xref: /linux/include/net/sock.h (revision bbcf0f55e57841e532ab395596db9197e8d53e8d)
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Definitions for the AF_INET socket handler.
8  *
9  * Version:	@(#)sock.h	1.0.4	05/13/93
10  *
11  * Authors:	Ross Biro
12  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
13  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
14  *		Florian La Roche <flla@stud.uni-sb.de>
15  *
16  * Fixes:
17  *		Alan Cox	:	Volatiles in skbuff pointers. See
18  *					skbuff comments. May be overdone,
19  *					better to prove they can be removed
20  *					than the reverse.
21  *		Alan Cox	:	Added a zapped field for tcp to note
22  *					a socket is reset and must stay shut up
23  *		Alan Cox	:	New fields for options
24  *	Pauline Middelink	:	identd support
25  *		Alan Cox	:	Eliminate low level recv/recvfrom
26  *		David S. Miller	:	New socket lookup architecture.
27  *              Steve Whitehouse:       Default routines for sock_ops
28  *              Arnaldo C. Melo :	removed net_pinfo, tp_pinfo and made
29  *              			protinfo be just a void pointer, as the
30  *              			protocol specific parts were moved to
31  *              			respective headers and ipv4/v6, etc now
32  *              			use private slabcaches for its socks
33  *              Pedro Hortas	:	New flags field for socket options
34  */
35 #ifndef _SOCK_H
36 #define _SOCK_H
37 
38 #include <linux/hardirq.h>
39 #include <linux/kernel.h>
40 #include <linux/list.h>
41 #include <linux/list_nulls.h>
42 #include <linux/timer.h>
43 #include <linux/cache.h>
44 #include <linux/bitops.h>
45 #include <linux/lockdep.h>
46 #include <linux/netdevice.h>
47 #include <linux/skbuff.h>	/* struct sk_buff */
48 #include <linux/mm.h>
49 #include <linux/security.h>
50 #include <linux/slab.h>
51 #include <linux/uaccess.h>
52 #include <linux/page_counter.h>
53 #include <linux/memcontrol.h>
54 #include <linux/static_key.h>
55 #include <linux/sched.h>
56 #include <linux/wait.h>
57 #include <linux/cgroup-defs.h>
58 #include <linux/rbtree.h>
59 #include <linux/rculist_nulls.h>
60 #include <linux/poll.h>
61 #include <linux/sockptr.h>
62 #include <linux/indirect_call_wrapper.h>
63 #include <linux/atomic.h>
64 #include <linux/refcount.h>
65 #include <linux/llist.h>
66 #include <net/dst.h>
67 #include <net/checksum.h>
68 #include <net/tcp_states.h>
69 #include <linux/net_tstamp.h>
70 #include <net/l3mdev.h>
71 #include <uapi/linux/socket.h>
72 
73 /*
74  * This structure really needs to be cleaned up.
75  * Most of it is for TCP, and not used by any of
76  * the other protocols.
77  */
78 
79 /* Define this to get the SOCK_DBG debugging facility. */
80 #define SOCK_DEBUGGING
81 #ifdef SOCK_DEBUGGING
82 #define SOCK_DEBUG(sk, msg...) do { if ((sk) && sock_flag((sk), SOCK_DBG)) \
83 					printk(KERN_DEBUG msg); } while (0)
84 #else
85 /* Validate arguments and do nothing */
86 static inline __printf(2, 3)
87 void SOCK_DEBUG(const struct sock *sk, const char *msg, ...)
88 {
89 }
90 #endif
91 
92 /* This is the per-socket lock.  The spinlock provides a synchronization
93  * between user contexts and software interrupt processing, whereas the
94  * mini-semaphore synchronizes multiple users amongst themselves.
95  */
96 typedef struct {
97 	spinlock_t		slock;
98 	int			owned;
99 	wait_queue_head_t	wq;
100 	/*
101 	 * We express the mutex-alike socket_lock semantics
102 	 * to the lock validator by explicitly managing
103 	 * the slock as a lock variant (in addition to
104 	 * the slock itself):
105 	 */
106 #ifdef CONFIG_DEBUG_LOCK_ALLOC
107 	struct lockdep_map dep_map;
108 #endif
109 } socket_lock_t;
110 
111 struct sock;
112 struct proto;
113 struct net;
114 
115 typedef __u32 __bitwise __portpair;
116 typedef __u64 __bitwise __addrpair;
117 
118 /**
119  *	struct sock_common - minimal network layer representation of sockets
120  *	@skc_daddr: Foreign IPv4 addr
121  *	@skc_rcv_saddr: Bound local IPv4 addr
122  *	@skc_addrpair: 8-byte-aligned __u64 union of @skc_daddr & @skc_rcv_saddr
123  *	@skc_hash: hash value used with various protocol lookup tables
124  *	@skc_u16hashes: two u16 hash values used by UDP lookup tables
125  *	@skc_dport: placeholder for inet_dport/tw_dport
126  *	@skc_num: placeholder for inet_num/tw_num
127  *	@skc_portpair: __u32 union of @skc_dport & @skc_num
128  *	@skc_family: network address family
129  *	@skc_state: Connection state
130  *	@skc_reuse: %SO_REUSEADDR setting
131  *	@skc_reuseport: %SO_REUSEPORT setting
132  *	@skc_ipv6only: socket is IPV6 only
133  *	@skc_net_refcnt: socket is using net ref counting
134  *	@skc_bound_dev_if: bound device index if != 0
135  *	@skc_bind_node: bind hash linkage for various protocol lookup tables
136  *	@skc_portaddr_node: second hash linkage for UDP/UDP-Lite protocol
137  *	@skc_prot: protocol handlers inside a network family
138  *	@skc_net: reference to the network namespace of this socket
139  *	@skc_v6_daddr: IPV6 destination address
140  *	@skc_v6_rcv_saddr: IPV6 source address
141  *	@skc_cookie: socket's cookie value
142  *	@skc_node: main hash linkage for various protocol lookup tables
143  *	@skc_nulls_node: main hash linkage for TCP/UDP/UDP-Lite protocol
144  *	@skc_tx_queue_mapping: tx queue number for this connection
145  *	@skc_rx_queue_mapping: rx queue number for this connection
146  *	@skc_flags: place holder for sk_flags
147  *		%SO_LINGER (l_onoff), %SO_BROADCAST, %SO_KEEPALIVE,
148  *		%SO_OOBINLINE settings, %SO_TIMESTAMPING settings
149  *	@skc_listener: connection request listener socket (aka rsk_listener)
150  *		[union with @skc_flags]
151  *	@skc_tw_dr: (aka tw_dr) ptr to &struct inet_timewait_death_row
152  *		[union with @skc_flags]
153  *	@skc_incoming_cpu: record/match cpu processing incoming packets
154  *	@skc_rcv_wnd: (aka rsk_rcv_wnd) TCP receive window size (possibly scaled)
155  *		[union with @skc_incoming_cpu]
156  *	@skc_tw_rcv_nxt: (aka tw_rcv_nxt) TCP window next expected seq number
157  *		[union with @skc_incoming_cpu]
158  *	@skc_refcnt: reference count
159  *
160  *	This is the minimal network layer representation of sockets, the header
161  *	for struct sock and struct inet_timewait_sock.
162  */
163 struct sock_common {
164 	union {
165 		__addrpair	skc_addrpair;
166 		struct {
167 			__be32	skc_daddr;
168 			__be32	skc_rcv_saddr;
169 		};
170 	};
171 	union  {
172 		unsigned int	skc_hash;
173 		__u16		skc_u16hashes[2];
174 	};
175 	/* skc_dport && skc_num must be grouped as well */
176 	union {
177 		__portpair	skc_portpair;
178 		struct {
179 			__be16	skc_dport;
180 			__u16	skc_num;
181 		};
182 	};
183 
184 	unsigned short		skc_family;
185 	volatile unsigned char	skc_state;
186 	unsigned char		skc_reuse:4;
187 	unsigned char		skc_reuseport:1;
188 	unsigned char		skc_ipv6only:1;
189 	unsigned char		skc_net_refcnt:1;
190 	int			skc_bound_dev_if;
191 	union {
192 		struct hlist_node	skc_bind_node;
193 		struct hlist_node	skc_portaddr_node;
194 	};
195 	struct proto		*skc_prot;
196 	possible_net_t		skc_net;
197 
198 #if IS_ENABLED(CONFIG_IPV6)
199 	struct in6_addr		skc_v6_daddr;
200 	struct in6_addr		skc_v6_rcv_saddr;
201 #endif
202 
203 	atomic64_t		skc_cookie;
204 
205 	/* following fields are padding to force
206 	 * offset(struct sock, sk_refcnt) == 128 on 64bit arches
207 	 * assuming IPV6 is enabled. We use this padding differently
208 	 * for different kind of 'sockets'
209 	 */
210 	union {
211 		unsigned long	skc_flags;
212 		struct sock	*skc_listener; /* request_sock */
213 		struct inet_timewait_death_row *skc_tw_dr; /* inet_timewait_sock */
214 	};
215 	/*
216 	 * fields between dontcopy_begin/dontcopy_end
217 	 * are not copied in sock_copy()
218 	 */
219 	/* private: */
220 	int			skc_dontcopy_begin[0];
221 	/* public: */
222 	union {
223 		struct hlist_node	skc_node;
224 		struct hlist_nulls_node skc_nulls_node;
225 	};
226 	unsigned short		skc_tx_queue_mapping;
227 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
228 	unsigned short		skc_rx_queue_mapping;
229 #endif
230 	union {
231 		int		skc_incoming_cpu;
232 		u32		skc_rcv_wnd;
233 		u32		skc_tw_rcv_nxt; /* struct tcp_timewait_sock  */
234 	};
235 
236 	refcount_t		skc_refcnt;
237 	/* private: */
238 	int                     skc_dontcopy_end[0];
239 	union {
240 		u32		skc_rxhash;
241 		u32		skc_window_clamp;
242 		u32		skc_tw_snd_nxt; /* struct tcp_timewait_sock */
243 	};
244 	/* public: */
245 };
246 
247 struct bpf_local_storage;
248 struct sk_filter;
249 
250 /**
251   *	struct sock - network layer representation of sockets
252   *	@__sk_common: shared layout with inet_timewait_sock
253   *	@sk_shutdown: mask of %SEND_SHUTDOWN and/or %RCV_SHUTDOWN
254   *	@sk_userlocks: %SO_SNDBUF and %SO_RCVBUF settings
255   *	@sk_lock:	synchronizer
256   *	@sk_kern_sock: True if sock is using kernel lock classes
257   *	@sk_rcvbuf: size of receive buffer in bytes
258   *	@sk_wq: sock wait queue and async head
259   *	@sk_rx_dst: receive input route used by early demux
260   *	@sk_rx_dst_ifindex: ifindex for @sk_rx_dst
261   *	@sk_rx_dst_cookie: cookie for @sk_rx_dst
262   *	@sk_dst_cache: destination cache
263   *	@sk_dst_pending_confirm: need to confirm neighbour
264   *	@sk_policy: flow policy
265   *	@sk_receive_queue: incoming packets
266   *	@sk_wmem_alloc: transmit queue bytes committed
267   *	@sk_tsq_flags: TCP Small Queues flags
268   *	@sk_write_queue: Packet sending queue
269   *	@sk_omem_alloc: "o" is "option" or "other"
270   *	@sk_wmem_queued: persistent queue size
271   *	@sk_forward_alloc: space allocated forward
272   *	@sk_reserved_mem: space reserved and non-reclaimable for the socket
273   *	@sk_napi_id: id of the last napi context to receive data for sk
274   *	@sk_ll_usec: usecs to busypoll when there is no data
275   *	@sk_allocation: allocation mode
276   *	@sk_pacing_rate: Pacing rate (if supported by transport/packet scheduler)
277   *	@sk_pacing_status: Pacing status (requested, handled by sch_fq)
278   *	@sk_max_pacing_rate: Maximum pacing rate (%SO_MAX_PACING_RATE)
279   *	@sk_sndbuf: size of send buffer in bytes
280   *	@__sk_flags_offset: empty field used to determine location of bitfield
281   *	@sk_padding: unused element for alignment
282   *	@sk_no_check_tx: %SO_NO_CHECK setting, set checksum in TX packets
283   *	@sk_no_check_rx: allow zero checksum in RX packets
284   *	@sk_route_caps: route capabilities (e.g. %NETIF_F_TSO)
285   *	@sk_gso_disabled: if set, NETIF_F_GSO_MASK is forbidden.
286   *	@sk_gso_type: GSO type (e.g. %SKB_GSO_TCPV4)
287   *	@sk_gso_max_size: Maximum GSO segment size to build
288   *	@sk_gso_max_segs: Maximum number of GSO segments
289   *	@sk_pacing_shift: scaling factor for TCP Small Queues
290   *	@sk_lingertime: %SO_LINGER l_linger setting
291   *	@sk_backlog: always used with the per-socket spinlock held
292   *	@sk_callback_lock: used with the callbacks in the end of this struct
293   *	@sk_error_queue: rarely used
294   *	@sk_prot_creator: sk_prot of original sock creator (see ipv6_setsockopt,
295   *			  IPV6_ADDRFORM for instance)
296   *	@sk_err: last error
297   *	@sk_err_soft: errors that don't cause failure but are the cause of a
298   *		      persistent failure not just 'timed out'
299   *	@sk_drops: raw/udp drops counter
300   *	@sk_ack_backlog: current listen backlog
301   *	@sk_max_ack_backlog: listen backlog set in listen()
302   *	@sk_uid: user id of owner
303   *	@sk_prefer_busy_poll: prefer busypolling over softirq processing
304   *	@sk_busy_poll_budget: napi processing budget when busypolling
305   *	@sk_priority: %SO_PRIORITY setting
306   *	@sk_type: socket type (%SOCK_STREAM, etc)
307   *	@sk_protocol: which protocol this socket belongs in this network family
308   *	@sk_peer_lock: lock protecting @sk_peer_pid and @sk_peer_cred
309   *	@sk_peer_pid: &struct pid for this socket's peer
310   *	@sk_peer_cred: %SO_PEERCRED setting
311   *	@sk_rcvlowat: %SO_RCVLOWAT setting
312   *	@sk_rcvtimeo: %SO_RCVTIMEO setting
313   *	@sk_sndtimeo: %SO_SNDTIMEO setting
314   *	@sk_txhash: computed flow hash for use on transmit
315   *	@sk_txrehash: enable TX hash rethink
316   *	@sk_filter: socket filtering instructions
317   *	@sk_timer: sock cleanup timer
318   *	@sk_stamp: time stamp of last packet received
319   *	@sk_stamp_seq: lock for accessing sk_stamp on 32 bit architectures only
320   *	@sk_tsflags: SO_TIMESTAMPING flags
321   *	@sk_bind_phc: SO_TIMESTAMPING bind PHC index of PTP virtual clock
322   *	              for timestamping
323   *	@sk_tskey: counter to disambiguate concurrent tstamp requests
324   *	@sk_zckey: counter to order MSG_ZEROCOPY notifications
325   *	@sk_socket: Identd and reporting IO signals
326   *	@sk_user_data: RPC layer private data
327   *	@sk_frag: cached page frag
328   *	@sk_peek_off: current peek_offset value
329   *	@sk_send_head: front of stuff to transmit
330   *	@tcp_rtx_queue: TCP re-transmit queue [union with @sk_send_head]
331   *	@sk_security: used by security modules
332   *	@sk_mark: generic packet mark
333   *	@sk_cgrp_data: cgroup data for this cgroup
334   *	@sk_memcg: this socket's memory cgroup association
335   *	@sk_write_pending: a write to stream socket waits to start
336   *	@sk_state_change: callback to indicate change in the state of the sock
337   *	@sk_data_ready: callback to indicate there is data to be processed
338   *	@sk_write_space: callback to indicate there is bf sending space available
339   *	@sk_error_report: callback to indicate errors (e.g. %MSG_ERRQUEUE)
340   *	@sk_backlog_rcv: callback to process the backlog
341   *	@sk_validate_xmit_skb: ptr to an optional validate function
342   *	@sk_destruct: called at sock freeing time, i.e. when all refcnt == 0
343   *	@sk_reuseport_cb: reuseport group container
344   *	@sk_bpf_storage: ptr to cache and control for bpf_sk_storage
345   *	@sk_rcu: used during RCU grace period
346   *	@sk_clockid: clockid used by time-based scheduling (SO_TXTIME)
347   *	@sk_txtime_deadline_mode: set deadline mode for SO_TXTIME
348   *	@sk_txtime_report_errors: set report errors mode for SO_TXTIME
349   *	@sk_txtime_unused: unused txtime flags
350   *	@ns_tracker: tracker for netns reference
351   */
352 struct sock {
353 	/*
354 	 * Now struct inet_timewait_sock also uses sock_common, so please just
355 	 * don't add nothing before this first member (__sk_common) --acme
356 	 */
357 	struct sock_common	__sk_common;
358 #define sk_node			__sk_common.skc_node
359 #define sk_nulls_node		__sk_common.skc_nulls_node
360 #define sk_refcnt		__sk_common.skc_refcnt
361 #define sk_tx_queue_mapping	__sk_common.skc_tx_queue_mapping
362 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
363 #define sk_rx_queue_mapping	__sk_common.skc_rx_queue_mapping
364 #endif
365 
366 #define sk_dontcopy_begin	__sk_common.skc_dontcopy_begin
367 #define sk_dontcopy_end		__sk_common.skc_dontcopy_end
368 #define sk_hash			__sk_common.skc_hash
369 #define sk_portpair		__sk_common.skc_portpair
370 #define sk_num			__sk_common.skc_num
371 #define sk_dport		__sk_common.skc_dport
372 #define sk_addrpair		__sk_common.skc_addrpair
373 #define sk_daddr		__sk_common.skc_daddr
374 #define sk_rcv_saddr		__sk_common.skc_rcv_saddr
375 #define sk_family		__sk_common.skc_family
376 #define sk_state		__sk_common.skc_state
377 #define sk_reuse		__sk_common.skc_reuse
378 #define sk_reuseport		__sk_common.skc_reuseport
379 #define sk_ipv6only		__sk_common.skc_ipv6only
380 #define sk_net_refcnt		__sk_common.skc_net_refcnt
381 #define sk_bound_dev_if		__sk_common.skc_bound_dev_if
382 #define sk_bind_node		__sk_common.skc_bind_node
383 #define sk_prot			__sk_common.skc_prot
384 #define sk_net			__sk_common.skc_net
385 #define sk_v6_daddr		__sk_common.skc_v6_daddr
386 #define sk_v6_rcv_saddr	__sk_common.skc_v6_rcv_saddr
387 #define sk_cookie		__sk_common.skc_cookie
388 #define sk_incoming_cpu		__sk_common.skc_incoming_cpu
389 #define sk_flags		__sk_common.skc_flags
390 #define sk_rxhash		__sk_common.skc_rxhash
391 
392 	/* early demux fields */
393 	struct dst_entry __rcu	*sk_rx_dst;
394 	int			sk_rx_dst_ifindex;
395 	u32			sk_rx_dst_cookie;
396 
397 	socket_lock_t		sk_lock;
398 	atomic_t		sk_drops;
399 	int			sk_rcvlowat;
400 	struct sk_buff_head	sk_error_queue;
401 	struct sk_buff_head	sk_receive_queue;
402 	/*
403 	 * The backlog queue is special, it is always used with
404 	 * the per-socket spinlock held and requires low latency
405 	 * access. Therefore we special case it's implementation.
406 	 * Note : rmem_alloc is in this structure to fill a hole
407 	 * on 64bit arches, not because its logically part of
408 	 * backlog.
409 	 */
410 	struct {
411 		atomic_t	rmem_alloc;
412 		int		len;
413 		struct sk_buff	*head;
414 		struct sk_buff	*tail;
415 	} sk_backlog;
416 
417 #define sk_rmem_alloc sk_backlog.rmem_alloc
418 
419 	int			sk_forward_alloc;
420 	u32			sk_reserved_mem;
421 #ifdef CONFIG_NET_RX_BUSY_POLL
422 	unsigned int		sk_ll_usec;
423 	/* ===== mostly read cache line ===== */
424 	unsigned int		sk_napi_id;
425 #endif
426 	int			sk_rcvbuf;
427 
428 	struct sk_filter __rcu	*sk_filter;
429 	union {
430 		struct socket_wq __rcu	*sk_wq;
431 		/* private: */
432 		struct socket_wq	*sk_wq_raw;
433 		/* public: */
434 	};
435 #ifdef CONFIG_XFRM
436 	struct xfrm_policy __rcu *sk_policy[2];
437 #endif
438 
439 	struct dst_entry __rcu	*sk_dst_cache;
440 	atomic_t		sk_omem_alloc;
441 	int			sk_sndbuf;
442 
443 	/* ===== cache line for TX ===== */
444 	int			sk_wmem_queued;
445 	refcount_t		sk_wmem_alloc;
446 	unsigned long		sk_tsq_flags;
447 	union {
448 		struct sk_buff	*sk_send_head;
449 		struct rb_root	tcp_rtx_queue;
450 	};
451 	struct sk_buff_head	sk_write_queue;
452 	__s32			sk_peek_off;
453 	int			sk_write_pending;
454 	__u32			sk_dst_pending_confirm;
455 	u32			sk_pacing_status; /* see enum sk_pacing */
456 	long			sk_sndtimeo;
457 	struct timer_list	sk_timer;
458 	__u32			sk_priority;
459 	__u32			sk_mark;
460 	unsigned long		sk_pacing_rate; /* bytes per second */
461 	unsigned long		sk_max_pacing_rate;
462 	struct page_frag	sk_frag;
463 	netdev_features_t	sk_route_caps;
464 	int			sk_gso_type;
465 	unsigned int		sk_gso_max_size;
466 	gfp_t			sk_allocation;
467 	__u32			sk_txhash;
468 
469 	/*
470 	 * Because of non atomicity rules, all
471 	 * changes are protected by socket lock.
472 	 */
473 	u8			sk_gso_disabled : 1,
474 				sk_kern_sock : 1,
475 				sk_no_check_tx : 1,
476 				sk_no_check_rx : 1,
477 				sk_userlocks : 4;
478 	u8			sk_pacing_shift;
479 	u16			sk_type;
480 	u16			sk_protocol;
481 	u16			sk_gso_max_segs;
482 	unsigned long	        sk_lingertime;
483 	struct proto		*sk_prot_creator;
484 	rwlock_t		sk_callback_lock;
485 	int			sk_err,
486 				sk_err_soft;
487 	u32			sk_ack_backlog;
488 	u32			sk_max_ack_backlog;
489 	kuid_t			sk_uid;
490 	u8			sk_txrehash;
491 #ifdef CONFIG_NET_RX_BUSY_POLL
492 	u8			sk_prefer_busy_poll;
493 	u16			sk_busy_poll_budget;
494 #endif
495 	spinlock_t		sk_peer_lock;
496 	int			sk_bind_phc;
497 	struct pid		*sk_peer_pid;
498 	const struct cred	*sk_peer_cred;
499 
500 	long			sk_rcvtimeo;
501 	ktime_t			sk_stamp;
502 #if BITS_PER_LONG==32
503 	seqlock_t		sk_stamp_seq;
504 #endif
505 	u16			sk_tsflags;
506 	u8			sk_shutdown;
507 	atomic_t		sk_tskey;
508 	atomic_t		sk_zckey;
509 
510 	u8			sk_clockid;
511 	u8			sk_txtime_deadline_mode : 1,
512 				sk_txtime_report_errors : 1,
513 				sk_txtime_unused : 6;
514 
515 	struct socket		*sk_socket;
516 	void			*sk_user_data;
517 #ifdef CONFIG_SECURITY
518 	void			*sk_security;
519 #endif
520 	struct sock_cgroup_data	sk_cgrp_data;
521 	struct mem_cgroup	*sk_memcg;
522 	void			(*sk_state_change)(struct sock *sk);
523 	void			(*sk_data_ready)(struct sock *sk);
524 	void			(*sk_write_space)(struct sock *sk);
525 	void			(*sk_error_report)(struct sock *sk);
526 	int			(*sk_backlog_rcv)(struct sock *sk,
527 						  struct sk_buff *skb);
528 #ifdef CONFIG_SOCK_VALIDATE_XMIT
529 	struct sk_buff*		(*sk_validate_xmit_skb)(struct sock *sk,
530 							struct net_device *dev,
531 							struct sk_buff *skb);
532 #endif
533 	void                    (*sk_destruct)(struct sock *sk);
534 	struct sock_reuseport __rcu	*sk_reuseport_cb;
535 #ifdef CONFIG_BPF_SYSCALL
536 	struct bpf_local_storage __rcu	*sk_bpf_storage;
537 #endif
538 	struct rcu_head		sk_rcu;
539 	netns_tracker		ns_tracker;
540 };
541 
542 enum sk_pacing {
543 	SK_PACING_NONE		= 0,
544 	SK_PACING_NEEDED	= 1,
545 	SK_PACING_FQ		= 2,
546 };
547 
548 /* flag bits in sk_user_data
549  *
550  * - SK_USER_DATA_NOCOPY:      Pointer stored in sk_user_data might
551  *   not be suitable for copying when cloning the socket. For instance,
552  *   it can point to a reference counted object. sk_user_data bottom
553  *   bit is set if pointer must not be copied.
554  *
555  * - SK_USER_DATA_BPF:         Mark whether sk_user_data field is
556  *   managed/owned by a BPF reuseport array. This bit should be set
557  *   when sk_user_data's sk is added to the bpf's reuseport_array.
558  *
559  * - SK_USER_DATA_PSOCK:       Mark whether pointer stored in
560  *   sk_user_data points to psock type. This bit should be set
561  *   when sk_user_data is assigned to a psock object.
562  */
563 #define SK_USER_DATA_NOCOPY	1UL
564 #define SK_USER_DATA_BPF	2UL
565 #define SK_USER_DATA_PSOCK	4UL
566 #define SK_USER_DATA_PTRMASK	~(SK_USER_DATA_NOCOPY | SK_USER_DATA_BPF |\
567 				  SK_USER_DATA_PSOCK)
568 
569 /**
570  * sk_user_data_is_nocopy - Test if sk_user_data pointer must not be copied
571  * @sk: socket
572  */
573 static inline bool sk_user_data_is_nocopy(const struct sock *sk)
574 {
575 	return ((uintptr_t)sk->sk_user_data & SK_USER_DATA_NOCOPY);
576 }
577 
578 #define __sk_user_data(sk) ((*((void __rcu **)&(sk)->sk_user_data)))
579 
580 /**
581  * __rcu_dereference_sk_user_data_with_flags - return the pointer
582  * only if argument flags all has been set in sk_user_data. Otherwise
583  * return NULL
584  *
585  * @sk: socket
586  * @flags: flag bits
587  */
588 static inline void *
589 __rcu_dereference_sk_user_data_with_flags(const struct sock *sk,
590 					  uintptr_t flags)
591 {
592 	uintptr_t sk_user_data = (uintptr_t)rcu_dereference(__sk_user_data(sk));
593 
594 	WARN_ON_ONCE(flags & SK_USER_DATA_PTRMASK);
595 
596 	if ((sk_user_data & flags) == flags)
597 		return (void *)(sk_user_data & SK_USER_DATA_PTRMASK);
598 	return NULL;
599 }
600 
601 #define rcu_dereference_sk_user_data(sk)				\
602 	__rcu_dereference_sk_user_data_with_flags(sk, 0)
603 #define __rcu_assign_sk_user_data_with_flags(sk, ptr, flags)		\
604 ({									\
605 	uintptr_t __tmp1 = (uintptr_t)(ptr),				\
606 		  __tmp2 = (uintptr_t)(flags);				\
607 	WARN_ON_ONCE(__tmp1 & ~SK_USER_DATA_PTRMASK);			\
608 	WARN_ON_ONCE(__tmp2 & SK_USER_DATA_PTRMASK);			\
609 	rcu_assign_pointer(__sk_user_data((sk)),			\
610 			   __tmp1 | __tmp2);				\
611 })
612 #define rcu_assign_sk_user_data(sk, ptr)				\
613 	__rcu_assign_sk_user_data_with_flags(sk, ptr, 0)
614 
615 static inline
616 struct net *sock_net(const struct sock *sk)
617 {
618 	return read_pnet(&sk->sk_net);
619 }
620 
621 static inline
622 void sock_net_set(struct sock *sk, struct net *net)
623 {
624 	write_pnet(&sk->sk_net, net);
625 }
626 
627 /*
628  * SK_CAN_REUSE and SK_NO_REUSE on a socket mean that the socket is OK
629  * or not whether his port will be reused by someone else. SK_FORCE_REUSE
630  * on a socket means that the socket will reuse everybody else's port
631  * without looking at the other's sk_reuse value.
632  */
633 
634 #define SK_NO_REUSE	0
635 #define SK_CAN_REUSE	1
636 #define SK_FORCE_REUSE	2
637 
638 int sk_set_peek_off(struct sock *sk, int val);
639 
640 static inline int sk_peek_offset(const struct sock *sk, int flags)
641 {
642 	if (unlikely(flags & MSG_PEEK)) {
643 		return READ_ONCE(sk->sk_peek_off);
644 	}
645 
646 	return 0;
647 }
648 
649 static inline void sk_peek_offset_bwd(struct sock *sk, int val)
650 {
651 	s32 off = READ_ONCE(sk->sk_peek_off);
652 
653 	if (unlikely(off >= 0)) {
654 		off = max_t(s32, off - val, 0);
655 		WRITE_ONCE(sk->sk_peek_off, off);
656 	}
657 }
658 
659 static inline void sk_peek_offset_fwd(struct sock *sk, int val)
660 {
661 	sk_peek_offset_bwd(sk, -val);
662 }
663 
664 /*
665  * Hashed lists helper routines
666  */
667 static inline struct sock *sk_entry(const struct hlist_node *node)
668 {
669 	return hlist_entry(node, struct sock, sk_node);
670 }
671 
672 static inline struct sock *__sk_head(const struct hlist_head *head)
673 {
674 	return hlist_entry(head->first, struct sock, sk_node);
675 }
676 
677 static inline struct sock *sk_head(const struct hlist_head *head)
678 {
679 	return hlist_empty(head) ? NULL : __sk_head(head);
680 }
681 
682 static inline struct sock *__sk_nulls_head(const struct hlist_nulls_head *head)
683 {
684 	return hlist_nulls_entry(head->first, struct sock, sk_nulls_node);
685 }
686 
687 static inline struct sock *sk_nulls_head(const struct hlist_nulls_head *head)
688 {
689 	return hlist_nulls_empty(head) ? NULL : __sk_nulls_head(head);
690 }
691 
692 static inline struct sock *sk_next(const struct sock *sk)
693 {
694 	return hlist_entry_safe(sk->sk_node.next, struct sock, sk_node);
695 }
696 
697 static inline struct sock *sk_nulls_next(const struct sock *sk)
698 {
699 	return (!is_a_nulls(sk->sk_nulls_node.next)) ?
700 		hlist_nulls_entry(sk->sk_nulls_node.next,
701 				  struct sock, sk_nulls_node) :
702 		NULL;
703 }
704 
705 static inline bool sk_unhashed(const struct sock *sk)
706 {
707 	return hlist_unhashed(&sk->sk_node);
708 }
709 
710 static inline bool sk_hashed(const struct sock *sk)
711 {
712 	return !sk_unhashed(sk);
713 }
714 
715 static inline void sk_node_init(struct hlist_node *node)
716 {
717 	node->pprev = NULL;
718 }
719 
720 static inline void sk_nulls_node_init(struct hlist_nulls_node *node)
721 {
722 	node->pprev = NULL;
723 }
724 
725 static inline void __sk_del_node(struct sock *sk)
726 {
727 	__hlist_del(&sk->sk_node);
728 }
729 
730 /* NB: equivalent to hlist_del_init_rcu */
731 static inline bool __sk_del_node_init(struct sock *sk)
732 {
733 	if (sk_hashed(sk)) {
734 		__sk_del_node(sk);
735 		sk_node_init(&sk->sk_node);
736 		return true;
737 	}
738 	return false;
739 }
740 
741 /* Grab socket reference count. This operation is valid only
742    when sk is ALREADY grabbed f.e. it is found in hash table
743    or a list and the lookup is made under lock preventing hash table
744    modifications.
745  */
746 
747 static __always_inline void sock_hold(struct sock *sk)
748 {
749 	refcount_inc(&sk->sk_refcnt);
750 }
751 
752 /* Ungrab socket in the context, which assumes that socket refcnt
753    cannot hit zero, f.e. it is true in context of any socketcall.
754  */
755 static __always_inline void __sock_put(struct sock *sk)
756 {
757 	refcount_dec(&sk->sk_refcnt);
758 }
759 
760 static inline bool sk_del_node_init(struct sock *sk)
761 {
762 	bool rc = __sk_del_node_init(sk);
763 
764 	if (rc) {
765 		/* paranoid for a while -acme */
766 		WARN_ON(refcount_read(&sk->sk_refcnt) == 1);
767 		__sock_put(sk);
768 	}
769 	return rc;
770 }
771 #define sk_del_node_init_rcu(sk)	sk_del_node_init(sk)
772 
773 static inline bool __sk_nulls_del_node_init_rcu(struct sock *sk)
774 {
775 	if (sk_hashed(sk)) {
776 		hlist_nulls_del_init_rcu(&sk->sk_nulls_node);
777 		return true;
778 	}
779 	return false;
780 }
781 
782 static inline bool sk_nulls_del_node_init_rcu(struct sock *sk)
783 {
784 	bool rc = __sk_nulls_del_node_init_rcu(sk);
785 
786 	if (rc) {
787 		/* paranoid for a while -acme */
788 		WARN_ON(refcount_read(&sk->sk_refcnt) == 1);
789 		__sock_put(sk);
790 	}
791 	return rc;
792 }
793 
794 static inline void __sk_add_node(struct sock *sk, struct hlist_head *list)
795 {
796 	hlist_add_head(&sk->sk_node, list);
797 }
798 
799 static inline void sk_add_node(struct sock *sk, struct hlist_head *list)
800 {
801 	sock_hold(sk);
802 	__sk_add_node(sk, list);
803 }
804 
805 static inline void sk_add_node_rcu(struct sock *sk, struct hlist_head *list)
806 {
807 	sock_hold(sk);
808 	if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport &&
809 	    sk->sk_family == AF_INET6)
810 		hlist_add_tail_rcu(&sk->sk_node, list);
811 	else
812 		hlist_add_head_rcu(&sk->sk_node, list);
813 }
814 
815 static inline void sk_add_node_tail_rcu(struct sock *sk, struct hlist_head *list)
816 {
817 	sock_hold(sk);
818 	hlist_add_tail_rcu(&sk->sk_node, list);
819 }
820 
821 static inline void __sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
822 {
823 	hlist_nulls_add_head_rcu(&sk->sk_nulls_node, list);
824 }
825 
826 static inline void __sk_nulls_add_node_tail_rcu(struct sock *sk, struct hlist_nulls_head *list)
827 {
828 	hlist_nulls_add_tail_rcu(&sk->sk_nulls_node, list);
829 }
830 
831 static inline void sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
832 {
833 	sock_hold(sk);
834 	__sk_nulls_add_node_rcu(sk, list);
835 }
836 
837 static inline void __sk_del_bind_node(struct sock *sk)
838 {
839 	__hlist_del(&sk->sk_bind_node);
840 }
841 
842 static inline void sk_add_bind_node(struct sock *sk,
843 					struct hlist_head *list)
844 {
845 	hlist_add_head(&sk->sk_bind_node, list);
846 }
847 
848 #define sk_for_each(__sk, list) \
849 	hlist_for_each_entry(__sk, list, sk_node)
850 #define sk_for_each_rcu(__sk, list) \
851 	hlist_for_each_entry_rcu(__sk, list, sk_node)
852 #define sk_nulls_for_each(__sk, node, list) \
853 	hlist_nulls_for_each_entry(__sk, node, list, sk_nulls_node)
854 #define sk_nulls_for_each_rcu(__sk, node, list) \
855 	hlist_nulls_for_each_entry_rcu(__sk, node, list, sk_nulls_node)
856 #define sk_for_each_from(__sk) \
857 	hlist_for_each_entry_from(__sk, sk_node)
858 #define sk_nulls_for_each_from(__sk, node) \
859 	if (__sk && ({ node = &(__sk)->sk_nulls_node; 1; })) \
860 		hlist_nulls_for_each_entry_from(__sk, node, sk_nulls_node)
861 #define sk_for_each_safe(__sk, tmp, list) \
862 	hlist_for_each_entry_safe(__sk, tmp, list, sk_node)
863 #define sk_for_each_bound(__sk, list) \
864 	hlist_for_each_entry(__sk, list, sk_bind_node)
865 
866 /**
867  * sk_for_each_entry_offset_rcu - iterate over a list at a given struct offset
868  * @tpos:	the type * to use as a loop cursor.
869  * @pos:	the &struct hlist_node to use as a loop cursor.
870  * @head:	the head for your list.
871  * @offset:	offset of hlist_node within the struct.
872  *
873  */
874 #define sk_for_each_entry_offset_rcu(tpos, pos, head, offset)		       \
875 	for (pos = rcu_dereference(hlist_first_rcu(head));		       \
876 	     pos != NULL &&						       \
877 		({ tpos = (typeof(*tpos) *)((void *)pos - offset); 1;});       \
878 	     pos = rcu_dereference(hlist_next_rcu(pos)))
879 
880 static inline struct user_namespace *sk_user_ns(const struct sock *sk)
881 {
882 	/* Careful only use this in a context where these parameters
883 	 * can not change and must all be valid, such as recvmsg from
884 	 * userspace.
885 	 */
886 	return sk->sk_socket->file->f_cred->user_ns;
887 }
888 
889 /* Sock flags */
890 enum sock_flags {
891 	SOCK_DEAD,
892 	SOCK_DONE,
893 	SOCK_URGINLINE,
894 	SOCK_KEEPOPEN,
895 	SOCK_LINGER,
896 	SOCK_DESTROY,
897 	SOCK_BROADCAST,
898 	SOCK_TIMESTAMP,
899 	SOCK_ZAPPED,
900 	SOCK_USE_WRITE_QUEUE, /* whether to call sk->sk_write_space in sock_wfree */
901 	SOCK_DBG, /* %SO_DEBUG setting */
902 	SOCK_RCVTSTAMP, /* %SO_TIMESTAMP setting */
903 	SOCK_RCVTSTAMPNS, /* %SO_TIMESTAMPNS setting */
904 	SOCK_LOCALROUTE, /* route locally only, %SO_DONTROUTE setting */
905 	SOCK_MEMALLOC, /* VM depends on this socket for swapping */
906 	SOCK_TIMESTAMPING_RX_SOFTWARE,  /* %SOF_TIMESTAMPING_RX_SOFTWARE */
907 	SOCK_FASYNC, /* fasync() active */
908 	SOCK_RXQ_OVFL,
909 	SOCK_ZEROCOPY, /* buffers from userspace */
910 	SOCK_WIFI_STATUS, /* push wifi status to userspace */
911 	SOCK_NOFCS, /* Tell NIC not to do the Ethernet FCS.
912 		     * Will use last 4 bytes of packet sent from
913 		     * user-space instead.
914 		     */
915 	SOCK_FILTER_LOCKED, /* Filter cannot be changed anymore */
916 	SOCK_SELECT_ERR_QUEUE, /* Wake select on error queue */
917 	SOCK_RCU_FREE, /* wait rcu grace period in sk_destruct() */
918 	SOCK_TXTIME,
919 	SOCK_XDP, /* XDP is attached */
920 	SOCK_TSTAMP_NEW, /* Indicates 64 bit timestamps always */
921 	SOCK_RCVMARK, /* Receive SO_MARK  ancillary data with packet */
922 };
923 
924 #define SK_FLAGS_TIMESTAMP ((1UL << SOCK_TIMESTAMP) | (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE))
925 
926 static inline void sock_copy_flags(struct sock *nsk, const struct sock *osk)
927 {
928 	nsk->sk_flags = osk->sk_flags;
929 }
930 
931 static inline void sock_set_flag(struct sock *sk, enum sock_flags flag)
932 {
933 	__set_bit(flag, &sk->sk_flags);
934 }
935 
936 static inline void sock_reset_flag(struct sock *sk, enum sock_flags flag)
937 {
938 	__clear_bit(flag, &sk->sk_flags);
939 }
940 
941 static inline void sock_valbool_flag(struct sock *sk, enum sock_flags bit,
942 				     int valbool)
943 {
944 	if (valbool)
945 		sock_set_flag(sk, bit);
946 	else
947 		sock_reset_flag(sk, bit);
948 }
949 
950 static inline bool sock_flag(const struct sock *sk, enum sock_flags flag)
951 {
952 	return test_bit(flag, &sk->sk_flags);
953 }
954 
955 #ifdef CONFIG_NET
956 DECLARE_STATIC_KEY_FALSE(memalloc_socks_key);
957 static inline int sk_memalloc_socks(void)
958 {
959 	return static_branch_unlikely(&memalloc_socks_key);
960 }
961 
962 void __receive_sock(struct file *file);
963 #else
964 
965 static inline int sk_memalloc_socks(void)
966 {
967 	return 0;
968 }
969 
970 static inline void __receive_sock(struct file *file)
971 { }
972 #endif
973 
974 static inline gfp_t sk_gfp_mask(const struct sock *sk, gfp_t gfp_mask)
975 {
976 	return gfp_mask | (sk->sk_allocation & __GFP_MEMALLOC);
977 }
978 
979 static inline void sk_acceptq_removed(struct sock *sk)
980 {
981 	WRITE_ONCE(sk->sk_ack_backlog, sk->sk_ack_backlog - 1);
982 }
983 
984 static inline void sk_acceptq_added(struct sock *sk)
985 {
986 	WRITE_ONCE(sk->sk_ack_backlog, sk->sk_ack_backlog + 1);
987 }
988 
989 /* Note: If you think the test should be:
990  *	return READ_ONCE(sk->sk_ack_backlog) >= READ_ONCE(sk->sk_max_ack_backlog);
991  * Then please take a look at commit 64a146513f8f ("[NET]: Revert incorrect accept queue backlog changes.")
992  */
993 static inline bool sk_acceptq_is_full(const struct sock *sk)
994 {
995 	return READ_ONCE(sk->sk_ack_backlog) > READ_ONCE(sk->sk_max_ack_backlog);
996 }
997 
998 /*
999  * Compute minimal free write space needed to queue new packets.
1000  */
1001 static inline int sk_stream_min_wspace(const struct sock *sk)
1002 {
1003 	return READ_ONCE(sk->sk_wmem_queued) >> 1;
1004 }
1005 
1006 static inline int sk_stream_wspace(const struct sock *sk)
1007 {
1008 	return READ_ONCE(sk->sk_sndbuf) - READ_ONCE(sk->sk_wmem_queued);
1009 }
1010 
1011 static inline void sk_wmem_queued_add(struct sock *sk, int val)
1012 {
1013 	WRITE_ONCE(sk->sk_wmem_queued, sk->sk_wmem_queued + val);
1014 }
1015 
1016 void sk_stream_write_space(struct sock *sk);
1017 
1018 /* OOB backlog add */
1019 static inline void __sk_add_backlog(struct sock *sk, struct sk_buff *skb)
1020 {
1021 	/* dont let skb dst not refcounted, we are going to leave rcu lock */
1022 	skb_dst_force(skb);
1023 
1024 	if (!sk->sk_backlog.tail)
1025 		WRITE_ONCE(sk->sk_backlog.head, skb);
1026 	else
1027 		sk->sk_backlog.tail->next = skb;
1028 
1029 	WRITE_ONCE(sk->sk_backlog.tail, skb);
1030 	skb->next = NULL;
1031 }
1032 
1033 /*
1034  * Take into account size of receive queue and backlog queue
1035  * Do not take into account this skb truesize,
1036  * to allow even a single big packet to come.
1037  */
1038 static inline bool sk_rcvqueues_full(const struct sock *sk, unsigned int limit)
1039 {
1040 	unsigned int qsize = sk->sk_backlog.len + atomic_read(&sk->sk_rmem_alloc);
1041 
1042 	return qsize > limit;
1043 }
1044 
1045 /* The per-socket spinlock must be held here. */
1046 static inline __must_check int sk_add_backlog(struct sock *sk, struct sk_buff *skb,
1047 					      unsigned int limit)
1048 {
1049 	if (sk_rcvqueues_full(sk, limit))
1050 		return -ENOBUFS;
1051 
1052 	/*
1053 	 * If the skb was allocated from pfmemalloc reserves, only
1054 	 * allow SOCK_MEMALLOC sockets to use it as this socket is
1055 	 * helping free memory
1056 	 */
1057 	if (skb_pfmemalloc(skb) && !sock_flag(sk, SOCK_MEMALLOC))
1058 		return -ENOMEM;
1059 
1060 	__sk_add_backlog(sk, skb);
1061 	sk->sk_backlog.len += skb->truesize;
1062 	return 0;
1063 }
1064 
1065 int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb);
1066 
1067 INDIRECT_CALLABLE_DECLARE(int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb));
1068 INDIRECT_CALLABLE_DECLARE(int tcp_v6_do_rcv(struct sock *sk, struct sk_buff *skb));
1069 
1070 static inline int sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
1071 {
1072 	if (sk_memalloc_socks() && skb_pfmemalloc(skb))
1073 		return __sk_backlog_rcv(sk, skb);
1074 
1075 	return INDIRECT_CALL_INET(sk->sk_backlog_rcv,
1076 				  tcp_v6_do_rcv,
1077 				  tcp_v4_do_rcv,
1078 				  sk, skb);
1079 }
1080 
1081 static inline void sk_incoming_cpu_update(struct sock *sk)
1082 {
1083 	int cpu = raw_smp_processor_id();
1084 
1085 	if (unlikely(READ_ONCE(sk->sk_incoming_cpu) != cpu))
1086 		WRITE_ONCE(sk->sk_incoming_cpu, cpu);
1087 }
1088 
1089 static inline void sock_rps_record_flow_hash(__u32 hash)
1090 {
1091 #ifdef CONFIG_RPS
1092 	struct rps_sock_flow_table *sock_flow_table;
1093 
1094 	rcu_read_lock();
1095 	sock_flow_table = rcu_dereference(rps_sock_flow_table);
1096 	rps_record_sock_flow(sock_flow_table, hash);
1097 	rcu_read_unlock();
1098 #endif
1099 }
1100 
1101 static inline void sock_rps_record_flow(const struct sock *sk)
1102 {
1103 #ifdef CONFIG_RPS
1104 	if (static_branch_unlikely(&rfs_needed)) {
1105 		/* Reading sk->sk_rxhash might incur an expensive cache line
1106 		 * miss.
1107 		 *
1108 		 * TCP_ESTABLISHED does cover almost all states where RFS
1109 		 * might be useful, and is cheaper [1] than testing :
1110 		 *	IPv4: inet_sk(sk)->inet_daddr
1111 		 * 	IPv6: ipv6_addr_any(&sk->sk_v6_daddr)
1112 		 * OR	an additional socket flag
1113 		 * [1] : sk_state and sk_prot are in the same cache line.
1114 		 */
1115 		if (sk->sk_state == TCP_ESTABLISHED)
1116 			sock_rps_record_flow_hash(sk->sk_rxhash);
1117 	}
1118 #endif
1119 }
1120 
1121 static inline void sock_rps_save_rxhash(struct sock *sk,
1122 					const struct sk_buff *skb)
1123 {
1124 #ifdef CONFIG_RPS
1125 	if (unlikely(sk->sk_rxhash != skb->hash))
1126 		sk->sk_rxhash = skb->hash;
1127 #endif
1128 }
1129 
1130 static inline void sock_rps_reset_rxhash(struct sock *sk)
1131 {
1132 #ifdef CONFIG_RPS
1133 	sk->sk_rxhash = 0;
1134 #endif
1135 }
1136 
1137 #define sk_wait_event(__sk, __timeo, __condition, __wait)		\
1138 	({	int __rc;						\
1139 		release_sock(__sk);					\
1140 		__rc = __condition;					\
1141 		if (!__rc) {						\
1142 			*(__timeo) = wait_woken(__wait,			\
1143 						TASK_INTERRUPTIBLE,	\
1144 						*(__timeo));		\
1145 		}							\
1146 		sched_annotate_sleep();					\
1147 		lock_sock(__sk);					\
1148 		__rc = __condition;					\
1149 		__rc;							\
1150 	})
1151 
1152 int sk_stream_wait_connect(struct sock *sk, long *timeo_p);
1153 int sk_stream_wait_memory(struct sock *sk, long *timeo_p);
1154 void sk_stream_wait_close(struct sock *sk, long timeo_p);
1155 int sk_stream_error(struct sock *sk, int flags, int err);
1156 void sk_stream_kill_queues(struct sock *sk);
1157 void sk_set_memalloc(struct sock *sk);
1158 void sk_clear_memalloc(struct sock *sk);
1159 
1160 void __sk_flush_backlog(struct sock *sk);
1161 
1162 static inline bool sk_flush_backlog(struct sock *sk)
1163 {
1164 	if (unlikely(READ_ONCE(sk->sk_backlog.tail))) {
1165 		__sk_flush_backlog(sk);
1166 		return true;
1167 	}
1168 	return false;
1169 }
1170 
1171 int sk_wait_data(struct sock *sk, long *timeo, const struct sk_buff *skb);
1172 
1173 struct request_sock_ops;
1174 struct timewait_sock_ops;
1175 struct inet_hashinfo;
1176 struct raw_hashinfo;
1177 struct smc_hashinfo;
1178 struct module;
1179 struct sk_psock;
1180 
1181 /*
1182  * caches using SLAB_TYPESAFE_BY_RCU should let .next pointer from nulls nodes
1183  * un-modified. Special care is taken when initializing object to zero.
1184  */
1185 static inline void sk_prot_clear_nulls(struct sock *sk, int size)
1186 {
1187 	if (offsetof(struct sock, sk_node.next) != 0)
1188 		memset(sk, 0, offsetof(struct sock, sk_node.next));
1189 	memset(&sk->sk_node.pprev, 0,
1190 	       size - offsetof(struct sock, sk_node.pprev));
1191 }
1192 
1193 /* Networking protocol blocks we attach to sockets.
1194  * socket layer -> transport layer interface
1195  */
1196 struct proto {
1197 	void			(*close)(struct sock *sk,
1198 					long timeout);
1199 	int			(*pre_connect)(struct sock *sk,
1200 					struct sockaddr *uaddr,
1201 					int addr_len);
1202 	int			(*connect)(struct sock *sk,
1203 					struct sockaddr *uaddr,
1204 					int addr_len);
1205 	int			(*disconnect)(struct sock *sk, int flags);
1206 
1207 	struct sock *		(*accept)(struct sock *sk, int flags, int *err,
1208 					  bool kern);
1209 
1210 	int			(*ioctl)(struct sock *sk, int cmd,
1211 					 unsigned long arg);
1212 	int			(*init)(struct sock *sk);
1213 	void			(*destroy)(struct sock *sk);
1214 	void			(*shutdown)(struct sock *sk, int how);
1215 	int			(*setsockopt)(struct sock *sk, int level,
1216 					int optname, sockptr_t optval,
1217 					unsigned int optlen);
1218 	int			(*getsockopt)(struct sock *sk, int level,
1219 					int optname, char __user *optval,
1220 					int __user *option);
1221 	void			(*keepalive)(struct sock *sk, int valbool);
1222 #ifdef CONFIG_COMPAT
1223 	int			(*compat_ioctl)(struct sock *sk,
1224 					unsigned int cmd, unsigned long arg);
1225 #endif
1226 	int			(*sendmsg)(struct sock *sk, struct msghdr *msg,
1227 					   size_t len);
1228 	int			(*recvmsg)(struct sock *sk, struct msghdr *msg,
1229 					   size_t len, int flags, int *addr_len);
1230 	int			(*sendpage)(struct sock *sk, struct page *page,
1231 					int offset, size_t size, int flags);
1232 	int			(*bind)(struct sock *sk,
1233 					struct sockaddr *addr, int addr_len);
1234 	int			(*bind_add)(struct sock *sk,
1235 					struct sockaddr *addr, int addr_len);
1236 
1237 	int			(*backlog_rcv) (struct sock *sk,
1238 						struct sk_buff *skb);
1239 	bool			(*bpf_bypass_getsockopt)(int level,
1240 							 int optname);
1241 
1242 	void		(*release_cb)(struct sock *sk);
1243 
1244 	/* Keeping track of sk's, looking them up, and port selection methods. */
1245 	int			(*hash)(struct sock *sk);
1246 	void			(*unhash)(struct sock *sk);
1247 	void			(*rehash)(struct sock *sk);
1248 	int			(*get_port)(struct sock *sk, unsigned short snum);
1249 	void			(*put_port)(struct sock *sk);
1250 #ifdef CONFIG_BPF_SYSCALL
1251 	int			(*psock_update_sk_prot)(struct sock *sk,
1252 							struct sk_psock *psock,
1253 							bool restore);
1254 #endif
1255 
1256 	/* Keeping track of sockets in use */
1257 #ifdef CONFIG_PROC_FS
1258 	unsigned int		inuse_idx;
1259 #endif
1260 
1261 #if IS_ENABLED(CONFIG_MPTCP)
1262 	int			(*forward_alloc_get)(const struct sock *sk);
1263 #endif
1264 
1265 	bool			(*stream_memory_free)(const struct sock *sk, int wake);
1266 	bool			(*sock_is_readable)(struct sock *sk);
1267 	/* Memory pressure */
1268 	void			(*enter_memory_pressure)(struct sock *sk);
1269 	void			(*leave_memory_pressure)(struct sock *sk);
1270 	atomic_long_t		*memory_allocated;	/* Current allocated memory. */
1271 	int  __percpu		*per_cpu_fw_alloc;
1272 	struct percpu_counter	*sockets_allocated;	/* Current number of sockets. */
1273 
1274 	/*
1275 	 * Pressure flag: try to collapse.
1276 	 * Technical note: it is used by multiple contexts non atomically.
1277 	 * All the __sk_mem_schedule() is of this nature: accounting
1278 	 * is strict, actions are advisory and have some latency.
1279 	 */
1280 	unsigned long		*memory_pressure;
1281 	long			*sysctl_mem;
1282 
1283 	int			*sysctl_wmem;
1284 	int			*sysctl_rmem;
1285 	u32			sysctl_wmem_offset;
1286 	u32			sysctl_rmem_offset;
1287 
1288 	int			max_header;
1289 	bool			no_autobind;
1290 
1291 	struct kmem_cache	*slab;
1292 	unsigned int		obj_size;
1293 	slab_flags_t		slab_flags;
1294 	unsigned int		useroffset;	/* Usercopy region offset */
1295 	unsigned int		usersize;	/* Usercopy region size */
1296 
1297 	unsigned int __percpu	*orphan_count;
1298 
1299 	struct request_sock_ops	*rsk_prot;
1300 	struct timewait_sock_ops *twsk_prot;
1301 
1302 	union {
1303 		struct inet_hashinfo	*hashinfo;
1304 		struct udp_table	*udp_table;
1305 		struct raw_hashinfo	*raw_hash;
1306 		struct smc_hashinfo	*smc_hash;
1307 	} h;
1308 
1309 	struct module		*owner;
1310 
1311 	char			name[32];
1312 
1313 	struct list_head	node;
1314 #ifdef SOCK_REFCNT_DEBUG
1315 	atomic_t		socks;
1316 #endif
1317 	int			(*diag_destroy)(struct sock *sk, int err);
1318 } __randomize_layout;
1319 
1320 int proto_register(struct proto *prot, int alloc_slab);
1321 void proto_unregister(struct proto *prot);
1322 int sock_load_diag_module(int family, int protocol);
1323 
1324 #ifdef SOCK_REFCNT_DEBUG
1325 static inline void sk_refcnt_debug_inc(struct sock *sk)
1326 {
1327 	atomic_inc(&sk->sk_prot->socks);
1328 }
1329 
1330 static inline void sk_refcnt_debug_dec(struct sock *sk)
1331 {
1332 	atomic_dec(&sk->sk_prot->socks);
1333 	printk(KERN_DEBUG "%s socket %p released, %d are still alive\n",
1334 	       sk->sk_prot->name, sk, atomic_read(&sk->sk_prot->socks));
1335 }
1336 
1337 static inline void sk_refcnt_debug_release(const struct sock *sk)
1338 {
1339 	if (refcount_read(&sk->sk_refcnt) != 1)
1340 		printk(KERN_DEBUG "Destruction of the %s socket %p delayed, refcnt=%d\n",
1341 		       sk->sk_prot->name, sk, refcount_read(&sk->sk_refcnt));
1342 }
1343 #else /* SOCK_REFCNT_DEBUG */
1344 #define sk_refcnt_debug_inc(sk) do { } while (0)
1345 #define sk_refcnt_debug_dec(sk) do { } while (0)
1346 #define sk_refcnt_debug_release(sk) do { } while (0)
1347 #endif /* SOCK_REFCNT_DEBUG */
1348 
1349 INDIRECT_CALLABLE_DECLARE(bool tcp_stream_memory_free(const struct sock *sk, int wake));
1350 
1351 static inline int sk_forward_alloc_get(const struct sock *sk)
1352 {
1353 #if IS_ENABLED(CONFIG_MPTCP)
1354 	if (sk->sk_prot->forward_alloc_get)
1355 		return sk->sk_prot->forward_alloc_get(sk);
1356 #endif
1357 	return sk->sk_forward_alloc;
1358 }
1359 
1360 static inline bool __sk_stream_memory_free(const struct sock *sk, int wake)
1361 {
1362 	if (READ_ONCE(sk->sk_wmem_queued) >= READ_ONCE(sk->sk_sndbuf))
1363 		return false;
1364 
1365 	return sk->sk_prot->stream_memory_free ?
1366 		INDIRECT_CALL_INET_1(sk->sk_prot->stream_memory_free,
1367 				     tcp_stream_memory_free, sk, wake) : true;
1368 }
1369 
1370 static inline bool sk_stream_memory_free(const struct sock *sk)
1371 {
1372 	return __sk_stream_memory_free(sk, 0);
1373 }
1374 
1375 static inline bool __sk_stream_is_writeable(const struct sock *sk, int wake)
1376 {
1377 	return sk_stream_wspace(sk) >= sk_stream_min_wspace(sk) &&
1378 	       __sk_stream_memory_free(sk, wake);
1379 }
1380 
1381 static inline bool sk_stream_is_writeable(const struct sock *sk)
1382 {
1383 	return __sk_stream_is_writeable(sk, 0);
1384 }
1385 
1386 static inline int sk_under_cgroup_hierarchy(struct sock *sk,
1387 					    struct cgroup *ancestor)
1388 {
1389 #ifdef CONFIG_SOCK_CGROUP_DATA
1390 	return cgroup_is_descendant(sock_cgroup_ptr(&sk->sk_cgrp_data),
1391 				    ancestor);
1392 #else
1393 	return -ENOTSUPP;
1394 #endif
1395 }
1396 
1397 static inline bool sk_has_memory_pressure(const struct sock *sk)
1398 {
1399 	return sk->sk_prot->memory_pressure != NULL;
1400 }
1401 
1402 static inline bool sk_under_memory_pressure(const struct sock *sk)
1403 {
1404 	if (!sk->sk_prot->memory_pressure)
1405 		return false;
1406 
1407 	if (mem_cgroup_sockets_enabled && sk->sk_memcg &&
1408 	    mem_cgroup_under_socket_pressure(sk->sk_memcg))
1409 		return true;
1410 
1411 	return !!*sk->sk_prot->memory_pressure;
1412 }
1413 
1414 static inline long
1415 proto_memory_allocated(const struct proto *prot)
1416 {
1417 	return max(0L, atomic_long_read(prot->memory_allocated));
1418 }
1419 
1420 static inline long
1421 sk_memory_allocated(const struct sock *sk)
1422 {
1423 	return proto_memory_allocated(sk->sk_prot);
1424 }
1425 
1426 /* 1 MB per cpu, in page units */
1427 #define SK_MEMORY_PCPU_RESERVE (1 << (20 - PAGE_SHIFT))
1428 
1429 static inline void
1430 sk_memory_allocated_add(struct sock *sk, int amt)
1431 {
1432 	int local_reserve;
1433 
1434 	preempt_disable();
1435 	local_reserve = __this_cpu_add_return(*sk->sk_prot->per_cpu_fw_alloc, amt);
1436 	if (local_reserve >= SK_MEMORY_PCPU_RESERVE) {
1437 		__this_cpu_sub(*sk->sk_prot->per_cpu_fw_alloc, local_reserve);
1438 		atomic_long_add(local_reserve, sk->sk_prot->memory_allocated);
1439 	}
1440 	preempt_enable();
1441 }
1442 
1443 static inline void
1444 sk_memory_allocated_sub(struct sock *sk, int amt)
1445 {
1446 	int local_reserve;
1447 
1448 	preempt_disable();
1449 	local_reserve = __this_cpu_sub_return(*sk->sk_prot->per_cpu_fw_alloc, amt);
1450 	if (local_reserve <= -SK_MEMORY_PCPU_RESERVE) {
1451 		__this_cpu_sub(*sk->sk_prot->per_cpu_fw_alloc, local_reserve);
1452 		atomic_long_add(local_reserve, sk->sk_prot->memory_allocated);
1453 	}
1454 	preempt_enable();
1455 }
1456 
1457 #define SK_ALLOC_PERCPU_COUNTER_BATCH 16
1458 
1459 static inline void sk_sockets_allocated_dec(struct sock *sk)
1460 {
1461 	percpu_counter_add_batch(sk->sk_prot->sockets_allocated, -1,
1462 				 SK_ALLOC_PERCPU_COUNTER_BATCH);
1463 }
1464 
1465 static inline void sk_sockets_allocated_inc(struct sock *sk)
1466 {
1467 	percpu_counter_add_batch(sk->sk_prot->sockets_allocated, 1,
1468 				 SK_ALLOC_PERCPU_COUNTER_BATCH);
1469 }
1470 
1471 static inline u64
1472 sk_sockets_allocated_read_positive(struct sock *sk)
1473 {
1474 	return percpu_counter_read_positive(sk->sk_prot->sockets_allocated);
1475 }
1476 
1477 static inline int
1478 proto_sockets_allocated_sum_positive(struct proto *prot)
1479 {
1480 	return percpu_counter_sum_positive(prot->sockets_allocated);
1481 }
1482 
1483 static inline bool
1484 proto_memory_pressure(struct proto *prot)
1485 {
1486 	if (!prot->memory_pressure)
1487 		return false;
1488 	return !!*prot->memory_pressure;
1489 }
1490 
1491 
1492 #ifdef CONFIG_PROC_FS
1493 #define PROTO_INUSE_NR	64	/* should be enough for the first time */
1494 struct prot_inuse {
1495 	int all;
1496 	int val[PROTO_INUSE_NR];
1497 };
1498 
1499 static inline void sock_prot_inuse_add(const struct net *net,
1500 				       const struct proto *prot, int val)
1501 {
1502 	this_cpu_add(net->core.prot_inuse->val[prot->inuse_idx], val);
1503 }
1504 
1505 static inline void sock_inuse_add(const struct net *net, int val)
1506 {
1507 	this_cpu_add(net->core.prot_inuse->all, val);
1508 }
1509 
1510 int sock_prot_inuse_get(struct net *net, struct proto *proto);
1511 int sock_inuse_get(struct net *net);
1512 #else
1513 static inline void sock_prot_inuse_add(const struct net *net,
1514 				       const struct proto *prot, int val)
1515 {
1516 }
1517 
1518 static inline void sock_inuse_add(const struct net *net, int val)
1519 {
1520 }
1521 #endif
1522 
1523 
1524 /* With per-bucket locks this operation is not-atomic, so that
1525  * this version is not worse.
1526  */
1527 static inline int __sk_prot_rehash(struct sock *sk)
1528 {
1529 	sk->sk_prot->unhash(sk);
1530 	return sk->sk_prot->hash(sk);
1531 }
1532 
1533 /* About 10 seconds */
1534 #define SOCK_DESTROY_TIME (10*HZ)
1535 
1536 /* Sockets 0-1023 can't be bound to unless you are superuser */
1537 #define PROT_SOCK	1024
1538 
1539 #define SHUTDOWN_MASK	3
1540 #define RCV_SHUTDOWN	1
1541 #define SEND_SHUTDOWN	2
1542 
1543 #define SOCK_BINDADDR_LOCK	4
1544 #define SOCK_BINDPORT_LOCK	8
1545 
1546 struct socket_alloc {
1547 	struct socket socket;
1548 	struct inode vfs_inode;
1549 };
1550 
1551 static inline struct socket *SOCKET_I(struct inode *inode)
1552 {
1553 	return &container_of(inode, struct socket_alloc, vfs_inode)->socket;
1554 }
1555 
1556 static inline struct inode *SOCK_INODE(struct socket *socket)
1557 {
1558 	return &container_of(socket, struct socket_alloc, socket)->vfs_inode;
1559 }
1560 
1561 /*
1562  * Functions for memory accounting
1563  */
1564 int __sk_mem_raise_allocated(struct sock *sk, int size, int amt, int kind);
1565 int __sk_mem_schedule(struct sock *sk, int size, int kind);
1566 void __sk_mem_reduce_allocated(struct sock *sk, int amount);
1567 void __sk_mem_reclaim(struct sock *sk, int amount);
1568 
1569 #define SK_MEM_SEND	0
1570 #define SK_MEM_RECV	1
1571 
1572 /* sysctl_mem values are in pages */
1573 static inline long sk_prot_mem_limits(const struct sock *sk, int index)
1574 {
1575 	return READ_ONCE(sk->sk_prot->sysctl_mem[index]);
1576 }
1577 
1578 static inline int sk_mem_pages(int amt)
1579 {
1580 	return (amt + PAGE_SIZE - 1) >> PAGE_SHIFT;
1581 }
1582 
1583 static inline bool sk_has_account(struct sock *sk)
1584 {
1585 	/* return true if protocol supports memory accounting */
1586 	return !!sk->sk_prot->memory_allocated;
1587 }
1588 
1589 static inline bool sk_wmem_schedule(struct sock *sk, int size)
1590 {
1591 	int delta;
1592 
1593 	if (!sk_has_account(sk))
1594 		return true;
1595 	delta = size - sk->sk_forward_alloc;
1596 	return delta <= 0 || __sk_mem_schedule(sk, delta, SK_MEM_SEND);
1597 }
1598 
1599 static inline bool
1600 sk_rmem_schedule(struct sock *sk, struct sk_buff *skb, int size)
1601 {
1602 	int delta;
1603 
1604 	if (!sk_has_account(sk))
1605 		return true;
1606 	delta = size - sk->sk_forward_alloc;
1607 	return delta <= 0 || __sk_mem_schedule(sk, delta, SK_MEM_RECV) ||
1608 		skb_pfmemalloc(skb);
1609 }
1610 
1611 static inline int sk_unused_reserved_mem(const struct sock *sk)
1612 {
1613 	int unused_mem;
1614 
1615 	if (likely(!sk->sk_reserved_mem))
1616 		return 0;
1617 
1618 	unused_mem = sk->sk_reserved_mem - sk->sk_wmem_queued -
1619 			atomic_read(&sk->sk_rmem_alloc);
1620 
1621 	return unused_mem > 0 ? unused_mem : 0;
1622 }
1623 
1624 static inline void sk_mem_reclaim(struct sock *sk)
1625 {
1626 	int reclaimable;
1627 
1628 	if (!sk_has_account(sk))
1629 		return;
1630 
1631 	reclaimable = sk->sk_forward_alloc - sk_unused_reserved_mem(sk);
1632 
1633 	if (reclaimable >= (int)PAGE_SIZE)
1634 		__sk_mem_reclaim(sk, reclaimable);
1635 }
1636 
1637 static inline void sk_mem_reclaim_final(struct sock *sk)
1638 {
1639 	sk->sk_reserved_mem = 0;
1640 	sk_mem_reclaim(sk);
1641 }
1642 
1643 static inline void sk_mem_charge(struct sock *sk, int size)
1644 {
1645 	if (!sk_has_account(sk))
1646 		return;
1647 	sk->sk_forward_alloc -= size;
1648 }
1649 
1650 static inline void sk_mem_uncharge(struct sock *sk, int size)
1651 {
1652 	if (!sk_has_account(sk))
1653 		return;
1654 	sk->sk_forward_alloc += size;
1655 	sk_mem_reclaim(sk);
1656 }
1657 
1658 /*
1659  * Macro so as to not evaluate some arguments when
1660  * lockdep is not enabled.
1661  *
1662  * Mark both the sk_lock and the sk_lock.slock as a
1663  * per-address-family lock class.
1664  */
1665 #define sock_lock_init_class_and_name(sk, sname, skey, name, key)	\
1666 do {									\
1667 	sk->sk_lock.owned = 0;						\
1668 	init_waitqueue_head(&sk->sk_lock.wq);				\
1669 	spin_lock_init(&(sk)->sk_lock.slock);				\
1670 	debug_check_no_locks_freed((void *)&(sk)->sk_lock,		\
1671 			sizeof((sk)->sk_lock));				\
1672 	lockdep_set_class_and_name(&(sk)->sk_lock.slock,		\
1673 				(skey), (sname));				\
1674 	lockdep_init_map(&(sk)->sk_lock.dep_map, (name), (key), 0);	\
1675 } while (0)
1676 
1677 static inline bool lockdep_sock_is_held(const struct sock *sk)
1678 {
1679 	return lockdep_is_held(&sk->sk_lock) ||
1680 	       lockdep_is_held(&sk->sk_lock.slock);
1681 }
1682 
1683 void lock_sock_nested(struct sock *sk, int subclass);
1684 
1685 static inline void lock_sock(struct sock *sk)
1686 {
1687 	lock_sock_nested(sk, 0);
1688 }
1689 
1690 void __lock_sock(struct sock *sk);
1691 void __release_sock(struct sock *sk);
1692 void release_sock(struct sock *sk);
1693 
1694 /* BH context may only use the following locking interface. */
1695 #define bh_lock_sock(__sk)	spin_lock(&((__sk)->sk_lock.slock))
1696 #define bh_lock_sock_nested(__sk) \
1697 				spin_lock_nested(&((__sk)->sk_lock.slock), \
1698 				SINGLE_DEPTH_NESTING)
1699 #define bh_unlock_sock(__sk)	spin_unlock(&((__sk)->sk_lock.slock))
1700 
1701 bool __lock_sock_fast(struct sock *sk) __acquires(&sk->sk_lock.slock);
1702 
1703 /**
1704  * lock_sock_fast - fast version of lock_sock
1705  * @sk: socket
1706  *
1707  * This version should be used for very small section, where process wont block
1708  * return false if fast path is taken:
1709  *
1710  *   sk_lock.slock locked, owned = 0, BH disabled
1711  *
1712  * return true if slow path is taken:
1713  *
1714  *   sk_lock.slock unlocked, owned = 1, BH enabled
1715  */
1716 static inline bool lock_sock_fast(struct sock *sk)
1717 {
1718 	/* The sk_lock has mutex_lock() semantics here. */
1719 	mutex_acquire(&sk->sk_lock.dep_map, 0, 0, _RET_IP_);
1720 
1721 	return __lock_sock_fast(sk);
1722 }
1723 
1724 /* fast socket lock variant for caller already holding a [different] socket lock */
1725 static inline bool lock_sock_fast_nested(struct sock *sk)
1726 {
1727 	mutex_acquire(&sk->sk_lock.dep_map, SINGLE_DEPTH_NESTING, 0, _RET_IP_);
1728 
1729 	return __lock_sock_fast(sk);
1730 }
1731 
1732 /**
1733  * unlock_sock_fast - complement of lock_sock_fast
1734  * @sk: socket
1735  * @slow: slow mode
1736  *
1737  * fast unlock socket for user context.
1738  * If slow mode is on, we call regular release_sock()
1739  */
1740 static inline void unlock_sock_fast(struct sock *sk, bool slow)
1741 	__releases(&sk->sk_lock.slock)
1742 {
1743 	if (slow) {
1744 		release_sock(sk);
1745 		__release(&sk->sk_lock.slock);
1746 	} else {
1747 		mutex_release(&sk->sk_lock.dep_map, _RET_IP_);
1748 		spin_unlock_bh(&sk->sk_lock.slock);
1749 	}
1750 }
1751 
1752 void sockopt_lock_sock(struct sock *sk);
1753 void sockopt_release_sock(struct sock *sk);
1754 bool sockopt_ns_capable(struct user_namespace *ns, int cap);
1755 bool sockopt_capable(int cap);
1756 
1757 /* Used by processes to "lock" a socket state, so that
1758  * interrupts and bottom half handlers won't change it
1759  * from under us. It essentially blocks any incoming
1760  * packets, so that we won't get any new data or any
1761  * packets that change the state of the socket.
1762  *
1763  * While locked, BH processing will add new packets to
1764  * the backlog queue.  This queue is processed by the
1765  * owner of the socket lock right before it is released.
1766  *
1767  * Since ~2.3.5 it is also exclusive sleep lock serializing
1768  * accesses from user process context.
1769  */
1770 
1771 static inline void sock_owned_by_me(const struct sock *sk)
1772 {
1773 #ifdef CONFIG_LOCKDEP
1774 	WARN_ON_ONCE(!lockdep_sock_is_held(sk) && debug_locks);
1775 #endif
1776 }
1777 
1778 static inline bool sock_owned_by_user(const struct sock *sk)
1779 {
1780 	sock_owned_by_me(sk);
1781 	return sk->sk_lock.owned;
1782 }
1783 
1784 static inline bool sock_owned_by_user_nocheck(const struct sock *sk)
1785 {
1786 	return sk->sk_lock.owned;
1787 }
1788 
1789 static inline void sock_release_ownership(struct sock *sk)
1790 {
1791 	if (sock_owned_by_user_nocheck(sk)) {
1792 		sk->sk_lock.owned = 0;
1793 
1794 		/* The sk_lock has mutex_unlock() semantics: */
1795 		mutex_release(&sk->sk_lock.dep_map, _RET_IP_);
1796 	}
1797 }
1798 
1799 /* no reclassification while locks are held */
1800 static inline bool sock_allow_reclassification(const struct sock *csk)
1801 {
1802 	struct sock *sk = (struct sock *)csk;
1803 
1804 	return !sock_owned_by_user_nocheck(sk) &&
1805 		!spin_is_locked(&sk->sk_lock.slock);
1806 }
1807 
1808 struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
1809 		      struct proto *prot, int kern);
1810 void sk_free(struct sock *sk);
1811 void sk_destruct(struct sock *sk);
1812 struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority);
1813 void sk_free_unlock_clone(struct sock *sk);
1814 
1815 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
1816 			     gfp_t priority);
1817 void __sock_wfree(struct sk_buff *skb);
1818 void sock_wfree(struct sk_buff *skb);
1819 struct sk_buff *sock_omalloc(struct sock *sk, unsigned long size,
1820 			     gfp_t priority);
1821 void skb_orphan_partial(struct sk_buff *skb);
1822 void sock_rfree(struct sk_buff *skb);
1823 void sock_efree(struct sk_buff *skb);
1824 #ifdef CONFIG_INET
1825 void sock_edemux(struct sk_buff *skb);
1826 void sock_pfree(struct sk_buff *skb);
1827 #else
1828 #define sock_edemux sock_efree
1829 #endif
1830 
1831 int sk_setsockopt(struct sock *sk, int level, int optname,
1832 		  sockptr_t optval, unsigned int optlen);
1833 int sock_setsockopt(struct socket *sock, int level, int op,
1834 		    sockptr_t optval, unsigned int optlen);
1835 
1836 int sock_getsockopt(struct socket *sock, int level, int op,
1837 		    char __user *optval, int __user *optlen);
1838 int sock_gettstamp(struct socket *sock, void __user *userstamp,
1839 		   bool timeval, bool time32);
1840 struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
1841 				     unsigned long data_len, int noblock,
1842 				     int *errcode, int max_page_order);
1843 
1844 static inline struct sk_buff *sock_alloc_send_skb(struct sock *sk,
1845 						  unsigned long size,
1846 						  int noblock, int *errcode)
1847 {
1848 	return sock_alloc_send_pskb(sk, size, 0, noblock, errcode, 0);
1849 }
1850 
1851 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority);
1852 void sock_kfree_s(struct sock *sk, void *mem, int size);
1853 void sock_kzfree_s(struct sock *sk, void *mem, int size);
1854 void sk_send_sigurg(struct sock *sk);
1855 
1856 struct sockcm_cookie {
1857 	u64 transmit_time;
1858 	u32 mark;
1859 	u16 tsflags;
1860 };
1861 
1862 static inline void sockcm_init(struct sockcm_cookie *sockc,
1863 			       const struct sock *sk)
1864 {
1865 	*sockc = (struct sockcm_cookie) { .tsflags = sk->sk_tsflags };
1866 }
1867 
1868 int __sock_cmsg_send(struct sock *sk, struct msghdr *msg, struct cmsghdr *cmsg,
1869 		     struct sockcm_cookie *sockc);
1870 int sock_cmsg_send(struct sock *sk, struct msghdr *msg,
1871 		   struct sockcm_cookie *sockc);
1872 
1873 /*
1874  * Functions to fill in entries in struct proto_ops when a protocol
1875  * does not implement a particular function.
1876  */
1877 int sock_no_bind(struct socket *, struct sockaddr *, int);
1878 int sock_no_connect(struct socket *, struct sockaddr *, int, int);
1879 int sock_no_socketpair(struct socket *, struct socket *);
1880 int sock_no_accept(struct socket *, struct socket *, int, bool);
1881 int sock_no_getname(struct socket *, struct sockaddr *, int);
1882 int sock_no_ioctl(struct socket *, unsigned int, unsigned long);
1883 int sock_no_listen(struct socket *, int);
1884 int sock_no_shutdown(struct socket *, int);
1885 int sock_no_sendmsg(struct socket *, struct msghdr *, size_t);
1886 int sock_no_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t len);
1887 int sock_no_recvmsg(struct socket *, struct msghdr *, size_t, int);
1888 int sock_no_mmap(struct file *file, struct socket *sock,
1889 		 struct vm_area_struct *vma);
1890 ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset,
1891 			 size_t size, int flags);
1892 ssize_t sock_no_sendpage_locked(struct sock *sk, struct page *page,
1893 				int offset, size_t size, int flags);
1894 
1895 /*
1896  * Functions to fill in entries in struct proto_ops when a protocol
1897  * uses the inet style.
1898  */
1899 int sock_common_getsockopt(struct socket *sock, int level, int optname,
1900 				  char __user *optval, int __user *optlen);
1901 int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
1902 			int flags);
1903 int sock_common_setsockopt(struct socket *sock, int level, int optname,
1904 			   sockptr_t optval, unsigned int optlen);
1905 
1906 void sk_common_release(struct sock *sk);
1907 
1908 /*
1909  *	Default socket callbacks and setup code
1910  */
1911 
1912 /* Initialise core socket variables */
1913 void sock_init_data(struct socket *sock, struct sock *sk);
1914 
1915 /*
1916  * Socket reference counting postulates.
1917  *
1918  * * Each user of socket SHOULD hold a reference count.
1919  * * Each access point to socket (an hash table bucket, reference from a list,
1920  *   running timer, skb in flight MUST hold a reference count.
1921  * * When reference count hits 0, it means it will never increase back.
1922  * * When reference count hits 0, it means that no references from
1923  *   outside exist to this socket and current process on current CPU
1924  *   is last user and may/should destroy this socket.
1925  * * sk_free is called from any context: process, BH, IRQ. When
1926  *   it is called, socket has no references from outside -> sk_free
1927  *   may release descendant resources allocated by the socket, but
1928  *   to the time when it is called, socket is NOT referenced by any
1929  *   hash tables, lists etc.
1930  * * Packets, delivered from outside (from network or from another process)
1931  *   and enqueued on receive/error queues SHOULD NOT grab reference count,
1932  *   when they sit in queue. Otherwise, packets will leak to hole, when
1933  *   socket is looked up by one cpu and unhasing is made by another CPU.
1934  *   It is true for udp/raw, netlink (leak to receive and error queues), tcp
1935  *   (leak to backlog). Packet socket does all the processing inside
1936  *   BR_NETPROTO_LOCK, so that it has not this race condition. UNIX sockets
1937  *   use separate SMP lock, so that they are prone too.
1938  */
1939 
1940 /* Ungrab socket and destroy it, if it was the last reference. */
1941 static inline void sock_put(struct sock *sk)
1942 {
1943 	if (refcount_dec_and_test(&sk->sk_refcnt))
1944 		sk_free(sk);
1945 }
1946 /* Generic version of sock_put(), dealing with all sockets
1947  * (TCP_TIMEWAIT, TCP_NEW_SYN_RECV, ESTABLISHED...)
1948  */
1949 void sock_gen_put(struct sock *sk);
1950 
1951 int __sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested,
1952 		     unsigned int trim_cap, bool refcounted);
1953 static inline int sk_receive_skb(struct sock *sk, struct sk_buff *skb,
1954 				 const int nested)
1955 {
1956 	return __sk_receive_skb(sk, skb, nested, 1, true);
1957 }
1958 
1959 static inline void sk_tx_queue_set(struct sock *sk, int tx_queue)
1960 {
1961 	/* sk_tx_queue_mapping accept only upto a 16-bit value */
1962 	if (WARN_ON_ONCE((unsigned short)tx_queue >= USHRT_MAX))
1963 		return;
1964 	sk->sk_tx_queue_mapping = tx_queue;
1965 }
1966 
1967 #define NO_QUEUE_MAPPING	USHRT_MAX
1968 
1969 static inline void sk_tx_queue_clear(struct sock *sk)
1970 {
1971 	sk->sk_tx_queue_mapping = NO_QUEUE_MAPPING;
1972 }
1973 
1974 static inline int sk_tx_queue_get(const struct sock *sk)
1975 {
1976 	if (sk && sk->sk_tx_queue_mapping != NO_QUEUE_MAPPING)
1977 		return sk->sk_tx_queue_mapping;
1978 
1979 	return -1;
1980 }
1981 
1982 static inline void __sk_rx_queue_set(struct sock *sk,
1983 				     const struct sk_buff *skb,
1984 				     bool force_set)
1985 {
1986 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
1987 	if (skb_rx_queue_recorded(skb)) {
1988 		u16 rx_queue = skb_get_rx_queue(skb);
1989 
1990 		if (force_set ||
1991 		    unlikely(READ_ONCE(sk->sk_rx_queue_mapping) != rx_queue))
1992 			WRITE_ONCE(sk->sk_rx_queue_mapping, rx_queue);
1993 	}
1994 #endif
1995 }
1996 
1997 static inline void sk_rx_queue_set(struct sock *sk, const struct sk_buff *skb)
1998 {
1999 	__sk_rx_queue_set(sk, skb, true);
2000 }
2001 
2002 static inline void sk_rx_queue_update(struct sock *sk, const struct sk_buff *skb)
2003 {
2004 	__sk_rx_queue_set(sk, skb, false);
2005 }
2006 
2007 static inline void sk_rx_queue_clear(struct sock *sk)
2008 {
2009 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
2010 	WRITE_ONCE(sk->sk_rx_queue_mapping, NO_QUEUE_MAPPING);
2011 #endif
2012 }
2013 
2014 static inline int sk_rx_queue_get(const struct sock *sk)
2015 {
2016 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
2017 	if (sk) {
2018 		int res = READ_ONCE(sk->sk_rx_queue_mapping);
2019 
2020 		if (res != NO_QUEUE_MAPPING)
2021 			return res;
2022 	}
2023 #endif
2024 
2025 	return -1;
2026 }
2027 
2028 static inline void sk_set_socket(struct sock *sk, struct socket *sock)
2029 {
2030 	sk->sk_socket = sock;
2031 }
2032 
2033 static inline wait_queue_head_t *sk_sleep(struct sock *sk)
2034 {
2035 	BUILD_BUG_ON(offsetof(struct socket_wq, wait) != 0);
2036 	return &rcu_dereference_raw(sk->sk_wq)->wait;
2037 }
2038 /* Detach socket from process context.
2039  * Announce socket dead, detach it from wait queue and inode.
2040  * Note that parent inode held reference count on this struct sock,
2041  * we do not release it in this function, because protocol
2042  * probably wants some additional cleanups or even continuing
2043  * to work with this socket (TCP).
2044  */
2045 static inline void sock_orphan(struct sock *sk)
2046 {
2047 	write_lock_bh(&sk->sk_callback_lock);
2048 	sock_set_flag(sk, SOCK_DEAD);
2049 	sk_set_socket(sk, NULL);
2050 	sk->sk_wq  = NULL;
2051 	write_unlock_bh(&sk->sk_callback_lock);
2052 }
2053 
2054 static inline void sock_graft(struct sock *sk, struct socket *parent)
2055 {
2056 	WARN_ON(parent->sk);
2057 	write_lock_bh(&sk->sk_callback_lock);
2058 	rcu_assign_pointer(sk->sk_wq, &parent->wq);
2059 	parent->sk = sk;
2060 	sk_set_socket(sk, parent);
2061 	sk->sk_uid = SOCK_INODE(parent)->i_uid;
2062 	security_sock_graft(sk, parent);
2063 	write_unlock_bh(&sk->sk_callback_lock);
2064 }
2065 
2066 kuid_t sock_i_uid(struct sock *sk);
2067 unsigned long sock_i_ino(struct sock *sk);
2068 
2069 static inline kuid_t sock_net_uid(const struct net *net, const struct sock *sk)
2070 {
2071 	return sk ? sk->sk_uid : make_kuid(net->user_ns, 0);
2072 }
2073 
2074 static inline u32 net_tx_rndhash(void)
2075 {
2076 	u32 v = prandom_u32();
2077 
2078 	return v ?: 1;
2079 }
2080 
2081 static inline void sk_set_txhash(struct sock *sk)
2082 {
2083 	/* This pairs with READ_ONCE() in skb_set_hash_from_sk() */
2084 	WRITE_ONCE(sk->sk_txhash, net_tx_rndhash());
2085 }
2086 
2087 static inline bool sk_rethink_txhash(struct sock *sk)
2088 {
2089 	if (sk->sk_txhash && sk->sk_txrehash == SOCK_TXREHASH_ENABLED) {
2090 		sk_set_txhash(sk);
2091 		return true;
2092 	}
2093 	return false;
2094 }
2095 
2096 static inline struct dst_entry *
2097 __sk_dst_get(struct sock *sk)
2098 {
2099 	return rcu_dereference_check(sk->sk_dst_cache,
2100 				     lockdep_sock_is_held(sk));
2101 }
2102 
2103 static inline struct dst_entry *
2104 sk_dst_get(struct sock *sk)
2105 {
2106 	struct dst_entry *dst;
2107 
2108 	rcu_read_lock();
2109 	dst = rcu_dereference(sk->sk_dst_cache);
2110 	if (dst && !atomic_inc_not_zero(&dst->__refcnt))
2111 		dst = NULL;
2112 	rcu_read_unlock();
2113 	return dst;
2114 }
2115 
2116 static inline void __dst_negative_advice(struct sock *sk)
2117 {
2118 	struct dst_entry *ndst, *dst = __sk_dst_get(sk);
2119 
2120 	if (dst && dst->ops->negative_advice) {
2121 		ndst = dst->ops->negative_advice(dst);
2122 
2123 		if (ndst != dst) {
2124 			rcu_assign_pointer(sk->sk_dst_cache, ndst);
2125 			sk_tx_queue_clear(sk);
2126 			sk->sk_dst_pending_confirm = 0;
2127 		}
2128 	}
2129 }
2130 
2131 static inline void dst_negative_advice(struct sock *sk)
2132 {
2133 	sk_rethink_txhash(sk);
2134 	__dst_negative_advice(sk);
2135 }
2136 
2137 static inline void
2138 __sk_dst_set(struct sock *sk, struct dst_entry *dst)
2139 {
2140 	struct dst_entry *old_dst;
2141 
2142 	sk_tx_queue_clear(sk);
2143 	sk->sk_dst_pending_confirm = 0;
2144 	old_dst = rcu_dereference_protected(sk->sk_dst_cache,
2145 					    lockdep_sock_is_held(sk));
2146 	rcu_assign_pointer(sk->sk_dst_cache, dst);
2147 	dst_release(old_dst);
2148 }
2149 
2150 static inline void
2151 sk_dst_set(struct sock *sk, struct dst_entry *dst)
2152 {
2153 	struct dst_entry *old_dst;
2154 
2155 	sk_tx_queue_clear(sk);
2156 	sk->sk_dst_pending_confirm = 0;
2157 	old_dst = xchg((__force struct dst_entry **)&sk->sk_dst_cache, dst);
2158 	dst_release(old_dst);
2159 }
2160 
2161 static inline void
2162 __sk_dst_reset(struct sock *sk)
2163 {
2164 	__sk_dst_set(sk, NULL);
2165 }
2166 
2167 static inline void
2168 sk_dst_reset(struct sock *sk)
2169 {
2170 	sk_dst_set(sk, NULL);
2171 }
2172 
2173 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie);
2174 
2175 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie);
2176 
2177 static inline void sk_dst_confirm(struct sock *sk)
2178 {
2179 	if (!READ_ONCE(sk->sk_dst_pending_confirm))
2180 		WRITE_ONCE(sk->sk_dst_pending_confirm, 1);
2181 }
2182 
2183 static inline void sock_confirm_neigh(struct sk_buff *skb, struct neighbour *n)
2184 {
2185 	if (skb_get_dst_pending_confirm(skb)) {
2186 		struct sock *sk = skb->sk;
2187 
2188 		if (sk && READ_ONCE(sk->sk_dst_pending_confirm))
2189 			WRITE_ONCE(sk->sk_dst_pending_confirm, 0);
2190 		neigh_confirm(n);
2191 	}
2192 }
2193 
2194 bool sk_mc_loop(struct sock *sk);
2195 
2196 static inline bool sk_can_gso(const struct sock *sk)
2197 {
2198 	return net_gso_ok(sk->sk_route_caps, sk->sk_gso_type);
2199 }
2200 
2201 void sk_setup_caps(struct sock *sk, struct dst_entry *dst);
2202 
2203 static inline void sk_gso_disable(struct sock *sk)
2204 {
2205 	sk->sk_gso_disabled = 1;
2206 	sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
2207 }
2208 
2209 static inline int skb_do_copy_data_nocache(struct sock *sk, struct sk_buff *skb,
2210 					   struct iov_iter *from, char *to,
2211 					   int copy, int offset)
2212 {
2213 	if (skb->ip_summed == CHECKSUM_NONE) {
2214 		__wsum csum = 0;
2215 		if (!csum_and_copy_from_iter_full(to, copy, &csum, from))
2216 			return -EFAULT;
2217 		skb->csum = csum_block_add(skb->csum, csum, offset);
2218 	} else if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY) {
2219 		if (!copy_from_iter_full_nocache(to, copy, from))
2220 			return -EFAULT;
2221 	} else if (!copy_from_iter_full(to, copy, from))
2222 		return -EFAULT;
2223 
2224 	return 0;
2225 }
2226 
2227 static inline int skb_add_data_nocache(struct sock *sk, struct sk_buff *skb,
2228 				       struct iov_iter *from, int copy)
2229 {
2230 	int err, offset = skb->len;
2231 
2232 	err = skb_do_copy_data_nocache(sk, skb, from, skb_put(skb, copy),
2233 				       copy, offset);
2234 	if (err)
2235 		__skb_trim(skb, offset);
2236 
2237 	return err;
2238 }
2239 
2240 static inline int skb_copy_to_page_nocache(struct sock *sk, struct iov_iter *from,
2241 					   struct sk_buff *skb,
2242 					   struct page *page,
2243 					   int off, int copy)
2244 {
2245 	int err;
2246 
2247 	err = skb_do_copy_data_nocache(sk, skb, from, page_address(page) + off,
2248 				       copy, skb->len);
2249 	if (err)
2250 		return err;
2251 
2252 	skb_len_add(skb, copy);
2253 	sk_wmem_queued_add(sk, copy);
2254 	sk_mem_charge(sk, copy);
2255 	return 0;
2256 }
2257 
2258 /**
2259  * sk_wmem_alloc_get - returns write allocations
2260  * @sk: socket
2261  *
2262  * Return: sk_wmem_alloc minus initial offset of one
2263  */
2264 static inline int sk_wmem_alloc_get(const struct sock *sk)
2265 {
2266 	return refcount_read(&sk->sk_wmem_alloc) - 1;
2267 }
2268 
2269 /**
2270  * sk_rmem_alloc_get - returns read allocations
2271  * @sk: socket
2272  *
2273  * Return: sk_rmem_alloc
2274  */
2275 static inline int sk_rmem_alloc_get(const struct sock *sk)
2276 {
2277 	return atomic_read(&sk->sk_rmem_alloc);
2278 }
2279 
2280 /**
2281  * sk_has_allocations - check if allocations are outstanding
2282  * @sk: socket
2283  *
2284  * Return: true if socket has write or read allocations
2285  */
2286 static inline bool sk_has_allocations(const struct sock *sk)
2287 {
2288 	return sk_wmem_alloc_get(sk) || sk_rmem_alloc_get(sk);
2289 }
2290 
2291 /**
2292  * skwq_has_sleeper - check if there are any waiting processes
2293  * @wq: struct socket_wq
2294  *
2295  * Return: true if socket_wq has waiting processes
2296  *
2297  * The purpose of the skwq_has_sleeper and sock_poll_wait is to wrap the memory
2298  * barrier call. They were added due to the race found within the tcp code.
2299  *
2300  * Consider following tcp code paths::
2301  *
2302  *   CPU1                CPU2
2303  *   sys_select          receive packet
2304  *   ...                 ...
2305  *   __add_wait_queue    update tp->rcv_nxt
2306  *   ...                 ...
2307  *   tp->rcv_nxt check   sock_def_readable
2308  *   ...                 {
2309  *   schedule               rcu_read_lock();
2310  *                          wq = rcu_dereference(sk->sk_wq);
2311  *                          if (wq && waitqueue_active(&wq->wait))
2312  *                              wake_up_interruptible(&wq->wait)
2313  *                          ...
2314  *                       }
2315  *
2316  * The race for tcp fires when the __add_wait_queue changes done by CPU1 stay
2317  * in its cache, and so does the tp->rcv_nxt update on CPU2 side.  The CPU1
2318  * could then endup calling schedule and sleep forever if there are no more
2319  * data on the socket.
2320  *
2321  */
2322 static inline bool skwq_has_sleeper(struct socket_wq *wq)
2323 {
2324 	return wq && wq_has_sleeper(&wq->wait);
2325 }
2326 
2327 /**
2328  * sock_poll_wait - place memory barrier behind the poll_wait call.
2329  * @filp:           file
2330  * @sock:           socket to wait on
2331  * @p:              poll_table
2332  *
2333  * See the comments in the wq_has_sleeper function.
2334  */
2335 static inline void sock_poll_wait(struct file *filp, struct socket *sock,
2336 				  poll_table *p)
2337 {
2338 	if (!poll_does_not_wait(p)) {
2339 		poll_wait(filp, &sock->wq.wait, p);
2340 		/* We need to be sure we are in sync with the
2341 		 * socket flags modification.
2342 		 *
2343 		 * This memory barrier is paired in the wq_has_sleeper.
2344 		 */
2345 		smp_mb();
2346 	}
2347 }
2348 
2349 static inline void skb_set_hash_from_sk(struct sk_buff *skb, struct sock *sk)
2350 {
2351 	/* This pairs with WRITE_ONCE() in sk_set_txhash() */
2352 	u32 txhash = READ_ONCE(sk->sk_txhash);
2353 
2354 	if (txhash) {
2355 		skb->l4_hash = 1;
2356 		skb->hash = txhash;
2357 	}
2358 }
2359 
2360 void skb_set_owner_w(struct sk_buff *skb, struct sock *sk);
2361 
2362 /*
2363  *	Queue a received datagram if it will fit. Stream and sequenced
2364  *	protocols can't normally use this as they need to fit buffers in
2365  *	and play with them.
2366  *
2367  *	Inlined as it's very short and called for pretty much every
2368  *	packet ever received.
2369  */
2370 static inline void skb_set_owner_r(struct sk_buff *skb, struct sock *sk)
2371 {
2372 	skb_orphan(skb);
2373 	skb->sk = sk;
2374 	skb->destructor = sock_rfree;
2375 	atomic_add(skb->truesize, &sk->sk_rmem_alloc);
2376 	sk_mem_charge(sk, skb->truesize);
2377 }
2378 
2379 static inline __must_check bool skb_set_owner_sk_safe(struct sk_buff *skb, struct sock *sk)
2380 {
2381 	if (sk && refcount_inc_not_zero(&sk->sk_refcnt)) {
2382 		skb_orphan(skb);
2383 		skb->destructor = sock_efree;
2384 		skb->sk = sk;
2385 		return true;
2386 	}
2387 	return false;
2388 }
2389 
2390 static inline void skb_prepare_for_gro(struct sk_buff *skb)
2391 {
2392 	if (skb->destructor != sock_wfree) {
2393 		skb_orphan(skb);
2394 		return;
2395 	}
2396 	skb->slow_gro = 1;
2397 }
2398 
2399 void sk_reset_timer(struct sock *sk, struct timer_list *timer,
2400 		    unsigned long expires);
2401 
2402 void sk_stop_timer(struct sock *sk, struct timer_list *timer);
2403 
2404 void sk_stop_timer_sync(struct sock *sk, struct timer_list *timer);
2405 
2406 int __sk_queue_drop_skb(struct sock *sk, struct sk_buff_head *sk_queue,
2407 			struct sk_buff *skb, unsigned int flags,
2408 			void (*destructor)(struct sock *sk,
2409 					   struct sk_buff *skb));
2410 int __sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
2411 
2412 int sock_queue_rcv_skb_reason(struct sock *sk, struct sk_buff *skb,
2413 			      enum skb_drop_reason *reason);
2414 
2415 static inline int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
2416 {
2417 	return sock_queue_rcv_skb_reason(sk, skb, NULL);
2418 }
2419 
2420 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb);
2421 struct sk_buff *sock_dequeue_err_skb(struct sock *sk);
2422 
2423 /*
2424  *	Recover an error report and clear atomically
2425  */
2426 
2427 static inline int sock_error(struct sock *sk)
2428 {
2429 	int err;
2430 
2431 	/* Avoid an atomic operation for the common case.
2432 	 * This is racy since another cpu/thread can change sk_err under us.
2433 	 */
2434 	if (likely(data_race(!sk->sk_err)))
2435 		return 0;
2436 
2437 	err = xchg(&sk->sk_err, 0);
2438 	return -err;
2439 }
2440 
2441 void sk_error_report(struct sock *sk);
2442 
2443 static inline unsigned long sock_wspace(struct sock *sk)
2444 {
2445 	int amt = 0;
2446 
2447 	if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
2448 		amt = sk->sk_sndbuf - refcount_read(&sk->sk_wmem_alloc);
2449 		if (amt < 0)
2450 			amt = 0;
2451 	}
2452 	return amt;
2453 }
2454 
2455 /* Note:
2456  *  We use sk->sk_wq_raw, from contexts knowing this
2457  *  pointer is not NULL and cannot disappear/change.
2458  */
2459 static inline void sk_set_bit(int nr, struct sock *sk)
2460 {
2461 	if ((nr == SOCKWQ_ASYNC_NOSPACE || nr == SOCKWQ_ASYNC_WAITDATA) &&
2462 	    !sock_flag(sk, SOCK_FASYNC))
2463 		return;
2464 
2465 	set_bit(nr, &sk->sk_wq_raw->flags);
2466 }
2467 
2468 static inline void sk_clear_bit(int nr, struct sock *sk)
2469 {
2470 	if ((nr == SOCKWQ_ASYNC_NOSPACE || nr == SOCKWQ_ASYNC_WAITDATA) &&
2471 	    !sock_flag(sk, SOCK_FASYNC))
2472 		return;
2473 
2474 	clear_bit(nr, &sk->sk_wq_raw->flags);
2475 }
2476 
2477 static inline void sk_wake_async(const struct sock *sk, int how, int band)
2478 {
2479 	if (sock_flag(sk, SOCK_FASYNC)) {
2480 		rcu_read_lock();
2481 		sock_wake_async(rcu_dereference(sk->sk_wq), how, band);
2482 		rcu_read_unlock();
2483 	}
2484 }
2485 
2486 /* Since sk_{r,w}mem_alloc sums skb->truesize, even a small frame might
2487  * need sizeof(sk_buff) + MTU + padding, unless net driver perform copybreak.
2488  * Note: for send buffers, TCP works better if we can build two skbs at
2489  * minimum.
2490  */
2491 #define TCP_SKB_MIN_TRUESIZE	(2048 + SKB_DATA_ALIGN(sizeof(struct sk_buff)))
2492 
2493 #define SOCK_MIN_SNDBUF		(TCP_SKB_MIN_TRUESIZE * 2)
2494 #define SOCK_MIN_RCVBUF		 TCP_SKB_MIN_TRUESIZE
2495 
2496 static inline void sk_stream_moderate_sndbuf(struct sock *sk)
2497 {
2498 	u32 val;
2499 
2500 	if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
2501 		return;
2502 
2503 	val = min(sk->sk_sndbuf, sk->sk_wmem_queued >> 1);
2504 	val = max_t(u32, val, sk_unused_reserved_mem(sk));
2505 
2506 	WRITE_ONCE(sk->sk_sndbuf, max_t(u32, val, SOCK_MIN_SNDBUF));
2507 }
2508 
2509 /**
2510  * sk_page_frag - return an appropriate page_frag
2511  * @sk: socket
2512  *
2513  * Use the per task page_frag instead of the per socket one for
2514  * optimization when we know that we're in process context and own
2515  * everything that's associated with %current.
2516  *
2517  * Both direct reclaim and page faults can nest inside other
2518  * socket operations and end up recursing into sk_page_frag()
2519  * while it's already in use: explicitly avoid task page_frag
2520  * usage if the caller is potentially doing any of them.
2521  * This assumes that page fault handlers use the GFP_NOFS flags.
2522  *
2523  * Return: a per task page_frag if context allows that,
2524  * otherwise a per socket one.
2525  */
2526 static inline struct page_frag *sk_page_frag(struct sock *sk)
2527 {
2528 	if ((sk->sk_allocation & (__GFP_DIRECT_RECLAIM | __GFP_MEMALLOC | __GFP_FS)) ==
2529 	    (__GFP_DIRECT_RECLAIM | __GFP_FS))
2530 		return &current->task_frag;
2531 
2532 	return &sk->sk_frag;
2533 }
2534 
2535 bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag);
2536 
2537 /*
2538  *	Default write policy as shown to user space via poll/select/SIGIO
2539  */
2540 static inline bool sock_writeable(const struct sock *sk)
2541 {
2542 	return refcount_read(&sk->sk_wmem_alloc) < (READ_ONCE(sk->sk_sndbuf) >> 1);
2543 }
2544 
2545 static inline gfp_t gfp_any(void)
2546 {
2547 	return in_softirq() ? GFP_ATOMIC : GFP_KERNEL;
2548 }
2549 
2550 static inline gfp_t gfp_memcg_charge(void)
2551 {
2552 	return in_softirq() ? GFP_NOWAIT : GFP_KERNEL;
2553 }
2554 
2555 static inline long sock_rcvtimeo(const struct sock *sk, bool noblock)
2556 {
2557 	return noblock ? 0 : sk->sk_rcvtimeo;
2558 }
2559 
2560 static inline long sock_sndtimeo(const struct sock *sk, bool noblock)
2561 {
2562 	return noblock ? 0 : sk->sk_sndtimeo;
2563 }
2564 
2565 static inline int sock_rcvlowat(const struct sock *sk, int waitall, int len)
2566 {
2567 	int v = waitall ? len : min_t(int, READ_ONCE(sk->sk_rcvlowat), len);
2568 
2569 	return v ?: 1;
2570 }
2571 
2572 /* Alas, with timeout socket operations are not restartable.
2573  * Compare this to poll().
2574  */
2575 static inline int sock_intr_errno(long timeo)
2576 {
2577 	return timeo == MAX_SCHEDULE_TIMEOUT ? -ERESTARTSYS : -EINTR;
2578 }
2579 
2580 struct sock_skb_cb {
2581 	u32 dropcount;
2582 };
2583 
2584 /* Store sock_skb_cb at the end of skb->cb[] so protocol families
2585  * using skb->cb[] would keep using it directly and utilize its
2586  * alignement guarantee.
2587  */
2588 #define SOCK_SKB_CB_OFFSET ((sizeof_field(struct sk_buff, cb) - \
2589 			    sizeof(struct sock_skb_cb)))
2590 
2591 #define SOCK_SKB_CB(__skb) ((struct sock_skb_cb *)((__skb)->cb + \
2592 			    SOCK_SKB_CB_OFFSET))
2593 
2594 #define sock_skb_cb_check_size(size) \
2595 	BUILD_BUG_ON((size) > SOCK_SKB_CB_OFFSET)
2596 
2597 static inline void
2598 sock_skb_set_dropcount(const struct sock *sk, struct sk_buff *skb)
2599 {
2600 	SOCK_SKB_CB(skb)->dropcount = sock_flag(sk, SOCK_RXQ_OVFL) ?
2601 						atomic_read(&sk->sk_drops) : 0;
2602 }
2603 
2604 static inline void sk_drops_add(struct sock *sk, const struct sk_buff *skb)
2605 {
2606 	int segs = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
2607 
2608 	atomic_add(segs, &sk->sk_drops);
2609 }
2610 
2611 static inline ktime_t sock_read_timestamp(struct sock *sk)
2612 {
2613 #if BITS_PER_LONG==32
2614 	unsigned int seq;
2615 	ktime_t kt;
2616 
2617 	do {
2618 		seq = read_seqbegin(&sk->sk_stamp_seq);
2619 		kt = sk->sk_stamp;
2620 	} while (read_seqretry(&sk->sk_stamp_seq, seq));
2621 
2622 	return kt;
2623 #else
2624 	return READ_ONCE(sk->sk_stamp);
2625 #endif
2626 }
2627 
2628 static inline void sock_write_timestamp(struct sock *sk, ktime_t kt)
2629 {
2630 #if BITS_PER_LONG==32
2631 	write_seqlock(&sk->sk_stamp_seq);
2632 	sk->sk_stamp = kt;
2633 	write_sequnlock(&sk->sk_stamp_seq);
2634 #else
2635 	WRITE_ONCE(sk->sk_stamp, kt);
2636 #endif
2637 }
2638 
2639 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
2640 			   struct sk_buff *skb);
2641 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
2642 			     struct sk_buff *skb);
2643 
2644 static inline void
2645 sock_recv_timestamp(struct msghdr *msg, struct sock *sk, struct sk_buff *skb)
2646 {
2647 	ktime_t kt = skb->tstamp;
2648 	struct skb_shared_hwtstamps *hwtstamps = skb_hwtstamps(skb);
2649 
2650 	/*
2651 	 * generate control messages if
2652 	 * - receive time stamping in software requested
2653 	 * - software time stamp available and wanted
2654 	 * - hardware time stamps available and wanted
2655 	 */
2656 	if (sock_flag(sk, SOCK_RCVTSTAMP) ||
2657 	    (sk->sk_tsflags & SOF_TIMESTAMPING_RX_SOFTWARE) ||
2658 	    (kt && sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) ||
2659 	    (hwtstamps->hwtstamp &&
2660 	     (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE)))
2661 		__sock_recv_timestamp(msg, sk, skb);
2662 	else
2663 		sock_write_timestamp(sk, kt);
2664 
2665 	if (sock_flag(sk, SOCK_WIFI_STATUS) && skb->wifi_acked_valid)
2666 		__sock_recv_wifi_status(msg, sk, skb);
2667 }
2668 
2669 void __sock_recv_cmsgs(struct msghdr *msg, struct sock *sk,
2670 		       struct sk_buff *skb);
2671 
2672 #define SK_DEFAULT_STAMP (-1L * NSEC_PER_SEC)
2673 static inline void sock_recv_cmsgs(struct msghdr *msg, struct sock *sk,
2674 				   struct sk_buff *skb)
2675 {
2676 #define FLAGS_RECV_CMSGS ((1UL << SOCK_RXQ_OVFL)			| \
2677 			   (1UL << SOCK_RCVTSTAMP)			| \
2678 			   (1UL << SOCK_RCVMARK))
2679 #define TSFLAGS_ANY	  (SOF_TIMESTAMPING_SOFTWARE			| \
2680 			   SOF_TIMESTAMPING_RAW_HARDWARE)
2681 
2682 	if (sk->sk_flags & FLAGS_RECV_CMSGS || sk->sk_tsflags & TSFLAGS_ANY)
2683 		__sock_recv_cmsgs(msg, sk, skb);
2684 	else if (unlikely(sock_flag(sk, SOCK_TIMESTAMP)))
2685 		sock_write_timestamp(sk, skb->tstamp);
2686 	else if (unlikely(sk->sk_stamp == SK_DEFAULT_STAMP))
2687 		sock_write_timestamp(sk, 0);
2688 }
2689 
2690 void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags);
2691 
2692 /**
2693  * _sock_tx_timestamp - checks whether the outgoing packet is to be time stamped
2694  * @sk:		socket sending this packet
2695  * @tsflags:	timestamping flags to use
2696  * @tx_flags:	completed with instructions for time stamping
2697  * @tskey:      filled in with next sk_tskey (not for TCP, which uses seqno)
2698  *
2699  * Note: callers should take care of initial ``*tx_flags`` value (usually 0)
2700  */
2701 static inline void _sock_tx_timestamp(struct sock *sk, __u16 tsflags,
2702 				      __u8 *tx_flags, __u32 *tskey)
2703 {
2704 	if (unlikely(tsflags)) {
2705 		__sock_tx_timestamp(tsflags, tx_flags);
2706 		if (tsflags & SOF_TIMESTAMPING_OPT_ID && tskey &&
2707 		    tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK)
2708 			*tskey = atomic_inc_return(&sk->sk_tskey) - 1;
2709 	}
2710 	if (unlikely(sock_flag(sk, SOCK_WIFI_STATUS)))
2711 		*tx_flags |= SKBTX_WIFI_STATUS;
2712 }
2713 
2714 static inline void sock_tx_timestamp(struct sock *sk, __u16 tsflags,
2715 				     __u8 *tx_flags)
2716 {
2717 	_sock_tx_timestamp(sk, tsflags, tx_flags, NULL);
2718 }
2719 
2720 static inline void skb_setup_tx_timestamp(struct sk_buff *skb, __u16 tsflags)
2721 {
2722 	_sock_tx_timestamp(skb->sk, tsflags, &skb_shinfo(skb)->tx_flags,
2723 			   &skb_shinfo(skb)->tskey);
2724 }
2725 
2726 static inline bool sk_is_tcp(const struct sock *sk)
2727 {
2728 	return sk->sk_type == SOCK_STREAM && sk->sk_protocol == IPPROTO_TCP;
2729 }
2730 
2731 /**
2732  * sk_eat_skb - Release a skb if it is no longer needed
2733  * @sk: socket to eat this skb from
2734  * @skb: socket buffer to eat
2735  *
2736  * This routine must be called with interrupts disabled or with the socket
2737  * locked so that the sk_buff queue operation is ok.
2738 */
2739 static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb)
2740 {
2741 	__skb_unlink(skb, &sk->sk_receive_queue);
2742 	__kfree_skb(skb);
2743 }
2744 
2745 static inline bool
2746 skb_sk_is_prefetched(struct sk_buff *skb)
2747 {
2748 #ifdef CONFIG_INET
2749 	return skb->destructor == sock_pfree;
2750 #else
2751 	return false;
2752 #endif /* CONFIG_INET */
2753 }
2754 
2755 /* This helper checks if a socket is a full socket,
2756  * ie _not_ a timewait or request socket.
2757  */
2758 static inline bool sk_fullsock(const struct sock *sk)
2759 {
2760 	return (1 << sk->sk_state) & ~(TCPF_TIME_WAIT | TCPF_NEW_SYN_RECV);
2761 }
2762 
2763 static inline bool
2764 sk_is_refcounted(struct sock *sk)
2765 {
2766 	/* Only full sockets have sk->sk_flags. */
2767 	return !sk_fullsock(sk) || !sock_flag(sk, SOCK_RCU_FREE);
2768 }
2769 
2770 /**
2771  * skb_steal_sock - steal a socket from an sk_buff
2772  * @skb: sk_buff to steal the socket from
2773  * @refcounted: is set to true if the socket is reference-counted
2774  */
2775 static inline struct sock *
2776 skb_steal_sock(struct sk_buff *skb, bool *refcounted)
2777 {
2778 	if (skb->sk) {
2779 		struct sock *sk = skb->sk;
2780 
2781 		*refcounted = true;
2782 		if (skb_sk_is_prefetched(skb))
2783 			*refcounted = sk_is_refcounted(sk);
2784 		skb->destructor = NULL;
2785 		skb->sk = NULL;
2786 		return sk;
2787 	}
2788 	*refcounted = false;
2789 	return NULL;
2790 }
2791 
2792 /* Checks if this SKB belongs to an HW offloaded socket
2793  * and whether any SW fallbacks are required based on dev.
2794  * Check decrypted mark in case skb_orphan() cleared socket.
2795  */
2796 static inline struct sk_buff *sk_validate_xmit_skb(struct sk_buff *skb,
2797 						   struct net_device *dev)
2798 {
2799 #ifdef CONFIG_SOCK_VALIDATE_XMIT
2800 	struct sock *sk = skb->sk;
2801 
2802 	if (sk && sk_fullsock(sk) && sk->sk_validate_xmit_skb) {
2803 		skb = sk->sk_validate_xmit_skb(sk, dev, skb);
2804 #ifdef CONFIG_TLS_DEVICE
2805 	} else if (unlikely(skb->decrypted)) {
2806 		pr_warn_ratelimited("unencrypted skb with no associated socket - dropping\n");
2807 		kfree_skb(skb);
2808 		skb = NULL;
2809 #endif
2810 	}
2811 #endif
2812 
2813 	return skb;
2814 }
2815 
2816 /* This helper checks if a socket is a LISTEN or NEW_SYN_RECV
2817  * SYNACK messages can be attached to either ones (depending on SYNCOOKIE)
2818  */
2819 static inline bool sk_listener(const struct sock *sk)
2820 {
2821 	return (1 << sk->sk_state) & (TCPF_LISTEN | TCPF_NEW_SYN_RECV);
2822 }
2823 
2824 void sock_enable_timestamp(struct sock *sk, enum sock_flags flag);
2825 int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len, int level,
2826 		       int type);
2827 
2828 bool sk_ns_capable(const struct sock *sk,
2829 		   struct user_namespace *user_ns, int cap);
2830 bool sk_capable(const struct sock *sk, int cap);
2831 bool sk_net_capable(const struct sock *sk, int cap);
2832 
2833 void sk_get_meminfo(const struct sock *sk, u32 *meminfo);
2834 
2835 /* Take into consideration the size of the struct sk_buff overhead in the
2836  * determination of these values, since that is non-constant across
2837  * platforms.  This makes socket queueing behavior and performance
2838  * not depend upon such differences.
2839  */
2840 #define _SK_MEM_PACKETS		256
2841 #define _SK_MEM_OVERHEAD	SKB_TRUESIZE(256)
2842 #define SK_WMEM_MAX		(_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
2843 #define SK_RMEM_MAX		(_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
2844 
2845 extern __u32 sysctl_wmem_max;
2846 extern __u32 sysctl_rmem_max;
2847 
2848 extern int sysctl_tstamp_allow_data;
2849 extern int sysctl_optmem_max;
2850 
2851 extern __u32 sysctl_wmem_default;
2852 extern __u32 sysctl_rmem_default;
2853 
2854 #define SKB_FRAG_PAGE_ORDER	get_order(32768)
2855 DECLARE_STATIC_KEY_FALSE(net_high_order_alloc_disable_key);
2856 
2857 static inline int sk_get_wmem0(const struct sock *sk, const struct proto *proto)
2858 {
2859 	/* Does this proto have per netns sysctl_wmem ? */
2860 	if (proto->sysctl_wmem_offset)
2861 		return READ_ONCE(*(int *)((void *)sock_net(sk) + proto->sysctl_wmem_offset));
2862 
2863 	return READ_ONCE(*proto->sysctl_wmem);
2864 }
2865 
2866 static inline int sk_get_rmem0(const struct sock *sk, const struct proto *proto)
2867 {
2868 	/* Does this proto have per netns sysctl_rmem ? */
2869 	if (proto->sysctl_rmem_offset)
2870 		return READ_ONCE(*(int *)((void *)sock_net(sk) + proto->sysctl_rmem_offset));
2871 
2872 	return READ_ONCE(*proto->sysctl_rmem);
2873 }
2874 
2875 /* Default TCP Small queue budget is ~1 ms of data (1sec >> 10)
2876  * Some wifi drivers need to tweak it to get more chunks.
2877  * They can use this helper from their ndo_start_xmit()
2878  */
2879 static inline void sk_pacing_shift_update(struct sock *sk, int val)
2880 {
2881 	if (!sk || !sk_fullsock(sk) || READ_ONCE(sk->sk_pacing_shift) == val)
2882 		return;
2883 	WRITE_ONCE(sk->sk_pacing_shift, val);
2884 }
2885 
2886 /* if a socket is bound to a device, check that the given device
2887  * index is either the same or that the socket is bound to an L3
2888  * master device and the given device index is also enslaved to
2889  * that L3 master
2890  */
2891 static inline bool sk_dev_equal_l3scope(struct sock *sk, int dif)
2892 {
2893 	int bound_dev_if = READ_ONCE(sk->sk_bound_dev_if);
2894 	int mdif;
2895 
2896 	if (!bound_dev_if || bound_dev_if == dif)
2897 		return true;
2898 
2899 	mdif = l3mdev_master_ifindex_by_index(sock_net(sk), dif);
2900 	if (mdif && mdif == bound_dev_if)
2901 		return true;
2902 
2903 	return false;
2904 }
2905 
2906 void sock_def_readable(struct sock *sk);
2907 
2908 int sock_bindtoindex(struct sock *sk, int ifindex, bool lock_sk);
2909 void sock_set_timestamp(struct sock *sk, int optname, bool valbool);
2910 int sock_set_timestamping(struct sock *sk, int optname,
2911 			  struct so_timestamping timestamping);
2912 
2913 void sock_enable_timestamps(struct sock *sk);
2914 void sock_no_linger(struct sock *sk);
2915 void sock_set_keepalive(struct sock *sk);
2916 void sock_set_priority(struct sock *sk, u32 priority);
2917 void sock_set_rcvbuf(struct sock *sk, int val);
2918 void sock_set_mark(struct sock *sk, u32 val);
2919 void sock_set_reuseaddr(struct sock *sk);
2920 void sock_set_reuseport(struct sock *sk);
2921 void sock_set_sndtimeo(struct sock *sk, s64 secs);
2922 
2923 int sock_bind_add(struct sock *sk, struct sockaddr *addr, int addr_len);
2924 
2925 int sock_get_timeout(long timeo, void *optval, bool old_timeval);
2926 int sock_copy_user_timeval(struct __kernel_sock_timeval *tv,
2927 			   sockptr_t optval, int optlen, bool old_timeval);
2928 
2929 static inline bool sk_is_readable(struct sock *sk)
2930 {
2931 	if (sk->sk_prot->sock_is_readable)
2932 		return sk->sk_prot->sock_is_readable(sk);
2933 	return false;
2934 }
2935 #endif	/* _SOCK_H */
2936