xref: /linux/include/net/sock.h (revision a82ebb093fc7bdd88f8df17b2fa303d7535fa43b)
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Definitions for the AF_INET socket handler.
8  *
9  * Version:	@(#)sock.h	1.0.4	05/13/93
10  *
11  * Authors:	Ross Biro
12  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
13  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
14  *		Florian La Roche <flla@stud.uni-sb.de>
15  *
16  * Fixes:
17  *		Alan Cox	:	Volatiles in skbuff pointers. See
18  *					skbuff comments. May be overdone,
19  *					better to prove they can be removed
20  *					than the reverse.
21  *		Alan Cox	:	Added a zapped field for tcp to note
22  *					a socket is reset and must stay shut up
23  *		Alan Cox	:	New fields for options
24  *	Pauline Middelink	:	identd support
25  *		Alan Cox	:	Eliminate low level recv/recvfrom
26  *		David S. Miller	:	New socket lookup architecture.
27  *              Steve Whitehouse:       Default routines for sock_ops
28  *              Arnaldo C. Melo :	removed net_pinfo, tp_pinfo and made
29  *              			protinfo be just a void pointer, as the
30  *              			protocol specific parts were moved to
31  *              			respective headers and ipv4/v6, etc now
32  *              			use private slabcaches for its socks
33  *              Pedro Hortas	:	New flags field for socket options
34  */
35 #ifndef _SOCK_H
36 #define _SOCK_H
37 
38 #include <linux/hardirq.h>
39 #include <linux/kernel.h>
40 #include <linux/list.h>
41 #include <linux/list_nulls.h>
42 #include <linux/timer.h>
43 #include <linux/cache.h>
44 #include <linux/bitops.h>
45 #include <linux/lockdep.h>
46 #include <linux/netdevice.h>
47 #include <linux/skbuff.h>	/* struct sk_buff */
48 #include <linux/mm.h>
49 #include <linux/security.h>
50 #include <linux/slab.h>
51 #include <linux/uaccess.h>
52 #include <linux/page_counter.h>
53 #include <linux/memcontrol.h>
54 #include <linux/static_key.h>
55 #include <linux/sched.h>
56 #include <linux/wait.h>
57 #include <linux/cgroup-defs.h>
58 #include <linux/rbtree.h>
59 #include <linux/rculist_nulls.h>
60 #include <linux/poll.h>
61 #include <linux/sockptr.h>
62 #include <linux/indirect_call_wrapper.h>
63 #include <linux/atomic.h>
64 #include <linux/refcount.h>
65 #include <linux/llist.h>
66 #include <net/dst.h>
67 #include <net/checksum.h>
68 #include <net/tcp_states.h>
69 #include <linux/net_tstamp.h>
70 #include <net/l3mdev.h>
71 #include <uapi/linux/socket.h>
72 
73 /*
74  * This structure really needs to be cleaned up.
75  * Most of it is for TCP, and not used by any of
76  * the other protocols.
77  */
78 
79 /* Define this to get the SOCK_DBG debugging facility. */
80 #define SOCK_DEBUGGING
81 #ifdef SOCK_DEBUGGING
82 #define SOCK_DEBUG(sk, msg...) do { if ((sk) && sock_flag((sk), SOCK_DBG)) \
83 					printk(KERN_DEBUG msg); } while (0)
84 #else
85 /* Validate arguments and do nothing */
86 static inline __printf(2, 3)
87 void SOCK_DEBUG(const struct sock *sk, const char *msg, ...)
88 {
89 }
90 #endif
91 
92 /* This is the per-socket lock.  The spinlock provides a synchronization
93  * between user contexts and software interrupt processing, whereas the
94  * mini-semaphore synchronizes multiple users amongst themselves.
95  */
96 typedef struct {
97 	spinlock_t		slock;
98 	int			owned;
99 	wait_queue_head_t	wq;
100 	/*
101 	 * We express the mutex-alike socket_lock semantics
102 	 * to the lock validator by explicitly managing
103 	 * the slock as a lock variant (in addition to
104 	 * the slock itself):
105 	 */
106 #ifdef CONFIG_DEBUG_LOCK_ALLOC
107 	struct lockdep_map dep_map;
108 #endif
109 } socket_lock_t;
110 
111 struct sock;
112 struct proto;
113 struct net;
114 
115 typedef __u32 __bitwise __portpair;
116 typedef __u64 __bitwise __addrpair;
117 
118 /**
119  *	struct sock_common - minimal network layer representation of sockets
120  *	@skc_daddr: Foreign IPv4 addr
121  *	@skc_rcv_saddr: Bound local IPv4 addr
122  *	@skc_addrpair: 8-byte-aligned __u64 union of @skc_daddr & @skc_rcv_saddr
123  *	@skc_hash: hash value used with various protocol lookup tables
124  *	@skc_u16hashes: two u16 hash values used by UDP lookup tables
125  *	@skc_dport: placeholder for inet_dport/tw_dport
126  *	@skc_num: placeholder for inet_num/tw_num
127  *	@skc_portpair: __u32 union of @skc_dport & @skc_num
128  *	@skc_family: network address family
129  *	@skc_state: Connection state
130  *	@skc_reuse: %SO_REUSEADDR setting
131  *	@skc_reuseport: %SO_REUSEPORT setting
132  *	@skc_ipv6only: socket is IPV6 only
133  *	@skc_net_refcnt: socket is using net ref counting
134  *	@skc_bound_dev_if: bound device index if != 0
135  *	@skc_bind_node: bind hash linkage for various protocol lookup tables
136  *	@skc_portaddr_node: second hash linkage for UDP/UDP-Lite protocol
137  *	@skc_prot: protocol handlers inside a network family
138  *	@skc_net: reference to the network namespace of this socket
139  *	@skc_v6_daddr: IPV6 destination address
140  *	@skc_v6_rcv_saddr: IPV6 source address
141  *	@skc_cookie: socket's cookie value
142  *	@skc_node: main hash linkage for various protocol lookup tables
143  *	@skc_nulls_node: main hash linkage for TCP/UDP/UDP-Lite protocol
144  *	@skc_tx_queue_mapping: tx queue number for this connection
145  *	@skc_rx_queue_mapping: rx queue number for this connection
146  *	@skc_flags: place holder for sk_flags
147  *		%SO_LINGER (l_onoff), %SO_BROADCAST, %SO_KEEPALIVE,
148  *		%SO_OOBINLINE settings, %SO_TIMESTAMPING settings
149  *	@skc_listener: connection request listener socket (aka rsk_listener)
150  *		[union with @skc_flags]
151  *	@skc_tw_dr: (aka tw_dr) ptr to &struct inet_timewait_death_row
152  *		[union with @skc_flags]
153  *	@skc_incoming_cpu: record/match cpu processing incoming packets
154  *	@skc_rcv_wnd: (aka rsk_rcv_wnd) TCP receive window size (possibly scaled)
155  *		[union with @skc_incoming_cpu]
156  *	@skc_tw_rcv_nxt: (aka tw_rcv_nxt) TCP window next expected seq number
157  *		[union with @skc_incoming_cpu]
158  *	@skc_refcnt: reference count
159  *
160  *	This is the minimal network layer representation of sockets, the header
161  *	for struct sock and struct inet_timewait_sock.
162  */
163 struct sock_common {
164 	/* skc_daddr and skc_rcv_saddr must be grouped on a 8 bytes aligned
165 	 * address on 64bit arches : cf INET_MATCH()
166 	 */
167 	union {
168 		__addrpair	skc_addrpair;
169 		struct {
170 			__be32	skc_daddr;
171 			__be32	skc_rcv_saddr;
172 		};
173 	};
174 	union  {
175 		unsigned int	skc_hash;
176 		__u16		skc_u16hashes[2];
177 	};
178 	/* skc_dport && skc_num must be grouped as well */
179 	union {
180 		__portpair	skc_portpair;
181 		struct {
182 			__be16	skc_dport;
183 			__u16	skc_num;
184 		};
185 	};
186 
187 	unsigned short		skc_family;
188 	volatile unsigned char	skc_state;
189 	unsigned char		skc_reuse:4;
190 	unsigned char		skc_reuseport:1;
191 	unsigned char		skc_ipv6only:1;
192 	unsigned char		skc_net_refcnt:1;
193 	int			skc_bound_dev_if;
194 	union {
195 		struct hlist_node	skc_bind_node;
196 		struct hlist_node	skc_portaddr_node;
197 	};
198 	struct proto		*skc_prot;
199 	possible_net_t		skc_net;
200 
201 #if IS_ENABLED(CONFIG_IPV6)
202 	struct in6_addr		skc_v6_daddr;
203 	struct in6_addr		skc_v6_rcv_saddr;
204 #endif
205 
206 	atomic64_t		skc_cookie;
207 
208 	/* following fields are padding to force
209 	 * offset(struct sock, sk_refcnt) == 128 on 64bit arches
210 	 * assuming IPV6 is enabled. We use this padding differently
211 	 * for different kind of 'sockets'
212 	 */
213 	union {
214 		unsigned long	skc_flags;
215 		struct sock	*skc_listener; /* request_sock */
216 		struct inet_timewait_death_row *skc_tw_dr; /* inet_timewait_sock */
217 	};
218 	/*
219 	 * fields between dontcopy_begin/dontcopy_end
220 	 * are not copied in sock_copy()
221 	 */
222 	/* private: */
223 	int			skc_dontcopy_begin[0];
224 	/* public: */
225 	union {
226 		struct hlist_node	skc_node;
227 		struct hlist_nulls_node skc_nulls_node;
228 	};
229 	unsigned short		skc_tx_queue_mapping;
230 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
231 	unsigned short		skc_rx_queue_mapping;
232 #endif
233 	union {
234 		int		skc_incoming_cpu;
235 		u32		skc_rcv_wnd;
236 		u32		skc_tw_rcv_nxt; /* struct tcp_timewait_sock  */
237 	};
238 
239 	refcount_t		skc_refcnt;
240 	/* private: */
241 	int                     skc_dontcopy_end[0];
242 	union {
243 		u32		skc_rxhash;
244 		u32		skc_window_clamp;
245 		u32		skc_tw_snd_nxt; /* struct tcp_timewait_sock */
246 	};
247 	/* public: */
248 };
249 
250 struct bpf_local_storage;
251 struct sk_filter;
252 
253 /**
254   *	struct sock - network layer representation of sockets
255   *	@__sk_common: shared layout with inet_timewait_sock
256   *	@sk_shutdown: mask of %SEND_SHUTDOWN and/or %RCV_SHUTDOWN
257   *	@sk_userlocks: %SO_SNDBUF and %SO_RCVBUF settings
258   *	@sk_lock:	synchronizer
259   *	@sk_kern_sock: True if sock is using kernel lock classes
260   *	@sk_rcvbuf: size of receive buffer in bytes
261   *	@sk_wq: sock wait queue and async head
262   *	@sk_rx_dst: receive input route used by early demux
263   *	@sk_rx_dst_ifindex: ifindex for @sk_rx_dst
264   *	@sk_rx_dst_cookie: cookie for @sk_rx_dst
265   *	@sk_dst_cache: destination cache
266   *	@sk_dst_pending_confirm: need to confirm neighbour
267   *	@sk_policy: flow policy
268   *	@sk_receive_queue: incoming packets
269   *	@sk_wmem_alloc: transmit queue bytes committed
270   *	@sk_tsq_flags: TCP Small Queues flags
271   *	@sk_write_queue: Packet sending queue
272   *	@sk_omem_alloc: "o" is "option" or "other"
273   *	@sk_wmem_queued: persistent queue size
274   *	@sk_forward_alloc: space allocated forward
275   *	@sk_reserved_mem: space reserved and non-reclaimable for the socket
276   *	@sk_napi_id: id of the last napi context to receive data for sk
277   *	@sk_ll_usec: usecs to busypoll when there is no data
278   *	@sk_allocation: allocation mode
279   *	@sk_pacing_rate: Pacing rate (if supported by transport/packet scheduler)
280   *	@sk_pacing_status: Pacing status (requested, handled by sch_fq)
281   *	@sk_max_pacing_rate: Maximum pacing rate (%SO_MAX_PACING_RATE)
282   *	@sk_sndbuf: size of send buffer in bytes
283   *	@__sk_flags_offset: empty field used to determine location of bitfield
284   *	@sk_padding: unused element for alignment
285   *	@sk_no_check_tx: %SO_NO_CHECK setting, set checksum in TX packets
286   *	@sk_no_check_rx: allow zero checksum in RX packets
287   *	@sk_route_caps: route capabilities (e.g. %NETIF_F_TSO)
288   *	@sk_gso_disabled: if set, NETIF_F_GSO_MASK is forbidden.
289   *	@sk_gso_type: GSO type (e.g. %SKB_GSO_TCPV4)
290   *	@sk_gso_max_size: Maximum GSO segment size to build
291   *	@sk_gso_max_segs: Maximum number of GSO segments
292   *	@sk_pacing_shift: scaling factor for TCP Small Queues
293   *	@sk_lingertime: %SO_LINGER l_linger setting
294   *	@sk_backlog: always used with the per-socket spinlock held
295   *	@sk_callback_lock: used with the callbacks in the end of this struct
296   *	@sk_error_queue: rarely used
297   *	@sk_prot_creator: sk_prot of original sock creator (see ipv6_setsockopt,
298   *			  IPV6_ADDRFORM for instance)
299   *	@sk_err: last error
300   *	@sk_err_soft: errors that don't cause failure but are the cause of a
301   *		      persistent failure not just 'timed out'
302   *	@sk_drops: raw/udp drops counter
303   *	@sk_ack_backlog: current listen backlog
304   *	@sk_max_ack_backlog: listen backlog set in listen()
305   *	@sk_uid: user id of owner
306   *	@sk_prefer_busy_poll: prefer busypolling over softirq processing
307   *	@sk_busy_poll_budget: napi processing budget when busypolling
308   *	@sk_priority: %SO_PRIORITY setting
309   *	@sk_type: socket type (%SOCK_STREAM, etc)
310   *	@sk_protocol: which protocol this socket belongs in this network family
311   *	@sk_peer_lock: lock protecting @sk_peer_pid and @sk_peer_cred
312   *	@sk_peer_pid: &struct pid for this socket's peer
313   *	@sk_peer_cred: %SO_PEERCRED setting
314   *	@sk_rcvlowat: %SO_RCVLOWAT setting
315   *	@sk_rcvtimeo: %SO_RCVTIMEO setting
316   *	@sk_sndtimeo: %SO_SNDTIMEO setting
317   *	@sk_txhash: computed flow hash for use on transmit
318   *	@sk_txrehash: enable TX hash rethink
319   *	@sk_filter: socket filtering instructions
320   *	@sk_timer: sock cleanup timer
321   *	@sk_stamp: time stamp of last packet received
322   *	@sk_stamp_seq: lock for accessing sk_stamp on 32 bit architectures only
323   *	@sk_tsflags: SO_TIMESTAMPING flags
324   *	@sk_bind_phc: SO_TIMESTAMPING bind PHC index of PTP virtual clock
325   *	              for timestamping
326   *	@sk_tskey: counter to disambiguate concurrent tstamp requests
327   *	@sk_zckey: counter to order MSG_ZEROCOPY notifications
328   *	@sk_socket: Identd and reporting IO signals
329   *	@sk_user_data: RPC layer private data
330   *	@sk_frag: cached page frag
331   *	@sk_peek_off: current peek_offset value
332   *	@sk_send_head: front of stuff to transmit
333   *	@tcp_rtx_queue: TCP re-transmit queue [union with @sk_send_head]
334   *	@sk_security: used by security modules
335   *	@sk_mark: generic packet mark
336   *	@sk_cgrp_data: cgroup data for this cgroup
337   *	@sk_memcg: this socket's memory cgroup association
338   *	@sk_write_pending: a write to stream socket waits to start
339   *	@sk_state_change: callback to indicate change in the state of the sock
340   *	@sk_data_ready: callback to indicate there is data to be processed
341   *	@sk_write_space: callback to indicate there is bf sending space available
342   *	@sk_error_report: callback to indicate errors (e.g. %MSG_ERRQUEUE)
343   *	@sk_backlog_rcv: callback to process the backlog
344   *	@sk_validate_xmit_skb: ptr to an optional validate function
345   *	@sk_destruct: called at sock freeing time, i.e. when all refcnt == 0
346   *	@sk_reuseport_cb: reuseport group container
347   *	@sk_bpf_storage: ptr to cache and control for bpf_sk_storage
348   *	@sk_rcu: used during RCU grace period
349   *	@sk_clockid: clockid used by time-based scheduling (SO_TXTIME)
350   *	@sk_txtime_deadline_mode: set deadline mode for SO_TXTIME
351   *	@sk_txtime_report_errors: set report errors mode for SO_TXTIME
352   *	@sk_txtime_unused: unused txtime flags
353   *	@ns_tracker: tracker for netns reference
354   */
355 struct sock {
356 	/*
357 	 * Now struct inet_timewait_sock also uses sock_common, so please just
358 	 * don't add nothing before this first member (__sk_common) --acme
359 	 */
360 	struct sock_common	__sk_common;
361 #define sk_node			__sk_common.skc_node
362 #define sk_nulls_node		__sk_common.skc_nulls_node
363 #define sk_refcnt		__sk_common.skc_refcnt
364 #define sk_tx_queue_mapping	__sk_common.skc_tx_queue_mapping
365 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
366 #define sk_rx_queue_mapping	__sk_common.skc_rx_queue_mapping
367 #endif
368 
369 #define sk_dontcopy_begin	__sk_common.skc_dontcopy_begin
370 #define sk_dontcopy_end		__sk_common.skc_dontcopy_end
371 #define sk_hash			__sk_common.skc_hash
372 #define sk_portpair		__sk_common.skc_portpair
373 #define sk_num			__sk_common.skc_num
374 #define sk_dport		__sk_common.skc_dport
375 #define sk_addrpair		__sk_common.skc_addrpair
376 #define sk_daddr		__sk_common.skc_daddr
377 #define sk_rcv_saddr		__sk_common.skc_rcv_saddr
378 #define sk_family		__sk_common.skc_family
379 #define sk_state		__sk_common.skc_state
380 #define sk_reuse		__sk_common.skc_reuse
381 #define sk_reuseport		__sk_common.skc_reuseport
382 #define sk_ipv6only		__sk_common.skc_ipv6only
383 #define sk_net_refcnt		__sk_common.skc_net_refcnt
384 #define sk_bound_dev_if		__sk_common.skc_bound_dev_if
385 #define sk_bind_node		__sk_common.skc_bind_node
386 #define sk_prot			__sk_common.skc_prot
387 #define sk_net			__sk_common.skc_net
388 #define sk_v6_daddr		__sk_common.skc_v6_daddr
389 #define sk_v6_rcv_saddr	__sk_common.skc_v6_rcv_saddr
390 #define sk_cookie		__sk_common.skc_cookie
391 #define sk_incoming_cpu		__sk_common.skc_incoming_cpu
392 #define sk_flags		__sk_common.skc_flags
393 #define sk_rxhash		__sk_common.skc_rxhash
394 
395 	/* early demux fields */
396 	struct dst_entry __rcu	*sk_rx_dst;
397 	int			sk_rx_dst_ifindex;
398 	u32			sk_rx_dst_cookie;
399 
400 	socket_lock_t		sk_lock;
401 	atomic_t		sk_drops;
402 	int			sk_rcvlowat;
403 	struct sk_buff_head	sk_error_queue;
404 	struct sk_buff_head	sk_receive_queue;
405 	/*
406 	 * The backlog queue is special, it is always used with
407 	 * the per-socket spinlock held and requires low latency
408 	 * access. Therefore we special case it's implementation.
409 	 * Note : rmem_alloc is in this structure to fill a hole
410 	 * on 64bit arches, not because its logically part of
411 	 * backlog.
412 	 */
413 	struct {
414 		atomic_t	rmem_alloc;
415 		int		len;
416 		struct sk_buff	*head;
417 		struct sk_buff	*tail;
418 	} sk_backlog;
419 
420 #define sk_rmem_alloc sk_backlog.rmem_alloc
421 
422 	int			sk_forward_alloc;
423 	u32			sk_reserved_mem;
424 #ifdef CONFIG_NET_RX_BUSY_POLL
425 	unsigned int		sk_ll_usec;
426 	/* ===== mostly read cache line ===== */
427 	unsigned int		sk_napi_id;
428 #endif
429 	int			sk_rcvbuf;
430 
431 	struct sk_filter __rcu	*sk_filter;
432 	union {
433 		struct socket_wq __rcu	*sk_wq;
434 		/* private: */
435 		struct socket_wq	*sk_wq_raw;
436 		/* public: */
437 	};
438 #ifdef CONFIG_XFRM
439 	struct xfrm_policy __rcu *sk_policy[2];
440 #endif
441 
442 	struct dst_entry __rcu	*sk_dst_cache;
443 	atomic_t		sk_omem_alloc;
444 	int			sk_sndbuf;
445 
446 	/* ===== cache line for TX ===== */
447 	int			sk_wmem_queued;
448 	refcount_t		sk_wmem_alloc;
449 	unsigned long		sk_tsq_flags;
450 	union {
451 		struct sk_buff	*sk_send_head;
452 		struct rb_root	tcp_rtx_queue;
453 	};
454 	struct sk_buff_head	sk_write_queue;
455 	__s32			sk_peek_off;
456 	int			sk_write_pending;
457 	__u32			sk_dst_pending_confirm;
458 	u32			sk_pacing_status; /* see enum sk_pacing */
459 	long			sk_sndtimeo;
460 	struct timer_list	sk_timer;
461 	__u32			sk_priority;
462 	__u32			sk_mark;
463 	unsigned long		sk_pacing_rate; /* bytes per second */
464 	unsigned long		sk_max_pacing_rate;
465 	struct page_frag	sk_frag;
466 	netdev_features_t	sk_route_caps;
467 	int			sk_gso_type;
468 	unsigned int		sk_gso_max_size;
469 	gfp_t			sk_allocation;
470 	__u32			sk_txhash;
471 
472 	/*
473 	 * Because of non atomicity rules, all
474 	 * changes are protected by socket lock.
475 	 */
476 	u8			sk_gso_disabled : 1,
477 				sk_kern_sock : 1,
478 				sk_no_check_tx : 1,
479 				sk_no_check_rx : 1,
480 				sk_userlocks : 4;
481 	u8			sk_pacing_shift;
482 	u16			sk_type;
483 	u16			sk_protocol;
484 	u16			sk_gso_max_segs;
485 	unsigned long	        sk_lingertime;
486 	struct proto		*sk_prot_creator;
487 	rwlock_t		sk_callback_lock;
488 	int			sk_err,
489 				sk_err_soft;
490 	u32			sk_ack_backlog;
491 	u32			sk_max_ack_backlog;
492 	kuid_t			sk_uid;
493 	u8			sk_txrehash;
494 #ifdef CONFIG_NET_RX_BUSY_POLL
495 	u8			sk_prefer_busy_poll;
496 	u16			sk_busy_poll_budget;
497 #endif
498 	spinlock_t		sk_peer_lock;
499 	int			sk_bind_phc;
500 	struct pid		*sk_peer_pid;
501 	const struct cred	*sk_peer_cred;
502 
503 	long			sk_rcvtimeo;
504 	ktime_t			sk_stamp;
505 #if BITS_PER_LONG==32
506 	seqlock_t		sk_stamp_seq;
507 #endif
508 	u16			sk_tsflags;
509 	u8			sk_shutdown;
510 	atomic_t		sk_tskey;
511 	atomic_t		sk_zckey;
512 
513 	u8			sk_clockid;
514 	u8			sk_txtime_deadline_mode : 1,
515 				sk_txtime_report_errors : 1,
516 				sk_txtime_unused : 6;
517 
518 	struct socket		*sk_socket;
519 	void			*sk_user_data;
520 #ifdef CONFIG_SECURITY
521 	void			*sk_security;
522 #endif
523 	struct sock_cgroup_data	sk_cgrp_data;
524 	struct mem_cgroup	*sk_memcg;
525 	void			(*sk_state_change)(struct sock *sk);
526 	void			(*sk_data_ready)(struct sock *sk);
527 	void			(*sk_write_space)(struct sock *sk);
528 	void			(*sk_error_report)(struct sock *sk);
529 	int			(*sk_backlog_rcv)(struct sock *sk,
530 						  struct sk_buff *skb);
531 #ifdef CONFIG_SOCK_VALIDATE_XMIT
532 	struct sk_buff*		(*sk_validate_xmit_skb)(struct sock *sk,
533 							struct net_device *dev,
534 							struct sk_buff *skb);
535 #endif
536 	void                    (*sk_destruct)(struct sock *sk);
537 	struct sock_reuseport __rcu	*sk_reuseport_cb;
538 #ifdef CONFIG_BPF_SYSCALL
539 	struct bpf_local_storage __rcu	*sk_bpf_storage;
540 #endif
541 	struct rcu_head		sk_rcu;
542 	netns_tracker		ns_tracker;
543 };
544 
545 enum sk_pacing {
546 	SK_PACING_NONE		= 0,
547 	SK_PACING_NEEDED	= 1,
548 	SK_PACING_FQ		= 2,
549 };
550 
551 /* Pointer stored in sk_user_data might not be suitable for copying
552  * when cloning the socket. For instance, it can point to a reference
553  * counted object. sk_user_data bottom bit is set if pointer must not
554  * be copied.
555  */
556 #define SK_USER_DATA_NOCOPY	1UL
557 #define SK_USER_DATA_BPF	2UL	/* Managed by BPF */
558 #define SK_USER_DATA_PTRMASK	~(SK_USER_DATA_NOCOPY | SK_USER_DATA_BPF)
559 
560 /**
561  * sk_user_data_is_nocopy - Test if sk_user_data pointer must not be copied
562  * @sk: socket
563  */
564 static inline bool sk_user_data_is_nocopy(const struct sock *sk)
565 {
566 	return ((uintptr_t)sk->sk_user_data & SK_USER_DATA_NOCOPY);
567 }
568 
569 #define __sk_user_data(sk) ((*((void __rcu **)&(sk)->sk_user_data)))
570 
571 #define rcu_dereference_sk_user_data(sk)				\
572 ({									\
573 	void *__tmp = rcu_dereference(__sk_user_data((sk)));		\
574 	(void *)((uintptr_t)__tmp & SK_USER_DATA_PTRMASK);		\
575 })
576 #define rcu_assign_sk_user_data(sk, ptr)				\
577 ({									\
578 	uintptr_t __tmp = (uintptr_t)(ptr);				\
579 	WARN_ON_ONCE(__tmp & ~SK_USER_DATA_PTRMASK);			\
580 	rcu_assign_pointer(__sk_user_data((sk)), __tmp);		\
581 })
582 #define rcu_assign_sk_user_data_nocopy(sk, ptr)				\
583 ({									\
584 	uintptr_t __tmp = (uintptr_t)(ptr);				\
585 	WARN_ON_ONCE(__tmp & ~SK_USER_DATA_PTRMASK);			\
586 	rcu_assign_pointer(__sk_user_data((sk)),			\
587 			   __tmp | SK_USER_DATA_NOCOPY);		\
588 })
589 
590 static inline
591 struct net *sock_net(const struct sock *sk)
592 {
593 	return read_pnet(&sk->sk_net);
594 }
595 
596 static inline
597 void sock_net_set(struct sock *sk, struct net *net)
598 {
599 	write_pnet(&sk->sk_net, net);
600 }
601 
602 /*
603  * SK_CAN_REUSE and SK_NO_REUSE on a socket mean that the socket is OK
604  * or not whether his port will be reused by someone else. SK_FORCE_REUSE
605  * on a socket means that the socket will reuse everybody else's port
606  * without looking at the other's sk_reuse value.
607  */
608 
609 #define SK_NO_REUSE	0
610 #define SK_CAN_REUSE	1
611 #define SK_FORCE_REUSE	2
612 
613 int sk_set_peek_off(struct sock *sk, int val);
614 
615 static inline int sk_peek_offset(struct sock *sk, int flags)
616 {
617 	if (unlikely(flags & MSG_PEEK)) {
618 		return READ_ONCE(sk->sk_peek_off);
619 	}
620 
621 	return 0;
622 }
623 
624 static inline void sk_peek_offset_bwd(struct sock *sk, int val)
625 {
626 	s32 off = READ_ONCE(sk->sk_peek_off);
627 
628 	if (unlikely(off >= 0)) {
629 		off = max_t(s32, off - val, 0);
630 		WRITE_ONCE(sk->sk_peek_off, off);
631 	}
632 }
633 
634 static inline void sk_peek_offset_fwd(struct sock *sk, int val)
635 {
636 	sk_peek_offset_bwd(sk, -val);
637 }
638 
639 /*
640  * Hashed lists helper routines
641  */
642 static inline struct sock *sk_entry(const struct hlist_node *node)
643 {
644 	return hlist_entry(node, struct sock, sk_node);
645 }
646 
647 static inline struct sock *__sk_head(const struct hlist_head *head)
648 {
649 	return hlist_entry(head->first, struct sock, sk_node);
650 }
651 
652 static inline struct sock *sk_head(const struct hlist_head *head)
653 {
654 	return hlist_empty(head) ? NULL : __sk_head(head);
655 }
656 
657 static inline struct sock *__sk_nulls_head(const struct hlist_nulls_head *head)
658 {
659 	return hlist_nulls_entry(head->first, struct sock, sk_nulls_node);
660 }
661 
662 static inline struct sock *sk_nulls_head(const struct hlist_nulls_head *head)
663 {
664 	return hlist_nulls_empty(head) ? NULL : __sk_nulls_head(head);
665 }
666 
667 static inline struct sock *sk_next(const struct sock *sk)
668 {
669 	return hlist_entry_safe(sk->sk_node.next, struct sock, sk_node);
670 }
671 
672 static inline struct sock *sk_nulls_next(const struct sock *sk)
673 {
674 	return (!is_a_nulls(sk->sk_nulls_node.next)) ?
675 		hlist_nulls_entry(sk->sk_nulls_node.next,
676 				  struct sock, sk_nulls_node) :
677 		NULL;
678 }
679 
680 static inline bool sk_unhashed(const struct sock *sk)
681 {
682 	return hlist_unhashed(&sk->sk_node);
683 }
684 
685 static inline bool sk_hashed(const struct sock *sk)
686 {
687 	return !sk_unhashed(sk);
688 }
689 
690 static inline void sk_node_init(struct hlist_node *node)
691 {
692 	node->pprev = NULL;
693 }
694 
695 static inline void sk_nulls_node_init(struct hlist_nulls_node *node)
696 {
697 	node->pprev = NULL;
698 }
699 
700 static inline void __sk_del_node(struct sock *sk)
701 {
702 	__hlist_del(&sk->sk_node);
703 }
704 
705 /* NB: equivalent to hlist_del_init_rcu */
706 static inline bool __sk_del_node_init(struct sock *sk)
707 {
708 	if (sk_hashed(sk)) {
709 		__sk_del_node(sk);
710 		sk_node_init(&sk->sk_node);
711 		return true;
712 	}
713 	return false;
714 }
715 
716 /* Grab socket reference count. This operation is valid only
717    when sk is ALREADY grabbed f.e. it is found in hash table
718    or a list and the lookup is made under lock preventing hash table
719    modifications.
720  */
721 
722 static __always_inline void sock_hold(struct sock *sk)
723 {
724 	refcount_inc(&sk->sk_refcnt);
725 }
726 
727 /* Ungrab socket in the context, which assumes that socket refcnt
728    cannot hit zero, f.e. it is true in context of any socketcall.
729  */
730 static __always_inline void __sock_put(struct sock *sk)
731 {
732 	refcount_dec(&sk->sk_refcnt);
733 }
734 
735 static inline bool sk_del_node_init(struct sock *sk)
736 {
737 	bool rc = __sk_del_node_init(sk);
738 
739 	if (rc) {
740 		/* paranoid for a while -acme */
741 		WARN_ON(refcount_read(&sk->sk_refcnt) == 1);
742 		__sock_put(sk);
743 	}
744 	return rc;
745 }
746 #define sk_del_node_init_rcu(sk)	sk_del_node_init(sk)
747 
748 static inline bool __sk_nulls_del_node_init_rcu(struct sock *sk)
749 {
750 	if (sk_hashed(sk)) {
751 		hlist_nulls_del_init_rcu(&sk->sk_nulls_node);
752 		return true;
753 	}
754 	return false;
755 }
756 
757 static inline bool sk_nulls_del_node_init_rcu(struct sock *sk)
758 {
759 	bool rc = __sk_nulls_del_node_init_rcu(sk);
760 
761 	if (rc) {
762 		/* paranoid for a while -acme */
763 		WARN_ON(refcount_read(&sk->sk_refcnt) == 1);
764 		__sock_put(sk);
765 	}
766 	return rc;
767 }
768 
769 static inline void __sk_add_node(struct sock *sk, struct hlist_head *list)
770 {
771 	hlist_add_head(&sk->sk_node, list);
772 }
773 
774 static inline void sk_add_node(struct sock *sk, struct hlist_head *list)
775 {
776 	sock_hold(sk);
777 	__sk_add_node(sk, list);
778 }
779 
780 static inline void sk_add_node_rcu(struct sock *sk, struct hlist_head *list)
781 {
782 	sock_hold(sk);
783 	if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport &&
784 	    sk->sk_family == AF_INET6)
785 		hlist_add_tail_rcu(&sk->sk_node, list);
786 	else
787 		hlist_add_head_rcu(&sk->sk_node, list);
788 }
789 
790 static inline void sk_add_node_tail_rcu(struct sock *sk, struct hlist_head *list)
791 {
792 	sock_hold(sk);
793 	hlist_add_tail_rcu(&sk->sk_node, list);
794 }
795 
796 static inline void __sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
797 {
798 	hlist_nulls_add_head_rcu(&sk->sk_nulls_node, list);
799 }
800 
801 static inline void __sk_nulls_add_node_tail_rcu(struct sock *sk, struct hlist_nulls_head *list)
802 {
803 	hlist_nulls_add_tail_rcu(&sk->sk_nulls_node, list);
804 }
805 
806 static inline void sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
807 {
808 	sock_hold(sk);
809 	__sk_nulls_add_node_rcu(sk, list);
810 }
811 
812 static inline void __sk_del_bind_node(struct sock *sk)
813 {
814 	__hlist_del(&sk->sk_bind_node);
815 }
816 
817 static inline void sk_add_bind_node(struct sock *sk,
818 					struct hlist_head *list)
819 {
820 	hlist_add_head(&sk->sk_bind_node, list);
821 }
822 
823 #define sk_for_each(__sk, list) \
824 	hlist_for_each_entry(__sk, list, sk_node)
825 #define sk_for_each_rcu(__sk, list) \
826 	hlist_for_each_entry_rcu(__sk, list, sk_node)
827 #define sk_nulls_for_each(__sk, node, list) \
828 	hlist_nulls_for_each_entry(__sk, node, list, sk_nulls_node)
829 #define sk_nulls_for_each_rcu(__sk, node, list) \
830 	hlist_nulls_for_each_entry_rcu(__sk, node, list, sk_nulls_node)
831 #define sk_for_each_from(__sk) \
832 	hlist_for_each_entry_from(__sk, sk_node)
833 #define sk_nulls_for_each_from(__sk, node) \
834 	if (__sk && ({ node = &(__sk)->sk_nulls_node; 1; })) \
835 		hlist_nulls_for_each_entry_from(__sk, node, sk_nulls_node)
836 #define sk_for_each_safe(__sk, tmp, list) \
837 	hlist_for_each_entry_safe(__sk, tmp, list, sk_node)
838 #define sk_for_each_bound(__sk, list) \
839 	hlist_for_each_entry(__sk, list, sk_bind_node)
840 
841 /**
842  * sk_for_each_entry_offset_rcu - iterate over a list at a given struct offset
843  * @tpos:	the type * to use as a loop cursor.
844  * @pos:	the &struct hlist_node to use as a loop cursor.
845  * @head:	the head for your list.
846  * @offset:	offset of hlist_node within the struct.
847  *
848  */
849 #define sk_for_each_entry_offset_rcu(tpos, pos, head, offset)		       \
850 	for (pos = rcu_dereference(hlist_first_rcu(head));		       \
851 	     pos != NULL &&						       \
852 		({ tpos = (typeof(*tpos) *)((void *)pos - offset); 1;});       \
853 	     pos = rcu_dereference(hlist_next_rcu(pos)))
854 
855 static inline struct user_namespace *sk_user_ns(struct sock *sk)
856 {
857 	/* Careful only use this in a context where these parameters
858 	 * can not change and must all be valid, such as recvmsg from
859 	 * userspace.
860 	 */
861 	return sk->sk_socket->file->f_cred->user_ns;
862 }
863 
864 /* Sock flags */
865 enum sock_flags {
866 	SOCK_DEAD,
867 	SOCK_DONE,
868 	SOCK_URGINLINE,
869 	SOCK_KEEPOPEN,
870 	SOCK_LINGER,
871 	SOCK_DESTROY,
872 	SOCK_BROADCAST,
873 	SOCK_TIMESTAMP,
874 	SOCK_ZAPPED,
875 	SOCK_USE_WRITE_QUEUE, /* whether to call sk->sk_write_space in sock_wfree */
876 	SOCK_DBG, /* %SO_DEBUG setting */
877 	SOCK_RCVTSTAMP, /* %SO_TIMESTAMP setting */
878 	SOCK_RCVTSTAMPNS, /* %SO_TIMESTAMPNS setting */
879 	SOCK_LOCALROUTE, /* route locally only, %SO_DONTROUTE setting */
880 	SOCK_MEMALLOC, /* VM depends on this socket for swapping */
881 	SOCK_TIMESTAMPING_RX_SOFTWARE,  /* %SOF_TIMESTAMPING_RX_SOFTWARE */
882 	SOCK_FASYNC, /* fasync() active */
883 	SOCK_RXQ_OVFL,
884 	SOCK_ZEROCOPY, /* buffers from userspace */
885 	SOCK_WIFI_STATUS, /* push wifi status to userspace */
886 	SOCK_NOFCS, /* Tell NIC not to do the Ethernet FCS.
887 		     * Will use last 4 bytes of packet sent from
888 		     * user-space instead.
889 		     */
890 	SOCK_FILTER_LOCKED, /* Filter cannot be changed anymore */
891 	SOCK_SELECT_ERR_QUEUE, /* Wake select on error queue */
892 	SOCK_RCU_FREE, /* wait rcu grace period in sk_destruct() */
893 	SOCK_TXTIME,
894 	SOCK_XDP, /* XDP is attached */
895 	SOCK_TSTAMP_NEW, /* Indicates 64 bit timestamps always */
896 };
897 
898 #define SK_FLAGS_TIMESTAMP ((1UL << SOCK_TIMESTAMP) | (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE))
899 
900 static inline void sock_copy_flags(struct sock *nsk, struct sock *osk)
901 {
902 	nsk->sk_flags = osk->sk_flags;
903 }
904 
905 static inline void sock_set_flag(struct sock *sk, enum sock_flags flag)
906 {
907 	__set_bit(flag, &sk->sk_flags);
908 }
909 
910 static inline void sock_reset_flag(struct sock *sk, enum sock_flags flag)
911 {
912 	__clear_bit(flag, &sk->sk_flags);
913 }
914 
915 static inline void sock_valbool_flag(struct sock *sk, enum sock_flags bit,
916 				     int valbool)
917 {
918 	if (valbool)
919 		sock_set_flag(sk, bit);
920 	else
921 		sock_reset_flag(sk, bit);
922 }
923 
924 static inline bool sock_flag(const struct sock *sk, enum sock_flags flag)
925 {
926 	return test_bit(flag, &sk->sk_flags);
927 }
928 
929 #ifdef CONFIG_NET
930 DECLARE_STATIC_KEY_FALSE(memalloc_socks_key);
931 static inline int sk_memalloc_socks(void)
932 {
933 	return static_branch_unlikely(&memalloc_socks_key);
934 }
935 
936 void __receive_sock(struct file *file);
937 #else
938 
939 static inline int sk_memalloc_socks(void)
940 {
941 	return 0;
942 }
943 
944 static inline void __receive_sock(struct file *file)
945 { }
946 #endif
947 
948 static inline gfp_t sk_gfp_mask(const struct sock *sk, gfp_t gfp_mask)
949 {
950 	return gfp_mask | (sk->sk_allocation & __GFP_MEMALLOC);
951 }
952 
953 static inline void sk_acceptq_removed(struct sock *sk)
954 {
955 	WRITE_ONCE(sk->sk_ack_backlog, sk->sk_ack_backlog - 1);
956 }
957 
958 static inline void sk_acceptq_added(struct sock *sk)
959 {
960 	WRITE_ONCE(sk->sk_ack_backlog, sk->sk_ack_backlog + 1);
961 }
962 
963 /* Note: If you think the test should be:
964  *	return READ_ONCE(sk->sk_ack_backlog) >= READ_ONCE(sk->sk_max_ack_backlog);
965  * Then please take a look at commit 64a146513f8f ("[NET]: Revert incorrect accept queue backlog changes.")
966  */
967 static inline bool sk_acceptq_is_full(const struct sock *sk)
968 {
969 	return READ_ONCE(sk->sk_ack_backlog) > READ_ONCE(sk->sk_max_ack_backlog);
970 }
971 
972 /*
973  * Compute minimal free write space needed to queue new packets.
974  */
975 static inline int sk_stream_min_wspace(const struct sock *sk)
976 {
977 	return READ_ONCE(sk->sk_wmem_queued) >> 1;
978 }
979 
980 static inline int sk_stream_wspace(const struct sock *sk)
981 {
982 	return READ_ONCE(sk->sk_sndbuf) - READ_ONCE(sk->sk_wmem_queued);
983 }
984 
985 static inline void sk_wmem_queued_add(struct sock *sk, int val)
986 {
987 	WRITE_ONCE(sk->sk_wmem_queued, sk->sk_wmem_queued + val);
988 }
989 
990 void sk_stream_write_space(struct sock *sk);
991 
992 /* OOB backlog add */
993 static inline void __sk_add_backlog(struct sock *sk, struct sk_buff *skb)
994 {
995 	/* dont let skb dst not refcounted, we are going to leave rcu lock */
996 	skb_dst_force(skb);
997 
998 	if (!sk->sk_backlog.tail)
999 		WRITE_ONCE(sk->sk_backlog.head, skb);
1000 	else
1001 		sk->sk_backlog.tail->next = skb;
1002 
1003 	WRITE_ONCE(sk->sk_backlog.tail, skb);
1004 	skb->next = NULL;
1005 }
1006 
1007 /*
1008  * Take into account size of receive queue and backlog queue
1009  * Do not take into account this skb truesize,
1010  * to allow even a single big packet to come.
1011  */
1012 static inline bool sk_rcvqueues_full(const struct sock *sk, unsigned int limit)
1013 {
1014 	unsigned int qsize = sk->sk_backlog.len + atomic_read(&sk->sk_rmem_alloc);
1015 
1016 	return qsize > limit;
1017 }
1018 
1019 /* The per-socket spinlock must be held here. */
1020 static inline __must_check int sk_add_backlog(struct sock *sk, struct sk_buff *skb,
1021 					      unsigned int limit)
1022 {
1023 	if (sk_rcvqueues_full(sk, limit))
1024 		return -ENOBUFS;
1025 
1026 	/*
1027 	 * If the skb was allocated from pfmemalloc reserves, only
1028 	 * allow SOCK_MEMALLOC sockets to use it as this socket is
1029 	 * helping free memory
1030 	 */
1031 	if (skb_pfmemalloc(skb) && !sock_flag(sk, SOCK_MEMALLOC))
1032 		return -ENOMEM;
1033 
1034 	__sk_add_backlog(sk, skb);
1035 	sk->sk_backlog.len += skb->truesize;
1036 	return 0;
1037 }
1038 
1039 int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb);
1040 
1041 INDIRECT_CALLABLE_DECLARE(int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb));
1042 INDIRECT_CALLABLE_DECLARE(int tcp_v6_do_rcv(struct sock *sk, struct sk_buff *skb));
1043 
1044 static inline int sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
1045 {
1046 	if (sk_memalloc_socks() && skb_pfmemalloc(skb))
1047 		return __sk_backlog_rcv(sk, skb);
1048 
1049 	return INDIRECT_CALL_INET(sk->sk_backlog_rcv,
1050 				  tcp_v6_do_rcv,
1051 				  tcp_v4_do_rcv,
1052 				  sk, skb);
1053 }
1054 
1055 static inline void sk_incoming_cpu_update(struct sock *sk)
1056 {
1057 	int cpu = raw_smp_processor_id();
1058 
1059 	if (unlikely(READ_ONCE(sk->sk_incoming_cpu) != cpu))
1060 		WRITE_ONCE(sk->sk_incoming_cpu, cpu);
1061 }
1062 
1063 static inline void sock_rps_record_flow_hash(__u32 hash)
1064 {
1065 #ifdef CONFIG_RPS
1066 	struct rps_sock_flow_table *sock_flow_table;
1067 
1068 	rcu_read_lock();
1069 	sock_flow_table = rcu_dereference(rps_sock_flow_table);
1070 	rps_record_sock_flow(sock_flow_table, hash);
1071 	rcu_read_unlock();
1072 #endif
1073 }
1074 
1075 static inline void sock_rps_record_flow(const struct sock *sk)
1076 {
1077 #ifdef CONFIG_RPS
1078 	if (static_branch_unlikely(&rfs_needed)) {
1079 		/* Reading sk->sk_rxhash might incur an expensive cache line
1080 		 * miss.
1081 		 *
1082 		 * TCP_ESTABLISHED does cover almost all states where RFS
1083 		 * might be useful, and is cheaper [1] than testing :
1084 		 *	IPv4: inet_sk(sk)->inet_daddr
1085 		 * 	IPv6: ipv6_addr_any(&sk->sk_v6_daddr)
1086 		 * OR	an additional socket flag
1087 		 * [1] : sk_state and sk_prot are in the same cache line.
1088 		 */
1089 		if (sk->sk_state == TCP_ESTABLISHED)
1090 			sock_rps_record_flow_hash(sk->sk_rxhash);
1091 	}
1092 #endif
1093 }
1094 
1095 static inline void sock_rps_save_rxhash(struct sock *sk,
1096 					const struct sk_buff *skb)
1097 {
1098 #ifdef CONFIG_RPS
1099 	if (unlikely(sk->sk_rxhash != skb->hash))
1100 		sk->sk_rxhash = skb->hash;
1101 #endif
1102 }
1103 
1104 static inline void sock_rps_reset_rxhash(struct sock *sk)
1105 {
1106 #ifdef CONFIG_RPS
1107 	sk->sk_rxhash = 0;
1108 #endif
1109 }
1110 
1111 #define sk_wait_event(__sk, __timeo, __condition, __wait)		\
1112 	({	int __rc;						\
1113 		release_sock(__sk);					\
1114 		__rc = __condition;					\
1115 		if (!__rc) {						\
1116 			*(__timeo) = wait_woken(__wait,			\
1117 						TASK_INTERRUPTIBLE,	\
1118 						*(__timeo));		\
1119 		}							\
1120 		sched_annotate_sleep();					\
1121 		lock_sock(__sk);					\
1122 		__rc = __condition;					\
1123 		__rc;							\
1124 	})
1125 
1126 int sk_stream_wait_connect(struct sock *sk, long *timeo_p);
1127 int sk_stream_wait_memory(struct sock *sk, long *timeo_p);
1128 void sk_stream_wait_close(struct sock *sk, long timeo_p);
1129 int sk_stream_error(struct sock *sk, int flags, int err);
1130 void sk_stream_kill_queues(struct sock *sk);
1131 void sk_set_memalloc(struct sock *sk);
1132 void sk_clear_memalloc(struct sock *sk);
1133 
1134 void __sk_flush_backlog(struct sock *sk);
1135 
1136 static inline bool sk_flush_backlog(struct sock *sk)
1137 {
1138 	if (unlikely(READ_ONCE(sk->sk_backlog.tail))) {
1139 		__sk_flush_backlog(sk);
1140 		return true;
1141 	}
1142 	return false;
1143 }
1144 
1145 int sk_wait_data(struct sock *sk, long *timeo, const struct sk_buff *skb);
1146 
1147 struct request_sock_ops;
1148 struct timewait_sock_ops;
1149 struct inet_hashinfo;
1150 struct raw_hashinfo;
1151 struct smc_hashinfo;
1152 struct module;
1153 struct sk_psock;
1154 
1155 /*
1156  * caches using SLAB_TYPESAFE_BY_RCU should let .next pointer from nulls nodes
1157  * un-modified. Special care is taken when initializing object to zero.
1158  */
1159 static inline void sk_prot_clear_nulls(struct sock *sk, int size)
1160 {
1161 	if (offsetof(struct sock, sk_node.next) != 0)
1162 		memset(sk, 0, offsetof(struct sock, sk_node.next));
1163 	memset(&sk->sk_node.pprev, 0,
1164 	       size - offsetof(struct sock, sk_node.pprev));
1165 }
1166 
1167 /* Networking protocol blocks we attach to sockets.
1168  * socket layer -> transport layer interface
1169  */
1170 struct proto {
1171 	void			(*close)(struct sock *sk,
1172 					long timeout);
1173 	int			(*pre_connect)(struct sock *sk,
1174 					struct sockaddr *uaddr,
1175 					int addr_len);
1176 	int			(*connect)(struct sock *sk,
1177 					struct sockaddr *uaddr,
1178 					int addr_len);
1179 	int			(*disconnect)(struct sock *sk, int flags);
1180 
1181 	struct sock *		(*accept)(struct sock *sk, int flags, int *err,
1182 					  bool kern);
1183 
1184 	int			(*ioctl)(struct sock *sk, int cmd,
1185 					 unsigned long arg);
1186 	int			(*init)(struct sock *sk);
1187 	void			(*destroy)(struct sock *sk);
1188 	void			(*shutdown)(struct sock *sk, int how);
1189 	int			(*setsockopt)(struct sock *sk, int level,
1190 					int optname, sockptr_t optval,
1191 					unsigned int optlen);
1192 	int			(*getsockopt)(struct sock *sk, int level,
1193 					int optname, char __user *optval,
1194 					int __user *option);
1195 	void			(*keepalive)(struct sock *sk, int valbool);
1196 #ifdef CONFIG_COMPAT
1197 	int			(*compat_ioctl)(struct sock *sk,
1198 					unsigned int cmd, unsigned long arg);
1199 #endif
1200 	int			(*sendmsg)(struct sock *sk, struct msghdr *msg,
1201 					   size_t len);
1202 	int			(*recvmsg)(struct sock *sk, struct msghdr *msg,
1203 					   size_t len, int flags, int *addr_len);
1204 	int			(*sendpage)(struct sock *sk, struct page *page,
1205 					int offset, size_t size, int flags);
1206 	int			(*bind)(struct sock *sk,
1207 					struct sockaddr *addr, int addr_len);
1208 	int			(*bind_add)(struct sock *sk,
1209 					struct sockaddr *addr, int addr_len);
1210 
1211 	int			(*backlog_rcv) (struct sock *sk,
1212 						struct sk_buff *skb);
1213 	bool			(*bpf_bypass_getsockopt)(int level,
1214 							 int optname);
1215 
1216 	void		(*release_cb)(struct sock *sk);
1217 
1218 	/* Keeping track of sk's, looking them up, and port selection methods. */
1219 	int			(*hash)(struct sock *sk);
1220 	void			(*unhash)(struct sock *sk);
1221 	void			(*rehash)(struct sock *sk);
1222 	int			(*get_port)(struct sock *sk, unsigned short snum);
1223 	void			(*put_port)(struct sock *sk);
1224 #ifdef CONFIG_BPF_SYSCALL
1225 	int			(*psock_update_sk_prot)(struct sock *sk,
1226 							struct sk_psock *psock,
1227 							bool restore);
1228 #endif
1229 
1230 	/* Keeping track of sockets in use */
1231 #ifdef CONFIG_PROC_FS
1232 	unsigned int		inuse_idx;
1233 #endif
1234 
1235 #if IS_ENABLED(CONFIG_MPTCP)
1236 	int			(*forward_alloc_get)(const struct sock *sk);
1237 #endif
1238 
1239 	bool			(*stream_memory_free)(const struct sock *sk, int wake);
1240 	bool			(*sock_is_readable)(struct sock *sk);
1241 	/* Memory pressure */
1242 	void			(*enter_memory_pressure)(struct sock *sk);
1243 	void			(*leave_memory_pressure)(struct sock *sk);
1244 	atomic_long_t		*memory_allocated;	/* Current allocated memory. */
1245 	struct percpu_counter	*sockets_allocated;	/* Current number of sockets. */
1246 
1247 	/*
1248 	 * Pressure flag: try to collapse.
1249 	 * Technical note: it is used by multiple contexts non atomically.
1250 	 * All the __sk_mem_schedule() is of this nature: accounting
1251 	 * is strict, actions are advisory and have some latency.
1252 	 */
1253 	unsigned long		*memory_pressure;
1254 	long			*sysctl_mem;
1255 
1256 	int			*sysctl_wmem;
1257 	int			*sysctl_rmem;
1258 	u32			sysctl_wmem_offset;
1259 	u32			sysctl_rmem_offset;
1260 
1261 	int			max_header;
1262 	bool			no_autobind;
1263 
1264 	struct kmem_cache	*slab;
1265 	unsigned int		obj_size;
1266 	slab_flags_t		slab_flags;
1267 	unsigned int		useroffset;	/* Usercopy region offset */
1268 	unsigned int		usersize;	/* Usercopy region size */
1269 
1270 	unsigned int __percpu	*orphan_count;
1271 
1272 	struct request_sock_ops	*rsk_prot;
1273 	struct timewait_sock_ops *twsk_prot;
1274 
1275 	union {
1276 		struct inet_hashinfo	*hashinfo;
1277 		struct udp_table	*udp_table;
1278 		struct raw_hashinfo	*raw_hash;
1279 		struct smc_hashinfo	*smc_hash;
1280 	} h;
1281 
1282 	struct module		*owner;
1283 
1284 	char			name[32];
1285 
1286 	struct list_head	node;
1287 #ifdef SOCK_REFCNT_DEBUG
1288 	atomic_t		socks;
1289 #endif
1290 	int			(*diag_destroy)(struct sock *sk, int err);
1291 } __randomize_layout;
1292 
1293 int proto_register(struct proto *prot, int alloc_slab);
1294 void proto_unregister(struct proto *prot);
1295 int sock_load_diag_module(int family, int protocol);
1296 
1297 #ifdef SOCK_REFCNT_DEBUG
1298 static inline void sk_refcnt_debug_inc(struct sock *sk)
1299 {
1300 	atomic_inc(&sk->sk_prot->socks);
1301 }
1302 
1303 static inline void sk_refcnt_debug_dec(struct sock *sk)
1304 {
1305 	atomic_dec(&sk->sk_prot->socks);
1306 	printk(KERN_DEBUG "%s socket %p released, %d are still alive\n",
1307 	       sk->sk_prot->name, sk, atomic_read(&sk->sk_prot->socks));
1308 }
1309 
1310 static inline void sk_refcnt_debug_release(const struct sock *sk)
1311 {
1312 	if (refcount_read(&sk->sk_refcnt) != 1)
1313 		printk(KERN_DEBUG "Destruction of the %s socket %p delayed, refcnt=%d\n",
1314 		       sk->sk_prot->name, sk, refcount_read(&sk->sk_refcnt));
1315 }
1316 #else /* SOCK_REFCNT_DEBUG */
1317 #define sk_refcnt_debug_inc(sk) do { } while (0)
1318 #define sk_refcnt_debug_dec(sk) do { } while (0)
1319 #define sk_refcnt_debug_release(sk) do { } while (0)
1320 #endif /* SOCK_REFCNT_DEBUG */
1321 
1322 INDIRECT_CALLABLE_DECLARE(bool tcp_stream_memory_free(const struct sock *sk, int wake));
1323 
1324 static inline int sk_forward_alloc_get(const struct sock *sk)
1325 {
1326 #if IS_ENABLED(CONFIG_MPTCP)
1327 	if (sk->sk_prot->forward_alloc_get)
1328 		return sk->sk_prot->forward_alloc_get(sk);
1329 #endif
1330 	return sk->sk_forward_alloc;
1331 }
1332 
1333 static inline bool __sk_stream_memory_free(const struct sock *sk, int wake)
1334 {
1335 	if (READ_ONCE(sk->sk_wmem_queued) >= READ_ONCE(sk->sk_sndbuf))
1336 		return false;
1337 
1338 	return sk->sk_prot->stream_memory_free ?
1339 		INDIRECT_CALL_INET_1(sk->sk_prot->stream_memory_free,
1340 				     tcp_stream_memory_free, sk, wake) : true;
1341 }
1342 
1343 static inline bool sk_stream_memory_free(const struct sock *sk)
1344 {
1345 	return __sk_stream_memory_free(sk, 0);
1346 }
1347 
1348 static inline bool __sk_stream_is_writeable(const struct sock *sk, int wake)
1349 {
1350 	return sk_stream_wspace(sk) >= sk_stream_min_wspace(sk) &&
1351 	       __sk_stream_memory_free(sk, wake);
1352 }
1353 
1354 static inline bool sk_stream_is_writeable(const struct sock *sk)
1355 {
1356 	return __sk_stream_is_writeable(sk, 0);
1357 }
1358 
1359 static inline int sk_under_cgroup_hierarchy(struct sock *sk,
1360 					    struct cgroup *ancestor)
1361 {
1362 #ifdef CONFIG_SOCK_CGROUP_DATA
1363 	return cgroup_is_descendant(sock_cgroup_ptr(&sk->sk_cgrp_data),
1364 				    ancestor);
1365 #else
1366 	return -ENOTSUPP;
1367 #endif
1368 }
1369 
1370 static inline bool sk_has_memory_pressure(const struct sock *sk)
1371 {
1372 	return sk->sk_prot->memory_pressure != NULL;
1373 }
1374 
1375 static inline bool sk_under_memory_pressure(const struct sock *sk)
1376 {
1377 	if (!sk->sk_prot->memory_pressure)
1378 		return false;
1379 
1380 	if (mem_cgroup_sockets_enabled && sk->sk_memcg &&
1381 	    mem_cgroup_under_socket_pressure(sk->sk_memcg))
1382 		return true;
1383 
1384 	return !!*sk->sk_prot->memory_pressure;
1385 }
1386 
1387 static inline long
1388 sk_memory_allocated(const struct sock *sk)
1389 {
1390 	return atomic_long_read(sk->sk_prot->memory_allocated);
1391 }
1392 
1393 static inline long
1394 sk_memory_allocated_add(struct sock *sk, int amt)
1395 {
1396 	return atomic_long_add_return(amt, sk->sk_prot->memory_allocated);
1397 }
1398 
1399 static inline void
1400 sk_memory_allocated_sub(struct sock *sk, int amt)
1401 {
1402 	atomic_long_sub(amt, sk->sk_prot->memory_allocated);
1403 }
1404 
1405 #define SK_ALLOC_PERCPU_COUNTER_BATCH 16
1406 
1407 static inline void sk_sockets_allocated_dec(struct sock *sk)
1408 {
1409 	percpu_counter_add_batch(sk->sk_prot->sockets_allocated, -1,
1410 				 SK_ALLOC_PERCPU_COUNTER_BATCH);
1411 }
1412 
1413 static inline void sk_sockets_allocated_inc(struct sock *sk)
1414 {
1415 	percpu_counter_add_batch(sk->sk_prot->sockets_allocated, 1,
1416 				 SK_ALLOC_PERCPU_COUNTER_BATCH);
1417 }
1418 
1419 static inline u64
1420 sk_sockets_allocated_read_positive(struct sock *sk)
1421 {
1422 	return percpu_counter_read_positive(sk->sk_prot->sockets_allocated);
1423 }
1424 
1425 static inline int
1426 proto_sockets_allocated_sum_positive(struct proto *prot)
1427 {
1428 	return percpu_counter_sum_positive(prot->sockets_allocated);
1429 }
1430 
1431 static inline long
1432 proto_memory_allocated(struct proto *prot)
1433 {
1434 	return atomic_long_read(prot->memory_allocated);
1435 }
1436 
1437 static inline bool
1438 proto_memory_pressure(struct proto *prot)
1439 {
1440 	if (!prot->memory_pressure)
1441 		return false;
1442 	return !!*prot->memory_pressure;
1443 }
1444 
1445 
1446 #ifdef CONFIG_PROC_FS
1447 #define PROTO_INUSE_NR	64	/* should be enough for the first time */
1448 struct prot_inuse {
1449 	int all;
1450 	int val[PROTO_INUSE_NR];
1451 };
1452 
1453 static inline void sock_prot_inuse_add(const struct net *net,
1454 				       const struct proto *prot, int val)
1455 {
1456 	this_cpu_add(net->core.prot_inuse->val[prot->inuse_idx], val);
1457 }
1458 
1459 static inline void sock_inuse_add(const struct net *net, int val)
1460 {
1461 	this_cpu_add(net->core.prot_inuse->all, val);
1462 }
1463 
1464 int sock_prot_inuse_get(struct net *net, struct proto *proto);
1465 int sock_inuse_get(struct net *net);
1466 #else
1467 static inline void sock_prot_inuse_add(const struct net *net,
1468 				       const struct proto *prot, int val)
1469 {
1470 }
1471 
1472 static inline void sock_inuse_add(const struct net *net, int val)
1473 {
1474 }
1475 #endif
1476 
1477 
1478 /* With per-bucket locks this operation is not-atomic, so that
1479  * this version is not worse.
1480  */
1481 static inline int __sk_prot_rehash(struct sock *sk)
1482 {
1483 	sk->sk_prot->unhash(sk);
1484 	return sk->sk_prot->hash(sk);
1485 }
1486 
1487 /* About 10 seconds */
1488 #define SOCK_DESTROY_TIME (10*HZ)
1489 
1490 /* Sockets 0-1023 can't be bound to unless you are superuser */
1491 #define PROT_SOCK	1024
1492 
1493 #define SHUTDOWN_MASK	3
1494 #define RCV_SHUTDOWN	1
1495 #define SEND_SHUTDOWN	2
1496 
1497 #define SOCK_BINDADDR_LOCK	4
1498 #define SOCK_BINDPORT_LOCK	8
1499 
1500 struct socket_alloc {
1501 	struct socket socket;
1502 	struct inode vfs_inode;
1503 };
1504 
1505 static inline struct socket *SOCKET_I(struct inode *inode)
1506 {
1507 	return &container_of(inode, struct socket_alloc, vfs_inode)->socket;
1508 }
1509 
1510 static inline struct inode *SOCK_INODE(struct socket *socket)
1511 {
1512 	return &container_of(socket, struct socket_alloc, socket)->vfs_inode;
1513 }
1514 
1515 /*
1516  * Functions for memory accounting
1517  */
1518 int __sk_mem_raise_allocated(struct sock *sk, int size, int amt, int kind);
1519 int __sk_mem_schedule(struct sock *sk, int size, int kind);
1520 void __sk_mem_reduce_allocated(struct sock *sk, int amount);
1521 void __sk_mem_reclaim(struct sock *sk, int amount);
1522 
1523 /* We used to have PAGE_SIZE here, but systems with 64KB pages
1524  * do not necessarily have 16x time more memory than 4KB ones.
1525  */
1526 #define SK_MEM_QUANTUM 4096
1527 #define SK_MEM_QUANTUM_SHIFT ilog2(SK_MEM_QUANTUM)
1528 #define SK_MEM_SEND	0
1529 #define SK_MEM_RECV	1
1530 
1531 /* sysctl_mem values are in pages, we convert them in SK_MEM_QUANTUM units */
1532 static inline long sk_prot_mem_limits(const struct sock *sk, int index)
1533 {
1534 	long val = sk->sk_prot->sysctl_mem[index];
1535 
1536 #if PAGE_SIZE > SK_MEM_QUANTUM
1537 	val <<= PAGE_SHIFT - SK_MEM_QUANTUM_SHIFT;
1538 #elif PAGE_SIZE < SK_MEM_QUANTUM
1539 	val >>= SK_MEM_QUANTUM_SHIFT - PAGE_SHIFT;
1540 #endif
1541 	return val;
1542 }
1543 
1544 static inline int sk_mem_pages(int amt)
1545 {
1546 	return (amt + SK_MEM_QUANTUM - 1) >> SK_MEM_QUANTUM_SHIFT;
1547 }
1548 
1549 static inline bool sk_has_account(struct sock *sk)
1550 {
1551 	/* return true if protocol supports memory accounting */
1552 	return !!sk->sk_prot->memory_allocated;
1553 }
1554 
1555 static inline bool sk_wmem_schedule(struct sock *sk, int size)
1556 {
1557 	if (!sk_has_account(sk))
1558 		return true;
1559 	return size <= sk->sk_forward_alloc ||
1560 		__sk_mem_schedule(sk, size, SK_MEM_SEND);
1561 }
1562 
1563 static inline bool
1564 sk_rmem_schedule(struct sock *sk, struct sk_buff *skb, int size)
1565 {
1566 	if (!sk_has_account(sk))
1567 		return true;
1568 	return size <= sk->sk_forward_alloc ||
1569 		__sk_mem_schedule(sk, size, SK_MEM_RECV) ||
1570 		skb_pfmemalloc(skb);
1571 }
1572 
1573 static inline int sk_unused_reserved_mem(const struct sock *sk)
1574 {
1575 	int unused_mem;
1576 
1577 	if (likely(!sk->sk_reserved_mem))
1578 		return 0;
1579 
1580 	unused_mem = sk->sk_reserved_mem - sk->sk_wmem_queued -
1581 			atomic_read(&sk->sk_rmem_alloc);
1582 
1583 	return unused_mem > 0 ? unused_mem : 0;
1584 }
1585 
1586 static inline void sk_mem_reclaim(struct sock *sk)
1587 {
1588 	int reclaimable;
1589 
1590 	if (!sk_has_account(sk))
1591 		return;
1592 
1593 	reclaimable = sk->sk_forward_alloc - sk_unused_reserved_mem(sk);
1594 
1595 	if (reclaimable >= SK_MEM_QUANTUM)
1596 		__sk_mem_reclaim(sk, reclaimable);
1597 }
1598 
1599 static inline void sk_mem_reclaim_final(struct sock *sk)
1600 {
1601 	sk->sk_reserved_mem = 0;
1602 	sk_mem_reclaim(sk);
1603 }
1604 
1605 static inline void sk_mem_reclaim_partial(struct sock *sk)
1606 {
1607 	int reclaimable;
1608 
1609 	if (!sk_has_account(sk))
1610 		return;
1611 
1612 	reclaimable = sk->sk_forward_alloc - sk_unused_reserved_mem(sk);
1613 
1614 	if (reclaimable > SK_MEM_QUANTUM)
1615 		__sk_mem_reclaim(sk, reclaimable - 1);
1616 }
1617 
1618 static inline void sk_mem_charge(struct sock *sk, int size)
1619 {
1620 	if (!sk_has_account(sk))
1621 		return;
1622 	sk->sk_forward_alloc -= size;
1623 }
1624 
1625 /* the following macros control memory reclaiming in sk_mem_uncharge()
1626  */
1627 #define SK_RECLAIM_THRESHOLD	(1 << 21)
1628 #define SK_RECLAIM_CHUNK	(1 << 20)
1629 
1630 static inline void sk_mem_uncharge(struct sock *sk, int size)
1631 {
1632 	int reclaimable;
1633 
1634 	if (!sk_has_account(sk))
1635 		return;
1636 	sk->sk_forward_alloc += size;
1637 	reclaimable = sk->sk_forward_alloc - sk_unused_reserved_mem(sk);
1638 
1639 	/* Avoid a possible overflow.
1640 	 * TCP send queues can make this happen, if sk_mem_reclaim()
1641 	 * is not called and more than 2 GBytes are released at once.
1642 	 *
1643 	 * If we reach 2 MBytes, reclaim 1 MBytes right now, there is
1644 	 * no need to hold that much forward allocation anyway.
1645 	 */
1646 	if (unlikely(reclaimable >= SK_RECLAIM_THRESHOLD))
1647 		__sk_mem_reclaim(sk, SK_RECLAIM_CHUNK);
1648 }
1649 
1650 /*
1651  * Macro so as to not evaluate some arguments when
1652  * lockdep is not enabled.
1653  *
1654  * Mark both the sk_lock and the sk_lock.slock as a
1655  * per-address-family lock class.
1656  */
1657 #define sock_lock_init_class_and_name(sk, sname, skey, name, key)	\
1658 do {									\
1659 	sk->sk_lock.owned = 0;						\
1660 	init_waitqueue_head(&sk->sk_lock.wq);				\
1661 	spin_lock_init(&(sk)->sk_lock.slock);				\
1662 	debug_check_no_locks_freed((void *)&(sk)->sk_lock,		\
1663 			sizeof((sk)->sk_lock));				\
1664 	lockdep_set_class_and_name(&(sk)->sk_lock.slock,		\
1665 				(skey), (sname));				\
1666 	lockdep_init_map(&(sk)->sk_lock.dep_map, (name), (key), 0);	\
1667 } while (0)
1668 
1669 static inline bool lockdep_sock_is_held(const struct sock *sk)
1670 {
1671 	return lockdep_is_held(&sk->sk_lock) ||
1672 	       lockdep_is_held(&sk->sk_lock.slock);
1673 }
1674 
1675 void lock_sock_nested(struct sock *sk, int subclass);
1676 
1677 static inline void lock_sock(struct sock *sk)
1678 {
1679 	lock_sock_nested(sk, 0);
1680 }
1681 
1682 void __lock_sock(struct sock *sk);
1683 void __release_sock(struct sock *sk);
1684 void release_sock(struct sock *sk);
1685 
1686 /* BH context may only use the following locking interface. */
1687 #define bh_lock_sock(__sk)	spin_lock(&((__sk)->sk_lock.slock))
1688 #define bh_lock_sock_nested(__sk) \
1689 				spin_lock_nested(&((__sk)->sk_lock.slock), \
1690 				SINGLE_DEPTH_NESTING)
1691 #define bh_unlock_sock(__sk)	spin_unlock(&((__sk)->sk_lock.slock))
1692 
1693 bool __lock_sock_fast(struct sock *sk) __acquires(&sk->sk_lock.slock);
1694 
1695 /**
1696  * lock_sock_fast - fast version of lock_sock
1697  * @sk: socket
1698  *
1699  * This version should be used for very small section, where process wont block
1700  * return false if fast path is taken:
1701  *
1702  *   sk_lock.slock locked, owned = 0, BH disabled
1703  *
1704  * return true if slow path is taken:
1705  *
1706  *   sk_lock.slock unlocked, owned = 1, BH enabled
1707  */
1708 static inline bool lock_sock_fast(struct sock *sk)
1709 {
1710 	/* The sk_lock has mutex_lock() semantics here. */
1711 	mutex_acquire(&sk->sk_lock.dep_map, 0, 0, _RET_IP_);
1712 
1713 	return __lock_sock_fast(sk);
1714 }
1715 
1716 /* fast socket lock variant for caller already holding a [different] socket lock */
1717 static inline bool lock_sock_fast_nested(struct sock *sk)
1718 {
1719 	mutex_acquire(&sk->sk_lock.dep_map, SINGLE_DEPTH_NESTING, 0, _RET_IP_);
1720 
1721 	return __lock_sock_fast(sk);
1722 }
1723 
1724 /**
1725  * unlock_sock_fast - complement of lock_sock_fast
1726  * @sk: socket
1727  * @slow: slow mode
1728  *
1729  * fast unlock socket for user context.
1730  * If slow mode is on, we call regular release_sock()
1731  */
1732 static inline void unlock_sock_fast(struct sock *sk, bool slow)
1733 	__releases(&sk->sk_lock.slock)
1734 {
1735 	if (slow) {
1736 		release_sock(sk);
1737 		__release(&sk->sk_lock.slock);
1738 	} else {
1739 		mutex_release(&sk->sk_lock.dep_map, _RET_IP_);
1740 		spin_unlock_bh(&sk->sk_lock.slock);
1741 	}
1742 }
1743 
1744 /* Used by processes to "lock" a socket state, so that
1745  * interrupts and bottom half handlers won't change it
1746  * from under us. It essentially blocks any incoming
1747  * packets, so that we won't get any new data or any
1748  * packets that change the state of the socket.
1749  *
1750  * While locked, BH processing will add new packets to
1751  * the backlog queue.  This queue is processed by the
1752  * owner of the socket lock right before it is released.
1753  *
1754  * Since ~2.3.5 it is also exclusive sleep lock serializing
1755  * accesses from user process context.
1756  */
1757 
1758 static inline void sock_owned_by_me(const struct sock *sk)
1759 {
1760 #ifdef CONFIG_LOCKDEP
1761 	WARN_ON_ONCE(!lockdep_sock_is_held(sk) && debug_locks);
1762 #endif
1763 }
1764 
1765 static inline bool sock_owned_by_user(const struct sock *sk)
1766 {
1767 	sock_owned_by_me(sk);
1768 	return sk->sk_lock.owned;
1769 }
1770 
1771 static inline bool sock_owned_by_user_nocheck(const struct sock *sk)
1772 {
1773 	return sk->sk_lock.owned;
1774 }
1775 
1776 static inline void sock_release_ownership(struct sock *sk)
1777 {
1778 	if (sock_owned_by_user_nocheck(sk)) {
1779 		sk->sk_lock.owned = 0;
1780 
1781 		/* The sk_lock has mutex_unlock() semantics: */
1782 		mutex_release(&sk->sk_lock.dep_map, _RET_IP_);
1783 	}
1784 }
1785 
1786 /* no reclassification while locks are held */
1787 static inline bool sock_allow_reclassification(const struct sock *csk)
1788 {
1789 	struct sock *sk = (struct sock *)csk;
1790 
1791 	return !sock_owned_by_user_nocheck(sk) &&
1792 		!spin_is_locked(&sk->sk_lock.slock);
1793 }
1794 
1795 struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
1796 		      struct proto *prot, int kern);
1797 void sk_free(struct sock *sk);
1798 void sk_destruct(struct sock *sk);
1799 struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority);
1800 void sk_free_unlock_clone(struct sock *sk);
1801 
1802 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
1803 			     gfp_t priority);
1804 void __sock_wfree(struct sk_buff *skb);
1805 void sock_wfree(struct sk_buff *skb);
1806 struct sk_buff *sock_omalloc(struct sock *sk, unsigned long size,
1807 			     gfp_t priority);
1808 void skb_orphan_partial(struct sk_buff *skb);
1809 void sock_rfree(struct sk_buff *skb);
1810 void sock_efree(struct sk_buff *skb);
1811 #ifdef CONFIG_INET
1812 void sock_edemux(struct sk_buff *skb);
1813 void sock_pfree(struct sk_buff *skb);
1814 #else
1815 #define sock_edemux sock_efree
1816 #endif
1817 
1818 int sock_setsockopt(struct socket *sock, int level, int op,
1819 		    sockptr_t optval, unsigned int optlen);
1820 
1821 int sock_getsockopt(struct socket *sock, int level, int op,
1822 		    char __user *optval, int __user *optlen);
1823 int sock_gettstamp(struct socket *sock, void __user *userstamp,
1824 		   bool timeval, bool time32);
1825 struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
1826 				    int noblock, int *errcode);
1827 struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
1828 				     unsigned long data_len, int noblock,
1829 				     int *errcode, int max_page_order);
1830 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority);
1831 void sock_kfree_s(struct sock *sk, void *mem, int size);
1832 void sock_kzfree_s(struct sock *sk, void *mem, int size);
1833 void sk_send_sigurg(struct sock *sk);
1834 
1835 struct sockcm_cookie {
1836 	u64 transmit_time;
1837 	u32 mark;
1838 	u16 tsflags;
1839 };
1840 
1841 static inline void sockcm_init(struct sockcm_cookie *sockc,
1842 			       const struct sock *sk)
1843 {
1844 	*sockc = (struct sockcm_cookie) { .tsflags = sk->sk_tsflags };
1845 }
1846 
1847 int __sock_cmsg_send(struct sock *sk, struct msghdr *msg, struct cmsghdr *cmsg,
1848 		     struct sockcm_cookie *sockc);
1849 int sock_cmsg_send(struct sock *sk, struct msghdr *msg,
1850 		   struct sockcm_cookie *sockc);
1851 
1852 /*
1853  * Functions to fill in entries in struct proto_ops when a protocol
1854  * does not implement a particular function.
1855  */
1856 int sock_no_bind(struct socket *, struct sockaddr *, int);
1857 int sock_no_connect(struct socket *, struct sockaddr *, int, int);
1858 int sock_no_socketpair(struct socket *, struct socket *);
1859 int sock_no_accept(struct socket *, struct socket *, int, bool);
1860 int sock_no_getname(struct socket *, struct sockaddr *, int);
1861 int sock_no_ioctl(struct socket *, unsigned int, unsigned long);
1862 int sock_no_listen(struct socket *, int);
1863 int sock_no_shutdown(struct socket *, int);
1864 int sock_no_sendmsg(struct socket *, struct msghdr *, size_t);
1865 int sock_no_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t len);
1866 int sock_no_recvmsg(struct socket *, struct msghdr *, size_t, int);
1867 int sock_no_mmap(struct file *file, struct socket *sock,
1868 		 struct vm_area_struct *vma);
1869 ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset,
1870 			 size_t size, int flags);
1871 ssize_t sock_no_sendpage_locked(struct sock *sk, struct page *page,
1872 				int offset, size_t size, int flags);
1873 
1874 /*
1875  * Functions to fill in entries in struct proto_ops when a protocol
1876  * uses the inet style.
1877  */
1878 int sock_common_getsockopt(struct socket *sock, int level, int optname,
1879 				  char __user *optval, int __user *optlen);
1880 int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
1881 			int flags);
1882 int sock_common_setsockopt(struct socket *sock, int level, int optname,
1883 			   sockptr_t optval, unsigned int optlen);
1884 
1885 void sk_common_release(struct sock *sk);
1886 
1887 /*
1888  *	Default socket callbacks and setup code
1889  */
1890 
1891 /* Initialise core socket variables */
1892 void sock_init_data(struct socket *sock, struct sock *sk);
1893 
1894 /*
1895  * Socket reference counting postulates.
1896  *
1897  * * Each user of socket SHOULD hold a reference count.
1898  * * Each access point to socket (an hash table bucket, reference from a list,
1899  *   running timer, skb in flight MUST hold a reference count.
1900  * * When reference count hits 0, it means it will never increase back.
1901  * * When reference count hits 0, it means that no references from
1902  *   outside exist to this socket and current process on current CPU
1903  *   is last user and may/should destroy this socket.
1904  * * sk_free is called from any context: process, BH, IRQ. When
1905  *   it is called, socket has no references from outside -> sk_free
1906  *   may release descendant resources allocated by the socket, but
1907  *   to the time when it is called, socket is NOT referenced by any
1908  *   hash tables, lists etc.
1909  * * Packets, delivered from outside (from network or from another process)
1910  *   and enqueued on receive/error queues SHOULD NOT grab reference count,
1911  *   when they sit in queue. Otherwise, packets will leak to hole, when
1912  *   socket is looked up by one cpu and unhasing is made by another CPU.
1913  *   It is true for udp/raw, netlink (leak to receive and error queues), tcp
1914  *   (leak to backlog). Packet socket does all the processing inside
1915  *   BR_NETPROTO_LOCK, so that it has not this race condition. UNIX sockets
1916  *   use separate SMP lock, so that they are prone too.
1917  */
1918 
1919 /* Ungrab socket and destroy it, if it was the last reference. */
1920 static inline void sock_put(struct sock *sk)
1921 {
1922 	if (refcount_dec_and_test(&sk->sk_refcnt))
1923 		sk_free(sk);
1924 }
1925 /* Generic version of sock_put(), dealing with all sockets
1926  * (TCP_TIMEWAIT, TCP_NEW_SYN_RECV, ESTABLISHED...)
1927  */
1928 void sock_gen_put(struct sock *sk);
1929 
1930 int __sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested,
1931 		     unsigned int trim_cap, bool refcounted);
1932 static inline int sk_receive_skb(struct sock *sk, struct sk_buff *skb,
1933 				 const int nested)
1934 {
1935 	return __sk_receive_skb(sk, skb, nested, 1, true);
1936 }
1937 
1938 static inline void sk_tx_queue_set(struct sock *sk, int tx_queue)
1939 {
1940 	/* sk_tx_queue_mapping accept only upto a 16-bit value */
1941 	if (WARN_ON_ONCE((unsigned short)tx_queue >= USHRT_MAX))
1942 		return;
1943 	sk->sk_tx_queue_mapping = tx_queue;
1944 }
1945 
1946 #define NO_QUEUE_MAPPING	USHRT_MAX
1947 
1948 static inline void sk_tx_queue_clear(struct sock *sk)
1949 {
1950 	sk->sk_tx_queue_mapping = NO_QUEUE_MAPPING;
1951 }
1952 
1953 static inline int sk_tx_queue_get(const struct sock *sk)
1954 {
1955 	if (sk && sk->sk_tx_queue_mapping != NO_QUEUE_MAPPING)
1956 		return sk->sk_tx_queue_mapping;
1957 
1958 	return -1;
1959 }
1960 
1961 static inline void __sk_rx_queue_set(struct sock *sk,
1962 				     const struct sk_buff *skb,
1963 				     bool force_set)
1964 {
1965 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
1966 	if (skb_rx_queue_recorded(skb)) {
1967 		u16 rx_queue = skb_get_rx_queue(skb);
1968 
1969 		if (force_set ||
1970 		    unlikely(READ_ONCE(sk->sk_rx_queue_mapping) != rx_queue))
1971 			WRITE_ONCE(sk->sk_rx_queue_mapping, rx_queue);
1972 	}
1973 #endif
1974 }
1975 
1976 static inline void sk_rx_queue_set(struct sock *sk, const struct sk_buff *skb)
1977 {
1978 	__sk_rx_queue_set(sk, skb, true);
1979 }
1980 
1981 static inline void sk_rx_queue_update(struct sock *sk, const struct sk_buff *skb)
1982 {
1983 	__sk_rx_queue_set(sk, skb, false);
1984 }
1985 
1986 static inline void sk_rx_queue_clear(struct sock *sk)
1987 {
1988 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
1989 	WRITE_ONCE(sk->sk_rx_queue_mapping, NO_QUEUE_MAPPING);
1990 #endif
1991 }
1992 
1993 static inline int sk_rx_queue_get(const struct sock *sk)
1994 {
1995 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
1996 	if (sk) {
1997 		int res = READ_ONCE(sk->sk_rx_queue_mapping);
1998 
1999 		if (res != NO_QUEUE_MAPPING)
2000 			return res;
2001 	}
2002 #endif
2003 
2004 	return -1;
2005 }
2006 
2007 static inline void sk_set_socket(struct sock *sk, struct socket *sock)
2008 {
2009 	sk->sk_socket = sock;
2010 }
2011 
2012 static inline wait_queue_head_t *sk_sleep(struct sock *sk)
2013 {
2014 	BUILD_BUG_ON(offsetof(struct socket_wq, wait) != 0);
2015 	return &rcu_dereference_raw(sk->sk_wq)->wait;
2016 }
2017 /* Detach socket from process context.
2018  * Announce socket dead, detach it from wait queue and inode.
2019  * Note that parent inode held reference count on this struct sock,
2020  * we do not release it in this function, because protocol
2021  * probably wants some additional cleanups or even continuing
2022  * to work with this socket (TCP).
2023  */
2024 static inline void sock_orphan(struct sock *sk)
2025 {
2026 	write_lock_bh(&sk->sk_callback_lock);
2027 	sock_set_flag(sk, SOCK_DEAD);
2028 	sk_set_socket(sk, NULL);
2029 	sk->sk_wq  = NULL;
2030 	write_unlock_bh(&sk->sk_callback_lock);
2031 }
2032 
2033 static inline void sock_graft(struct sock *sk, struct socket *parent)
2034 {
2035 	WARN_ON(parent->sk);
2036 	write_lock_bh(&sk->sk_callback_lock);
2037 	rcu_assign_pointer(sk->sk_wq, &parent->wq);
2038 	parent->sk = sk;
2039 	sk_set_socket(sk, parent);
2040 	sk->sk_uid = SOCK_INODE(parent)->i_uid;
2041 	security_sock_graft(sk, parent);
2042 	write_unlock_bh(&sk->sk_callback_lock);
2043 }
2044 
2045 kuid_t sock_i_uid(struct sock *sk);
2046 unsigned long sock_i_ino(struct sock *sk);
2047 
2048 static inline kuid_t sock_net_uid(const struct net *net, const struct sock *sk)
2049 {
2050 	return sk ? sk->sk_uid : make_kuid(net->user_ns, 0);
2051 }
2052 
2053 static inline u32 net_tx_rndhash(void)
2054 {
2055 	u32 v = prandom_u32();
2056 
2057 	return v ?: 1;
2058 }
2059 
2060 static inline void sk_set_txhash(struct sock *sk)
2061 {
2062 	/* This pairs with READ_ONCE() in skb_set_hash_from_sk() */
2063 	WRITE_ONCE(sk->sk_txhash, net_tx_rndhash());
2064 }
2065 
2066 static inline bool sk_rethink_txhash(struct sock *sk)
2067 {
2068 	if (sk->sk_txhash && sk->sk_txrehash == SOCK_TXREHASH_ENABLED) {
2069 		sk_set_txhash(sk);
2070 		return true;
2071 	}
2072 	return false;
2073 }
2074 
2075 static inline struct dst_entry *
2076 __sk_dst_get(struct sock *sk)
2077 {
2078 	return rcu_dereference_check(sk->sk_dst_cache,
2079 				     lockdep_sock_is_held(sk));
2080 }
2081 
2082 static inline struct dst_entry *
2083 sk_dst_get(struct sock *sk)
2084 {
2085 	struct dst_entry *dst;
2086 
2087 	rcu_read_lock();
2088 	dst = rcu_dereference(sk->sk_dst_cache);
2089 	if (dst && !atomic_inc_not_zero(&dst->__refcnt))
2090 		dst = NULL;
2091 	rcu_read_unlock();
2092 	return dst;
2093 }
2094 
2095 static inline void __dst_negative_advice(struct sock *sk)
2096 {
2097 	struct dst_entry *ndst, *dst = __sk_dst_get(sk);
2098 
2099 	if (dst && dst->ops->negative_advice) {
2100 		ndst = dst->ops->negative_advice(dst);
2101 
2102 		if (ndst != dst) {
2103 			rcu_assign_pointer(sk->sk_dst_cache, ndst);
2104 			sk_tx_queue_clear(sk);
2105 			sk->sk_dst_pending_confirm = 0;
2106 		}
2107 	}
2108 }
2109 
2110 static inline void dst_negative_advice(struct sock *sk)
2111 {
2112 	sk_rethink_txhash(sk);
2113 	__dst_negative_advice(sk);
2114 }
2115 
2116 static inline void
2117 __sk_dst_set(struct sock *sk, struct dst_entry *dst)
2118 {
2119 	struct dst_entry *old_dst;
2120 
2121 	sk_tx_queue_clear(sk);
2122 	sk->sk_dst_pending_confirm = 0;
2123 	old_dst = rcu_dereference_protected(sk->sk_dst_cache,
2124 					    lockdep_sock_is_held(sk));
2125 	rcu_assign_pointer(sk->sk_dst_cache, dst);
2126 	dst_release(old_dst);
2127 }
2128 
2129 static inline void
2130 sk_dst_set(struct sock *sk, struct dst_entry *dst)
2131 {
2132 	struct dst_entry *old_dst;
2133 
2134 	sk_tx_queue_clear(sk);
2135 	sk->sk_dst_pending_confirm = 0;
2136 	old_dst = xchg((__force struct dst_entry **)&sk->sk_dst_cache, dst);
2137 	dst_release(old_dst);
2138 }
2139 
2140 static inline void
2141 __sk_dst_reset(struct sock *sk)
2142 {
2143 	__sk_dst_set(sk, NULL);
2144 }
2145 
2146 static inline void
2147 sk_dst_reset(struct sock *sk)
2148 {
2149 	sk_dst_set(sk, NULL);
2150 }
2151 
2152 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie);
2153 
2154 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie);
2155 
2156 static inline void sk_dst_confirm(struct sock *sk)
2157 {
2158 	if (!READ_ONCE(sk->sk_dst_pending_confirm))
2159 		WRITE_ONCE(sk->sk_dst_pending_confirm, 1);
2160 }
2161 
2162 static inline void sock_confirm_neigh(struct sk_buff *skb, struct neighbour *n)
2163 {
2164 	if (skb_get_dst_pending_confirm(skb)) {
2165 		struct sock *sk = skb->sk;
2166 
2167 		if (sk && READ_ONCE(sk->sk_dst_pending_confirm))
2168 			WRITE_ONCE(sk->sk_dst_pending_confirm, 0);
2169 		neigh_confirm(n);
2170 	}
2171 }
2172 
2173 bool sk_mc_loop(struct sock *sk);
2174 
2175 static inline bool sk_can_gso(const struct sock *sk)
2176 {
2177 	return net_gso_ok(sk->sk_route_caps, sk->sk_gso_type);
2178 }
2179 
2180 void sk_setup_caps(struct sock *sk, struct dst_entry *dst);
2181 
2182 static inline void sk_gso_disable(struct sock *sk)
2183 {
2184 	sk->sk_gso_disabled = 1;
2185 	sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
2186 }
2187 
2188 static inline int skb_do_copy_data_nocache(struct sock *sk, struct sk_buff *skb,
2189 					   struct iov_iter *from, char *to,
2190 					   int copy, int offset)
2191 {
2192 	if (skb->ip_summed == CHECKSUM_NONE) {
2193 		__wsum csum = 0;
2194 		if (!csum_and_copy_from_iter_full(to, copy, &csum, from))
2195 			return -EFAULT;
2196 		skb->csum = csum_block_add(skb->csum, csum, offset);
2197 	} else if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY) {
2198 		if (!copy_from_iter_full_nocache(to, copy, from))
2199 			return -EFAULT;
2200 	} else if (!copy_from_iter_full(to, copy, from))
2201 		return -EFAULT;
2202 
2203 	return 0;
2204 }
2205 
2206 static inline int skb_add_data_nocache(struct sock *sk, struct sk_buff *skb,
2207 				       struct iov_iter *from, int copy)
2208 {
2209 	int err, offset = skb->len;
2210 
2211 	err = skb_do_copy_data_nocache(sk, skb, from, skb_put(skb, copy),
2212 				       copy, offset);
2213 	if (err)
2214 		__skb_trim(skb, offset);
2215 
2216 	return err;
2217 }
2218 
2219 static inline int skb_copy_to_page_nocache(struct sock *sk, struct iov_iter *from,
2220 					   struct sk_buff *skb,
2221 					   struct page *page,
2222 					   int off, int copy)
2223 {
2224 	int err;
2225 
2226 	err = skb_do_copy_data_nocache(sk, skb, from, page_address(page) + off,
2227 				       copy, skb->len);
2228 	if (err)
2229 		return err;
2230 
2231 	skb->len	     += copy;
2232 	skb->data_len	     += copy;
2233 	skb->truesize	     += copy;
2234 	sk_wmem_queued_add(sk, copy);
2235 	sk_mem_charge(sk, copy);
2236 	return 0;
2237 }
2238 
2239 /**
2240  * sk_wmem_alloc_get - returns write allocations
2241  * @sk: socket
2242  *
2243  * Return: sk_wmem_alloc minus initial offset of one
2244  */
2245 static inline int sk_wmem_alloc_get(const struct sock *sk)
2246 {
2247 	return refcount_read(&sk->sk_wmem_alloc) - 1;
2248 }
2249 
2250 /**
2251  * sk_rmem_alloc_get - returns read allocations
2252  * @sk: socket
2253  *
2254  * Return: sk_rmem_alloc
2255  */
2256 static inline int sk_rmem_alloc_get(const struct sock *sk)
2257 {
2258 	return atomic_read(&sk->sk_rmem_alloc);
2259 }
2260 
2261 /**
2262  * sk_has_allocations - check if allocations are outstanding
2263  * @sk: socket
2264  *
2265  * Return: true if socket has write or read allocations
2266  */
2267 static inline bool sk_has_allocations(const struct sock *sk)
2268 {
2269 	return sk_wmem_alloc_get(sk) || sk_rmem_alloc_get(sk);
2270 }
2271 
2272 /**
2273  * skwq_has_sleeper - check if there are any waiting processes
2274  * @wq: struct socket_wq
2275  *
2276  * Return: true if socket_wq has waiting processes
2277  *
2278  * The purpose of the skwq_has_sleeper and sock_poll_wait is to wrap the memory
2279  * barrier call. They were added due to the race found within the tcp code.
2280  *
2281  * Consider following tcp code paths::
2282  *
2283  *   CPU1                CPU2
2284  *   sys_select          receive packet
2285  *   ...                 ...
2286  *   __add_wait_queue    update tp->rcv_nxt
2287  *   ...                 ...
2288  *   tp->rcv_nxt check   sock_def_readable
2289  *   ...                 {
2290  *   schedule               rcu_read_lock();
2291  *                          wq = rcu_dereference(sk->sk_wq);
2292  *                          if (wq && waitqueue_active(&wq->wait))
2293  *                              wake_up_interruptible(&wq->wait)
2294  *                          ...
2295  *                       }
2296  *
2297  * The race for tcp fires when the __add_wait_queue changes done by CPU1 stay
2298  * in its cache, and so does the tp->rcv_nxt update on CPU2 side.  The CPU1
2299  * could then endup calling schedule and sleep forever if there are no more
2300  * data on the socket.
2301  *
2302  */
2303 static inline bool skwq_has_sleeper(struct socket_wq *wq)
2304 {
2305 	return wq && wq_has_sleeper(&wq->wait);
2306 }
2307 
2308 /**
2309  * sock_poll_wait - place memory barrier behind the poll_wait call.
2310  * @filp:           file
2311  * @sock:           socket to wait on
2312  * @p:              poll_table
2313  *
2314  * See the comments in the wq_has_sleeper function.
2315  */
2316 static inline void sock_poll_wait(struct file *filp, struct socket *sock,
2317 				  poll_table *p)
2318 {
2319 	if (!poll_does_not_wait(p)) {
2320 		poll_wait(filp, &sock->wq.wait, p);
2321 		/* We need to be sure we are in sync with the
2322 		 * socket flags modification.
2323 		 *
2324 		 * This memory barrier is paired in the wq_has_sleeper.
2325 		 */
2326 		smp_mb();
2327 	}
2328 }
2329 
2330 static inline void skb_set_hash_from_sk(struct sk_buff *skb, struct sock *sk)
2331 {
2332 	/* This pairs with WRITE_ONCE() in sk_set_txhash() */
2333 	u32 txhash = READ_ONCE(sk->sk_txhash);
2334 
2335 	if (txhash) {
2336 		skb->l4_hash = 1;
2337 		skb->hash = txhash;
2338 	}
2339 }
2340 
2341 void skb_set_owner_w(struct sk_buff *skb, struct sock *sk);
2342 
2343 /*
2344  *	Queue a received datagram if it will fit. Stream and sequenced
2345  *	protocols can't normally use this as they need to fit buffers in
2346  *	and play with them.
2347  *
2348  *	Inlined as it's very short and called for pretty much every
2349  *	packet ever received.
2350  */
2351 static inline void skb_set_owner_r(struct sk_buff *skb, struct sock *sk)
2352 {
2353 	skb_orphan(skb);
2354 	skb->sk = sk;
2355 	skb->destructor = sock_rfree;
2356 	atomic_add(skb->truesize, &sk->sk_rmem_alloc);
2357 	sk_mem_charge(sk, skb->truesize);
2358 }
2359 
2360 static inline __must_check bool skb_set_owner_sk_safe(struct sk_buff *skb, struct sock *sk)
2361 {
2362 	if (sk && refcount_inc_not_zero(&sk->sk_refcnt)) {
2363 		skb_orphan(skb);
2364 		skb->destructor = sock_efree;
2365 		skb->sk = sk;
2366 		return true;
2367 	}
2368 	return false;
2369 }
2370 
2371 static inline void skb_prepare_for_gro(struct sk_buff *skb)
2372 {
2373 	if (skb->destructor != sock_wfree) {
2374 		skb_orphan(skb);
2375 		return;
2376 	}
2377 	skb->slow_gro = 1;
2378 }
2379 
2380 void sk_reset_timer(struct sock *sk, struct timer_list *timer,
2381 		    unsigned long expires);
2382 
2383 void sk_stop_timer(struct sock *sk, struct timer_list *timer);
2384 
2385 void sk_stop_timer_sync(struct sock *sk, struct timer_list *timer);
2386 
2387 int __sk_queue_drop_skb(struct sock *sk, struct sk_buff_head *sk_queue,
2388 			struct sk_buff *skb, unsigned int flags,
2389 			void (*destructor)(struct sock *sk,
2390 					   struct sk_buff *skb));
2391 int __sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
2392 
2393 int sock_queue_rcv_skb_reason(struct sock *sk, struct sk_buff *skb,
2394 			      enum skb_drop_reason *reason);
2395 
2396 static inline int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
2397 {
2398 	return sock_queue_rcv_skb_reason(sk, skb, NULL);
2399 }
2400 
2401 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb);
2402 struct sk_buff *sock_dequeue_err_skb(struct sock *sk);
2403 
2404 /*
2405  *	Recover an error report and clear atomically
2406  */
2407 
2408 static inline int sock_error(struct sock *sk)
2409 {
2410 	int err;
2411 
2412 	/* Avoid an atomic operation for the common case.
2413 	 * This is racy since another cpu/thread can change sk_err under us.
2414 	 */
2415 	if (likely(data_race(!sk->sk_err)))
2416 		return 0;
2417 
2418 	err = xchg(&sk->sk_err, 0);
2419 	return -err;
2420 }
2421 
2422 void sk_error_report(struct sock *sk);
2423 
2424 static inline unsigned long sock_wspace(struct sock *sk)
2425 {
2426 	int amt = 0;
2427 
2428 	if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
2429 		amt = sk->sk_sndbuf - refcount_read(&sk->sk_wmem_alloc);
2430 		if (amt < 0)
2431 			amt = 0;
2432 	}
2433 	return amt;
2434 }
2435 
2436 /* Note:
2437  *  We use sk->sk_wq_raw, from contexts knowing this
2438  *  pointer is not NULL and cannot disappear/change.
2439  */
2440 static inline void sk_set_bit(int nr, struct sock *sk)
2441 {
2442 	if ((nr == SOCKWQ_ASYNC_NOSPACE || nr == SOCKWQ_ASYNC_WAITDATA) &&
2443 	    !sock_flag(sk, SOCK_FASYNC))
2444 		return;
2445 
2446 	set_bit(nr, &sk->sk_wq_raw->flags);
2447 }
2448 
2449 static inline void sk_clear_bit(int nr, struct sock *sk)
2450 {
2451 	if ((nr == SOCKWQ_ASYNC_NOSPACE || nr == SOCKWQ_ASYNC_WAITDATA) &&
2452 	    !sock_flag(sk, SOCK_FASYNC))
2453 		return;
2454 
2455 	clear_bit(nr, &sk->sk_wq_raw->flags);
2456 }
2457 
2458 static inline void sk_wake_async(const struct sock *sk, int how, int band)
2459 {
2460 	if (sock_flag(sk, SOCK_FASYNC)) {
2461 		rcu_read_lock();
2462 		sock_wake_async(rcu_dereference(sk->sk_wq), how, band);
2463 		rcu_read_unlock();
2464 	}
2465 }
2466 
2467 /* Since sk_{r,w}mem_alloc sums skb->truesize, even a small frame might
2468  * need sizeof(sk_buff) + MTU + padding, unless net driver perform copybreak.
2469  * Note: for send buffers, TCP works better if we can build two skbs at
2470  * minimum.
2471  */
2472 #define TCP_SKB_MIN_TRUESIZE	(2048 + SKB_DATA_ALIGN(sizeof(struct sk_buff)))
2473 
2474 #define SOCK_MIN_SNDBUF		(TCP_SKB_MIN_TRUESIZE * 2)
2475 #define SOCK_MIN_RCVBUF		 TCP_SKB_MIN_TRUESIZE
2476 
2477 static inline void sk_stream_moderate_sndbuf(struct sock *sk)
2478 {
2479 	u32 val;
2480 
2481 	if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
2482 		return;
2483 
2484 	val = min(sk->sk_sndbuf, sk->sk_wmem_queued >> 1);
2485 	val = max_t(u32, val, sk_unused_reserved_mem(sk));
2486 
2487 	WRITE_ONCE(sk->sk_sndbuf, max_t(u32, val, SOCK_MIN_SNDBUF));
2488 }
2489 
2490 /**
2491  * sk_page_frag - return an appropriate page_frag
2492  * @sk: socket
2493  *
2494  * Use the per task page_frag instead of the per socket one for
2495  * optimization when we know that we're in process context and own
2496  * everything that's associated with %current.
2497  *
2498  * Both direct reclaim and page faults can nest inside other
2499  * socket operations and end up recursing into sk_page_frag()
2500  * while it's already in use: explicitly avoid task page_frag
2501  * usage if the caller is potentially doing any of them.
2502  * This assumes that page fault handlers use the GFP_NOFS flags.
2503  *
2504  * Return: a per task page_frag if context allows that,
2505  * otherwise a per socket one.
2506  */
2507 static inline struct page_frag *sk_page_frag(struct sock *sk)
2508 {
2509 	if ((sk->sk_allocation & (__GFP_DIRECT_RECLAIM | __GFP_MEMALLOC | __GFP_FS)) ==
2510 	    (__GFP_DIRECT_RECLAIM | __GFP_FS))
2511 		return &current->task_frag;
2512 
2513 	return &sk->sk_frag;
2514 }
2515 
2516 bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag);
2517 
2518 /*
2519  *	Default write policy as shown to user space via poll/select/SIGIO
2520  */
2521 static inline bool sock_writeable(const struct sock *sk)
2522 {
2523 	return refcount_read(&sk->sk_wmem_alloc) < (READ_ONCE(sk->sk_sndbuf) >> 1);
2524 }
2525 
2526 static inline gfp_t gfp_any(void)
2527 {
2528 	return in_softirq() ? GFP_ATOMIC : GFP_KERNEL;
2529 }
2530 
2531 static inline gfp_t gfp_memcg_charge(void)
2532 {
2533 	return in_softirq() ? GFP_NOWAIT : GFP_KERNEL;
2534 }
2535 
2536 static inline long sock_rcvtimeo(const struct sock *sk, bool noblock)
2537 {
2538 	return noblock ? 0 : sk->sk_rcvtimeo;
2539 }
2540 
2541 static inline long sock_sndtimeo(const struct sock *sk, bool noblock)
2542 {
2543 	return noblock ? 0 : sk->sk_sndtimeo;
2544 }
2545 
2546 static inline int sock_rcvlowat(const struct sock *sk, int waitall, int len)
2547 {
2548 	int v = waitall ? len : min_t(int, READ_ONCE(sk->sk_rcvlowat), len);
2549 
2550 	return v ?: 1;
2551 }
2552 
2553 /* Alas, with timeout socket operations are not restartable.
2554  * Compare this to poll().
2555  */
2556 static inline int sock_intr_errno(long timeo)
2557 {
2558 	return timeo == MAX_SCHEDULE_TIMEOUT ? -ERESTARTSYS : -EINTR;
2559 }
2560 
2561 struct sock_skb_cb {
2562 	u32 dropcount;
2563 };
2564 
2565 /* Store sock_skb_cb at the end of skb->cb[] so protocol families
2566  * using skb->cb[] would keep using it directly and utilize its
2567  * alignement guarantee.
2568  */
2569 #define SOCK_SKB_CB_OFFSET ((sizeof_field(struct sk_buff, cb) - \
2570 			    sizeof(struct sock_skb_cb)))
2571 
2572 #define SOCK_SKB_CB(__skb) ((struct sock_skb_cb *)((__skb)->cb + \
2573 			    SOCK_SKB_CB_OFFSET))
2574 
2575 #define sock_skb_cb_check_size(size) \
2576 	BUILD_BUG_ON((size) > SOCK_SKB_CB_OFFSET)
2577 
2578 static inline void
2579 sock_skb_set_dropcount(const struct sock *sk, struct sk_buff *skb)
2580 {
2581 	SOCK_SKB_CB(skb)->dropcount = sock_flag(sk, SOCK_RXQ_OVFL) ?
2582 						atomic_read(&sk->sk_drops) : 0;
2583 }
2584 
2585 static inline void sk_drops_add(struct sock *sk, const struct sk_buff *skb)
2586 {
2587 	int segs = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
2588 
2589 	atomic_add(segs, &sk->sk_drops);
2590 }
2591 
2592 static inline ktime_t sock_read_timestamp(struct sock *sk)
2593 {
2594 #if BITS_PER_LONG==32
2595 	unsigned int seq;
2596 	ktime_t kt;
2597 
2598 	do {
2599 		seq = read_seqbegin(&sk->sk_stamp_seq);
2600 		kt = sk->sk_stamp;
2601 	} while (read_seqretry(&sk->sk_stamp_seq, seq));
2602 
2603 	return kt;
2604 #else
2605 	return READ_ONCE(sk->sk_stamp);
2606 #endif
2607 }
2608 
2609 static inline void sock_write_timestamp(struct sock *sk, ktime_t kt)
2610 {
2611 #if BITS_PER_LONG==32
2612 	write_seqlock(&sk->sk_stamp_seq);
2613 	sk->sk_stamp = kt;
2614 	write_sequnlock(&sk->sk_stamp_seq);
2615 #else
2616 	WRITE_ONCE(sk->sk_stamp, kt);
2617 #endif
2618 }
2619 
2620 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
2621 			   struct sk_buff *skb);
2622 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
2623 			     struct sk_buff *skb);
2624 
2625 static inline void
2626 sock_recv_timestamp(struct msghdr *msg, struct sock *sk, struct sk_buff *skb)
2627 {
2628 	ktime_t kt = skb->tstamp;
2629 	struct skb_shared_hwtstamps *hwtstamps = skb_hwtstamps(skb);
2630 
2631 	/*
2632 	 * generate control messages if
2633 	 * - receive time stamping in software requested
2634 	 * - software time stamp available and wanted
2635 	 * - hardware time stamps available and wanted
2636 	 */
2637 	if (sock_flag(sk, SOCK_RCVTSTAMP) ||
2638 	    (sk->sk_tsflags & SOF_TIMESTAMPING_RX_SOFTWARE) ||
2639 	    (kt && sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) ||
2640 	    (hwtstamps->hwtstamp &&
2641 	     (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE)))
2642 		__sock_recv_timestamp(msg, sk, skb);
2643 	else
2644 		sock_write_timestamp(sk, kt);
2645 
2646 	if (sock_flag(sk, SOCK_WIFI_STATUS) && skb->wifi_acked_valid)
2647 		__sock_recv_wifi_status(msg, sk, skb);
2648 }
2649 
2650 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
2651 			      struct sk_buff *skb);
2652 
2653 #define SK_DEFAULT_STAMP (-1L * NSEC_PER_SEC)
2654 static inline void sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
2655 					  struct sk_buff *skb)
2656 {
2657 #define FLAGS_TS_OR_DROPS ((1UL << SOCK_RXQ_OVFL)			| \
2658 			   (1UL << SOCK_RCVTSTAMP))
2659 #define TSFLAGS_ANY	  (SOF_TIMESTAMPING_SOFTWARE			| \
2660 			   SOF_TIMESTAMPING_RAW_HARDWARE)
2661 
2662 	if (sk->sk_flags & FLAGS_TS_OR_DROPS || sk->sk_tsflags & TSFLAGS_ANY)
2663 		__sock_recv_ts_and_drops(msg, sk, skb);
2664 	else if (unlikely(sock_flag(sk, SOCK_TIMESTAMP)))
2665 		sock_write_timestamp(sk, skb->tstamp);
2666 	else if (unlikely(sk->sk_stamp == SK_DEFAULT_STAMP))
2667 		sock_write_timestamp(sk, 0);
2668 }
2669 
2670 void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags);
2671 
2672 /**
2673  * _sock_tx_timestamp - checks whether the outgoing packet is to be time stamped
2674  * @sk:		socket sending this packet
2675  * @tsflags:	timestamping flags to use
2676  * @tx_flags:	completed with instructions for time stamping
2677  * @tskey:      filled in with next sk_tskey (not for TCP, which uses seqno)
2678  *
2679  * Note: callers should take care of initial ``*tx_flags`` value (usually 0)
2680  */
2681 static inline void _sock_tx_timestamp(struct sock *sk, __u16 tsflags,
2682 				      __u8 *tx_flags, __u32 *tskey)
2683 {
2684 	if (unlikely(tsflags)) {
2685 		__sock_tx_timestamp(tsflags, tx_flags);
2686 		if (tsflags & SOF_TIMESTAMPING_OPT_ID && tskey &&
2687 		    tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK)
2688 			*tskey = atomic_inc_return(&sk->sk_tskey) - 1;
2689 	}
2690 	if (unlikely(sock_flag(sk, SOCK_WIFI_STATUS)))
2691 		*tx_flags |= SKBTX_WIFI_STATUS;
2692 }
2693 
2694 static inline void sock_tx_timestamp(struct sock *sk, __u16 tsflags,
2695 				     __u8 *tx_flags)
2696 {
2697 	_sock_tx_timestamp(sk, tsflags, tx_flags, NULL);
2698 }
2699 
2700 static inline void skb_setup_tx_timestamp(struct sk_buff *skb, __u16 tsflags)
2701 {
2702 	_sock_tx_timestamp(skb->sk, tsflags, &skb_shinfo(skb)->tx_flags,
2703 			   &skb_shinfo(skb)->tskey);
2704 }
2705 
2706 static inline bool sk_is_tcp(const struct sock *sk)
2707 {
2708 	return sk->sk_type == SOCK_STREAM && sk->sk_protocol == IPPROTO_TCP;
2709 }
2710 
2711 /**
2712  * sk_eat_skb - Release a skb if it is no longer needed
2713  * @sk: socket to eat this skb from
2714  * @skb: socket buffer to eat
2715  *
2716  * This routine must be called with interrupts disabled or with the socket
2717  * locked so that the sk_buff queue operation is ok.
2718 */
2719 static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb)
2720 {
2721 	__skb_unlink(skb, &sk->sk_receive_queue);
2722 	__kfree_skb(skb);
2723 }
2724 
2725 static inline bool
2726 skb_sk_is_prefetched(struct sk_buff *skb)
2727 {
2728 #ifdef CONFIG_INET
2729 	return skb->destructor == sock_pfree;
2730 #else
2731 	return false;
2732 #endif /* CONFIG_INET */
2733 }
2734 
2735 /* This helper checks if a socket is a full socket,
2736  * ie _not_ a timewait or request socket.
2737  */
2738 static inline bool sk_fullsock(const struct sock *sk)
2739 {
2740 	return (1 << sk->sk_state) & ~(TCPF_TIME_WAIT | TCPF_NEW_SYN_RECV);
2741 }
2742 
2743 static inline bool
2744 sk_is_refcounted(struct sock *sk)
2745 {
2746 	/* Only full sockets have sk->sk_flags. */
2747 	return !sk_fullsock(sk) || !sock_flag(sk, SOCK_RCU_FREE);
2748 }
2749 
2750 /**
2751  * skb_steal_sock - steal a socket from an sk_buff
2752  * @skb: sk_buff to steal the socket from
2753  * @refcounted: is set to true if the socket is reference-counted
2754  */
2755 static inline struct sock *
2756 skb_steal_sock(struct sk_buff *skb, bool *refcounted)
2757 {
2758 	if (skb->sk) {
2759 		struct sock *sk = skb->sk;
2760 
2761 		*refcounted = true;
2762 		if (skb_sk_is_prefetched(skb))
2763 			*refcounted = sk_is_refcounted(sk);
2764 		skb->destructor = NULL;
2765 		skb->sk = NULL;
2766 		return sk;
2767 	}
2768 	*refcounted = false;
2769 	return NULL;
2770 }
2771 
2772 /* Checks if this SKB belongs to an HW offloaded socket
2773  * and whether any SW fallbacks are required based on dev.
2774  * Check decrypted mark in case skb_orphan() cleared socket.
2775  */
2776 static inline struct sk_buff *sk_validate_xmit_skb(struct sk_buff *skb,
2777 						   struct net_device *dev)
2778 {
2779 #ifdef CONFIG_SOCK_VALIDATE_XMIT
2780 	struct sock *sk = skb->sk;
2781 
2782 	if (sk && sk_fullsock(sk) && sk->sk_validate_xmit_skb) {
2783 		skb = sk->sk_validate_xmit_skb(sk, dev, skb);
2784 #ifdef CONFIG_TLS_DEVICE
2785 	} else if (unlikely(skb->decrypted)) {
2786 		pr_warn_ratelimited("unencrypted skb with no associated socket - dropping\n");
2787 		kfree_skb(skb);
2788 		skb = NULL;
2789 #endif
2790 	}
2791 #endif
2792 
2793 	return skb;
2794 }
2795 
2796 /* This helper checks if a socket is a LISTEN or NEW_SYN_RECV
2797  * SYNACK messages can be attached to either ones (depending on SYNCOOKIE)
2798  */
2799 static inline bool sk_listener(const struct sock *sk)
2800 {
2801 	return (1 << sk->sk_state) & (TCPF_LISTEN | TCPF_NEW_SYN_RECV);
2802 }
2803 
2804 void sock_enable_timestamp(struct sock *sk, enum sock_flags flag);
2805 int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len, int level,
2806 		       int type);
2807 
2808 bool sk_ns_capable(const struct sock *sk,
2809 		   struct user_namespace *user_ns, int cap);
2810 bool sk_capable(const struct sock *sk, int cap);
2811 bool sk_net_capable(const struct sock *sk, int cap);
2812 
2813 void sk_get_meminfo(const struct sock *sk, u32 *meminfo);
2814 
2815 /* Take into consideration the size of the struct sk_buff overhead in the
2816  * determination of these values, since that is non-constant across
2817  * platforms.  This makes socket queueing behavior and performance
2818  * not depend upon such differences.
2819  */
2820 #define _SK_MEM_PACKETS		256
2821 #define _SK_MEM_OVERHEAD	SKB_TRUESIZE(256)
2822 #define SK_WMEM_MAX		(_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
2823 #define SK_RMEM_MAX		(_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
2824 
2825 extern __u32 sysctl_wmem_max;
2826 extern __u32 sysctl_rmem_max;
2827 
2828 extern int sysctl_tstamp_allow_data;
2829 extern int sysctl_optmem_max;
2830 
2831 extern __u32 sysctl_wmem_default;
2832 extern __u32 sysctl_rmem_default;
2833 
2834 #define SKB_FRAG_PAGE_ORDER	get_order(32768)
2835 DECLARE_STATIC_KEY_FALSE(net_high_order_alloc_disable_key);
2836 
2837 static inline int sk_get_wmem0(const struct sock *sk, const struct proto *proto)
2838 {
2839 	/* Does this proto have per netns sysctl_wmem ? */
2840 	if (proto->sysctl_wmem_offset)
2841 		return *(int *)((void *)sock_net(sk) + proto->sysctl_wmem_offset);
2842 
2843 	return *proto->sysctl_wmem;
2844 }
2845 
2846 static inline int sk_get_rmem0(const struct sock *sk, const struct proto *proto)
2847 {
2848 	/* Does this proto have per netns sysctl_rmem ? */
2849 	if (proto->sysctl_rmem_offset)
2850 		return *(int *)((void *)sock_net(sk) + proto->sysctl_rmem_offset);
2851 
2852 	return *proto->sysctl_rmem;
2853 }
2854 
2855 /* Default TCP Small queue budget is ~1 ms of data (1sec >> 10)
2856  * Some wifi drivers need to tweak it to get more chunks.
2857  * They can use this helper from their ndo_start_xmit()
2858  */
2859 static inline void sk_pacing_shift_update(struct sock *sk, int val)
2860 {
2861 	if (!sk || !sk_fullsock(sk) || READ_ONCE(sk->sk_pacing_shift) == val)
2862 		return;
2863 	WRITE_ONCE(sk->sk_pacing_shift, val);
2864 }
2865 
2866 /* if a socket is bound to a device, check that the given device
2867  * index is either the same or that the socket is bound to an L3
2868  * master device and the given device index is also enslaved to
2869  * that L3 master
2870  */
2871 static inline bool sk_dev_equal_l3scope(struct sock *sk, int dif)
2872 {
2873 	int mdif;
2874 
2875 	if (!sk->sk_bound_dev_if || sk->sk_bound_dev_if == dif)
2876 		return true;
2877 
2878 	mdif = l3mdev_master_ifindex_by_index(sock_net(sk), dif);
2879 	if (mdif && mdif == sk->sk_bound_dev_if)
2880 		return true;
2881 
2882 	return false;
2883 }
2884 
2885 void sock_def_readable(struct sock *sk);
2886 
2887 int sock_bindtoindex(struct sock *sk, int ifindex, bool lock_sk);
2888 void sock_set_timestamp(struct sock *sk, int optname, bool valbool);
2889 int sock_set_timestamping(struct sock *sk, int optname,
2890 			  struct so_timestamping timestamping);
2891 
2892 void sock_enable_timestamps(struct sock *sk);
2893 void sock_no_linger(struct sock *sk);
2894 void sock_set_keepalive(struct sock *sk);
2895 void sock_set_priority(struct sock *sk, u32 priority);
2896 void sock_set_rcvbuf(struct sock *sk, int val);
2897 void sock_set_mark(struct sock *sk, u32 val);
2898 void sock_set_reuseaddr(struct sock *sk);
2899 void sock_set_reuseport(struct sock *sk);
2900 void sock_set_sndtimeo(struct sock *sk, s64 secs);
2901 
2902 int sock_bind_add(struct sock *sk, struct sockaddr *addr, int addr_len);
2903 
2904 int sock_get_timeout(long timeo, void *optval, bool old_timeval);
2905 int sock_copy_user_timeval(struct __kernel_sock_timeval *tv,
2906 			   sockptr_t optval, int optlen, bool old_timeval);
2907 
2908 static inline bool sk_is_readable(struct sock *sk)
2909 {
2910 	if (sk->sk_prot->sock_is_readable)
2911 		return sk->sk_prot->sock_is_readable(sk);
2912 	return false;
2913 }
2914 #endif	/* _SOCK_H */
2915