;
1742 		return sk;
1743 	}
1744 	return NULL;
1745 }
1746 
1747 extern void sock_enable_timestamp(struct sock *sk, int flag);
1748 extern int sock_get_timestamp(struct sock *, struct timeval __user *);
1749 extern int sock_get_timestampns(struct sock *, struct timespec __user *);
1750 
1751 /*
1752  *	Enable debug/info messages
1753  */
1754 extern int net_msg_warn;
1755 #define NETDEBUG(fmt, args...) \
1756 	do { if (net_msg_warn) printk(fmt,##args); } while (0)
1757 
1758 #define LIMIT_NETDEBUG(fmt, args...) \
1759 	do { if (net_msg_warn && net_ratelimit()) printk(fmt,##args); } while(0)
1760 
1761 extern __u32 sysctl_wmem_max;
1762 extern __u32 sysctl_rmem_max;
1763 
1764 extern void sk_init(void);
1765 
1766 extern int sysctl_optmem_max;
1767 
1768 extern __u32 sysctl_wmem_default;
1769 extern __u32 sysctl_rmem_default;
1770 
1771 #endif	/* _SOCK_H */
1772