xref: /linux/include/net/sock.h (revision bbc8a6fb83afc41ba4e8d2564314d7a4d01db0cb)
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Definitions for the AF_INET socket handler.
8  *
9  * Version:	@(#)sock.h	1.0.4	05/13/93
10  *
11  * Authors:	Ross Biro
12  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
13  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
14  *		Florian La Roche <flla@stud.uni-sb.de>
15  *
16  * Fixes:
17  *		Alan Cox	:	Volatiles in skbuff pointers. See
18  *					skbuff comments. May be overdone,
19  *					better to prove they can be removed
20  *					than the reverse.
21  *		Alan Cox	:	Added a zapped field for tcp to note
22  *					a socket is reset and must stay shut up
23  *		Alan Cox	:	New fields for options
24  *	Pauline Middelink	:	identd support
25  *		Alan Cox	:	Eliminate low level recv/recvfrom
26  *		David S. Miller	:	New socket lookup architecture.
27  *              Steve Whitehouse:       Default routines for sock_ops
28  *              Arnaldo C. Melo :	removed net_pinfo, tp_pinfo and made
29  *              			protinfo be just a void pointer, as the
30  *              			protocol specific parts were moved to
31  *              			respective headers and ipv4/v6, etc now
32  *              			use private slabcaches for its socks
33  *              Pedro Hortas	:	New flags field for socket options
34  */
35 #ifndef _SOCK_H
36 #define _SOCK_H
37 
38 #include <linux/hardirq.h>
39 #include <linux/kernel.h>
40 #include <linux/list.h>
41 #include <linux/list_nulls.h>
42 #include <linux/timer.h>
43 #include <linux/cache.h>
44 #include <linux/bitops.h>
45 #include <linux/lockdep.h>
46 #include <linux/netdevice.h>
47 #include <linux/skbuff.h>	/* struct sk_buff */
48 #include <linux/mm.h>
49 #include <linux/security.h>
50 #include <linux/slab.h>
51 #include <linux/uaccess.h>
52 #include <linux/page_counter.h>
53 #include <linux/memcontrol.h>
54 #include <linux/static_key.h>
55 #include <linux/sched.h>
56 #include <linux/wait.h>
57 #include <linux/cgroup-defs.h>
58 #include <linux/rbtree.h>
59 #include <linux/rculist_nulls.h>
60 #include <linux/poll.h>
61 #include <linux/sockptr.h>
62 #include <linux/indirect_call_wrapper.h>
63 #include <linux/atomic.h>
64 #include <linux/refcount.h>
65 #include <linux/llist.h>
66 #include <net/dst.h>
67 #include <net/checksum.h>
68 #include <net/tcp_states.h>
69 #include <linux/net_tstamp.h>
70 #include <net/l3mdev.h>
71 #include <uapi/linux/socket.h>
72 
73 /*
74  * This structure really needs to be cleaned up.
75  * Most of it is for TCP, and not used by any of
76  * the other protocols.
77  */
78 
79 /* This is the per-socket lock.  The spinlock provides a synchronization
80  * between user contexts and software interrupt processing, whereas the
81  * mini-semaphore synchronizes multiple users amongst themselves.
82  */
83 typedef struct {
84 	spinlock_t		slock;
85 	int			owned;
86 	wait_queue_head_t	wq;
87 	/*
88 	 * We express the mutex-alike socket_lock semantics
89 	 * to the lock validator by explicitly managing
90 	 * the slock as a lock variant (in addition to
91 	 * the slock itself):
92 	 */
93 #ifdef CONFIG_DEBUG_LOCK_ALLOC
94 	struct lockdep_map dep_map;
95 #endif
96 } socket_lock_t;
97 
98 struct sock;
99 struct proto;
100 struct net;
101 
102 typedef __u32 __bitwise __portpair;
103 typedef __u64 __bitwise __addrpair;
104 
105 /**
106  *	struct sock_common - minimal network layer representation of sockets
107  *	@skc_daddr: Foreign IPv4 addr
108  *	@skc_rcv_saddr: Bound local IPv4 addr
109  *	@skc_addrpair: 8-byte-aligned __u64 union of @skc_daddr & @skc_rcv_saddr
110  *	@skc_hash: hash value used with various protocol lookup tables
111  *	@skc_u16hashes: two u16 hash values used by UDP lookup tables
112  *	@skc_dport: placeholder for inet_dport/tw_dport
113  *	@skc_num: placeholder for inet_num/tw_num
114  *	@skc_portpair: __u32 union of @skc_dport & @skc_num
115  *	@skc_family: network address family
116  *	@skc_state: Connection state
117  *	@skc_reuse: %SO_REUSEADDR setting
118  *	@skc_reuseport: %SO_REUSEPORT setting
119  *	@skc_ipv6only: socket is IPV6 only
120  *	@skc_net_refcnt: socket is using net ref counting
121  *	@skc_bound_dev_if: bound device index if != 0
122  *	@skc_bind_node: bind hash linkage for various protocol lookup tables
123  *	@skc_portaddr_node: second hash linkage for UDP/UDP-Lite protocol
124  *	@skc_prot: protocol handlers inside a network family
125  *	@skc_net: reference to the network namespace of this socket
126  *	@skc_v6_daddr: IPV6 destination address
127  *	@skc_v6_rcv_saddr: IPV6 source address
128  *	@skc_cookie: socket's cookie value
129  *	@skc_node: main hash linkage for various protocol lookup tables
130  *	@skc_nulls_node: main hash linkage for TCP/UDP/UDP-Lite protocol
131  *	@skc_tx_queue_mapping: tx queue number for this connection
132  *	@skc_rx_queue_mapping: rx queue number for this connection
133  *	@skc_flags: place holder for sk_flags
134  *		%SO_LINGER (l_onoff), %SO_BROADCAST, %SO_KEEPALIVE,
135  *		%SO_OOBINLINE settings, %SO_TIMESTAMPING settings
136  *	@skc_listener: connection request listener socket (aka rsk_listener)
137  *		[union with @skc_flags]
138  *	@skc_tw_dr: (aka tw_dr) ptr to &struct inet_timewait_death_row
139  *		[union with @skc_flags]
140  *	@skc_incoming_cpu: record/match cpu processing incoming packets
141  *	@skc_rcv_wnd: (aka rsk_rcv_wnd) TCP receive window size (possibly scaled)
142  *		[union with @skc_incoming_cpu]
143  *	@skc_tw_rcv_nxt: (aka tw_rcv_nxt) TCP window next expected seq number
144  *		[union with @skc_incoming_cpu]
145  *	@skc_refcnt: reference count
146  *
147  *	This is the minimal network layer representation of sockets, the header
148  *	for struct sock and struct inet_timewait_sock.
149  */
150 struct sock_common {
151 	union {
152 		__addrpair	skc_addrpair;
153 		struct {
154 			__be32	skc_daddr;
155 			__be32	skc_rcv_saddr;
156 		};
157 	};
158 	union  {
159 		unsigned int	skc_hash;
160 		__u16		skc_u16hashes[2];
161 	};
162 	/* skc_dport && skc_num must be grouped as well */
163 	union {
164 		__portpair	skc_portpair;
165 		struct {
166 			__be16	skc_dport;
167 			__u16	skc_num;
168 		};
169 	};
170 
171 	unsigned short		skc_family;
172 	volatile unsigned char	skc_state;
173 	unsigned char		skc_reuse:4;
174 	unsigned char		skc_reuseport:1;
175 	unsigned char		skc_ipv6only:1;
176 	unsigned char		skc_net_refcnt:1;
177 	int			skc_bound_dev_if;
178 	union {
179 		struct hlist_node	skc_bind_node;
180 		struct hlist_node	skc_portaddr_node;
181 	};
182 	struct proto		*skc_prot;
183 	possible_net_t		skc_net;
184 
185 #if IS_ENABLED(CONFIG_IPV6)
186 	struct in6_addr		skc_v6_daddr;
187 	struct in6_addr		skc_v6_rcv_saddr;
188 #endif
189 
190 	atomic64_t		skc_cookie;
191 
192 	/* following fields are padding to force
193 	 * offset(struct sock, sk_refcnt) == 128 on 64bit arches
194 	 * assuming IPV6 is enabled. We use this padding differently
195 	 * for different kind of 'sockets'
196 	 */
197 	union {
198 		unsigned long	skc_flags;
199 		struct sock	*skc_listener; /* request_sock */
200 		struct inet_timewait_death_row *skc_tw_dr; /* inet_timewait_sock */
201 	};
202 	/*
203 	 * fields between dontcopy_begin/dontcopy_end
204 	 * are not copied in sock_copy()
205 	 */
206 	/* private: */
207 	int			skc_dontcopy_begin[0];
208 	/* public: */
209 	union {
210 		struct hlist_node	skc_node;
211 		struct hlist_nulls_node skc_nulls_node;
212 	};
213 	unsigned short		skc_tx_queue_mapping;
214 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
215 	unsigned short		skc_rx_queue_mapping;
216 #endif
217 	union {
218 		int		skc_incoming_cpu;
219 		u32		skc_rcv_wnd;
220 		u32		skc_tw_rcv_nxt; /* struct tcp_timewait_sock  */
221 	};
222 
223 	refcount_t		skc_refcnt;
224 	/* private: */
225 	int                     skc_dontcopy_end[0];
226 	union {
227 		u32		skc_rxhash;
228 		u32		skc_window_clamp;
229 		u32		skc_tw_snd_nxt; /* struct tcp_timewait_sock */
230 	};
231 	/* public: */
232 };
233 
234 struct bpf_local_storage;
235 struct sk_filter;
236 
237 /**
238   *	struct sock - network layer representation of sockets
239   *	@__sk_common: shared layout with inet_timewait_sock
240   *	@sk_shutdown: mask of %SEND_SHUTDOWN and/or %RCV_SHUTDOWN
241   *	@sk_userlocks: %SO_SNDBUF and %SO_RCVBUF settings
242   *	@sk_lock:	synchronizer
243   *	@sk_kern_sock: True if sock is using kernel lock classes
244   *	@sk_rcvbuf: size of receive buffer in bytes
245   *	@sk_wq: sock wait queue and async head
246   *	@sk_rx_dst: receive input route used by early demux
247   *	@sk_rx_dst_ifindex: ifindex for @sk_rx_dst
248   *	@sk_rx_dst_cookie: cookie for @sk_rx_dst
249   *	@sk_dst_cache: destination cache
250   *	@sk_dst_pending_confirm: need to confirm neighbour
251   *	@sk_policy: flow policy
252   *	@sk_receive_queue: incoming packets
253   *	@sk_wmem_alloc: transmit queue bytes committed
254   *	@sk_tsq_flags: TCP Small Queues flags
255   *	@sk_write_queue: Packet sending queue
256   *	@sk_omem_alloc: "o" is "option" or "other"
257   *	@sk_wmem_queued: persistent queue size
258   *	@sk_forward_alloc: space allocated forward
259   *	@sk_reserved_mem: space reserved and non-reclaimable for the socket
260   *	@sk_napi_id: id of the last napi context to receive data for sk
261   *	@sk_ll_usec: usecs to busypoll when there is no data
262   *	@sk_allocation: allocation mode
263   *	@sk_pacing_rate: Pacing rate (if supported by transport/packet scheduler)
264   *	@sk_pacing_status: Pacing status (requested, handled by sch_fq)
265   *	@sk_max_pacing_rate: Maximum pacing rate (%SO_MAX_PACING_RATE)
266   *	@sk_sndbuf: size of send buffer in bytes
267   *	@sk_no_check_tx: %SO_NO_CHECK setting, set checksum in TX packets
268   *	@sk_no_check_rx: allow zero checksum in RX packets
269   *	@sk_route_caps: route capabilities (e.g. %NETIF_F_TSO)
270   *	@sk_gso_disabled: if set, NETIF_F_GSO_MASK is forbidden.
271   *	@sk_gso_type: GSO type (e.g. %SKB_GSO_TCPV4)
272   *	@sk_gso_max_size: Maximum GSO segment size to build
273   *	@sk_gso_max_segs: Maximum number of GSO segments
274   *	@sk_pacing_shift: scaling factor for TCP Small Queues
275   *	@sk_lingertime: %SO_LINGER l_linger setting
276   *	@sk_backlog: always used with the per-socket spinlock held
277   *	@sk_callback_lock: used with the callbacks in the end of this struct
278   *	@sk_error_queue: rarely used
279   *	@sk_prot_creator: sk_prot of original sock creator (see ipv6_setsockopt,
280   *			  IPV6_ADDRFORM for instance)
281   *	@sk_err: last error
282   *	@sk_err_soft: errors that don't cause failure but are the cause of a
283   *		      persistent failure not just 'timed out'
284   *	@sk_drops: raw/udp drops counter
285   *	@sk_ack_backlog: current listen backlog
286   *	@sk_max_ack_backlog: listen backlog set in listen()
287   *	@sk_uid: user id of owner
288   *	@sk_prefer_busy_poll: prefer busypolling over softirq processing
289   *	@sk_busy_poll_budget: napi processing budget when busypolling
290   *	@sk_priority: %SO_PRIORITY setting
291   *	@sk_type: socket type (%SOCK_STREAM, etc)
292   *	@sk_protocol: which protocol this socket belongs in this network family
293   *	@sk_peer_lock: lock protecting @sk_peer_pid and @sk_peer_cred
294   *	@sk_peer_pid: &struct pid for this socket's peer
295   *	@sk_peer_cred: %SO_PEERCRED setting
296   *	@sk_rcvlowat: %SO_RCVLOWAT setting
297   *	@sk_rcvtimeo: %SO_RCVTIMEO setting
298   *	@sk_sndtimeo: %SO_SNDTIMEO setting
299   *	@sk_txhash: computed flow hash for use on transmit
300   *	@sk_txrehash: enable TX hash rethink
301   *	@sk_filter: socket filtering instructions
302   *	@sk_timer: sock cleanup timer
303   *	@sk_stamp: time stamp of last packet received
304   *	@sk_stamp_seq: lock for accessing sk_stamp on 32 bit architectures only
305   *	@sk_tsflags: SO_TIMESTAMPING flags
306   *	@sk_use_task_frag: allow sk_page_frag() to use current->task_frag.
307   *			   Sockets that can be used under memory reclaim should
308   *			   set this to false.
309   *	@sk_bind_phc: SO_TIMESTAMPING bind PHC index of PTP virtual clock
310   *	              for timestamping
311   *	@sk_tskey: counter to disambiguate concurrent tstamp requests
312   *	@sk_zckey: counter to order MSG_ZEROCOPY notifications
313   *	@sk_socket: Identd and reporting IO signals
314   *	@sk_user_data: RPC layer private data. Write-protected by @sk_callback_lock.
315   *	@sk_frag: cached page frag
316   *	@sk_peek_off: current peek_offset value
317   *	@sk_send_head: front of stuff to transmit
318   *	@tcp_rtx_queue: TCP re-transmit queue [union with @sk_send_head]
319   *	@sk_security: used by security modules
320   *	@sk_mark: generic packet mark
321   *	@sk_cgrp_data: cgroup data for this cgroup
322   *	@sk_memcg: this socket's memory cgroup association
323   *	@sk_write_pending: a write to stream socket waits to start
324   *	@sk_disconnects: number of disconnect operations performed on this sock
325   *	@sk_state_change: callback to indicate change in the state of the sock
326   *	@sk_data_ready: callback to indicate there is data to be processed
327   *	@sk_write_space: callback to indicate there is bf sending space available
328   *	@sk_error_report: callback to indicate errors (e.g. %MSG_ERRQUEUE)
329   *	@sk_backlog_rcv: callback to process the backlog
330   *	@sk_validate_xmit_skb: ptr to an optional validate function
331   *	@sk_destruct: called at sock freeing time, i.e. when all refcnt == 0
332   *	@sk_reuseport_cb: reuseport group container
333   *	@sk_bpf_storage: ptr to cache and control for bpf_sk_storage
334   *	@sk_rcu: used during RCU grace period
335   *	@sk_clockid: clockid used by time-based scheduling (SO_TXTIME)
336   *	@sk_txtime_deadline_mode: set deadline mode for SO_TXTIME
337   *	@sk_txtime_report_errors: set report errors mode for SO_TXTIME
338   *	@sk_txtime_unused: unused txtime flags
339   *	@ns_tracker: tracker for netns reference
340   */
341 struct sock {
342 	/*
343 	 * Now struct inet_timewait_sock also uses sock_common, so please just
344 	 * don't add nothing before this first member (__sk_common) --acme
345 	 */
346 	struct sock_common	__sk_common;
347 #define sk_node			__sk_common.skc_node
348 #define sk_nulls_node		__sk_common.skc_nulls_node
349 #define sk_refcnt		__sk_common.skc_refcnt
350 #define sk_tx_queue_mapping	__sk_common.skc_tx_queue_mapping
351 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
352 #define sk_rx_queue_mapping	__sk_common.skc_rx_queue_mapping
353 #endif
354 
355 #define sk_dontcopy_begin	__sk_common.skc_dontcopy_begin
356 #define sk_dontcopy_end		__sk_common.skc_dontcopy_end
357 #define sk_hash			__sk_common.skc_hash
358 #define sk_portpair		__sk_common.skc_portpair
359 #define sk_num			__sk_common.skc_num
360 #define sk_dport		__sk_common.skc_dport
361 #define sk_addrpair		__sk_common.skc_addrpair
362 #define sk_daddr		__sk_common.skc_daddr
363 #define sk_rcv_saddr		__sk_common.skc_rcv_saddr
364 #define sk_family		__sk_common.skc_family
365 #define sk_state		__sk_common.skc_state
366 #define sk_reuse		__sk_common.skc_reuse
367 #define sk_reuseport		__sk_common.skc_reuseport
368 #define sk_ipv6only		__sk_common.skc_ipv6only
369 #define sk_net_refcnt		__sk_common.skc_net_refcnt
370 #define sk_bound_dev_if		__sk_common.skc_bound_dev_if
371 #define sk_bind_node		__sk_common.skc_bind_node
372 #define sk_prot			__sk_common.skc_prot
373 #define sk_net			__sk_common.skc_net
374 #define sk_v6_daddr		__sk_common.skc_v6_daddr
375 #define sk_v6_rcv_saddr	__sk_common.skc_v6_rcv_saddr
376 #define sk_cookie		__sk_common.skc_cookie
377 #define sk_incoming_cpu		__sk_common.skc_incoming_cpu
378 #define sk_flags		__sk_common.skc_flags
379 #define sk_rxhash		__sk_common.skc_rxhash
380 
381 	__cacheline_group_begin(sock_write_rx);
382 
383 	atomic_t		sk_drops;
384 	__s32			sk_peek_off;
385 	struct sk_buff_head	sk_error_queue;
386 	struct sk_buff_head	sk_receive_queue;
387 	/*
388 	 * The backlog queue is special, it is always used with
389 	 * the per-socket spinlock held and requires low latency
390 	 * access. Therefore we special case it's implementation.
391 	 * Note : rmem_alloc is in this structure to fill a hole
392 	 * on 64bit arches, not because its logically part of
393 	 * backlog.
394 	 */
395 	struct {
396 		atomic_t	rmem_alloc;
397 		int		len;
398 		struct sk_buff	*head;
399 		struct sk_buff	*tail;
400 	} sk_backlog;
401 #define sk_rmem_alloc sk_backlog.rmem_alloc
402 
403 	__cacheline_group_end(sock_write_rx);
404 
405 	__cacheline_group_begin(sock_read_rx);
406 	/* early demux fields */
407 	struct dst_entry __rcu	*sk_rx_dst;
408 	int			sk_rx_dst_ifindex;
409 	u32			sk_rx_dst_cookie;
410 
411 #ifdef CONFIG_NET_RX_BUSY_POLL
412 	unsigned int		sk_ll_usec;
413 	unsigned int		sk_napi_id;
414 	u16			sk_busy_poll_budget;
415 	u8			sk_prefer_busy_poll;
416 #endif
417 	u8			sk_userlocks;
418 	int			sk_rcvbuf;
419 
420 	struct sk_filter __rcu	*sk_filter;
421 	union {
422 		struct socket_wq __rcu	*sk_wq;
423 		/* private: */
424 		struct socket_wq	*sk_wq_raw;
425 		/* public: */
426 	};
427 
428 	void			(*sk_data_ready)(struct sock *sk);
429 	long			sk_rcvtimeo;
430 	int			sk_rcvlowat;
431 	__cacheline_group_end(sock_read_rx);
432 
433 	__cacheline_group_begin(sock_read_rxtx);
434 	int			sk_err;
435 	struct socket		*sk_socket;
436 	struct mem_cgroup	*sk_memcg;
437 #ifdef CONFIG_XFRM
438 	struct xfrm_policy __rcu *sk_policy[2];
439 #endif
440 	__cacheline_group_end(sock_read_rxtx);
441 
442 	__cacheline_group_begin(sock_write_rxtx);
443 	socket_lock_t		sk_lock;
444 	u32			sk_reserved_mem;
445 	int			sk_forward_alloc;
446 	u32			sk_tsflags;
447 	__cacheline_group_end(sock_write_rxtx);
448 
449 	__cacheline_group_begin(sock_write_tx);
450 	int			sk_write_pending;
451 	atomic_t		sk_omem_alloc;
452 	int			sk_sndbuf;
453 
454 	int			sk_wmem_queued;
455 	refcount_t		sk_wmem_alloc;
456 	unsigned long		sk_tsq_flags;
457 	union {
458 		struct sk_buff	*sk_send_head;
459 		struct rb_root	tcp_rtx_queue;
460 	};
461 	struct sk_buff_head	sk_write_queue;
462 	u32			sk_dst_pending_confirm;
463 	u32			sk_pacing_status; /* see enum sk_pacing */
464 	struct page_frag	sk_frag;
465 	struct timer_list	sk_timer;
466 
467 	unsigned long		sk_pacing_rate; /* bytes per second */
468 	atomic_t		sk_zckey;
469 	atomic_t		sk_tskey;
470 	__cacheline_group_end(sock_write_tx);
471 
472 	__cacheline_group_begin(sock_read_tx);
473 	unsigned long		sk_max_pacing_rate;
474 	long			sk_sndtimeo;
475 	u32			sk_priority;
476 	u32			sk_mark;
477 	struct dst_entry __rcu	*sk_dst_cache;
478 	netdev_features_t	sk_route_caps;
479 #ifdef CONFIG_SOCK_VALIDATE_XMIT
480 	struct sk_buff*		(*sk_validate_xmit_skb)(struct sock *sk,
481 							struct net_device *dev,
482 							struct sk_buff *skb);
483 #endif
484 	u16			sk_gso_type;
485 	u16			sk_gso_max_segs;
486 	unsigned int		sk_gso_max_size;
487 	gfp_t			sk_allocation;
488 	u32			sk_txhash;
489 	u8			sk_pacing_shift;
490 	bool			sk_use_task_frag;
491 	__cacheline_group_end(sock_read_tx);
492 
493 	/*
494 	 * Because of non atomicity rules, all
495 	 * changes are protected by socket lock.
496 	 */
497 	u8			sk_gso_disabled : 1,
498 				sk_kern_sock : 1,
499 				sk_no_check_tx : 1,
500 				sk_no_check_rx : 1;
501 	u8			sk_shutdown;
502 	u16			sk_type;
503 	u16			sk_protocol;
504 	unsigned long	        sk_lingertime;
505 	struct proto		*sk_prot_creator;
506 	rwlock_t		sk_callback_lock;
507 	int			sk_err_soft;
508 	u32			sk_ack_backlog;
509 	u32			sk_max_ack_backlog;
510 	kuid_t			sk_uid;
511 	spinlock_t		sk_peer_lock;
512 	int			sk_bind_phc;
513 	struct pid		*sk_peer_pid;
514 	const struct cred	*sk_peer_cred;
515 
516 	ktime_t			sk_stamp;
517 #if BITS_PER_LONG==32
518 	seqlock_t		sk_stamp_seq;
519 #endif
520 	int			sk_disconnects;
521 
522 	u8			sk_txrehash;
523 	u8			sk_clockid;
524 	u8			sk_txtime_deadline_mode : 1,
525 				sk_txtime_report_errors : 1,
526 				sk_txtime_unused : 6;
527 
528 	void			*sk_user_data;
529 #ifdef CONFIG_SECURITY
530 	void			*sk_security;
531 #endif
532 	struct sock_cgroup_data	sk_cgrp_data;
533 	void			(*sk_state_change)(struct sock *sk);
534 	void			(*sk_write_space)(struct sock *sk);
535 	void			(*sk_error_report)(struct sock *sk);
536 	int			(*sk_backlog_rcv)(struct sock *sk,
537 						  struct sk_buff *skb);
538 	void                    (*sk_destruct)(struct sock *sk);
539 	struct sock_reuseport __rcu	*sk_reuseport_cb;
540 #ifdef CONFIG_BPF_SYSCALL
541 	struct bpf_local_storage __rcu	*sk_bpf_storage;
542 #endif
543 	struct rcu_head		sk_rcu;
544 	netns_tracker		ns_tracker;
545 };
546 
547 enum sk_pacing {
548 	SK_PACING_NONE		= 0,
549 	SK_PACING_NEEDED	= 1,
550 	SK_PACING_FQ		= 2,
551 };
552 
553 /* flag bits in sk_user_data
554  *
555  * - SK_USER_DATA_NOCOPY:      Pointer stored in sk_user_data might
556  *   not be suitable for copying when cloning the socket. For instance,
557  *   it can point to a reference counted object. sk_user_data bottom
558  *   bit is set if pointer must not be copied.
559  *
560  * - SK_USER_DATA_BPF:         Mark whether sk_user_data field is
561  *   managed/owned by a BPF reuseport array. This bit should be set
562  *   when sk_user_data's sk is added to the bpf's reuseport_array.
563  *
564  * - SK_USER_DATA_PSOCK:       Mark whether pointer stored in
565  *   sk_user_data points to psock type. This bit should be set
566  *   when sk_user_data is assigned to a psock object.
567  */
568 #define SK_USER_DATA_NOCOPY	1UL
569 #define SK_USER_DATA_BPF	2UL
570 #define SK_USER_DATA_PSOCK	4UL
571 #define SK_USER_DATA_PTRMASK	~(SK_USER_DATA_NOCOPY | SK_USER_DATA_BPF |\
572 				  SK_USER_DATA_PSOCK)
573 
574 /**
575  * sk_user_data_is_nocopy - Test if sk_user_data pointer must not be copied
576  * @sk: socket
577  */
578 static inline bool sk_user_data_is_nocopy(const struct sock *sk)
579 {
580 	return ((uintptr_t)sk->sk_user_data & SK_USER_DATA_NOCOPY);
581 }
582 
583 #define __sk_user_data(sk) ((*((void __rcu **)&(sk)->sk_user_data)))
584 
585 /**
586  * __locked_read_sk_user_data_with_flags - return the pointer
587  * only if argument flags all has been set in sk_user_data. Otherwise
588  * return NULL
589  *
590  * @sk: socket
591  * @flags: flag bits
592  *
593  * The caller must be holding sk->sk_callback_lock.
594  */
595 static inline void *
596 __locked_read_sk_user_data_with_flags(const struct sock *sk,
597 				      uintptr_t flags)
598 {
599 	uintptr_t sk_user_data =
600 		(uintptr_t)rcu_dereference_check(__sk_user_data(sk),
601 						 lockdep_is_held(&sk->sk_callback_lock));
602 
603 	WARN_ON_ONCE(flags & SK_USER_DATA_PTRMASK);
604 
605 	if ((sk_user_data & flags) == flags)
606 		return (void *)(sk_user_data & SK_USER_DATA_PTRMASK);
607 	return NULL;
608 }
609 
610 /**
611  * __rcu_dereference_sk_user_data_with_flags - return the pointer
612  * only if argument flags all has been set in sk_user_data. Otherwise
613  * return NULL
614  *
615  * @sk: socket
616  * @flags: flag bits
617  */
618 static inline void *
619 __rcu_dereference_sk_user_data_with_flags(const struct sock *sk,
620 					  uintptr_t flags)
621 {
622 	uintptr_t sk_user_data = (uintptr_t)rcu_dereference(__sk_user_data(sk));
623 
624 	WARN_ON_ONCE(flags & SK_USER_DATA_PTRMASK);
625 
626 	if ((sk_user_data & flags) == flags)
627 		return (void *)(sk_user_data & SK_USER_DATA_PTRMASK);
628 	return NULL;
629 }
630 
631 #define rcu_dereference_sk_user_data(sk)				\
632 	__rcu_dereference_sk_user_data_with_flags(sk, 0)
633 #define __rcu_assign_sk_user_data_with_flags(sk, ptr, flags)		\
634 ({									\
635 	uintptr_t __tmp1 = (uintptr_t)(ptr),				\
636 		  __tmp2 = (uintptr_t)(flags);				\
637 	WARN_ON_ONCE(__tmp1 & ~SK_USER_DATA_PTRMASK);			\
638 	WARN_ON_ONCE(__tmp2 & SK_USER_DATA_PTRMASK);			\
639 	rcu_assign_pointer(__sk_user_data((sk)),			\
640 			   __tmp1 | __tmp2);				\
641 })
642 #define rcu_assign_sk_user_data(sk, ptr)				\
643 	__rcu_assign_sk_user_data_with_flags(sk, ptr, 0)
644 
645 static inline
646 struct net *sock_net(const struct sock *sk)
647 {
648 	return read_pnet(&sk->sk_net);
649 }
650 
651 static inline
652 void sock_net_set(struct sock *sk, struct net *net)
653 {
654 	write_pnet(&sk->sk_net, net);
655 }
656 
657 /*
658  * SK_CAN_REUSE and SK_NO_REUSE on a socket mean that the socket is OK
659  * or not whether his port will be reused by someone else. SK_FORCE_REUSE
660  * on a socket means that the socket will reuse everybody else's port
661  * without looking at the other's sk_reuse value.
662  */
663 
664 #define SK_NO_REUSE	0
665 #define SK_CAN_REUSE	1
666 #define SK_FORCE_REUSE	2
667 
668 int sk_set_peek_off(struct sock *sk, int val);
669 
670 static inline int sk_peek_offset(const struct sock *sk, int flags)
671 {
672 	if (unlikely(flags & MSG_PEEK)) {
673 		return READ_ONCE(sk->sk_peek_off);
674 	}
675 
676 	return 0;
677 }
678 
679 static inline void sk_peek_offset_bwd(struct sock *sk, int val)
680 {
681 	s32 off = READ_ONCE(sk->sk_peek_off);
682 
683 	if (unlikely(off >= 0)) {
684 		off = max_t(s32, off - val, 0);
685 		WRITE_ONCE(sk->sk_peek_off, off);
686 	}
687 }
688 
689 static inline void sk_peek_offset_fwd(struct sock *sk, int val)
690 {
691 	sk_peek_offset_bwd(sk, -val);
692 }
693 
694 /*
695  * Hashed lists helper routines
696  */
697 static inline struct sock *sk_entry(const struct hlist_node *node)
698 {
699 	return hlist_entry(node, struct sock, sk_node);
700 }
701 
702 static inline struct sock *__sk_head(const struct hlist_head *head)
703 {
704 	return hlist_entry(head->first, struct sock, sk_node);
705 }
706 
707 static inline struct sock *sk_head(const struct hlist_head *head)
708 {
709 	return hlist_empty(head) ? NULL : __sk_head(head);
710 }
711 
712 static inline struct sock *__sk_nulls_head(const struct hlist_nulls_head *head)
713 {
714 	return hlist_nulls_entry(head->first, struct sock, sk_nulls_node);
715 }
716 
717 static inline struct sock *sk_nulls_head(const struct hlist_nulls_head *head)
718 {
719 	return hlist_nulls_empty(head) ? NULL : __sk_nulls_head(head);
720 }
721 
722 static inline struct sock *sk_next(const struct sock *sk)
723 {
724 	return hlist_entry_safe(sk->sk_node.next, struct sock, sk_node);
725 }
726 
727 static inline struct sock *sk_nulls_next(const struct sock *sk)
728 {
729 	return (!is_a_nulls(sk->sk_nulls_node.next)) ?
730 		hlist_nulls_entry(sk->sk_nulls_node.next,
731 				  struct sock, sk_nulls_node) :
732 		NULL;
733 }
734 
735 static inline bool sk_unhashed(const struct sock *sk)
736 {
737 	return hlist_unhashed(&sk->sk_node);
738 }
739 
740 static inline bool sk_hashed(const struct sock *sk)
741 {
742 	return !sk_unhashed(sk);
743 }
744 
745 static inline void sk_node_init(struct hlist_node *node)
746 {
747 	node->pprev = NULL;
748 }
749 
750 static inline void __sk_del_node(struct sock *sk)
751 {
752 	__hlist_del(&sk->sk_node);
753 }
754 
755 /* NB: equivalent to hlist_del_init_rcu */
756 static inline bool __sk_del_node_init(struct sock *sk)
757 {
758 	if (sk_hashed(sk)) {
759 		__sk_del_node(sk);
760 		sk_node_init(&sk->sk_node);
761 		return true;
762 	}
763 	return false;
764 }
765 
766 /* Grab socket reference count. This operation is valid only
767    when sk is ALREADY grabbed f.e. it is found in hash table
768    or a list and the lookup is made under lock preventing hash table
769    modifications.
770  */
771 
772 static __always_inline void sock_hold(struct sock *sk)
773 {
774 	refcount_inc(&sk->sk_refcnt);
775 }
776 
777 /* Ungrab socket in the context, which assumes that socket refcnt
778    cannot hit zero, f.e. it is true in context of any socketcall.
779  */
780 static __always_inline void __sock_put(struct sock *sk)
781 {
782 	refcount_dec(&sk->sk_refcnt);
783 }
784 
785 static inline bool sk_del_node_init(struct sock *sk)
786 {
787 	bool rc = __sk_del_node_init(sk);
788 
789 	if (rc) {
790 		/* paranoid for a while -acme */
791 		WARN_ON(refcount_read(&sk->sk_refcnt) == 1);
792 		__sock_put(sk);
793 	}
794 	return rc;
795 }
796 #define sk_del_node_init_rcu(sk)	sk_del_node_init(sk)
797 
798 static inline bool __sk_nulls_del_node_init_rcu(struct sock *sk)
799 {
800 	if (sk_hashed(sk)) {
801 		hlist_nulls_del_init_rcu(&sk->sk_nulls_node);
802 		return true;
803 	}
804 	return false;
805 }
806 
807 static inline bool sk_nulls_del_node_init_rcu(struct sock *sk)
808 {
809 	bool rc = __sk_nulls_del_node_init_rcu(sk);
810 
811 	if (rc) {
812 		/* paranoid for a while -acme */
813 		WARN_ON(refcount_read(&sk->sk_refcnt) == 1);
814 		__sock_put(sk);
815 	}
816 	return rc;
817 }
818 
819 static inline void __sk_add_node(struct sock *sk, struct hlist_head *list)
820 {
821 	hlist_add_head(&sk->sk_node, list);
822 }
823 
824 static inline void sk_add_node(struct sock *sk, struct hlist_head *list)
825 {
826 	sock_hold(sk);
827 	__sk_add_node(sk, list);
828 }
829 
830 static inline void sk_add_node_rcu(struct sock *sk, struct hlist_head *list)
831 {
832 	sock_hold(sk);
833 	if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport &&
834 	    sk->sk_family == AF_INET6)
835 		hlist_add_tail_rcu(&sk->sk_node, list);
836 	else
837 		hlist_add_head_rcu(&sk->sk_node, list);
838 }
839 
840 static inline void sk_add_node_tail_rcu(struct sock *sk, struct hlist_head *list)
841 {
842 	sock_hold(sk);
843 	hlist_add_tail_rcu(&sk->sk_node, list);
844 }
845 
846 static inline void __sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
847 {
848 	hlist_nulls_add_head_rcu(&sk->sk_nulls_node, list);
849 }
850 
851 static inline void __sk_nulls_add_node_tail_rcu(struct sock *sk, struct hlist_nulls_head *list)
852 {
853 	hlist_nulls_add_tail_rcu(&sk->sk_nulls_node, list);
854 }
855 
856 static inline void sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
857 {
858 	sock_hold(sk);
859 	__sk_nulls_add_node_rcu(sk, list);
860 }
861 
862 static inline void __sk_del_bind_node(struct sock *sk)
863 {
864 	__hlist_del(&sk->sk_bind_node);
865 }
866 
867 static inline void sk_add_bind_node(struct sock *sk,
868 					struct hlist_head *list)
869 {
870 	hlist_add_head(&sk->sk_bind_node, list);
871 }
872 
873 #define sk_for_each(__sk, list) \
874 	hlist_for_each_entry(__sk, list, sk_node)
875 #define sk_for_each_rcu(__sk, list) \
876 	hlist_for_each_entry_rcu(__sk, list, sk_node)
877 #define sk_nulls_for_each(__sk, node, list) \
878 	hlist_nulls_for_each_entry(__sk, node, list, sk_nulls_node)
879 #define sk_nulls_for_each_rcu(__sk, node, list) \
880 	hlist_nulls_for_each_entry_rcu(__sk, node, list, sk_nulls_node)
881 #define sk_for_each_from(__sk) \
882 	hlist_for_each_entry_from(__sk, sk_node)
883 #define sk_nulls_for_each_from(__sk, node) \
884 	if (__sk && ({ node = &(__sk)->sk_nulls_node; 1; })) \
885 		hlist_nulls_for_each_entry_from(__sk, node, sk_nulls_node)
886 #define sk_for_each_safe(__sk, tmp, list) \
887 	hlist_for_each_entry_safe(__sk, tmp, list, sk_node)
888 #define sk_for_each_bound(__sk, list) \
889 	hlist_for_each_entry(__sk, list, sk_bind_node)
890 
891 /**
892  * sk_for_each_entry_offset_rcu - iterate over a list at a given struct offset
893  * @tpos:	the type * to use as a loop cursor.
894  * @pos:	the &struct hlist_node to use as a loop cursor.
895  * @head:	the head for your list.
896  * @offset:	offset of hlist_node within the struct.
897  *
898  */
899 #define sk_for_each_entry_offset_rcu(tpos, pos, head, offset)		       \
900 	for (pos = rcu_dereference(hlist_first_rcu(head));		       \
901 	     pos != NULL &&						       \
902 		({ tpos = (typeof(*tpos) *)((void *)pos - offset); 1;});       \
903 	     pos = rcu_dereference(hlist_next_rcu(pos)))
904 
905 static inline struct user_namespace *sk_user_ns(const struct sock *sk)
906 {
907 	/* Careful only use this in a context where these parameters
908 	 * can not change and must all be valid, such as recvmsg from
909 	 * userspace.
910 	 */
911 	return sk->sk_socket->file->f_cred->user_ns;
912 }
913 
914 /* Sock flags */
915 enum sock_flags {
916 	SOCK_DEAD,
917 	SOCK_DONE,
918 	SOCK_URGINLINE,
919 	SOCK_KEEPOPEN,
920 	SOCK_LINGER,
921 	SOCK_DESTROY,
922 	SOCK_BROADCAST,
923 	SOCK_TIMESTAMP,
924 	SOCK_ZAPPED,
925 	SOCK_USE_WRITE_QUEUE, /* whether to call sk->sk_write_space in sock_wfree */
926 	SOCK_DBG, /* %SO_DEBUG setting */
927 	SOCK_RCVTSTAMP, /* %SO_TIMESTAMP setting */
928 	SOCK_RCVTSTAMPNS, /* %SO_TIMESTAMPNS setting */
929 	SOCK_LOCALROUTE, /* route locally only, %SO_DONTROUTE setting */
930 	SOCK_MEMALLOC, /* VM depends on this socket for swapping */
931 	SOCK_TIMESTAMPING_RX_SOFTWARE,  /* %SOF_TIMESTAMPING_RX_SOFTWARE */
932 	SOCK_FASYNC, /* fasync() active */
933 	SOCK_RXQ_OVFL,
934 	SOCK_ZEROCOPY, /* buffers from userspace */
935 	SOCK_WIFI_STATUS, /* push wifi status to userspace */
936 	SOCK_NOFCS, /* Tell NIC not to do the Ethernet FCS.
937 		     * Will use last 4 bytes of packet sent from
938 		     * user-space instead.
939 		     */
940 	SOCK_FILTER_LOCKED, /* Filter cannot be changed anymore */
941 	SOCK_SELECT_ERR_QUEUE, /* Wake select on error queue */
942 	SOCK_RCU_FREE, /* wait rcu grace period in sk_destruct() */
943 	SOCK_TXTIME,
944 	SOCK_XDP, /* XDP is attached */
945 	SOCK_TSTAMP_NEW, /* Indicates 64 bit timestamps always */
946 	SOCK_RCVMARK, /* Receive SO_MARK  ancillary data with packet */
947 };
948 
949 #define SK_FLAGS_TIMESTAMP ((1UL << SOCK_TIMESTAMP) | (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE))
950 
951 static inline void sock_copy_flags(struct sock *nsk, const struct sock *osk)
952 {
953 	nsk->sk_flags = osk->sk_flags;
954 }
955 
956 static inline void sock_set_flag(struct sock *sk, enum sock_flags flag)
957 {
958 	__set_bit(flag, &sk->sk_flags);
959 }
960 
961 static inline void sock_reset_flag(struct sock *sk, enum sock_flags flag)
962 {
963 	__clear_bit(flag, &sk->sk_flags);
964 }
965 
966 static inline void sock_valbool_flag(struct sock *sk, enum sock_flags bit,
967 				     int valbool)
968 {
969 	if (valbool)
970 		sock_set_flag(sk, bit);
971 	else
972 		sock_reset_flag(sk, bit);
973 }
974 
975 static inline bool sock_flag(const struct sock *sk, enum sock_flags flag)
976 {
977 	return test_bit(flag, &sk->sk_flags);
978 }
979 
980 #ifdef CONFIG_NET
981 DECLARE_STATIC_KEY_FALSE(memalloc_socks_key);
982 static inline int sk_memalloc_socks(void)
983 {
984 	return static_branch_unlikely(&memalloc_socks_key);
985 }
986 
987 void __receive_sock(struct file *file);
988 #else
989 
990 static inline int sk_memalloc_socks(void)
991 {
992 	return 0;
993 }
994 
995 static inline void __receive_sock(struct file *file)
996 { }
997 #endif
998 
999 static inline gfp_t sk_gfp_mask(const struct sock *sk, gfp_t gfp_mask)
1000 {
1001 	return gfp_mask | (sk->sk_allocation & __GFP_MEMALLOC);
1002 }
1003 
1004 static inline void sk_acceptq_removed(struct sock *sk)
1005 {
1006 	WRITE_ONCE(sk->sk_ack_backlog, sk->sk_ack_backlog - 1);
1007 }
1008 
1009 static inline void sk_acceptq_added(struct sock *sk)
1010 {
1011 	WRITE_ONCE(sk->sk_ack_backlog, sk->sk_ack_backlog + 1);
1012 }
1013 
1014 /* Note: If you think the test should be:
1015  *	return READ_ONCE(sk->sk_ack_backlog) >= READ_ONCE(sk->sk_max_ack_backlog);
1016  * Then please take a look at commit 64a146513f8f ("[NET]: Revert incorrect accept queue backlog changes.")
1017  */
1018 static inline bool sk_acceptq_is_full(const struct sock *sk)
1019 {
1020 	return READ_ONCE(sk->sk_ack_backlog) > READ_ONCE(sk->sk_max_ack_backlog);
1021 }
1022 
1023 /*
1024  * Compute minimal free write space needed to queue new packets.
1025  */
1026 static inline int sk_stream_min_wspace(const struct sock *sk)
1027 {
1028 	return READ_ONCE(sk->sk_wmem_queued) >> 1;
1029 }
1030 
1031 static inline int sk_stream_wspace(const struct sock *sk)
1032 {
1033 	return READ_ONCE(sk->sk_sndbuf) - READ_ONCE(sk->sk_wmem_queued);
1034 }
1035 
1036 static inline void sk_wmem_queued_add(struct sock *sk, int val)
1037 {
1038 	WRITE_ONCE(sk->sk_wmem_queued, sk->sk_wmem_queued + val);
1039 }
1040 
1041 static inline void sk_forward_alloc_add(struct sock *sk, int val)
1042 {
1043 	/* Paired with lockless reads of sk->sk_forward_alloc */
1044 	WRITE_ONCE(sk->sk_forward_alloc, sk->sk_forward_alloc + val);
1045 }
1046 
1047 void sk_stream_write_space(struct sock *sk);
1048 
1049 /* OOB backlog add */
1050 static inline void __sk_add_backlog(struct sock *sk, struct sk_buff *skb)
1051 {
1052 	/* dont let skb dst not refcounted, we are going to leave rcu lock */
1053 	skb_dst_force(skb);
1054 
1055 	if (!sk->sk_backlog.tail)
1056 		WRITE_ONCE(sk->sk_backlog.head, skb);
1057 	else
1058 		sk->sk_backlog.tail->next = skb;
1059 
1060 	WRITE_ONCE(sk->sk_backlog.tail, skb);
1061 	skb->next = NULL;
1062 }
1063 
1064 /*
1065  * Take into account size of receive queue and backlog queue
1066  * Do not take into account this skb truesize,
1067  * to allow even a single big packet to come.
1068  */
1069 static inline bool sk_rcvqueues_full(const struct sock *sk, unsigned int limit)
1070 {
1071 	unsigned int qsize = sk->sk_backlog.len + atomic_read(&sk->sk_rmem_alloc);
1072 
1073 	return qsize > limit;
1074 }
1075 
1076 /* The per-socket spinlock must be held here. */
1077 static inline __must_check int sk_add_backlog(struct sock *sk, struct sk_buff *skb,
1078 					      unsigned int limit)
1079 {
1080 	if (sk_rcvqueues_full(sk, limit))
1081 		return -ENOBUFS;
1082 
1083 	/*
1084 	 * If the skb was allocated from pfmemalloc reserves, only
1085 	 * allow SOCK_MEMALLOC sockets to use it as this socket is
1086 	 * helping free memory
1087 	 */
1088 	if (skb_pfmemalloc(skb) && !sock_flag(sk, SOCK_MEMALLOC))
1089 		return -ENOMEM;
1090 
1091 	__sk_add_backlog(sk, skb);
1092 	sk->sk_backlog.len += skb->truesize;
1093 	return 0;
1094 }
1095 
1096 int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb);
1097 
1098 INDIRECT_CALLABLE_DECLARE(int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb));
1099 INDIRECT_CALLABLE_DECLARE(int tcp_v6_do_rcv(struct sock *sk, struct sk_buff *skb));
1100 
1101 static inline int sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
1102 {
1103 	if (sk_memalloc_socks() && skb_pfmemalloc(skb))
1104 		return __sk_backlog_rcv(sk, skb);
1105 
1106 	return INDIRECT_CALL_INET(sk->sk_backlog_rcv,
1107 				  tcp_v6_do_rcv,
1108 				  tcp_v4_do_rcv,
1109 				  sk, skb);
1110 }
1111 
1112 static inline void sk_incoming_cpu_update(struct sock *sk)
1113 {
1114 	int cpu = raw_smp_processor_id();
1115 
1116 	if (unlikely(READ_ONCE(sk->sk_incoming_cpu) != cpu))
1117 		WRITE_ONCE(sk->sk_incoming_cpu, cpu);
1118 }
1119 
1120 
1121 static inline void sock_rps_save_rxhash(struct sock *sk,
1122 					const struct sk_buff *skb)
1123 {
1124 #ifdef CONFIG_RPS
1125 	/* The following WRITE_ONCE() is paired with the READ_ONCE()
1126 	 * here, and another one in sock_rps_record_flow().
1127 	 */
1128 	if (unlikely(READ_ONCE(sk->sk_rxhash) != skb->hash))
1129 		WRITE_ONCE(sk->sk_rxhash, skb->hash);
1130 #endif
1131 }
1132 
1133 static inline void sock_rps_reset_rxhash(struct sock *sk)
1134 {
1135 #ifdef CONFIG_RPS
1136 	/* Paired with READ_ONCE() in sock_rps_record_flow() */
1137 	WRITE_ONCE(sk->sk_rxhash, 0);
1138 #endif
1139 }
1140 
1141 #define sk_wait_event(__sk, __timeo, __condition, __wait)		\
1142 	({	int __rc, __dis = __sk->sk_disconnects;			\
1143 		release_sock(__sk);					\
1144 		__rc = __condition;					\
1145 		if (!__rc) {						\
1146 			*(__timeo) = wait_woken(__wait,			\
1147 						TASK_INTERRUPTIBLE,	\
1148 						*(__timeo));		\
1149 		}							\
1150 		sched_annotate_sleep();					\
1151 		lock_sock(__sk);					\
1152 		__rc = __dis == __sk->sk_disconnects ? __condition : -EPIPE; \
1153 		__rc;							\
1154 	})
1155 
1156 int sk_stream_wait_connect(struct sock *sk, long *timeo_p);
1157 int sk_stream_wait_memory(struct sock *sk, long *timeo_p);
1158 void sk_stream_wait_close(struct sock *sk, long timeo_p);
1159 int sk_stream_error(struct sock *sk, int flags, int err);
1160 void sk_stream_kill_queues(struct sock *sk);
1161 void sk_set_memalloc(struct sock *sk);
1162 void sk_clear_memalloc(struct sock *sk);
1163 
1164 void __sk_flush_backlog(struct sock *sk);
1165 
1166 static inline bool sk_flush_backlog(struct sock *sk)
1167 {
1168 	if (unlikely(READ_ONCE(sk->sk_backlog.tail))) {
1169 		__sk_flush_backlog(sk);
1170 		return true;
1171 	}
1172 	return false;
1173 }
1174 
1175 int sk_wait_data(struct sock *sk, long *timeo, const struct sk_buff *skb);
1176 
1177 struct request_sock_ops;
1178 struct timewait_sock_ops;
1179 struct inet_hashinfo;
1180 struct raw_hashinfo;
1181 struct smc_hashinfo;
1182 struct module;
1183 struct sk_psock;
1184 
1185 /*
1186  * caches using SLAB_TYPESAFE_BY_RCU should let .next pointer from nulls nodes
1187  * un-modified. Special care is taken when initializing object to zero.
1188  */
1189 static inline void sk_prot_clear_nulls(struct sock *sk, int size)
1190 {
1191 	if (offsetof(struct sock, sk_node.next) != 0)
1192 		memset(sk, 0, offsetof(struct sock, sk_node.next));
1193 	memset(&sk->sk_node.pprev, 0,
1194 	       size - offsetof(struct sock, sk_node.pprev));
1195 }
1196 
1197 /* Networking protocol blocks we attach to sockets.
1198  * socket layer -> transport layer interface
1199  */
1200 struct proto {
1201 	void			(*close)(struct sock *sk,
1202 					long timeout);
1203 	int			(*pre_connect)(struct sock *sk,
1204 					struct sockaddr *uaddr,
1205 					int addr_len);
1206 	int			(*connect)(struct sock *sk,
1207 					struct sockaddr *uaddr,
1208 					int addr_len);
1209 	int			(*disconnect)(struct sock *sk, int flags);
1210 
1211 	struct sock *		(*accept)(struct sock *sk, int flags, int *err,
1212 					  bool kern);
1213 
1214 	int			(*ioctl)(struct sock *sk, int cmd,
1215 					 int *karg);
1216 	int			(*init)(struct sock *sk);
1217 	void			(*destroy)(struct sock *sk);
1218 	void			(*shutdown)(struct sock *sk, int how);
1219 	int			(*setsockopt)(struct sock *sk, int level,
1220 					int optname, sockptr_t optval,
1221 					unsigned int optlen);
1222 	int			(*getsockopt)(struct sock *sk, int level,
1223 					int optname, char __user *optval,
1224 					int __user *option);
1225 	void			(*keepalive)(struct sock *sk, int valbool);
1226 #ifdef CONFIG_COMPAT
1227 	int			(*compat_ioctl)(struct sock *sk,
1228 					unsigned int cmd, unsigned long arg);
1229 #endif
1230 	int			(*sendmsg)(struct sock *sk, struct msghdr *msg,
1231 					   size_t len);
1232 	int			(*recvmsg)(struct sock *sk, struct msghdr *msg,
1233 					   size_t len, int flags, int *addr_len);
1234 	void			(*splice_eof)(struct socket *sock);
1235 	int			(*bind)(struct sock *sk,
1236 					struct sockaddr *addr, int addr_len);
1237 	int			(*bind_add)(struct sock *sk,
1238 					struct sockaddr *addr, int addr_len);
1239 
1240 	int			(*backlog_rcv) (struct sock *sk,
1241 						struct sk_buff *skb);
1242 	bool			(*bpf_bypass_getsockopt)(int level,
1243 							 int optname);
1244 
1245 	void		(*release_cb)(struct sock *sk);
1246 
1247 	/* Keeping track of sk's, looking them up, and port selection methods. */
1248 	int			(*hash)(struct sock *sk);
1249 	void			(*unhash)(struct sock *sk);
1250 	void			(*rehash)(struct sock *sk);
1251 	int			(*get_port)(struct sock *sk, unsigned short snum);
1252 	void			(*put_port)(struct sock *sk);
1253 #ifdef CONFIG_BPF_SYSCALL
1254 	int			(*psock_update_sk_prot)(struct sock *sk,
1255 							struct sk_psock *psock,
1256 							bool restore);
1257 #endif
1258 
1259 	/* Keeping track of sockets in use */
1260 #ifdef CONFIG_PROC_FS
1261 	unsigned int		inuse_idx;
1262 #endif
1263 
1264 #if IS_ENABLED(CONFIG_MPTCP)
1265 	int			(*forward_alloc_get)(const struct sock *sk);
1266 #endif
1267 
1268 	bool			(*stream_memory_free)(const struct sock *sk, int wake);
1269 	bool			(*sock_is_readable)(struct sock *sk);
1270 	/* Memory pressure */
1271 	void			(*enter_memory_pressure)(struct sock *sk);
1272 	void			(*leave_memory_pressure)(struct sock *sk);
1273 	atomic_long_t		*memory_allocated;	/* Current allocated memory. */
1274 	int  __percpu		*per_cpu_fw_alloc;
1275 	struct percpu_counter	*sockets_allocated;	/* Current number of sockets. */
1276 
1277 	/*
1278 	 * Pressure flag: try to collapse.
1279 	 * Technical note: it is used by multiple contexts non atomically.
1280 	 * Make sure to use READ_ONCE()/WRITE_ONCE() for all reads/writes.
1281 	 * All the __sk_mem_schedule() is of this nature: accounting
1282 	 * is strict, actions are advisory and have some latency.
1283 	 */
1284 	unsigned long		*memory_pressure;
1285 	long			*sysctl_mem;
1286 
1287 	int			*sysctl_wmem;
1288 	int			*sysctl_rmem;
1289 	u32			sysctl_wmem_offset;
1290 	u32			sysctl_rmem_offset;
1291 
1292 	int			max_header;
1293 	bool			no_autobind;
1294 
1295 	struct kmem_cache	*slab;
1296 	unsigned int		obj_size;
1297 	unsigned int		ipv6_pinfo_offset;
1298 	slab_flags_t		slab_flags;
1299 	unsigned int		useroffset;	/* Usercopy region offset */
1300 	unsigned int		usersize;	/* Usercopy region size */
1301 
1302 	unsigned int __percpu	*orphan_count;
1303 
1304 	struct request_sock_ops	*rsk_prot;
1305 	struct timewait_sock_ops *twsk_prot;
1306 
1307 	union {
1308 		struct inet_hashinfo	*hashinfo;
1309 		struct udp_table	*udp_table;
1310 		struct raw_hashinfo	*raw_hash;
1311 		struct smc_hashinfo	*smc_hash;
1312 	} h;
1313 
1314 	struct module		*owner;
1315 
1316 	char			name[32];
1317 
1318 	struct list_head	node;
1319 	int			(*diag_destroy)(struct sock *sk, int err);
1320 } __randomize_layout;
1321 
1322 int proto_register(struct proto *prot, int alloc_slab);
1323 void proto_unregister(struct proto *prot);
1324 int sock_load_diag_module(int family, int protocol);
1325 
1326 INDIRECT_CALLABLE_DECLARE(bool tcp_stream_memory_free(const struct sock *sk, int wake));
1327 
1328 static inline int sk_forward_alloc_get(const struct sock *sk)
1329 {
1330 #if IS_ENABLED(CONFIG_MPTCP)
1331 	if (sk->sk_prot->forward_alloc_get)
1332 		return sk->sk_prot->forward_alloc_get(sk);
1333 #endif
1334 	return READ_ONCE(sk->sk_forward_alloc);
1335 }
1336 
1337 static inline bool __sk_stream_memory_free(const struct sock *sk, int wake)
1338 {
1339 	if (READ_ONCE(sk->sk_wmem_queued) >= READ_ONCE(sk->sk_sndbuf))
1340 		return false;
1341 
1342 	return sk->sk_prot->stream_memory_free ?
1343 		INDIRECT_CALL_INET_1(sk->sk_prot->stream_memory_free,
1344 				     tcp_stream_memory_free, sk, wake) : true;
1345 }
1346 
1347 static inline bool sk_stream_memory_free(const struct sock *sk)
1348 {
1349 	return __sk_stream_memory_free(sk, 0);
1350 }
1351 
1352 static inline bool __sk_stream_is_writeable(const struct sock *sk, int wake)
1353 {
1354 	return sk_stream_wspace(sk) >= sk_stream_min_wspace(sk) &&
1355 	       __sk_stream_memory_free(sk, wake);
1356 }
1357 
1358 static inline bool sk_stream_is_writeable(const struct sock *sk)
1359 {
1360 	return __sk_stream_is_writeable(sk, 0);
1361 }
1362 
1363 static inline int sk_under_cgroup_hierarchy(struct sock *sk,
1364 					    struct cgroup *ancestor)
1365 {
1366 #ifdef CONFIG_SOCK_CGROUP_DATA
1367 	return cgroup_is_descendant(sock_cgroup_ptr(&sk->sk_cgrp_data),
1368 				    ancestor);
1369 #else
1370 	return -ENOTSUPP;
1371 #endif
1372 }
1373 
1374 static inline bool sk_has_memory_pressure(const struct sock *sk)
1375 {
1376 	return sk->sk_prot->memory_pressure != NULL;
1377 }
1378 
1379 static inline bool sk_under_global_memory_pressure(const struct sock *sk)
1380 {
1381 	return sk->sk_prot->memory_pressure &&
1382 		!!READ_ONCE(*sk->sk_prot->memory_pressure);
1383 }
1384 
1385 static inline bool sk_under_memory_pressure(const struct sock *sk)
1386 {
1387 	if (!sk->sk_prot->memory_pressure)
1388 		return false;
1389 
1390 	if (mem_cgroup_sockets_enabled && sk->sk_memcg &&
1391 	    mem_cgroup_under_socket_pressure(sk->sk_memcg))
1392 		return true;
1393 
1394 	return !!READ_ONCE(*sk->sk_prot->memory_pressure);
1395 }
1396 
1397 static inline long
1398 proto_memory_allocated(const struct proto *prot)
1399 {
1400 	return max(0L, atomic_long_read(prot->memory_allocated));
1401 }
1402 
1403 static inline long
1404 sk_memory_allocated(const struct sock *sk)
1405 {
1406 	return proto_memory_allocated(sk->sk_prot);
1407 }
1408 
1409 /* 1 MB per cpu, in page units */
1410 #define SK_MEMORY_PCPU_RESERVE (1 << (20 - PAGE_SHIFT))
1411 extern int sysctl_mem_pcpu_rsv;
1412 
1413 static inline void
1414 sk_memory_allocated_add(struct sock *sk, int amt)
1415 {
1416 	int local_reserve;
1417 
1418 	preempt_disable();
1419 	local_reserve = __this_cpu_add_return(*sk->sk_prot->per_cpu_fw_alloc, amt);
1420 	if (local_reserve >= READ_ONCE(sysctl_mem_pcpu_rsv)) {
1421 		__this_cpu_sub(*sk->sk_prot->per_cpu_fw_alloc, local_reserve);
1422 		atomic_long_add(local_reserve, sk->sk_prot->memory_allocated);
1423 	}
1424 	preempt_enable();
1425 }
1426 
1427 static inline void
1428 sk_memory_allocated_sub(struct sock *sk, int amt)
1429 {
1430 	int local_reserve;
1431 
1432 	preempt_disable();
1433 	local_reserve = __this_cpu_sub_return(*sk->sk_prot->per_cpu_fw_alloc, amt);
1434 	if (local_reserve <= -READ_ONCE(sysctl_mem_pcpu_rsv)) {
1435 		__this_cpu_sub(*sk->sk_prot->per_cpu_fw_alloc, local_reserve);
1436 		atomic_long_add(local_reserve, sk->sk_prot->memory_allocated);
1437 	}
1438 	preempt_enable();
1439 }
1440 
1441 #define SK_ALLOC_PERCPU_COUNTER_BATCH 16
1442 
1443 static inline void sk_sockets_allocated_dec(struct sock *sk)
1444 {
1445 	percpu_counter_add_batch(sk->sk_prot->sockets_allocated, -1,
1446 				 SK_ALLOC_PERCPU_COUNTER_BATCH);
1447 }
1448 
1449 static inline void sk_sockets_allocated_inc(struct sock *sk)
1450 {
1451 	percpu_counter_add_batch(sk->sk_prot->sockets_allocated, 1,
1452 				 SK_ALLOC_PERCPU_COUNTER_BATCH);
1453 }
1454 
1455 static inline u64
1456 sk_sockets_allocated_read_positive(struct sock *sk)
1457 {
1458 	return percpu_counter_read_positive(sk->sk_prot->sockets_allocated);
1459 }
1460 
1461 static inline int
1462 proto_sockets_allocated_sum_positive(struct proto *prot)
1463 {
1464 	return percpu_counter_sum_positive(prot->sockets_allocated);
1465 }
1466 
1467 static inline bool
1468 proto_memory_pressure(struct proto *prot)
1469 {
1470 	if (!prot->memory_pressure)
1471 		return false;
1472 	return !!READ_ONCE(*prot->memory_pressure);
1473 }
1474 
1475 
1476 #ifdef CONFIG_PROC_FS
1477 #define PROTO_INUSE_NR	64	/* should be enough for the first time */
1478 struct prot_inuse {
1479 	int all;
1480 	int val[PROTO_INUSE_NR];
1481 };
1482 
1483 static inline void sock_prot_inuse_add(const struct net *net,
1484 				       const struct proto *prot, int val)
1485 {
1486 	this_cpu_add(net->core.prot_inuse->val[prot->inuse_idx], val);
1487 }
1488 
1489 static inline void sock_inuse_add(const struct net *net, int val)
1490 {
1491 	this_cpu_add(net->core.prot_inuse->all, val);
1492 }
1493 
1494 int sock_prot_inuse_get(struct net *net, struct proto *proto);
1495 int sock_inuse_get(struct net *net);
1496 #else
1497 static inline void sock_prot_inuse_add(const struct net *net,
1498 				       const struct proto *prot, int val)
1499 {
1500 }
1501 
1502 static inline void sock_inuse_add(const struct net *net, int val)
1503 {
1504 }
1505 #endif
1506 
1507 
1508 /* With per-bucket locks this operation is not-atomic, so that
1509  * this version is not worse.
1510  */
1511 static inline int __sk_prot_rehash(struct sock *sk)
1512 {
1513 	sk->sk_prot->unhash(sk);
1514 	return sk->sk_prot->hash(sk);
1515 }
1516 
1517 /* About 10 seconds */
1518 #define SOCK_DESTROY_TIME (10*HZ)
1519 
1520 /* Sockets 0-1023 can't be bound to unless you are superuser */
1521 #define PROT_SOCK	1024
1522 
1523 #define SHUTDOWN_MASK	3
1524 #define RCV_SHUTDOWN	1
1525 #define SEND_SHUTDOWN	2
1526 
1527 #define SOCK_BINDADDR_LOCK	4
1528 #define SOCK_BINDPORT_LOCK	8
1529 
1530 struct socket_alloc {
1531 	struct socket socket;
1532 	struct inode vfs_inode;
1533 };
1534 
1535 static inline struct socket *SOCKET_I(struct inode *inode)
1536 {
1537 	return &container_of(inode, struct socket_alloc, vfs_inode)->socket;
1538 }
1539 
1540 static inline struct inode *SOCK_INODE(struct socket *socket)
1541 {
1542 	return &container_of(socket, struct socket_alloc, socket)->vfs_inode;
1543 }
1544 
1545 /*
1546  * Functions for memory accounting
1547  */
1548 int __sk_mem_raise_allocated(struct sock *sk, int size, int amt, int kind);
1549 int __sk_mem_schedule(struct sock *sk, int size, int kind);
1550 void __sk_mem_reduce_allocated(struct sock *sk, int amount);
1551 void __sk_mem_reclaim(struct sock *sk, int amount);
1552 
1553 #define SK_MEM_SEND	0
1554 #define SK_MEM_RECV	1
1555 
1556 /* sysctl_mem values are in pages */
1557 static inline long sk_prot_mem_limits(const struct sock *sk, int index)
1558 {
1559 	return READ_ONCE(sk->sk_prot->sysctl_mem[index]);
1560 }
1561 
1562 static inline int sk_mem_pages(int amt)
1563 {
1564 	return (amt + PAGE_SIZE - 1) >> PAGE_SHIFT;
1565 }
1566 
1567 static inline bool sk_has_account(struct sock *sk)
1568 {
1569 	/* return true if protocol supports memory accounting */
1570 	return !!sk->sk_prot->memory_allocated;
1571 }
1572 
1573 static inline bool sk_wmem_schedule(struct sock *sk, int size)
1574 {
1575 	int delta;
1576 
1577 	if (!sk_has_account(sk))
1578 		return true;
1579 	delta = size - sk->sk_forward_alloc;
1580 	return delta <= 0 || __sk_mem_schedule(sk, delta, SK_MEM_SEND);
1581 }
1582 
1583 static inline bool
1584 sk_rmem_schedule(struct sock *sk, struct sk_buff *skb, int size)
1585 {
1586 	int delta;
1587 
1588 	if (!sk_has_account(sk))
1589 		return true;
1590 	delta = size - sk->sk_forward_alloc;
1591 	return delta <= 0 || __sk_mem_schedule(sk, delta, SK_MEM_RECV) ||
1592 		skb_pfmemalloc(skb);
1593 }
1594 
1595 static inline int sk_unused_reserved_mem(const struct sock *sk)
1596 {
1597 	int unused_mem;
1598 
1599 	if (likely(!sk->sk_reserved_mem))
1600 		return 0;
1601 
1602 	unused_mem = sk->sk_reserved_mem - sk->sk_wmem_queued -
1603 			atomic_read(&sk->sk_rmem_alloc);
1604 
1605 	return unused_mem > 0 ? unused_mem : 0;
1606 }
1607 
1608 static inline void sk_mem_reclaim(struct sock *sk)
1609 {
1610 	int reclaimable;
1611 
1612 	if (!sk_has_account(sk))
1613 		return;
1614 
1615 	reclaimable = sk->sk_forward_alloc - sk_unused_reserved_mem(sk);
1616 
1617 	if (reclaimable >= (int)PAGE_SIZE)
1618 		__sk_mem_reclaim(sk, reclaimable);
1619 }
1620 
1621 static inline void sk_mem_reclaim_final(struct sock *sk)
1622 {
1623 	sk->sk_reserved_mem = 0;
1624 	sk_mem_reclaim(sk);
1625 }
1626 
1627 static inline void sk_mem_charge(struct sock *sk, int size)
1628 {
1629 	if (!sk_has_account(sk))
1630 		return;
1631 	sk_forward_alloc_add(sk, -size);
1632 }
1633 
1634 static inline void sk_mem_uncharge(struct sock *sk, int size)
1635 {
1636 	if (!sk_has_account(sk))
1637 		return;
1638 	sk_forward_alloc_add(sk, size);
1639 	sk_mem_reclaim(sk);
1640 }
1641 
1642 /*
1643  * Macro so as to not evaluate some arguments when
1644  * lockdep is not enabled.
1645  *
1646  * Mark both the sk_lock and the sk_lock.slock as a
1647  * per-address-family lock class.
1648  */
1649 #define sock_lock_init_class_and_name(sk, sname, skey, name, key)	\
1650 do {									\
1651 	sk->sk_lock.owned = 0;						\
1652 	init_waitqueue_head(&sk->sk_lock.wq);				\
1653 	spin_lock_init(&(sk)->sk_lock.slock);				\
1654 	debug_check_no_locks_freed((void *)&(sk)->sk_lock,		\
1655 			sizeof((sk)->sk_lock));				\
1656 	lockdep_set_class_and_name(&(sk)->sk_lock.slock,		\
1657 				(skey), (sname));				\
1658 	lockdep_init_map(&(sk)->sk_lock.dep_map, (name), (key), 0);	\
1659 } while (0)
1660 
1661 static inline bool lockdep_sock_is_held(const struct sock *sk)
1662 {
1663 	return lockdep_is_held(&sk->sk_lock) ||
1664 	       lockdep_is_held(&sk->sk_lock.slock);
1665 }
1666 
1667 void lock_sock_nested(struct sock *sk, int subclass);
1668 
1669 static inline void lock_sock(struct sock *sk)
1670 {
1671 	lock_sock_nested(sk, 0);
1672 }
1673 
1674 void __lock_sock(struct sock *sk);
1675 void __release_sock(struct sock *sk);
1676 void release_sock(struct sock *sk);
1677 
1678 /* BH context may only use the following locking interface. */
1679 #define bh_lock_sock(__sk)	spin_lock(&((__sk)->sk_lock.slock))
1680 #define bh_lock_sock_nested(__sk) \
1681 				spin_lock_nested(&((__sk)->sk_lock.slock), \
1682 				SINGLE_DEPTH_NESTING)
1683 #define bh_unlock_sock(__sk)	spin_unlock(&((__sk)->sk_lock.slock))
1684 
1685 bool __lock_sock_fast(struct sock *sk) __acquires(&sk->sk_lock.slock);
1686 
1687 /**
1688  * lock_sock_fast - fast version of lock_sock
1689  * @sk: socket
1690  *
1691  * This version should be used for very small section, where process wont block
1692  * return false if fast path is taken:
1693  *
1694  *   sk_lock.slock locked, owned = 0, BH disabled
1695  *
1696  * return true if slow path is taken:
1697  *
1698  *   sk_lock.slock unlocked, owned = 1, BH enabled
1699  */
1700 static inline bool lock_sock_fast(struct sock *sk)
1701 {
1702 	/* The sk_lock has mutex_lock() semantics here. */
1703 	mutex_acquire(&sk->sk_lock.dep_map, 0, 0, _RET_IP_);
1704 
1705 	return __lock_sock_fast(sk);
1706 }
1707 
1708 /* fast socket lock variant for caller already holding a [different] socket lock */
1709 static inline bool lock_sock_fast_nested(struct sock *sk)
1710 {
1711 	mutex_acquire(&sk->sk_lock.dep_map, SINGLE_DEPTH_NESTING, 0, _RET_IP_);
1712 
1713 	return __lock_sock_fast(sk);
1714 }
1715 
1716 /**
1717  * unlock_sock_fast - complement of lock_sock_fast
1718  * @sk: socket
1719  * @slow: slow mode
1720  *
1721  * fast unlock socket for user context.
1722  * If slow mode is on, we call regular release_sock()
1723  */
1724 static inline void unlock_sock_fast(struct sock *sk, bool slow)
1725 	__releases(&sk->sk_lock.slock)
1726 {
1727 	if (slow) {
1728 		release_sock(sk);
1729 		__release(&sk->sk_lock.slock);
1730 	} else {
1731 		mutex_release(&sk->sk_lock.dep_map, _RET_IP_);
1732 		spin_unlock_bh(&sk->sk_lock.slock);
1733 	}
1734 }
1735 
1736 void sockopt_lock_sock(struct sock *sk);
1737 void sockopt_release_sock(struct sock *sk);
1738 bool sockopt_ns_capable(struct user_namespace *ns, int cap);
1739 bool sockopt_capable(int cap);
1740 
1741 /* Used by processes to "lock" a socket state, so that
1742  * interrupts and bottom half handlers won't change it
1743  * from under us. It essentially blocks any incoming
1744  * packets, so that we won't get any new data or any
1745  * packets that change the state of the socket.
1746  *
1747  * While locked, BH processing will add new packets to
1748  * the backlog queue.  This queue is processed by the
1749  * owner of the socket lock right before it is released.
1750  *
1751  * Since ~2.3.5 it is also exclusive sleep lock serializing
1752  * accesses from user process context.
1753  */
1754 
1755 static inline void sock_owned_by_me(const struct sock *sk)
1756 {
1757 #ifdef CONFIG_LOCKDEP
1758 	WARN_ON_ONCE(!lockdep_sock_is_held(sk) && debug_locks);
1759 #endif
1760 }
1761 
1762 static inline void sock_not_owned_by_me(const struct sock *sk)
1763 {
1764 #ifdef CONFIG_LOCKDEP
1765 	WARN_ON_ONCE(lockdep_sock_is_held(sk) && debug_locks);
1766 #endif
1767 }
1768 
1769 static inline bool sock_owned_by_user(const struct sock *sk)
1770 {
1771 	sock_owned_by_me(sk);
1772 	return sk->sk_lock.owned;
1773 }
1774 
1775 static inline bool sock_owned_by_user_nocheck(const struct sock *sk)
1776 {
1777 	return sk->sk_lock.owned;
1778 }
1779 
1780 static inline void sock_release_ownership(struct sock *sk)
1781 {
1782 	DEBUG_NET_WARN_ON_ONCE(!sock_owned_by_user_nocheck(sk));
1783 	sk->sk_lock.owned = 0;
1784 
1785 	/* The sk_lock has mutex_unlock() semantics: */
1786 	mutex_release(&sk->sk_lock.dep_map, _RET_IP_);
1787 }
1788 
1789 /* no reclassification while locks are held */
1790 static inline bool sock_allow_reclassification(const struct sock *csk)
1791 {
1792 	struct sock *sk = (struct sock *)csk;
1793 
1794 	return !sock_owned_by_user_nocheck(sk) &&
1795 		!spin_is_locked(&sk->sk_lock.slock);
1796 }
1797 
1798 struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
1799 		      struct proto *prot, int kern);
1800 void sk_free(struct sock *sk);
1801 void sk_destruct(struct sock *sk);
1802 struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority);
1803 void sk_free_unlock_clone(struct sock *sk);
1804 
1805 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
1806 			     gfp_t priority);
1807 void __sock_wfree(struct sk_buff *skb);
1808 void sock_wfree(struct sk_buff *skb);
1809 struct sk_buff *sock_omalloc(struct sock *sk, unsigned long size,
1810 			     gfp_t priority);
1811 void skb_orphan_partial(struct sk_buff *skb);
1812 void sock_rfree(struct sk_buff *skb);
1813 void sock_efree(struct sk_buff *skb);
1814 #ifdef CONFIG_INET
1815 void sock_edemux(struct sk_buff *skb);
1816 void sock_pfree(struct sk_buff *skb);
1817 #else
1818 #define sock_edemux sock_efree
1819 #endif
1820 
1821 int sk_setsockopt(struct sock *sk, int level, int optname,
1822 		  sockptr_t optval, unsigned int optlen);
1823 int sock_setsockopt(struct socket *sock, int level, int op,
1824 		    sockptr_t optval, unsigned int optlen);
1825 int do_sock_setsockopt(struct socket *sock, bool compat, int level,
1826 		       int optname, sockptr_t optval, int optlen);
1827 int do_sock_getsockopt(struct socket *sock, bool compat, int level,
1828 		       int optname, sockptr_t optval, sockptr_t optlen);
1829 
1830 int sk_getsockopt(struct sock *sk, int level, int optname,
1831 		  sockptr_t optval, sockptr_t optlen);
1832 int sock_gettstamp(struct socket *sock, void __user *userstamp,
1833 		   bool timeval, bool time32);
1834 struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
1835 				     unsigned long data_len, int noblock,
1836 				     int *errcode, int max_page_order);
1837 
1838 static inline struct sk_buff *sock_alloc_send_skb(struct sock *sk,
1839 						  unsigned long size,
1840 						  int noblock, int *errcode)
1841 {
1842 	return sock_alloc_send_pskb(sk, size, 0, noblock, errcode, 0);
1843 }
1844 
1845 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority);
1846 void sock_kfree_s(struct sock *sk, void *mem, int size);
1847 void sock_kzfree_s(struct sock *sk, void *mem, int size);
1848 void sk_send_sigurg(struct sock *sk);
1849 
1850 static inline void sock_replace_proto(struct sock *sk, struct proto *proto)
1851 {
1852 	if (sk->sk_socket)
1853 		clear_bit(SOCK_SUPPORT_ZC, &sk->sk_socket->flags);
1854 	WRITE_ONCE(sk->sk_prot, proto);
1855 }
1856 
1857 struct sockcm_cookie {
1858 	u64 transmit_time;
1859 	u32 mark;
1860 	u32 tsflags;
1861 };
1862 
1863 static inline void sockcm_init(struct sockcm_cookie *sockc,
1864 			       const struct sock *sk)
1865 {
1866 	*sockc = (struct sockcm_cookie) {
1867 		.tsflags = READ_ONCE(sk->sk_tsflags)
1868 	};
1869 }
1870 
1871 int __sock_cmsg_send(struct sock *sk, struct cmsghdr *cmsg,
1872 		     struct sockcm_cookie *sockc);
1873 int sock_cmsg_send(struct sock *sk, struct msghdr *msg,
1874 		   struct sockcm_cookie *sockc);
1875 
1876 /*
1877  * Functions to fill in entries in struct proto_ops when a protocol
1878  * does not implement a particular function.
1879  */
1880 int sock_no_bind(struct socket *, struct sockaddr *, int);
1881 int sock_no_connect(struct socket *, struct sockaddr *, int, int);
1882 int sock_no_socketpair(struct socket *, struct socket *);
1883 int sock_no_accept(struct socket *, struct socket *, int, bool);
1884 int sock_no_getname(struct socket *, struct sockaddr *, int);
1885 int sock_no_ioctl(struct socket *, unsigned int, unsigned long);
1886 int sock_no_listen(struct socket *, int);
1887 int sock_no_shutdown(struct socket *, int);
1888 int sock_no_sendmsg(struct socket *, struct msghdr *, size_t);
1889 int sock_no_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t len);
1890 int sock_no_recvmsg(struct socket *, struct msghdr *, size_t, int);
1891 int sock_no_mmap(struct file *file, struct socket *sock,
1892 		 struct vm_area_struct *vma);
1893 
1894 /*
1895  * Functions to fill in entries in struct proto_ops when a protocol
1896  * uses the inet style.
1897  */
1898 int sock_common_getsockopt(struct socket *sock, int level, int optname,
1899 				  char __user *optval, int __user *optlen);
1900 int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
1901 			int flags);
1902 int sock_common_setsockopt(struct socket *sock, int level, int optname,
1903 			   sockptr_t optval, unsigned int optlen);
1904 
1905 void sk_common_release(struct sock *sk);
1906 
1907 /*
1908  *	Default socket callbacks and setup code
1909  */
1910 
1911 /* Initialise core socket variables using an explicit uid. */
1912 void sock_init_data_uid(struct socket *sock, struct sock *sk, kuid_t uid);
1913 
1914 /* Initialise core socket variables.
1915  * Assumes struct socket *sock is embedded in a struct socket_alloc.
1916  */
1917 void sock_init_data(struct socket *sock, struct sock *sk);
1918 
1919 /*
1920  * Socket reference counting postulates.
1921  *
1922  * * Each user of socket SHOULD hold a reference count.
1923  * * Each access point to socket (an hash table bucket, reference from a list,
1924  *   running timer, skb in flight MUST hold a reference count.
1925  * * When reference count hits 0, it means it will never increase back.
1926  * * When reference count hits 0, it means that no references from
1927  *   outside exist to this socket and current process on current CPU
1928  *   is last user and may/should destroy this socket.
1929  * * sk_free is called from any context: process, BH, IRQ. When
1930  *   it is called, socket has no references from outside -> sk_free
1931  *   may release descendant resources allocated by the socket, but
1932  *   to the time when it is called, socket is NOT referenced by any
1933  *   hash tables, lists etc.
1934  * * Packets, delivered from outside (from network or from another process)
1935  *   and enqueued on receive/error queues SHOULD NOT grab reference count,
1936  *   when they sit in queue. Otherwise, packets will leak to hole, when
1937  *   socket is looked up by one cpu and unhasing is made by another CPU.
1938  *   It is true for udp/raw, netlink (leak to receive and error queues), tcp
1939  *   (leak to backlog). Packet socket does all the processing inside
1940  *   BR_NETPROTO_LOCK, so that it has not this race condition. UNIX sockets
1941  *   use separate SMP lock, so that they are prone too.
1942  */
1943 
1944 /* Ungrab socket and destroy it, if it was the last reference. */
1945 static inline void sock_put(struct sock *sk)
1946 {
1947 	if (refcount_dec_and_test(&sk->sk_refcnt))
1948 		sk_free(sk);
1949 }
1950 /* Generic version of sock_put(), dealing with all sockets
1951  * (TCP_TIMEWAIT, TCP_NEW_SYN_RECV, ESTABLISHED...)
1952  */
1953 void sock_gen_put(struct sock *sk);
1954 
1955 int __sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested,
1956 		     unsigned int trim_cap, bool refcounted);
1957 static inline int sk_receive_skb(struct sock *sk, struct sk_buff *skb,
1958 				 const int nested)
1959 {
1960 	return __sk_receive_skb(sk, skb, nested, 1, true);
1961 }
1962 
1963 static inline void sk_tx_queue_set(struct sock *sk, int tx_queue)
1964 {
1965 	/* sk_tx_queue_mapping accept only upto a 16-bit value */
1966 	if (WARN_ON_ONCE((unsigned short)tx_queue >= USHRT_MAX))
1967 		return;
1968 	/* Paired with READ_ONCE() in sk_tx_queue_get() and
1969 	 * other WRITE_ONCE() because socket lock might be not held.
1970 	 */
1971 	WRITE_ONCE(sk->sk_tx_queue_mapping, tx_queue);
1972 }
1973 
1974 #define NO_QUEUE_MAPPING	USHRT_MAX
1975 
1976 static inline void sk_tx_queue_clear(struct sock *sk)
1977 {
1978 	/* Paired with READ_ONCE() in sk_tx_queue_get() and
1979 	 * other WRITE_ONCE() because socket lock might be not held.
1980 	 */
1981 	WRITE_ONCE(sk->sk_tx_queue_mapping, NO_QUEUE_MAPPING);
1982 }
1983 
1984 static inline int sk_tx_queue_get(const struct sock *sk)
1985 {
1986 	if (sk) {
1987 		/* Paired with WRITE_ONCE() in sk_tx_queue_clear()
1988 		 * and sk_tx_queue_set().
1989 		 */
1990 		int val = READ_ONCE(sk->sk_tx_queue_mapping);
1991 
1992 		if (val != NO_QUEUE_MAPPING)
1993 			return val;
1994 	}
1995 	return -1;
1996 }
1997 
1998 static inline void __sk_rx_queue_set(struct sock *sk,
1999 				     const struct sk_buff *skb,
2000 				     bool force_set)
2001 {
2002 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
2003 	if (skb_rx_queue_recorded(skb)) {
2004 		u16 rx_queue = skb_get_rx_queue(skb);
2005 
2006 		if (force_set ||
2007 		    unlikely(READ_ONCE(sk->sk_rx_queue_mapping) != rx_queue))
2008 			WRITE_ONCE(sk->sk_rx_queue_mapping, rx_queue);
2009 	}
2010 #endif
2011 }
2012 
2013 static inline void sk_rx_queue_set(struct sock *sk, const struct sk_buff *skb)
2014 {
2015 	__sk_rx_queue_set(sk, skb, true);
2016 }
2017 
2018 static inline void sk_rx_queue_update(struct sock *sk, const struct sk_buff *skb)
2019 {
2020 	__sk_rx_queue_set(sk, skb, false);
2021 }
2022 
2023 static inline void sk_rx_queue_clear(struct sock *sk)
2024 {
2025 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
2026 	WRITE_ONCE(sk->sk_rx_queue_mapping, NO_QUEUE_MAPPING);
2027 #endif
2028 }
2029 
2030 static inline int sk_rx_queue_get(const struct sock *sk)
2031 {
2032 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
2033 	if (sk) {
2034 		int res = READ_ONCE(sk->sk_rx_queue_mapping);
2035 
2036 		if (res != NO_QUEUE_MAPPING)
2037 			return res;
2038 	}
2039 #endif
2040 
2041 	return -1;
2042 }
2043 
2044 static inline void sk_set_socket(struct sock *sk, struct socket *sock)
2045 {
2046 	sk->sk_socket = sock;
2047 }
2048 
2049 static inline wait_queue_head_t *sk_sleep(struct sock *sk)
2050 {
2051 	BUILD_BUG_ON(offsetof(struct socket_wq, wait) != 0);
2052 	return &rcu_dereference_raw(sk->sk_wq)->wait;
2053 }
2054 /* Detach socket from process context.
2055  * Announce socket dead, detach it from wait queue and inode.
2056  * Note that parent inode held reference count on this struct sock,
2057  * we do not release it in this function, because protocol
2058  * probably wants some additional cleanups or even continuing
2059  * to work with this socket (TCP).
2060  */
2061 static inline void sock_orphan(struct sock *sk)
2062 {
2063 	write_lock_bh(&sk->sk_callback_lock);
2064 	sock_set_flag(sk, SOCK_DEAD);
2065 	sk_set_socket(sk, NULL);
2066 	sk->sk_wq  = NULL;
2067 	write_unlock_bh(&sk->sk_callback_lock);
2068 }
2069 
2070 static inline void sock_graft(struct sock *sk, struct socket *parent)
2071 {
2072 	WARN_ON(parent->sk);
2073 	write_lock_bh(&sk->sk_callback_lock);
2074 	rcu_assign_pointer(sk->sk_wq, &parent->wq);
2075 	parent->sk = sk;
2076 	sk_set_socket(sk, parent);
2077 	sk->sk_uid = SOCK_INODE(parent)->i_uid;
2078 	security_sock_graft(sk, parent);
2079 	write_unlock_bh(&sk->sk_callback_lock);
2080 }
2081 
2082 kuid_t sock_i_uid(struct sock *sk);
2083 unsigned long __sock_i_ino(struct sock *sk);
2084 unsigned long sock_i_ino(struct sock *sk);
2085 
2086 static inline kuid_t sock_net_uid(const struct net *net, const struct sock *sk)
2087 {
2088 	return sk ? sk->sk_uid : make_kuid(net->user_ns, 0);
2089 }
2090 
2091 static inline u32 net_tx_rndhash(void)
2092 {
2093 	u32 v = get_random_u32();
2094 
2095 	return v ?: 1;
2096 }
2097 
2098 static inline void sk_set_txhash(struct sock *sk)
2099 {
2100 	/* This pairs with READ_ONCE() in skb_set_hash_from_sk() */
2101 	WRITE_ONCE(sk->sk_txhash, net_tx_rndhash());
2102 }
2103 
2104 static inline bool sk_rethink_txhash(struct sock *sk)
2105 {
2106 	if (sk->sk_txhash && sk->sk_txrehash == SOCK_TXREHASH_ENABLED) {
2107 		sk_set_txhash(sk);
2108 		return true;
2109 	}
2110 	return false;
2111 }
2112 
2113 static inline struct dst_entry *
2114 __sk_dst_get(const struct sock *sk)
2115 {
2116 	return rcu_dereference_check(sk->sk_dst_cache,
2117 				     lockdep_sock_is_held(sk));
2118 }
2119 
2120 static inline struct dst_entry *
2121 sk_dst_get(const struct sock *sk)
2122 {
2123 	struct dst_entry *dst;
2124 
2125 	rcu_read_lock();
2126 	dst = rcu_dereference(sk->sk_dst_cache);
2127 	if (dst && !rcuref_get(&dst->__rcuref))
2128 		dst = NULL;
2129 	rcu_read_unlock();
2130 	return dst;
2131 }
2132 
2133 static inline void __dst_negative_advice(struct sock *sk)
2134 {
2135 	struct dst_entry *ndst, *dst = __sk_dst_get(sk);
2136 
2137 	if (dst && dst->ops->negative_advice) {
2138 		ndst = dst->ops->negative_advice(dst);
2139 
2140 		if (ndst != dst) {
2141 			rcu_assign_pointer(sk->sk_dst_cache, ndst);
2142 			sk_tx_queue_clear(sk);
2143 			WRITE_ONCE(sk->sk_dst_pending_confirm, 0);
2144 		}
2145 	}
2146 }
2147 
2148 static inline void dst_negative_advice(struct sock *sk)
2149 {
2150 	sk_rethink_txhash(sk);
2151 	__dst_negative_advice(sk);
2152 }
2153 
2154 static inline void
2155 __sk_dst_set(struct sock *sk, struct dst_entry *dst)
2156 {
2157 	struct dst_entry *old_dst;
2158 
2159 	sk_tx_queue_clear(sk);
2160 	WRITE_ONCE(sk->sk_dst_pending_confirm, 0);
2161 	old_dst = rcu_dereference_protected(sk->sk_dst_cache,
2162 					    lockdep_sock_is_held(sk));
2163 	rcu_assign_pointer(sk->sk_dst_cache, dst);
2164 	dst_release(old_dst);
2165 }
2166 
2167 static inline void
2168 sk_dst_set(struct sock *sk, struct dst_entry *dst)
2169 {
2170 	struct dst_entry *old_dst;
2171 
2172 	sk_tx_queue_clear(sk);
2173 	WRITE_ONCE(sk->sk_dst_pending_confirm, 0);
2174 	old_dst = xchg((__force struct dst_entry **)&sk->sk_dst_cache, dst);
2175 	dst_release(old_dst);
2176 }
2177 
2178 static inline void
2179 __sk_dst_reset(struct sock *sk)
2180 {
2181 	__sk_dst_set(sk, NULL);
2182 }
2183 
2184 static inline void
2185 sk_dst_reset(struct sock *sk)
2186 {
2187 	sk_dst_set(sk, NULL);
2188 }
2189 
2190 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie);
2191 
2192 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie);
2193 
2194 static inline void sk_dst_confirm(struct sock *sk)
2195 {
2196 	if (!READ_ONCE(sk->sk_dst_pending_confirm))
2197 		WRITE_ONCE(sk->sk_dst_pending_confirm, 1);
2198 }
2199 
2200 static inline void sock_confirm_neigh(struct sk_buff *skb, struct neighbour *n)
2201 {
2202 	if (skb_get_dst_pending_confirm(skb)) {
2203 		struct sock *sk = skb->sk;
2204 
2205 		if (sk && READ_ONCE(sk->sk_dst_pending_confirm))
2206 			WRITE_ONCE(sk->sk_dst_pending_confirm, 0);
2207 		neigh_confirm(n);
2208 	}
2209 }
2210 
2211 bool sk_mc_loop(const struct sock *sk);
2212 
2213 static inline bool sk_can_gso(const struct sock *sk)
2214 {
2215 	return net_gso_ok(sk->sk_route_caps, sk->sk_gso_type);
2216 }
2217 
2218 void sk_setup_caps(struct sock *sk, struct dst_entry *dst);
2219 
2220 static inline void sk_gso_disable(struct sock *sk)
2221 {
2222 	sk->sk_gso_disabled = 1;
2223 	sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
2224 }
2225 
2226 static inline int skb_do_copy_data_nocache(struct sock *sk, struct sk_buff *skb,
2227 					   struct iov_iter *from, char *to,
2228 					   int copy, int offset)
2229 {
2230 	if (skb->ip_summed == CHECKSUM_NONE) {
2231 		__wsum csum = 0;
2232 		if (!csum_and_copy_from_iter_full(to, copy, &csum, from))
2233 			return -EFAULT;
2234 		skb->csum = csum_block_add(skb->csum, csum, offset);
2235 	} else if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY) {
2236 		if (!copy_from_iter_full_nocache(to, copy, from))
2237 			return -EFAULT;
2238 	} else if (!copy_from_iter_full(to, copy, from))
2239 		return -EFAULT;
2240 
2241 	return 0;
2242 }
2243 
2244 static inline int skb_add_data_nocache(struct sock *sk, struct sk_buff *skb,
2245 				       struct iov_iter *from, int copy)
2246 {
2247 	int err, offset = skb->len;
2248 
2249 	err = skb_do_copy_data_nocache(sk, skb, from, skb_put(skb, copy),
2250 				       copy, offset);
2251 	if (err)
2252 		__skb_trim(skb, offset);
2253 
2254 	return err;
2255 }
2256 
2257 static inline int skb_copy_to_page_nocache(struct sock *sk, struct iov_iter *from,
2258 					   struct sk_buff *skb,
2259 					   struct page *page,
2260 					   int off, int copy)
2261 {
2262 	int err;
2263 
2264 	err = skb_do_copy_data_nocache(sk, skb, from, page_address(page) + off,
2265 				       copy, skb->len);
2266 	if (err)
2267 		return err;
2268 
2269 	skb_len_add(skb, copy);
2270 	sk_wmem_queued_add(sk, copy);
2271 	sk_mem_charge(sk, copy);
2272 	return 0;
2273 }
2274 
2275 /**
2276  * sk_wmem_alloc_get - returns write allocations
2277  * @sk: socket
2278  *
2279  * Return: sk_wmem_alloc minus initial offset of one
2280  */
2281 static inline int sk_wmem_alloc_get(const struct sock *sk)
2282 {
2283 	return refcount_read(&sk->sk_wmem_alloc) - 1;
2284 }
2285 
2286 /**
2287  * sk_rmem_alloc_get - returns read allocations
2288  * @sk: socket
2289  *
2290  * Return: sk_rmem_alloc
2291  */
2292 static inline int sk_rmem_alloc_get(const struct sock *sk)
2293 {
2294 	return atomic_read(&sk->sk_rmem_alloc);
2295 }
2296 
2297 /**
2298  * sk_has_allocations - check if allocations are outstanding
2299  * @sk: socket
2300  *
2301  * Return: true if socket has write or read allocations
2302  */
2303 static inline bool sk_has_allocations(const struct sock *sk)
2304 {
2305 	return sk_wmem_alloc_get(sk) || sk_rmem_alloc_get(sk);
2306 }
2307 
2308 /**
2309  * skwq_has_sleeper - check if there are any waiting processes
2310  * @wq: struct socket_wq
2311  *
2312  * Return: true if socket_wq has waiting processes
2313  *
2314  * The purpose of the skwq_has_sleeper and sock_poll_wait is to wrap the memory
2315  * barrier call. They were added due to the race found within the tcp code.
2316  *
2317  * Consider following tcp code paths::
2318  *
2319  *   CPU1                CPU2
2320  *   sys_select          receive packet
2321  *   ...                 ...
2322  *   __add_wait_queue    update tp->rcv_nxt
2323  *   ...                 ...
2324  *   tp->rcv_nxt check   sock_def_readable
2325  *   ...                 {
2326  *   schedule               rcu_read_lock();
2327  *                          wq = rcu_dereference(sk->sk_wq);
2328  *                          if (wq && waitqueue_active(&wq->wait))
2329  *                              wake_up_interruptible(&wq->wait)
2330  *                          ...
2331  *                       }
2332  *
2333  * The race for tcp fires when the __add_wait_queue changes done by CPU1 stay
2334  * in its cache, and so does the tp->rcv_nxt update on CPU2 side.  The CPU1
2335  * could then endup calling schedule and sleep forever if there are no more
2336  * data on the socket.
2337  *
2338  */
2339 static inline bool skwq_has_sleeper(struct socket_wq *wq)
2340 {
2341 	return wq && wq_has_sleeper(&wq->wait);
2342 }
2343 
2344 /**
2345  * sock_poll_wait - place memory barrier behind the poll_wait call.
2346  * @filp:           file
2347  * @sock:           socket to wait on
2348  * @p:              poll_table
2349  *
2350  * See the comments in the wq_has_sleeper function.
2351  */
2352 static inline void sock_poll_wait(struct file *filp, struct socket *sock,
2353 				  poll_table *p)
2354 {
2355 	if (!poll_does_not_wait(p)) {
2356 		poll_wait(filp, &sock->wq.wait, p);
2357 		/* We need to be sure we are in sync with the
2358 		 * socket flags modification.
2359 		 *
2360 		 * This memory barrier is paired in the wq_has_sleeper.
2361 		 */
2362 		smp_mb();
2363 	}
2364 }
2365 
2366 static inline void skb_set_hash_from_sk(struct sk_buff *skb, struct sock *sk)
2367 {
2368 	/* This pairs with WRITE_ONCE() in sk_set_txhash() */
2369 	u32 txhash = READ_ONCE(sk->sk_txhash);
2370 
2371 	if (txhash) {
2372 		skb->l4_hash = 1;
2373 		skb->hash = txhash;
2374 	}
2375 }
2376 
2377 void skb_set_owner_w(struct sk_buff *skb, struct sock *sk);
2378 
2379 /*
2380  *	Queue a received datagram if it will fit. Stream and sequenced
2381  *	protocols can't normally use this as they need to fit buffers in
2382  *	and play with them.
2383  *
2384  *	Inlined as it's very short and called for pretty much every
2385  *	packet ever received.
2386  */
2387 static inline void skb_set_owner_r(struct sk_buff *skb, struct sock *sk)
2388 {
2389 	skb_orphan(skb);
2390 	skb->sk = sk;
2391 	skb->destructor = sock_rfree;
2392 	atomic_add(skb->truesize, &sk->sk_rmem_alloc);
2393 	sk_mem_charge(sk, skb->truesize);
2394 }
2395 
2396 static inline __must_check bool skb_set_owner_sk_safe(struct sk_buff *skb, struct sock *sk)
2397 {
2398 	if (sk && refcount_inc_not_zero(&sk->sk_refcnt)) {
2399 		skb_orphan(skb);
2400 		skb->destructor = sock_efree;
2401 		skb->sk = sk;
2402 		return true;
2403 	}
2404 	return false;
2405 }
2406 
2407 static inline struct sk_buff *skb_clone_and_charge_r(struct sk_buff *skb, struct sock *sk)
2408 {
2409 	skb = skb_clone(skb, sk_gfp_mask(sk, GFP_ATOMIC));
2410 	if (skb) {
2411 		if (sk_rmem_schedule(sk, skb, skb->truesize)) {
2412 			skb_set_owner_r(skb, sk);
2413 			return skb;
2414 		}
2415 		__kfree_skb(skb);
2416 	}
2417 	return NULL;
2418 }
2419 
2420 static inline void skb_prepare_for_gro(struct sk_buff *skb)
2421 {
2422 	if (skb->destructor != sock_wfree) {
2423 		skb_orphan(skb);
2424 		return;
2425 	}
2426 	skb->slow_gro = 1;
2427 }
2428 
2429 void sk_reset_timer(struct sock *sk, struct timer_list *timer,
2430 		    unsigned long expires);
2431 
2432 void sk_stop_timer(struct sock *sk, struct timer_list *timer);
2433 
2434 void sk_stop_timer_sync(struct sock *sk, struct timer_list *timer);
2435 
2436 int __sk_queue_drop_skb(struct sock *sk, struct sk_buff_head *sk_queue,
2437 			struct sk_buff *skb, unsigned int flags,
2438 			void (*destructor)(struct sock *sk,
2439 					   struct sk_buff *skb));
2440 int __sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
2441 
2442 int sock_queue_rcv_skb_reason(struct sock *sk, struct sk_buff *skb,
2443 			      enum skb_drop_reason *reason);
2444 
2445 static inline int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
2446 {
2447 	return sock_queue_rcv_skb_reason(sk, skb, NULL);
2448 }
2449 
2450 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb);
2451 struct sk_buff *sock_dequeue_err_skb(struct sock *sk);
2452 
2453 /*
2454  *	Recover an error report and clear atomically
2455  */
2456 
2457 static inline int sock_error(struct sock *sk)
2458 {
2459 	int err;
2460 
2461 	/* Avoid an atomic operation for the common case.
2462 	 * This is racy since another cpu/thread can change sk_err under us.
2463 	 */
2464 	if (likely(data_race(!sk->sk_err)))
2465 		return 0;
2466 
2467 	err = xchg(&sk->sk_err, 0);
2468 	return -err;
2469 }
2470 
2471 void sk_error_report(struct sock *sk);
2472 
2473 static inline unsigned long sock_wspace(struct sock *sk)
2474 {
2475 	int amt = 0;
2476 
2477 	if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
2478 		amt = sk->sk_sndbuf - refcount_read(&sk->sk_wmem_alloc);
2479 		if (amt < 0)
2480 			amt = 0;
2481 	}
2482 	return amt;
2483 }
2484 
2485 /* Note:
2486  *  We use sk->sk_wq_raw, from contexts knowing this
2487  *  pointer is not NULL and cannot disappear/change.
2488  */
2489 static inline void sk_set_bit(int nr, struct sock *sk)
2490 {
2491 	if ((nr == SOCKWQ_ASYNC_NOSPACE || nr == SOCKWQ_ASYNC_WAITDATA) &&
2492 	    !sock_flag(sk, SOCK_FASYNC))
2493 		return;
2494 
2495 	set_bit(nr, &sk->sk_wq_raw->flags);
2496 }
2497 
2498 static inline void sk_clear_bit(int nr, struct sock *sk)
2499 {
2500 	if ((nr == SOCKWQ_ASYNC_NOSPACE || nr == SOCKWQ_ASYNC_WAITDATA) &&
2501 	    !sock_flag(sk, SOCK_FASYNC))
2502 		return;
2503 
2504 	clear_bit(nr, &sk->sk_wq_raw->flags);
2505 }
2506 
2507 static inline void sk_wake_async(const struct sock *sk, int how, int band)
2508 {
2509 	if (sock_flag(sk, SOCK_FASYNC)) {
2510 		rcu_read_lock();
2511 		sock_wake_async(rcu_dereference(sk->sk_wq), how, band);
2512 		rcu_read_unlock();
2513 	}
2514 }
2515 
2516 /* Since sk_{r,w}mem_alloc sums skb->truesize, even a small frame might
2517  * need sizeof(sk_buff) + MTU + padding, unless net driver perform copybreak.
2518  * Note: for send buffers, TCP works better if we can build two skbs at
2519  * minimum.
2520  */
2521 #define TCP_SKB_MIN_TRUESIZE	(2048 + SKB_DATA_ALIGN(sizeof(struct sk_buff)))
2522 
2523 #define SOCK_MIN_SNDBUF		(TCP_SKB_MIN_TRUESIZE * 2)
2524 #define SOCK_MIN_RCVBUF		 TCP_SKB_MIN_TRUESIZE
2525 
2526 static inline void sk_stream_moderate_sndbuf(struct sock *sk)
2527 {
2528 	u32 val;
2529 
2530 	if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
2531 		return;
2532 
2533 	val = min(sk->sk_sndbuf, sk->sk_wmem_queued >> 1);
2534 	val = max_t(u32, val, sk_unused_reserved_mem(sk));
2535 
2536 	WRITE_ONCE(sk->sk_sndbuf, max_t(u32, val, SOCK_MIN_SNDBUF));
2537 }
2538 
2539 /**
2540  * sk_page_frag - return an appropriate page_frag
2541  * @sk: socket
2542  *
2543  * Use the per task page_frag instead of the per socket one for
2544  * optimization when we know that we're in process context and own
2545  * everything that's associated with %current.
2546  *
2547  * Both direct reclaim and page faults can nest inside other
2548  * socket operations and end up recursing into sk_page_frag()
2549  * while it's already in use: explicitly avoid task page_frag
2550  * when users disable sk_use_task_frag.
2551  *
2552  * Return: a per task page_frag if context allows that,
2553  * otherwise a per socket one.
2554  */
2555 static inline struct page_frag *sk_page_frag(struct sock *sk)
2556 {
2557 	if (sk->sk_use_task_frag)
2558 		return &current->task_frag;
2559 
2560 	return &sk->sk_frag;
2561 }
2562 
2563 bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag);
2564 
2565 /*
2566  *	Default write policy as shown to user space via poll/select/SIGIO
2567  */
2568 static inline bool sock_writeable(const struct sock *sk)
2569 {
2570 	return refcount_read(&sk->sk_wmem_alloc) < (READ_ONCE(sk->sk_sndbuf) >> 1);
2571 }
2572 
2573 static inline gfp_t gfp_any(void)
2574 {
2575 	return in_softirq() ? GFP_ATOMIC : GFP_KERNEL;
2576 }
2577 
2578 static inline gfp_t gfp_memcg_charge(void)
2579 {
2580 	return in_softirq() ? GFP_ATOMIC : GFP_KERNEL;
2581 }
2582 
2583 static inline long sock_rcvtimeo(const struct sock *sk, bool noblock)
2584 {
2585 	return noblock ? 0 : sk->sk_rcvtimeo;
2586 }
2587 
2588 static inline long sock_sndtimeo(const struct sock *sk, bool noblock)
2589 {
2590 	return noblock ? 0 : sk->sk_sndtimeo;
2591 }
2592 
2593 static inline int sock_rcvlowat(const struct sock *sk, int waitall, int len)
2594 {
2595 	int v = waitall ? len : min_t(int, READ_ONCE(sk->sk_rcvlowat), len);
2596 
2597 	return v ?: 1;
2598 }
2599 
2600 /* Alas, with timeout socket operations are not restartable.
2601  * Compare this to poll().
2602  */
2603 static inline int sock_intr_errno(long timeo)
2604 {
2605 	return timeo == MAX_SCHEDULE_TIMEOUT ? -ERESTARTSYS : -EINTR;
2606 }
2607 
2608 struct sock_skb_cb {
2609 	u32 dropcount;
2610 };
2611 
2612 /* Store sock_skb_cb at the end of skb->cb[] so protocol families
2613  * using skb->cb[] would keep using it directly and utilize its
2614  * alignement guarantee.
2615  */
2616 #define SOCK_SKB_CB_OFFSET ((sizeof_field(struct sk_buff, cb) - \
2617 			    sizeof(struct sock_skb_cb)))
2618 
2619 #define SOCK_SKB_CB(__skb) ((struct sock_skb_cb *)((__skb)->cb + \
2620 			    SOCK_SKB_CB_OFFSET))
2621 
2622 #define sock_skb_cb_check_size(size) \
2623 	BUILD_BUG_ON((size) > SOCK_SKB_CB_OFFSET)
2624 
2625 static inline void
2626 sock_skb_set_dropcount(const struct sock *sk, struct sk_buff *skb)
2627 {
2628 	SOCK_SKB_CB(skb)->dropcount = sock_flag(sk, SOCK_RXQ_OVFL) ?
2629 						atomic_read(&sk->sk_drops) : 0;
2630 }
2631 
2632 static inline void sk_drops_add(struct sock *sk, const struct sk_buff *skb)
2633 {
2634 	int segs = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
2635 
2636 	atomic_add(segs, &sk->sk_drops);
2637 }
2638 
2639 static inline ktime_t sock_read_timestamp(struct sock *sk)
2640 {
2641 #if BITS_PER_LONG==32
2642 	unsigned int seq;
2643 	ktime_t kt;
2644 
2645 	do {
2646 		seq = read_seqbegin(&sk->sk_stamp_seq);
2647 		kt = sk->sk_stamp;
2648 	} while (read_seqretry(&sk->sk_stamp_seq, seq));
2649 
2650 	return kt;
2651 #else
2652 	return READ_ONCE(sk->sk_stamp);
2653 #endif
2654 }
2655 
2656 static inline void sock_write_timestamp(struct sock *sk, ktime_t kt)
2657 {
2658 #if BITS_PER_LONG==32
2659 	write_seqlock(&sk->sk_stamp_seq);
2660 	sk->sk_stamp = kt;
2661 	write_sequnlock(&sk->sk_stamp_seq);
2662 #else
2663 	WRITE_ONCE(sk->sk_stamp, kt);
2664 #endif
2665 }
2666 
2667 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
2668 			   struct sk_buff *skb);
2669 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
2670 			     struct sk_buff *skb);
2671 
2672 static inline void
2673 sock_recv_timestamp(struct msghdr *msg, struct sock *sk, struct sk_buff *skb)
2674 {
2675 	struct skb_shared_hwtstamps *hwtstamps = skb_hwtstamps(skb);
2676 	u32 tsflags = READ_ONCE(sk->sk_tsflags);
2677 	ktime_t kt = skb->tstamp;
2678 	/*
2679 	 * generate control messages if
2680 	 * - receive time stamping in software requested
2681 	 * - software time stamp available and wanted
2682 	 * - hardware time stamps available and wanted
2683 	 */
2684 	if (sock_flag(sk, SOCK_RCVTSTAMP) ||
2685 	    (tsflags & SOF_TIMESTAMPING_RX_SOFTWARE) ||
2686 	    (kt && tsflags & SOF_TIMESTAMPING_SOFTWARE) ||
2687 	    (hwtstamps->hwtstamp &&
2688 	     (tsflags & SOF_TIMESTAMPING_RAW_HARDWARE)))
2689 		__sock_recv_timestamp(msg, sk, skb);
2690 	else
2691 		sock_write_timestamp(sk, kt);
2692 
2693 	if (sock_flag(sk, SOCK_WIFI_STATUS) && skb_wifi_acked_valid(skb))
2694 		__sock_recv_wifi_status(msg, sk, skb);
2695 }
2696 
2697 void __sock_recv_cmsgs(struct msghdr *msg, struct sock *sk,
2698 		       struct sk_buff *skb);
2699 
2700 #define SK_DEFAULT_STAMP (-1L * NSEC_PER_SEC)
2701 static inline void sock_recv_cmsgs(struct msghdr *msg, struct sock *sk,
2702 				   struct sk_buff *skb)
2703 {
2704 #define FLAGS_RECV_CMSGS ((1UL << SOCK_RXQ_OVFL)			| \
2705 			   (1UL << SOCK_RCVTSTAMP)			| \
2706 			   (1UL << SOCK_RCVMARK))
2707 #define TSFLAGS_ANY	  (SOF_TIMESTAMPING_SOFTWARE			| \
2708 			   SOF_TIMESTAMPING_RAW_HARDWARE)
2709 
2710 	if (sk->sk_flags & FLAGS_RECV_CMSGS ||
2711 	    READ_ONCE(sk->sk_tsflags) & TSFLAGS_ANY)
2712 		__sock_recv_cmsgs(msg, sk, skb);
2713 	else if (unlikely(sock_flag(sk, SOCK_TIMESTAMP)))
2714 		sock_write_timestamp(sk, skb->tstamp);
2715 	else if (unlikely(sock_read_timestamp(sk) == SK_DEFAULT_STAMP))
2716 		sock_write_timestamp(sk, 0);
2717 }
2718 
2719 void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags);
2720 
2721 /**
2722  * _sock_tx_timestamp - checks whether the outgoing packet is to be time stamped
2723  * @sk:		socket sending this packet
2724  * @tsflags:	timestamping flags to use
2725  * @tx_flags:	completed with instructions for time stamping
2726  * @tskey:      filled in with next sk_tskey (not for TCP, which uses seqno)
2727  *
2728  * Note: callers should take care of initial ``*tx_flags`` value (usually 0)
2729  */
2730 static inline void _sock_tx_timestamp(struct sock *sk, __u16 tsflags,
2731 				      __u8 *tx_flags, __u32 *tskey)
2732 {
2733 	if (unlikely(tsflags)) {
2734 		__sock_tx_timestamp(tsflags, tx_flags);
2735 		if (tsflags & SOF_TIMESTAMPING_OPT_ID && tskey &&
2736 		    tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK)
2737 			*tskey = atomic_inc_return(&sk->sk_tskey) - 1;
2738 	}
2739 	if (unlikely(sock_flag(sk, SOCK_WIFI_STATUS)))
2740 		*tx_flags |= SKBTX_WIFI_STATUS;
2741 }
2742 
2743 static inline void sock_tx_timestamp(struct sock *sk, __u16 tsflags,
2744 				     __u8 *tx_flags)
2745 {
2746 	_sock_tx_timestamp(sk, tsflags, tx_flags, NULL);
2747 }
2748 
2749 static inline void skb_setup_tx_timestamp(struct sk_buff *skb, __u16 tsflags)
2750 {
2751 	_sock_tx_timestamp(skb->sk, tsflags, &skb_shinfo(skb)->tx_flags,
2752 			   &skb_shinfo(skb)->tskey);
2753 }
2754 
2755 static inline bool sk_is_inet(const struct sock *sk)
2756 {
2757 	int family = READ_ONCE(sk->sk_family);
2758 
2759 	return family == AF_INET || family == AF_INET6;
2760 }
2761 
2762 static inline bool sk_is_tcp(const struct sock *sk)
2763 {
2764 	return sk_is_inet(sk) &&
2765 	       sk->sk_type == SOCK_STREAM &&
2766 	       sk->sk_protocol == IPPROTO_TCP;
2767 }
2768 
2769 static inline bool sk_is_udp(const struct sock *sk)
2770 {
2771 	return sk_is_inet(sk) &&
2772 	       sk->sk_type == SOCK_DGRAM &&
2773 	       sk->sk_protocol == IPPROTO_UDP;
2774 }
2775 
2776 static inline bool sk_is_stream_unix(const struct sock *sk)
2777 {
2778 	return sk->sk_family == AF_UNIX && sk->sk_type == SOCK_STREAM;
2779 }
2780 
2781 /**
2782  * sk_eat_skb - Release a skb if it is no longer needed
2783  * @sk: socket to eat this skb from
2784  * @skb: socket buffer to eat
2785  *
2786  * This routine must be called with interrupts disabled or with the socket
2787  * locked so that the sk_buff queue operation is ok.
2788 */
2789 static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb)
2790 {
2791 	__skb_unlink(skb, &sk->sk_receive_queue);
2792 	__kfree_skb(skb);
2793 }
2794 
2795 static inline bool
2796 skb_sk_is_prefetched(struct sk_buff *skb)
2797 {
2798 #ifdef CONFIG_INET
2799 	return skb->destructor == sock_pfree;
2800 #else
2801 	return false;
2802 #endif /* CONFIG_INET */
2803 }
2804 
2805 /* This helper checks if a socket is a full socket,
2806  * ie _not_ a timewait or request socket.
2807  */
2808 static inline bool sk_fullsock(const struct sock *sk)
2809 {
2810 	return (1 << sk->sk_state) & ~(TCPF_TIME_WAIT | TCPF_NEW_SYN_RECV);
2811 }
2812 
2813 static inline bool
2814 sk_is_refcounted(struct sock *sk)
2815 {
2816 	/* Only full sockets have sk->sk_flags. */
2817 	return !sk_fullsock(sk) || !sock_flag(sk, SOCK_RCU_FREE);
2818 }
2819 
2820 /* Checks if this SKB belongs to an HW offloaded socket
2821  * and whether any SW fallbacks are required based on dev.
2822  * Check decrypted mark in case skb_orphan() cleared socket.
2823  */
2824 static inline struct sk_buff *sk_validate_xmit_skb(struct sk_buff *skb,
2825 						   struct net_device *dev)
2826 {
2827 #ifdef CONFIG_SOCK_VALIDATE_XMIT
2828 	struct sock *sk = skb->sk;
2829 
2830 	if (sk && sk_fullsock(sk) && sk->sk_validate_xmit_skb) {
2831 		skb = sk->sk_validate_xmit_skb(sk, dev, skb);
2832 #ifdef CONFIG_TLS_DEVICE
2833 	} else if (unlikely(skb->decrypted)) {
2834 		pr_warn_ratelimited("unencrypted skb with no associated socket - dropping\n");
2835 		kfree_skb(skb);
2836 		skb = NULL;
2837 #endif
2838 	}
2839 #endif
2840 
2841 	return skb;
2842 }
2843 
2844 /* This helper checks if a socket is a LISTEN or NEW_SYN_RECV
2845  * SYNACK messages can be attached to either ones (depending on SYNCOOKIE)
2846  */
2847 static inline bool sk_listener(const struct sock *sk)
2848 {
2849 	return (1 << sk->sk_state) & (TCPF_LISTEN | TCPF_NEW_SYN_RECV);
2850 }
2851 
2852 void sock_enable_timestamp(struct sock *sk, enum sock_flags flag);
2853 int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len, int level,
2854 		       int type);
2855 
2856 bool sk_ns_capable(const struct sock *sk,
2857 		   struct user_namespace *user_ns, int cap);
2858 bool sk_capable(const struct sock *sk, int cap);
2859 bool sk_net_capable(const struct sock *sk, int cap);
2860 
2861 void sk_get_meminfo(const struct sock *sk, u32 *meminfo);
2862 
2863 /* Take into consideration the size of the struct sk_buff overhead in the
2864  * determination of these values, since that is non-constant across
2865  * platforms.  This makes socket queueing behavior and performance
2866  * not depend upon such differences.
2867  */
2868 #define _SK_MEM_PACKETS		256
2869 #define _SK_MEM_OVERHEAD	SKB_TRUESIZE(256)
2870 #define SK_WMEM_MAX		(_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
2871 #define SK_RMEM_MAX		(_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
2872 
2873 extern __u32 sysctl_wmem_max;
2874 extern __u32 sysctl_rmem_max;
2875 
2876 extern int sysctl_tstamp_allow_data;
2877 
2878 extern __u32 sysctl_wmem_default;
2879 extern __u32 sysctl_rmem_default;
2880 
2881 #define SKB_FRAG_PAGE_ORDER	get_order(32768)
2882 DECLARE_STATIC_KEY_FALSE(net_high_order_alloc_disable_key);
2883 
2884 static inline int sk_get_wmem0(const struct sock *sk, const struct proto *proto)
2885 {
2886 	/* Does this proto have per netns sysctl_wmem ? */
2887 	if (proto->sysctl_wmem_offset)
2888 		return READ_ONCE(*(int *)((void *)sock_net(sk) + proto->sysctl_wmem_offset));
2889 
2890 	return READ_ONCE(*proto->sysctl_wmem);
2891 }
2892 
2893 static inline int sk_get_rmem0(const struct sock *sk, const struct proto *proto)
2894 {
2895 	/* Does this proto have per netns sysctl_rmem ? */
2896 	if (proto->sysctl_rmem_offset)
2897 		return READ_ONCE(*(int *)((void *)sock_net(sk) + proto->sysctl_rmem_offset));
2898 
2899 	return READ_ONCE(*proto->sysctl_rmem);
2900 }
2901 
2902 /* Default TCP Small queue budget is ~1 ms of data (1sec >> 10)
2903  * Some wifi drivers need to tweak it to get more chunks.
2904  * They can use this helper from their ndo_start_xmit()
2905  */
2906 static inline void sk_pacing_shift_update(struct sock *sk, int val)
2907 {
2908 	if (!sk || !sk_fullsock(sk) || READ_ONCE(sk->sk_pacing_shift) == val)
2909 		return;
2910 	WRITE_ONCE(sk->sk_pacing_shift, val);
2911 }
2912 
2913 /* if a socket is bound to a device, check that the given device
2914  * index is either the same or that the socket is bound to an L3
2915  * master device and the given device index is also enslaved to
2916  * that L3 master
2917  */
2918 static inline bool sk_dev_equal_l3scope(struct sock *sk, int dif)
2919 {
2920 	int bound_dev_if = READ_ONCE(sk->sk_bound_dev_if);
2921 	int mdif;
2922 
2923 	if (!bound_dev_if || bound_dev_if == dif)
2924 		return true;
2925 
2926 	mdif = l3mdev_master_ifindex_by_index(sock_net(sk), dif);
2927 	if (mdif && mdif == bound_dev_if)
2928 		return true;
2929 
2930 	return false;
2931 }
2932 
2933 void sock_def_readable(struct sock *sk);
2934 
2935 int sock_bindtoindex(struct sock *sk, int ifindex, bool lock_sk);
2936 void sock_set_timestamp(struct sock *sk, int optname, bool valbool);
2937 int sock_set_timestamping(struct sock *sk, int optname,
2938 			  struct so_timestamping timestamping);
2939 
2940 void sock_enable_timestamps(struct sock *sk);
2941 void sock_no_linger(struct sock *sk);
2942 void sock_set_keepalive(struct sock *sk);
2943 void sock_set_priority(struct sock *sk, u32 priority);
2944 void sock_set_rcvbuf(struct sock *sk, int val);
2945 void sock_set_mark(struct sock *sk, u32 val);
2946 void sock_set_reuseaddr(struct sock *sk);
2947 void sock_set_reuseport(struct sock *sk);
2948 void sock_set_sndtimeo(struct sock *sk, s64 secs);
2949 
2950 int sock_bind_add(struct sock *sk, struct sockaddr *addr, int addr_len);
2951 
2952 int sock_get_timeout(long timeo, void *optval, bool old_timeval);
2953 int sock_copy_user_timeval(struct __kernel_sock_timeval *tv,
2954 			   sockptr_t optval, int optlen, bool old_timeval);
2955 
2956 int sock_ioctl_inout(struct sock *sk, unsigned int cmd,
2957 		     void __user *arg, void *karg, size_t size);
2958 int sk_ioctl(struct sock *sk, unsigned int cmd, void __user *arg);
2959 static inline bool sk_is_readable(struct sock *sk)
2960 {
2961 	if (sk->sk_prot->sock_is_readable)
2962 		return sk->sk_prot->sock_is_readable(sk);
2963 	return false;
2964 }
2965 #endif	/* _SOCK_H */
2966