xref: /linux/include/net/sock.h (revision b6459415b384cb829f0b2a4268f211c789f6cf0b)
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Definitions for the AF_INET socket handler.
8  *
9  * Version:	@(#)sock.h	1.0.4	05/13/93
10  *
11  * Authors:	Ross Biro
12  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
13  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
14  *		Florian La Roche <flla@stud.uni-sb.de>
15  *
16  * Fixes:
17  *		Alan Cox	:	Volatiles in skbuff pointers. See
18  *					skbuff comments. May be overdone,
19  *					better to prove they can be removed
20  *					than the reverse.
21  *		Alan Cox	:	Added a zapped field for tcp to note
22  *					a socket is reset and must stay shut up
23  *		Alan Cox	:	New fields for options
24  *	Pauline Middelink	:	identd support
25  *		Alan Cox	:	Eliminate low level recv/recvfrom
26  *		David S. Miller	:	New socket lookup architecture.
27  *              Steve Whitehouse:       Default routines for sock_ops
28  *              Arnaldo C. Melo :	removed net_pinfo, tp_pinfo and made
29  *              			protinfo be just a void pointer, as the
30  *              			protocol specific parts were moved to
31  *              			respective headers and ipv4/v6, etc now
32  *              			use private slabcaches for its socks
33  *              Pedro Hortas	:	New flags field for socket options
34  */
35 #ifndef _SOCK_H
36 #define _SOCK_H
37 
38 #include <linux/hardirq.h>
39 #include <linux/kernel.h>
40 #include <linux/list.h>
41 #include <linux/list_nulls.h>
42 #include <linux/timer.h>
43 #include <linux/cache.h>
44 #include <linux/bitops.h>
45 #include <linux/lockdep.h>
46 #include <linux/netdevice.h>
47 #include <linux/skbuff.h>	/* struct sk_buff */
48 #include <linux/mm.h>
49 #include <linux/security.h>
50 #include <linux/slab.h>
51 #include <linux/uaccess.h>
52 #include <linux/page_counter.h>
53 #include <linux/memcontrol.h>
54 #include <linux/static_key.h>
55 #include <linux/sched.h>
56 #include <linux/wait.h>
57 #include <linux/cgroup-defs.h>
58 #include <linux/rbtree.h>
59 #include <linux/rculist_nulls.h>
60 #include <linux/poll.h>
61 #include <linux/sockptr.h>
62 #include <linux/indirect_call_wrapper.h>
63 #include <linux/atomic.h>
64 #include <linux/refcount.h>
65 #include <linux/llist.h>
66 #include <net/dst.h>
67 #include <net/checksum.h>
68 #include <net/tcp_states.h>
69 #include <linux/net_tstamp.h>
70 #include <net/l3mdev.h>
71 #include <uapi/linux/socket.h>
72 
73 /*
74  * This structure really needs to be cleaned up.
75  * Most of it is for TCP, and not used by any of
76  * the other protocols.
77  */
78 
79 /* Define this to get the SOCK_DBG debugging facility. */
80 #define SOCK_DEBUGGING
81 #ifdef SOCK_DEBUGGING
82 #define SOCK_DEBUG(sk, msg...) do { if ((sk) && sock_flag((sk), SOCK_DBG)) \
83 					printk(KERN_DEBUG msg); } while (0)
84 #else
85 /* Validate arguments and do nothing */
86 static inline __printf(2, 3)
87 void SOCK_DEBUG(const struct sock *sk, const char *msg, ...)
88 {
89 }
90 #endif
91 
92 /* This is the per-socket lock.  The spinlock provides a synchronization
93  * between user contexts and software interrupt processing, whereas the
94  * mini-semaphore synchronizes multiple users amongst themselves.
95  */
96 typedef struct {
97 	spinlock_t		slock;
98 	int			owned;
99 	wait_queue_head_t	wq;
100 	/*
101 	 * We express the mutex-alike socket_lock semantics
102 	 * to the lock validator by explicitly managing
103 	 * the slock as a lock variant (in addition to
104 	 * the slock itself):
105 	 */
106 #ifdef CONFIG_DEBUG_LOCK_ALLOC
107 	struct lockdep_map dep_map;
108 #endif
109 } socket_lock_t;
110 
111 struct sock;
112 struct proto;
113 struct net;
114 
115 typedef __u32 __bitwise __portpair;
116 typedef __u64 __bitwise __addrpair;
117 
118 /**
119  *	struct sock_common - minimal network layer representation of sockets
120  *	@skc_daddr: Foreign IPv4 addr
121  *	@skc_rcv_saddr: Bound local IPv4 addr
122  *	@skc_addrpair: 8-byte-aligned __u64 union of @skc_daddr & @skc_rcv_saddr
123  *	@skc_hash: hash value used with various protocol lookup tables
124  *	@skc_u16hashes: two u16 hash values used by UDP lookup tables
125  *	@skc_dport: placeholder for inet_dport/tw_dport
126  *	@skc_num: placeholder for inet_num/tw_num
127  *	@skc_portpair: __u32 union of @skc_dport & @skc_num
128  *	@skc_family: network address family
129  *	@skc_state: Connection state
130  *	@skc_reuse: %SO_REUSEADDR setting
131  *	@skc_reuseport: %SO_REUSEPORT setting
132  *	@skc_ipv6only: socket is IPV6 only
133  *	@skc_net_refcnt: socket is using net ref counting
134  *	@skc_bound_dev_if: bound device index if != 0
135  *	@skc_bind_node: bind hash linkage for various protocol lookup tables
136  *	@skc_portaddr_node: second hash linkage for UDP/UDP-Lite protocol
137  *	@skc_prot: protocol handlers inside a network family
138  *	@skc_net: reference to the network namespace of this socket
139  *	@skc_v6_daddr: IPV6 destination address
140  *	@skc_v6_rcv_saddr: IPV6 source address
141  *	@skc_cookie: socket's cookie value
142  *	@skc_node: main hash linkage for various protocol lookup tables
143  *	@skc_nulls_node: main hash linkage for TCP/UDP/UDP-Lite protocol
144  *	@skc_tx_queue_mapping: tx queue number for this connection
145  *	@skc_rx_queue_mapping: rx queue number for this connection
146  *	@skc_flags: place holder for sk_flags
147  *		%SO_LINGER (l_onoff), %SO_BROADCAST, %SO_KEEPALIVE,
148  *		%SO_OOBINLINE settings, %SO_TIMESTAMPING settings
149  *	@skc_listener: connection request listener socket (aka rsk_listener)
150  *		[union with @skc_flags]
151  *	@skc_tw_dr: (aka tw_dr) ptr to &struct inet_timewait_death_row
152  *		[union with @skc_flags]
153  *	@skc_incoming_cpu: record/match cpu processing incoming packets
154  *	@skc_rcv_wnd: (aka rsk_rcv_wnd) TCP receive window size (possibly scaled)
155  *		[union with @skc_incoming_cpu]
156  *	@skc_tw_rcv_nxt: (aka tw_rcv_nxt) TCP window next expected seq number
157  *		[union with @skc_incoming_cpu]
158  *	@skc_refcnt: reference count
159  *
160  *	This is the minimal network layer representation of sockets, the header
161  *	for struct sock and struct inet_timewait_sock.
162  */
163 struct sock_common {
164 	/* skc_daddr and skc_rcv_saddr must be grouped on a 8 bytes aligned
165 	 * address on 64bit arches : cf INET_MATCH()
166 	 */
167 	union {
168 		__addrpair	skc_addrpair;
169 		struct {
170 			__be32	skc_daddr;
171 			__be32	skc_rcv_saddr;
172 		};
173 	};
174 	union  {
175 		unsigned int	skc_hash;
176 		__u16		skc_u16hashes[2];
177 	};
178 	/* skc_dport && skc_num must be grouped as well */
179 	union {
180 		__portpair	skc_portpair;
181 		struct {
182 			__be16	skc_dport;
183 			__u16	skc_num;
184 		};
185 	};
186 
187 	unsigned short		skc_family;
188 	volatile unsigned char	skc_state;
189 	unsigned char		skc_reuse:4;
190 	unsigned char		skc_reuseport:1;
191 	unsigned char		skc_ipv6only:1;
192 	unsigned char		skc_net_refcnt:1;
193 	int			skc_bound_dev_if;
194 	union {
195 		struct hlist_node	skc_bind_node;
196 		struct hlist_node	skc_portaddr_node;
197 	};
198 	struct proto		*skc_prot;
199 	possible_net_t		skc_net;
200 
201 #if IS_ENABLED(CONFIG_IPV6)
202 	struct in6_addr		skc_v6_daddr;
203 	struct in6_addr		skc_v6_rcv_saddr;
204 #endif
205 
206 	atomic64_t		skc_cookie;
207 
208 	/* following fields are padding to force
209 	 * offset(struct sock, sk_refcnt) == 128 on 64bit arches
210 	 * assuming IPV6 is enabled. We use this padding differently
211 	 * for different kind of 'sockets'
212 	 */
213 	union {
214 		unsigned long	skc_flags;
215 		struct sock	*skc_listener; /* request_sock */
216 		struct inet_timewait_death_row *skc_tw_dr; /* inet_timewait_sock */
217 	};
218 	/*
219 	 * fields between dontcopy_begin/dontcopy_end
220 	 * are not copied in sock_copy()
221 	 */
222 	/* private: */
223 	int			skc_dontcopy_begin[0];
224 	/* public: */
225 	union {
226 		struct hlist_node	skc_node;
227 		struct hlist_nulls_node skc_nulls_node;
228 	};
229 	unsigned short		skc_tx_queue_mapping;
230 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
231 	unsigned short		skc_rx_queue_mapping;
232 #endif
233 	union {
234 		int		skc_incoming_cpu;
235 		u32		skc_rcv_wnd;
236 		u32		skc_tw_rcv_nxt; /* struct tcp_timewait_sock  */
237 	};
238 
239 	refcount_t		skc_refcnt;
240 	/* private: */
241 	int                     skc_dontcopy_end[0];
242 	union {
243 		u32		skc_rxhash;
244 		u32		skc_window_clamp;
245 		u32		skc_tw_snd_nxt; /* struct tcp_timewait_sock */
246 	};
247 	/* public: */
248 };
249 
250 struct bpf_local_storage;
251 struct sk_filter;
252 
253 /**
254   *	struct sock - network layer representation of sockets
255   *	@__sk_common: shared layout with inet_timewait_sock
256   *	@sk_shutdown: mask of %SEND_SHUTDOWN and/or %RCV_SHUTDOWN
257   *	@sk_userlocks: %SO_SNDBUF and %SO_RCVBUF settings
258   *	@sk_lock:	synchronizer
259   *	@sk_kern_sock: True if sock is using kernel lock classes
260   *	@sk_rcvbuf: size of receive buffer in bytes
261   *	@sk_wq: sock wait queue and async head
262   *	@sk_rx_dst: receive input route used by early demux
263   *	@sk_rx_dst_ifindex: ifindex for @sk_rx_dst
264   *	@sk_rx_dst_cookie: cookie for @sk_rx_dst
265   *	@sk_dst_cache: destination cache
266   *	@sk_dst_pending_confirm: need to confirm neighbour
267   *	@sk_policy: flow policy
268   *	@sk_receive_queue: incoming packets
269   *	@sk_wmem_alloc: transmit queue bytes committed
270   *	@sk_tsq_flags: TCP Small Queues flags
271   *	@sk_write_queue: Packet sending queue
272   *	@sk_omem_alloc: "o" is "option" or "other"
273   *	@sk_wmem_queued: persistent queue size
274   *	@sk_forward_alloc: space allocated forward
275   *	@sk_reserved_mem: space reserved and non-reclaimable for the socket
276   *	@sk_napi_id: id of the last napi context to receive data for sk
277   *	@sk_ll_usec: usecs to busypoll when there is no data
278   *	@sk_allocation: allocation mode
279   *	@sk_pacing_rate: Pacing rate (if supported by transport/packet scheduler)
280   *	@sk_pacing_status: Pacing status (requested, handled by sch_fq)
281   *	@sk_max_pacing_rate: Maximum pacing rate (%SO_MAX_PACING_RATE)
282   *	@sk_sndbuf: size of send buffer in bytes
283   *	@__sk_flags_offset: empty field used to determine location of bitfield
284   *	@sk_padding: unused element for alignment
285   *	@sk_no_check_tx: %SO_NO_CHECK setting, set checksum in TX packets
286   *	@sk_no_check_rx: allow zero checksum in RX packets
287   *	@sk_route_caps: route capabilities (e.g. %NETIF_F_TSO)
288   *	@sk_gso_disabled: if set, NETIF_F_GSO_MASK is forbidden.
289   *	@sk_gso_type: GSO type (e.g. %SKB_GSO_TCPV4)
290   *	@sk_gso_max_size: Maximum GSO segment size to build
291   *	@sk_gso_max_segs: Maximum number of GSO segments
292   *	@sk_pacing_shift: scaling factor for TCP Small Queues
293   *	@sk_lingertime: %SO_LINGER l_linger setting
294   *	@sk_backlog: always used with the per-socket spinlock held
295   *	@defer_list: head of llist storing skbs to be freed
296   *	@sk_callback_lock: used with the callbacks in the end of this struct
297   *	@sk_error_queue: rarely used
298   *	@sk_prot_creator: sk_prot of original sock creator (see ipv6_setsockopt,
299   *			  IPV6_ADDRFORM for instance)
300   *	@sk_err: last error
301   *	@sk_err_soft: errors that don't cause failure but are the cause of a
302   *		      persistent failure not just 'timed out'
303   *	@sk_drops: raw/udp drops counter
304   *	@sk_ack_backlog: current listen backlog
305   *	@sk_max_ack_backlog: listen backlog set in listen()
306   *	@sk_uid: user id of owner
307   *	@sk_prefer_busy_poll: prefer busypolling over softirq processing
308   *	@sk_busy_poll_budget: napi processing budget when busypolling
309   *	@sk_priority: %SO_PRIORITY setting
310   *	@sk_type: socket type (%SOCK_STREAM, etc)
311   *	@sk_protocol: which protocol this socket belongs in this network family
312   *	@sk_peer_lock: lock protecting @sk_peer_pid and @sk_peer_cred
313   *	@sk_peer_pid: &struct pid for this socket's peer
314   *	@sk_peer_cred: %SO_PEERCRED setting
315   *	@sk_rcvlowat: %SO_RCVLOWAT setting
316   *	@sk_rcvtimeo: %SO_RCVTIMEO setting
317   *	@sk_sndtimeo: %SO_SNDTIMEO setting
318   *	@sk_txhash: computed flow hash for use on transmit
319   *	@sk_filter: socket filtering instructions
320   *	@sk_timer: sock cleanup timer
321   *	@sk_stamp: time stamp of last packet received
322   *	@sk_stamp_seq: lock for accessing sk_stamp on 32 bit architectures only
323   *	@sk_tsflags: SO_TIMESTAMPING flags
324   *	@sk_bind_phc: SO_TIMESTAMPING bind PHC index of PTP virtual clock
325   *	              for timestamping
326   *	@sk_tskey: counter to disambiguate concurrent tstamp requests
327   *	@sk_zckey: counter to order MSG_ZEROCOPY notifications
328   *	@sk_socket: Identd and reporting IO signals
329   *	@sk_user_data: RPC layer private data
330   *	@sk_frag: cached page frag
331   *	@sk_peek_off: current peek_offset value
332   *	@sk_send_head: front of stuff to transmit
333   *	@tcp_rtx_queue: TCP re-transmit queue [union with @sk_send_head]
334   *	@sk_security: used by security modules
335   *	@sk_mark: generic packet mark
336   *	@sk_cgrp_data: cgroup data for this cgroup
337   *	@sk_memcg: this socket's memory cgroup association
338   *	@sk_write_pending: a write to stream socket waits to start
339   *	@sk_state_change: callback to indicate change in the state of the sock
340   *	@sk_data_ready: callback to indicate there is data to be processed
341   *	@sk_write_space: callback to indicate there is bf sending space available
342   *	@sk_error_report: callback to indicate errors (e.g. %MSG_ERRQUEUE)
343   *	@sk_backlog_rcv: callback to process the backlog
344   *	@sk_validate_xmit_skb: ptr to an optional validate function
345   *	@sk_destruct: called at sock freeing time, i.e. when all refcnt == 0
346   *	@sk_reuseport_cb: reuseport group container
347   *	@sk_bpf_storage: ptr to cache and control for bpf_sk_storage
348   *	@sk_rcu: used during RCU grace period
349   *	@sk_clockid: clockid used by time-based scheduling (SO_TXTIME)
350   *	@sk_txtime_deadline_mode: set deadline mode for SO_TXTIME
351   *	@sk_txtime_report_errors: set report errors mode for SO_TXTIME
352   *	@sk_txtime_unused: unused txtime flags
353   *	@ns_tracker: tracker for netns reference
354   */
355 struct sock {
356 	/*
357 	 * Now struct inet_timewait_sock also uses sock_common, so please just
358 	 * don't add nothing before this first member (__sk_common) --acme
359 	 */
360 	struct sock_common	__sk_common;
361 #define sk_node			__sk_common.skc_node
362 #define sk_nulls_node		__sk_common.skc_nulls_node
363 #define sk_refcnt		__sk_common.skc_refcnt
364 #define sk_tx_queue_mapping	__sk_common.skc_tx_queue_mapping
365 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
366 #define sk_rx_queue_mapping	__sk_common.skc_rx_queue_mapping
367 #endif
368 
369 #define sk_dontcopy_begin	__sk_common.skc_dontcopy_begin
370 #define sk_dontcopy_end		__sk_common.skc_dontcopy_end
371 #define sk_hash			__sk_common.skc_hash
372 #define sk_portpair		__sk_common.skc_portpair
373 #define sk_num			__sk_common.skc_num
374 #define sk_dport		__sk_common.skc_dport
375 #define sk_addrpair		__sk_common.skc_addrpair
376 #define sk_daddr		__sk_common.skc_daddr
377 #define sk_rcv_saddr		__sk_common.skc_rcv_saddr
378 #define sk_family		__sk_common.skc_family
379 #define sk_state		__sk_common.skc_state
380 #define sk_reuse		__sk_common.skc_reuse
381 #define sk_reuseport		__sk_common.skc_reuseport
382 #define sk_ipv6only		__sk_common.skc_ipv6only
383 #define sk_net_refcnt		__sk_common.skc_net_refcnt
384 #define sk_bound_dev_if		__sk_common.skc_bound_dev_if
385 #define sk_bind_node		__sk_common.skc_bind_node
386 #define sk_prot			__sk_common.skc_prot
387 #define sk_net			__sk_common.skc_net
388 #define sk_v6_daddr		__sk_common.skc_v6_daddr
389 #define sk_v6_rcv_saddr	__sk_common.skc_v6_rcv_saddr
390 #define sk_cookie		__sk_common.skc_cookie
391 #define sk_incoming_cpu		__sk_common.skc_incoming_cpu
392 #define sk_flags		__sk_common.skc_flags
393 #define sk_rxhash		__sk_common.skc_rxhash
394 
395 	/* early demux fields */
396 	struct dst_entry	*sk_rx_dst;
397 	int			sk_rx_dst_ifindex;
398 	u32			sk_rx_dst_cookie;
399 
400 	socket_lock_t		sk_lock;
401 	atomic_t		sk_drops;
402 	int			sk_rcvlowat;
403 	struct sk_buff_head	sk_error_queue;
404 	struct sk_buff_head	sk_receive_queue;
405 	/*
406 	 * The backlog queue is special, it is always used with
407 	 * the per-socket spinlock held and requires low latency
408 	 * access. Therefore we special case it's implementation.
409 	 * Note : rmem_alloc is in this structure to fill a hole
410 	 * on 64bit arches, not because its logically part of
411 	 * backlog.
412 	 */
413 	struct {
414 		atomic_t	rmem_alloc;
415 		int		len;
416 		struct sk_buff	*head;
417 		struct sk_buff	*tail;
418 	} sk_backlog;
419 	struct llist_head defer_list;
420 
421 #define sk_rmem_alloc sk_backlog.rmem_alloc
422 
423 	int			sk_forward_alloc;
424 	u32			sk_reserved_mem;
425 #ifdef CONFIG_NET_RX_BUSY_POLL
426 	unsigned int		sk_ll_usec;
427 	/* ===== mostly read cache line ===== */
428 	unsigned int		sk_napi_id;
429 #endif
430 	int			sk_rcvbuf;
431 
432 	struct sk_filter __rcu	*sk_filter;
433 	union {
434 		struct socket_wq __rcu	*sk_wq;
435 		/* private: */
436 		struct socket_wq	*sk_wq_raw;
437 		/* public: */
438 	};
439 #ifdef CONFIG_XFRM
440 	struct xfrm_policy __rcu *sk_policy[2];
441 #endif
442 
443 	struct dst_entry __rcu	*sk_dst_cache;
444 	atomic_t		sk_omem_alloc;
445 	int			sk_sndbuf;
446 
447 	/* ===== cache line for TX ===== */
448 	int			sk_wmem_queued;
449 	refcount_t		sk_wmem_alloc;
450 	unsigned long		sk_tsq_flags;
451 	union {
452 		struct sk_buff	*sk_send_head;
453 		struct rb_root	tcp_rtx_queue;
454 	};
455 	struct sk_buff_head	sk_write_queue;
456 	__s32			sk_peek_off;
457 	int			sk_write_pending;
458 	__u32			sk_dst_pending_confirm;
459 	u32			sk_pacing_status; /* see enum sk_pacing */
460 	long			sk_sndtimeo;
461 	struct timer_list	sk_timer;
462 	__u32			sk_priority;
463 	__u32			sk_mark;
464 	unsigned long		sk_pacing_rate; /* bytes per second */
465 	unsigned long		sk_max_pacing_rate;
466 	struct page_frag	sk_frag;
467 	netdev_features_t	sk_route_caps;
468 	int			sk_gso_type;
469 	unsigned int		sk_gso_max_size;
470 	gfp_t			sk_allocation;
471 	__u32			sk_txhash;
472 
473 	/*
474 	 * Because of non atomicity rules, all
475 	 * changes are protected by socket lock.
476 	 */
477 	u8			sk_gso_disabled : 1,
478 				sk_kern_sock : 1,
479 				sk_no_check_tx : 1,
480 				sk_no_check_rx : 1,
481 				sk_userlocks : 4;
482 	u8			sk_pacing_shift;
483 	u16			sk_type;
484 	u16			sk_protocol;
485 	u16			sk_gso_max_segs;
486 	unsigned long	        sk_lingertime;
487 	struct proto		*sk_prot_creator;
488 	rwlock_t		sk_callback_lock;
489 	int			sk_err,
490 				sk_err_soft;
491 	u32			sk_ack_backlog;
492 	u32			sk_max_ack_backlog;
493 	kuid_t			sk_uid;
494 #ifdef CONFIG_NET_RX_BUSY_POLL
495 	u8			sk_prefer_busy_poll;
496 	u16			sk_busy_poll_budget;
497 #endif
498 	spinlock_t		sk_peer_lock;
499 	int			sk_bind_phc;
500 	struct pid		*sk_peer_pid;
501 	const struct cred	*sk_peer_cred;
502 
503 	long			sk_rcvtimeo;
504 	ktime_t			sk_stamp;
505 #if BITS_PER_LONG==32
506 	seqlock_t		sk_stamp_seq;
507 #endif
508 	u16			sk_tsflags;
509 	u8			sk_shutdown;
510 	u32			sk_tskey;
511 	atomic_t		sk_zckey;
512 
513 	u8			sk_clockid;
514 	u8			sk_txtime_deadline_mode : 1,
515 				sk_txtime_report_errors : 1,
516 				sk_txtime_unused : 6;
517 
518 	struct socket		*sk_socket;
519 	void			*sk_user_data;
520 #ifdef CONFIG_SECURITY
521 	void			*sk_security;
522 #endif
523 	struct sock_cgroup_data	sk_cgrp_data;
524 	struct mem_cgroup	*sk_memcg;
525 	void			(*sk_state_change)(struct sock *sk);
526 	void			(*sk_data_ready)(struct sock *sk);
527 	void			(*sk_write_space)(struct sock *sk);
528 	void			(*sk_error_report)(struct sock *sk);
529 	int			(*sk_backlog_rcv)(struct sock *sk,
530 						  struct sk_buff *skb);
531 #ifdef CONFIG_SOCK_VALIDATE_XMIT
532 	struct sk_buff*		(*sk_validate_xmit_skb)(struct sock *sk,
533 							struct net_device *dev,
534 							struct sk_buff *skb);
535 #endif
536 	void                    (*sk_destruct)(struct sock *sk);
537 	struct sock_reuseport __rcu	*sk_reuseport_cb;
538 #ifdef CONFIG_BPF_SYSCALL
539 	struct bpf_local_storage __rcu	*sk_bpf_storage;
540 #endif
541 	struct rcu_head		sk_rcu;
542 	netns_tracker		ns_tracker;
543 };
544 
545 enum sk_pacing {
546 	SK_PACING_NONE		= 0,
547 	SK_PACING_NEEDED	= 1,
548 	SK_PACING_FQ		= 2,
549 };
550 
551 /* Pointer stored in sk_user_data might not be suitable for copying
552  * when cloning the socket. For instance, it can point to a reference
553  * counted object. sk_user_data bottom bit is set if pointer must not
554  * be copied.
555  */
556 #define SK_USER_DATA_NOCOPY	1UL
557 #define SK_USER_DATA_BPF	2UL	/* Managed by BPF */
558 #define SK_USER_DATA_PTRMASK	~(SK_USER_DATA_NOCOPY | SK_USER_DATA_BPF)
559 
560 /**
561  * sk_user_data_is_nocopy - Test if sk_user_data pointer must not be copied
562  * @sk: socket
563  */
564 static inline bool sk_user_data_is_nocopy(const struct sock *sk)
565 {
566 	return ((uintptr_t)sk->sk_user_data & SK_USER_DATA_NOCOPY);
567 }
568 
569 #define __sk_user_data(sk) ((*((void __rcu **)&(sk)->sk_user_data)))
570 
571 #define rcu_dereference_sk_user_data(sk)				\
572 ({									\
573 	void *__tmp = rcu_dereference(__sk_user_data((sk)));		\
574 	(void *)((uintptr_t)__tmp & SK_USER_DATA_PTRMASK);		\
575 })
576 #define rcu_assign_sk_user_data(sk, ptr)				\
577 ({									\
578 	uintptr_t __tmp = (uintptr_t)(ptr);				\
579 	WARN_ON_ONCE(__tmp & ~SK_USER_DATA_PTRMASK);			\
580 	rcu_assign_pointer(__sk_user_data((sk)), __tmp);		\
581 })
582 #define rcu_assign_sk_user_data_nocopy(sk, ptr)				\
583 ({									\
584 	uintptr_t __tmp = (uintptr_t)(ptr);				\
585 	WARN_ON_ONCE(__tmp & ~SK_USER_DATA_PTRMASK);			\
586 	rcu_assign_pointer(__sk_user_data((sk)),			\
587 			   __tmp | SK_USER_DATA_NOCOPY);		\
588 })
589 
590 /*
591  * SK_CAN_REUSE and SK_NO_REUSE on a socket mean that the socket is OK
592  * or not whether his port will be reused by someone else. SK_FORCE_REUSE
593  * on a socket means that the socket will reuse everybody else's port
594  * without looking at the other's sk_reuse value.
595  */
596 
597 #define SK_NO_REUSE	0
598 #define SK_CAN_REUSE	1
599 #define SK_FORCE_REUSE	2
600 
601 int sk_set_peek_off(struct sock *sk, int val);
602 
603 static inline int sk_peek_offset(struct sock *sk, int flags)
604 {
605 	if (unlikely(flags & MSG_PEEK)) {
606 		return READ_ONCE(sk->sk_peek_off);
607 	}
608 
609 	return 0;
610 }
611 
612 static inline void sk_peek_offset_bwd(struct sock *sk, int val)
613 {
614 	s32 off = READ_ONCE(sk->sk_peek_off);
615 
616 	if (unlikely(off >= 0)) {
617 		off = max_t(s32, off - val, 0);
618 		WRITE_ONCE(sk->sk_peek_off, off);
619 	}
620 }
621 
622 static inline void sk_peek_offset_fwd(struct sock *sk, int val)
623 {
624 	sk_peek_offset_bwd(sk, -val);
625 }
626 
627 /*
628  * Hashed lists helper routines
629  */
630 static inline struct sock *sk_entry(const struct hlist_node *node)
631 {
632 	return hlist_entry(node, struct sock, sk_node);
633 }
634 
635 static inline struct sock *__sk_head(const struct hlist_head *head)
636 {
637 	return hlist_entry(head->first, struct sock, sk_node);
638 }
639 
640 static inline struct sock *sk_head(const struct hlist_head *head)
641 {
642 	return hlist_empty(head) ? NULL : __sk_head(head);
643 }
644 
645 static inline struct sock *__sk_nulls_head(const struct hlist_nulls_head *head)
646 {
647 	return hlist_nulls_entry(head->first, struct sock, sk_nulls_node);
648 }
649 
650 static inline struct sock *sk_nulls_head(const struct hlist_nulls_head *head)
651 {
652 	return hlist_nulls_empty(head) ? NULL : __sk_nulls_head(head);
653 }
654 
655 static inline struct sock *sk_next(const struct sock *sk)
656 {
657 	return hlist_entry_safe(sk->sk_node.next, struct sock, sk_node);
658 }
659 
660 static inline struct sock *sk_nulls_next(const struct sock *sk)
661 {
662 	return (!is_a_nulls(sk->sk_nulls_node.next)) ?
663 		hlist_nulls_entry(sk->sk_nulls_node.next,
664 				  struct sock, sk_nulls_node) :
665 		NULL;
666 }
667 
668 static inline bool sk_unhashed(const struct sock *sk)
669 {
670 	return hlist_unhashed(&sk->sk_node);
671 }
672 
673 static inline bool sk_hashed(const struct sock *sk)
674 {
675 	return !sk_unhashed(sk);
676 }
677 
678 static inline void sk_node_init(struct hlist_node *node)
679 {
680 	node->pprev = NULL;
681 }
682 
683 static inline void sk_nulls_node_init(struct hlist_nulls_node *node)
684 {
685 	node->pprev = NULL;
686 }
687 
688 static inline void __sk_del_node(struct sock *sk)
689 {
690 	__hlist_del(&sk->sk_node);
691 }
692 
693 /* NB: equivalent to hlist_del_init_rcu */
694 static inline bool __sk_del_node_init(struct sock *sk)
695 {
696 	if (sk_hashed(sk)) {
697 		__sk_del_node(sk);
698 		sk_node_init(&sk->sk_node);
699 		return true;
700 	}
701 	return false;
702 }
703 
704 /* Grab socket reference count. This operation is valid only
705    when sk is ALREADY grabbed f.e. it is found in hash table
706    or a list and the lookup is made under lock preventing hash table
707    modifications.
708  */
709 
710 static __always_inline void sock_hold(struct sock *sk)
711 {
712 	refcount_inc(&sk->sk_refcnt);
713 }
714 
715 /* Ungrab socket in the context, which assumes that socket refcnt
716    cannot hit zero, f.e. it is true in context of any socketcall.
717  */
718 static __always_inline void __sock_put(struct sock *sk)
719 {
720 	refcount_dec(&sk->sk_refcnt);
721 }
722 
723 static inline bool sk_del_node_init(struct sock *sk)
724 {
725 	bool rc = __sk_del_node_init(sk);
726 
727 	if (rc) {
728 		/* paranoid for a while -acme */
729 		WARN_ON(refcount_read(&sk->sk_refcnt) == 1);
730 		__sock_put(sk);
731 	}
732 	return rc;
733 }
734 #define sk_del_node_init_rcu(sk)	sk_del_node_init(sk)
735 
736 static inline bool __sk_nulls_del_node_init_rcu(struct sock *sk)
737 {
738 	if (sk_hashed(sk)) {
739 		hlist_nulls_del_init_rcu(&sk->sk_nulls_node);
740 		return true;
741 	}
742 	return false;
743 }
744 
745 static inline bool sk_nulls_del_node_init_rcu(struct sock *sk)
746 {
747 	bool rc = __sk_nulls_del_node_init_rcu(sk);
748 
749 	if (rc) {
750 		/* paranoid for a while -acme */
751 		WARN_ON(refcount_read(&sk->sk_refcnt) == 1);
752 		__sock_put(sk);
753 	}
754 	return rc;
755 }
756 
757 static inline void __sk_add_node(struct sock *sk, struct hlist_head *list)
758 {
759 	hlist_add_head(&sk->sk_node, list);
760 }
761 
762 static inline void sk_add_node(struct sock *sk, struct hlist_head *list)
763 {
764 	sock_hold(sk);
765 	__sk_add_node(sk, list);
766 }
767 
768 static inline void sk_add_node_rcu(struct sock *sk, struct hlist_head *list)
769 {
770 	sock_hold(sk);
771 	if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport &&
772 	    sk->sk_family == AF_INET6)
773 		hlist_add_tail_rcu(&sk->sk_node, list);
774 	else
775 		hlist_add_head_rcu(&sk->sk_node, list);
776 }
777 
778 static inline void sk_add_node_tail_rcu(struct sock *sk, struct hlist_head *list)
779 {
780 	sock_hold(sk);
781 	hlist_add_tail_rcu(&sk->sk_node, list);
782 }
783 
784 static inline void __sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
785 {
786 	hlist_nulls_add_head_rcu(&sk->sk_nulls_node, list);
787 }
788 
789 static inline void __sk_nulls_add_node_tail_rcu(struct sock *sk, struct hlist_nulls_head *list)
790 {
791 	hlist_nulls_add_tail_rcu(&sk->sk_nulls_node, list);
792 }
793 
794 static inline void sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
795 {
796 	sock_hold(sk);
797 	__sk_nulls_add_node_rcu(sk, list);
798 }
799 
800 static inline void __sk_del_bind_node(struct sock *sk)
801 {
802 	__hlist_del(&sk->sk_bind_node);
803 }
804 
805 static inline void sk_add_bind_node(struct sock *sk,
806 					struct hlist_head *list)
807 {
808 	hlist_add_head(&sk->sk_bind_node, list);
809 }
810 
811 #define sk_for_each(__sk, list) \
812 	hlist_for_each_entry(__sk, list, sk_node)
813 #define sk_for_each_rcu(__sk, list) \
814 	hlist_for_each_entry_rcu(__sk, list, sk_node)
815 #define sk_nulls_for_each(__sk, node, list) \
816 	hlist_nulls_for_each_entry(__sk, node, list, sk_nulls_node)
817 #define sk_nulls_for_each_rcu(__sk, node, list) \
818 	hlist_nulls_for_each_entry_rcu(__sk, node, list, sk_nulls_node)
819 #define sk_for_each_from(__sk) \
820 	hlist_for_each_entry_from(__sk, sk_node)
821 #define sk_nulls_for_each_from(__sk, node) \
822 	if (__sk && ({ node = &(__sk)->sk_nulls_node; 1; })) \
823 		hlist_nulls_for_each_entry_from(__sk, node, sk_nulls_node)
824 #define sk_for_each_safe(__sk, tmp, list) \
825 	hlist_for_each_entry_safe(__sk, tmp, list, sk_node)
826 #define sk_for_each_bound(__sk, list) \
827 	hlist_for_each_entry(__sk, list, sk_bind_node)
828 
829 /**
830  * sk_for_each_entry_offset_rcu - iterate over a list at a given struct offset
831  * @tpos:	the type * to use as a loop cursor.
832  * @pos:	the &struct hlist_node to use as a loop cursor.
833  * @head:	the head for your list.
834  * @offset:	offset of hlist_node within the struct.
835  *
836  */
837 #define sk_for_each_entry_offset_rcu(tpos, pos, head, offset)		       \
838 	for (pos = rcu_dereference(hlist_first_rcu(head));		       \
839 	     pos != NULL &&						       \
840 		({ tpos = (typeof(*tpos) *)((void *)pos - offset); 1;});       \
841 	     pos = rcu_dereference(hlist_next_rcu(pos)))
842 
843 static inline struct user_namespace *sk_user_ns(struct sock *sk)
844 {
845 	/* Careful only use this in a context where these parameters
846 	 * can not change and must all be valid, such as recvmsg from
847 	 * userspace.
848 	 */
849 	return sk->sk_socket->file->f_cred->user_ns;
850 }
851 
852 /* Sock flags */
853 enum sock_flags {
854 	SOCK_DEAD,
855 	SOCK_DONE,
856 	SOCK_URGINLINE,
857 	SOCK_KEEPOPEN,
858 	SOCK_LINGER,
859 	SOCK_DESTROY,
860 	SOCK_BROADCAST,
861 	SOCK_TIMESTAMP,
862 	SOCK_ZAPPED,
863 	SOCK_USE_WRITE_QUEUE, /* whether to call sk->sk_write_space in sock_wfree */
864 	SOCK_DBG, /* %SO_DEBUG setting */
865 	SOCK_RCVTSTAMP, /* %SO_TIMESTAMP setting */
866 	SOCK_RCVTSTAMPNS, /* %SO_TIMESTAMPNS setting */
867 	SOCK_LOCALROUTE, /* route locally only, %SO_DONTROUTE setting */
868 	SOCK_MEMALLOC, /* VM depends on this socket for swapping */
869 	SOCK_TIMESTAMPING_RX_SOFTWARE,  /* %SOF_TIMESTAMPING_RX_SOFTWARE */
870 	SOCK_FASYNC, /* fasync() active */
871 	SOCK_RXQ_OVFL,
872 	SOCK_ZEROCOPY, /* buffers from userspace */
873 	SOCK_WIFI_STATUS, /* push wifi status to userspace */
874 	SOCK_NOFCS, /* Tell NIC not to do the Ethernet FCS.
875 		     * Will use last 4 bytes of packet sent from
876 		     * user-space instead.
877 		     */
878 	SOCK_FILTER_LOCKED, /* Filter cannot be changed anymore */
879 	SOCK_SELECT_ERR_QUEUE, /* Wake select on error queue */
880 	SOCK_RCU_FREE, /* wait rcu grace period in sk_destruct() */
881 	SOCK_TXTIME,
882 	SOCK_XDP, /* XDP is attached */
883 	SOCK_TSTAMP_NEW, /* Indicates 64 bit timestamps always */
884 };
885 
886 #define SK_FLAGS_TIMESTAMP ((1UL << SOCK_TIMESTAMP) | (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE))
887 
888 static inline void sock_copy_flags(struct sock *nsk, struct sock *osk)
889 {
890 	nsk->sk_flags = osk->sk_flags;
891 }
892 
893 static inline void sock_set_flag(struct sock *sk, enum sock_flags flag)
894 {
895 	__set_bit(flag, &sk->sk_flags);
896 }
897 
898 static inline void sock_reset_flag(struct sock *sk, enum sock_flags flag)
899 {
900 	__clear_bit(flag, &sk->sk_flags);
901 }
902 
903 static inline void sock_valbool_flag(struct sock *sk, enum sock_flags bit,
904 				     int valbool)
905 {
906 	if (valbool)
907 		sock_set_flag(sk, bit);
908 	else
909 		sock_reset_flag(sk, bit);
910 }
911 
912 static inline bool sock_flag(const struct sock *sk, enum sock_flags flag)
913 {
914 	return test_bit(flag, &sk->sk_flags);
915 }
916 
917 #ifdef CONFIG_NET
918 DECLARE_STATIC_KEY_FALSE(memalloc_socks_key);
919 static inline int sk_memalloc_socks(void)
920 {
921 	return static_branch_unlikely(&memalloc_socks_key);
922 }
923 
924 void __receive_sock(struct file *file);
925 #else
926 
927 static inline int sk_memalloc_socks(void)
928 {
929 	return 0;
930 }
931 
932 static inline void __receive_sock(struct file *file)
933 { }
934 #endif
935 
936 static inline gfp_t sk_gfp_mask(const struct sock *sk, gfp_t gfp_mask)
937 {
938 	return gfp_mask | (sk->sk_allocation & __GFP_MEMALLOC);
939 }
940 
941 static inline void sk_acceptq_removed(struct sock *sk)
942 {
943 	WRITE_ONCE(sk->sk_ack_backlog, sk->sk_ack_backlog - 1);
944 }
945 
946 static inline void sk_acceptq_added(struct sock *sk)
947 {
948 	WRITE_ONCE(sk->sk_ack_backlog, sk->sk_ack_backlog + 1);
949 }
950 
951 /* Note: If you think the test should be:
952  *	return READ_ONCE(sk->sk_ack_backlog) >= READ_ONCE(sk->sk_max_ack_backlog);
953  * Then please take a look at commit 64a146513f8f ("[NET]: Revert incorrect accept queue backlog changes.")
954  */
955 static inline bool sk_acceptq_is_full(const struct sock *sk)
956 {
957 	return READ_ONCE(sk->sk_ack_backlog) > READ_ONCE(sk->sk_max_ack_backlog);
958 }
959 
960 /*
961  * Compute minimal free write space needed to queue new packets.
962  */
963 static inline int sk_stream_min_wspace(const struct sock *sk)
964 {
965 	return READ_ONCE(sk->sk_wmem_queued) >> 1;
966 }
967 
968 static inline int sk_stream_wspace(const struct sock *sk)
969 {
970 	return READ_ONCE(sk->sk_sndbuf) - READ_ONCE(sk->sk_wmem_queued);
971 }
972 
973 static inline void sk_wmem_queued_add(struct sock *sk, int val)
974 {
975 	WRITE_ONCE(sk->sk_wmem_queued, sk->sk_wmem_queued + val);
976 }
977 
978 void sk_stream_write_space(struct sock *sk);
979 
980 /* OOB backlog add */
981 static inline void __sk_add_backlog(struct sock *sk, struct sk_buff *skb)
982 {
983 	/* dont let skb dst not refcounted, we are going to leave rcu lock */
984 	skb_dst_force(skb);
985 
986 	if (!sk->sk_backlog.tail)
987 		WRITE_ONCE(sk->sk_backlog.head, skb);
988 	else
989 		sk->sk_backlog.tail->next = skb;
990 
991 	WRITE_ONCE(sk->sk_backlog.tail, skb);
992 	skb->next = NULL;
993 }
994 
995 /*
996  * Take into account size of receive queue and backlog queue
997  * Do not take into account this skb truesize,
998  * to allow even a single big packet to come.
999  */
1000 static inline bool sk_rcvqueues_full(const struct sock *sk, unsigned int limit)
1001 {
1002 	unsigned int qsize = sk->sk_backlog.len + atomic_read(&sk->sk_rmem_alloc);
1003 
1004 	return qsize > limit;
1005 }
1006 
1007 /* The per-socket spinlock must be held here. */
1008 static inline __must_check int sk_add_backlog(struct sock *sk, struct sk_buff *skb,
1009 					      unsigned int limit)
1010 {
1011 	if (sk_rcvqueues_full(sk, limit))
1012 		return -ENOBUFS;
1013 
1014 	/*
1015 	 * If the skb was allocated from pfmemalloc reserves, only
1016 	 * allow SOCK_MEMALLOC sockets to use it as this socket is
1017 	 * helping free memory
1018 	 */
1019 	if (skb_pfmemalloc(skb) && !sock_flag(sk, SOCK_MEMALLOC))
1020 		return -ENOMEM;
1021 
1022 	__sk_add_backlog(sk, skb);
1023 	sk->sk_backlog.len += skb->truesize;
1024 	return 0;
1025 }
1026 
1027 int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb);
1028 
1029 INDIRECT_CALLABLE_DECLARE(int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb));
1030 INDIRECT_CALLABLE_DECLARE(int tcp_v6_do_rcv(struct sock *sk, struct sk_buff *skb));
1031 
1032 static inline int sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
1033 {
1034 	if (sk_memalloc_socks() && skb_pfmemalloc(skb))
1035 		return __sk_backlog_rcv(sk, skb);
1036 
1037 	return INDIRECT_CALL_INET(sk->sk_backlog_rcv,
1038 				  tcp_v6_do_rcv,
1039 				  tcp_v4_do_rcv,
1040 				  sk, skb);
1041 }
1042 
1043 static inline void sk_incoming_cpu_update(struct sock *sk)
1044 {
1045 	int cpu = raw_smp_processor_id();
1046 
1047 	if (unlikely(READ_ONCE(sk->sk_incoming_cpu) != cpu))
1048 		WRITE_ONCE(sk->sk_incoming_cpu, cpu);
1049 }
1050 
1051 static inline void sock_rps_record_flow_hash(__u32 hash)
1052 {
1053 #ifdef CONFIG_RPS
1054 	struct rps_sock_flow_table *sock_flow_table;
1055 
1056 	rcu_read_lock();
1057 	sock_flow_table = rcu_dereference(rps_sock_flow_table);
1058 	rps_record_sock_flow(sock_flow_table, hash);
1059 	rcu_read_unlock();
1060 #endif
1061 }
1062 
1063 static inline void sock_rps_record_flow(const struct sock *sk)
1064 {
1065 #ifdef CONFIG_RPS
1066 	if (static_branch_unlikely(&rfs_needed)) {
1067 		/* Reading sk->sk_rxhash might incur an expensive cache line
1068 		 * miss.
1069 		 *
1070 		 * TCP_ESTABLISHED does cover almost all states where RFS
1071 		 * might be useful, and is cheaper [1] than testing :
1072 		 *	IPv4: inet_sk(sk)->inet_daddr
1073 		 * 	IPv6: ipv6_addr_any(&sk->sk_v6_daddr)
1074 		 * OR	an additional socket flag
1075 		 * [1] : sk_state and sk_prot are in the same cache line.
1076 		 */
1077 		if (sk->sk_state == TCP_ESTABLISHED)
1078 			sock_rps_record_flow_hash(sk->sk_rxhash);
1079 	}
1080 #endif
1081 }
1082 
1083 static inline void sock_rps_save_rxhash(struct sock *sk,
1084 					const struct sk_buff *skb)
1085 {
1086 #ifdef CONFIG_RPS
1087 	if (unlikely(sk->sk_rxhash != skb->hash))
1088 		sk->sk_rxhash = skb->hash;
1089 #endif
1090 }
1091 
1092 static inline void sock_rps_reset_rxhash(struct sock *sk)
1093 {
1094 #ifdef CONFIG_RPS
1095 	sk->sk_rxhash = 0;
1096 #endif
1097 }
1098 
1099 #define sk_wait_event(__sk, __timeo, __condition, __wait)		\
1100 	({	int __rc;						\
1101 		release_sock(__sk);					\
1102 		__rc = __condition;					\
1103 		if (!__rc) {						\
1104 			*(__timeo) = wait_woken(__wait,			\
1105 						TASK_INTERRUPTIBLE,	\
1106 						*(__timeo));		\
1107 		}							\
1108 		sched_annotate_sleep();					\
1109 		lock_sock(__sk);					\
1110 		__rc = __condition;					\
1111 		__rc;							\
1112 	})
1113 
1114 int sk_stream_wait_connect(struct sock *sk, long *timeo_p);
1115 int sk_stream_wait_memory(struct sock *sk, long *timeo_p);
1116 void sk_stream_wait_close(struct sock *sk, long timeo_p);
1117 int sk_stream_error(struct sock *sk, int flags, int err);
1118 void sk_stream_kill_queues(struct sock *sk);
1119 void sk_set_memalloc(struct sock *sk);
1120 void sk_clear_memalloc(struct sock *sk);
1121 
1122 void __sk_flush_backlog(struct sock *sk);
1123 
1124 static inline bool sk_flush_backlog(struct sock *sk)
1125 {
1126 	if (unlikely(READ_ONCE(sk->sk_backlog.tail))) {
1127 		__sk_flush_backlog(sk);
1128 		return true;
1129 	}
1130 	return false;
1131 }
1132 
1133 int sk_wait_data(struct sock *sk, long *timeo, const struct sk_buff *skb);
1134 
1135 struct request_sock_ops;
1136 struct timewait_sock_ops;
1137 struct inet_hashinfo;
1138 struct raw_hashinfo;
1139 struct smc_hashinfo;
1140 struct module;
1141 struct sk_psock;
1142 
1143 /*
1144  * caches using SLAB_TYPESAFE_BY_RCU should let .next pointer from nulls nodes
1145  * un-modified. Special care is taken when initializing object to zero.
1146  */
1147 static inline void sk_prot_clear_nulls(struct sock *sk, int size)
1148 {
1149 	if (offsetof(struct sock, sk_node.next) != 0)
1150 		memset(sk, 0, offsetof(struct sock, sk_node.next));
1151 	memset(&sk->sk_node.pprev, 0,
1152 	       size - offsetof(struct sock, sk_node.pprev));
1153 }
1154 
1155 /* Networking protocol blocks we attach to sockets.
1156  * socket layer -> transport layer interface
1157  */
1158 struct proto {
1159 	void			(*close)(struct sock *sk,
1160 					long timeout);
1161 	int			(*pre_connect)(struct sock *sk,
1162 					struct sockaddr *uaddr,
1163 					int addr_len);
1164 	int			(*connect)(struct sock *sk,
1165 					struct sockaddr *uaddr,
1166 					int addr_len);
1167 	int			(*disconnect)(struct sock *sk, int flags);
1168 
1169 	struct sock *		(*accept)(struct sock *sk, int flags, int *err,
1170 					  bool kern);
1171 
1172 	int			(*ioctl)(struct sock *sk, int cmd,
1173 					 unsigned long arg);
1174 	int			(*init)(struct sock *sk);
1175 	void			(*destroy)(struct sock *sk);
1176 	void			(*shutdown)(struct sock *sk, int how);
1177 	int			(*setsockopt)(struct sock *sk, int level,
1178 					int optname, sockptr_t optval,
1179 					unsigned int optlen);
1180 	int			(*getsockopt)(struct sock *sk, int level,
1181 					int optname, char __user *optval,
1182 					int __user *option);
1183 	void			(*keepalive)(struct sock *sk, int valbool);
1184 #ifdef CONFIG_COMPAT
1185 	int			(*compat_ioctl)(struct sock *sk,
1186 					unsigned int cmd, unsigned long arg);
1187 #endif
1188 	int			(*sendmsg)(struct sock *sk, struct msghdr *msg,
1189 					   size_t len);
1190 	int			(*recvmsg)(struct sock *sk, struct msghdr *msg,
1191 					   size_t len, int noblock, int flags,
1192 					   int *addr_len);
1193 	int			(*sendpage)(struct sock *sk, struct page *page,
1194 					int offset, size_t size, int flags);
1195 	int			(*bind)(struct sock *sk,
1196 					struct sockaddr *addr, int addr_len);
1197 	int			(*bind_add)(struct sock *sk,
1198 					struct sockaddr *addr, int addr_len);
1199 
1200 	int			(*backlog_rcv) (struct sock *sk,
1201 						struct sk_buff *skb);
1202 	bool			(*bpf_bypass_getsockopt)(int level,
1203 							 int optname);
1204 
1205 	void		(*release_cb)(struct sock *sk);
1206 
1207 	/* Keeping track of sk's, looking them up, and port selection methods. */
1208 	int			(*hash)(struct sock *sk);
1209 	void			(*unhash)(struct sock *sk);
1210 	void			(*rehash)(struct sock *sk);
1211 	int			(*get_port)(struct sock *sk, unsigned short snum);
1212 #ifdef CONFIG_BPF_SYSCALL
1213 	int			(*psock_update_sk_prot)(struct sock *sk,
1214 							struct sk_psock *psock,
1215 							bool restore);
1216 #endif
1217 
1218 	/* Keeping track of sockets in use */
1219 #ifdef CONFIG_PROC_FS
1220 	unsigned int		inuse_idx;
1221 #endif
1222 
1223 #if IS_ENABLED(CONFIG_MPTCP)
1224 	int			(*forward_alloc_get)(const struct sock *sk);
1225 #endif
1226 
1227 	bool			(*stream_memory_free)(const struct sock *sk, int wake);
1228 	bool			(*sock_is_readable)(struct sock *sk);
1229 	/* Memory pressure */
1230 	void			(*enter_memory_pressure)(struct sock *sk);
1231 	void			(*leave_memory_pressure)(struct sock *sk);
1232 	atomic_long_t		*memory_allocated;	/* Current allocated memory. */
1233 	struct percpu_counter	*sockets_allocated;	/* Current number of sockets. */
1234 
1235 	/*
1236 	 * Pressure flag: try to collapse.
1237 	 * Technical note: it is used by multiple contexts non atomically.
1238 	 * All the __sk_mem_schedule() is of this nature: accounting
1239 	 * is strict, actions are advisory and have some latency.
1240 	 */
1241 	unsigned long		*memory_pressure;
1242 	long			*sysctl_mem;
1243 
1244 	int			*sysctl_wmem;
1245 	int			*sysctl_rmem;
1246 	u32			sysctl_wmem_offset;
1247 	u32			sysctl_rmem_offset;
1248 
1249 	int			max_header;
1250 	bool			no_autobind;
1251 
1252 	struct kmem_cache	*slab;
1253 	unsigned int		obj_size;
1254 	slab_flags_t		slab_flags;
1255 	unsigned int		useroffset;	/* Usercopy region offset */
1256 	unsigned int		usersize;	/* Usercopy region size */
1257 
1258 	unsigned int __percpu	*orphan_count;
1259 
1260 	struct request_sock_ops	*rsk_prot;
1261 	struct timewait_sock_ops *twsk_prot;
1262 
1263 	union {
1264 		struct inet_hashinfo	*hashinfo;
1265 		struct udp_table	*udp_table;
1266 		struct raw_hashinfo	*raw_hash;
1267 		struct smc_hashinfo	*smc_hash;
1268 	} h;
1269 
1270 	struct module		*owner;
1271 
1272 	char			name[32];
1273 
1274 	struct list_head	node;
1275 #ifdef SOCK_REFCNT_DEBUG
1276 	atomic_t		socks;
1277 #endif
1278 	int			(*diag_destroy)(struct sock *sk, int err);
1279 } __randomize_layout;
1280 
1281 int proto_register(struct proto *prot, int alloc_slab);
1282 void proto_unregister(struct proto *prot);
1283 int sock_load_diag_module(int family, int protocol);
1284 
1285 #ifdef SOCK_REFCNT_DEBUG
1286 static inline void sk_refcnt_debug_inc(struct sock *sk)
1287 {
1288 	atomic_inc(&sk->sk_prot->socks);
1289 }
1290 
1291 static inline void sk_refcnt_debug_dec(struct sock *sk)
1292 {
1293 	atomic_dec(&sk->sk_prot->socks);
1294 	printk(KERN_DEBUG "%s socket %p released, %d are still alive\n",
1295 	       sk->sk_prot->name, sk, atomic_read(&sk->sk_prot->socks));
1296 }
1297 
1298 static inline void sk_refcnt_debug_release(const struct sock *sk)
1299 {
1300 	if (refcount_read(&sk->sk_refcnt) != 1)
1301 		printk(KERN_DEBUG "Destruction of the %s socket %p delayed, refcnt=%d\n",
1302 		       sk->sk_prot->name, sk, refcount_read(&sk->sk_refcnt));
1303 }
1304 #else /* SOCK_REFCNT_DEBUG */
1305 #define sk_refcnt_debug_inc(sk) do { } while (0)
1306 #define sk_refcnt_debug_dec(sk) do { } while (0)
1307 #define sk_refcnt_debug_release(sk) do { } while (0)
1308 #endif /* SOCK_REFCNT_DEBUG */
1309 
1310 INDIRECT_CALLABLE_DECLARE(bool tcp_stream_memory_free(const struct sock *sk, int wake));
1311 
1312 static inline int sk_forward_alloc_get(const struct sock *sk)
1313 {
1314 #if IS_ENABLED(CONFIG_MPTCP)
1315 	if (sk->sk_prot->forward_alloc_get)
1316 		return sk->sk_prot->forward_alloc_get(sk);
1317 #endif
1318 	return sk->sk_forward_alloc;
1319 }
1320 
1321 static inline bool __sk_stream_memory_free(const struct sock *sk, int wake)
1322 {
1323 	if (READ_ONCE(sk->sk_wmem_queued) >= READ_ONCE(sk->sk_sndbuf))
1324 		return false;
1325 
1326 	return sk->sk_prot->stream_memory_free ?
1327 		INDIRECT_CALL_INET_1(sk->sk_prot->stream_memory_free,
1328 				     tcp_stream_memory_free, sk, wake) : true;
1329 }
1330 
1331 static inline bool sk_stream_memory_free(const struct sock *sk)
1332 {
1333 	return __sk_stream_memory_free(sk, 0);
1334 }
1335 
1336 static inline bool __sk_stream_is_writeable(const struct sock *sk, int wake)
1337 {
1338 	return sk_stream_wspace(sk) >= sk_stream_min_wspace(sk) &&
1339 	       __sk_stream_memory_free(sk, wake);
1340 }
1341 
1342 static inline bool sk_stream_is_writeable(const struct sock *sk)
1343 {
1344 	return __sk_stream_is_writeable(sk, 0);
1345 }
1346 
1347 static inline int sk_under_cgroup_hierarchy(struct sock *sk,
1348 					    struct cgroup *ancestor)
1349 {
1350 #ifdef CONFIG_SOCK_CGROUP_DATA
1351 	return cgroup_is_descendant(sock_cgroup_ptr(&sk->sk_cgrp_data),
1352 				    ancestor);
1353 #else
1354 	return -ENOTSUPP;
1355 #endif
1356 }
1357 
1358 static inline bool sk_has_memory_pressure(const struct sock *sk)
1359 {
1360 	return sk->sk_prot->memory_pressure != NULL;
1361 }
1362 
1363 static inline bool sk_under_memory_pressure(const struct sock *sk)
1364 {
1365 	if (!sk->sk_prot->memory_pressure)
1366 		return false;
1367 
1368 	if (mem_cgroup_sockets_enabled && sk->sk_memcg &&
1369 	    mem_cgroup_under_socket_pressure(sk->sk_memcg))
1370 		return true;
1371 
1372 	return !!*sk->sk_prot->memory_pressure;
1373 }
1374 
1375 static inline long
1376 sk_memory_allocated(const struct sock *sk)
1377 {
1378 	return atomic_long_read(sk->sk_prot->memory_allocated);
1379 }
1380 
1381 static inline long
1382 sk_memory_allocated_add(struct sock *sk, int amt)
1383 {
1384 	return atomic_long_add_return(amt, sk->sk_prot->memory_allocated);
1385 }
1386 
1387 static inline void
1388 sk_memory_allocated_sub(struct sock *sk, int amt)
1389 {
1390 	atomic_long_sub(amt, sk->sk_prot->memory_allocated);
1391 }
1392 
1393 #define SK_ALLOC_PERCPU_COUNTER_BATCH 16
1394 
1395 static inline void sk_sockets_allocated_dec(struct sock *sk)
1396 {
1397 	percpu_counter_add_batch(sk->sk_prot->sockets_allocated, -1,
1398 				 SK_ALLOC_PERCPU_COUNTER_BATCH);
1399 }
1400 
1401 static inline void sk_sockets_allocated_inc(struct sock *sk)
1402 {
1403 	percpu_counter_add_batch(sk->sk_prot->sockets_allocated, 1,
1404 				 SK_ALLOC_PERCPU_COUNTER_BATCH);
1405 }
1406 
1407 static inline u64
1408 sk_sockets_allocated_read_positive(struct sock *sk)
1409 {
1410 	return percpu_counter_read_positive(sk->sk_prot->sockets_allocated);
1411 }
1412 
1413 static inline int
1414 proto_sockets_allocated_sum_positive(struct proto *prot)
1415 {
1416 	return percpu_counter_sum_positive(prot->sockets_allocated);
1417 }
1418 
1419 static inline long
1420 proto_memory_allocated(struct proto *prot)
1421 {
1422 	return atomic_long_read(prot->memory_allocated);
1423 }
1424 
1425 static inline bool
1426 proto_memory_pressure(struct proto *prot)
1427 {
1428 	if (!prot->memory_pressure)
1429 		return false;
1430 	return !!*prot->memory_pressure;
1431 }
1432 
1433 
1434 #ifdef CONFIG_PROC_FS
1435 #define PROTO_INUSE_NR	64	/* should be enough for the first time */
1436 struct prot_inuse {
1437 	int all;
1438 	int val[PROTO_INUSE_NR];
1439 };
1440 
1441 static inline void sock_prot_inuse_add(const struct net *net,
1442 				       const struct proto *prot, int val)
1443 {
1444 	this_cpu_add(net->core.prot_inuse->val[prot->inuse_idx], val);
1445 }
1446 
1447 static inline void sock_inuse_add(const struct net *net, int val)
1448 {
1449 	this_cpu_add(net->core.prot_inuse->all, val);
1450 }
1451 
1452 int sock_prot_inuse_get(struct net *net, struct proto *proto);
1453 int sock_inuse_get(struct net *net);
1454 #else
1455 static inline void sock_prot_inuse_add(const struct net *net,
1456 				       const struct proto *prot, int val)
1457 {
1458 }
1459 
1460 static inline void sock_inuse_add(const struct net *net, int val)
1461 {
1462 }
1463 #endif
1464 
1465 
1466 /* With per-bucket locks this operation is not-atomic, so that
1467  * this version is not worse.
1468  */
1469 static inline int __sk_prot_rehash(struct sock *sk)
1470 {
1471 	sk->sk_prot->unhash(sk);
1472 	return sk->sk_prot->hash(sk);
1473 }
1474 
1475 /* About 10 seconds */
1476 #define SOCK_DESTROY_TIME (10*HZ)
1477 
1478 /* Sockets 0-1023 can't be bound to unless you are superuser */
1479 #define PROT_SOCK	1024
1480 
1481 #define SHUTDOWN_MASK	3
1482 #define RCV_SHUTDOWN	1
1483 #define SEND_SHUTDOWN	2
1484 
1485 #define SOCK_BINDADDR_LOCK	4
1486 #define SOCK_BINDPORT_LOCK	8
1487 
1488 struct socket_alloc {
1489 	struct socket socket;
1490 	struct inode vfs_inode;
1491 };
1492 
1493 static inline struct socket *SOCKET_I(struct inode *inode)
1494 {
1495 	return &container_of(inode, struct socket_alloc, vfs_inode)->socket;
1496 }
1497 
1498 static inline struct inode *SOCK_INODE(struct socket *socket)
1499 {
1500 	return &container_of(socket, struct socket_alloc, socket)->vfs_inode;
1501 }
1502 
1503 /*
1504  * Functions for memory accounting
1505  */
1506 int __sk_mem_raise_allocated(struct sock *sk, int size, int amt, int kind);
1507 int __sk_mem_schedule(struct sock *sk, int size, int kind);
1508 void __sk_mem_reduce_allocated(struct sock *sk, int amount);
1509 void __sk_mem_reclaim(struct sock *sk, int amount);
1510 
1511 /* We used to have PAGE_SIZE here, but systems with 64KB pages
1512  * do not necessarily have 16x time more memory than 4KB ones.
1513  */
1514 #define SK_MEM_QUANTUM 4096
1515 #define SK_MEM_QUANTUM_SHIFT ilog2(SK_MEM_QUANTUM)
1516 #define SK_MEM_SEND	0
1517 #define SK_MEM_RECV	1
1518 
1519 /* sysctl_mem values are in pages, we convert them in SK_MEM_QUANTUM units */
1520 static inline long sk_prot_mem_limits(const struct sock *sk, int index)
1521 {
1522 	long val = sk->sk_prot->sysctl_mem[index];
1523 
1524 #if PAGE_SIZE > SK_MEM_QUANTUM
1525 	val <<= PAGE_SHIFT - SK_MEM_QUANTUM_SHIFT;
1526 #elif PAGE_SIZE < SK_MEM_QUANTUM
1527 	val >>= SK_MEM_QUANTUM_SHIFT - PAGE_SHIFT;
1528 #endif
1529 	return val;
1530 }
1531 
1532 static inline int sk_mem_pages(int amt)
1533 {
1534 	return (amt + SK_MEM_QUANTUM - 1) >> SK_MEM_QUANTUM_SHIFT;
1535 }
1536 
1537 static inline bool sk_has_account(struct sock *sk)
1538 {
1539 	/* return true if protocol supports memory accounting */
1540 	return !!sk->sk_prot->memory_allocated;
1541 }
1542 
1543 static inline bool sk_wmem_schedule(struct sock *sk, int size)
1544 {
1545 	if (!sk_has_account(sk))
1546 		return true;
1547 	return size <= sk->sk_forward_alloc ||
1548 		__sk_mem_schedule(sk, size, SK_MEM_SEND);
1549 }
1550 
1551 static inline bool
1552 sk_rmem_schedule(struct sock *sk, struct sk_buff *skb, int size)
1553 {
1554 	if (!sk_has_account(sk))
1555 		return true;
1556 	return size <= sk->sk_forward_alloc ||
1557 		__sk_mem_schedule(sk, size, SK_MEM_RECV) ||
1558 		skb_pfmemalloc(skb);
1559 }
1560 
1561 static inline int sk_unused_reserved_mem(const struct sock *sk)
1562 {
1563 	int unused_mem;
1564 
1565 	if (likely(!sk->sk_reserved_mem))
1566 		return 0;
1567 
1568 	unused_mem = sk->sk_reserved_mem - sk->sk_wmem_queued -
1569 			atomic_read(&sk->sk_rmem_alloc);
1570 
1571 	return unused_mem > 0 ? unused_mem : 0;
1572 }
1573 
1574 static inline void sk_mem_reclaim(struct sock *sk)
1575 {
1576 	int reclaimable;
1577 
1578 	if (!sk_has_account(sk))
1579 		return;
1580 
1581 	reclaimable = sk->sk_forward_alloc - sk_unused_reserved_mem(sk);
1582 
1583 	if (reclaimable >= SK_MEM_QUANTUM)
1584 		__sk_mem_reclaim(sk, reclaimable);
1585 }
1586 
1587 static inline void sk_mem_reclaim_final(struct sock *sk)
1588 {
1589 	sk->sk_reserved_mem = 0;
1590 	sk_mem_reclaim(sk);
1591 }
1592 
1593 static inline void sk_mem_reclaim_partial(struct sock *sk)
1594 {
1595 	int reclaimable;
1596 
1597 	if (!sk_has_account(sk))
1598 		return;
1599 
1600 	reclaimable = sk->sk_forward_alloc - sk_unused_reserved_mem(sk);
1601 
1602 	if (reclaimable > SK_MEM_QUANTUM)
1603 		__sk_mem_reclaim(sk, reclaimable - 1);
1604 }
1605 
1606 static inline void sk_mem_charge(struct sock *sk, int size)
1607 {
1608 	if (!sk_has_account(sk))
1609 		return;
1610 	sk->sk_forward_alloc -= size;
1611 }
1612 
1613 /* the following macros control memory reclaiming in sk_mem_uncharge()
1614  */
1615 #define SK_RECLAIM_THRESHOLD	(1 << 21)
1616 #define SK_RECLAIM_CHUNK	(1 << 20)
1617 
1618 static inline void sk_mem_uncharge(struct sock *sk, int size)
1619 {
1620 	int reclaimable;
1621 
1622 	if (!sk_has_account(sk))
1623 		return;
1624 	sk->sk_forward_alloc += size;
1625 	reclaimable = sk->sk_forward_alloc - sk_unused_reserved_mem(sk);
1626 
1627 	/* Avoid a possible overflow.
1628 	 * TCP send queues can make this happen, if sk_mem_reclaim()
1629 	 * is not called and more than 2 GBytes are released at once.
1630 	 *
1631 	 * If we reach 2 MBytes, reclaim 1 MBytes right now, there is
1632 	 * no need to hold that much forward allocation anyway.
1633 	 */
1634 	if (unlikely(reclaimable >= SK_RECLAIM_THRESHOLD))
1635 		__sk_mem_reclaim(sk, SK_RECLAIM_CHUNK);
1636 }
1637 
1638 /*
1639  * Macro so as to not evaluate some arguments when
1640  * lockdep is not enabled.
1641  *
1642  * Mark both the sk_lock and the sk_lock.slock as a
1643  * per-address-family lock class.
1644  */
1645 #define sock_lock_init_class_and_name(sk, sname, skey, name, key)	\
1646 do {									\
1647 	sk->sk_lock.owned = 0;						\
1648 	init_waitqueue_head(&sk->sk_lock.wq);				\
1649 	spin_lock_init(&(sk)->sk_lock.slock);				\
1650 	debug_check_no_locks_freed((void *)&(sk)->sk_lock,		\
1651 			sizeof((sk)->sk_lock));				\
1652 	lockdep_set_class_and_name(&(sk)->sk_lock.slock,		\
1653 				(skey), (sname));				\
1654 	lockdep_init_map(&(sk)->sk_lock.dep_map, (name), (key), 0);	\
1655 } while (0)
1656 
1657 static inline bool lockdep_sock_is_held(const struct sock *sk)
1658 {
1659 	return lockdep_is_held(&sk->sk_lock) ||
1660 	       lockdep_is_held(&sk->sk_lock.slock);
1661 }
1662 
1663 void lock_sock_nested(struct sock *sk, int subclass);
1664 
1665 static inline void lock_sock(struct sock *sk)
1666 {
1667 	lock_sock_nested(sk, 0);
1668 }
1669 
1670 void __lock_sock(struct sock *sk);
1671 void __release_sock(struct sock *sk);
1672 void release_sock(struct sock *sk);
1673 
1674 /* BH context may only use the following locking interface. */
1675 #define bh_lock_sock(__sk)	spin_lock(&((__sk)->sk_lock.slock))
1676 #define bh_lock_sock_nested(__sk) \
1677 				spin_lock_nested(&((__sk)->sk_lock.slock), \
1678 				SINGLE_DEPTH_NESTING)
1679 #define bh_unlock_sock(__sk)	spin_unlock(&((__sk)->sk_lock.slock))
1680 
1681 bool __lock_sock_fast(struct sock *sk) __acquires(&sk->sk_lock.slock);
1682 
1683 /**
1684  * lock_sock_fast - fast version of lock_sock
1685  * @sk: socket
1686  *
1687  * This version should be used for very small section, where process wont block
1688  * return false if fast path is taken:
1689  *
1690  *   sk_lock.slock locked, owned = 0, BH disabled
1691  *
1692  * return true if slow path is taken:
1693  *
1694  *   sk_lock.slock unlocked, owned = 1, BH enabled
1695  */
1696 static inline bool lock_sock_fast(struct sock *sk)
1697 {
1698 	/* The sk_lock has mutex_lock() semantics here. */
1699 	mutex_acquire(&sk->sk_lock.dep_map, 0, 0, _RET_IP_);
1700 
1701 	return __lock_sock_fast(sk);
1702 }
1703 
1704 /* fast socket lock variant for caller already holding a [different] socket lock */
1705 static inline bool lock_sock_fast_nested(struct sock *sk)
1706 {
1707 	mutex_acquire(&sk->sk_lock.dep_map, SINGLE_DEPTH_NESTING, 0, _RET_IP_);
1708 
1709 	return __lock_sock_fast(sk);
1710 }
1711 
1712 /**
1713  * unlock_sock_fast - complement of lock_sock_fast
1714  * @sk: socket
1715  * @slow: slow mode
1716  *
1717  * fast unlock socket for user context.
1718  * If slow mode is on, we call regular release_sock()
1719  */
1720 static inline void unlock_sock_fast(struct sock *sk, bool slow)
1721 	__releases(&sk->sk_lock.slock)
1722 {
1723 	if (slow) {
1724 		release_sock(sk);
1725 		__release(&sk->sk_lock.slock);
1726 	} else {
1727 		mutex_release(&sk->sk_lock.dep_map, _RET_IP_);
1728 		spin_unlock_bh(&sk->sk_lock.slock);
1729 	}
1730 }
1731 
1732 /* Used by processes to "lock" a socket state, so that
1733  * interrupts and bottom half handlers won't change it
1734  * from under us. It essentially blocks any incoming
1735  * packets, so that we won't get any new data or any
1736  * packets that change the state of the socket.
1737  *
1738  * While locked, BH processing will add new packets to
1739  * the backlog queue.  This queue is processed by the
1740  * owner of the socket lock right before it is released.
1741  *
1742  * Since ~2.3.5 it is also exclusive sleep lock serializing
1743  * accesses from user process context.
1744  */
1745 
1746 static inline void sock_owned_by_me(const struct sock *sk)
1747 {
1748 #ifdef CONFIG_LOCKDEP
1749 	WARN_ON_ONCE(!lockdep_sock_is_held(sk) && debug_locks);
1750 #endif
1751 }
1752 
1753 static inline bool sock_owned_by_user(const struct sock *sk)
1754 {
1755 	sock_owned_by_me(sk);
1756 	return sk->sk_lock.owned;
1757 }
1758 
1759 static inline bool sock_owned_by_user_nocheck(const struct sock *sk)
1760 {
1761 	return sk->sk_lock.owned;
1762 }
1763 
1764 static inline void sock_release_ownership(struct sock *sk)
1765 {
1766 	if (sock_owned_by_user_nocheck(sk)) {
1767 		sk->sk_lock.owned = 0;
1768 
1769 		/* The sk_lock has mutex_unlock() semantics: */
1770 		mutex_release(&sk->sk_lock.dep_map, _RET_IP_);
1771 	}
1772 }
1773 
1774 /* no reclassification while locks are held */
1775 static inline bool sock_allow_reclassification(const struct sock *csk)
1776 {
1777 	struct sock *sk = (struct sock *)csk;
1778 
1779 	return !sock_owned_by_user_nocheck(sk) &&
1780 		!spin_is_locked(&sk->sk_lock.slock);
1781 }
1782 
1783 struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
1784 		      struct proto *prot, int kern);
1785 void sk_free(struct sock *sk);
1786 void sk_destruct(struct sock *sk);
1787 struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority);
1788 void sk_free_unlock_clone(struct sock *sk);
1789 
1790 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
1791 			     gfp_t priority);
1792 void __sock_wfree(struct sk_buff *skb);
1793 void sock_wfree(struct sk_buff *skb);
1794 struct sk_buff *sock_omalloc(struct sock *sk, unsigned long size,
1795 			     gfp_t priority);
1796 void skb_orphan_partial(struct sk_buff *skb);
1797 void sock_rfree(struct sk_buff *skb);
1798 void sock_efree(struct sk_buff *skb);
1799 #ifdef CONFIG_INET
1800 void sock_edemux(struct sk_buff *skb);
1801 void sock_pfree(struct sk_buff *skb);
1802 #else
1803 #define sock_edemux sock_efree
1804 #endif
1805 
1806 int sock_setsockopt(struct socket *sock, int level, int op,
1807 		    sockptr_t optval, unsigned int optlen);
1808 
1809 int sock_getsockopt(struct socket *sock, int level, int op,
1810 		    char __user *optval, int __user *optlen);
1811 int sock_gettstamp(struct socket *sock, void __user *userstamp,
1812 		   bool timeval, bool time32);
1813 struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
1814 				    int noblock, int *errcode);
1815 struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
1816 				     unsigned long data_len, int noblock,
1817 				     int *errcode, int max_page_order);
1818 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority);
1819 void sock_kfree_s(struct sock *sk, void *mem, int size);
1820 void sock_kzfree_s(struct sock *sk, void *mem, int size);
1821 void sk_send_sigurg(struct sock *sk);
1822 
1823 struct sockcm_cookie {
1824 	u64 transmit_time;
1825 	u32 mark;
1826 	u16 tsflags;
1827 };
1828 
1829 static inline void sockcm_init(struct sockcm_cookie *sockc,
1830 			       const struct sock *sk)
1831 {
1832 	*sockc = (struct sockcm_cookie) { .tsflags = sk->sk_tsflags };
1833 }
1834 
1835 int __sock_cmsg_send(struct sock *sk, struct msghdr *msg, struct cmsghdr *cmsg,
1836 		     struct sockcm_cookie *sockc);
1837 int sock_cmsg_send(struct sock *sk, struct msghdr *msg,
1838 		   struct sockcm_cookie *sockc);
1839 
1840 /*
1841  * Functions to fill in entries in struct proto_ops when a protocol
1842  * does not implement a particular function.
1843  */
1844 int sock_no_bind(struct socket *, struct sockaddr *, int);
1845 int sock_no_connect(struct socket *, struct sockaddr *, int, int);
1846 int sock_no_socketpair(struct socket *, struct socket *);
1847 int sock_no_accept(struct socket *, struct socket *, int, bool);
1848 int sock_no_getname(struct socket *, struct sockaddr *, int);
1849 int sock_no_ioctl(struct socket *, unsigned int, unsigned long);
1850 int sock_no_listen(struct socket *, int);
1851 int sock_no_shutdown(struct socket *, int);
1852 int sock_no_sendmsg(struct socket *, struct msghdr *, size_t);
1853 int sock_no_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t len);
1854 int sock_no_recvmsg(struct socket *, struct msghdr *, size_t, int);
1855 int sock_no_mmap(struct file *file, struct socket *sock,
1856 		 struct vm_area_struct *vma);
1857 ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset,
1858 			 size_t size, int flags);
1859 ssize_t sock_no_sendpage_locked(struct sock *sk, struct page *page,
1860 				int offset, size_t size, int flags);
1861 
1862 /*
1863  * Functions to fill in entries in struct proto_ops when a protocol
1864  * uses the inet style.
1865  */
1866 int sock_common_getsockopt(struct socket *sock, int level, int optname,
1867 				  char __user *optval, int __user *optlen);
1868 int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
1869 			int flags);
1870 int sock_common_setsockopt(struct socket *sock, int level, int optname,
1871 			   sockptr_t optval, unsigned int optlen);
1872 
1873 void sk_common_release(struct sock *sk);
1874 
1875 /*
1876  *	Default socket callbacks and setup code
1877  */
1878 
1879 /* Initialise core socket variables */
1880 void sock_init_data(struct socket *sock, struct sock *sk);
1881 
1882 /*
1883  * Socket reference counting postulates.
1884  *
1885  * * Each user of socket SHOULD hold a reference count.
1886  * * Each access point to socket (an hash table bucket, reference from a list,
1887  *   running timer, skb in flight MUST hold a reference count.
1888  * * When reference count hits 0, it means it will never increase back.
1889  * * When reference count hits 0, it means that no references from
1890  *   outside exist to this socket and current process on current CPU
1891  *   is last user and may/should destroy this socket.
1892  * * sk_free is called from any context: process, BH, IRQ. When
1893  *   it is called, socket has no references from outside -> sk_free
1894  *   may release descendant resources allocated by the socket, but
1895  *   to the time when it is called, socket is NOT referenced by any
1896  *   hash tables, lists etc.
1897  * * Packets, delivered from outside (from network or from another process)
1898  *   and enqueued on receive/error queues SHOULD NOT grab reference count,
1899  *   when they sit in queue. Otherwise, packets will leak to hole, when
1900  *   socket is looked up by one cpu and unhasing is made by another CPU.
1901  *   It is true for udp/raw, netlink (leak to receive and error queues), tcp
1902  *   (leak to backlog). Packet socket does all the processing inside
1903  *   BR_NETPROTO_LOCK, so that it has not this race condition. UNIX sockets
1904  *   use separate SMP lock, so that they are prone too.
1905  */
1906 
1907 /* Ungrab socket and destroy it, if it was the last reference. */
1908 static inline void sock_put(struct sock *sk)
1909 {
1910 	if (refcount_dec_and_test(&sk->sk_refcnt))
1911 		sk_free(sk);
1912 }
1913 /* Generic version of sock_put(), dealing with all sockets
1914  * (TCP_TIMEWAIT, TCP_NEW_SYN_RECV, ESTABLISHED...)
1915  */
1916 void sock_gen_put(struct sock *sk);
1917 
1918 int __sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested,
1919 		     unsigned int trim_cap, bool refcounted);
1920 static inline int sk_receive_skb(struct sock *sk, struct sk_buff *skb,
1921 				 const int nested)
1922 {
1923 	return __sk_receive_skb(sk, skb, nested, 1, true);
1924 }
1925 
1926 static inline void sk_tx_queue_set(struct sock *sk, int tx_queue)
1927 {
1928 	/* sk_tx_queue_mapping accept only upto a 16-bit value */
1929 	if (WARN_ON_ONCE((unsigned short)tx_queue >= USHRT_MAX))
1930 		return;
1931 	sk->sk_tx_queue_mapping = tx_queue;
1932 }
1933 
1934 #define NO_QUEUE_MAPPING	USHRT_MAX
1935 
1936 static inline void sk_tx_queue_clear(struct sock *sk)
1937 {
1938 	sk->sk_tx_queue_mapping = NO_QUEUE_MAPPING;
1939 }
1940 
1941 static inline int sk_tx_queue_get(const struct sock *sk)
1942 {
1943 	if (sk && sk->sk_tx_queue_mapping != NO_QUEUE_MAPPING)
1944 		return sk->sk_tx_queue_mapping;
1945 
1946 	return -1;
1947 }
1948 
1949 static inline void __sk_rx_queue_set(struct sock *sk,
1950 				     const struct sk_buff *skb,
1951 				     bool force_set)
1952 {
1953 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
1954 	if (skb_rx_queue_recorded(skb)) {
1955 		u16 rx_queue = skb_get_rx_queue(skb);
1956 
1957 		if (force_set ||
1958 		    unlikely(READ_ONCE(sk->sk_rx_queue_mapping) != rx_queue))
1959 			WRITE_ONCE(sk->sk_rx_queue_mapping, rx_queue);
1960 	}
1961 #endif
1962 }
1963 
1964 static inline void sk_rx_queue_set(struct sock *sk, const struct sk_buff *skb)
1965 {
1966 	__sk_rx_queue_set(sk, skb, true);
1967 }
1968 
1969 static inline void sk_rx_queue_update(struct sock *sk, const struct sk_buff *skb)
1970 {
1971 	__sk_rx_queue_set(sk, skb, false);
1972 }
1973 
1974 static inline void sk_rx_queue_clear(struct sock *sk)
1975 {
1976 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
1977 	WRITE_ONCE(sk->sk_rx_queue_mapping, NO_QUEUE_MAPPING);
1978 #endif
1979 }
1980 
1981 static inline int sk_rx_queue_get(const struct sock *sk)
1982 {
1983 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
1984 	if (sk) {
1985 		int res = READ_ONCE(sk->sk_rx_queue_mapping);
1986 
1987 		if (res != NO_QUEUE_MAPPING)
1988 			return res;
1989 	}
1990 #endif
1991 
1992 	return -1;
1993 }
1994 
1995 static inline void sk_set_socket(struct sock *sk, struct socket *sock)
1996 {
1997 	sk->sk_socket = sock;
1998 }
1999 
2000 static inline wait_queue_head_t *sk_sleep(struct sock *sk)
2001 {
2002 	BUILD_BUG_ON(offsetof(struct socket_wq, wait) != 0);
2003 	return &rcu_dereference_raw(sk->sk_wq)->wait;
2004 }
2005 /* Detach socket from process context.
2006  * Announce socket dead, detach it from wait queue and inode.
2007  * Note that parent inode held reference count on this struct sock,
2008  * we do not release it in this function, because protocol
2009  * probably wants some additional cleanups or even continuing
2010  * to work with this socket (TCP).
2011  */
2012 static inline void sock_orphan(struct sock *sk)
2013 {
2014 	write_lock_bh(&sk->sk_callback_lock);
2015 	sock_set_flag(sk, SOCK_DEAD);
2016 	sk_set_socket(sk, NULL);
2017 	sk->sk_wq  = NULL;
2018 	write_unlock_bh(&sk->sk_callback_lock);
2019 }
2020 
2021 static inline void sock_graft(struct sock *sk, struct socket *parent)
2022 {
2023 	WARN_ON(parent->sk);
2024 	write_lock_bh(&sk->sk_callback_lock);
2025 	rcu_assign_pointer(sk->sk_wq, &parent->wq);
2026 	parent->sk = sk;
2027 	sk_set_socket(sk, parent);
2028 	sk->sk_uid = SOCK_INODE(parent)->i_uid;
2029 	security_sock_graft(sk, parent);
2030 	write_unlock_bh(&sk->sk_callback_lock);
2031 }
2032 
2033 kuid_t sock_i_uid(struct sock *sk);
2034 unsigned long sock_i_ino(struct sock *sk);
2035 
2036 static inline kuid_t sock_net_uid(const struct net *net, const struct sock *sk)
2037 {
2038 	return sk ? sk->sk_uid : make_kuid(net->user_ns, 0);
2039 }
2040 
2041 static inline u32 net_tx_rndhash(void)
2042 {
2043 	u32 v = prandom_u32();
2044 
2045 	return v ?: 1;
2046 }
2047 
2048 static inline void sk_set_txhash(struct sock *sk)
2049 {
2050 	/* This pairs with READ_ONCE() in skb_set_hash_from_sk() */
2051 	WRITE_ONCE(sk->sk_txhash, net_tx_rndhash());
2052 }
2053 
2054 static inline bool sk_rethink_txhash(struct sock *sk)
2055 {
2056 	if (sk->sk_txhash) {
2057 		sk_set_txhash(sk);
2058 		return true;
2059 	}
2060 	return false;
2061 }
2062 
2063 static inline struct dst_entry *
2064 __sk_dst_get(struct sock *sk)
2065 {
2066 	return rcu_dereference_check(sk->sk_dst_cache,
2067 				     lockdep_sock_is_held(sk));
2068 }
2069 
2070 static inline struct dst_entry *
2071 sk_dst_get(struct sock *sk)
2072 {
2073 	struct dst_entry *dst;
2074 
2075 	rcu_read_lock();
2076 	dst = rcu_dereference(sk->sk_dst_cache);
2077 	if (dst && !atomic_inc_not_zero(&dst->__refcnt))
2078 		dst = NULL;
2079 	rcu_read_unlock();
2080 	return dst;
2081 }
2082 
2083 static inline void __dst_negative_advice(struct sock *sk)
2084 {
2085 	struct dst_entry *ndst, *dst = __sk_dst_get(sk);
2086 
2087 	if (dst && dst->ops->negative_advice) {
2088 		ndst = dst->ops->negative_advice(dst);
2089 
2090 		if (ndst != dst) {
2091 			rcu_assign_pointer(sk->sk_dst_cache, ndst);
2092 			sk_tx_queue_clear(sk);
2093 			sk->sk_dst_pending_confirm = 0;
2094 		}
2095 	}
2096 }
2097 
2098 static inline void dst_negative_advice(struct sock *sk)
2099 {
2100 	sk_rethink_txhash(sk);
2101 	__dst_negative_advice(sk);
2102 }
2103 
2104 static inline void
2105 __sk_dst_set(struct sock *sk, struct dst_entry *dst)
2106 {
2107 	struct dst_entry *old_dst;
2108 
2109 	sk_tx_queue_clear(sk);
2110 	sk->sk_dst_pending_confirm = 0;
2111 	old_dst = rcu_dereference_protected(sk->sk_dst_cache,
2112 					    lockdep_sock_is_held(sk));
2113 	rcu_assign_pointer(sk->sk_dst_cache, dst);
2114 	dst_release(old_dst);
2115 }
2116 
2117 static inline void
2118 sk_dst_set(struct sock *sk, struct dst_entry *dst)
2119 {
2120 	struct dst_entry *old_dst;
2121 
2122 	sk_tx_queue_clear(sk);
2123 	sk->sk_dst_pending_confirm = 0;
2124 	old_dst = xchg((__force struct dst_entry **)&sk->sk_dst_cache, dst);
2125 	dst_release(old_dst);
2126 }
2127 
2128 static inline void
2129 __sk_dst_reset(struct sock *sk)
2130 {
2131 	__sk_dst_set(sk, NULL);
2132 }
2133 
2134 static inline void
2135 sk_dst_reset(struct sock *sk)
2136 {
2137 	sk_dst_set(sk, NULL);
2138 }
2139 
2140 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie);
2141 
2142 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie);
2143 
2144 static inline void sk_dst_confirm(struct sock *sk)
2145 {
2146 	if (!READ_ONCE(sk->sk_dst_pending_confirm))
2147 		WRITE_ONCE(sk->sk_dst_pending_confirm, 1);
2148 }
2149 
2150 static inline void sock_confirm_neigh(struct sk_buff *skb, struct neighbour *n)
2151 {
2152 	if (skb_get_dst_pending_confirm(skb)) {
2153 		struct sock *sk = skb->sk;
2154 
2155 		if (sk && READ_ONCE(sk->sk_dst_pending_confirm))
2156 			WRITE_ONCE(sk->sk_dst_pending_confirm, 0);
2157 		neigh_confirm(n);
2158 	}
2159 }
2160 
2161 bool sk_mc_loop(struct sock *sk);
2162 
2163 static inline bool sk_can_gso(const struct sock *sk)
2164 {
2165 	return net_gso_ok(sk->sk_route_caps, sk->sk_gso_type);
2166 }
2167 
2168 void sk_setup_caps(struct sock *sk, struct dst_entry *dst);
2169 
2170 static inline void sk_gso_disable(struct sock *sk)
2171 {
2172 	sk->sk_gso_disabled = 1;
2173 	sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
2174 }
2175 
2176 static inline int skb_do_copy_data_nocache(struct sock *sk, struct sk_buff *skb,
2177 					   struct iov_iter *from, char *to,
2178 					   int copy, int offset)
2179 {
2180 	if (skb->ip_summed == CHECKSUM_NONE) {
2181 		__wsum csum = 0;
2182 		if (!csum_and_copy_from_iter_full(to, copy, &csum, from))
2183 			return -EFAULT;
2184 		skb->csum = csum_block_add(skb->csum, csum, offset);
2185 	} else if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY) {
2186 		if (!copy_from_iter_full_nocache(to, copy, from))
2187 			return -EFAULT;
2188 	} else if (!copy_from_iter_full(to, copy, from))
2189 		return -EFAULT;
2190 
2191 	return 0;
2192 }
2193 
2194 static inline int skb_add_data_nocache(struct sock *sk, struct sk_buff *skb,
2195 				       struct iov_iter *from, int copy)
2196 {
2197 	int err, offset = skb->len;
2198 
2199 	err = skb_do_copy_data_nocache(sk, skb, from, skb_put(skb, copy),
2200 				       copy, offset);
2201 	if (err)
2202 		__skb_trim(skb, offset);
2203 
2204 	return err;
2205 }
2206 
2207 static inline int skb_copy_to_page_nocache(struct sock *sk, struct iov_iter *from,
2208 					   struct sk_buff *skb,
2209 					   struct page *page,
2210 					   int off, int copy)
2211 {
2212 	int err;
2213 
2214 	err = skb_do_copy_data_nocache(sk, skb, from, page_address(page) + off,
2215 				       copy, skb->len);
2216 	if (err)
2217 		return err;
2218 
2219 	skb->len	     += copy;
2220 	skb->data_len	     += copy;
2221 	skb->truesize	     += copy;
2222 	sk_wmem_queued_add(sk, copy);
2223 	sk_mem_charge(sk, copy);
2224 	return 0;
2225 }
2226 
2227 /**
2228  * sk_wmem_alloc_get - returns write allocations
2229  * @sk: socket
2230  *
2231  * Return: sk_wmem_alloc minus initial offset of one
2232  */
2233 static inline int sk_wmem_alloc_get(const struct sock *sk)
2234 {
2235 	return refcount_read(&sk->sk_wmem_alloc) - 1;
2236 }
2237 
2238 /**
2239  * sk_rmem_alloc_get - returns read allocations
2240  * @sk: socket
2241  *
2242  * Return: sk_rmem_alloc
2243  */
2244 static inline int sk_rmem_alloc_get(const struct sock *sk)
2245 {
2246 	return atomic_read(&sk->sk_rmem_alloc);
2247 }
2248 
2249 /**
2250  * sk_has_allocations - check if allocations are outstanding
2251  * @sk: socket
2252  *
2253  * Return: true if socket has write or read allocations
2254  */
2255 static inline bool sk_has_allocations(const struct sock *sk)
2256 {
2257 	return sk_wmem_alloc_get(sk) || sk_rmem_alloc_get(sk);
2258 }
2259 
2260 /**
2261  * skwq_has_sleeper - check if there are any waiting processes
2262  * @wq: struct socket_wq
2263  *
2264  * Return: true if socket_wq has waiting processes
2265  *
2266  * The purpose of the skwq_has_sleeper and sock_poll_wait is to wrap the memory
2267  * barrier call. They were added due to the race found within the tcp code.
2268  *
2269  * Consider following tcp code paths::
2270  *
2271  *   CPU1                CPU2
2272  *   sys_select          receive packet
2273  *   ...                 ...
2274  *   __add_wait_queue    update tp->rcv_nxt
2275  *   ...                 ...
2276  *   tp->rcv_nxt check   sock_def_readable
2277  *   ...                 {
2278  *   schedule               rcu_read_lock();
2279  *                          wq = rcu_dereference(sk->sk_wq);
2280  *                          if (wq && waitqueue_active(&wq->wait))
2281  *                              wake_up_interruptible(&wq->wait)
2282  *                          ...
2283  *                       }
2284  *
2285  * The race for tcp fires when the __add_wait_queue changes done by CPU1 stay
2286  * in its cache, and so does the tp->rcv_nxt update on CPU2 side.  The CPU1
2287  * could then endup calling schedule and sleep forever if there are no more
2288  * data on the socket.
2289  *
2290  */
2291 static inline bool skwq_has_sleeper(struct socket_wq *wq)
2292 {
2293 	return wq && wq_has_sleeper(&wq->wait);
2294 }
2295 
2296 /**
2297  * sock_poll_wait - place memory barrier behind the poll_wait call.
2298  * @filp:           file
2299  * @sock:           socket to wait on
2300  * @p:              poll_table
2301  *
2302  * See the comments in the wq_has_sleeper function.
2303  */
2304 static inline void sock_poll_wait(struct file *filp, struct socket *sock,
2305 				  poll_table *p)
2306 {
2307 	if (!poll_does_not_wait(p)) {
2308 		poll_wait(filp, &sock->wq.wait, p);
2309 		/* We need to be sure we are in sync with the
2310 		 * socket flags modification.
2311 		 *
2312 		 * This memory barrier is paired in the wq_has_sleeper.
2313 		 */
2314 		smp_mb();
2315 	}
2316 }
2317 
2318 static inline void skb_set_hash_from_sk(struct sk_buff *skb, struct sock *sk)
2319 {
2320 	/* This pairs with WRITE_ONCE() in sk_set_txhash() */
2321 	u32 txhash = READ_ONCE(sk->sk_txhash);
2322 
2323 	if (txhash) {
2324 		skb->l4_hash = 1;
2325 		skb->hash = txhash;
2326 	}
2327 }
2328 
2329 void skb_set_owner_w(struct sk_buff *skb, struct sock *sk);
2330 
2331 /*
2332  *	Queue a received datagram if it will fit. Stream and sequenced
2333  *	protocols can't normally use this as they need to fit buffers in
2334  *	and play with them.
2335  *
2336  *	Inlined as it's very short and called for pretty much every
2337  *	packet ever received.
2338  */
2339 static inline void skb_set_owner_r(struct sk_buff *skb, struct sock *sk)
2340 {
2341 	skb_orphan(skb);
2342 	skb->sk = sk;
2343 	skb->destructor = sock_rfree;
2344 	atomic_add(skb->truesize, &sk->sk_rmem_alloc);
2345 	sk_mem_charge(sk, skb->truesize);
2346 }
2347 
2348 static inline __must_check bool skb_set_owner_sk_safe(struct sk_buff *skb, struct sock *sk)
2349 {
2350 	if (sk && refcount_inc_not_zero(&sk->sk_refcnt)) {
2351 		skb_orphan(skb);
2352 		skb->destructor = sock_efree;
2353 		skb->sk = sk;
2354 		return true;
2355 	}
2356 	return false;
2357 }
2358 
2359 static inline void skb_prepare_for_gro(struct sk_buff *skb)
2360 {
2361 	if (skb->destructor != sock_wfree) {
2362 		skb_orphan(skb);
2363 		return;
2364 	}
2365 	skb->slow_gro = 1;
2366 }
2367 
2368 void sk_reset_timer(struct sock *sk, struct timer_list *timer,
2369 		    unsigned long expires);
2370 
2371 void sk_stop_timer(struct sock *sk, struct timer_list *timer);
2372 
2373 void sk_stop_timer_sync(struct sock *sk, struct timer_list *timer);
2374 
2375 int __sk_queue_drop_skb(struct sock *sk, struct sk_buff_head *sk_queue,
2376 			struct sk_buff *skb, unsigned int flags,
2377 			void (*destructor)(struct sock *sk,
2378 					   struct sk_buff *skb));
2379 int __sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
2380 int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
2381 
2382 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb);
2383 struct sk_buff *sock_dequeue_err_skb(struct sock *sk);
2384 
2385 /*
2386  *	Recover an error report and clear atomically
2387  */
2388 
2389 static inline int sock_error(struct sock *sk)
2390 {
2391 	int err;
2392 
2393 	/* Avoid an atomic operation for the common case.
2394 	 * This is racy since another cpu/thread can change sk_err under us.
2395 	 */
2396 	if (likely(data_race(!sk->sk_err)))
2397 		return 0;
2398 
2399 	err = xchg(&sk->sk_err, 0);
2400 	return -err;
2401 }
2402 
2403 void sk_error_report(struct sock *sk);
2404 
2405 static inline unsigned long sock_wspace(struct sock *sk)
2406 {
2407 	int amt = 0;
2408 
2409 	if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
2410 		amt = sk->sk_sndbuf - refcount_read(&sk->sk_wmem_alloc);
2411 		if (amt < 0)
2412 			amt = 0;
2413 	}
2414 	return amt;
2415 }
2416 
2417 /* Note:
2418  *  We use sk->sk_wq_raw, from contexts knowing this
2419  *  pointer is not NULL and cannot disappear/change.
2420  */
2421 static inline void sk_set_bit(int nr, struct sock *sk)
2422 {
2423 	if ((nr == SOCKWQ_ASYNC_NOSPACE || nr == SOCKWQ_ASYNC_WAITDATA) &&
2424 	    !sock_flag(sk, SOCK_FASYNC))
2425 		return;
2426 
2427 	set_bit(nr, &sk->sk_wq_raw->flags);
2428 }
2429 
2430 static inline void sk_clear_bit(int nr, struct sock *sk)
2431 {
2432 	if ((nr == SOCKWQ_ASYNC_NOSPACE || nr == SOCKWQ_ASYNC_WAITDATA) &&
2433 	    !sock_flag(sk, SOCK_FASYNC))
2434 		return;
2435 
2436 	clear_bit(nr, &sk->sk_wq_raw->flags);
2437 }
2438 
2439 static inline void sk_wake_async(const struct sock *sk, int how, int band)
2440 {
2441 	if (sock_flag(sk, SOCK_FASYNC)) {
2442 		rcu_read_lock();
2443 		sock_wake_async(rcu_dereference(sk->sk_wq), how, band);
2444 		rcu_read_unlock();
2445 	}
2446 }
2447 
2448 /* Since sk_{r,w}mem_alloc sums skb->truesize, even a small frame might
2449  * need sizeof(sk_buff) + MTU + padding, unless net driver perform copybreak.
2450  * Note: for send buffers, TCP works better if we can build two skbs at
2451  * minimum.
2452  */
2453 #define TCP_SKB_MIN_TRUESIZE	(2048 + SKB_DATA_ALIGN(sizeof(struct sk_buff)))
2454 
2455 #define SOCK_MIN_SNDBUF		(TCP_SKB_MIN_TRUESIZE * 2)
2456 #define SOCK_MIN_RCVBUF		 TCP_SKB_MIN_TRUESIZE
2457 
2458 static inline void sk_stream_moderate_sndbuf(struct sock *sk)
2459 {
2460 	u32 val;
2461 
2462 	if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
2463 		return;
2464 
2465 	val = min(sk->sk_sndbuf, sk->sk_wmem_queued >> 1);
2466 	val = max_t(u32, val, sk_unused_reserved_mem(sk));
2467 
2468 	WRITE_ONCE(sk->sk_sndbuf, max_t(u32, val, SOCK_MIN_SNDBUF));
2469 }
2470 
2471 /**
2472  * sk_page_frag - return an appropriate page_frag
2473  * @sk: socket
2474  *
2475  * Use the per task page_frag instead of the per socket one for
2476  * optimization when we know that we're in process context and own
2477  * everything that's associated with %current.
2478  *
2479  * Both direct reclaim and page faults can nest inside other
2480  * socket operations and end up recursing into sk_page_frag()
2481  * while it's already in use: explicitly avoid task page_frag
2482  * usage if the caller is potentially doing any of them.
2483  * This assumes that page fault handlers use the GFP_NOFS flags.
2484  *
2485  * Return: a per task page_frag if context allows that,
2486  * otherwise a per socket one.
2487  */
2488 static inline struct page_frag *sk_page_frag(struct sock *sk)
2489 {
2490 	if ((sk->sk_allocation & (__GFP_DIRECT_RECLAIM | __GFP_MEMALLOC | __GFP_FS)) ==
2491 	    (__GFP_DIRECT_RECLAIM | __GFP_FS))
2492 		return &current->task_frag;
2493 
2494 	return &sk->sk_frag;
2495 }
2496 
2497 bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag);
2498 
2499 /*
2500  *	Default write policy as shown to user space via poll/select/SIGIO
2501  */
2502 static inline bool sock_writeable(const struct sock *sk)
2503 {
2504 	return refcount_read(&sk->sk_wmem_alloc) < (READ_ONCE(sk->sk_sndbuf) >> 1);
2505 }
2506 
2507 static inline gfp_t gfp_any(void)
2508 {
2509 	return in_softirq() ? GFP_ATOMIC : GFP_KERNEL;
2510 }
2511 
2512 static inline gfp_t gfp_memcg_charge(void)
2513 {
2514 	return in_softirq() ? GFP_NOWAIT : GFP_KERNEL;
2515 }
2516 
2517 static inline long sock_rcvtimeo(const struct sock *sk, bool noblock)
2518 {
2519 	return noblock ? 0 : sk->sk_rcvtimeo;
2520 }
2521 
2522 static inline long sock_sndtimeo(const struct sock *sk, bool noblock)
2523 {
2524 	return noblock ? 0 : sk->sk_sndtimeo;
2525 }
2526 
2527 static inline int sock_rcvlowat(const struct sock *sk, int waitall, int len)
2528 {
2529 	int v = waitall ? len : min_t(int, READ_ONCE(sk->sk_rcvlowat), len);
2530 
2531 	return v ?: 1;
2532 }
2533 
2534 /* Alas, with timeout socket operations are not restartable.
2535  * Compare this to poll().
2536  */
2537 static inline int sock_intr_errno(long timeo)
2538 {
2539 	return timeo == MAX_SCHEDULE_TIMEOUT ? -ERESTARTSYS : -EINTR;
2540 }
2541 
2542 struct sock_skb_cb {
2543 	u32 dropcount;
2544 };
2545 
2546 /* Store sock_skb_cb at the end of skb->cb[] so protocol families
2547  * using skb->cb[] would keep using it directly and utilize its
2548  * alignement guarantee.
2549  */
2550 #define SOCK_SKB_CB_OFFSET ((sizeof_field(struct sk_buff, cb) - \
2551 			    sizeof(struct sock_skb_cb)))
2552 
2553 #define SOCK_SKB_CB(__skb) ((struct sock_skb_cb *)((__skb)->cb + \
2554 			    SOCK_SKB_CB_OFFSET))
2555 
2556 #define sock_skb_cb_check_size(size) \
2557 	BUILD_BUG_ON((size) > SOCK_SKB_CB_OFFSET)
2558 
2559 static inline void
2560 sock_skb_set_dropcount(const struct sock *sk, struct sk_buff *skb)
2561 {
2562 	SOCK_SKB_CB(skb)->dropcount = sock_flag(sk, SOCK_RXQ_OVFL) ?
2563 						atomic_read(&sk->sk_drops) : 0;
2564 }
2565 
2566 static inline void sk_drops_add(struct sock *sk, const struct sk_buff *skb)
2567 {
2568 	int segs = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
2569 
2570 	atomic_add(segs, &sk->sk_drops);
2571 }
2572 
2573 static inline ktime_t sock_read_timestamp(struct sock *sk)
2574 {
2575 #if BITS_PER_LONG==32
2576 	unsigned int seq;
2577 	ktime_t kt;
2578 
2579 	do {
2580 		seq = read_seqbegin(&sk->sk_stamp_seq);
2581 		kt = sk->sk_stamp;
2582 	} while (read_seqretry(&sk->sk_stamp_seq, seq));
2583 
2584 	return kt;
2585 #else
2586 	return READ_ONCE(sk->sk_stamp);
2587 #endif
2588 }
2589 
2590 static inline void sock_write_timestamp(struct sock *sk, ktime_t kt)
2591 {
2592 #if BITS_PER_LONG==32
2593 	write_seqlock(&sk->sk_stamp_seq);
2594 	sk->sk_stamp = kt;
2595 	write_sequnlock(&sk->sk_stamp_seq);
2596 #else
2597 	WRITE_ONCE(sk->sk_stamp, kt);
2598 #endif
2599 }
2600 
2601 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
2602 			   struct sk_buff *skb);
2603 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
2604 			     struct sk_buff *skb);
2605 
2606 static inline void
2607 sock_recv_timestamp(struct msghdr *msg, struct sock *sk, struct sk_buff *skb)
2608 {
2609 	ktime_t kt = skb->tstamp;
2610 	struct skb_shared_hwtstamps *hwtstamps = skb_hwtstamps(skb);
2611 
2612 	/*
2613 	 * generate control messages if
2614 	 * - receive time stamping in software requested
2615 	 * - software time stamp available and wanted
2616 	 * - hardware time stamps available and wanted
2617 	 */
2618 	if (sock_flag(sk, SOCK_RCVTSTAMP) ||
2619 	    (sk->sk_tsflags & SOF_TIMESTAMPING_RX_SOFTWARE) ||
2620 	    (kt && sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) ||
2621 	    (hwtstamps->hwtstamp &&
2622 	     (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE)))
2623 		__sock_recv_timestamp(msg, sk, skb);
2624 	else
2625 		sock_write_timestamp(sk, kt);
2626 
2627 	if (sock_flag(sk, SOCK_WIFI_STATUS) && skb->wifi_acked_valid)
2628 		__sock_recv_wifi_status(msg, sk, skb);
2629 }
2630 
2631 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
2632 			      struct sk_buff *skb);
2633 
2634 #define SK_DEFAULT_STAMP (-1L * NSEC_PER_SEC)
2635 static inline void sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
2636 					  struct sk_buff *skb)
2637 {
2638 #define FLAGS_TS_OR_DROPS ((1UL << SOCK_RXQ_OVFL)			| \
2639 			   (1UL << SOCK_RCVTSTAMP))
2640 #define TSFLAGS_ANY	  (SOF_TIMESTAMPING_SOFTWARE			| \
2641 			   SOF_TIMESTAMPING_RAW_HARDWARE)
2642 
2643 	if (sk->sk_flags & FLAGS_TS_OR_DROPS || sk->sk_tsflags & TSFLAGS_ANY)
2644 		__sock_recv_ts_and_drops(msg, sk, skb);
2645 	else if (unlikely(sock_flag(sk, SOCK_TIMESTAMP)))
2646 		sock_write_timestamp(sk, skb->tstamp);
2647 	else if (unlikely(sk->sk_stamp == SK_DEFAULT_STAMP))
2648 		sock_write_timestamp(sk, 0);
2649 }
2650 
2651 void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags);
2652 
2653 /**
2654  * _sock_tx_timestamp - checks whether the outgoing packet is to be time stamped
2655  * @sk:		socket sending this packet
2656  * @tsflags:	timestamping flags to use
2657  * @tx_flags:	completed with instructions for time stamping
2658  * @tskey:      filled in with next sk_tskey (not for TCP, which uses seqno)
2659  *
2660  * Note: callers should take care of initial ``*tx_flags`` value (usually 0)
2661  */
2662 static inline void _sock_tx_timestamp(struct sock *sk, __u16 tsflags,
2663 				      __u8 *tx_flags, __u32 *tskey)
2664 {
2665 	if (unlikely(tsflags)) {
2666 		__sock_tx_timestamp(tsflags, tx_flags);
2667 		if (tsflags & SOF_TIMESTAMPING_OPT_ID && tskey &&
2668 		    tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK)
2669 			*tskey = sk->sk_tskey++;
2670 	}
2671 	if (unlikely(sock_flag(sk, SOCK_WIFI_STATUS)))
2672 		*tx_flags |= SKBTX_WIFI_STATUS;
2673 }
2674 
2675 static inline void sock_tx_timestamp(struct sock *sk, __u16 tsflags,
2676 				     __u8 *tx_flags)
2677 {
2678 	_sock_tx_timestamp(sk, tsflags, tx_flags, NULL);
2679 }
2680 
2681 static inline void skb_setup_tx_timestamp(struct sk_buff *skb, __u16 tsflags)
2682 {
2683 	_sock_tx_timestamp(skb->sk, tsflags, &skb_shinfo(skb)->tx_flags,
2684 			   &skb_shinfo(skb)->tskey);
2685 }
2686 
2687 static inline bool sk_is_tcp(const struct sock *sk)
2688 {
2689 	return sk->sk_type == SOCK_STREAM && sk->sk_protocol == IPPROTO_TCP;
2690 }
2691 
2692 /**
2693  * sk_eat_skb - Release a skb if it is no longer needed
2694  * @sk: socket to eat this skb from
2695  * @skb: socket buffer to eat
2696  *
2697  * This routine must be called with interrupts disabled or with the socket
2698  * locked so that the sk_buff queue operation is ok.
2699 */
2700 static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb)
2701 {
2702 	__skb_unlink(skb, &sk->sk_receive_queue);
2703 	__kfree_skb(skb);
2704 }
2705 
2706 static inline
2707 struct net *sock_net(const struct sock *sk)
2708 {
2709 	return read_pnet(&sk->sk_net);
2710 }
2711 
2712 static inline
2713 void sock_net_set(struct sock *sk, struct net *net)
2714 {
2715 	write_pnet(&sk->sk_net, net);
2716 }
2717 
2718 static inline bool
2719 skb_sk_is_prefetched(struct sk_buff *skb)
2720 {
2721 #ifdef CONFIG_INET
2722 	return skb->destructor == sock_pfree;
2723 #else
2724 	return false;
2725 #endif /* CONFIG_INET */
2726 }
2727 
2728 /* This helper checks if a socket is a full socket,
2729  * ie _not_ a timewait or request socket.
2730  */
2731 static inline bool sk_fullsock(const struct sock *sk)
2732 {
2733 	return (1 << sk->sk_state) & ~(TCPF_TIME_WAIT | TCPF_NEW_SYN_RECV);
2734 }
2735 
2736 static inline bool
2737 sk_is_refcounted(struct sock *sk)
2738 {
2739 	/* Only full sockets have sk->sk_flags. */
2740 	return !sk_fullsock(sk) || !sock_flag(sk, SOCK_RCU_FREE);
2741 }
2742 
2743 /**
2744  * skb_steal_sock - steal a socket from an sk_buff
2745  * @skb: sk_buff to steal the socket from
2746  * @refcounted: is set to true if the socket is reference-counted
2747  */
2748 static inline struct sock *
2749 skb_steal_sock(struct sk_buff *skb, bool *refcounted)
2750 {
2751 	if (skb->sk) {
2752 		struct sock *sk = skb->sk;
2753 
2754 		*refcounted = true;
2755 		if (skb_sk_is_prefetched(skb))
2756 			*refcounted = sk_is_refcounted(sk);
2757 		skb->destructor = NULL;
2758 		skb->sk = NULL;
2759 		return sk;
2760 	}
2761 	*refcounted = false;
2762 	return NULL;
2763 }
2764 
2765 /* Checks if this SKB belongs to an HW offloaded socket
2766  * and whether any SW fallbacks are required based on dev.
2767  * Check decrypted mark in case skb_orphan() cleared socket.
2768  */
2769 static inline struct sk_buff *sk_validate_xmit_skb(struct sk_buff *skb,
2770 						   struct net_device *dev)
2771 {
2772 #ifdef CONFIG_SOCK_VALIDATE_XMIT
2773 	struct sock *sk = skb->sk;
2774 
2775 	if (sk && sk_fullsock(sk) && sk->sk_validate_xmit_skb) {
2776 		skb = sk->sk_validate_xmit_skb(sk, dev, skb);
2777 #ifdef CONFIG_TLS_DEVICE
2778 	} else if (unlikely(skb->decrypted)) {
2779 		pr_warn_ratelimited("unencrypted skb with no associated socket - dropping\n");
2780 		kfree_skb(skb);
2781 		skb = NULL;
2782 #endif
2783 	}
2784 #endif
2785 
2786 	return skb;
2787 }
2788 
2789 /* This helper checks if a socket is a LISTEN or NEW_SYN_RECV
2790  * SYNACK messages can be attached to either ones (depending on SYNCOOKIE)
2791  */
2792 static inline bool sk_listener(const struct sock *sk)
2793 {
2794 	return (1 << sk->sk_state) & (TCPF_LISTEN | TCPF_NEW_SYN_RECV);
2795 }
2796 
2797 void sock_enable_timestamp(struct sock *sk, enum sock_flags flag);
2798 int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len, int level,
2799 		       int type);
2800 
2801 bool sk_ns_capable(const struct sock *sk,
2802 		   struct user_namespace *user_ns, int cap);
2803 bool sk_capable(const struct sock *sk, int cap);
2804 bool sk_net_capable(const struct sock *sk, int cap);
2805 
2806 void sk_get_meminfo(const struct sock *sk, u32 *meminfo);
2807 
2808 /* Take into consideration the size of the struct sk_buff overhead in the
2809  * determination of these values, since that is non-constant across
2810  * platforms.  This makes socket queueing behavior and performance
2811  * not depend upon such differences.
2812  */
2813 #define _SK_MEM_PACKETS		256
2814 #define _SK_MEM_OVERHEAD	SKB_TRUESIZE(256)
2815 #define SK_WMEM_MAX		(_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
2816 #define SK_RMEM_MAX		(_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
2817 
2818 extern __u32 sysctl_wmem_max;
2819 extern __u32 sysctl_rmem_max;
2820 
2821 extern int sysctl_tstamp_allow_data;
2822 extern int sysctl_optmem_max;
2823 
2824 extern __u32 sysctl_wmem_default;
2825 extern __u32 sysctl_rmem_default;
2826 
2827 #define SKB_FRAG_PAGE_ORDER	get_order(32768)
2828 DECLARE_STATIC_KEY_FALSE(net_high_order_alloc_disable_key);
2829 
2830 static inline int sk_get_wmem0(const struct sock *sk, const struct proto *proto)
2831 {
2832 	/* Does this proto have per netns sysctl_wmem ? */
2833 	if (proto->sysctl_wmem_offset)
2834 		return *(int *)((void *)sock_net(sk) + proto->sysctl_wmem_offset);
2835 
2836 	return *proto->sysctl_wmem;
2837 }
2838 
2839 static inline int sk_get_rmem0(const struct sock *sk, const struct proto *proto)
2840 {
2841 	/* Does this proto have per netns sysctl_rmem ? */
2842 	if (proto->sysctl_rmem_offset)
2843 		return *(int *)((void *)sock_net(sk) + proto->sysctl_rmem_offset);
2844 
2845 	return *proto->sysctl_rmem;
2846 }
2847 
2848 /* Default TCP Small queue budget is ~1 ms of data (1sec >> 10)
2849  * Some wifi drivers need to tweak it to get more chunks.
2850  * They can use this helper from their ndo_start_xmit()
2851  */
2852 static inline void sk_pacing_shift_update(struct sock *sk, int val)
2853 {
2854 	if (!sk || !sk_fullsock(sk) || READ_ONCE(sk->sk_pacing_shift) == val)
2855 		return;
2856 	WRITE_ONCE(sk->sk_pacing_shift, val);
2857 }
2858 
2859 /* if a socket is bound to a device, check that the given device
2860  * index is either the same or that the socket is bound to an L3
2861  * master device and the given device index is also enslaved to
2862  * that L3 master
2863  */
2864 static inline bool sk_dev_equal_l3scope(struct sock *sk, int dif)
2865 {
2866 	int mdif;
2867 
2868 	if (!sk->sk_bound_dev_if || sk->sk_bound_dev_if == dif)
2869 		return true;
2870 
2871 	mdif = l3mdev_master_ifindex_by_index(sock_net(sk), dif);
2872 	if (mdif && mdif == sk->sk_bound_dev_if)
2873 		return true;
2874 
2875 	return false;
2876 }
2877 
2878 void sock_def_readable(struct sock *sk);
2879 
2880 int sock_bindtoindex(struct sock *sk, int ifindex, bool lock_sk);
2881 void sock_set_timestamp(struct sock *sk, int optname, bool valbool);
2882 int sock_set_timestamping(struct sock *sk, int optname,
2883 			  struct so_timestamping timestamping);
2884 
2885 void sock_enable_timestamps(struct sock *sk);
2886 void sock_no_linger(struct sock *sk);
2887 void sock_set_keepalive(struct sock *sk);
2888 void sock_set_priority(struct sock *sk, u32 priority);
2889 void sock_set_rcvbuf(struct sock *sk, int val);
2890 void sock_set_mark(struct sock *sk, u32 val);
2891 void sock_set_reuseaddr(struct sock *sk);
2892 void sock_set_reuseport(struct sock *sk);
2893 void sock_set_sndtimeo(struct sock *sk, s64 secs);
2894 
2895 int sock_bind_add(struct sock *sk, struct sockaddr *addr, int addr_len);
2896 
2897 int sock_get_timeout(long timeo, void *optval, bool old_timeval);
2898 int sock_copy_user_timeval(struct __kernel_sock_timeval *tv,
2899 			   sockptr_t optval, int optlen, bool old_timeval);
2900 
2901 static inline bool sk_is_readable(struct sock *sk)
2902 {
2903 	if (sk->sk_prot->sock_is_readable)
2904 		return sk->sk_prot->sock_is_readable(sk);
2905 	return false;
2906 }
2907 #endif	/* _SOCK_H */
2908