1 /* SPDX-License-Identifier: GPL-2.0-or-later */ 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * Definitions for the AF_INET socket handler. 8 * 9 * Version: @(#)sock.h 1.0.4 05/13/93 10 * 11 * Authors: Ross Biro 12 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 13 * Corey Minyard <wf-rch!minyard@relay.EU.net> 14 * Florian La Roche <flla@stud.uni-sb.de> 15 * 16 * Fixes: 17 * Alan Cox : Volatiles in skbuff pointers. See 18 * skbuff comments. May be overdone, 19 * better to prove they can be removed 20 * than the reverse. 21 * Alan Cox : Added a zapped field for tcp to note 22 * a socket is reset and must stay shut up 23 * Alan Cox : New fields for options 24 * Pauline Middelink : identd support 25 * Alan Cox : Eliminate low level recv/recvfrom 26 * David S. Miller : New socket lookup architecture. 27 * Steve Whitehouse: Default routines for sock_ops 28 * Arnaldo C. Melo : removed net_pinfo, tp_pinfo and made 29 * protinfo be just a void pointer, as the 30 * protocol specific parts were moved to 31 * respective headers and ipv4/v6, etc now 32 * use private slabcaches for its socks 33 * Pedro Hortas : New flags field for socket options 34 */ 35 #ifndef _SOCK_H 36 #define _SOCK_H 37 38 #include <linux/hardirq.h> 39 #include <linux/kernel.h> 40 #include <linux/list.h> 41 #include <linux/list_nulls.h> 42 #include <linux/timer.h> 43 #include <linux/cache.h> 44 #include <linux/bitops.h> 45 #include <linux/lockdep.h> 46 #include <linux/netdevice.h> 47 #include <linux/skbuff.h> /* struct sk_buff */ 48 #include <linux/mm.h> 49 #include <linux/security.h> 50 #include <linux/slab.h> 51 #include <linux/uaccess.h> 52 #include <linux/page_counter.h> 53 #include <linux/memcontrol.h> 54 #include <linux/static_key.h> 55 #include <linux/sched.h> 56 #include <linux/wait.h> 57 #include <linux/cgroup-defs.h> 58 #include <linux/rbtree.h> 59 #include <linux/rculist_nulls.h> 60 #include <linux/poll.h> 61 #include <linux/sockptr.h> 62 #include <linux/indirect_call_wrapper.h> 63 #include <linux/atomic.h> 64 #include <linux/refcount.h> 65 #include <linux/llist.h> 66 #include <net/dst.h> 67 #include <net/checksum.h> 68 #include <net/tcp_states.h> 69 #include <linux/net_tstamp.h> 70 #include <net/l3mdev.h> 71 #include <uapi/linux/socket.h> 72 73 /* 74 * This structure really needs to be cleaned up. 75 * Most of it is for TCP, and not used by any of 76 * the other protocols. 77 */ 78 79 /* Define this to get the SOCK_DBG debugging facility. */ 80 #define SOCK_DEBUGGING 81 #ifdef SOCK_DEBUGGING 82 #define SOCK_DEBUG(sk, msg...) do { if ((sk) && sock_flag((sk), SOCK_DBG)) \ 83 printk(KERN_DEBUG msg); } while (0) 84 #else 85 /* Validate arguments and do nothing */ 86 static inline __printf(2, 3) 87 void SOCK_DEBUG(const struct sock *sk, const char *msg, ...) 88 { 89 } 90 #endif 91 92 /* This is the per-socket lock. The spinlock provides a synchronization 93 * between user contexts and software interrupt processing, whereas the 94 * mini-semaphore synchronizes multiple users amongst themselves. 95 */ 96 typedef struct { 97 spinlock_t slock; 98 int owned; 99 wait_queue_head_t wq; 100 /* 101 * We express the mutex-alike socket_lock semantics 102 * to the lock validator by explicitly managing 103 * the slock as a lock variant (in addition to 104 * the slock itself): 105 */ 106 #ifdef CONFIG_DEBUG_LOCK_ALLOC 107 struct lockdep_map dep_map; 108 #endif 109 } socket_lock_t; 110 111 struct sock; 112 struct proto; 113 struct net; 114 115 typedef __u32 __bitwise __portpair; 116 typedef __u64 __bitwise __addrpair; 117 118 /** 119 * struct sock_common - minimal network layer representation of sockets 120 * @skc_daddr: Foreign IPv4 addr 121 * @skc_rcv_saddr: Bound local IPv4 addr 122 * @skc_addrpair: 8-byte-aligned __u64 union of @skc_daddr & @skc_rcv_saddr 123 * @skc_hash: hash value used with various protocol lookup tables 124 * @skc_u16hashes: two u16 hash values used by UDP lookup tables 125 * @skc_dport: placeholder for inet_dport/tw_dport 126 * @skc_num: placeholder for inet_num/tw_num 127 * @skc_portpair: __u32 union of @skc_dport & @skc_num 128 * @skc_family: network address family 129 * @skc_state: Connection state 130 * @skc_reuse: %SO_REUSEADDR setting 131 * @skc_reuseport: %SO_REUSEPORT setting 132 * @skc_ipv6only: socket is IPV6 only 133 * @skc_net_refcnt: socket is using net ref counting 134 * @skc_bound_dev_if: bound device index if != 0 135 * @skc_bind_node: bind hash linkage for various protocol lookup tables 136 * @skc_portaddr_node: second hash linkage for UDP/UDP-Lite protocol 137 * @skc_prot: protocol handlers inside a network family 138 * @skc_net: reference to the network namespace of this socket 139 * @skc_v6_daddr: IPV6 destination address 140 * @skc_v6_rcv_saddr: IPV6 source address 141 * @skc_cookie: socket's cookie value 142 * @skc_node: main hash linkage for various protocol lookup tables 143 * @skc_nulls_node: main hash linkage for TCP/UDP/UDP-Lite protocol 144 * @skc_tx_queue_mapping: tx queue number for this connection 145 * @skc_rx_queue_mapping: rx queue number for this connection 146 * @skc_flags: place holder for sk_flags 147 * %SO_LINGER (l_onoff), %SO_BROADCAST, %SO_KEEPALIVE, 148 * %SO_OOBINLINE settings, %SO_TIMESTAMPING settings 149 * @skc_listener: connection request listener socket (aka rsk_listener) 150 * [union with @skc_flags] 151 * @skc_tw_dr: (aka tw_dr) ptr to &struct inet_timewait_death_row 152 * [union with @skc_flags] 153 * @skc_incoming_cpu: record/match cpu processing incoming packets 154 * @skc_rcv_wnd: (aka rsk_rcv_wnd) TCP receive window size (possibly scaled) 155 * [union with @skc_incoming_cpu] 156 * @skc_tw_rcv_nxt: (aka tw_rcv_nxt) TCP window next expected seq number 157 * [union with @skc_incoming_cpu] 158 * @skc_refcnt: reference count 159 * 160 * This is the minimal network layer representation of sockets, the header 161 * for struct sock and struct inet_timewait_sock. 162 */ 163 struct sock_common { 164 /* skc_daddr and skc_rcv_saddr must be grouped on a 8 bytes aligned 165 * address on 64bit arches : cf INET_MATCH() 166 */ 167 union { 168 __addrpair skc_addrpair; 169 struct { 170 __be32 skc_daddr; 171 __be32 skc_rcv_saddr; 172 }; 173 }; 174 union { 175 unsigned int skc_hash; 176 __u16 skc_u16hashes[2]; 177 }; 178 /* skc_dport && skc_num must be grouped as well */ 179 union { 180 __portpair skc_portpair; 181 struct { 182 __be16 skc_dport; 183 __u16 skc_num; 184 }; 185 }; 186 187 unsigned short skc_family; 188 volatile unsigned char skc_state; 189 unsigned char skc_reuse:4; 190 unsigned char skc_reuseport:1; 191 unsigned char skc_ipv6only:1; 192 unsigned char skc_net_refcnt:1; 193 int skc_bound_dev_if; 194 union { 195 struct hlist_node skc_bind_node; 196 struct hlist_node skc_portaddr_node; 197 }; 198 struct proto *skc_prot; 199 possible_net_t skc_net; 200 201 #if IS_ENABLED(CONFIG_IPV6) 202 struct in6_addr skc_v6_daddr; 203 struct in6_addr skc_v6_rcv_saddr; 204 #endif 205 206 atomic64_t skc_cookie; 207 208 /* following fields are padding to force 209 * offset(struct sock, sk_refcnt) == 128 on 64bit arches 210 * assuming IPV6 is enabled. We use this padding differently 211 * for different kind of 'sockets' 212 */ 213 union { 214 unsigned long skc_flags; 215 struct sock *skc_listener; /* request_sock */ 216 struct inet_timewait_death_row *skc_tw_dr; /* inet_timewait_sock */ 217 }; 218 /* 219 * fields between dontcopy_begin/dontcopy_end 220 * are not copied in sock_copy() 221 */ 222 /* private: */ 223 int skc_dontcopy_begin[0]; 224 /* public: */ 225 union { 226 struct hlist_node skc_node; 227 struct hlist_nulls_node skc_nulls_node; 228 }; 229 unsigned short skc_tx_queue_mapping; 230 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING 231 unsigned short skc_rx_queue_mapping; 232 #endif 233 union { 234 int skc_incoming_cpu; 235 u32 skc_rcv_wnd; 236 u32 skc_tw_rcv_nxt; /* struct tcp_timewait_sock */ 237 }; 238 239 refcount_t skc_refcnt; 240 /* private: */ 241 int skc_dontcopy_end[0]; 242 union { 243 u32 skc_rxhash; 244 u32 skc_window_clamp; 245 u32 skc_tw_snd_nxt; /* struct tcp_timewait_sock */ 246 }; 247 /* public: */ 248 }; 249 250 struct bpf_local_storage; 251 struct sk_filter; 252 253 /** 254 * struct sock - network layer representation of sockets 255 * @__sk_common: shared layout with inet_timewait_sock 256 * @sk_shutdown: mask of %SEND_SHUTDOWN and/or %RCV_SHUTDOWN 257 * @sk_userlocks: %SO_SNDBUF and %SO_RCVBUF settings 258 * @sk_lock: synchronizer 259 * @sk_kern_sock: True if sock is using kernel lock classes 260 * @sk_rcvbuf: size of receive buffer in bytes 261 * @sk_wq: sock wait queue and async head 262 * @sk_rx_dst: receive input route used by early demux 263 * @sk_rx_dst_ifindex: ifindex for @sk_rx_dst 264 * @sk_rx_dst_cookie: cookie for @sk_rx_dst 265 * @sk_dst_cache: destination cache 266 * @sk_dst_pending_confirm: need to confirm neighbour 267 * @sk_policy: flow policy 268 * @sk_receive_queue: incoming packets 269 * @sk_wmem_alloc: transmit queue bytes committed 270 * @sk_tsq_flags: TCP Small Queues flags 271 * @sk_write_queue: Packet sending queue 272 * @sk_omem_alloc: "o" is "option" or "other" 273 * @sk_wmem_queued: persistent queue size 274 * @sk_forward_alloc: space allocated forward 275 * @sk_reserved_mem: space reserved and non-reclaimable for the socket 276 * @sk_napi_id: id of the last napi context to receive data for sk 277 * @sk_ll_usec: usecs to busypoll when there is no data 278 * @sk_allocation: allocation mode 279 * @sk_pacing_rate: Pacing rate (if supported by transport/packet scheduler) 280 * @sk_pacing_status: Pacing status (requested, handled by sch_fq) 281 * @sk_max_pacing_rate: Maximum pacing rate (%SO_MAX_PACING_RATE) 282 * @sk_sndbuf: size of send buffer in bytes 283 * @__sk_flags_offset: empty field used to determine location of bitfield 284 * @sk_padding: unused element for alignment 285 * @sk_no_check_tx: %SO_NO_CHECK setting, set checksum in TX packets 286 * @sk_no_check_rx: allow zero checksum in RX packets 287 * @sk_route_caps: route capabilities (e.g. %NETIF_F_TSO) 288 * @sk_gso_disabled: if set, NETIF_F_GSO_MASK is forbidden. 289 * @sk_gso_type: GSO type (e.g. %SKB_GSO_TCPV4) 290 * @sk_gso_max_size: Maximum GSO segment size to build 291 * @sk_gso_max_segs: Maximum number of GSO segments 292 * @sk_pacing_shift: scaling factor for TCP Small Queues 293 * @sk_lingertime: %SO_LINGER l_linger setting 294 * @sk_backlog: always used with the per-socket spinlock held 295 * @defer_list: head of llist storing skbs to be freed 296 * @sk_callback_lock: used with the callbacks in the end of this struct 297 * @sk_error_queue: rarely used 298 * @sk_prot_creator: sk_prot of original sock creator (see ipv6_setsockopt, 299 * IPV6_ADDRFORM for instance) 300 * @sk_err: last error 301 * @sk_err_soft: errors that don't cause failure but are the cause of a 302 * persistent failure not just 'timed out' 303 * @sk_drops: raw/udp drops counter 304 * @sk_ack_backlog: current listen backlog 305 * @sk_max_ack_backlog: listen backlog set in listen() 306 * @sk_uid: user id of owner 307 * @sk_prefer_busy_poll: prefer busypolling over softirq processing 308 * @sk_busy_poll_budget: napi processing budget when busypolling 309 * @sk_priority: %SO_PRIORITY setting 310 * @sk_type: socket type (%SOCK_STREAM, etc) 311 * @sk_protocol: which protocol this socket belongs in this network family 312 * @sk_peer_lock: lock protecting @sk_peer_pid and @sk_peer_cred 313 * @sk_peer_pid: &struct pid for this socket's peer 314 * @sk_peer_cred: %SO_PEERCRED setting 315 * @sk_rcvlowat: %SO_RCVLOWAT setting 316 * @sk_rcvtimeo: %SO_RCVTIMEO setting 317 * @sk_sndtimeo: %SO_SNDTIMEO setting 318 * @sk_txhash: computed flow hash for use on transmit 319 * @sk_txrehash: enable TX hash rethink 320 * @sk_filter: socket filtering instructions 321 * @sk_timer: sock cleanup timer 322 * @sk_stamp: time stamp of last packet received 323 * @sk_stamp_seq: lock for accessing sk_stamp on 32 bit architectures only 324 * @sk_tsflags: SO_TIMESTAMPING flags 325 * @sk_bind_phc: SO_TIMESTAMPING bind PHC index of PTP virtual clock 326 * for timestamping 327 * @sk_tskey: counter to disambiguate concurrent tstamp requests 328 * @sk_zckey: counter to order MSG_ZEROCOPY notifications 329 * @sk_socket: Identd and reporting IO signals 330 * @sk_user_data: RPC layer private data 331 * @sk_frag: cached page frag 332 * @sk_peek_off: current peek_offset value 333 * @sk_send_head: front of stuff to transmit 334 * @tcp_rtx_queue: TCP re-transmit queue [union with @sk_send_head] 335 * @sk_security: used by security modules 336 * @sk_mark: generic packet mark 337 * @sk_cgrp_data: cgroup data for this cgroup 338 * @sk_memcg: this socket's memory cgroup association 339 * @sk_write_pending: a write to stream socket waits to start 340 * @sk_state_change: callback to indicate change in the state of the sock 341 * @sk_data_ready: callback to indicate there is data to be processed 342 * @sk_write_space: callback to indicate there is bf sending space available 343 * @sk_error_report: callback to indicate errors (e.g. %MSG_ERRQUEUE) 344 * @sk_backlog_rcv: callback to process the backlog 345 * @sk_validate_xmit_skb: ptr to an optional validate function 346 * @sk_destruct: called at sock freeing time, i.e. when all refcnt == 0 347 * @sk_reuseport_cb: reuseport group container 348 * @sk_bpf_storage: ptr to cache and control for bpf_sk_storage 349 * @sk_rcu: used during RCU grace period 350 * @sk_clockid: clockid used by time-based scheduling (SO_TXTIME) 351 * @sk_txtime_deadline_mode: set deadline mode for SO_TXTIME 352 * @sk_txtime_report_errors: set report errors mode for SO_TXTIME 353 * @sk_txtime_unused: unused txtime flags 354 * @ns_tracker: tracker for netns reference 355 */ 356 struct sock { 357 /* 358 * Now struct inet_timewait_sock also uses sock_common, so please just 359 * don't add nothing before this first member (__sk_common) --acme 360 */ 361 struct sock_common __sk_common; 362 #define sk_node __sk_common.skc_node 363 #define sk_nulls_node __sk_common.skc_nulls_node 364 #define sk_refcnt __sk_common.skc_refcnt 365 #define sk_tx_queue_mapping __sk_common.skc_tx_queue_mapping 366 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING 367 #define sk_rx_queue_mapping __sk_common.skc_rx_queue_mapping 368 #endif 369 370 #define sk_dontcopy_begin __sk_common.skc_dontcopy_begin 371 #define sk_dontcopy_end __sk_common.skc_dontcopy_end 372 #define sk_hash __sk_common.skc_hash 373 #define sk_portpair __sk_common.skc_portpair 374 #define sk_num __sk_common.skc_num 375 #define sk_dport __sk_common.skc_dport 376 #define sk_addrpair __sk_common.skc_addrpair 377 #define sk_daddr __sk_common.skc_daddr 378 #define sk_rcv_saddr __sk_common.skc_rcv_saddr 379 #define sk_family __sk_common.skc_family 380 #define sk_state __sk_common.skc_state 381 #define sk_reuse __sk_common.skc_reuse 382 #define sk_reuseport __sk_common.skc_reuseport 383 #define sk_ipv6only __sk_common.skc_ipv6only 384 #define sk_net_refcnt __sk_common.skc_net_refcnt 385 #define sk_bound_dev_if __sk_common.skc_bound_dev_if 386 #define sk_bind_node __sk_common.skc_bind_node 387 #define sk_prot __sk_common.skc_prot 388 #define sk_net __sk_common.skc_net 389 #define sk_v6_daddr __sk_common.skc_v6_daddr 390 #define sk_v6_rcv_saddr __sk_common.skc_v6_rcv_saddr 391 #define sk_cookie __sk_common.skc_cookie 392 #define sk_incoming_cpu __sk_common.skc_incoming_cpu 393 #define sk_flags __sk_common.skc_flags 394 #define sk_rxhash __sk_common.skc_rxhash 395 396 /* early demux fields */ 397 struct dst_entry __rcu *sk_rx_dst; 398 int sk_rx_dst_ifindex; 399 u32 sk_rx_dst_cookie; 400 401 socket_lock_t sk_lock; 402 atomic_t sk_drops; 403 int sk_rcvlowat; 404 struct sk_buff_head sk_error_queue; 405 struct sk_buff_head sk_receive_queue; 406 /* 407 * The backlog queue is special, it is always used with 408 * the per-socket spinlock held and requires low latency 409 * access. Therefore we special case it's implementation. 410 * Note : rmem_alloc is in this structure to fill a hole 411 * on 64bit arches, not because its logically part of 412 * backlog. 413 */ 414 struct { 415 atomic_t rmem_alloc; 416 int len; 417 struct sk_buff *head; 418 struct sk_buff *tail; 419 } sk_backlog; 420 struct llist_head defer_list; 421 422 #define sk_rmem_alloc sk_backlog.rmem_alloc 423 424 int sk_forward_alloc; 425 u32 sk_reserved_mem; 426 #ifdef CONFIG_NET_RX_BUSY_POLL 427 unsigned int sk_ll_usec; 428 /* ===== mostly read cache line ===== */ 429 unsigned int sk_napi_id; 430 #endif 431 int sk_rcvbuf; 432 433 struct sk_filter __rcu *sk_filter; 434 union { 435 struct socket_wq __rcu *sk_wq; 436 /* private: */ 437 struct socket_wq *sk_wq_raw; 438 /* public: */ 439 }; 440 #ifdef CONFIG_XFRM 441 struct xfrm_policy __rcu *sk_policy[2]; 442 #endif 443 444 struct dst_entry __rcu *sk_dst_cache; 445 atomic_t sk_omem_alloc; 446 int sk_sndbuf; 447 448 /* ===== cache line for TX ===== */ 449 int sk_wmem_queued; 450 refcount_t sk_wmem_alloc; 451 unsigned long sk_tsq_flags; 452 union { 453 struct sk_buff *sk_send_head; 454 struct rb_root tcp_rtx_queue; 455 }; 456 struct sk_buff_head sk_write_queue; 457 __s32 sk_peek_off; 458 int sk_write_pending; 459 __u32 sk_dst_pending_confirm; 460 u32 sk_pacing_status; /* see enum sk_pacing */ 461 long sk_sndtimeo; 462 struct timer_list sk_timer; 463 __u32 sk_priority; 464 __u32 sk_mark; 465 unsigned long sk_pacing_rate; /* bytes per second */ 466 unsigned long sk_max_pacing_rate; 467 struct page_frag sk_frag; 468 netdev_features_t sk_route_caps; 469 int sk_gso_type; 470 unsigned int sk_gso_max_size; 471 gfp_t sk_allocation; 472 __u32 sk_txhash; 473 474 /* 475 * Because of non atomicity rules, all 476 * changes are protected by socket lock. 477 */ 478 u8 sk_gso_disabled : 1, 479 sk_kern_sock : 1, 480 sk_no_check_tx : 1, 481 sk_no_check_rx : 1, 482 sk_userlocks : 4; 483 u8 sk_pacing_shift; 484 u16 sk_type; 485 u16 sk_protocol; 486 u16 sk_gso_max_segs; 487 unsigned long sk_lingertime; 488 struct proto *sk_prot_creator; 489 rwlock_t sk_callback_lock; 490 int sk_err, 491 sk_err_soft; 492 u32 sk_ack_backlog; 493 u32 sk_max_ack_backlog; 494 kuid_t sk_uid; 495 u8 sk_txrehash; 496 #ifdef CONFIG_NET_RX_BUSY_POLL 497 u8 sk_prefer_busy_poll; 498 u16 sk_busy_poll_budget; 499 #endif 500 spinlock_t sk_peer_lock; 501 int sk_bind_phc; 502 struct pid *sk_peer_pid; 503 const struct cred *sk_peer_cred; 504 505 long sk_rcvtimeo; 506 ktime_t sk_stamp; 507 #if BITS_PER_LONG==32 508 seqlock_t sk_stamp_seq; 509 #endif 510 u16 sk_tsflags; 511 u8 sk_shutdown; 512 atomic_t sk_tskey; 513 atomic_t sk_zckey; 514 515 u8 sk_clockid; 516 u8 sk_txtime_deadline_mode : 1, 517 sk_txtime_report_errors : 1, 518 sk_txtime_unused : 6; 519 520 struct socket *sk_socket; 521 void *sk_user_data; 522 #ifdef CONFIG_SECURITY 523 void *sk_security; 524 #endif 525 struct sock_cgroup_data sk_cgrp_data; 526 struct mem_cgroup *sk_memcg; 527 void (*sk_state_change)(struct sock *sk); 528 void (*sk_data_ready)(struct sock *sk); 529 void (*sk_write_space)(struct sock *sk); 530 void (*sk_error_report)(struct sock *sk); 531 int (*sk_backlog_rcv)(struct sock *sk, 532 struct sk_buff *skb); 533 #ifdef CONFIG_SOCK_VALIDATE_XMIT 534 struct sk_buff* (*sk_validate_xmit_skb)(struct sock *sk, 535 struct net_device *dev, 536 struct sk_buff *skb); 537 #endif 538 void (*sk_destruct)(struct sock *sk); 539 struct sock_reuseport __rcu *sk_reuseport_cb; 540 #ifdef CONFIG_BPF_SYSCALL 541 struct bpf_local_storage __rcu *sk_bpf_storage; 542 #endif 543 struct rcu_head sk_rcu; 544 netns_tracker ns_tracker; 545 }; 546 547 enum sk_pacing { 548 SK_PACING_NONE = 0, 549 SK_PACING_NEEDED = 1, 550 SK_PACING_FQ = 2, 551 }; 552 553 /* Pointer stored in sk_user_data might not be suitable for copying 554 * when cloning the socket. For instance, it can point to a reference 555 * counted object. sk_user_data bottom bit is set if pointer must not 556 * be copied. 557 */ 558 #define SK_USER_DATA_NOCOPY 1UL 559 #define SK_USER_DATA_BPF 2UL /* Managed by BPF */ 560 #define SK_USER_DATA_PTRMASK ~(SK_USER_DATA_NOCOPY | SK_USER_DATA_BPF) 561 562 /** 563 * sk_user_data_is_nocopy - Test if sk_user_data pointer must not be copied 564 * @sk: socket 565 */ 566 static inline bool sk_user_data_is_nocopy(const struct sock *sk) 567 { 568 return ((uintptr_t)sk->sk_user_data & SK_USER_DATA_NOCOPY); 569 } 570 571 #define __sk_user_data(sk) ((*((void __rcu **)&(sk)->sk_user_data))) 572 573 #define rcu_dereference_sk_user_data(sk) \ 574 ({ \ 575 void *__tmp = rcu_dereference(__sk_user_data((sk))); \ 576 (void *)((uintptr_t)__tmp & SK_USER_DATA_PTRMASK); \ 577 }) 578 #define rcu_assign_sk_user_data(sk, ptr) \ 579 ({ \ 580 uintptr_t __tmp = (uintptr_t)(ptr); \ 581 WARN_ON_ONCE(__tmp & ~SK_USER_DATA_PTRMASK); \ 582 rcu_assign_pointer(__sk_user_data((sk)), __tmp); \ 583 }) 584 #define rcu_assign_sk_user_data_nocopy(sk, ptr) \ 585 ({ \ 586 uintptr_t __tmp = (uintptr_t)(ptr); \ 587 WARN_ON_ONCE(__tmp & ~SK_USER_DATA_PTRMASK); \ 588 rcu_assign_pointer(__sk_user_data((sk)), \ 589 __tmp | SK_USER_DATA_NOCOPY); \ 590 }) 591 592 static inline 593 struct net *sock_net(const struct sock *sk) 594 { 595 return read_pnet(&sk->sk_net); 596 } 597 598 static inline 599 void sock_net_set(struct sock *sk, struct net *net) 600 { 601 write_pnet(&sk->sk_net, net); 602 } 603 604 /* 605 * SK_CAN_REUSE and SK_NO_REUSE on a socket mean that the socket is OK 606 * or not whether his port will be reused by someone else. SK_FORCE_REUSE 607 * on a socket means that the socket will reuse everybody else's port 608 * without looking at the other's sk_reuse value. 609 */ 610 611 #define SK_NO_REUSE 0 612 #define SK_CAN_REUSE 1 613 #define SK_FORCE_REUSE 2 614 615 int sk_set_peek_off(struct sock *sk, int val); 616 617 static inline int sk_peek_offset(struct sock *sk, int flags) 618 { 619 if (unlikely(flags & MSG_PEEK)) { 620 return READ_ONCE(sk->sk_peek_off); 621 } 622 623 return 0; 624 } 625 626 static inline void sk_peek_offset_bwd(struct sock *sk, int val) 627 { 628 s32 off = READ_ONCE(sk->sk_peek_off); 629 630 if (unlikely(off >= 0)) { 631 off = max_t(s32, off - val, 0); 632 WRITE_ONCE(sk->sk_peek_off, off); 633 } 634 } 635 636 static inline void sk_peek_offset_fwd(struct sock *sk, int val) 637 { 638 sk_peek_offset_bwd(sk, -val); 639 } 640 641 /* 642 * Hashed lists helper routines 643 */ 644 static inline struct sock *sk_entry(const struct hlist_node *node) 645 { 646 return hlist_entry(node, struct sock, sk_node); 647 } 648 649 static inline struct sock *__sk_head(const struct hlist_head *head) 650 { 651 return hlist_entry(head->first, struct sock, sk_node); 652 } 653 654 static inline struct sock *sk_head(const struct hlist_head *head) 655 { 656 return hlist_empty(head) ? NULL : __sk_head(head); 657 } 658 659 static inline struct sock *__sk_nulls_head(const struct hlist_nulls_head *head) 660 { 661 return hlist_nulls_entry(head->first, struct sock, sk_nulls_node); 662 } 663 664 static inline struct sock *sk_nulls_head(const struct hlist_nulls_head *head) 665 { 666 return hlist_nulls_empty(head) ? NULL : __sk_nulls_head(head); 667 } 668 669 static inline struct sock *sk_next(const struct sock *sk) 670 { 671 return hlist_entry_safe(sk->sk_node.next, struct sock, sk_node); 672 } 673 674 static inline struct sock *sk_nulls_next(const struct sock *sk) 675 { 676 return (!is_a_nulls(sk->sk_nulls_node.next)) ? 677 hlist_nulls_entry(sk->sk_nulls_node.next, 678 struct sock, sk_nulls_node) : 679 NULL; 680 } 681 682 static inline bool sk_unhashed(const struct sock *sk) 683 { 684 return hlist_unhashed(&sk->sk_node); 685 } 686 687 static inline bool sk_hashed(const struct sock *sk) 688 { 689 return !sk_unhashed(sk); 690 } 691 692 static inline void sk_node_init(struct hlist_node *node) 693 { 694 node->pprev = NULL; 695 } 696 697 static inline void sk_nulls_node_init(struct hlist_nulls_node *node) 698 { 699 node->pprev = NULL; 700 } 701 702 static inline void __sk_del_node(struct sock *sk) 703 { 704 __hlist_del(&sk->sk_node); 705 } 706 707 /* NB: equivalent to hlist_del_init_rcu */ 708 static inline bool __sk_del_node_init(struct sock *sk) 709 { 710 if (sk_hashed(sk)) { 711 __sk_del_node(sk); 712 sk_node_init(&sk->sk_node); 713 return true; 714 } 715 return false; 716 } 717 718 /* Grab socket reference count. This operation is valid only 719 when sk is ALREADY grabbed f.e. it is found in hash table 720 or a list and the lookup is made under lock preventing hash table 721 modifications. 722 */ 723 724 static __always_inline void sock_hold(struct sock *sk) 725 { 726 refcount_inc(&sk->sk_refcnt); 727 } 728 729 /* Ungrab socket in the context, which assumes that socket refcnt 730 cannot hit zero, f.e. it is true in context of any socketcall. 731 */ 732 static __always_inline void __sock_put(struct sock *sk) 733 { 734 refcount_dec(&sk->sk_refcnt); 735 } 736 737 static inline bool sk_del_node_init(struct sock *sk) 738 { 739 bool rc = __sk_del_node_init(sk); 740 741 if (rc) { 742 /* paranoid for a while -acme */ 743 WARN_ON(refcount_read(&sk->sk_refcnt) == 1); 744 __sock_put(sk); 745 } 746 return rc; 747 } 748 #define sk_del_node_init_rcu(sk) sk_del_node_init(sk) 749 750 static inline bool __sk_nulls_del_node_init_rcu(struct sock *sk) 751 { 752 if (sk_hashed(sk)) { 753 hlist_nulls_del_init_rcu(&sk->sk_nulls_node); 754 return true; 755 } 756 return false; 757 } 758 759 static inline bool sk_nulls_del_node_init_rcu(struct sock *sk) 760 { 761 bool rc = __sk_nulls_del_node_init_rcu(sk); 762 763 if (rc) { 764 /* paranoid for a while -acme */ 765 WARN_ON(refcount_read(&sk->sk_refcnt) == 1); 766 __sock_put(sk); 767 } 768 return rc; 769 } 770 771 static inline void __sk_add_node(struct sock *sk, struct hlist_head *list) 772 { 773 hlist_add_head(&sk->sk_node, list); 774 } 775 776 static inline void sk_add_node(struct sock *sk, struct hlist_head *list) 777 { 778 sock_hold(sk); 779 __sk_add_node(sk, list); 780 } 781 782 static inline void sk_add_node_rcu(struct sock *sk, struct hlist_head *list) 783 { 784 sock_hold(sk); 785 if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport && 786 sk->sk_family == AF_INET6) 787 hlist_add_tail_rcu(&sk->sk_node, list); 788 else 789 hlist_add_head_rcu(&sk->sk_node, list); 790 } 791 792 static inline void sk_add_node_tail_rcu(struct sock *sk, struct hlist_head *list) 793 { 794 sock_hold(sk); 795 hlist_add_tail_rcu(&sk->sk_node, list); 796 } 797 798 static inline void __sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list) 799 { 800 hlist_nulls_add_head_rcu(&sk->sk_nulls_node, list); 801 } 802 803 static inline void __sk_nulls_add_node_tail_rcu(struct sock *sk, struct hlist_nulls_head *list) 804 { 805 hlist_nulls_add_tail_rcu(&sk->sk_nulls_node, list); 806 } 807 808 static inline void sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list) 809 { 810 sock_hold(sk); 811 __sk_nulls_add_node_rcu(sk, list); 812 } 813 814 static inline void __sk_del_bind_node(struct sock *sk) 815 { 816 __hlist_del(&sk->sk_bind_node); 817 } 818 819 static inline void sk_add_bind_node(struct sock *sk, 820 struct hlist_head *list) 821 { 822 hlist_add_head(&sk->sk_bind_node, list); 823 } 824 825 #define sk_for_each(__sk, list) \ 826 hlist_for_each_entry(__sk, list, sk_node) 827 #define sk_for_each_rcu(__sk, list) \ 828 hlist_for_each_entry_rcu(__sk, list, sk_node) 829 #define sk_nulls_for_each(__sk, node, list) \ 830 hlist_nulls_for_each_entry(__sk, node, list, sk_nulls_node) 831 #define sk_nulls_for_each_rcu(__sk, node, list) \ 832 hlist_nulls_for_each_entry_rcu(__sk, node, list, sk_nulls_node) 833 #define sk_for_each_from(__sk) \ 834 hlist_for_each_entry_from(__sk, sk_node) 835 #define sk_nulls_for_each_from(__sk, node) \ 836 if (__sk && ({ node = &(__sk)->sk_nulls_node; 1; })) \ 837 hlist_nulls_for_each_entry_from(__sk, node, sk_nulls_node) 838 #define sk_for_each_safe(__sk, tmp, list) \ 839 hlist_for_each_entry_safe(__sk, tmp, list, sk_node) 840 #define sk_for_each_bound(__sk, list) \ 841 hlist_for_each_entry(__sk, list, sk_bind_node) 842 843 /** 844 * sk_for_each_entry_offset_rcu - iterate over a list at a given struct offset 845 * @tpos: the type * to use as a loop cursor. 846 * @pos: the &struct hlist_node to use as a loop cursor. 847 * @head: the head for your list. 848 * @offset: offset of hlist_node within the struct. 849 * 850 */ 851 #define sk_for_each_entry_offset_rcu(tpos, pos, head, offset) \ 852 for (pos = rcu_dereference(hlist_first_rcu(head)); \ 853 pos != NULL && \ 854 ({ tpos = (typeof(*tpos) *)((void *)pos - offset); 1;}); \ 855 pos = rcu_dereference(hlist_next_rcu(pos))) 856 857 static inline struct user_namespace *sk_user_ns(struct sock *sk) 858 { 859 /* Careful only use this in a context where these parameters 860 * can not change and must all be valid, such as recvmsg from 861 * userspace. 862 */ 863 return sk->sk_socket->file->f_cred->user_ns; 864 } 865 866 /* Sock flags */ 867 enum sock_flags { 868 SOCK_DEAD, 869 SOCK_DONE, 870 SOCK_URGINLINE, 871 SOCK_KEEPOPEN, 872 SOCK_LINGER, 873 SOCK_DESTROY, 874 SOCK_BROADCAST, 875 SOCK_TIMESTAMP, 876 SOCK_ZAPPED, 877 SOCK_USE_WRITE_QUEUE, /* whether to call sk->sk_write_space in sock_wfree */ 878 SOCK_DBG, /* %SO_DEBUG setting */ 879 SOCK_RCVTSTAMP, /* %SO_TIMESTAMP setting */ 880 SOCK_RCVTSTAMPNS, /* %SO_TIMESTAMPNS setting */ 881 SOCK_LOCALROUTE, /* route locally only, %SO_DONTROUTE setting */ 882 SOCK_MEMALLOC, /* VM depends on this socket for swapping */ 883 SOCK_TIMESTAMPING_RX_SOFTWARE, /* %SOF_TIMESTAMPING_RX_SOFTWARE */ 884 SOCK_FASYNC, /* fasync() active */ 885 SOCK_RXQ_OVFL, 886 SOCK_ZEROCOPY, /* buffers from userspace */ 887 SOCK_WIFI_STATUS, /* push wifi status to userspace */ 888 SOCK_NOFCS, /* Tell NIC not to do the Ethernet FCS. 889 * Will use last 4 bytes of packet sent from 890 * user-space instead. 891 */ 892 SOCK_FILTER_LOCKED, /* Filter cannot be changed anymore */ 893 SOCK_SELECT_ERR_QUEUE, /* Wake select on error queue */ 894 SOCK_RCU_FREE, /* wait rcu grace period in sk_destruct() */ 895 SOCK_TXTIME, 896 SOCK_XDP, /* XDP is attached */ 897 SOCK_TSTAMP_NEW, /* Indicates 64 bit timestamps always */ 898 }; 899 900 #define SK_FLAGS_TIMESTAMP ((1UL << SOCK_TIMESTAMP) | (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE)) 901 902 static inline void sock_copy_flags(struct sock *nsk, struct sock *osk) 903 { 904 nsk->sk_flags = osk->sk_flags; 905 } 906 907 static inline void sock_set_flag(struct sock *sk, enum sock_flags flag) 908 { 909 __set_bit(flag, &sk->sk_flags); 910 } 911 912 static inline void sock_reset_flag(struct sock *sk, enum sock_flags flag) 913 { 914 __clear_bit(flag, &sk->sk_flags); 915 } 916 917 static inline void sock_valbool_flag(struct sock *sk, enum sock_flags bit, 918 int valbool) 919 { 920 if (valbool) 921 sock_set_flag(sk, bit); 922 else 923 sock_reset_flag(sk, bit); 924 } 925 926 static inline bool sock_flag(const struct sock *sk, enum sock_flags flag) 927 { 928 return test_bit(flag, &sk->sk_flags); 929 } 930 931 #ifdef CONFIG_NET 932 DECLARE_STATIC_KEY_FALSE(memalloc_socks_key); 933 static inline int sk_memalloc_socks(void) 934 { 935 return static_branch_unlikely(&memalloc_socks_key); 936 } 937 938 void __receive_sock(struct file *file); 939 #else 940 941 static inline int sk_memalloc_socks(void) 942 { 943 return 0; 944 } 945 946 static inline void __receive_sock(struct file *file) 947 { } 948 #endif 949 950 static inline gfp_t sk_gfp_mask(const struct sock *sk, gfp_t gfp_mask) 951 { 952 return gfp_mask | (sk->sk_allocation & __GFP_MEMALLOC); 953 } 954 955 static inline void sk_acceptq_removed(struct sock *sk) 956 { 957 WRITE_ONCE(sk->sk_ack_backlog, sk->sk_ack_backlog - 1); 958 } 959 960 static inline void sk_acceptq_added(struct sock *sk) 961 { 962 WRITE_ONCE(sk->sk_ack_backlog, sk->sk_ack_backlog + 1); 963 } 964 965 /* Note: If you think the test should be: 966 * return READ_ONCE(sk->sk_ack_backlog) >= READ_ONCE(sk->sk_max_ack_backlog); 967 * Then please take a look at commit 64a146513f8f ("[NET]: Revert incorrect accept queue backlog changes.") 968 */ 969 static inline bool sk_acceptq_is_full(const struct sock *sk) 970 { 971 return READ_ONCE(sk->sk_ack_backlog) > READ_ONCE(sk->sk_max_ack_backlog); 972 } 973 974 /* 975 * Compute minimal free write space needed to queue new packets. 976 */ 977 static inline int sk_stream_min_wspace(const struct sock *sk) 978 { 979 return READ_ONCE(sk->sk_wmem_queued) >> 1; 980 } 981 982 static inline int sk_stream_wspace(const struct sock *sk) 983 { 984 return READ_ONCE(sk->sk_sndbuf) - READ_ONCE(sk->sk_wmem_queued); 985 } 986 987 static inline void sk_wmem_queued_add(struct sock *sk, int val) 988 { 989 WRITE_ONCE(sk->sk_wmem_queued, sk->sk_wmem_queued + val); 990 } 991 992 void sk_stream_write_space(struct sock *sk); 993 994 /* OOB backlog add */ 995 static inline void __sk_add_backlog(struct sock *sk, struct sk_buff *skb) 996 { 997 /* dont let skb dst not refcounted, we are going to leave rcu lock */ 998 skb_dst_force(skb); 999 1000 if (!sk->sk_backlog.tail) 1001 WRITE_ONCE(sk->sk_backlog.head, skb); 1002 else 1003 sk->sk_backlog.tail->next = skb; 1004 1005 WRITE_ONCE(sk->sk_backlog.tail, skb); 1006 skb->next = NULL; 1007 } 1008 1009 /* 1010 * Take into account size of receive queue and backlog queue 1011 * Do not take into account this skb truesize, 1012 * to allow even a single big packet to come. 1013 */ 1014 static inline bool sk_rcvqueues_full(const struct sock *sk, unsigned int limit) 1015 { 1016 unsigned int qsize = sk->sk_backlog.len + atomic_read(&sk->sk_rmem_alloc); 1017 1018 return qsize > limit; 1019 } 1020 1021 /* The per-socket spinlock must be held here. */ 1022 static inline __must_check int sk_add_backlog(struct sock *sk, struct sk_buff *skb, 1023 unsigned int limit) 1024 { 1025 if (sk_rcvqueues_full(sk, limit)) 1026 return -ENOBUFS; 1027 1028 /* 1029 * If the skb was allocated from pfmemalloc reserves, only 1030 * allow SOCK_MEMALLOC sockets to use it as this socket is 1031 * helping free memory 1032 */ 1033 if (skb_pfmemalloc(skb) && !sock_flag(sk, SOCK_MEMALLOC)) 1034 return -ENOMEM; 1035 1036 __sk_add_backlog(sk, skb); 1037 sk->sk_backlog.len += skb->truesize; 1038 return 0; 1039 } 1040 1041 int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb); 1042 1043 INDIRECT_CALLABLE_DECLARE(int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb)); 1044 INDIRECT_CALLABLE_DECLARE(int tcp_v6_do_rcv(struct sock *sk, struct sk_buff *skb)); 1045 1046 static inline int sk_backlog_rcv(struct sock *sk, struct sk_buff *skb) 1047 { 1048 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) 1049 return __sk_backlog_rcv(sk, skb); 1050 1051 return INDIRECT_CALL_INET(sk->sk_backlog_rcv, 1052 tcp_v6_do_rcv, 1053 tcp_v4_do_rcv, 1054 sk, skb); 1055 } 1056 1057 static inline void sk_incoming_cpu_update(struct sock *sk) 1058 { 1059 int cpu = raw_smp_processor_id(); 1060 1061 if (unlikely(READ_ONCE(sk->sk_incoming_cpu) != cpu)) 1062 WRITE_ONCE(sk->sk_incoming_cpu, cpu); 1063 } 1064 1065 static inline void sock_rps_record_flow_hash(__u32 hash) 1066 { 1067 #ifdef CONFIG_RPS 1068 struct rps_sock_flow_table *sock_flow_table; 1069 1070 rcu_read_lock(); 1071 sock_flow_table = rcu_dereference(rps_sock_flow_table); 1072 rps_record_sock_flow(sock_flow_table, hash); 1073 rcu_read_unlock(); 1074 #endif 1075 } 1076 1077 static inline void sock_rps_record_flow(const struct sock *sk) 1078 { 1079 #ifdef CONFIG_RPS 1080 if (static_branch_unlikely(&rfs_needed)) { 1081 /* Reading sk->sk_rxhash might incur an expensive cache line 1082 * miss. 1083 * 1084 * TCP_ESTABLISHED does cover almost all states where RFS 1085 * might be useful, and is cheaper [1] than testing : 1086 * IPv4: inet_sk(sk)->inet_daddr 1087 * IPv6: ipv6_addr_any(&sk->sk_v6_daddr) 1088 * OR an additional socket flag 1089 * [1] : sk_state and sk_prot are in the same cache line. 1090 */ 1091 if (sk->sk_state == TCP_ESTABLISHED) 1092 sock_rps_record_flow_hash(sk->sk_rxhash); 1093 } 1094 #endif 1095 } 1096 1097 static inline void sock_rps_save_rxhash(struct sock *sk, 1098 const struct sk_buff *skb) 1099 { 1100 #ifdef CONFIG_RPS 1101 if (unlikely(sk->sk_rxhash != skb->hash)) 1102 sk->sk_rxhash = skb->hash; 1103 #endif 1104 } 1105 1106 static inline void sock_rps_reset_rxhash(struct sock *sk) 1107 { 1108 #ifdef CONFIG_RPS 1109 sk->sk_rxhash = 0; 1110 #endif 1111 } 1112 1113 #define sk_wait_event(__sk, __timeo, __condition, __wait) \ 1114 ({ int __rc; \ 1115 release_sock(__sk); \ 1116 __rc = __condition; \ 1117 if (!__rc) { \ 1118 *(__timeo) = wait_woken(__wait, \ 1119 TASK_INTERRUPTIBLE, \ 1120 *(__timeo)); \ 1121 } \ 1122 sched_annotate_sleep(); \ 1123 lock_sock(__sk); \ 1124 __rc = __condition; \ 1125 __rc; \ 1126 }) 1127 1128 int sk_stream_wait_connect(struct sock *sk, long *timeo_p); 1129 int sk_stream_wait_memory(struct sock *sk, long *timeo_p); 1130 void sk_stream_wait_close(struct sock *sk, long timeo_p); 1131 int sk_stream_error(struct sock *sk, int flags, int err); 1132 void sk_stream_kill_queues(struct sock *sk); 1133 void sk_set_memalloc(struct sock *sk); 1134 void sk_clear_memalloc(struct sock *sk); 1135 1136 void __sk_flush_backlog(struct sock *sk); 1137 1138 static inline bool sk_flush_backlog(struct sock *sk) 1139 { 1140 if (unlikely(READ_ONCE(sk->sk_backlog.tail))) { 1141 __sk_flush_backlog(sk); 1142 return true; 1143 } 1144 return false; 1145 } 1146 1147 int sk_wait_data(struct sock *sk, long *timeo, const struct sk_buff *skb); 1148 1149 struct request_sock_ops; 1150 struct timewait_sock_ops; 1151 struct inet_hashinfo; 1152 struct raw_hashinfo; 1153 struct smc_hashinfo; 1154 struct module; 1155 struct sk_psock; 1156 1157 /* 1158 * caches using SLAB_TYPESAFE_BY_RCU should let .next pointer from nulls nodes 1159 * un-modified. Special care is taken when initializing object to zero. 1160 */ 1161 static inline void sk_prot_clear_nulls(struct sock *sk, int size) 1162 { 1163 if (offsetof(struct sock, sk_node.next) != 0) 1164 memset(sk, 0, offsetof(struct sock, sk_node.next)); 1165 memset(&sk->sk_node.pprev, 0, 1166 size - offsetof(struct sock, sk_node.pprev)); 1167 } 1168 1169 /* Networking protocol blocks we attach to sockets. 1170 * socket layer -> transport layer interface 1171 */ 1172 struct proto { 1173 void (*close)(struct sock *sk, 1174 long timeout); 1175 int (*pre_connect)(struct sock *sk, 1176 struct sockaddr *uaddr, 1177 int addr_len); 1178 int (*connect)(struct sock *sk, 1179 struct sockaddr *uaddr, 1180 int addr_len); 1181 int (*disconnect)(struct sock *sk, int flags); 1182 1183 struct sock * (*accept)(struct sock *sk, int flags, int *err, 1184 bool kern); 1185 1186 int (*ioctl)(struct sock *sk, int cmd, 1187 unsigned long arg); 1188 int (*init)(struct sock *sk); 1189 void (*destroy)(struct sock *sk); 1190 void (*shutdown)(struct sock *sk, int how); 1191 int (*setsockopt)(struct sock *sk, int level, 1192 int optname, sockptr_t optval, 1193 unsigned int optlen); 1194 int (*getsockopt)(struct sock *sk, int level, 1195 int optname, char __user *optval, 1196 int __user *option); 1197 void (*keepalive)(struct sock *sk, int valbool); 1198 #ifdef CONFIG_COMPAT 1199 int (*compat_ioctl)(struct sock *sk, 1200 unsigned int cmd, unsigned long arg); 1201 #endif 1202 int (*sendmsg)(struct sock *sk, struct msghdr *msg, 1203 size_t len); 1204 int (*recvmsg)(struct sock *sk, struct msghdr *msg, 1205 size_t len, int flags, int *addr_len); 1206 int (*sendpage)(struct sock *sk, struct page *page, 1207 int offset, size_t size, int flags); 1208 int (*bind)(struct sock *sk, 1209 struct sockaddr *addr, int addr_len); 1210 int (*bind_add)(struct sock *sk, 1211 struct sockaddr *addr, int addr_len); 1212 1213 int (*backlog_rcv) (struct sock *sk, 1214 struct sk_buff *skb); 1215 bool (*bpf_bypass_getsockopt)(int level, 1216 int optname); 1217 1218 void (*release_cb)(struct sock *sk); 1219 1220 /* Keeping track of sk's, looking them up, and port selection methods. */ 1221 int (*hash)(struct sock *sk); 1222 void (*unhash)(struct sock *sk); 1223 void (*rehash)(struct sock *sk); 1224 int (*get_port)(struct sock *sk, unsigned short snum); 1225 void (*put_port)(struct sock *sk); 1226 #ifdef CONFIG_BPF_SYSCALL 1227 int (*psock_update_sk_prot)(struct sock *sk, 1228 struct sk_psock *psock, 1229 bool restore); 1230 #endif 1231 1232 /* Keeping track of sockets in use */ 1233 #ifdef CONFIG_PROC_FS 1234 unsigned int inuse_idx; 1235 #endif 1236 1237 #if IS_ENABLED(CONFIG_MPTCP) 1238 int (*forward_alloc_get)(const struct sock *sk); 1239 #endif 1240 1241 bool (*stream_memory_free)(const struct sock *sk, int wake); 1242 bool (*sock_is_readable)(struct sock *sk); 1243 /* Memory pressure */ 1244 void (*enter_memory_pressure)(struct sock *sk); 1245 void (*leave_memory_pressure)(struct sock *sk); 1246 atomic_long_t *memory_allocated; /* Current allocated memory. */ 1247 struct percpu_counter *sockets_allocated; /* Current number of sockets. */ 1248 1249 /* 1250 * Pressure flag: try to collapse. 1251 * Technical note: it is used by multiple contexts non atomically. 1252 * All the __sk_mem_schedule() is of this nature: accounting 1253 * is strict, actions are advisory and have some latency. 1254 */ 1255 unsigned long *memory_pressure; 1256 long *sysctl_mem; 1257 1258 int *sysctl_wmem; 1259 int *sysctl_rmem; 1260 u32 sysctl_wmem_offset; 1261 u32 sysctl_rmem_offset; 1262 1263 int max_header; 1264 bool no_autobind; 1265 1266 struct kmem_cache *slab; 1267 unsigned int obj_size; 1268 slab_flags_t slab_flags; 1269 unsigned int useroffset; /* Usercopy region offset */ 1270 unsigned int usersize; /* Usercopy region size */ 1271 1272 unsigned int __percpu *orphan_count; 1273 1274 struct request_sock_ops *rsk_prot; 1275 struct timewait_sock_ops *twsk_prot; 1276 1277 union { 1278 struct inet_hashinfo *hashinfo; 1279 struct udp_table *udp_table; 1280 struct raw_hashinfo *raw_hash; 1281 struct smc_hashinfo *smc_hash; 1282 } h; 1283 1284 struct module *owner; 1285 1286 char name[32]; 1287 1288 struct list_head node; 1289 #ifdef SOCK_REFCNT_DEBUG 1290 atomic_t socks; 1291 #endif 1292 int (*diag_destroy)(struct sock *sk, int err); 1293 } __randomize_layout; 1294 1295 int proto_register(struct proto *prot, int alloc_slab); 1296 void proto_unregister(struct proto *prot); 1297 int sock_load_diag_module(int family, int protocol); 1298 1299 #ifdef SOCK_REFCNT_DEBUG 1300 static inline void sk_refcnt_debug_inc(struct sock *sk) 1301 { 1302 atomic_inc(&sk->sk_prot->socks); 1303 } 1304 1305 static inline void sk_refcnt_debug_dec(struct sock *sk) 1306 { 1307 atomic_dec(&sk->sk_prot->socks); 1308 printk(KERN_DEBUG "%s socket %p released, %d are still alive\n", 1309 sk->sk_prot->name, sk, atomic_read(&sk->sk_prot->socks)); 1310 } 1311 1312 static inline void sk_refcnt_debug_release(const struct sock *sk) 1313 { 1314 if (refcount_read(&sk->sk_refcnt) != 1) 1315 printk(KERN_DEBUG "Destruction of the %s socket %p delayed, refcnt=%d\n", 1316 sk->sk_prot->name, sk, refcount_read(&sk->sk_refcnt)); 1317 } 1318 #else /* SOCK_REFCNT_DEBUG */ 1319 #define sk_refcnt_debug_inc(sk) do { } while (0) 1320 #define sk_refcnt_debug_dec(sk) do { } while (0) 1321 #define sk_refcnt_debug_release(sk) do { } while (0) 1322 #endif /* SOCK_REFCNT_DEBUG */ 1323 1324 INDIRECT_CALLABLE_DECLARE(bool tcp_stream_memory_free(const struct sock *sk, int wake)); 1325 1326 static inline int sk_forward_alloc_get(const struct sock *sk) 1327 { 1328 #if IS_ENABLED(CONFIG_MPTCP) 1329 if (sk->sk_prot->forward_alloc_get) 1330 return sk->sk_prot->forward_alloc_get(sk); 1331 #endif 1332 return sk->sk_forward_alloc; 1333 } 1334 1335 static inline bool __sk_stream_memory_free(const struct sock *sk, int wake) 1336 { 1337 if (READ_ONCE(sk->sk_wmem_queued) >= READ_ONCE(sk->sk_sndbuf)) 1338 return false; 1339 1340 return sk->sk_prot->stream_memory_free ? 1341 INDIRECT_CALL_INET_1(sk->sk_prot->stream_memory_free, 1342 tcp_stream_memory_free, sk, wake) : true; 1343 } 1344 1345 static inline bool sk_stream_memory_free(const struct sock *sk) 1346 { 1347 return __sk_stream_memory_free(sk, 0); 1348 } 1349 1350 static inline bool __sk_stream_is_writeable(const struct sock *sk, int wake) 1351 { 1352 return sk_stream_wspace(sk) >= sk_stream_min_wspace(sk) && 1353 __sk_stream_memory_free(sk, wake); 1354 } 1355 1356 static inline bool sk_stream_is_writeable(const struct sock *sk) 1357 { 1358 return __sk_stream_is_writeable(sk, 0); 1359 } 1360 1361 static inline int sk_under_cgroup_hierarchy(struct sock *sk, 1362 struct cgroup *ancestor) 1363 { 1364 #ifdef CONFIG_SOCK_CGROUP_DATA 1365 return cgroup_is_descendant(sock_cgroup_ptr(&sk->sk_cgrp_data), 1366 ancestor); 1367 #else 1368 return -ENOTSUPP; 1369 #endif 1370 } 1371 1372 static inline bool sk_has_memory_pressure(const struct sock *sk) 1373 { 1374 return sk->sk_prot->memory_pressure != NULL; 1375 } 1376 1377 static inline bool sk_under_memory_pressure(const struct sock *sk) 1378 { 1379 if (!sk->sk_prot->memory_pressure) 1380 return false; 1381 1382 if (mem_cgroup_sockets_enabled && sk->sk_memcg && 1383 mem_cgroup_under_socket_pressure(sk->sk_memcg)) 1384 return true; 1385 1386 return !!*sk->sk_prot->memory_pressure; 1387 } 1388 1389 static inline long 1390 sk_memory_allocated(const struct sock *sk) 1391 { 1392 return atomic_long_read(sk->sk_prot->memory_allocated); 1393 } 1394 1395 static inline long 1396 sk_memory_allocated_add(struct sock *sk, int amt) 1397 { 1398 return atomic_long_add_return(amt, sk->sk_prot->memory_allocated); 1399 } 1400 1401 static inline void 1402 sk_memory_allocated_sub(struct sock *sk, int amt) 1403 { 1404 atomic_long_sub(amt, sk->sk_prot->memory_allocated); 1405 } 1406 1407 #define SK_ALLOC_PERCPU_COUNTER_BATCH 16 1408 1409 static inline void sk_sockets_allocated_dec(struct sock *sk) 1410 { 1411 percpu_counter_add_batch(sk->sk_prot->sockets_allocated, -1, 1412 SK_ALLOC_PERCPU_COUNTER_BATCH); 1413 } 1414 1415 static inline void sk_sockets_allocated_inc(struct sock *sk) 1416 { 1417 percpu_counter_add_batch(sk->sk_prot->sockets_allocated, 1, 1418 SK_ALLOC_PERCPU_COUNTER_BATCH); 1419 } 1420 1421 static inline u64 1422 sk_sockets_allocated_read_positive(struct sock *sk) 1423 { 1424 return percpu_counter_read_positive(sk->sk_prot->sockets_allocated); 1425 } 1426 1427 static inline int 1428 proto_sockets_allocated_sum_positive(struct proto *prot) 1429 { 1430 return percpu_counter_sum_positive(prot->sockets_allocated); 1431 } 1432 1433 static inline long 1434 proto_memory_allocated(struct proto *prot) 1435 { 1436 return atomic_long_read(prot->memory_allocated); 1437 } 1438 1439 static inline bool 1440 proto_memory_pressure(struct proto *prot) 1441 { 1442 if (!prot->memory_pressure) 1443 return false; 1444 return !!*prot->memory_pressure; 1445 } 1446 1447 1448 #ifdef CONFIG_PROC_FS 1449 #define PROTO_INUSE_NR 64 /* should be enough for the first time */ 1450 struct prot_inuse { 1451 int all; 1452 int val[PROTO_INUSE_NR]; 1453 }; 1454 1455 static inline void sock_prot_inuse_add(const struct net *net, 1456 const struct proto *prot, int val) 1457 { 1458 this_cpu_add(net->core.prot_inuse->val[prot->inuse_idx], val); 1459 } 1460 1461 static inline void sock_inuse_add(const struct net *net, int val) 1462 { 1463 this_cpu_add(net->core.prot_inuse->all, val); 1464 } 1465 1466 int sock_prot_inuse_get(struct net *net, struct proto *proto); 1467 int sock_inuse_get(struct net *net); 1468 #else 1469 static inline void sock_prot_inuse_add(const struct net *net, 1470 const struct proto *prot, int val) 1471 { 1472 } 1473 1474 static inline void sock_inuse_add(const struct net *net, int val) 1475 { 1476 } 1477 #endif 1478 1479 1480 /* With per-bucket locks this operation is not-atomic, so that 1481 * this version is not worse. 1482 */ 1483 static inline int __sk_prot_rehash(struct sock *sk) 1484 { 1485 sk->sk_prot->unhash(sk); 1486 return sk->sk_prot->hash(sk); 1487 } 1488 1489 /* About 10 seconds */ 1490 #define SOCK_DESTROY_TIME (10*HZ) 1491 1492 /* Sockets 0-1023 can't be bound to unless you are superuser */ 1493 #define PROT_SOCK 1024 1494 1495 #define SHUTDOWN_MASK 3 1496 #define RCV_SHUTDOWN 1 1497 #define SEND_SHUTDOWN 2 1498 1499 #define SOCK_BINDADDR_LOCK 4 1500 #define SOCK_BINDPORT_LOCK 8 1501 1502 struct socket_alloc { 1503 struct socket socket; 1504 struct inode vfs_inode; 1505 }; 1506 1507 static inline struct socket *SOCKET_I(struct inode *inode) 1508 { 1509 return &container_of(inode, struct socket_alloc, vfs_inode)->socket; 1510 } 1511 1512 static inline struct inode *SOCK_INODE(struct socket *socket) 1513 { 1514 return &container_of(socket, struct socket_alloc, socket)->vfs_inode; 1515 } 1516 1517 /* 1518 * Functions for memory accounting 1519 */ 1520 int __sk_mem_raise_allocated(struct sock *sk, int size, int amt, int kind); 1521 int __sk_mem_schedule(struct sock *sk, int size, int kind); 1522 void __sk_mem_reduce_allocated(struct sock *sk, int amount); 1523 void __sk_mem_reclaim(struct sock *sk, int amount); 1524 1525 /* We used to have PAGE_SIZE here, but systems with 64KB pages 1526 * do not necessarily have 16x time more memory than 4KB ones. 1527 */ 1528 #define SK_MEM_QUANTUM 4096 1529 #define SK_MEM_QUANTUM_SHIFT ilog2(SK_MEM_QUANTUM) 1530 #define SK_MEM_SEND 0 1531 #define SK_MEM_RECV 1 1532 1533 /* sysctl_mem values are in pages, we convert them in SK_MEM_QUANTUM units */ 1534 static inline long sk_prot_mem_limits(const struct sock *sk, int index) 1535 { 1536 long val = sk->sk_prot->sysctl_mem[index]; 1537 1538 #if PAGE_SIZE > SK_MEM_QUANTUM 1539 val <<= PAGE_SHIFT - SK_MEM_QUANTUM_SHIFT; 1540 #elif PAGE_SIZE < SK_MEM_QUANTUM 1541 val >>= SK_MEM_QUANTUM_SHIFT - PAGE_SHIFT; 1542 #endif 1543 return val; 1544 } 1545 1546 static inline int sk_mem_pages(int amt) 1547 { 1548 return (amt + SK_MEM_QUANTUM - 1) >> SK_MEM_QUANTUM_SHIFT; 1549 } 1550 1551 static inline bool sk_has_account(struct sock *sk) 1552 { 1553 /* return true if protocol supports memory accounting */ 1554 return !!sk->sk_prot->memory_allocated; 1555 } 1556 1557 static inline bool sk_wmem_schedule(struct sock *sk, int size) 1558 { 1559 if (!sk_has_account(sk)) 1560 return true; 1561 return size <= sk->sk_forward_alloc || 1562 __sk_mem_schedule(sk, size, SK_MEM_SEND); 1563 } 1564 1565 static inline bool 1566 sk_rmem_schedule(struct sock *sk, struct sk_buff *skb, int size) 1567 { 1568 if (!sk_has_account(sk)) 1569 return true; 1570 return size <= sk->sk_forward_alloc || 1571 __sk_mem_schedule(sk, size, SK_MEM_RECV) || 1572 skb_pfmemalloc(skb); 1573 } 1574 1575 static inline int sk_unused_reserved_mem(const struct sock *sk) 1576 { 1577 int unused_mem; 1578 1579 if (likely(!sk->sk_reserved_mem)) 1580 return 0; 1581 1582 unused_mem = sk->sk_reserved_mem - sk->sk_wmem_queued - 1583 atomic_read(&sk->sk_rmem_alloc); 1584 1585 return unused_mem > 0 ? unused_mem : 0; 1586 } 1587 1588 static inline void sk_mem_reclaim(struct sock *sk) 1589 { 1590 int reclaimable; 1591 1592 if (!sk_has_account(sk)) 1593 return; 1594 1595 reclaimable = sk->sk_forward_alloc - sk_unused_reserved_mem(sk); 1596 1597 if (reclaimable >= SK_MEM_QUANTUM) 1598 __sk_mem_reclaim(sk, reclaimable); 1599 } 1600 1601 static inline void sk_mem_reclaim_final(struct sock *sk) 1602 { 1603 sk->sk_reserved_mem = 0; 1604 sk_mem_reclaim(sk); 1605 } 1606 1607 static inline void sk_mem_reclaim_partial(struct sock *sk) 1608 { 1609 int reclaimable; 1610 1611 if (!sk_has_account(sk)) 1612 return; 1613 1614 reclaimable = sk->sk_forward_alloc - sk_unused_reserved_mem(sk); 1615 1616 if (reclaimable > SK_MEM_QUANTUM) 1617 __sk_mem_reclaim(sk, reclaimable - 1); 1618 } 1619 1620 static inline void sk_mem_charge(struct sock *sk, int size) 1621 { 1622 if (!sk_has_account(sk)) 1623 return; 1624 sk->sk_forward_alloc -= size; 1625 } 1626 1627 /* the following macros control memory reclaiming in sk_mem_uncharge() 1628 */ 1629 #define SK_RECLAIM_THRESHOLD (1 << 21) 1630 #define SK_RECLAIM_CHUNK (1 << 20) 1631 1632 static inline void sk_mem_uncharge(struct sock *sk, int size) 1633 { 1634 int reclaimable; 1635 1636 if (!sk_has_account(sk)) 1637 return; 1638 sk->sk_forward_alloc += size; 1639 reclaimable = sk->sk_forward_alloc - sk_unused_reserved_mem(sk); 1640 1641 /* Avoid a possible overflow. 1642 * TCP send queues can make this happen, if sk_mem_reclaim() 1643 * is not called and more than 2 GBytes are released at once. 1644 * 1645 * If we reach 2 MBytes, reclaim 1 MBytes right now, there is 1646 * no need to hold that much forward allocation anyway. 1647 */ 1648 if (unlikely(reclaimable >= SK_RECLAIM_THRESHOLD)) 1649 __sk_mem_reclaim(sk, SK_RECLAIM_CHUNK); 1650 } 1651 1652 /* 1653 * Macro so as to not evaluate some arguments when 1654 * lockdep is not enabled. 1655 * 1656 * Mark both the sk_lock and the sk_lock.slock as a 1657 * per-address-family lock class. 1658 */ 1659 #define sock_lock_init_class_and_name(sk, sname, skey, name, key) \ 1660 do { \ 1661 sk->sk_lock.owned = 0; \ 1662 init_waitqueue_head(&sk->sk_lock.wq); \ 1663 spin_lock_init(&(sk)->sk_lock.slock); \ 1664 debug_check_no_locks_freed((void *)&(sk)->sk_lock, \ 1665 sizeof((sk)->sk_lock)); \ 1666 lockdep_set_class_and_name(&(sk)->sk_lock.slock, \ 1667 (skey), (sname)); \ 1668 lockdep_init_map(&(sk)->sk_lock.dep_map, (name), (key), 0); \ 1669 } while (0) 1670 1671 static inline bool lockdep_sock_is_held(const struct sock *sk) 1672 { 1673 return lockdep_is_held(&sk->sk_lock) || 1674 lockdep_is_held(&sk->sk_lock.slock); 1675 } 1676 1677 void lock_sock_nested(struct sock *sk, int subclass); 1678 1679 static inline void lock_sock(struct sock *sk) 1680 { 1681 lock_sock_nested(sk, 0); 1682 } 1683 1684 void __lock_sock(struct sock *sk); 1685 void __release_sock(struct sock *sk); 1686 void release_sock(struct sock *sk); 1687 1688 /* BH context may only use the following locking interface. */ 1689 #define bh_lock_sock(__sk) spin_lock(&((__sk)->sk_lock.slock)) 1690 #define bh_lock_sock_nested(__sk) \ 1691 spin_lock_nested(&((__sk)->sk_lock.slock), \ 1692 SINGLE_DEPTH_NESTING) 1693 #define bh_unlock_sock(__sk) spin_unlock(&((__sk)->sk_lock.slock)) 1694 1695 bool __lock_sock_fast(struct sock *sk) __acquires(&sk->sk_lock.slock); 1696 1697 /** 1698 * lock_sock_fast - fast version of lock_sock 1699 * @sk: socket 1700 * 1701 * This version should be used for very small section, where process wont block 1702 * return false if fast path is taken: 1703 * 1704 * sk_lock.slock locked, owned = 0, BH disabled 1705 * 1706 * return true if slow path is taken: 1707 * 1708 * sk_lock.slock unlocked, owned = 1, BH enabled 1709 */ 1710 static inline bool lock_sock_fast(struct sock *sk) 1711 { 1712 /* The sk_lock has mutex_lock() semantics here. */ 1713 mutex_acquire(&sk->sk_lock.dep_map, 0, 0, _RET_IP_); 1714 1715 return __lock_sock_fast(sk); 1716 } 1717 1718 /* fast socket lock variant for caller already holding a [different] socket lock */ 1719 static inline bool lock_sock_fast_nested(struct sock *sk) 1720 { 1721 mutex_acquire(&sk->sk_lock.dep_map, SINGLE_DEPTH_NESTING, 0, _RET_IP_); 1722 1723 return __lock_sock_fast(sk); 1724 } 1725 1726 /** 1727 * unlock_sock_fast - complement of lock_sock_fast 1728 * @sk: socket 1729 * @slow: slow mode 1730 * 1731 * fast unlock socket for user context. 1732 * If slow mode is on, we call regular release_sock() 1733 */ 1734 static inline void unlock_sock_fast(struct sock *sk, bool slow) 1735 __releases(&sk->sk_lock.slock) 1736 { 1737 if (slow) { 1738 release_sock(sk); 1739 __release(&sk->sk_lock.slock); 1740 } else { 1741 mutex_release(&sk->sk_lock.dep_map, _RET_IP_); 1742 spin_unlock_bh(&sk->sk_lock.slock); 1743 } 1744 } 1745 1746 /* Used by processes to "lock" a socket state, so that 1747 * interrupts and bottom half handlers won't change it 1748 * from under us. It essentially blocks any incoming 1749 * packets, so that we won't get any new data or any 1750 * packets that change the state of the socket. 1751 * 1752 * While locked, BH processing will add new packets to 1753 * the backlog queue. This queue is processed by the 1754 * owner of the socket lock right before it is released. 1755 * 1756 * Since ~2.3.5 it is also exclusive sleep lock serializing 1757 * accesses from user process context. 1758 */ 1759 1760 static inline void sock_owned_by_me(const struct sock *sk) 1761 { 1762 #ifdef CONFIG_LOCKDEP 1763 WARN_ON_ONCE(!lockdep_sock_is_held(sk) && debug_locks); 1764 #endif 1765 } 1766 1767 static inline bool sock_owned_by_user(const struct sock *sk) 1768 { 1769 sock_owned_by_me(sk); 1770 return sk->sk_lock.owned; 1771 } 1772 1773 static inline bool sock_owned_by_user_nocheck(const struct sock *sk) 1774 { 1775 return sk->sk_lock.owned; 1776 } 1777 1778 static inline void sock_release_ownership(struct sock *sk) 1779 { 1780 if (sock_owned_by_user_nocheck(sk)) { 1781 sk->sk_lock.owned = 0; 1782 1783 /* The sk_lock has mutex_unlock() semantics: */ 1784 mutex_release(&sk->sk_lock.dep_map, _RET_IP_); 1785 } 1786 } 1787 1788 /* no reclassification while locks are held */ 1789 static inline bool sock_allow_reclassification(const struct sock *csk) 1790 { 1791 struct sock *sk = (struct sock *)csk; 1792 1793 return !sock_owned_by_user_nocheck(sk) && 1794 !spin_is_locked(&sk->sk_lock.slock); 1795 } 1796 1797 struct sock *sk_alloc(struct net *net, int family, gfp_t priority, 1798 struct proto *prot, int kern); 1799 void sk_free(struct sock *sk); 1800 void sk_destruct(struct sock *sk); 1801 struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority); 1802 void sk_free_unlock_clone(struct sock *sk); 1803 1804 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force, 1805 gfp_t priority); 1806 void __sock_wfree(struct sk_buff *skb); 1807 void sock_wfree(struct sk_buff *skb); 1808 struct sk_buff *sock_omalloc(struct sock *sk, unsigned long size, 1809 gfp_t priority); 1810 void skb_orphan_partial(struct sk_buff *skb); 1811 void sock_rfree(struct sk_buff *skb); 1812 void sock_efree(struct sk_buff *skb); 1813 #ifdef CONFIG_INET 1814 void sock_edemux(struct sk_buff *skb); 1815 void sock_pfree(struct sk_buff *skb); 1816 #else 1817 #define sock_edemux sock_efree 1818 #endif 1819 1820 int sock_setsockopt(struct socket *sock, int level, int op, 1821 sockptr_t optval, unsigned int optlen); 1822 1823 int sock_getsockopt(struct socket *sock, int level, int op, 1824 char __user *optval, int __user *optlen); 1825 int sock_gettstamp(struct socket *sock, void __user *userstamp, 1826 bool timeval, bool time32); 1827 struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size, 1828 int noblock, int *errcode); 1829 struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len, 1830 unsigned long data_len, int noblock, 1831 int *errcode, int max_page_order); 1832 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority); 1833 void sock_kfree_s(struct sock *sk, void *mem, int size); 1834 void sock_kzfree_s(struct sock *sk, void *mem, int size); 1835 void sk_send_sigurg(struct sock *sk); 1836 1837 struct sockcm_cookie { 1838 u64 transmit_time; 1839 u32 mark; 1840 u16 tsflags; 1841 }; 1842 1843 static inline void sockcm_init(struct sockcm_cookie *sockc, 1844 const struct sock *sk) 1845 { 1846 *sockc = (struct sockcm_cookie) { .tsflags = sk->sk_tsflags }; 1847 } 1848 1849 int __sock_cmsg_send(struct sock *sk, struct msghdr *msg, struct cmsghdr *cmsg, 1850 struct sockcm_cookie *sockc); 1851 int sock_cmsg_send(struct sock *sk, struct msghdr *msg, 1852 struct sockcm_cookie *sockc); 1853 1854 /* 1855 * Functions to fill in entries in struct proto_ops when a protocol 1856 * does not implement a particular function. 1857 */ 1858 int sock_no_bind(struct socket *, struct sockaddr *, int); 1859 int sock_no_connect(struct socket *, struct sockaddr *, int, int); 1860 int sock_no_socketpair(struct socket *, struct socket *); 1861 int sock_no_accept(struct socket *, struct socket *, int, bool); 1862 int sock_no_getname(struct socket *, struct sockaddr *, int); 1863 int sock_no_ioctl(struct socket *, unsigned int, unsigned long); 1864 int sock_no_listen(struct socket *, int); 1865 int sock_no_shutdown(struct socket *, int); 1866 int sock_no_sendmsg(struct socket *, struct msghdr *, size_t); 1867 int sock_no_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t len); 1868 int sock_no_recvmsg(struct socket *, struct msghdr *, size_t, int); 1869 int sock_no_mmap(struct file *file, struct socket *sock, 1870 struct vm_area_struct *vma); 1871 ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset, 1872 size_t size, int flags); 1873 ssize_t sock_no_sendpage_locked(struct sock *sk, struct page *page, 1874 int offset, size_t size, int flags); 1875 1876 /* 1877 * Functions to fill in entries in struct proto_ops when a protocol 1878 * uses the inet style. 1879 */ 1880 int sock_common_getsockopt(struct socket *sock, int level, int optname, 1881 char __user *optval, int __user *optlen); 1882 int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size, 1883 int flags); 1884 int sock_common_setsockopt(struct socket *sock, int level, int optname, 1885 sockptr_t optval, unsigned int optlen); 1886 1887 void sk_common_release(struct sock *sk); 1888 1889 /* 1890 * Default socket callbacks and setup code 1891 */ 1892 1893 /* Initialise core socket variables */ 1894 void sock_init_data(struct socket *sock, struct sock *sk); 1895 1896 /* 1897 * Socket reference counting postulates. 1898 * 1899 * * Each user of socket SHOULD hold a reference count. 1900 * * Each access point to socket (an hash table bucket, reference from a list, 1901 * running timer, skb in flight MUST hold a reference count. 1902 * * When reference count hits 0, it means it will never increase back. 1903 * * When reference count hits 0, it means that no references from 1904 * outside exist to this socket and current process on current CPU 1905 * is last user and may/should destroy this socket. 1906 * * sk_free is called from any context: process, BH, IRQ. When 1907 * it is called, socket has no references from outside -> sk_free 1908 * may release descendant resources allocated by the socket, but 1909 * to the time when it is called, socket is NOT referenced by any 1910 * hash tables, lists etc. 1911 * * Packets, delivered from outside (from network or from another process) 1912 * and enqueued on receive/error queues SHOULD NOT grab reference count, 1913 * when they sit in queue. Otherwise, packets will leak to hole, when 1914 * socket is looked up by one cpu and unhasing is made by another CPU. 1915 * It is true for udp/raw, netlink (leak to receive and error queues), tcp 1916 * (leak to backlog). Packet socket does all the processing inside 1917 * BR_NETPROTO_LOCK, so that it has not this race condition. UNIX sockets 1918 * use separate SMP lock, so that they are prone too. 1919 */ 1920 1921 /* Ungrab socket and destroy it, if it was the last reference. */ 1922 static inline void sock_put(struct sock *sk) 1923 { 1924 if (refcount_dec_and_test(&sk->sk_refcnt)) 1925 sk_free(sk); 1926 } 1927 /* Generic version of sock_put(), dealing with all sockets 1928 * (TCP_TIMEWAIT, TCP_NEW_SYN_RECV, ESTABLISHED...) 1929 */ 1930 void sock_gen_put(struct sock *sk); 1931 1932 int __sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested, 1933 unsigned int trim_cap, bool refcounted); 1934 static inline int sk_receive_skb(struct sock *sk, struct sk_buff *skb, 1935 const int nested) 1936 { 1937 return __sk_receive_skb(sk, skb, nested, 1, true); 1938 } 1939 1940 static inline void sk_tx_queue_set(struct sock *sk, int tx_queue) 1941 { 1942 /* sk_tx_queue_mapping accept only upto a 16-bit value */ 1943 if (WARN_ON_ONCE((unsigned short)tx_queue >= USHRT_MAX)) 1944 return; 1945 sk->sk_tx_queue_mapping = tx_queue; 1946 } 1947 1948 #define NO_QUEUE_MAPPING USHRT_MAX 1949 1950 static inline void sk_tx_queue_clear(struct sock *sk) 1951 { 1952 sk->sk_tx_queue_mapping = NO_QUEUE_MAPPING; 1953 } 1954 1955 static inline int sk_tx_queue_get(const struct sock *sk) 1956 { 1957 if (sk && sk->sk_tx_queue_mapping != NO_QUEUE_MAPPING) 1958 return sk->sk_tx_queue_mapping; 1959 1960 return -1; 1961 } 1962 1963 static inline void __sk_rx_queue_set(struct sock *sk, 1964 const struct sk_buff *skb, 1965 bool force_set) 1966 { 1967 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING 1968 if (skb_rx_queue_recorded(skb)) { 1969 u16 rx_queue = skb_get_rx_queue(skb); 1970 1971 if (force_set || 1972 unlikely(READ_ONCE(sk->sk_rx_queue_mapping) != rx_queue)) 1973 WRITE_ONCE(sk->sk_rx_queue_mapping, rx_queue); 1974 } 1975 #endif 1976 } 1977 1978 static inline void sk_rx_queue_set(struct sock *sk, const struct sk_buff *skb) 1979 { 1980 __sk_rx_queue_set(sk, skb, true); 1981 } 1982 1983 static inline void sk_rx_queue_update(struct sock *sk, const struct sk_buff *skb) 1984 { 1985 __sk_rx_queue_set(sk, skb, false); 1986 } 1987 1988 static inline void sk_rx_queue_clear(struct sock *sk) 1989 { 1990 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING 1991 WRITE_ONCE(sk->sk_rx_queue_mapping, NO_QUEUE_MAPPING); 1992 #endif 1993 } 1994 1995 static inline int sk_rx_queue_get(const struct sock *sk) 1996 { 1997 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING 1998 if (sk) { 1999 int res = READ_ONCE(sk->sk_rx_queue_mapping); 2000 2001 if (res != NO_QUEUE_MAPPING) 2002 return res; 2003 } 2004 #endif 2005 2006 return -1; 2007 } 2008 2009 static inline void sk_set_socket(struct sock *sk, struct socket *sock) 2010 { 2011 sk->sk_socket = sock; 2012 } 2013 2014 static inline wait_queue_head_t *sk_sleep(struct sock *sk) 2015 { 2016 BUILD_BUG_ON(offsetof(struct socket_wq, wait) != 0); 2017 return &rcu_dereference_raw(sk->sk_wq)->wait; 2018 } 2019 /* Detach socket from process context. 2020 * Announce socket dead, detach it from wait queue and inode. 2021 * Note that parent inode held reference count on this struct sock, 2022 * we do not release it in this function, because protocol 2023 * probably wants some additional cleanups or even continuing 2024 * to work with this socket (TCP). 2025 */ 2026 static inline void sock_orphan(struct sock *sk) 2027 { 2028 write_lock_bh(&sk->sk_callback_lock); 2029 sock_set_flag(sk, SOCK_DEAD); 2030 sk_set_socket(sk, NULL); 2031 sk->sk_wq = NULL; 2032 write_unlock_bh(&sk->sk_callback_lock); 2033 } 2034 2035 static inline void sock_graft(struct sock *sk, struct socket *parent) 2036 { 2037 WARN_ON(parent->sk); 2038 write_lock_bh(&sk->sk_callback_lock); 2039 rcu_assign_pointer(sk->sk_wq, &parent->wq); 2040 parent->sk = sk; 2041 sk_set_socket(sk, parent); 2042 sk->sk_uid = SOCK_INODE(parent)->i_uid; 2043 security_sock_graft(sk, parent); 2044 write_unlock_bh(&sk->sk_callback_lock); 2045 } 2046 2047 kuid_t sock_i_uid(struct sock *sk); 2048 unsigned long sock_i_ino(struct sock *sk); 2049 2050 static inline kuid_t sock_net_uid(const struct net *net, const struct sock *sk) 2051 { 2052 return sk ? sk->sk_uid : make_kuid(net->user_ns, 0); 2053 } 2054 2055 static inline u32 net_tx_rndhash(void) 2056 { 2057 u32 v = prandom_u32(); 2058 2059 return v ?: 1; 2060 } 2061 2062 static inline void sk_set_txhash(struct sock *sk) 2063 { 2064 /* This pairs with READ_ONCE() in skb_set_hash_from_sk() */ 2065 WRITE_ONCE(sk->sk_txhash, net_tx_rndhash()); 2066 } 2067 2068 static inline bool sk_rethink_txhash(struct sock *sk) 2069 { 2070 if (sk->sk_txhash && sk->sk_txrehash == SOCK_TXREHASH_ENABLED) { 2071 sk_set_txhash(sk); 2072 return true; 2073 } 2074 return false; 2075 } 2076 2077 static inline struct dst_entry * 2078 __sk_dst_get(struct sock *sk) 2079 { 2080 return rcu_dereference_check(sk->sk_dst_cache, 2081 lockdep_sock_is_held(sk)); 2082 } 2083 2084 static inline struct dst_entry * 2085 sk_dst_get(struct sock *sk) 2086 { 2087 struct dst_entry *dst; 2088 2089 rcu_read_lock(); 2090 dst = rcu_dereference(sk->sk_dst_cache); 2091 if (dst && !atomic_inc_not_zero(&dst->__refcnt)) 2092 dst = NULL; 2093 rcu_read_unlock(); 2094 return dst; 2095 } 2096 2097 static inline void __dst_negative_advice(struct sock *sk) 2098 { 2099 struct dst_entry *ndst, *dst = __sk_dst_get(sk); 2100 2101 if (dst && dst->ops->negative_advice) { 2102 ndst = dst->ops->negative_advice(dst); 2103 2104 if (ndst != dst) { 2105 rcu_assign_pointer(sk->sk_dst_cache, ndst); 2106 sk_tx_queue_clear(sk); 2107 sk->sk_dst_pending_confirm = 0; 2108 } 2109 } 2110 } 2111 2112 static inline void dst_negative_advice(struct sock *sk) 2113 { 2114 sk_rethink_txhash(sk); 2115 __dst_negative_advice(sk); 2116 } 2117 2118 static inline void 2119 __sk_dst_set(struct sock *sk, struct dst_entry *dst) 2120 { 2121 struct dst_entry *old_dst; 2122 2123 sk_tx_queue_clear(sk); 2124 sk->sk_dst_pending_confirm = 0; 2125 old_dst = rcu_dereference_protected(sk->sk_dst_cache, 2126 lockdep_sock_is_held(sk)); 2127 rcu_assign_pointer(sk->sk_dst_cache, dst); 2128 dst_release(old_dst); 2129 } 2130 2131 static inline void 2132 sk_dst_set(struct sock *sk, struct dst_entry *dst) 2133 { 2134 struct dst_entry *old_dst; 2135 2136 sk_tx_queue_clear(sk); 2137 sk->sk_dst_pending_confirm = 0; 2138 old_dst = xchg((__force struct dst_entry **)&sk->sk_dst_cache, dst); 2139 dst_release(old_dst); 2140 } 2141 2142 static inline void 2143 __sk_dst_reset(struct sock *sk) 2144 { 2145 __sk_dst_set(sk, NULL); 2146 } 2147 2148 static inline void 2149 sk_dst_reset(struct sock *sk) 2150 { 2151 sk_dst_set(sk, NULL); 2152 } 2153 2154 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie); 2155 2156 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie); 2157 2158 static inline void sk_dst_confirm(struct sock *sk) 2159 { 2160 if (!READ_ONCE(sk->sk_dst_pending_confirm)) 2161 WRITE_ONCE(sk->sk_dst_pending_confirm, 1); 2162 } 2163 2164 static inline void sock_confirm_neigh(struct sk_buff *skb, struct neighbour *n) 2165 { 2166 if (skb_get_dst_pending_confirm(skb)) { 2167 struct sock *sk = skb->sk; 2168 2169 if (sk && READ_ONCE(sk->sk_dst_pending_confirm)) 2170 WRITE_ONCE(sk->sk_dst_pending_confirm, 0); 2171 neigh_confirm(n); 2172 } 2173 } 2174 2175 bool sk_mc_loop(struct sock *sk); 2176 2177 static inline bool sk_can_gso(const struct sock *sk) 2178 { 2179 return net_gso_ok(sk->sk_route_caps, sk->sk_gso_type); 2180 } 2181 2182 void sk_setup_caps(struct sock *sk, struct dst_entry *dst); 2183 2184 static inline void sk_gso_disable(struct sock *sk) 2185 { 2186 sk->sk_gso_disabled = 1; 2187 sk->sk_route_caps &= ~NETIF_F_GSO_MASK; 2188 } 2189 2190 static inline int skb_do_copy_data_nocache(struct sock *sk, struct sk_buff *skb, 2191 struct iov_iter *from, char *to, 2192 int copy, int offset) 2193 { 2194 if (skb->ip_summed == CHECKSUM_NONE) { 2195 __wsum csum = 0; 2196 if (!csum_and_copy_from_iter_full(to, copy, &csum, from)) 2197 return -EFAULT; 2198 skb->csum = csum_block_add(skb->csum, csum, offset); 2199 } else if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY) { 2200 if (!copy_from_iter_full_nocache(to, copy, from)) 2201 return -EFAULT; 2202 } else if (!copy_from_iter_full(to, copy, from)) 2203 return -EFAULT; 2204 2205 return 0; 2206 } 2207 2208 static inline int skb_add_data_nocache(struct sock *sk, struct sk_buff *skb, 2209 struct iov_iter *from, int copy) 2210 { 2211 int err, offset = skb->len; 2212 2213 err = skb_do_copy_data_nocache(sk, skb, from, skb_put(skb, copy), 2214 copy, offset); 2215 if (err) 2216 __skb_trim(skb, offset); 2217 2218 return err; 2219 } 2220 2221 static inline int skb_copy_to_page_nocache(struct sock *sk, struct iov_iter *from, 2222 struct sk_buff *skb, 2223 struct page *page, 2224 int off, int copy) 2225 { 2226 int err; 2227 2228 err = skb_do_copy_data_nocache(sk, skb, from, page_address(page) + off, 2229 copy, skb->len); 2230 if (err) 2231 return err; 2232 2233 skb->len += copy; 2234 skb->data_len += copy; 2235 skb->truesize += copy; 2236 sk_wmem_queued_add(sk, copy); 2237 sk_mem_charge(sk, copy); 2238 return 0; 2239 } 2240 2241 /** 2242 * sk_wmem_alloc_get - returns write allocations 2243 * @sk: socket 2244 * 2245 * Return: sk_wmem_alloc minus initial offset of one 2246 */ 2247 static inline int sk_wmem_alloc_get(const struct sock *sk) 2248 { 2249 return refcount_read(&sk->sk_wmem_alloc) - 1; 2250 } 2251 2252 /** 2253 * sk_rmem_alloc_get - returns read allocations 2254 * @sk: socket 2255 * 2256 * Return: sk_rmem_alloc 2257 */ 2258 static inline int sk_rmem_alloc_get(const struct sock *sk) 2259 { 2260 return atomic_read(&sk->sk_rmem_alloc); 2261 } 2262 2263 /** 2264 * sk_has_allocations - check if allocations are outstanding 2265 * @sk: socket 2266 * 2267 * Return: true if socket has write or read allocations 2268 */ 2269 static inline bool sk_has_allocations(const struct sock *sk) 2270 { 2271 return sk_wmem_alloc_get(sk) || sk_rmem_alloc_get(sk); 2272 } 2273 2274 /** 2275 * skwq_has_sleeper - check if there are any waiting processes 2276 * @wq: struct socket_wq 2277 * 2278 * Return: true if socket_wq has waiting processes 2279 * 2280 * The purpose of the skwq_has_sleeper and sock_poll_wait is to wrap the memory 2281 * barrier call. They were added due to the race found within the tcp code. 2282 * 2283 * Consider following tcp code paths:: 2284 * 2285 * CPU1 CPU2 2286 * sys_select receive packet 2287 * ... ... 2288 * __add_wait_queue update tp->rcv_nxt 2289 * ... ... 2290 * tp->rcv_nxt check sock_def_readable 2291 * ... { 2292 * schedule rcu_read_lock(); 2293 * wq = rcu_dereference(sk->sk_wq); 2294 * if (wq && waitqueue_active(&wq->wait)) 2295 * wake_up_interruptible(&wq->wait) 2296 * ... 2297 * } 2298 * 2299 * The race for tcp fires when the __add_wait_queue changes done by CPU1 stay 2300 * in its cache, and so does the tp->rcv_nxt update on CPU2 side. The CPU1 2301 * could then endup calling schedule and sleep forever if there are no more 2302 * data on the socket. 2303 * 2304 */ 2305 static inline bool skwq_has_sleeper(struct socket_wq *wq) 2306 { 2307 return wq && wq_has_sleeper(&wq->wait); 2308 } 2309 2310 /** 2311 * sock_poll_wait - place memory barrier behind the poll_wait call. 2312 * @filp: file 2313 * @sock: socket to wait on 2314 * @p: poll_table 2315 * 2316 * See the comments in the wq_has_sleeper function. 2317 */ 2318 static inline void sock_poll_wait(struct file *filp, struct socket *sock, 2319 poll_table *p) 2320 { 2321 if (!poll_does_not_wait(p)) { 2322 poll_wait(filp, &sock->wq.wait, p); 2323 /* We need to be sure we are in sync with the 2324 * socket flags modification. 2325 * 2326 * This memory barrier is paired in the wq_has_sleeper. 2327 */ 2328 smp_mb(); 2329 } 2330 } 2331 2332 static inline void skb_set_hash_from_sk(struct sk_buff *skb, struct sock *sk) 2333 { 2334 /* This pairs with WRITE_ONCE() in sk_set_txhash() */ 2335 u32 txhash = READ_ONCE(sk->sk_txhash); 2336 2337 if (txhash) { 2338 skb->l4_hash = 1; 2339 skb->hash = txhash; 2340 } 2341 } 2342 2343 void skb_set_owner_w(struct sk_buff *skb, struct sock *sk); 2344 2345 /* 2346 * Queue a received datagram if it will fit. Stream and sequenced 2347 * protocols can't normally use this as they need to fit buffers in 2348 * and play with them. 2349 * 2350 * Inlined as it's very short and called for pretty much every 2351 * packet ever received. 2352 */ 2353 static inline void skb_set_owner_r(struct sk_buff *skb, struct sock *sk) 2354 { 2355 skb_orphan(skb); 2356 skb->sk = sk; 2357 skb->destructor = sock_rfree; 2358 atomic_add(skb->truesize, &sk->sk_rmem_alloc); 2359 sk_mem_charge(sk, skb->truesize); 2360 } 2361 2362 static inline __must_check bool skb_set_owner_sk_safe(struct sk_buff *skb, struct sock *sk) 2363 { 2364 if (sk && refcount_inc_not_zero(&sk->sk_refcnt)) { 2365 skb_orphan(skb); 2366 skb->destructor = sock_efree; 2367 skb->sk = sk; 2368 return true; 2369 } 2370 return false; 2371 } 2372 2373 static inline void skb_prepare_for_gro(struct sk_buff *skb) 2374 { 2375 if (skb->destructor != sock_wfree) { 2376 skb_orphan(skb); 2377 return; 2378 } 2379 skb->slow_gro = 1; 2380 } 2381 2382 void sk_reset_timer(struct sock *sk, struct timer_list *timer, 2383 unsigned long expires); 2384 2385 void sk_stop_timer(struct sock *sk, struct timer_list *timer); 2386 2387 void sk_stop_timer_sync(struct sock *sk, struct timer_list *timer); 2388 2389 int __sk_queue_drop_skb(struct sock *sk, struct sk_buff_head *sk_queue, 2390 struct sk_buff *skb, unsigned int flags, 2391 void (*destructor)(struct sock *sk, 2392 struct sk_buff *skb)); 2393 int __sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb); 2394 2395 int sock_queue_rcv_skb_reason(struct sock *sk, struct sk_buff *skb, 2396 enum skb_drop_reason *reason); 2397 2398 static inline int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb) 2399 { 2400 return sock_queue_rcv_skb_reason(sk, skb, NULL); 2401 } 2402 2403 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb); 2404 struct sk_buff *sock_dequeue_err_skb(struct sock *sk); 2405 2406 /* 2407 * Recover an error report and clear atomically 2408 */ 2409 2410 static inline int sock_error(struct sock *sk) 2411 { 2412 int err; 2413 2414 /* Avoid an atomic operation for the common case. 2415 * This is racy since another cpu/thread can change sk_err under us. 2416 */ 2417 if (likely(data_race(!sk->sk_err))) 2418 return 0; 2419 2420 err = xchg(&sk->sk_err, 0); 2421 return -err; 2422 } 2423 2424 void sk_error_report(struct sock *sk); 2425 2426 static inline unsigned long sock_wspace(struct sock *sk) 2427 { 2428 int amt = 0; 2429 2430 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) { 2431 amt = sk->sk_sndbuf - refcount_read(&sk->sk_wmem_alloc); 2432 if (amt < 0) 2433 amt = 0; 2434 } 2435 return amt; 2436 } 2437 2438 /* Note: 2439 * We use sk->sk_wq_raw, from contexts knowing this 2440 * pointer is not NULL and cannot disappear/change. 2441 */ 2442 static inline void sk_set_bit(int nr, struct sock *sk) 2443 { 2444 if ((nr == SOCKWQ_ASYNC_NOSPACE || nr == SOCKWQ_ASYNC_WAITDATA) && 2445 !sock_flag(sk, SOCK_FASYNC)) 2446 return; 2447 2448 set_bit(nr, &sk->sk_wq_raw->flags); 2449 } 2450 2451 static inline void sk_clear_bit(int nr, struct sock *sk) 2452 { 2453 if ((nr == SOCKWQ_ASYNC_NOSPACE || nr == SOCKWQ_ASYNC_WAITDATA) && 2454 !sock_flag(sk, SOCK_FASYNC)) 2455 return; 2456 2457 clear_bit(nr, &sk->sk_wq_raw->flags); 2458 } 2459 2460 static inline void sk_wake_async(const struct sock *sk, int how, int band) 2461 { 2462 if (sock_flag(sk, SOCK_FASYNC)) { 2463 rcu_read_lock(); 2464 sock_wake_async(rcu_dereference(sk->sk_wq), how, band); 2465 rcu_read_unlock(); 2466 } 2467 } 2468 2469 /* Since sk_{r,w}mem_alloc sums skb->truesize, even a small frame might 2470 * need sizeof(sk_buff) + MTU + padding, unless net driver perform copybreak. 2471 * Note: for send buffers, TCP works better if we can build two skbs at 2472 * minimum. 2473 */ 2474 #define TCP_SKB_MIN_TRUESIZE (2048 + SKB_DATA_ALIGN(sizeof(struct sk_buff))) 2475 2476 #define SOCK_MIN_SNDBUF (TCP_SKB_MIN_TRUESIZE * 2) 2477 #define SOCK_MIN_RCVBUF TCP_SKB_MIN_TRUESIZE 2478 2479 static inline void sk_stream_moderate_sndbuf(struct sock *sk) 2480 { 2481 u32 val; 2482 2483 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK) 2484 return; 2485 2486 val = min(sk->sk_sndbuf, sk->sk_wmem_queued >> 1); 2487 val = max_t(u32, val, sk_unused_reserved_mem(sk)); 2488 2489 WRITE_ONCE(sk->sk_sndbuf, max_t(u32, val, SOCK_MIN_SNDBUF)); 2490 } 2491 2492 /** 2493 * sk_page_frag - return an appropriate page_frag 2494 * @sk: socket 2495 * 2496 * Use the per task page_frag instead of the per socket one for 2497 * optimization when we know that we're in process context and own 2498 * everything that's associated with %current. 2499 * 2500 * Both direct reclaim and page faults can nest inside other 2501 * socket operations and end up recursing into sk_page_frag() 2502 * while it's already in use: explicitly avoid task page_frag 2503 * usage if the caller is potentially doing any of them. 2504 * This assumes that page fault handlers use the GFP_NOFS flags. 2505 * 2506 * Return: a per task page_frag if context allows that, 2507 * otherwise a per socket one. 2508 */ 2509 static inline struct page_frag *sk_page_frag(struct sock *sk) 2510 { 2511 if ((sk->sk_allocation & (__GFP_DIRECT_RECLAIM | __GFP_MEMALLOC | __GFP_FS)) == 2512 (__GFP_DIRECT_RECLAIM | __GFP_FS)) 2513 return ¤t->task_frag; 2514 2515 return &sk->sk_frag; 2516 } 2517 2518 bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag); 2519 2520 /* 2521 * Default write policy as shown to user space via poll/select/SIGIO 2522 */ 2523 static inline bool sock_writeable(const struct sock *sk) 2524 { 2525 return refcount_read(&sk->sk_wmem_alloc) < (READ_ONCE(sk->sk_sndbuf) >> 1); 2526 } 2527 2528 static inline gfp_t gfp_any(void) 2529 { 2530 return in_softirq() ? GFP_ATOMIC : GFP_KERNEL; 2531 } 2532 2533 static inline gfp_t gfp_memcg_charge(void) 2534 { 2535 return in_softirq() ? GFP_NOWAIT : GFP_KERNEL; 2536 } 2537 2538 static inline long sock_rcvtimeo(const struct sock *sk, bool noblock) 2539 { 2540 return noblock ? 0 : sk->sk_rcvtimeo; 2541 } 2542 2543 static inline long sock_sndtimeo(const struct sock *sk, bool noblock) 2544 { 2545 return noblock ? 0 : sk->sk_sndtimeo; 2546 } 2547 2548 static inline int sock_rcvlowat(const struct sock *sk, int waitall, int len) 2549 { 2550 int v = waitall ? len : min_t(int, READ_ONCE(sk->sk_rcvlowat), len); 2551 2552 return v ?: 1; 2553 } 2554 2555 /* Alas, with timeout socket operations are not restartable. 2556 * Compare this to poll(). 2557 */ 2558 static inline int sock_intr_errno(long timeo) 2559 { 2560 return timeo == MAX_SCHEDULE_TIMEOUT ? -ERESTARTSYS : -EINTR; 2561 } 2562 2563 struct sock_skb_cb { 2564 u32 dropcount; 2565 }; 2566 2567 /* Store sock_skb_cb at the end of skb->cb[] so protocol families 2568 * using skb->cb[] would keep using it directly and utilize its 2569 * alignement guarantee. 2570 */ 2571 #define SOCK_SKB_CB_OFFSET ((sizeof_field(struct sk_buff, cb) - \ 2572 sizeof(struct sock_skb_cb))) 2573 2574 #define SOCK_SKB_CB(__skb) ((struct sock_skb_cb *)((__skb)->cb + \ 2575 SOCK_SKB_CB_OFFSET)) 2576 2577 #define sock_skb_cb_check_size(size) \ 2578 BUILD_BUG_ON((size) > SOCK_SKB_CB_OFFSET) 2579 2580 static inline void 2581 sock_skb_set_dropcount(const struct sock *sk, struct sk_buff *skb) 2582 { 2583 SOCK_SKB_CB(skb)->dropcount = sock_flag(sk, SOCK_RXQ_OVFL) ? 2584 atomic_read(&sk->sk_drops) : 0; 2585 } 2586 2587 static inline void sk_drops_add(struct sock *sk, const struct sk_buff *skb) 2588 { 2589 int segs = max_t(u16, 1, skb_shinfo(skb)->gso_segs); 2590 2591 atomic_add(segs, &sk->sk_drops); 2592 } 2593 2594 static inline ktime_t sock_read_timestamp(struct sock *sk) 2595 { 2596 #if BITS_PER_LONG==32 2597 unsigned int seq; 2598 ktime_t kt; 2599 2600 do { 2601 seq = read_seqbegin(&sk->sk_stamp_seq); 2602 kt = sk->sk_stamp; 2603 } while (read_seqretry(&sk->sk_stamp_seq, seq)); 2604 2605 return kt; 2606 #else 2607 return READ_ONCE(sk->sk_stamp); 2608 #endif 2609 } 2610 2611 static inline void sock_write_timestamp(struct sock *sk, ktime_t kt) 2612 { 2613 #if BITS_PER_LONG==32 2614 write_seqlock(&sk->sk_stamp_seq); 2615 sk->sk_stamp = kt; 2616 write_sequnlock(&sk->sk_stamp_seq); 2617 #else 2618 WRITE_ONCE(sk->sk_stamp, kt); 2619 #endif 2620 } 2621 2622 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk, 2623 struct sk_buff *skb); 2624 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk, 2625 struct sk_buff *skb); 2626 2627 static inline void 2628 sock_recv_timestamp(struct msghdr *msg, struct sock *sk, struct sk_buff *skb) 2629 { 2630 ktime_t kt = skb->tstamp; 2631 struct skb_shared_hwtstamps *hwtstamps = skb_hwtstamps(skb); 2632 2633 /* 2634 * generate control messages if 2635 * - receive time stamping in software requested 2636 * - software time stamp available and wanted 2637 * - hardware time stamps available and wanted 2638 */ 2639 if (sock_flag(sk, SOCK_RCVTSTAMP) || 2640 (sk->sk_tsflags & SOF_TIMESTAMPING_RX_SOFTWARE) || 2641 (kt && sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) || 2642 (hwtstamps->hwtstamp && 2643 (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE))) 2644 __sock_recv_timestamp(msg, sk, skb); 2645 else 2646 sock_write_timestamp(sk, kt); 2647 2648 if (sock_flag(sk, SOCK_WIFI_STATUS) && skb->wifi_acked_valid) 2649 __sock_recv_wifi_status(msg, sk, skb); 2650 } 2651 2652 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk, 2653 struct sk_buff *skb); 2654 2655 #define SK_DEFAULT_STAMP (-1L * NSEC_PER_SEC) 2656 static inline void sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk, 2657 struct sk_buff *skb) 2658 { 2659 #define FLAGS_TS_OR_DROPS ((1UL << SOCK_RXQ_OVFL) | \ 2660 (1UL << SOCK_RCVTSTAMP)) 2661 #define TSFLAGS_ANY (SOF_TIMESTAMPING_SOFTWARE | \ 2662 SOF_TIMESTAMPING_RAW_HARDWARE) 2663 2664 if (sk->sk_flags & FLAGS_TS_OR_DROPS || sk->sk_tsflags & TSFLAGS_ANY) 2665 __sock_recv_ts_and_drops(msg, sk, skb); 2666 else if (unlikely(sock_flag(sk, SOCK_TIMESTAMP))) 2667 sock_write_timestamp(sk, skb->tstamp); 2668 else if (unlikely(sk->sk_stamp == SK_DEFAULT_STAMP)) 2669 sock_write_timestamp(sk, 0); 2670 } 2671 2672 void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags); 2673 2674 /** 2675 * _sock_tx_timestamp - checks whether the outgoing packet is to be time stamped 2676 * @sk: socket sending this packet 2677 * @tsflags: timestamping flags to use 2678 * @tx_flags: completed with instructions for time stamping 2679 * @tskey: filled in with next sk_tskey (not for TCP, which uses seqno) 2680 * 2681 * Note: callers should take care of initial ``*tx_flags`` value (usually 0) 2682 */ 2683 static inline void _sock_tx_timestamp(struct sock *sk, __u16 tsflags, 2684 __u8 *tx_flags, __u32 *tskey) 2685 { 2686 if (unlikely(tsflags)) { 2687 __sock_tx_timestamp(tsflags, tx_flags); 2688 if (tsflags & SOF_TIMESTAMPING_OPT_ID && tskey && 2689 tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK) 2690 *tskey = atomic_inc_return(&sk->sk_tskey) - 1; 2691 } 2692 if (unlikely(sock_flag(sk, SOCK_WIFI_STATUS))) 2693 *tx_flags |= SKBTX_WIFI_STATUS; 2694 } 2695 2696 static inline void sock_tx_timestamp(struct sock *sk, __u16 tsflags, 2697 __u8 *tx_flags) 2698 { 2699 _sock_tx_timestamp(sk, tsflags, tx_flags, NULL); 2700 } 2701 2702 static inline void skb_setup_tx_timestamp(struct sk_buff *skb, __u16 tsflags) 2703 { 2704 _sock_tx_timestamp(skb->sk, tsflags, &skb_shinfo(skb)->tx_flags, 2705 &skb_shinfo(skb)->tskey); 2706 } 2707 2708 static inline bool sk_is_tcp(const struct sock *sk) 2709 { 2710 return sk->sk_type == SOCK_STREAM && sk->sk_protocol == IPPROTO_TCP; 2711 } 2712 2713 /** 2714 * sk_eat_skb - Release a skb if it is no longer needed 2715 * @sk: socket to eat this skb from 2716 * @skb: socket buffer to eat 2717 * 2718 * This routine must be called with interrupts disabled or with the socket 2719 * locked so that the sk_buff queue operation is ok. 2720 */ 2721 static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb) 2722 { 2723 __skb_unlink(skb, &sk->sk_receive_queue); 2724 __kfree_skb(skb); 2725 } 2726 2727 static inline bool 2728 skb_sk_is_prefetched(struct sk_buff *skb) 2729 { 2730 #ifdef CONFIG_INET 2731 return skb->destructor == sock_pfree; 2732 #else 2733 return false; 2734 #endif /* CONFIG_INET */ 2735 } 2736 2737 /* This helper checks if a socket is a full socket, 2738 * ie _not_ a timewait or request socket. 2739 */ 2740 static inline bool sk_fullsock(const struct sock *sk) 2741 { 2742 return (1 << sk->sk_state) & ~(TCPF_TIME_WAIT | TCPF_NEW_SYN_RECV); 2743 } 2744 2745 static inline bool 2746 sk_is_refcounted(struct sock *sk) 2747 { 2748 /* Only full sockets have sk->sk_flags. */ 2749 return !sk_fullsock(sk) || !sock_flag(sk, SOCK_RCU_FREE); 2750 } 2751 2752 /** 2753 * skb_steal_sock - steal a socket from an sk_buff 2754 * @skb: sk_buff to steal the socket from 2755 * @refcounted: is set to true if the socket is reference-counted 2756 */ 2757 static inline struct sock * 2758 skb_steal_sock(struct sk_buff *skb, bool *refcounted) 2759 { 2760 if (skb->sk) { 2761 struct sock *sk = skb->sk; 2762 2763 *refcounted = true; 2764 if (skb_sk_is_prefetched(skb)) 2765 *refcounted = sk_is_refcounted(sk); 2766 skb->destructor = NULL; 2767 skb->sk = NULL; 2768 return sk; 2769 } 2770 *refcounted = false; 2771 return NULL; 2772 } 2773 2774 /* Checks if this SKB belongs to an HW offloaded socket 2775 * and whether any SW fallbacks are required based on dev. 2776 * Check decrypted mark in case skb_orphan() cleared socket. 2777 */ 2778 static inline struct sk_buff *sk_validate_xmit_skb(struct sk_buff *skb, 2779 struct net_device *dev) 2780 { 2781 #ifdef CONFIG_SOCK_VALIDATE_XMIT 2782 struct sock *sk = skb->sk; 2783 2784 if (sk && sk_fullsock(sk) && sk->sk_validate_xmit_skb) { 2785 skb = sk->sk_validate_xmit_skb(sk, dev, skb); 2786 #ifdef CONFIG_TLS_DEVICE 2787 } else if (unlikely(skb->decrypted)) { 2788 pr_warn_ratelimited("unencrypted skb with no associated socket - dropping\n"); 2789 kfree_skb(skb); 2790 skb = NULL; 2791 #endif 2792 } 2793 #endif 2794 2795 return skb; 2796 } 2797 2798 /* This helper checks if a socket is a LISTEN or NEW_SYN_RECV 2799 * SYNACK messages can be attached to either ones (depending on SYNCOOKIE) 2800 */ 2801 static inline bool sk_listener(const struct sock *sk) 2802 { 2803 return (1 << sk->sk_state) & (TCPF_LISTEN | TCPF_NEW_SYN_RECV); 2804 } 2805 2806 void sock_enable_timestamp(struct sock *sk, enum sock_flags flag); 2807 int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len, int level, 2808 int type); 2809 2810 bool sk_ns_capable(const struct sock *sk, 2811 struct user_namespace *user_ns, int cap); 2812 bool sk_capable(const struct sock *sk, int cap); 2813 bool sk_net_capable(const struct sock *sk, int cap); 2814 2815 void sk_get_meminfo(const struct sock *sk, u32 *meminfo); 2816 2817 /* Take into consideration the size of the struct sk_buff overhead in the 2818 * determination of these values, since that is non-constant across 2819 * platforms. This makes socket queueing behavior and performance 2820 * not depend upon such differences. 2821 */ 2822 #define _SK_MEM_PACKETS 256 2823 #define _SK_MEM_OVERHEAD SKB_TRUESIZE(256) 2824 #define SK_WMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS) 2825 #define SK_RMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS) 2826 2827 extern __u32 sysctl_wmem_max; 2828 extern __u32 sysctl_rmem_max; 2829 2830 extern int sysctl_tstamp_allow_data; 2831 extern int sysctl_optmem_max; 2832 2833 extern __u32 sysctl_wmem_default; 2834 extern __u32 sysctl_rmem_default; 2835 2836 #define SKB_FRAG_PAGE_ORDER get_order(32768) 2837 DECLARE_STATIC_KEY_FALSE(net_high_order_alloc_disable_key); 2838 2839 static inline int sk_get_wmem0(const struct sock *sk, const struct proto *proto) 2840 { 2841 /* Does this proto have per netns sysctl_wmem ? */ 2842 if (proto->sysctl_wmem_offset) 2843 return *(int *)((void *)sock_net(sk) + proto->sysctl_wmem_offset); 2844 2845 return *proto->sysctl_wmem; 2846 } 2847 2848 static inline int sk_get_rmem0(const struct sock *sk, const struct proto *proto) 2849 { 2850 /* Does this proto have per netns sysctl_rmem ? */ 2851 if (proto->sysctl_rmem_offset) 2852 return *(int *)((void *)sock_net(sk) + proto->sysctl_rmem_offset); 2853 2854 return *proto->sysctl_rmem; 2855 } 2856 2857 /* Default TCP Small queue budget is ~1 ms of data (1sec >> 10) 2858 * Some wifi drivers need to tweak it to get more chunks. 2859 * They can use this helper from their ndo_start_xmit() 2860 */ 2861 static inline void sk_pacing_shift_update(struct sock *sk, int val) 2862 { 2863 if (!sk || !sk_fullsock(sk) || READ_ONCE(sk->sk_pacing_shift) == val) 2864 return; 2865 WRITE_ONCE(sk->sk_pacing_shift, val); 2866 } 2867 2868 /* if a socket is bound to a device, check that the given device 2869 * index is either the same or that the socket is bound to an L3 2870 * master device and the given device index is also enslaved to 2871 * that L3 master 2872 */ 2873 static inline bool sk_dev_equal_l3scope(struct sock *sk, int dif) 2874 { 2875 int mdif; 2876 2877 if (!sk->sk_bound_dev_if || sk->sk_bound_dev_if == dif) 2878 return true; 2879 2880 mdif = l3mdev_master_ifindex_by_index(sock_net(sk), dif); 2881 if (mdif && mdif == sk->sk_bound_dev_if) 2882 return true; 2883 2884 return false; 2885 } 2886 2887 void sock_def_readable(struct sock *sk); 2888 2889 int sock_bindtoindex(struct sock *sk, int ifindex, bool lock_sk); 2890 void sock_set_timestamp(struct sock *sk, int optname, bool valbool); 2891 int sock_set_timestamping(struct sock *sk, int optname, 2892 struct so_timestamping timestamping); 2893 2894 void sock_enable_timestamps(struct sock *sk); 2895 void sock_no_linger(struct sock *sk); 2896 void sock_set_keepalive(struct sock *sk); 2897 void sock_set_priority(struct sock *sk, u32 priority); 2898 void sock_set_rcvbuf(struct sock *sk, int val); 2899 void sock_set_mark(struct sock *sk, u32 val); 2900 void sock_set_reuseaddr(struct sock *sk); 2901 void sock_set_reuseport(struct sock *sk); 2902 void sock_set_sndtimeo(struct sock *sk, s64 secs); 2903 2904 int sock_bind_add(struct sock *sk, struct sockaddr *addr, int addr_len); 2905 2906 int sock_get_timeout(long timeo, void *optval, bool old_timeval); 2907 int sock_copy_user_timeval(struct __kernel_sock_timeval *tv, 2908 sockptr_t optval, int optlen, bool old_timeval); 2909 2910 static inline bool sk_is_readable(struct sock *sk) 2911 { 2912 if (sk->sk_prot->sock_is_readable) 2913 return sk->sk_prot->sock_is_readable(sk); 2914 return false; 2915 } 2916 #endif /* _SOCK_H */ 2917