xref: /linux/include/net/sock.h (revision a997157e42e3119b13c644549a3d8381a1d825d6)
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Definitions for the AF_INET socket handler.
8  *
9  * Version:	@(#)sock.h	1.0.4	05/13/93
10  *
11  * Authors:	Ross Biro
12  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
13  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
14  *		Florian La Roche <flla@stud.uni-sb.de>
15  *
16  * Fixes:
17  *		Alan Cox	:	Volatiles in skbuff pointers. See
18  *					skbuff comments. May be overdone,
19  *					better to prove they can be removed
20  *					than the reverse.
21  *		Alan Cox	:	Added a zapped field for tcp to note
22  *					a socket is reset and must stay shut up
23  *		Alan Cox	:	New fields for options
24  *	Pauline Middelink	:	identd support
25  *		Alan Cox	:	Eliminate low level recv/recvfrom
26  *		David S. Miller	:	New socket lookup architecture.
27  *              Steve Whitehouse:       Default routines for sock_ops
28  *              Arnaldo C. Melo :	removed net_pinfo, tp_pinfo and made
29  *              			protinfo be just a void pointer, as the
30  *              			protocol specific parts were moved to
31  *              			respective headers and ipv4/v6, etc now
32  *              			use private slabcaches for its socks
33  *              Pedro Hortas	:	New flags field for socket options
34  */
35 #ifndef _SOCK_H
36 #define _SOCK_H
37 
38 #include <linux/hardirq.h>
39 #include <linux/kernel.h>
40 #include <linux/list.h>
41 #include <linux/list_nulls.h>
42 #include <linux/timer.h>
43 #include <linux/cache.h>
44 #include <linux/bitops.h>
45 #include <linux/lockdep.h>
46 #include <linux/netdevice.h>
47 #include <linux/skbuff.h>	/* struct sk_buff */
48 #include <linux/mm.h>
49 #include <linux/security.h>
50 #include <linux/slab.h>
51 #include <linux/uaccess.h>
52 #include <linux/page_counter.h>
53 #include <linux/memcontrol.h>
54 #include <linux/static_key.h>
55 #include <linux/sched.h>
56 #include <linux/wait.h>
57 #include <linux/cgroup-defs.h>
58 #include <linux/rbtree.h>
59 #include <linux/rculist_nulls.h>
60 #include <linux/poll.h>
61 #include <linux/sockptr.h>
62 #include <linux/indirect_call_wrapper.h>
63 #include <linux/atomic.h>
64 #include <linux/refcount.h>
65 #include <linux/llist.h>
66 #include <net/dst.h>
67 #include <net/checksum.h>
68 #include <net/tcp_states.h>
69 #include <linux/net_tstamp.h>
70 #include <net/l3mdev.h>
71 #include <uapi/linux/socket.h>
72 
73 /*
74  * This structure really needs to be cleaned up.
75  * Most of it is for TCP, and not used by any of
76  * the other protocols.
77  */
78 
79 /* Define this to get the SOCK_DBG debugging facility. */
80 #define SOCK_DEBUGGING
81 #ifdef SOCK_DEBUGGING
82 #define SOCK_DEBUG(sk, msg...) do { if ((sk) && sock_flag((sk), SOCK_DBG)) \
83 					printk(KERN_DEBUG msg); } while (0)
84 #else
85 /* Validate arguments and do nothing */
86 static inline __printf(2, 3)
87 void SOCK_DEBUG(const struct sock *sk, const char *msg, ...)
88 {
89 }
90 #endif
91 
92 /* This is the per-socket lock.  The spinlock provides a synchronization
93  * between user contexts and software interrupt processing, whereas the
94  * mini-semaphore synchronizes multiple users amongst themselves.
95  */
96 typedef struct {
97 	spinlock_t		slock;
98 	int			owned;
99 	wait_queue_head_t	wq;
100 	/*
101 	 * We express the mutex-alike socket_lock semantics
102 	 * to the lock validator by explicitly managing
103 	 * the slock as a lock variant (in addition to
104 	 * the slock itself):
105 	 */
106 #ifdef CONFIG_DEBUG_LOCK_ALLOC
107 	struct lockdep_map dep_map;
108 #endif
109 } socket_lock_t;
110 
111 struct sock;
112 struct proto;
113 struct net;
114 
115 typedef __u32 __bitwise __portpair;
116 typedef __u64 __bitwise __addrpair;
117 
118 /**
119  *	struct sock_common - minimal network layer representation of sockets
120  *	@skc_daddr: Foreign IPv4 addr
121  *	@skc_rcv_saddr: Bound local IPv4 addr
122  *	@skc_addrpair: 8-byte-aligned __u64 union of @skc_daddr & @skc_rcv_saddr
123  *	@skc_hash: hash value used with various protocol lookup tables
124  *	@skc_u16hashes: two u16 hash values used by UDP lookup tables
125  *	@skc_dport: placeholder for inet_dport/tw_dport
126  *	@skc_num: placeholder for inet_num/tw_num
127  *	@skc_portpair: __u32 union of @skc_dport & @skc_num
128  *	@skc_family: network address family
129  *	@skc_state: Connection state
130  *	@skc_reuse: %SO_REUSEADDR setting
131  *	@skc_reuseport: %SO_REUSEPORT setting
132  *	@skc_ipv6only: socket is IPV6 only
133  *	@skc_net_refcnt: socket is using net ref counting
134  *	@skc_bound_dev_if: bound device index if != 0
135  *	@skc_bind_node: bind hash linkage for various protocol lookup tables
136  *	@skc_portaddr_node: second hash linkage for UDP/UDP-Lite protocol
137  *	@skc_prot: protocol handlers inside a network family
138  *	@skc_net: reference to the network namespace of this socket
139  *	@skc_v6_daddr: IPV6 destination address
140  *	@skc_v6_rcv_saddr: IPV6 source address
141  *	@skc_cookie: socket's cookie value
142  *	@skc_node: main hash linkage for various protocol lookup tables
143  *	@skc_nulls_node: main hash linkage for TCP/UDP/UDP-Lite protocol
144  *	@skc_tx_queue_mapping: tx queue number for this connection
145  *	@skc_rx_queue_mapping: rx queue number for this connection
146  *	@skc_flags: place holder for sk_flags
147  *		%SO_LINGER (l_onoff), %SO_BROADCAST, %SO_KEEPALIVE,
148  *		%SO_OOBINLINE settings, %SO_TIMESTAMPING settings
149  *	@skc_listener: connection request listener socket (aka rsk_listener)
150  *		[union with @skc_flags]
151  *	@skc_tw_dr: (aka tw_dr) ptr to &struct inet_timewait_death_row
152  *		[union with @skc_flags]
153  *	@skc_incoming_cpu: record/match cpu processing incoming packets
154  *	@skc_rcv_wnd: (aka rsk_rcv_wnd) TCP receive window size (possibly scaled)
155  *		[union with @skc_incoming_cpu]
156  *	@skc_tw_rcv_nxt: (aka tw_rcv_nxt) TCP window next expected seq number
157  *		[union with @skc_incoming_cpu]
158  *	@skc_refcnt: reference count
159  *
160  *	This is the minimal network layer representation of sockets, the header
161  *	for struct sock and struct inet_timewait_sock.
162  */
163 struct sock_common {
164 	/* skc_daddr and skc_rcv_saddr must be grouped on a 8 bytes aligned
165 	 * address on 64bit arches : cf INET_MATCH()
166 	 */
167 	union {
168 		__addrpair	skc_addrpair;
169 		struct {
170 			__be32	skc_daddr;
171 			__be32	skc_rcv_saddr;
172 		};
173 	};
174 	union  {
175 		unsigned int	skc_hash;
176 		__u16		skc_u16hashes[2];
177 	};
178 	/* skc_dport && skc_num must be grouped as well */
179 	union {
180 		__portpair	skc_portpair;
181 		struct {
182 			__be16	skc_dport;
183 			__u16	skc_num;
184 		};
185 	};
186 
187 	unsigned short		skc_family;
188 	volatile unsigned char	skc_state;
189 	unsigned char		skc_reuse:4;
190 	unsigned char		skc_reuseport:1;
191 	unsigned char		skc_ipv6only:1;
192 	unsigned char		skc_net_refcnt:1;
193 	int			skc_bound_dev_if;
194 	union {
195 		struct hlist_node	skc_bind_node;
196 		struct hlist_node	skc_portaddr_node;
197 	};
198 	struct proto		*skc_prot;
199 	possible_net_t		skc_net;
200 
201 #if IS_ENABLED(CONFIG_IPV6)
202 	struct in6_addr		skc_v6_daddr;
203 	struct in6_addr		skc_v6_rcv_saddr;
204 #endif
205 
206 	atomic64_t		skc_cookie;
207 
208 	/* following fields are padding to force
209 	 * offset(struct sock, sk_refcnt) == 128 on 64bit arches
210 	 * assuming IPV6 is enabled. We use this padding differently
211 	 * for different kind of 'sockets'
212 	 */
213 	union {
214 		unsigned long	skc_flags;
215 		struct sock	*skc_listener; /* request_sock */
216 		struct inet_timewait_death_row *skc_tw_dr; /* inet_timewait_sock */
217 	};
218 	/*
219 	 * fields between dontcopy_begin/dontcopy_end
220 	 * are not copied in sock_copy()
221 	 */
222 	/* private: */
223 	int			skc_dontcopy_begin[0];
224 	/* public: */
225 	union {
226 		struct hlist_node	skc_node;
227 		struct hlist_nulls_node skc_nulls_node;
228 	};
229 	unsigned short		skc_tx_queue_mapping;
230 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
231 	unsigned short		skc_rx_queue_mapping;
232 #endif
233 	union {
234 		int		skc_incoming_cpu;
235 		u32		skc_rcv_wnd;
236 		u32		skc_tw_rcv_nxt; /* struct tcp_timewait_sock  */
237 	};
238 
239 	refcount_t		skc_refcnt;
240 	/* private: */
241 	int                     skc_dontcopy_end[0];
242 	union {
243 		u32		skc_rxhash;
244 		u32		skc_window_clamp;
245 		u32		skc_tw_snd_nxt; /* struct tcp_timewait_sock */
246 	};
247 	/* public: */
248 };
249 
250 struct bpf_local_storage;
251 struct sk_filter;
252 
253 /**
254   *	struct sock - network layer representation of sockets
255   *	@__sk_common: shared layout with inet_timewait_sock
256   *	@sk_shutdown: mask of %SEND_SHUTDOWN and/or %RCV_SHUTDOWN
257   *	@sk_userlocks: %SO_SNDBUF and %SO_RCVBUF settings
258   *	@sk_lock:	synchronizer
259   *	@sk_kern_sock: True if sock is using kernel lock classes
260   *	@sk_rcvbuf: size of receive buffer in bytes
261   *	@sk_wq: sock wait queue and async head
262   *	@sk_rx_dst: receive input route used by early demux
263   *	@sk_rx_dst_ifindex: ifindex for @sk_rx_dst
264   *	@sk_rx_dst_cookie: cookie for @sk_rx_dst
265   *	@sk_dst_cache: destination cache
266   *	@sk_dst_pending_confirm: need to confirm neighbour
267   *	@sk_policy: flow policy
268   *	@sk_receive_queue: incoming packets
269   *	@sk_wmem_alloc: transmit queue bytes committed
270   *	@sk_tsq_flags: TCP Small Queues flags
271   *	@sk_write_queue: Packet sending queue
272   *	@sk_omem_alloc: "o" is "option" or "other"
273   *	@sk_wmem_queued: persistent queue size
274   *	@sk_forward_alloc: space allocated forward
275   *	@sk_reserved_mem: space reserved and non-reclaimable for the socket
276   *	@sk_napi_id: id of the last napi context to receive data for sk
277   *	@sk_ll_usec: usecs to busypoll when there is no data
278   *	@sk_allocation: allocation mode
279   *	@sk_pacing_rate: Pacing rate (if supported by transport/packet scheduler)
280   *	@sk_pacing_status: Pacing status (requested, handled by sch_fq)
281   *	@sk_max_pacing_rate: Maximum pacing rate (%SO_MAX_PACING_RATE)
282   *	@sk_sndbuf: size of send buffer in bytes
283   *	@__sk_flags_offset: empty field used to determine location of bitfield
284   *	@sk_padding: unused element for alignment
285   *	@sk_no_check_tx: %SO_NO_CHECK setting, set checksum in TX packets
286   *	@sk_no_check_rx: allow zero checksum in RX packets
287   *	@sk_route_caps: route capabilities (e.g. %NETIF_F_TSO)
288   *	@sk_gso_disabled: if set, NETIF_F_GSO_MASK is forbidden.
289   *	@sk_gso_type: GSO type (e.g. %SKB_GSO_TCPV4)
290   *	@sk_gso_max_size: Maximum GSO segment size to build
291   *	@sk_gso_max_segs: Maximum number of GSO segments
292   *	@sk_pacing_shift: scaling factor for TCP Small Queues
293   *	@sk_lingertime: %SO_LINGER l_linger setting
294   *	@sk_backlog: always used with the per-socket spinlock held
295   *	@defer_list: head of llist storing skbs to be freed
296   *	@sk_callback_lock: used with the callbacks in the end of this struct
297   *	@sk_error_queue: rarely used
298   *	@sk_prot_creator: sk_prot of original sock creator (see ipv6_setsockopt,
299   *			  IPV6_ADDRFORM for instance)
300   *	@sk_err: last error
301   *	@sk_err_soft: errors that don't cause failure but are the cause of a
302   *		      persistent failure not just 'timed out'
303   *	@sk_drops: raw/udp drops counter
304   *	@sk_ack_backlog: current listen backlog
305   *	@sk_max_ack_backlog: listen backlog set in listen()
306   *	@sk_uid: user id of owner
307   *	@sk_prefer_busy_poll: prefer busypolling over softirq processing
308   *	@sk_busy_poll_budget: napi processing budget when busypolling
309   *	@sk_priority: %SO_PRIORITY setting
310   *	@sk_type: socket type (%SOCK_STREAM, etc)
311   *	@sk_protocol: which protocol this socket belongs in this network family
312   *	@sk_peer_lock: lock protecting @sk_peer_pid and @sk_peer_cred
313   *	@sk_peer_pid: &struct pid for this socket's peer
314   *	@sk_peer_cred: %SO_PEERCRED setting
315   *	@sk_rcvlowat: %SO_RCVLOWAT setting
316   *	@sk_rcvtimeo: %SO_RCVTIMEO setting
317   *	@sk_sndtimeo: %SO_SNDTIMEO setting
318   *	@sk_txhash: computed flow hash for use on transmit
319   *	@sk_txrehash: enable TX hash rethink
320   *	@sk_filter: socket filtering instructions
321   *	@sk_timer: sock cleanup timer
322   *	@sk_stamp: time stamp of last packet received
323   *	@sk_stamp_seq: lock for accessing sk_stamp on 32 bit architectures only
324   *	@sk_tsflags: SO_TIMESTAMPING flags
325   *	@sk_bind_phc: SO_TIMESTAMPING bind PHC index of PTP virtual clock
326   *	              for timestamping
327   *	@sk_tskey: counter to disambiguate concurrent tstamp requests
328   *	@sk_zckey: counter to order MSG_ZEROCOPY notifications
329   *	@sk_socket: Identd and reporting IO signals
330   *	@sk_user_data: RPC layer private data
331   *	@sk_frag: cached page frag
332   *	@sk_peek_off: current peek_offset value
333   *	@sk_send_head: front of stuff to transmit
334   *	@tcp_rtx_queue: TCP re-transmit queue [union with @sk_send_head]
335   *	@sk_security: used by security modules
336   *	@sk_mark: generic packet mark
337   *	@sk_cgrp_data: cgroup data for this cgroup
338   *	@sk_memcg: this socket's memory cgroup association
339   *	@sk_write_pending: a write to stream socket waits to start
340   *	@sk_state_change: callback to indicate change in the state of the sock
341   *	@sk_data_ready: callback to indicate there is data to be processed
342   *	@sk_write_space: callback to indicate there is bf sending space available
343   *	@sk_error_report: callback to indicate errors (e.g. %MSG_ERRQUEUE)
344   *	@sk_backlog_rcv: callback to process the backlog
345   *	@sk_validate_xmit_skb: ptr to an optional validate function
346   *	@sk_destruct: called at sock freeing time, i.e. when all refcnt == 0
347   *	@sk_reuseport_cb: reuseport group container
348   *	@sk_bpf_storage: ptr to cache and control for bpf_sk_storage
349   *	@sk_rcu: used during RCU grace period
350   *	@sk_clockid: clockid used by time-based scheduling (SO_TXTIME)
351   *	@sk_txtime_deadline_mode: set deadline mode for SO_TXTIME
352   *	@sk_txtime_report_errors: set report errors mode for SO_TXTIME
353   *	@sk_txtime_unused: unused txtime flags
354   *	@ns_tracker: tracker for netns reference
355   */
356 struct sock {
357 	/*
358 	 * Now struct inet_timewait_sock also uses sock_common, so please just
359 	 * don't add nothing before this first member (__sk_common) --acme
360 	 */
361 	struct sock_common	__sk_common;
362 #define sk_node			__sk_common.skc_node
363 #define sk_nulls_node		__sk_common.skc_nulls_node
364 #define sk_refcnt		__sk_common.skc_refcnt
365 #define sk_tx_queue_mapping	__sk_common.skc_tx_queue_mapping
366 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
367 #define sk_rx_queue_mapping	__sk_common.skc_rx_queue_mapping
368 #endif
369 
370 #define sk_dontcopy_begin	__sk_common.skc_dontcopy_begin
371 #define sk_dontcopy_end		__sk_common.skc_dontcopy_end
372 #define sk_hash			__sk_common.skc_hash
373 #define sk_portpair		__sk_common.skc_portpair
374 #define sk_num			__sk_common.skc_num
375 #define sk_dport		__sk_common.skc_dport
376 #define sk_addrpair		__sk_common.skc_addrpair
377 #define sk_daddr		__sk_common.skc_daddr
378 #define sk_rcv_saddr		__sk_common.skc_rcv_saddr
379 #define sk_family		__sk_common.skc_family
380 #define sk_state		__sk_common.skc_state
381 #define sk_reuse		__sk_common.skc_reuse
382 #define sk_reuseport		__sk_common.skc_reuseport
383 #define sk_ipv6only		__sk_common.skc_ipv6only
384 #define sk_net_refcnt		__sk_common.skc_net_refcnt
385 #define sk_bound_dev_if		__sk_common.skc_bound_dev_if
386 #define sk_bind_node		__sk_common.skc_bind_node
387 #define sk_prot			__sk_common.skc_prot
388 #define sk_net			__sk_common.skc_net
389 #define sk_v6_daddr		__sk_common.skc_v6_daddr
390 #define sk_v6_rcv_saddr	__sk_common.skc_v6_rcv_saddr
391 #define sk_cookie		__sk_common.skc_cookie
392 #define sk_incoming_cpu		__sk_common.skc_incoming_cpu
393 #define sk_flags		__sk_common.skc_flags
394 #define sk_rxhash		__sk_common.skc_rxhash
395 
396 	/* early demux fields */
397 	struct dst_entry __rcu	*sk_rx_dst;
398 	int			sk_rx_dst_ifindex;
399 	u32			sk_rx_dst_cookie;
400 
401 	socket_lock_t		sk_lock;
402 	atomic_t		sk_drops;
403 	int			sk_rcvlowat;
404 	struct sk_buff_head	sk_error_queue;
405 	struct sk_buff_head	sk_receive_queue;
406 	/*
407 	 * The backlog queue is special, it is always used with
408 	 * the per-socket spinlock held and requires low latency
409 	 * access. Therefore we special case it's implementation.
410 	 * Note : rmem_alloc is in this structure to fill a hole
411 	 * on 64bit arches, not because its logically part of
412 	 * backlog.
413 	 */
414 	struct {
415 		atomic_t	rmem_alloc;
416 		int		len;
417 		struct sk_buff	*head;
418 		struct sk_buff	*tail;
419 	} sk_backlog;
420 	struct llist_head defer_list;
421 
422 #define sk_rmem_alloc sk_backlog.rmem_alloc
423 
424 	int			sk_forward_alloc;
425 	u32			sk_reserved_mem;
426 #ifdef CONFIG_NET_RX_BUSY_POLL
427 	unsigned int		sk_ll_usec;
428 	/* ===== mostly read cache line ===== */
429 	unsigned int		sk_napi_id;
430 #endif
431 	int			sk_rcvbuf;
432 
433 	struct sk_filter __rcu	*sk_filter;
434 	union {
435 		struct socket_wq __rcu	*sk_wq;
436 		/* private: */
437 		struct socket_wq	*sk_wq_raw;
438 		/* public: */
439 	};
440 #ifdef CONFIG_XFRM
441 	struct xfrm_policy __rcu *sk_policy[2];
442 #endif
443 
444 	struct dst_entry __rcu	*sk_dst_cache;
445 	atomic_t		sk_omem_alloc;
446 	int			sk_sndbuf;
447 
448 	/* ===== cache line for TX ===== */
449 	int			sk_wmem_queued;
450 	refcount_t		sk_wmem_alloc;
451 	unsigned long		sk_tsq_flags;
452 	union {
453 		struct sk_buff	*sk_send_head;
454 		struct rb_root	tcp_rtx_queue;
455 	};
456 	struct sk_buff_head	sk_write_queue;
457 	__s32			sk_peek_off;
458 	int			sk_write_pending;
459 	__u32			sk_dst_pending_confirm;
460 	u32			sk_pacing_status; /* see enum sk_pacing */
461 	long			sk_sndtimeo;
462 	struct timer_list	sk_timer;
463 	__u32			sk_priority;
464 	__u32			sk_mark;
465 	unsigned long		sk_pacing_rate; /* bytes per second */
466 	unsigned long		sk_max_pacing_rate;
467 	struct page_frag	sk_frag;
468 	netdev_features_t	sk_route_caps;
469 	int			sk_gso_type;
470 	unsigned int		sk_gso_max_size;
471 	gfp_t			sk_allocation;
472 	__u32			sk_txhash;
473 
474 	/*
475 	 * Because of non atomicity rules, all
476 	 * changes are protected by socket lock.
477 	 */
478 	u8			sk_gso_disabled : 1,
479 				sk_kern_sock : 1,
480 				sk_no_check_tx : 1,
481 				sk_no_check_rx : 1,
482 				sk_userlocks : 4;
483 	u8			sk_pacing_shift;
484 	u16			sk_type;
485 	u16			sk_protocol;
486 	u16			sk_gso_max_segs;
487 	unsigned long	        sk_lingertime;
488 	struct proto		*sk_prot_creator;
489 	rwlock_t		sk_callback_lock;
490 	int			sk_err,
491 				sk_err_soft;
492 	u32			sk_ack_backlog;
493 	u32			sk_max_ack_backlog;
494 	kuid_t			sk_uid;
495 	u8			sk_txrehash;
496 #ifdef CONFIG_NET_RX_BUSY_POLL
497 	u8			sk_prefer_busy_poll;
498 	u16			sk_busy_poll_budget;
499 #endif
500 	spinlock_t		sk_peer_lock;
501 	int			sk_bind_phc;
502 	struct pid		*sk_peer_pid;
503 	const struct cred	*sk_peer_cred;
504 
505 	long			sk_rcvtimeo;
506 	ktime_t			sk_stamp;
507 #if BITS_PER_LONG==32
508 	seqlock_t		sk_stamp_seq;
509 #endif
510 	u16			sk_tsflags;
511 	u8			sk_shutdown;
512 	atomic_t		sk_tskey;
513 	atomic_t		sk_zckey;
514 
515 	u8			sk_clockid;
516 	u8			sk_txtime_deadline_mode : 1,
517 				sk_txtime_report_errors : 1,
518 				sk_txtime_unused : 6;
519 
520 	struct socket		*sk_socket;
521 	void			*sk_user_data;
522 #ifdef CONFIG_SECURITY
523 	void			*sk_security;
524 #endif
525 	struct sock_cgroup_data	sk_cgrp_data;
526 	struct mem_cgroup	*sk_memcg;
527 	void			(*sk_state_change)(struct sock *sk);
528 	void			(*sk_data_ready)(struct sock *sk);
529 	void			(*sk_write_space)(struct sock *sk);
530 	void			(*sk_error_report)(struct sock *sk);
531 	int			(*sk_backlog_rcv)(struct sock *sk,
532 						  struct sk_buff *skb);
533 #ifdef CONFIG_SOCK_VALIDATE_XMIT
534 	struct sk_buff*		(*sk_validate_xmit_skb)(struct sock *sk,
535 							struct net_device *dev,
536 							struct sk_buff *skb);
537 #endif
538 	void                    (*sk_destruct)(struct sock *sk);
539 	struct sock_reuseport __rcu	*sk_reuseport_cb;
540 #ifdef CONFIG_BPF_SYSCALL
541 	struct bpf_local_storage __rcu	*sk_bpf_storage;
542 #endif
543 	struct rcu_head		sk_rcu;
544 	netns_tracker		ns_tracker;
545 };
546 
547 enum sk_pacing {
548 	SK_PACING_NONE		= 0,
549 	SK_PACING_NEEDED	= 1,
550 	SK_PACING_FQ		= 2,
551 };
552 
553 /* Pointer stored in sk_user_data might not be suitable for copying
554  * when cloning the socket. For instance, it can point to a reference
555  * counted object. sk_user_data bottom bit is set if pointer must not
556  * be copied.
557  */
558 #define SK_USER_DATA_NOCOPY	1UL
559 #define SK_USER_DATA_BPF	2UL	/* Managed by BPF */
560 #define SK_USER_DATA_PTRMASK	~(SK_USER_DATA_NOCOPY | SK_USER_DATA_BPF)
561 
562 /**
563  * sk_user_data_is_nocopy - Test if sk_user_data pointer must not be copied
564  * @sk: socket
565  */
566 static inline bool sk_user_data_is_nocopy(const struct sock *sk)
567 {
568 	return ((uintptr_t)sk->sk_user_data & SK_USER_DATA_NOCOPY);
569 }
570 
571 #define __sk_user_data(sk) ((*((void __rcu **)&(sk)->sk_user_data)))
572 
573 #define rcu_dereference_sk_user_data(sk)				\
574 ({									\
575 	void *__tmp = rcu_dereference(__sk_user_data((sk)));		\
576 	(void *)((uintptr_t)__tmp & SK_USER_DATA_PTRMASK);		\
577 })
578 #define rcu_assign_sk_user_data(sk, ptr)				\
579 ({									\
580 	uintptr_t __tmp = (uintptr_t)(ptr);				\
581 	WARN_ON_ONCE(__tmp & ~SK_USER_DATA_PTRMASK);			\
582 	rcu_assign_pointer(__sk_user_data((sk)), __tmp);		\
583 })
584 #define rcu_assign_sk_user_data_nocopy(sk, ptr)				\
585 ({									\
586 	uintptr_t __tmp = (uintptr_t)(ptr);				\
587 	WARN_ON_ONCE(__tmp & ~SK_USER_DATA_PTRMASK);			\
588 	rcu_assign_pointer(__sk_user_data((sk)),			\
589 			   __tmp | SK_USER_DATA_NOCOPY);		\
590 })
591 
592 static inline
593 struct net *sock_net(const struct sock *sk)
594 {
595 	return read_pnet(&sk->sk_net);
596 }
597 
598 static inline
599 void sock_net_set(struct sock *sk, struct net *net)
600 {
601 	write_pnet(&sk->sk_net, net);
602 }
603 
604 /*
605  * SK_CAN_REUSE and SK_NO_REUSE on a socket mean that the socket is OK
606  * or not whether his port will be reused by someone else. SK_FORCE_REUSE
607  * on a socket means that the socket will reuse everybody else's port
608  * without looking at the other's sk_reuse value.
609  */
610 
611 #define SK_NO_REUSE	0
612 #define SK_CAN_REUSE	1
613 #define SK_FORCE_REUSE	2
614 
615 int sk_set_peek_off(struct sock *sk, int val);
616 
617 static inline int sk_peek_offset(struct sock *sk, int flags)
618 {
619 	if (unlikely(flags & MSG_PEEK)) {
620 		return READ_ONCE(sk->sk_peek_off);
621 	}
622 
623 	return 0;
624 }
625 
626 static inline void sk_peek_offset_bwd(struct sock *sk, int val)
627 {
628 	s32 off = READ_ONCE(sk->sk_peek_off);
629 
630 	if (unlikely(off >= 0)) {
631 		off = max_t(s32, off - val, 0);
632 		WRITE_ONCE(sk->sk_peek_off, off);
633 	}
634 }
635 
636 static inline void sk_peek_offset_fwd(struct sock *sk, int val)
637 {
638 	sk_peek_offset_bwd(sk, -val);
639 }
640 
641 /*
642  * Hashed lists helper routines
643  */
644 static inline struct sock *sk_entry(const struct hlist_node *node)
645 {
646 	return hlist_entry(node, struct sock, sk_node);
647 }
648 
649 static inline struct sock *__sk_head(const struct hlist_head *head)
650 {
651 	return hlist_entry(head->first, struct sock, sk_node);
652 }
653 
654 static inline struct sock *sk_head(const struct hlist_head *head)
655 {
656 	return hlist_empty(head) ? NULL : __sk_head(head);
657 }
658 
659 static inline struct sock *__sk_nulls_head(const struct hlist_nulls_head *head)
660 {
661 	return hlist_nulls_entry(head->first, struct sock, sk_nulls_node);
662 }
663 
664 static inline struct sock *sk_nulls_head(const struct hlist_nulls_head *head)
665 {
666 	return hlist_nulls_empty(head) ? NULL : __sk_nulls_head(head);
667 }
668 
669 static inline struct sock *sk_next(const struct sock *sk)
670 {
671 	return hlist_entry_safe(sk->sk_node.next, struct sock, sk_node);
672 }
673 
674 static inline struct sock *sk_nulls_next(const struct sock *sk)
675 {
676 	return (!is_a_nulls(sk->sk_nulls_node.next)) ?
677 		hlist_nulls_entry(sk->sk_nulls_node.next,
678 				  struct sock, sk_nulls_node) :
679 		NULL;
680 }
681 
682 static inline bool sk_unhashed(const struct sock *sk)
683 {
684 	return hlist_unhashed(&sk->sk_node);
685 }
686 
687 static inline bool sk_hashed(const struct sock *sk)
688 {
689 	return !sk_unhashed(sk);
690 }
691 
692 static inline void sk_node_init(struct hlist_node *node)
693 {
694 	node->pprev = NULL;
695 }
696 
697 static inline void sk_nulls_node_init(struct hlist_nulls_node *node)
698 {
699 	node->pprev = NULL;
700 }
701 
702 static inline void __sk_del_node(struct sock *sk)
703 {
704 	__hlist_del(&sk->sk_node);
705 }
706 
707 /* NB: equivalent to hlist_del_init_rcu */
708 static inline bool __sk_del_node_init(struct sock *sk)
709 {
710 	if (sk_hashed(sk)) {
711 		__sk_del_node(sk);
712 		sk_node_init(&sk->sk_node);
713 		return true;
714 	}
715 	return false;
716 }
717 
718 /* Grab socket reference count. This operation is valid only
719    when sk is ALREADY grabbed f.e. it is found in hash table
720    or a list and the lookup is made under lock preventing hash table
721    modifications.
722  */
723 
724 static __always_inline void sock_hold(struct sock *sk)
725 {
726 	refcount_inc(&sk->sk_refcnt);
727 }
728 
729 /* Ungrab socket in the context, which assumes that socket refcnt
730    cannot hit zero, f.e. it is true in context of any socketcall.
731  */
732 static __always_inline void __sock_put(struct sock *sk)
733 {
734 	refcount_dec(&sk->sk_refcnt);
735 }
736 
737 static inline bool sk_del_node_init(struct sock *sk)
738 {
739 	bool rc = __sk_del_node_init(sk);
740 
741 	if (rc) {
742 		/* paranoid for a while -acme */
743 		WARN_ON(refcount_read(&sk->sk_refcnt) == 1);
744 		__sock_put(sk);
745 	}
746 	return rc;
747 }
748 #define sk_del_node_init_rcu(sk)	sk_del_node_init(sk)
749 
750 static inline bool __sk_nulls_del_node_init_rcu(struct sock *sk)
751 {
752 	if (sk_hashed(sk)) {
753 		hlist_nulls_del_init_rcu(&sk->sk_nulls_node);
754 		return true;
755 	}
756 	return false;
757 }
758 
759 static inline bool sk_nulls_del_node_init_rcu(struct sock *sk)
760 {
761 	bool rc = __sk_nulls_del_node_init_rcu(sk);
762 
763 	if (rc) {
764 		/* paranoid for a while -acme */
765 		WARN_ON(refcount_read(&sk->sk_refcnt) == 1);
766 		__sock_put(sk);
767 	}
768 	return rc;
769 }
770 
771 static inline void __sk_add_node(struct sock *sk, struct hlist_head *list)
772 {
773 	hlist_add_head(&sk->sk_node, list);
774 }
775 
776 static inline void sk_add_node(struct sock *sk, struct hlist_head *list)
777 {
778 	sock_hold(sk);
779 	__sk_add_node(sk, list);
780 }
781 
782 static inline void sk_add_node_rcu(struct sock *sk, struct hlist_head *list)
783 {
784 	sock_hold(sk);
785 	if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport &&
786 	    sk->sk_family == AF_INET6)
787 		hlist_add_tail_rcu(&sk->sk_node, list);
788 	else
789 		hlist_add_head_rcu(&sk->sk_node, list);
790 }
791 
792 static inline void sk_add_node_tail_rcu(struct sock *sk, struct hlist_head *list)
793 {
794 	sock_hold(sk);
795 	hlist_add_tail_rcu(&sk->sk_node, list);
796 }
797 
798 static inline void __sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
799 {
800 	hlist_nulls_add_head_rcu(&sk->sk_nulls_node, list);
801 }
802 
803 static inline void __sk_nulls_add_node_tail_rcu(struct sock *sk, struct hlist_nulls_head *list)
804 {
805 	hlist_nulls_add_tail_rcu(&sk->sk_nulls_node, list);
806 }
807 
808 static inline void sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
809 {
810 	sock_hold(sk);
811 	__sk_nulls_add_node_rcu(sk, list);
812 }
813 
814 static inline void __sk_del_bind_node(struct sock *sk)
815 {
816 	__hlist_del(&sk->sk_bind_node);
817 }
818 
819 static inline void sk_add_bind_node(struct sock *sk,
820 					struct hlist_head *list)
821 {
822 	hlist_add_head(&sk->sk_bind_node, list);
823 }
824 
825 #define sk_for_each(__sk, list) \
826 	hlist_for_each_entry(__sk, list, sk_node)
827 #define sk_for_each_rcu(__sk, list) \
828 	hlist_for_each_entry_rcu(__sk, list, sk_node)
829 #define sk_nulls_for_each(__sk, node, list) \
830 	hlist_nulls_for_each_entry(__sk, node, list, sk_nulls_node)
831 #define sk_nulls_for_each_rcu(__sk, node, list) \
832 	hlist_nulls_for_each_entry_rcu(__sk, node, list, sk_nulls_node)
833 #define sk_for_each_from(__sk) \
834 	hlist_for_each_entry_from(__sk, sk_node)
835 #define sk_nulls_for_each_from(__sk, node) \
836 	if (__sk && ({ node = &(__sk)->sk_nulls_node; 1; })) \
837 		hlist_nulls_for_each_entry_from(__sk, node, sk_nulls_node)
838 #define sk_for_each_safe(__sk, tmp, list) \
839 	hlist_for_each_entry_safe(__sk, tmp, list, sk_node)
840 #define sk_for_each_bound(__sk, list) \
841 	hlist_for_each_entry(__sk, list, sk_bind_node)
842 
843 /**
844  * sk_for_each_entry_offset_rcu - iterate over a list at a given struct offset
845  * @tpos:	the type * to use as a loop cursor.
846  * @pos:	the &struct hlist_node to use as a loop cursor.
847  * @head:	the head for your list.
848  * @offset:	offset of hlist_node within the struct.
849  *
850  */
851 #define sk_for_each_entry_offset_rcu(tpos, pos, head, offset)		       \
852 	for (pos = rcu_dereference(hlist_first_rcu(head));		       \
853 	     pos != NULL &&						       \
854 		({ tpos = (typeof(*tpos) *)((void *)pos - offset); 1;});       \
855 	     pos = rcu_dereference(hlist_next_rcu(pos)))
856 
857 static inline struct user_namespace *sk_user_ns(struct sock *sk)
858 {
859 	/* Careful only use this in a context where these parameters
860 	 * can not change and must all be valid, such as recvmsg from
861 	 * userspace.
862 	 */
863 	return sk->sk_socket->file->f_cred->user_ns;
864 }
865 
866 /* Sock flags */
867 enum sock_flags {
868 	SOCK_DEAD,
869 	SOCK_DONE,
870 	SOCK_URGINLINE,
871 	SOCK_KEEPOPEN,
872 	SOCK_LINGER,
873 	SOCK_DESTROY,
874 	SOCK_BROADCAST,
875 	SOCK_TIMESTAMP,
876 	SOCK_ZAPPED,
877 	SOCK_USE_WRITE_QUEUE, /* whether to call sk->sk_write_space in sock_wfree */
878 	SOCK_DBG, /* %SO_DEBUG setting */
879 	SOCK_RCVTSTAMP, /* %SO_TIMESTAMP setting */
880 	SOCK_RCVTSTAMPNS, /* %SO_TIMESTAMPNS setting */
881 	SOCK_LOCALROUTE, /* route locally only, %SO_DONTROUTE setting */
882 	SOCK_MEMALLOC, /* VM depends on this socket for swapping */
883 	SOCK_TIMESTAMPING_RX_SOFTWARE,  /* %SOF_TIMESTAMPING_RX_SOFTWARE */
884 	SOCK_FASYNC, /* fasync() active */
885 	SOCK_RXQ_OVFL,
886 	SOCK_ZEROCOPY, /* buffers from userspace */
887 	SOCK_WIFI_STATUS, /* push wifi status to userspace */
888 	SOCK_NOFCS, /* Tell NIC not to do the Ethernet FCS.
889 		     * Will use last 4 bytes of packet sent from
890 		     * user-space instead.
891 		     */
892 	SOCK_FILTER_LOCKED, /* Filter cannot be changed anymore */
893 	SOCK_SELECT_ERR_QUEUE, /* Wake select on error queue */
894 	SOCK_RCU_FREE, /* wait rcu grace period in sk_destruct() */
895 	SOCK_TXTIME,
896 	SOCK_XDP, /* XDP is attached */
897 	SOCK_TSTAMP_NEW, /* Indicates 64 bit timestamps always */
898 };
899 
900 #define SK_FLAGS_TIMESTAMP ((1UL << SOCK_TIMESTAMP) | (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE))
901 
902 static inline void sock_copy_flags(struct sock *nsk, struct sock *osk)
903 {
904 	nsk->sk_flags = osk->sk_flags;
905 }
906 
907 static inline void sock_set_flag(struct sock *sk, enum sock_flags flag)
908 {
909 	__set_bit(flag, &sk->sk_flags);
910 }
911 
912 static inline void sock_reset_flag(struct sock *sk, enum sock_flags flag)
913 {
914 	__clear_bit(flag, &sk->sk_flags);
915 }
916 
917 static inline void sock_valbool_flag(struct sock *sk, enum sock_flags bit,
918 				     int valbool)
919 {
920 	if (valbool)
921 		sock_set_flag(sk, bit);
922 	else
923 		sock_reset_flag(sk, bit);
924 }
925 
926 static inline bool sock_flag(const struct sock *sk, enum sock_flags flag)
927 {
928 	return test_bit(flag, &sk->sk_flags);
929 }
930 
931 #ifdef CONFIG_NET
932 DECLARE_STATIC_KEY_FALSE(memalloc_socks_key);
933 static inline int sk_memalloc_socks(void)
934 {
935 	return static_branch_unlikely(&memalloc_socks_key);
936 }
937 
938 void __receive_sock(struct file *file);
939 #else
940 
941 static inline int sk_memalloc_socks(void)
942 {
943 	return 0;
944 }
945 
946 static inline void __receive_sock(struct file *file)
947 { }
948 #endif
949 
950 static inline gfp_t sk_gfp_mask(const struct sock *sk, gfp_t gfp_mask)
951 {
952 	return gfp_mask | (sk->sk_allocation & __GFP_MEMALLOC);
953 }
954 
955 static inline void sk_acceptq_removed(struct sock *sk)
956 {
957 	WRITE_ONCE(sk->sk_ack_backlog, sk->sk_ack_backlog - 1);
958 }
959 
960 static inline void sk_acceptq_added(struct sock *sk)
961 {
962 	WRITE_ONCE(sk->sk_ack_backlog, sk->sk_ack_backlog + 1);
963 }
964 
965 /* Note: If you think the test should be:
966  *	return READ_ONCE(sk->sk_ack_backlog) >= READ_ONCE(sk->sk_max_ack_backlog);
967  * Then please take a look at commit 64a146513f8f ("[NET]: Revert incorrect accept queue backlog changes.")
968  */
969 static inline bool sk_acceptq_is_full(const struct sock *sk)
970 {
971 	return READ_ONCE(sk->sk_ack_backlog) > READ_ONCE(sk->sk_max_ack_backlog);
972 }
973 
974 /*
975  * Compute minimal free write space needed to queue new packets.
976  */
977 static inline int sk_stream_min_wspace(const struct sock *sk)
978 {
979 	return READ_ONCE(sk->sk_wmem_queued) >> 1;
980 }
981 
982 static inline int sk_stream_wspace(const struct sock *sk)
983 {
984 	return READ_ONCE(sk->sk_sndbuf) - READ_ONCE(sk->sk_wmem_queued);
985 }
986 
987 static inline void sk_wmem_queued_add(struct sock *sk, int val)
988 {
989 	WRITE_ONCE(sk->sk_wmem_queued, sk->sk_wmem_queued + val);
990 }
991 
992 void sk_stream_write_space(struct sock *sk);
993 
994 /* OOB backlog add */
995 static inline void __sk_add_backlog(struct sock *sk, struct sk_buff *skb)
996 {
997 	/* dont let skb dst not refcounted, we are going to leave rcu lock */
998 	skb_dst_force(skb);
999 
1000 	if (!sk->sk_backlog.tail)
1001 		WRITE_ONCE(sk->sk_backlog.head, skb);
1002 	else
1003 		sk->sk_backlog.tail->next = skb;
1004 
1005 	WRITE_ONCE(sk->sk_backlog.tail, skb);
1006 	skb->next = NULL;
1007 }
1008 
1009 /*
1010  * Take into account size of receive queue and backlog queue
1011  * Do not take into account this skb truesize,
1012  * to allow even a single big packet to come.
1013  */
1014 static inline bool sk_rcvqueues_full(const struct sock *sk, unsigned int limit)
1015 {
1016 	unsigned int qsize = sk->sk_backlog.len + atomic_read(&sk->sk_rmem_alloc);
1017 
1018 	return qsize > limit;
1019 }
1020 
1021 /* The per-socket spinlock must be held here. */
1022 static inline __must_check int sk_add_backlog(struct sock *sk, struct sk_buff *skb,
1023 					      unsigned int limit)
1024 {
1025 	if (sk_rcvqueues_full(sk, limit))
1026 		return -ENOBUFS;
1027 
1028 	/*
1029 	 * If the skb was allocated from pfmemalloc reserves, only
1030 	 * allow SOCK_MEMALLOC sockets to use it as this socket is
1031 	 * helping free memory
1032 	 */
1033 	if (skb_pfmemalloc(skb) && !sock_flag(sk, SOCK_MEMALLOC))
1034 		return -ENOMEM;
1035 
1036 	__sk_add_backlog(sk, skb);
1037 	sk->sk_backlog.len += skb->truesize;
1038 	return 0;
1039 }
1040 
1041 int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb);
1042 
1043 INDIRECT_CALLABLE_DECLARE(int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb));
1044 INDIRECT_CALLABLE_DECLARE(int tcp_v6_do_rcv(struct sock *sk, struct sk_buff *skb));
1045 
1046 static inline int sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
1047 {
1048 	if (sk_memalloc_socks() && skb_pfmemalloc(skb))
1049 		return __sk_backlog_rcv(sk, skb);
1050 
1051 	return INDIRECT_CALL_INET(sk->sk_backlog_rcv,
1052 				  tcp_v6_do_rcv,
1053 				  tcp_v4_do_rcv,
1054 				  sk, skb);
1055 }
1056 
1057 static inline void sk_incoming_cpu_update(struct sock *sk)
1058 {
1059 	int cpu = raw_smp_processor_id();
1060 
1061 	if (unlikely(READ_ONCE(sk->sk_incoming_cpu) != cpu))
1062 		WRITE_ONCE(sk->sk_incoming_cpu, cpu);
1063 }
1064 
1065 static inline void sock_rps_record_flow_hash(__u32 hash)
1066 {
1067 #ifdef CONFIG_RPS
1068 	struct rps_sock_flow_table *sock_flow_table;
1069 
1070 	rcu_read_lock();
1071 	sock_flow_table = rcu_dereference(rps_sock_flow_table);
1072 	rps_record_sock_flow(sock_flow_table, hash);
1073 	rcu_read_unlock();
1074 #endif
1075 }
1076 
1077 static inline void sock_rps_record_flow(const struct sock *sk)
1078 {
1079 #ifdef CONFIG_RPS
1080 	if (static_branch_unlikely(&rfs_needed)) {
1081 		/* Reading sk->sk_rxhash might incur an expensive cache line
1082 		 * miss.
1083 		 *
1084 		 * TCP_ESTABLISHED does cover almost all states where RFS
1085 		 * might be useful, and is cheaper [1] than testing :
1086 		 *	IPv4: inet_sk(sk)->inet_daddr
1087 		 * 	IPv6: ipv6_addr_any(&sk->sk_v6_daddr)
1088 		 * OR	an additional socket flag
1089 		 * [1] : sk_state and sk_prot are in the same cache line.
1090 		 */
1091 		if (sk->sk_state == TCP_ESTABLISHED)
1092 			sock_rps_record_flow_hash(sk->sk_rxhash);
1093 	}
1094 #endif
1095 }
1096 
1097 static inline void sock_rps_save_rxhash(struct sock *sk,
1098 					const struct sk_buff *skb)
1099 {
1100 #ifdef CONFIG_RPS
1101 	if (unlikely(sk->sk_rxhash != skb->hash))
1102 		sk->sk_rxhash = skb->hash;
1103 #endif
1104 }
1105 
1106 static inline void sock_rps_reset_rxhash(struct sock *sk)
1107 {
1108 #ifdef CONFIG_RPS
1109 	sk->sk_rxhash = 0;
1110 #endif
1111 }
1112 
1113 #define sk_wait_event(__sk, __timeo, __condition, __wait)		\
1114 	({	int __rc;						\
1115 		release_sock(__sk);					\
1116 		__rc = __condition;					\
1117 		if (!__rc) {						\
1118 			*(__timeo) = wait_woken(__wait,			\
1119 						TASK_INTERRUPTIBLE,	\
1120 						*(__timeo));		\
1121 		}							\
1122 		sched_annotate_sleep();					\
1123 		lock_sock(__sk);					\
1124 		__rc = __condition;					\
1125 		__rc;							\
1126 	})
1127 
1128 int sk_stream_wait_connect(struct sock *sk, long *timeo_p);
1129 int sk_stream_wait_memory(struct sock *sk, long *timeo_p);
1130 void sk_stream_wait_close(struct sock *sk, long timeo_p);
1131 int sk_stream_error(struct sock *sk, int flags, int err);
1132 void sk_stream_kill_queues(struct sock *sk);
1133 void sk_set_memalloc(struct sock *sk);
1134 void sk_clear_memalloc(struct sock *sk);
1135 
1136 void __sk_flush_backlog(struct sock *sk);
1137 
1138 static inline bool sk_flush_backlog(struct sock *sk)
1139 {
1140 	if (unlikely(READ_ONCE(sk->sk_backlog.tail))) {
1141 		__sk_flush_backlog(sk);
1142 		return true;
1143 	}
1144 	return false;
1145 }
1146 
1147 int sk_wait_data(struct sock *sk, long *timeo, const struct sk_buff *skb);
1148 
1149 struct request_sock_ops;
1150 struct timewait_sock_ops;
1151 struct inet_hashinfo;
1152 struct raw_hashinfo;
1153 struct smc_hashinfo;
1154 struct module;
1155 struct sk_psock;
1156 
1157 /*
1158  * caches using SLAB_TYPESAFE_BY_RCU should let .next pointer from nulls nodes
1159  * un-modified. Special care is taken when initializing object to zero.
1160  */
1161 static inline void sk_prot_clear_nulls(struct sock *sk, int size)
1162 {
1163 	if (offsetof(struct sock, sk_node.next) != 0)
1164 		memset(sk, 0, offsetof(struct sock, sk_node.next));
1165 	memset(&sk->sk_node.pprev, 0,
1166 	       size - offsetof(struct sock, sk_node.pprev));
1167 }
1168 
1169 /* Networking protocol blocks we attach to sockets.
1170  * socket layer -> transport layer interface
1171  */
1172 struct proto {
1173 	void			(*close)(struct sock *sk,
1174 					long timeout);
1175 	int			(*pre_connect)(struct sock *sk,
1176 					struct sockaddr *uaddr,
1177 					int addr_len);
1178 	int			(*connect)(struct sock *sk,
1179 					struct sockaddr *uaddr,
1180 					int addr_len);
1181 	int			(*disconnect)(struct sock *sk, int flags);
1182 
1183 	struct sock *		(*accept)(struct sock *sk, int flags, int *err,
1184 					  bool kern);
1185 
1186 	int			(*ioctl)(struct sock *sk, int cmd,
1187 					 unsigned long arg);
1188 	int			(*init)(struct sock *sk);
1189 	void			(*destroy)(struct sock *sk);
1190 	void			(*shutdown)(struct sock *sk, int how);
1191 	int			(*setsockopt)(struct sock *sk, int level,
1192 					int optname, sockptr_t optval,
1193 					unsigned int optlen);
1194 	int			(*getsockopt)(struct sock *sk, int level,
1195 					int optname, char __user *optval,
1196 					int __user *option);
1197 	void			(*keepalive)(struct sock *sk, int valbool);
1198 #ifdef CONFIG_COMPAT
1199 	int			(*compat_ioctl)(struct sock *sk,
1200 					unsigned int cmd, unsigned long arg);
1201 #endif
1202 	int			(*sendmsg)(struct sock *sk, struct msghdr *msg,
1203 					   size_t len);
1204 	int			(*recvmsg)(struct sock *sk, struct msghdr *msg,
1205 					   size_t len, int flags, int *addr_len);
1206 	int			(*sendpage)(struct sock *sk, struct page *page,
1207 					int offset, size_t size, int flags);
1208 	int			(*bind)(struct sock *sk,
1209 					struct sockaddr *addr, int addr_len);
1210 	int			(*bind_add)(struct sock *sk,
1211 					struct sockaddr *addr, int addr_len);
1212 
1213 	int			(*backlog_rcv) (struct sock *sk,
1214 						struct sk_buff *skb);
1215 	bool			(*bpf_bypass_getsockopt)(int level,
1216 							 int optname);
1217 
1218 	void		(*release_cb)(struct sock *sk);
1219 
1220 	/* Keeping track of sk's, looking them up, and port selection methods. */
1221 	int			(*hash)(struct sock *sk);
1222 	void			(*unhash)(struct sock *sk);
1223 	void			(*rehash)(struct sock *sk);
1224 	int			(*get_port)(struct sock *sk, unsigned short snum);
1225 	void			(*put_port)(struct sock *sk);
1226 #ifdef CONFIG_BPF_SYSCALL
1227 	int			(*psock_update_sk_prot)(struct sock *sk,
1228 							struct sk_psock *psock,
1229 							bool restore);
1230 #endif
1231 
1232 	/* Keeping track of sockets in use */
1233 #ifdef CONFIG_PROC_FS
1234 	unsigned int		inuse_idx;
1235 #endif
1236 
1237 #if IS_ENABLED(CONFIG_MPTCP)
1238 	int			(*forward_alloc_get)(const struct sock *sk);
1239 #endif
1240 
1241 	bool			(*stream_memory_free)(const struct sock *sk, int wake);
1242 	bool			(*sock_is_readable)(struct sock *sk);
1243 	/* Memory pressure */
1244 	void			(*enter_memory_pressure)(struct sock *sk);
1245 	void			(*leave_memory_pressure)(struct sock *sk);
1246 	atomic_long_t		*memory_allocated;	/* Current allocated memory. */
1247 	struct percpu_counter	*sockets_allocated;	/* Current number of sockets. */
1248 
1249 	/*
1250 	 * Pressure flag: try to collapse.
1251 	 * Technical note: it is used by multiple contexts non atomically.
1252 	 * All the __sk_mem_schedule() is of this nature: accounting
1253 	 * is strict, actions are advisory and have some latency.
1254 	 */
1255 	unsigned long		*memory_pressure;
1256 	long			*sysctl_mem;
1257 
1258 	int			*sysctl_wmem;
1259 	int			*sysctl_rmem;
1260 	u32			sysctl_wmem_offset;
1261 	u32			sysctl_rmem_offset;
1262 
1263 	int			max_header;
1264 	bool			no_autobind;
1265 
1266 	struct kmem_cache	*slab;
1267 	unsigned int		obj_size;
1268 	slab_flags_t		slab_flags;
1269 	unsigned int		useroffset;	/* Usercopy region offset */
1270 	unsigned int		usersize;	/* Usercopy region size */
1271 
1272 	unsigned int __percpu	*orphan_count;
1273 
1274 	struct request_sock_ops	*rsk_prot;
1275 	struct timewait_sock_ops *twsk_prot;
1276 
1277 	union {
1278 		struct inet_hashinfo	*hashinfo;
1279 		struct udp_table	*udp_table;
1280 		struct raw_hashinfo	*raw_hash;
1281 		struct smc_hashinfo	*smc_hash;
1282 	} h;
1283 
1284 	struct module		*owner;
1285 
1286 	char			name[32];
1287 
1288 	struct list_head	node;
1289 #ifdef SOCK_REFCNT_DEBUG
1290 	atomic_t		socks;
1291 #endif
1292 	int			(*diag_destroy)(struct sock *sk, int err);
1293 } __randomize_layout;
1294 
1295 int proto_register(struct proto *prot, int alloc_slab);
1296 void proto_unregister(struct proto *prot);
1297 int sock_load_diag_module(int family, int protocol);
1298 
1299 #ifdef SOCK_REFCNT_DEBUG
1300 static inline void sk_refcnt_debug_inc(struct sock *sk)
1301 {
1302 	atomic_inc(&sk->sk_prot->socks);
1303 }
1304 
1305 static inline void sk_refcnt_debug_dec(struct sock *sk)
1306 {
1307 	atomic_dec(&sk->sk_prot->socks);
1308 	printk(KERN_DEBUG "%s socket %p released, %d are still alive\n",
1309 	       sk->sk_prot->name, sk, atomic_read(&sk->sk_prot->socks));
1310 }
1311 
1312 static inline void sk_refcnt_debug_release(const struct sock *sk)
1313 {
1314 	if (refcount_read(&sk->sk_refcnt) != 1)
1315 		printk(KERN_DEBUG "Destruction of the %s socket %p delayed, refcnt=%d\n",
1316 		       sk->sk_prot->name, sk, refcount_read(&sk->sk_refcnt));
1317 }
1318 #else /* SOCK_REFCNT_DEBUG */
1319 #define sk_refcnt_debug_inc(sk) do { } while (0)
1320 #define sk_refcnt_debug_dec(sk) do { } while (0)
1321 #define sk_refcnt_debug_release(sk) do { } while (0)
1322 #endif /* SOCK_REFCNT_DEBUG */
1323 
1324 INDIRECT_CALLABLE_DECLARE(bool tcp_stream_memory_free(const struct sock *sk, int wake));
1325 
1326 static inline int sk_forward_alloc_get(const struct sock *sk)
1327 {
1328 #if IS_ENABLED(CONFIG_MPTCP)
1329 	if (sk->sk_prot->forward_alloc_get)
1330 		return sk->sk_prot->forward_alloc_get(sk);
1331 #endif
1332 	return sk->sk_forward_alloc;
1333 }
1334 
1335 static inline bool __sk_stream_memory_free(const struct sock *sk, int wake)
1336 {
1337 	if (READ_ONCE(sk->sk_wmem_queued) >= READ_ONCE(sk->sk_sndbuf))
1338 		return false;
1339 
1340 	return sk->sk_prot->stream_memory_free ?
1341 		INDIRECT_CALL_INET_1(sk->sk_prot->stream_memory_free,
1342 				     tcp_stream_memory_free, sk, wake) : true;
1343 }
1344 
1345 static inline bool sk_stream_memory_free(const struct sock *sk)
1346 {
1347 	return __sk_stream_memory_free(sk, 0);
1348 }
1349 
1350 static inline bool __sk_stream_is_writeable(const struct sock *sk, int wake)
1351 {
1352 	return sk_stream_wspace(sk) >= sk_stream_min_wspace(sk) &&
1353 	       __sk_stream_memory_free(sk, wake);
1354 }
1355 
1356 static inline bool sk_stream_is_writeable(const struct sock *sk)
1357 {
1358 	return __sk_stream_is_writeable(sk, 0);
1359 }
1360 
1361 static inline int sk_under_cgroup_hierarchy(struct sock *sk,
1362 					    struct cgroup *ancestor)
1363 {
1364 #ifdef CONFIG_SOCK_CGROUP_DATA
1365 	return cgroup_is_descendant(sock_cgroup_ptr(&sk->sk_cgrp_data),
1366 				    ancestor);
1367 #else
1368 	return -ENOTSUPP;
1369 #endif
1370 }
1371 
1372 static inline bool sk_has_memory_pressure(const struct sock *sk)
1373 {
1374 	return sk->sk_prot->memory_pressure != NULL;
1375 }
1376 
1377 static inline bool sk_under_memory_pressure(const struct sock *sk)
1378 {
1379 	if (!sk->sk_prot->memory_pressure)
1380 		return false;
1381 
1382 	if (mem_cgroup_sockets_enabled && sk->sk_memcg &&
1383 	    mem_cgroup_under_socket_pressure(sk->sk_memcg))
1384 		return true;
1385 
1386 	return !!*sk->sk_prot->memory_pressure;
1387 }
1388 
1389 static inline long
1390 sk_memory_allocated(const struct sock *sk)
1391 {
1392 	return atomic_long_read(sk->sk_prot->memory_allocated);
1393 }
1394 
1395 static inline long
1396 sk_memory_allocated_add(struct sock *sk, int amt)
1397 {
1398 	return atomic_long_add_return(amt, sk->sk_prot->memory_allocated);
1399 }
1400 
1401 static inline void
1402 sk_memory_allocated_sub(struct sock *sk, int amt)
1403 {
1404 	atomic_long_sub(amt, sk->sk_prot->memory_allocated);
1405 }
1406 
1407 #define SK_ALLOC_PERCPU_COUNTER_BATCH 16
1408 
1409 static inline void sk_sockets_allocated_dec(struct sock *sk)
1410 {
1411 	percpu_counter_add_batch(sk->sk_prot->sockets_allocated, -1,
1412 				 SK_ALLOC_PERCPU_COUNTER_BATCH);
1413 }
1414 
1415 static inline void sk_sockets_allocated_inc(struct sock *sk)
1416 {
1417 	percpu_counter_add_batch(sk->sk_prot->sockets_allocated, 1,
1418 				 SK_ALLOC_PERCPU_COUNTER_BATCH);
1419 }
1420 
1421 static inline u64
1422 sk_sockets_allocated_read_positive(struct sock *sk)
1423 {
1424 	return percpu_counter_read_positive(sk->sk_prot->sockets_allocated);
1425 }
1426 
1427 static inline int
1428 proto_sockets_allocated_sum_positive(struct proto *prot)
1429 {
1430 	return percpu_counter_sum_positive(prot->sockets_allocated);
1431 }
1432 
1433 static inline long
1434 proto_memory_allocated(struct proto *prot)
1435 {
1436 	return atomic_long_read(prot->memory_allocated);
1437 }
1438 
1439 static inline bool
1440 proto_memory_pressure(struct proto *prot)
1441 {
1442 	if (!prot->memory_pressure)
1443 		return false;
1444 	return !!*prot->memory_pressure;
1445 }
1446 
1447 
1448 #ifdef CONFIG_PROC_FS
1449 #define PROTO_INUSE_NR	64	/* should be enough for the first time */
1450 struct prot_inuse {
1451 	int all;
1452 	int val[PROTO_INUSE_NR];
1453 };
1454 
1455 static inline void sock_prot_inuse_add(const struct net *net,
1456 				       const struct proto *prot, int val)
1457 {
1458 	this_cpu_add(net->core.prot_inuse->val[prot->inuse_idx], val);
1459 }
1460 
1461 static inline void sock_inuse_add(const struct net *net, int val)
1462 {
1463 	this_cpu_add(net->core.prot_inuse->all, val);
1464 }
1465 
1466 int sock_prot_inuse_get(struct net *net, struct proto *proto);
1467 int sock_inuse_get(struct net *net);
1468 #else
1469 static inline void sock_prot_inuse_add(const struct net *net,
1470 				       const struct proto *prot, int val)
1471 {
1472 }
1473 
1474 static inline void sock_inuse_add(const struct net *net, int val)
1475 {
1476 }
1477 #endif
1478 
1479 
1480 /* With per-bucket locks this operation is not-atomic, so that
1481  * this version is not worse.
1482  */
1483 static inline int __sk_prot_rehash(struct sock *sk)
1484 {
1485 	sk->sk_prot->unhash(sk);
1486 	return sk->sk_prot->hash(sk);
1487 }
1488 
1489 /* About 10 seconds */
1490 #define SOCK_DESTROY_TIME (10*HZ)
1491 
1492 /* Sockets 0-1023 can't be bound to unless you are superuser */
1493 #define PROT_SOCK	1024
1494 
1495 #define SHUTDOWN_MASK	3
1496 #define RCV_SHUTDOWN	1
1497 #define SEND_SHUTDOWN	2
1498 
1499 #define SOCK_BINDADDR_LOCK	4
1500 #define SOCK_BINDPORT_LOCK	8
1501 
1502 struct socket_alloc {
1503 	struct socket socket;
1504 	struct inode vfs_inode;
1505 };
1506 
1507 static inline struct socket *SOCKET_I(struct inode *inode)
1508 {
1509 	return &container_of(inode, struct socket_alloc, vfs_inode)->socket;
1510 }
1511 
1512 static inline struct inode *SOCK_INODE(struct socket *socket)
1513 {
1514 	return &container_of(socket, struct socket_alloc, socket)->vfs_inode;
1515 }
1516 
1517 /*
1518  * Functions for memory accounting
1519  */
1520 int __sk_mem_raise_allocated(struct sock *sk, int size, int amt, int kind);
1521 int __sk_mem_schedule(struct sock *sk, int size, int kind);
1522 void __sk_mem_reduce_allocated(struct sock *sk, int amount);
1523 void __sk_mem_reclaim(struct sock *sk, int amount);
1524 
1525 /* We used to have PAGE_SIZE here, but systems with 64KB pages
1526  * do not necessarily have 16x time more memory than 4KB ones.
1527  */
1528 #define SK_MEM_QUANTUM 4096
1529 #define SK_MEM_QUANTUM_SHIFT ilog2(SK_MEM_QUANTUM)
1530 #define SK_MEM_SEND	0
1531 #define SK_MEM_RECV	1
1532 
1533 /* sysctl_mem values are in pages, we convert them in SK_MEM_QUANTUM units */
1534 static inline long sk_prot_mem_limits(const struct sock *sk, int index)
1535 {
1536 	long val = sk->sk_prot->sysctl_mem[index];
1537 
1538 #if PAGE_SIZE > SK_MEM_QUANTUM
1539 	val <<= PAGE_SHIFT - SK_MEM_QUANTUM_SHIFT;
1540 #elif PAGE_SIZE < SK_MEM_QUANTUM
1541 	val >>= SK_MEM_QUANTUM_SHIFT - PAGE_SHIFT;
1542 #endif
1543 	return val;
1544 }
1545 
1546 static inline int sk_mem_pages(int amt)
1547 {
1548 	return (amt + SK_MEM_QUANTUM - 1) >> SK_MEM_QUANTUM_SHIFT;
1549 }
1550 
1551 static inline bool sk_has_account(struct sock *sk)
1552 {
1553 	/* return true if protocol supports memory accounting */
1554 	return !!sk->sk_prot->memory_allocated;
1555 }
1556 
1557 static inline bool sk_wmem_schedule(struct sock *sk, int size)
1558 {
1559 	if (!sk_has_account(sk))
1560 		return true;
1561 	return size <= sk->sk_forward_alloc ||
1562 		__sk_mem_schedule(sk, size, SK_MEM_SEND);
1563 }
1564 
1565 static inline bool
1566 sk_rmem_schedule(struct sock *sk, struct sk_buff *skb, int size)
1567 {
1568 	if (!sk_has_account(sk))
1569 		return true;
1570 	return size <= sk->sk_forward_alloc ||
1571 		__sk_mem_schedule(sk, size, SK_MEM_RECV) ||
1572 		skb_pfmemalloc(skb);
1573 }
1574 
1575 static inline int sk_unused_reserved_mem(const struct sock *sk)
1576 {
1577 	int unused_mem;
1578 
1579 	if (likely(!sk->sk_reserved_mem))
1580 		return 0;
1581 
1582 	unused_mem = sk->sk_reserved_mem - sk->sk_wmem_queued -
1583 			atomic_read(&sk->sk_rmem_alloc);
1584 
1585 	return unused_mem > 0 ? unused_mem : 0;
1586 }
1587 
1588 static inline void sk_mem_reclaim(struct sock *sk)
1589 {
1590 	int reclaimable;
1591 
1592 	if (!sk_has_account(sk))
1593 		return;
1594 
1595 	reclaimable = sk->sk_forward_alloc - sk_unused_reserved_mem(sk);
1596 
1597 	if (reclaimable >= SK_MEM_QUANTUM)
1598 		__sk_mem_reclaim(sk, reclaimable);
1599 }
1600 
1601 static inline void sk_mem_reclaim_final(struct sock *sk)
1602 {
1603 	sk->sk_reserved_mem = 0;
1604 	sk_mem_reclaim(sk);
1605 }
1606 
1607 static inline void sk_mem_reclaim_partial(struct sock *sk)
1608 {
1609 	int reclaimable;
1610 
1611 	if (!sk_has_account(sk))
1612 		return;
1613 
1614 	reclaimable = sk->sk_forward_alloc - sk_unused_reserved_mem(sk);
1615 
1616 	if (reclaimable > SK_MEM_QUANTUM)
1617 		__sk_mem_reclaim(sk, reclaimable - 1);
1618 }
1619 
1620 static inline void sk_mem_charge(struct sock *sk, int size)
1621 {
1622 	if (!sk_has_account(sk))
1623 		return;
1624 	sk->sk_forward_alloc -= size;
1625 }
1626 
1627 /* the following macros control memory reclaiming in sk_mem_uncharge()
1628  */
1629 #define SK_RECLAIM_THRESHOLD	(1 << 21)
1630 #define SK_RECLAIM_CHUNK	(1 << 20)
1631 
1632 static inline void sk_mem_uncharge(struct sock *sk, int size)
1633 {
1634 	int reclaimable;
1635 
1636 	if (!sk_has_account(sk))
1637 		return;
1638 	sk->sk_forward_alloc += size;
1639 	reclaimable = sk->sk_forward_alloc - sk_unused_reserved_mem(sk);
1640 
1641 	/* Avoid a possible overflow.
1642 	 * TCP send queues can make this happen, if sk_mem_reclaim()
1643 	 * is not called and more than 2 GBytes are released at once.
1644 	 *
1645 	 * If we reach 2 MBytes, reclaim 1 MBytes right now, there is
1646 	 * no need to hold that much forward allocation anyway.
1647 	 */
1648 	if (unlikely(reclaimable >= SK_RECLAIM_THRESHOLD))
1649 		__sk_mem_reclaim(sk, SK_RECLAIM_CHUNK);
1650 }
1651 
1652 /*
1653  * Macro so as to not evaluate some arguments when
1654  * lockdep is not enabled.
1655  *
1656  * Mark both the sk_lock and the sk_lock.slock as a
1657  * per-address-family lock class.
1658  */
1659 #define sock_lock_init_class_and_name(sk, sname, skey, name, key)	\
1660 do {									\
1661 	sk->sk_lock.owned = 0;						\
1662 	init_waitqueue_head(&sk->sk_lock.wq);				\
1663 	spin_lock_init(&(sk)->sk_lock.slock);				\
1664 	debug_check_no_locks_freed((void *)&(sk)->sk_lock,		\
1665 			sizeof((sk)->sk_lock));				\
1666 	lockdep_set_class_and_name(&(sk)->sk_lock.slock,		\
1667 				(skey), (sname));				\
1668 	lockdep_init_map(&(sk)->sk_lock.dep_map, (name), (key), 0);	\
1669 } while (0)
1670 
1671 static inline bool lockdep_sock_is_held(const struct sock *sk)
1672 {
1673 	return lockdep_is_held(&sk->sk_lock) ||
1674 	       lockdep_is_held(&sk->sk_lock.slock);
1675 }
1676 
1677 void lock_sock_nested(struct sock *sk, int subclass);
1678 
1679 static inline void lock_sock(struct sock *sk)
1680 {
1681 	lock_sock_nested(sk, 0);
1682 }
1683 
1684 void __lock_sock(struct sock *sk);
1685 void __release_sock(struct sock *sk);
1686 void release_sock(struct sock *sk);
1687 
1688 /* BH context may only use the following locking interface. */
1689 #define bh_lock_sock(__sk)	spin_lock(&((__sk)->sk_lock.slock))
1690 #define bh_lock_sock_nested(__sk) \
1691 				spin_lock_nested(&((__sk)->sk_lock.slock), \
1692 				SINGLE_DEPTH_NESTING)
1693 #define bh_unlock_sock(__sk)	spin_unlock(&((__sk)->sk_lock.slock))
1694 
1695 bool __lock_sock_fast(struct sock *sk) __acquires(&sk->sk_lock.slock);
1696 
1697 /**
1698  * lock_sock_fast - fast version of lock_sock
1699  * @sk: socket
1700  *
1701  * This version should be used for very small section, where process wont block
1702  * return false if fast path is taken:
1703  *
1704  *   sk_lock.slock locked, owned = 0, BH disabled
1705  *
1706  * return true if slow path is taken:
1707  *
1708  *   sk_lock.slock unlocked, owned = 1, BH enabled
1709  */
1710 static inline bool lock_sock_fast(struct sock *sk)
1711 {
1712 	/* The sk_lock has mutex_lock() semantics here. */
1713 	mutex_acquire(&sk->sk_lock.dep_map, 0, 0, _RET_IP_);
1714 
1715 	return __lock_sock_fast(sk);
1716 }
1717 
1718 /* fast socket lock variant for caller already holding a [different] socket lock */
1719 static inline bool lock_sock_fast_nested(struct sock *sk)
1720 {
1721 	mutex_acquire(&sk->sk_lock.dep_map, SINGLE_DEPTH_NESTING, 0, _RET_IP_);
1722 
1723 	return __lock_sock_fast(sk);
1724 }
1725 
1726 /**
1727  * unlock_sock_fast - complement of lock_sock_fast
1728  * @sk: socket
1729  * @slow: slow mode
1730  *
1731  * fast unlock socket for user context.
1732  * If slow mode is on, we call regular release_sock()
1733  */
1734 static inline void unlock_sock_fast(struct sock *sk, bool slow)
1735 	__releases(&sk->sk_lock.slock)
1736 {
1737 	if (slow) {
1738 		release_sock(sk);
1739 		__release(&sk->sk_lock.slock);
1740 	} else {
1741 		mutex_release(&sk->sk_lock.dep_map, _RET_IP_);
1742 		spin_unlock_bh(&sk->sk_lock.slock);
1743 	}
1744 }
1745 
1746 /* Used by processes to "lock" a socket state, so that
1747  * interrupts and bottom half handlers won't change it
1748  * from under us. It essentially blocks any incoming
1749  * packets, so that we won't get any new data or any
1750  * packets that change the state of the socket.
1751  *
1752  * While locked, BH processing will add new packets to
1753  * the backlog queue.  This queue is processed by the
1754  * owner of the socket lock right before it is released.
1755  *
1756  * Since ~2.3.5 it is also exclusive sleep lock serializing
1757  * accesses from user process context.
1758  */
1759 
1760 static inline void sock_owned_by_me(const struct sock *sk)
1761 {
1762 #ifdef CONFIG_LOCKDEP
1763 	WARN_ON_ONCE(!lockdep_sock_is_held(sk) && debug_locks);
1764 #endif
1765 }
1766 
1767 static inline bool sock_owned_by_user(const struct sock *sk)
1768 {
1769 	sock_owned_by_me(sk);
1770 	return sk->sk_lock.owned;
1771 }
1772 
1773 static inline bool sock_owned_by_user_nocheck(const struct sock *sk)
1774 {
1775 	return sk->sk_lock.owned;
1776 }
1777 
1778 static inline void sock_release_ownership(struct sock *sk)
1779 {
1780 	if (sock_owned_by_user_nocheck(sk)) {
1781 		sk->sk_lock.owned = 0;
1782 
1783 		/* The sk_lock has mutex_unlock() semantics: */
1784 		mutex_release(&sk->sk_lock.dep_map, _RET_IP_);
1785 	}
1786 }
1787 
1788 /* no reclassification while locks are held */
1789 static inline bool sock_allow_reclassification(const struct sock *csk)
1790 {
1791 	struct sock *sk = (struct sock *)csk;
1792 
1793 	return !sock_owned_by_user_nocheck(sk) &&
1794 		!spin_is_locked(&sk->sk_lock.slock);
1795 }
1796 
1797 struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
1798 		      struct proto *prot, int kern);
1799 void sk_free(struct sock *sk);
1800 void sk_destruct(struct sock *sk);
1801 struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority);
1802 void sk_free_unlock_clone(struct sock *sk);
1803 
1804 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
1805 			     gfp_t priority);
1806 void __sock_wfree(struct sk_buff *skb);
1807 void sock_wfree(struct sk_buff *skb);
1808 struct sk_buff *sock_omalloc(struct sock *sk, unsigned long size,
1809 			     gfp_t priority);
1810 void skb_orphan_partial(struct sk_buff *skb);
1811 void sock_rfree(struct sk_buff *skb);
1812 void sock_efree(struct sk_buff *skb);
1813 #ifdef CONFIG_INET
1814 void sock_edemux(struct sk_buff *skb);
1815 void sock_pfree(struct sk_buff *skb);
1816 #else
1817 #define sock_edemux sock_efree
1818 #endif
1819 
1820 int sock_setsockopt(struct socket *sock, int level, int op,
1821 		    sockptr_t optval, unsigned int optlen);
1822 
1823 int sock_getsockopt(struct socket *sock, int level, int op,
1824 		    char __user *optval, int __user *optlen);
1825 int sock_gettstamp(struct socket *sock, void __user *userstamp,
1826 		   bool timeval, bool time32);
1827 struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
1828 				    int noblock, int *errcode);
1829 struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
1830 				     unsigned long data_len, int noblock,
1831 				     int *errcode, int max_page_order);
1832 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority);
1833 void sock_kfree_s(struct sock *sk, void *mem, int size);
1834 void sock_kzfree_s(struct sock *sk, void *mem, int size);
1835 void sk_send_sigurg(struct sock *sk);
1836 
1837 struct sockcm_cookie {
1838 	u64 transmit_time;
1839 	u32 mark;
1840 	u16 tsflags;
1841 };
1842 
1843 static inline void sockcm_init(struct sockcm_cookie *sockc,
1844 			       const struct sock *sk)
1845 {
1846 	*sockc = (struct sockcm_cookie) { .tsflags = sk->sk_tsflags };
1847 }
1848 
1849 int __sock_cmsg_send(struct sock *sk, struct msghdr *msg, struct cmsghdr *cmsg,
1850 		     struct sockcm_cookie *sockc);
1851 int sock_cmsg_send(struct sock *sk, struct msghdr *msg,
1852 		   struct sockcm_cookie *sockc);
1853 
1854 /*
1855  * Functions to fill in entries in struct proto_ops when a protocol
1856  * does not implement a particular function.
1857  */
1858 int sock_no_bind(struct socket *, struct sockaddr *, int);
1859 int sock_no_connect(struct socket *, struct sockaddr *, int, int);
1860 int sock_no_socketpair(struct socket *, struct socket *);
1861 int sock_no_accept(struct socket *, struct socket *, int, bool);
1862 int sock_no_getname(struct socket *, struct sockaddr *, int);
1863 int sock_no_ioctl(struct socket *, unsigned int, unsigned long);
1864 int sock_no_listen(struct socket *, int);
1865 int sock_no_shutdown(struct socket *, int);
1866 int sock_no_sendmsg(struct socket *, struct msghdr *, size_t);
1867 int sock_no_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t len);
1868 int sock_no_recvmsg(struct socket *, struct msghdr *, size_t, int);
1869 int sock_no_mmap(struct file *file, struct socket *sock,
1870 		 struct vm_area_struct *vma);
1871 ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset,
1872 			 size_t size, int flags);
1873 ssize_t sock_no_sendpage_locked(struct sock *sk, struct page *page,
1874 				int offset, size_t size, int flags);
1875 
1876 /*
1877  * Functions to fill in entries in struct proto_ops when a protocol
1878  * uses the inet style.
1879  */
1880 int sock_common_getsockopt(struct socket *sock, int level, int optname,
1881 				  char __user *optval, int __user *optlen);
1882 int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
1883 			int flags);
1884 int sock_common_setsockopt(struct socket *sock, int level, int optname,
1885 			   sockptr_t optval, unsigned int optlen);
1886 
1887 void sk_common_release(struct sock *sk);
1888 
1889 /*
1890  *	Default socket callbacks and setup code
1891  */
1892 
1893 /* Initialise core socket variables */
1894 void sock_init_data(struct socket *sock, struct sock *sk);
1895 
1896 /*
1897  * Socket reference counting postulates.
1898  *
1899  * * Each user of socket SHOULD hold a reference count.
1900  * * Each access point to socket (an hash table bucket, reference from a list,
1901  *   running timer, skb in flight MUST hold a reference count.
1902  * * When reference count hits 0, it means it will never increase back.
1903  * * When reference count hits 0, it means that no references from
1904  *   outside exist to this socket and current process on current CPU
1905  *   is last user and may/should destroy this socket.
1906  * * sk_free is called from any context: process, BH, IRQ. When
1907  *   it is called, socket has no references from outside -> sk_free
1908  *   may release descendant resources allocated by the socket, but
1909  *   to the time when it is called, socket is NOT referenced by any
1910  *   hash tables, lists etc.
1911  * * Packets, delivered from outside (from network or from another process)
1912  *   and enqueued on receive/error queues SHOULD NOT grab reference count,
1913  *   when they sit in queue. Otherwise, packets will leak to hole, when
1914  *   socket is looked up by one cpu and unhasing is made by another CPU.
1915  *   It is true for udp/raw, netlink (leak to receive and error queues), tcp
1916  *   (leak to backlog). Packet socket does all the processing inside
1917  *   BR_NETPROTO_LOCK, so that it has not this race condition. UNIX sockets
1918  *   use separate SMP lock, so that they are prone too.
1919  */
1920 
1921 /* Ungrab socket and destroy it, if it was the last reference. */
1922 static inline void sock_put(struct sock *sk)
1923 {
1924 	if (refcount_dec_and_test(&sk->sk_refcnt))
1925 		sk_free(sk);
1926 }
1927 /* Generic version of sock_put(), dealing with all sockets
1928  * (TCP_TIMEWAIT, TCP_NEW_SYN_RECV, ESTABLISHED...)
1929  */
1930 void sock_gen_put(struct sock *sk);
1931 
1932 int __sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested,
1933 		     unsigned int trim_cap, bool refcounted);
1934 static inline int sk_receive_skb(struct sock *sk, struct sk_buff *skb,
1935 				 const int nested)
1936 {
1937 	return __sk_receive_skb(sk, skb, nested, 1, true);
1938 }
1939 
1940 static inline void sk_tx_queue_set(struct sock *sk, int tx_queue)
1941 {
1942 	/* sk_tx_queue_mapping accept only upto a 16-bit value */
1943 	if (WARN_ON_ONCE((unsigned short)tx_queue >= USHRT_MAX))
1944 		return;
1945 	sk->sk_tx_queue_mapping = tx_queue;
1946 }
1947 
1948 #define NO_QUEUE_MAPPING	USHRT_MAX
1949 
1950 static inline void sk_tx_queue_clear(struct sock *sk)
1951 {
1952 	sk->sk_tx_queue_mapping = NO_QUEUE_MAPPING;
1953 }
1954 
1955 static inline int sk_tx_queue_get(const struct sock *sk)
1956 {
1957 	if (sk && sk->sk_tx_queue_mapping != NO_QUEUE_MAPPING)
1958 		return sk->sk_tx_queue_mapping;
1959 
1960 	return -1;
1961 }
1962 
1963 static inline void __sk_rx_queue_set(struct sock *sk,
1964 				     const struct sk_buff *skb,
1965 				     bool force_set)
1966 {
1967 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
1968 	if (skb_rx_queue_recorded(skb)) {
1969 		u16 rx_queue = skb_get_rx_queue(skb);
1970 
1971 		if (force_set ||
1972 		    unlikely(READ_ONCE(sk->sk_rx_queue_mapping) != rx_queue))
1973 			WRITE_ONCE(sk->sk_rx_queue_mapping, rx_queue);
1974 	}
1975 #endif
1976 }
1977 
1978 static inline void sk_rx_queue_set(struct sock *sk, const struct sk_buff *skb)
1979 {
1980 	__sk_rx_queue_set(sk, skb, true);
1981 }
1982 
1983 static inline void sk_rx_queue_update(struct sock *sk, const struct sk_buff *skb)
1984 {
1985 	__sk_rx_queue_set(sk, skb, false);
1986 }
1987 
1988 static inline void sk_rx_queue_clear(struct sock *sk)
1989 {
1990 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
1991 	WRITE_ONCE(sk->sk_rx_queue_mapping, NO_QUEUE_MAPPING);
1992 #endif
1993 }
1994 
1995 static inline int sk_rx_queue_get(const struct sock *sk)
1996 {
1997 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
1998 	if (sk) {
1999 		int res = READ_ONCE(sk->sk_rx_queue_mapping);
2000 
2001 		if (res != NO_QUEUE_MAPPING)
2002 			return res;
2003 	}
2004 #endif
2005 
2006 	return -1;
2007 }
2008 
2009 static inline void sk_set_socket(struct sock *sk, struct socket *sock)
2010 {
2011 	sk->sk_socket = sock;
2012 }
2013 
2014 static inline wait_queue_head_t *sk_sleep(struct sock *sk)
2015 {
2016 	BUILD_BUG_ON(offsetof(struct socket_wq, wait) != 0);
2017 	return &rcu_dereference_raw(sk->sk_wq)->wait;
2018 }
2019 /* Detach socket from process context.
2020  * Announce socket dead, detach it from wait queue and inode.
2021  * Note that parent inode held reference count on this struct sock,
2022  * we do not release it in this function, because protocol
2023  * probably wants some additional cleanups or even continuing
2024  * to work with this socket (TCP).
2025  */
2026 static inline void sock_orphan(struct sock *sk)
2027 {
2028 	write_lock_bh(&sk->sk_callback_lock);
2029 	sock_set_flag(sk, SOCK_DEAD);
2030 	sk_set_socket(sk, NULL);
2031 	sk->sk_wq  = NULL;
2032 	write_unlock_bh(&sk->sk_callback_lock);
2033 }
2034 
2035 static inline void sock_graft(struct sock *sk, struct socket *parent)
2036 {
2037 	WARN_ON(parent->sk);
2038 	write_lock_bh(&sk->sk_callback_lock);
2039 	rcu_assign_pointer(sk->sk_wq, &parent->wq);
2040 	parent->sk = sk;
2041 	sk_set_socket(sk, parent);
2042 	sk->sk_uid = SOCK_INODE(parent)->i_uid;
2043 	security_sock_graft(sk, parent);
2044 	write_unlock_bh(&sk->sk_callback_lock);
2045 }
2046 
2047 kuid_t sock_i_uid(struct sock *sk);
2048 unsigned long sock_i_ino(struct sock *sk);
2049 
2050 static inline kuid_t sock_net_uid(const struct net *net, const struct sock *sk)
2051 {
2052 	return sk ? sk->sk_uid : make_kuid(net->user_ns, 0);
2053 }
2054 
2055 static inline u32 net_tx_rndhash(void)
2056 {
2057 	u32 v = prandom_u32();
2058 
2059 	return v ?: 1;
2060 }
2061 
2062 static inline void sk_set_txhash(struct sock *sk)
2063 {
2064 	/* This pairs with READ_ONCE() in skb_set_hash_from_sk() */
2065 	WRITE_ONCE(sk->sk_txhash, net_tx_rndhash());
2066 }
2067 
2068 static inline bool sk_rethink_txhash(struct sock *sk)
2069 {
2070 	if (sk->sk_txhash && sk->sk_txrehash == SOCK_TXREHASH_ENABLED) {
2071 		sk_set_txhash(sk);
2072 		return true;
2073 	}
2074 	return false;
2075 }
2076 
2077 static inline struct dst_entry *
2078 __sk_dst_get(struct sock *sk)
2079 {
2080 	return rcu_dereference_check(sk->sk_dst_cache,
2081 				     lockdep_sock_is_held(sk));
2082 }
2083 
2084 static inline struct dst_entry *
2085 sk_dst_get(struct sock *sk)
2086 {
2087 	struct dst_entry *dst;
2088 
2089 	rcu_read_lock();
2090 	dst = rcu_dereference(sk->sk_dst_cache);
2091 	if (dst && !atomic_inc_not_zero(&dst->__refcnt))
2092 		dst = NULL;
2093 	rcu_read_unlock();
2094 	return dst;
2095 }
2096 
2097 static inline void __dst_negative_advice(struct sock *sk)
2098 {
2099 	struct dst_entry *ndst, *dst = __sk_dst_get(sk);
2100 
2101 	if (dst && dst->ops->negative_advice) {
2102 		ndst = dst->ops->negative_advice(dst);
2103 
2104 		if (ndst != dst) {
2105 			rcu_assign_pointer(sk->sk_dst_cache, ndst);
2106 			sk_tx_queue_clear(sk);
2107 			sk->sk_dst_pending_confirm = 0;
2108 		}
2109 	}
2110 }
2111 
2112 static inline void dst_negative_advice(struct sock *sk)
2113 {
2114 	sk_rethink_txhash(sk);
2115 	__dst_negative_advice(sk);
2116 }
2117 
2118 static inline void
2119 __sk_dst_set(struct sock *sk, struct dst_entry *dst)
2120 {
2121 	struct dst_entry *old_dst;
2122 
2123 	sk_tx_queue_clear(sk);
2124 	sk->sk_dst_pending_confirm = 0;
2125 	old_dst = rcu_dereference_protected(sk->sk_dst_cache,
2126 					    lockdep_sock_is_held(sk));
2127 	rcu_assign_pointer(sk->sk_dst_cache, dst);
2128 	dst_release(old_dst);
2129 }
2130 
2131 static inline void
2132 sk_dst_set(struct sock *sk, struct dst_entry *dst)
2133 {
2134 	struct dst_entry *old_dst;
2135 
2136 	sk_tx_queue_clear(sk);
2137 	sk->sk_dst_pending_confirm = 0;
2138 	old_dst = xchg((__force struct dst_entry **)&sk->sk_dst_cache, dst);
2139 	dst_release(old_dst);
2140 }
2141 
2142 static inline void
2143 __sk_dst_reset(struct sock *sk)
2144 {
2145 	__sk_dst_set(sk, NULL);
2146 }
2147 
2148 static inline void
2149 sk_dst_reset(struct sock *sk)
2150 {
2151 	sk_dst_set(sk, NULL);
2152 }
2153 
2154 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie);
2155 
2156 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie);
2157 
2158 static inline void sk_dst_confirm(struct sock *sk)
2159 {
2160 	if (!READ_ONCE(sk->sk_dst_pending_confirm))
2161 		WRITE_ONCE(sk->sk_dst_pending_confirm, 1);
2162 }
2163 
2164 static inline void sock_confirm_neigh(struct sk_buff *skb, struct neighbour *n)
2165 {
2166 	if (skb_get_dst_pending_confirm(skb)) {
2167 		struct sock *sk = skb->sk;
2168 
2169 		if (sk && READ_ONCE(sk->sk_dst_pending_confirm))
2170 			WRITE_ONCE(sk->sk_dst_pending_confirm, 0);
2171 		neigh_confirm(n);
2172 	}
2173 }
2174 
2175 bool sk_mc_loop(struct sock *sk);
2176 
2177 static inline bool sk_can_gso(const struct sock *sk)
2178 {
2179 	return net_gso_ok(sk->sk_route_caps, sk->sk_gso_type);
2180 }
2181 
2182 void sk_setup_caps(struct sock *sk, struct dst_entry *dst);
2183 
2184 static inline void sk_gso_disable(struct sock *sk)
2185 {
2186 	sk->sk_gso_disabled = 1;
2187 	sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
2188 }
2189 
2190 static inline int skb_do_copy_data_nocache(struct sock *sk, struct sk_buff *skb,
2191 					   struct iov_iter *from, char *to,
2192 					   int copy, int offset)
2193 {
2194 	if (skb->ip_summed == CHECKSUM_NONE) {
2195 		__wsum csum = 0;
2196 		if (!csum_and_copy_from_iter_full(to, copy, &csum, from))
2197 			return -EFAULT;
2198 		skb->csum = csum_block_add(skb->csum, csum, offset);
2199 	} else if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY) {
2200 		if (!copy_from_iter_full_nocache(to, copy, from))
2201 			return -EFAULT;
2202 	} else if (!copy_from_iter_full(to, copy, from))
2203 		return -EFAULT;
2204 
2205 	return 0;
2206 }
2207 
2208 static inline int skb_add_data_nocache(struct sock *sk, struct sk_buff *skb,
2209 				       struct iov_iter *from, int copy)
2210 {
2211 	int err, offset = skb->len;
2212 
2213 	err = skb_do_copy_data_nocache(sk, skb, from, skb_put(skb, copy),
2214 				       copy, offset);
2215 	if (err)
2216 		__skb_trim(skb, offset);
2217 
2218 	return err;
2219 }
2220 
2221 static inline int skb_copy_to_page_nocache(struct sock *sk, struct iov_iter *from,
2222 					   struct sk_buff *skb,
2223 					   struct page *page,
2224 					   int off, int copy)
2225 {
2226 	int err;
2227 
2228 	err = skb_do_copy_data_nocache(sk, skb, from, page_address(page) + off,
2229 				       copy, skb->len);
2230 	if (err)
2231 		return err;
2232 
2233 	skb->len	     += copy;
2234 	skb->data_len	     += copy;
2235 	skb->truesize	     += copy;
2236 	sk_wmem_queued_add(sk, copy);
2237 	sk_mem_charge(sk, copy);
2238 	return 0;
2239 }
2240 
2241 /**
2242  * sk_wmem_alloc_get - returns write allocations
2243  * @sk: socket
2244  *
2245  * Return: sk_wmem_alloc minus initial offset of one
2246  */
2247 static inline int sk_wmem_alloc_get(const struct sock *sk)
2248 {
2249 	return refcount_read(&sk->sk_wmem_alloc) - 1;
2250 }
2251 
2252 /**
2253  * sk_rmem_alloc_get - returns read allocations
2254  * @sk: socket
2255  *
2256  * Return: sk_rmem_alloc
2257  */
2258 static inline int sk_rmem_alloc_get(const struct sock *sk)
2259 {
2260 	return atomic_read(&sk->sk_rmem_alloc);
2261 }
2262 
2263 /**
2264  * sk_has_allocations - check if allocations are outstanding
2265  * @sk: socket
2266  *
2267  * Return: true if socket has write or read allocations
2268  */
2269 static inline bool sk_has_allocations(const struct sock *sk)
2270 {
2271 	return sk_wmem_alloc_get(sk) || sk_rmem_alloc_get(sk);
2272 }
2273 
2274 /**
2275  * skwq_has_sleeper - check if there are any waiting processes
2276  * @wq: struct socket_wq
2277  *
2278  * Return: true if socket_wq has waiting processes
2279  *
2280  * The purpose of the skwq_has_sleeper and sock_poll_wait is to wrap the memory
2281  * barrier call. They were added due to the race found within the tcp code.
2282  *
2283  * Consider following tcp code paths::
2284  *
2285  *   CPU1                CPU2
2286  *   sys_select          receive packet
2287  *   ...                 ...
2288  *   __add_wait_queue    update tp->rcv_nxt
2289  *   ...                 ...
2290  *   tp->rcv_nxt check   sock_def_readable
2291  *   ...                 {
2292  *   schedule               rcu_read_lock();
2293  *                          wq = rcu_dereference(sk->sk_wq);
2294  *                          if (wq && waitqueue_active(&wq->wait))
2295  *                              wake_up_interruptible(&wq->wait)
2296  *                          ...
2297  *                       }
2298  *
2299  * The race for tcp fires when the __add_wait_queue changes done by CPU1 stay
2300  * in its cache, and so does the tp->rcv_nxt update on CPU2 side.  The CPU1
2301  * could then endup calling schedule and sleep forever if there are no more
2302  * data on the socket.
2303  *
2304  */
2305 static inline bool skwq_has_sleeper(struct socket_wq *wq)
2306 {
2307 	return wq && wq_has_sleeper(&wq->wait);
2308 }
2309 
2310 /**
2311  * sock_poll_wait - place memory barrier behind the poll_wait call.
2312  * @filp:           file
2313  * @sock:           socket to wait on
2314  * @p:              poll_table
2315  *
2316  * See the comments in the wq_has_sleeper function.
2317  */
2318 static inline void sock_poll_wait(struct file *filp, struct socket *sock,
2319 				  poll_table *p)
2320 {
2321 	if (!poll_does_not_wait(p)) {
2322 		poll_wait(filp, &sock->wq.wait, p);
2323 		/* We need to be sure we are in sync with the
2324 		 * socket flags modification.
2325 		 *
2326 		 * This memory barrier is paired in the wq_has_sleeper.
2327 		 */
2328 		smp_mb();
2329 	}
2330 }
2331 
2332 static inline void skb_set_hash_from_sk(struct sk_buff *skb, struct sock *sk)
2333 {
2334 	/* This pairs with WRITE_ONCE() in sk_set_txhash() */
2335 	u32 txhash = READ_ONCE(sk->sk_txhash);
2336 
2337 	if (txhash) {
2338 		skb->l4_hash = 1;
2339 		skb->hash = txhash;
2340 	}
2341 }
2342 
2343 void skb_set_owner_w(struct sk_buff *skb, struct sock *sk);
2344 
2345 /*
2346  *	Queue a received datagram if it will fit. Stream and sequenced
2347  *	protocols can't normally use this as they need to fit buffers in
2348  *	and play with them.
2349  *
2350  *	Inlined as it's very short and called for pretty much every
2351  *	packet ever received.
2352  */
2353 static inline void skb_set_owner_r(struct sk_buff *skb, struct sock *sk)
2354 {
2355 	skb_orphan(skb);
2356 	skb->sk = sk;
2357 	skb->destructor = sock_rfree;
2358 	atomic_add(skb->truesize, &sk->sk_rmem_alloc);
2359 	sk_mem_charge(sk, skb->truesize);
2360 }
2361 
2362 static inline __must_check bool skb_set_owner_sk_safe(struct sk_buff *skb, struct sock *sk)
2363 {
2364 	if (sk && refcount_inc_not_zero(&sk->sk_refcnt)) {
2365 		skb_orphan(skb);
2366 		skb->destructor = sock_efree;
2367 		skb->sk = sk;
2368 		return true;
2369 	}
2370 	return false;
2371 }
2372 
2373 static inline void skb_prepare_for_gro(struct sk_buff *skb)
2374 {
2375 	if (skb->destructor != sock_wfree) {
2376 		skb_orphan(skb);
2377 		return;
2378 	}
2379 	skb->slow_gro = 1;
2380 }
2381 
2382 void sk_reset_timer(struct sock *sk, struct timer_list *timer,
2383 		    unsigned long expires);
2384 
2385 void sk_stop_timer(struct sock *sk, struct timer_list *timer);
2386 
2387 void sk_stop_timer_sync(struct sock *sk, struct timer_list *timer);
2388 
2389 int __sk_queue_drop_skb(struct sock *sk, struct sk_buff_head *sk_queue,
2390 			struct sk_buff *skb, unsigned int flags,
2391 			void (*destructor)(struct sock *sk,
2392 					   struct sk_buff *skb));
2393 int __sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
2394 
2395 int sock_queue_rcv_skb_reason(struct sock *sk, struct sk_buff *skb,
2396 			      enum skb_drop_reason *reason);
2397 
2398 static inline int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
2399 {
2400 	return sock_queue_rcv_skb_reason(sk, skb, NULL);
2401 }
2402 
2403 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb);
2404 struct sk_buff *sock_dequeue_err_skb(struct sock *sk);
2405 
2406 /*
2407  *	Recover an error report and clear atomically
2408  */
2409 
2410 static inline int sock_error(struct sock *sk)
2411 {
2412 	int err;
2413 
2414 	/* Avoid an atomic operation for the common case.
2415 	 * This is racy since another cpu/thread can change sk_err under us.
2416 	 */
2417 	if (likely(data_race(!sk->sk_err)))
2418 		return 0;
2419 
2420 	err = xchg(&sk->sk_err, 0);
2421 	return -err;
2422 }
2423 
2424 void sk_error_report(struct sock *sk);
2425 
2426 static inline unsigned long sock_wspace(struct sock *sk)
2427 {
2428 	int amt = 0;
2429 
2430 	if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
2431 		amt = sk->sk_sndbuf - refcount_read(&sk->sk_wmem_alloc);
2432 		if (amt < 0)
2433 			amt = 0;
2434 	}
2435 	return amt;
2436 }
2437 
2438 /* Note:
2439  *  We use sk->sk_wq_raw, from contexts knowing this
2440  *  pointer is not NULL and cannot disappear/change.
2441  */
2442 static inline void sk_set_bit(int nr, struct sock *sk)
2443 {
2444 	if ((nr == SOCKWQ_ASYNC_NOSPACE || nr == SOCKWQ_ASYNC_WAITDATA) &&
2445 	    !sock_flag(sk, SOCK_FASYNC))
2446 		return;
2447 
2448 	set_bit(nr, &sk->sk_wq_raw->flags);
2449 }
2450 
2451 static inline void sk_clear_bit(int nr, struct sock *sk)
2452 {
2453 	if ((nr == SOCKWQ_ASYNC_NOSPACE || nr == SOCKWQ_ASYNC_WAITDATA) &&
2454 	    !sock_flag(sk, SOCK_FASYNC))
2455 		return;
2456 
2457 	clear_bit(nr, &sk->sk_wq_raw->flags);
2458 }
2459 
2460 static inline void sk_wake_async(const struct sock *sk, int how, int band)
2461 {
2462 	if (sock_flag(sk, SOCK_FASYNC)) {
2463 		rcu_read_lock();
2464 		sock_wake_async(rcu_dereference(sk->sk_wq), how, band);
2465 		rcu_read_unlock();
2466 	}
2467 }
2468 
2469 /* Since sk_{r,w}mem_alloc sums skb->truesize, even a small frame might
2470  * need sizeof(sk_buff) + MTU + padding, unless net driver perform copybreak.
2471  * Note: for send buffers, TCP works better if we can build two skbs at
2472  * minimum.
2473  */
2474 #define TCP_SKB_MIN_TRUESIZE	(2048 + SKB_DATA_ALIGN(sizeof(struct sk_buff)))
2475 
2476 #define SOCK_MIN_SNDBUF		(TCP_SKB_MIN_TRUESIZE * 2)
2477 #define SOCK_MIN_RCVBUF		 TCP_SKB_MIN_TRUESIZE
2478 
2479 static inline void sk_stream_moderate_sndbuf(struct sock *sk)
2480 {
2481 	u32 val;
2482 
2483 	if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
2484 		return;
2485 
2486 	val = min(sk->sk_sndbuf, sk->sk_wmem_queued >> 1);
2487 	val = max_t(u32, val, sk_unused_reserved_mem(sk));
2488 
2489 	WRITE_ONCE(sk->sk_sndbuf, max_t(u32, val, SOCK_MIN_SNDBUF));
2490 }
2491 
2492 /**
2493  * sk_page_frag - return an appropriate page_frag
2494  * @sk: socket
2495  *
2496  * Use the per task page_frag instead of the per socket one for
2497  * optimization when we know that we're in process context and own
2498  * everything that's associated with %current.
2499  *
2500  * Both direct reclaim and page faults can nest inside other
2501  * socket operations and end up recursing into sk_page_frag()
2502  * while it's already in use: explicitly avoid task page_frag
2503  * usage if the caller is potentially doing any of them.
2504  * This assumes that page fault handlers use the GFP_NOFS flags.
2505  *
2506  * Return: a per task page_frag if context allows that,
2507  * otherwise a per socket one.
2508  */
2509 static inline struct page_frag *sk_page_frag(struct sock *sk)
2510 {
2511 	if ((sk->sk_allocation & (__GFP_DIRECT_RECLAIM | __GFP_MEMALLOC | __GFP_FS)) ==
2512 	    (__GFP_DIRECT_RECLAIM | __GFP_FS))
2513 		return &current->task_frag;
2514 
2515 	return &sk->sk_frag;
2516 }
2517 
2518 bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag);
2519 
2520 /*
2521  *	Default write policy as shown to user space via poll/select/SIGIO
2522  */
2523 static inline bool sock_writeable(const struct sock *sk)
2524 {
2525 	return refcount_read(&sk->sk_wmem_alloc) < (READ_ONCE(sk->sk_sndbuf) >> 1);
2526 }
2527 
2528 static inline gfp_t gfp_any(void)
2529 {
2530 	return in_softirq() ? GFP_ATOMIC : GFP_KERNEL;
2531 }
2532 
2533 static inline gfp_t gfp_memcg_charge(void)
2534 {
2535 	return in_softirq() ? GFP_NOWAIT : GFP_KERNEL;
2536 }
2537 
2538 static inline long sock_rcvtimeo(const struct sock *sk, bool noblock)
2539 {
2540 	return noblock ? 0 : sk->sk_rcvtimeo;
2541 }
2542 
2543 static inline long sock_sndtimeo(const struct sock *sk, bool noblock)
2544 {
2545 	return noblock ? 0 : sk->sk_sndtimeo;
2546 }
2547 
2548 static inline int sock_rcvlowat(const struct sock *sk, int waitall, int len)
2549 {
2550 	int v = waitall ? len : min_t(int, READ_ONCE(sk->sk_rcvlowat), len);
2551 
2552 	return v ?: 1;
2553 }
2554 
2555 /* Alas, with timeout socket operations are not restartable.
2556  * Compare this to poll().
2557  */
2558 static inline int sock_intr_errno(long timeo)
2559 {
2560 	return timeo == MAX_SCHEDULE_TIMEOUT ? -ERESTARTSYS : -EINTR;
2561 }
2562 
2563 struct sock_skb_cb {
2564 	u32 dropcount;
2565 };
2566 
2567 /* Store sock_skb_cb at the end of skb->cb[] so protocol families
2568  * using skb->cb[] would keep using it directly and utilize its
2569  * alignement guarantee.
2570  */
2571 #define SOCK_SKB_CB_OFFSET ((sizeof_field(struct sk_buff, cb) - \
2572 			    sizeof(struct sock_skb_cb)))
2573 
2574 #define SOCK_SKB_CB(__skb) ((struct sock_skb_cb *)((__skb)->cb + \
2575 			    SOCK_SKB_CB_OFFSET))
2576 
2577 #define sock_skb_cb_check_size(size) \
2578 	BUILD_BUG_ON((size) > SOCK_SKB_CB_OFFSET)
2579 
2580 static inline void
2581 sock_skb_set_dropcount(const struct sock *sk, struct sk_buff *skb)
2582 {
2583 	SOCK_SKB_CB(skb)->dropcount = sock_flag(sk, SOCK_RXQ_OVFL) ?
2584 						atomic_read(&sk->sk_drops) : 0;
2585 }
2586 
2587 static inline void sk_drops_add(struct sock *sk, const struct sk_buff *skb)
2588 {
2589 	int segs = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
2590 
2591 	atomic_add(segs, &sk->sk_drops);
2592 }
2593 
2594 static inline ktime_t sock_read_timestamp(struct sock *sk)
2595 {
2596 #if BITS_PER_LONG==32
2597 	unsigned int seq;
2598 	ktime_t kt;
2599 
2600 	do {
2601 		seq = read_seqbegin(&sk->sk_stamp_seq);
2602 		kt = sk->sk_stamp;
2603 	} while (read_seqretry(&sk->sk_stamp_seq, seq));
2604 
2605 	return kt;
2606 #else
2607 	return READ_ONCE(sk->sk_stamp);
2608 #endif
2609 }
2610 
2611 static inline void sock_write_timestamp(struct sock *sk, ktime_t kt)
2612 {
2613 #if BITS_PER_LONG==32
2614 	write_seqlock(&sk->sk_stamp_seq);
2615 	sk->sk_stamp = kt;
2616 	write_sequnlock(&sk->sk_stamp_seq);
2617 #else
2618 	WRITE_ONCE(sk->sk_stamp, kt);
2619 #endif
2620 }
2621 
2622 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
2623 			   struct sk_buff *skb);
2624 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
2625 			     struct sk_buff *skb);
2626 
2627 static inline void
2628 sock_recv_timestamp(struct msghdr *msg, struct sock *sk, struct sk_buff *skb)
2629 {
2630 	ktime_t kt = skb->tstamp;
2631 	struct skb_shared_hwtstamps *hwtstamps = skb_hwtstamps(skb);
2632 
2633 	/*
2634 	 * generate control messages if
2635 	 * - receive time stamping in software requested
2636 	 * - software time stamp available and wanted
2637 	 * - hardware time stamps available and wanted
2638 	 */
2639 	if (sock_flag(sk, SOCK_RCVTSTAMP) ||
2640 	    (sk->sk_tsflags & SOF_TIMESTAMPING_RX_SOFTWARE) ||
2641 	    (kt && sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) ||
2642 	    (hwtstamps->hwtstamp &&
2643 	     (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE)))
2644 		__sock_recv_timestamp(msg, sk, skb);
2645 	else
2646 		sock_write_timestamp(sk, kt);
2647 
2648 	if (sock_flag(sk, SOCK_WIFI_STATUS) && skb->wifi_acked_valid)
2649 		__sock_recv_wifi_status(msg, sk, skb);
2650 }
2651 
2652 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
2653 			      struct sk_buff *skb);
2654 
2655 #define SK_DEFAULT_STAMP (-1L * NSEC_PER_SEC)
2656 static inline void sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
2657 					  struct sk_buff *skb)
2658 {
2659 #define FLAGS_TS_OR_DROPS ((1UL << SOCK_RXQ_OVFL)			| \
2660 			   (1UL << SOCK_RCVTSTAMP))
2661 #define TSFLAGS_ANY	  (SOF_TIMESTAMPING_SOFTWARE			| \
2662 			   SOF_TIMESTAMPING_RAW_HARDWARE)
2663 
2664 	if (sk->sk_flags & FLAGS_TS_OR_DROPS || sk->sk_tsflags & TSFLAGS_ANY)
2665 		__sock_recv_ts_and_drops(msg, sk, skb);
2666 	else if (unlikely(sock_flag(sk, SOCK_TIMESTAMP)))
2667 		sock_write_timestamp(sk, skb->tstamp);
2668 	else if (unlikely(sk->sk_stamp == SK_DEFAULT_STAMP))
2669 		sock_write_timestamp(sk, 0);
2670 }
2671 
2672 void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags);
2673 
2674 /**
2675  * _sock_tx_timestamp - checks whether the outgoing packet is to be time stamped
2676  * @sk:		socket sending this packet
2677  * @tsflags:	timestamping flags to use
2678  * @tx_flags:	completed with instructions for time stamping
2679  * @tskey:      filled in with next sk_tskey (not for TCP, which uses seqno)
2680  *
2681  * Note: callers should take care of initial ``*tx_flags`` value (usually 0)
2682  */
2683 static inline void _sock_tx_timestamp(struct sock *sk, __u16 tsflags,
2684 				      __u8 *tx_flags, __u32 *tskey)
2685 {
2686 	if (unlikely(tsflags)) {
2687 		__sock_tx_timestamp(tsflags, tx_flags);
2688 		if (tsflags & SOF_TIMESTAMPING_OPT_ID && tskey &&
2689 		    tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK)
2690 			*tskey = atomic_inc_return(&sk->sk_tskey) - 1;
2691 	}
2692 	if (unlikely(sock_flag(sk, SOCK_WIFI_STATUS)))
2693 		*tx_flags |= SKBTX_WIFI_STATUS;
2694 }
2695 
2696 static inline void sock_tx_timestamp(struct sock *sk, __u16 tsflags,
2697 				     __u8 *tx_flags)
2698 {
2699 	_sock_tx_timestamp(sk, tsflags, tx_flags, NULL);
2700 }
2701 
2702 static inline void skb_setup_tx_timestamp(struct sk_buff *skb, __u16 tsflags)
2703 {
2704 	_sock_tx_timestamp(skb->sk, tsflags, &skb_shinfo(skb)->tx_flags,
2705 			   &skb_shinfo(skb)->tskey);
2706 }
2707 
2708 static inline bool sk_is_tcp(const struct sock *sk)
2709 {
2710 	return sk->sk_type == SOCK_STREAM && sk->sk_protocol == IPPROTO_TCP;
2711 }
2712 
2713 /**
2714  * sk_eat_skb - Release a skb if it is no longer needed
2715  * @sk: socket to eat this skb from
2716  * @skb: socket buffer to eat
2717  *
2718  * This routine must be called with interrupts disabled or with the socket
2719  * locked so that the sk_buff queue operation is ok.
2720 */
2721 static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb)
2722 {
2723 	__skb_unlink(skb, &sk->sk_receive_queue);
2724 	__kfree_skb(skb);
2725 }
2726 
2727 static inline bool
2728 skb_sk_is_prefetched(struct sk_buff *skb)
2729 {
2730 #ifdef CONFIG_INET
2731 	return skb->destructor == sock_pfree;
2732 #else
2733 	return false;
2734 #endif /* CONFIG_INET */
2735 }
2736 
2737 /* This helper checks if a socket is a full socket,
2738  * ie _not_ a timewait or request socket.
2739  */
2740 static inline bool sk_fullsock(const struct sock *sk)
2741 {
2742 	return (1 << sk->sk_state) & ~(TCPF_TIME_WAIT | TCPF_NEW_SYN_RECV);
2743 }
2744 
2745 static inline bool
2746 sk_is_refcounted(struct sock *sk)
2747 {
2748 	/* Only full sockets have sk->sk_flags. */
2749 	return !sk_fullsock(sk) || !sock_flag(sk, SOCK_RCU_FREE);
2750 }
2751 
2752 /**
2753  * skb_steal_sock - steal a socket from an sk_buff
2754  * @skb: sk_buff to steal the socket from
2755  * @refcounted: is set to true if the socket is reference-counted
2756  */
2757 static inline struct sock *
2758 skb_steal_sock(struct sk_buff *skb, bool *refcounted)
2759 {
2760 	if (skb->sk) {
2761 		struct sock *sk = skb->sk;
2762 
2763 		*refcounted = true;
2764 		if (skb_sk_is_prefetched(skb))
2765 			*refcounted = sk_is_refcounted(sk);
2766 		skb->destructor = NULL;
2767 		skb->sk = NULL;
2768 		return sk;
2769 	}
2770 	*refcounted = false;
2771 	return NULL;
2772 }
2773 
2774 /* Checks if this SKB belongs to an HW offloaded socket
2775  * and whether any SW fallbacks are required based on dev.
2776  * Check decrypted mark in case skb_orphan() cleared socket.
2777  */
2778 static inline struct sk_buff *sk_validate_xmit_skb(struct sk_buff *skb,
2779 						   struct net_device *dev)
2780 {
2781 #ifdef CONFIG_SOCK_VALIDATE_XMIT
2782 	struct sock *sk = skb->sk;
2783 
2784 	if (sk && sk_fullsock(sk) && sk->sk_validate_xmit_skb) {
2785 		skb = sk->sk_validate_xmit_skb(sk, dev, skb);
2786 #ifdef CONFIG_TLS_DEVICE
2787 	} else if (unlikely(skb->decrypted)) {
2788 		pr_warn_ratelimited("unencrypted skb with no associated socket - dropping\n");
2789 		kfree_skb(skb);
2790 		skb = NULL;
2791 #endif
2792 	}
2793 #endif
2794 
2795 	return skb;
2796 }
2797 
2798 /* This helper checks if a socket is a LISTEN or NEW_SYN_RECV
2799  * SYNACK messages can be attached to either ones (depending on SYNCOOKIE)
2800  */
2801 static inline bool sk_listener(const struct sock *sk)
2802 {
2803 	return (1 << sk->sk_state) & (TCPF_LISTEN | TCPF_NEW_SYN_RECV);
2804 }
2805 
2806 void sock_enable_timestamp(struct sock *sk, enum sock_flags flag);
2807 int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len, int level,
2808 		       int type);
2809 
2810 bool sk_ns_capable(const struct sock *sk,
2811 		   struct user_namespace *user_ns, int cap);
2812 bool sk_capable(const struct sock *sk, int cap);
2813 bool sk_net_capable(const struct sock *sk, int cap);
2814 
2815 void sk_get_meminfo(const struct sock *sk, u32 *meminfo);
2816 
2817 /* Take into consideration the size of the struct sk_buff overhead in the
2818  * determination of these values, since that is non-constant across
2819  * platforms.  This makes socket queueing behavior and performance
2820  * not depend upon such differences.
2821  */
2822 #define _SK_MEM_PACKETS		256
2823 #define _SK_MEM_OVERHEAD	SKB_TRUESIZE(256)
2824 #define SK_WMEM_MAX		(_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
2825 #define SK_RMEM_MAX		(_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
2826 
2827 extern __u32 sysctl_wmem_max;
2828 extern __u32 sysctl_rmem_max;
2829 
2830 extern int sysctl_tstamp_allow_data;
2831 extern int sysctl_optmem_max;
2832 
2833 extern __u32 sysctl_wmem_default;
2834 extern __u32 sysctl_rmem_default;
2835 
2836 #define SKB_FRAG_PAGE_ORDER	get_order(32768)
2837 DECLARE_STATIC_KEY_FALSE(net_high_order_alloc_disable_key);
2838 
2839 static inline int sk_get_wmem0(const struct sock *sk, const struct proto *proto)
2840 {
2841 	/* Does this proto have per netns sysctl_wmem ? */
2842 	if (proto->sysctl_wmem_offset)
2843 		return *(int *)((void *)sock_net(sk) + proto->sysctl_wmem_offset);
2844 
2845 	return *proto->sysctl_wmem;
2846 }
2847 
2848 static inline int sk_get_rmem0(const struct sock *sk, const struct proto *proto)
2849 {
2850 	/* Does this proto have per netns sysctl_rmem ? */
2851 	if (proto->sysctl_rmem_offset)
2852 		return *(int *)((void *)sock_net(sk) + proto->sysctl_rmem_offset);
2853 
2854 	return *proto->sysctl_rmem;
2855 }
2856 
2857 /* Default TCP Small queue budget is ~1 ms of data (1sec >> 10)
2858  * Some wifi drivers need to tweak it to get more chunks.
2859  * They can use this helper from their ndo_start_xmit()
2860  */
2861 static inline void sk_pacing_shift_update(struct sock *sk, int val)
2862 {
2863 	if (!sk || !sk_fullsock(sk) || READ_ONCE(sk->sk_pacing_shift) == val)
2864 		return;
2865 	WRITE_ONCE(sk->sk_pacing_shift, val);
2866 }
2867 
2868 /* if a socket is bound to a device, check that the given device
2869  * index is either the same or that the socket is bound to an L3
2870  * master device and the given device index is also enslaved to
2871  * that L3 master
2872  */
2873 static inline bool sk_dev_equal_l3scope(struct sock *sk, int dif)
2874 {
2875 	int mdif;
2876 
2877 	if (!sk->sk_bound_dev_if || sk->sk_bound_dev_if == dif)
2878 		return true;
2879 
2880 	mdif = l3mdev_master_ifindex_by_index(sock_net(sk), dif);
2881 	if (mdif && mdif == sk->sk_bound_dev_if)
2882 		return true;
2883 
2884 	return false;
2885 }
2886 
2887 void sock_def_readable(struct sock *sk);
2888 
2889 int sock_bindtoindex(struct sock *sk, int ifindex, bool lock_sk);
2890 void sock_set_timestamp(struct sock *sk, int optname, bool valbool);
2891 int sock_set_timestamping(struct sock *sk, int optname,
2892 			  struct so_timestamping timestamping);
2893 
2894 void sock_enable_timestamps(struct sock *sk);
2895 void sock_no_linger(struct sock *sk);
2896 void sock_set_keepalive(struct sock *sk);
2897 void sock_set_priority(struct sock *sk, u32 priority);
2898 void sock_set_rcvbuf(struct sock *sk, int val);
2899 void sock_set_mark(struct sock *sk, u32 val);
2900 void sock_set_reuseaddr(struct sock *sk);
2901 void sock_set_reuseport(struct sock *sk);
2902 void sock_set_sndtimeo(struct sock *sk, s64 secs);
2903 
2904 int sock_bind_add(struct sock *sk, struct sockaddr *addr, int addr_len);
2905 
2906 int sock_get_timeout(long timeo, void *optval, bool old_timeval);
2907 int sock_copy_user_timeval(struct __kernel_sock_timeval *tv,
2908 			   sockptr_t optval, int optlen, bool old_timeval);
2909 
2910 static inline bool sk_is_readable(struct sock *sk)
2911 {
2912 	if (sk->sk_prot->sock_is_readable)
2913 		return sk->sk_prot->sock_is_readable(sk);
2914 	return false;
2915 }
2916 #endif	/* _SOCK_H */
2917