1 /* SPDX-License-Identifier: GPL-2.0-or-later */ 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * Definitions for the AF_INET socket handler. 8 * 9 * Version: @(#)sock.h 1.0.4 05/13/93 10 * 11 * Authors: Ross Biro 12 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 13 * Corey Minyard <wf-rch!minyard@relay.EU.net> 14 * Florian La Roche <flla@stud.uni-sb.de> 15 * 16 * Fixes: 17 * Alan Cox : Volatiles in skbuff pointers. See 18 * skbuff comments. May be overdone, 19 * better to prove they can be removed 20 * than the reverse. 21 * Alan Cox : Added a zapped field for tcp to note 22 * a socket is reset and must stay shut up 23 * Alan Cox : New fields for options 24 * Pauline Middelink : identd support 25 * Alan Cox : Eliminate low level recv/recvfrom 26 * David S. Miller : New socket lookup architecture. 27 * Steve Whitehouse: Default routines for sock_ops 28 * Arnaldo C. Melo : removed net_pinfo, tp_pinfo and made 29 * protinfo be just a void pointer, as the 30 * protocol specific parts were moved to 31 * respective headers and ipv4/v6, etc now 32 * use private slabcaches for its socks 33 * Pedro Hortas : New flags field for socket options 34 */ 35 #ifndef _SOCK_H 36 #define _SOCK_H 37 38 #include <linux/hardirq.h> 39 #include <linux/kernel.h> 40 #include <linux/list.h> 41 #include <linux/list_nulls.h> 42 #include <linux/timer.h> 43 #include <linux/cache.h> 44 #include <linux/bitops.h> 45 #include <linux/lockdep.h> 46 #include <linux/netdevice.h> 47 #include <linux/skbuff.h> /* struct sk_buff */ 48 #include <linux/mm.h> 49 #include <linux/security.h> 50 #include <linux/slab.h> 51 #include <linux/uaccess.h> 52 #include <linux/page_counter.h> 53 #include <linux/memcontrol.h> 54 #include <linux/static_key.h> 55 #include <linux/sched.h> 56 #include <linux/wait.h> 57 #include <linux/cgroup-defs.h> 58 #include <linux/rbtree.h> 59 #include <linux/rculist_nulls.h> 60 #include <linux/poll.h> 61 #include <linux/sockptr.h> 62 #include <linux/indirect_call_wrapper.h> 63 #include <linux/atomic.h> 64 #include <linux/refcount.h> 65 #include <linux/llist.h> 66 #include <net/dst.h> 67 #include <net/checksum.h> 68 #include <net/tcp_states.h> 69 #include <linux/net_tstamp.h> 70 #include <net/l3mdev.h> 71 #include <uapi/linux/socket.h> 72 73 /* 74 * This structure really needs to be cleaned up. 75 * Most of it is for TCP, and not used by any of 76 * the other protocols. 77 */ 78 79 /* This is the per-socket lock. The spinlock provides a synchronization 80 * between user contexts and software interrupt processing, whereas the 81 * mini-semaphore synchronizes multiple users amongst themselves. 82 */ 83 typedef struct { 84 spinlock_t slock; 85 int owned; 86 wait_queue_head_t wq; 87 /* 88 * We express the mutex-alike socket_lock semantics 89 * to the lock validator by explicitly managing 90 * the slock as a lock variant (in addition to 91 * the slock itself): 92 */ 93 #ifdef CONFIG_DEBUG_LOCK_ALLOC 94 struct lockdep_map dep_map; 95 #endif 96 } socket_lock_t; 97 98 struct sock; 99 struct proto; 100 struct net; 101 102 typedef __u32 __bitwise __portpair; 103 typedef __u64 __bitwise __addrpair; 104 105 struct socket_drop_counters { 106 atomic_t drops0 ____cacheline_aligned_in_smp; 107 atomic_t drops1 ____cacheline_aligned_in_smp; 108 }; 109 110 /** 111 * struct sock_common - minimal network layer representation of sockets 112 * @skc_daddr: Foreign IPv4 addr 113 * @skc_rcv_saddr: Bound local IPv4 addr 114 * @skc_addrpair: 8-byte-aligned __u64 union of @skc_daddr & @skc_rcv_saddr 115 * @skc_hash: hash value used with various protocol lookup tables 116 * @skc_u16hashes: two u16 hash values used by UDP lookup tables 117 * @skc_dport: placeholder for inet_dport/tw_dport 118 * @skc_num: placeholder for inet_num/tw_num 119 * @skc_portpair: __u32 union of @skc_dport & @skc_num 120 * @skc_family: network address family 121 * @skc_state: Connection state 122 * @skc_reuse: %SO_REUSEADDR setting 123 * @skc_reuseport: %SO_REUSEPORT setting 124 * @skc_ipv6only: socket is IPV6 only 125 * @skc_net_refcnt: socket is using net ref counting 126 * @skc_bound_dev_if: bound device index if != 0 127 * @skc_bind_node: bind hash linkage for various protocol lookup tables 128 * @skc_portaddr_node: second hash linkage for UDP/UDP-Lite protocol 129 * @skc_prot: protocol handlers inside a network family 130 * @skc_net: reference to the network namespace of this socket 131 * @skc_v6_daddr: IPV6 destination address 132 * @skc_v6_rcv_saddr: IPV6 source address 133 * @skc_cookie: socket's cookie value 134 * @skc_node: main hash linkage for various protocol lookup tables 135 * @skc_nulls_node: main hash linkage for TCP/UDP/UDP-Lite protocol 136 * @skc_tx_queue_mapping: tx queue number for this connection 137 * @skc_rx_queue_mapping: rx queue number for this connection 138 * @skc_flags: place holder for sk_flags 139 * %SO_LINGER (l_onoff), %SO_BROADCAST, %SO_KEEPALIVE, 140 * %SO_OOBINLINE settings, %SO_TIMESTAMPING settings 141 * @skc_listener: connection request listener socket (aka rsk_listener) 142 * [union with @skc_flags] 143 * @skc_tw_dr: (aka tw_dr) ptr to &struct inet_timewait_death_row 144 * [union with @skc_flags] 145 * @skc_incoming_cpu: record/match cpu processing incoming packets 146 * @skc_rcv_wnd: (aka rsk_rcv_wnd) TCP receive window size (possibly scaled) 147 * [union with @skc_incoming_cpu] 148 * @skc_tw_rcv_nxt: (aka tw_rcv_nxt) TCP window next expected seq number 149 * [union with @skc_incoming_cpu] 150 * @skc_refcnt: reference count 151 * 152 * This is the minimal network layer representation of sockets, the header 153 * for struct sock and struct inet_timewait_sock. 154 */ 155 struct sock_common { 156 union { 157 __addrpair skc_addrpair; 158 struct { 159 __be32 skc_daddr; 160 __be32 skc_rcv_saddr; 161 }; 162 }; 163 union { 164 unsigned int skc_hash; 165 __u16 skc_u16hashes[2]; 166 }; 167 /* skc_dport && skc_num must be grouped as well */ 168 union { 169 __portpair skc_portpair; 170 struct { 171 __be16 skc_dport; 172 __u16 skc_num; 173 }; 174 }; 175 176 unsigned short skc_family; 177 volatile unsigned char skc_state; 178 unsigned char skc_reuse:4; 179 unsigned char skc_reuseport:1; 180 unsigned char skc_ipv6only:1; 181 unsigned char skc_net_refcnt:1; 182 int skc_bound_dev_if; 183 union { 184 struct hlist_node skc_bind_node; 185 struct hlist_node skc_portaddr_node; 186 }; 187 struct proto *skc_prot; 188 possible_net_t skc_net; 189 190 #if IS_ENABLED(CONFIG_IPV6) 191 struct in6_addr skc_v6_daddr; 192 struct in6_addr skc_v6_rcv_saddr; 193 #endif 194 195 atomic64_t skc_cookie; 196 197 /* following fields are padding to force 198 * offset(struct sock, sk_refcnt) == 128 on 64bit arches 199 * assuming IPV6 is enabled. We use this padding differently 200 * for different kind of 'sockets' 201 */ 202 union { 203 unsigned long skc_flags; 204 struct sock *skc_listener; /* request_sock */ 205 struct inet_timewait_death_row *skc_tw_dr; /* inet_timewait_sock */ 206 }; 207 /* 208 * fields between dontcopy_begin/dontcopy_end 209 * are not copied in sock_copy() 210 */ 211 /* private: */ 212 int skc_dontcopy_begin[0]; 213 /* public: */ 214 union { 215 struct hlist_node skc_node; 216 struct hlist_nulls_node skc_nulls_node; 217 }; 218 unsigned short skc_tx_queue_mapping; 219 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING 220 unsigned short skc_rx_queue_mapping; 221 #endif 222 union { 223 int skc_incoming_cpu; 224 u32 skc_rcv_wnd; 225 u32 skc_tw_rcv_nxt; /* struct tcp_timewait_sock */ 226 }; 227 228 refcount_t skc_refcnt; 229 /* private: */ 230 int skc_dontcopy_end[0]; 231 union { 232 u32 skc_rxhash; 233 u32 skc_window_clamp; 234 u32 skc_tw_snd_nxt; /* struct tcp_timewait_sock */ 235 }; 236 /* public: */ 237 }; 238 239 struct bpf_local_storage; 240 struct sk_filter; 241 242 /** 243 * struct sock - network layer representation of sockets 244 * @__sk_common: shared layout with inet_timewait_sock 245 * @sk_shutdown: mask of %SEND_SHUTDOWN and/or %RCV_SHUTDOWN 246 * @sk_userlocks: %SO_SNDBUF and %SO_RCVBUF settings 247 * @sk_lock: synchronizer 248 * @sk_kern_sock: True if sock is using kernel lock classes 249 * @sk_rcvbuf: size of receive buffer in bytes 250 * @sk_wq: sock wait queue and async head 251 * @sk_rx_dst: receive input route used by early demux 252 * @sk_rx_dst_ifindex: ifindex for @sk_rx_dst 253 * @sk_rx_dst_cookie: cookie for @sk_rx_dst 254 * @sk_dst_cache: destination cache 255 * @sk_dst_pending_confirm: need to confirm neighbour 256 * @sk_policy: flow policy 257 * @sk_receive_queue: incoming packets 258 * @sk_wmem_alloc: transmit queue bytes committed 259 * @sk_tsq_flags: TCP Small Queues flags 260 * @sk_write_queue: Packet sending queue 261 * @sk_omem_alloc: "o" is "option" or "other" 262 * @sk_wmem_queued: persistent queue size 263 * @sk_forward_alloc: space allocated forward 264 * @sk_reserved_mem: space reserved and non-reclaimable for the socket 265 * @sk_napi_id: id of the last napi context to receive data for sk 266 * @sk_ll_usec: usecs to busypoll when there is no data 267 * @sk_allocation: allocation mode 268 * @sk_pacing_rate: Pacing rate (if supported by transport/packet scheduler) 269 * @sk_pacing_status: Pacing status (requested, handled by sch_fq) 270 * @sk_max_pacing_rate: Maximum pacing rate (%SO_MAX_PACING_RATE) 271 * @sk_sndbuf: size of send buffer in bytes 272 * @sk_no_check_tx: %SO_NO_CHECK setting, set checksum in TX packets 273 * @sk_no_check_rx: allow zero checksum in RX packets 274 * @sk_route_caps: route capabilities (e.g. %NETIF_F_TSO) 275 * @sk_gso_disabled: if set, NETIF_F_GSO_MASK is forbidden. 276 * @sk_gso_type: GSO type (e.g. %SKB_GSO_TCPV4) 277 * @sk_gso_max_size: Maximum GSO segment size to build 278 * @sk_gso_max_segs: Maximum number of GSO segments 279 * @sk_pacing_shift: scaling factor for TCP Small Queues 280 * @sk_lingertime: %SO_LINGER l_linger setting 281 * @sk_backlog: always used with the per-socket spinlock held 282 * @sk_callback_lock: used with the callbacks in the end of this struct 283 * @sk_error_queue: rarely used 284 * @sk_prot_creator: sk_prot of original sock creator (see ipv6_setsockopt, 285 * IPV6_ADDRFORM for instance) 286 * @sk_err: last error 287 * @sk_err_soft: errors that don't cause failure but are the cause of a 288 * persistent failure not just 'timed out' 289 * @sk_drops: raw/udp drops counter 290 * @sk_drop_counters: optional pointer to socket_drop_counters 291 * @sk_ack_backlog: current listen backlog 292 * @sk_max_ack_backlog: listen backlog set in listen() 293 * @sk_uid: user id of owner 294 * @sk_prefer_busy_poll: prefer busypolling over softirq processing 295 * @sk_busy_poll_budget: napi processing budget when busypolling 296 * @sk_priority: %SO_PRIORITY setting 297 * @sk_type: socket type (%SOCK_STREAM, etc) 298 * @sk_protocol: which protocol this socket belongs in this network family 299 * @sk_peer_lock: lock protecting @sk_peer_pid and @sk_peer_cred 300 * @sk_peer_pid: &struct pid for this socket's peer 301 * @sk_peer_cred: %SO_PEERCRED setting 302 * @sk_rcvlowat: %SO_RCVLOWAT setting 303 * @sk_rcvtimeo: %SO_RCVTIMEO setting 304 * @sk_sndtimeo: %SO_SNDTIMEO setting 305 * @sk_txhash: computed flow hash for use on transmit 306 * @sk_txrehash: enable TX hash rethink 307 * @sk_filter: socket filtering instructions 308 * @sk_timer: sock cleanup timer 309 * @sk_stamp: time stamp of last packet received 310 * @sk_stamp_seq: lock for accessing sk_stamp on 32 bit architectures only 311 * @sk_tsflags: SO_TIMESTAMPING flags 312 * @sk_bpf_cb_flags: used in bpf_setsockopt() 313 * @sk_use_task_frag: allow sk_page_frag() to use current->task_frag. 314 * Sockets that can be used under memory reclaim should 315 * set this to false. 316 * @sk_bind_phc: SO_TIMESTAMPING bind PHC index of PTP virtual clock 317 * for timestamping 318 * @sk_tskey: counter to disambiguate concurrent tstamp requests 319 * @sk_zckey: counter to order MSG_ZEROCOPY notifications 320 * @sk_socket: Identd and reporting IO signals 321 * @sk_user_data: RPC layer private data. Write-protected by @sk_callback_lock. 322 * @sk_frag: cached page frag 323 * @sk_peek_off: current peek_offset value 324 * @sk_send_head: front of stuff to transmit 325 * @tcp_rtx_queue: TCP re-transmit queue [union with @sk_send_head] 326 * @sk_security: used by security modules 327 * @sk_mark: generic packet mark 328 * @sk_cgrp_data: cgroup data for this cgroup 329 * @sk_memcg: this socket's memory cgroup association 330 * @sk_write_pending: a write to stream socket waits to start 331 * @sk_disconnects: number of disconnect operations performed on this sock 332 * @sk_state_change: callback to indicate change in the state of the sock 333 * @sk_data_ready: callback to indicate there is data to be processed 334 * @sk_write_space: callback to indicate there is bf sending space available 335 * @sk_error_report: callback to indicate errors (e.g. %MSG_ERRQUEUE) 336 * @sk_backlog_rcv: callback to process the backlog 337 * @sk_validate_xmit_skb: ptr to an optional validate function 338 * @sk_destruct: called at sock freeing time, i.e. when all refcnt == 0 339 * @sk_reuseport_cb: reuseport group container 340 * @sk_bpf_storage: ptr to cache and control for bpf_sk_storage 341 * @sk_rcu: used during RCU grace period 342 * @sk_clockid: clockid used by time-based scheduling (SO_TXTIME) 343 * @sk_txtime_deadline_mode: set deadline mode for SO_TXTIME 344 * @sk_txtime_report_errors: set report errors mode for SO_TXTIME 345 * @sk_txtime_unused: unused txtime flags 346 * @sk_scm_recv_flags: all flags used by scm_recv() 347 * @sk_scm_credentials: flagged by SO_PASSCRED to recv SCM_CREDENTIALS 348 * @sk_scm_security: flagged by SO_PASSSEC to recv SCM_SECURITY 349 * @sk_scm_pidfd: flagged by SO_PASSPIDFD to recv SCM_PIDFD 350 * @sk_scm_rights: flagged by SO_PASSRIGHTS to recv SCM_RIGHTS 351 * @sk_scm_unused: unused flags for scm_recv() 352 * @ns_tracker: tracker for netns reference 353 * @sk_user_frags: xarray of pages the user is holding a reference on. 354 * @sk_owner: reference to the real owner of the socket that calls 355 * sock_lock_init_class_and_name(). 356 */ 357 struct sock { 358 /* 359 * Now struct inet_timewait_sock also uses sock_common, so please just 360 * don't add nothing before this first member (__sk_common) --acme 361 */ 362 struct sock_common __sk_common; 363 #define sk_node __sk_common.skc_node 364 #define sk_nulls_node __sk_common.skc_nulls_node 365 #define sk_refcnt __sk_common.skc_refcnt 366 #define sk_tx_queue_mapping __sk_common.skc_tx_queue_mapping 367 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING 368 #define sk_rx_queue_mapping __sk_common.skc_rx_queue_mapping 369 #endif 370 371 #define sk_dontcopy_begin __sk_common.skc_dontcopy_begin 372 #define sk_dontcopy_end __sk_common.skc_dontcopy_end 373 #define sk_hash __sk_common.skc_hash 374 #define sk_portpair __sk_common.skc_portpair 375 #define sk_num __sk_common.skc_num 376 #define sk_dport __sk_common.skc_dport 377 #define sk_addrpair __sk_common.skc_addrpair 378 #define sk_daddr __sk_common.skc_daddr 379 #define sk_rcv_saddr __sk_common.skc_rcv_saddr 380 #define sk_family __sk_common.skc_family 381 #define sk_state __sk_common.skc_state 382 #define sk_reuse __sk_common.skc_reuse 383 #define sk_reuseport __sk_common.skc_reuseport 384 #define sk_ipv6only __sk_common.skc_ipv6only 385 #define sk_net_refcnt __sk_common.skc_net_refcnt 386 #define sk_bound_dev_if __sk_common.skc_bound_dev_if 387 #define sk_bind_node __sk_common.skc_bind_node 388 #define sk_prot __sk_common.skc_prot 389 #define sk_net __sk_common.skc_net 390 #define sk_v6_daddr __sk_common.skc_v6_daddr 391 #define sk_v6_rcv_saddr __sk_common.skc_v6_rcv_saddr 392 #define sk_cookie __sk_common.skc_cookie 393 #define sk_incoming_cpu __sk_common.skc_incoming_cpu 394 #define sk_flags __sk_common.skc_flags 395 #define sk_rxhash __sk_common.skc_rxhash 396 397 __cacheline_group_begin(sock_write_rx); 398 399 atomic_t sk_drops; 400 __s32 sk_peek_off; 401 struct sk_buff_head sk_error_queue; 402 struct sk_buff_head sk_receive_queue; 403 /* 404 * The backlog queue is special, it is always used with 405 * the per-socket spinlock held and requires low latency 406 * access. Therefore we special case it's implementation. 407 * Note : rmem_alloc is in this structure to fill a hole 408 * on 64bit arches, not because its logically part of 409 * backlog. 410 */ 411 struct { 412 atomic_t rmem_alloc; 413 int len; 414 struct sk_buff *head; 415 struct sk_buff *tail; 416 } sk_backlog; 417 #define sk_rmem_alloc sk_backlog.rmem_alloc 418 419 __cacheline_group_end(sock_write_rx); 420 421 __cacheline_group_begin(sock_read_rx); 422 /* early demux fields */ 423 struct dst_entry __rcu *sk_rx_dst; 424 int sk_rx_dst_ifindex; 425 u32 sk_rx_dst_cookie; 426 427 #ifdef CONFIG_NET_RX_BUSY_POLL 428 unsigned int sk_ll_usec; 429 unsigned int sk_napi_id; 430 u16 sk_busy_poll_budget; 431 u8 sk_prefer_busy_poll; 432 #endif 433 u8 sk_userlocks; 434 int sk_rcvbuf; 435 436 struct sk_filter __rcu *sk_filter; 437 union { 438 struct socket_wq __rcu *sk_wq; 439 /* private: */ 440 struct socket_wq *sk_wq_raw; 441 /* public: */ 442 }; 443 444 void (*sk_data_ready)(struct sock *sk); 445 long sk_rcvtimeo; 446 int sk_rcvlowat; 447 __cacheline_group_end(sock_read_rx); 448 449 __cacheline_group_begin(sock_read_rxtx); 450 int sk_err; 451 struct socket *sk_socket; 452 #ifdef CONFIG_MEMCG 453 struct mem_cgroup *sk_memcg; 454 #endif 455 #ifdef CONFIG_XFRM 456 struct xfrm_policy __rcu *sk_policy[2]; 457 #endif 458 struct socket_drop_counters *sk_drop_counters; 459 __cacheline_group_end(sock_read_rxtx); 460 461 __cacheline_group_begin(sock_write_rxtx); 462 socket_lock_t sk_lock; 463 u32 sk_reserved_mem; 464 int sk_forward_alloc; 465 u32 sk_tsflags; 466 __cacheline_group_end(sock_write_rxtx); 467 468 __cacheline_group_begin(sock_write_tx); 469 int sk_write_pending; 470 atomic_t sk_omem_alloc; 471 int sk_sndbuf; 472 473 int sk_wmem_queued; 474 refcount_t sk_wmem_alloc; 475 unsigned long sk_tsq_flags; 476 union { 477 struct sk_buff *sk_send_head; 478 struct rb_root tcp_rtx_queue; 479 }; 480 struct sk_buff_head sk_write_queue; 481 u32 sk_dst_pending_confirm; 482 u32 sk_pacing_status; /* see enum sk_pacing */ 483 struct page_frag sk_frag; 484 struct timer_list sk_timer; 485 486 unsigned long sk_pacing_rate; /* bytes per second */ 487 atomic_t sk_zckey; 488 atomic_t sk_tskey; 489 __cacheline_group_end(sock_write_tx); 490 491 __cacheline_group_begin(sock_read_tx); 492 unsigned long sk_max_pacing_rate; 493 long sk_sndtimeo; 494 u32 sk_priority; 495 u32 sk_mark; 496 struct dst_entry __rcu *sk_dst_cache; 497 netdev_features_t sk_route_caps; 498 #ifdef CONFIG_SOCK_VALIDATE_XMIT 499 struct sk_buff* (*sk_validate_xmit_skb)(struct sock *sk, 500 struct net_device *dev, 501 struct sk_buff *skb); 502 #endif 503 u16 sk_gso_type; 504 u16 sk_gso_max_segs; 505 unsigned int sk_gso_max_size; 506 gfp_t sk_allocation; 507 u32 sk_txhash; 508 u8 sk_pacing_shift; 509 bool sk_use_task_frag; 510 __cacheline_group_end(sock_read_tx); 511 512 /* 513 * Because of non atomicity rules, all 514 * changes are protected by socket lock. 515 */ 516 u8 sk_gso_disabled : 1, 517 sk_kern_sock : 1, 518 sk_no_check_tx : 1, 519 sk_no_check_rx : 1; 520 u8 sk_shutdown; 521 u16 sk_type; 522 u16 sk_protocol; 523 unsigned long sk_lingertime; 524 struct proto *sk_prot_creator; 525 rwlock_t sk_callback_lock; 526 int sk_err_soft; 527 u32 sk_ack_backlog; 528 u32 sk_max_ack_backlog; 529 kuid_t sk_uid; 530 spinlock_t sk_peer_lock; 531 int sk_bind_phc; 532 struct pid *sk_peer_pid; 533 const struct cred *sk_peer_cred; 534 535 ktime_t sk_stamp; 536 #if BITS_PER_LONG==32 537 seqlock_t sk_stamp_seq; 538 #endif 539 int sk_disconnects; 540 541 union { 542 u8 sk_txrehash; 543 u8 sk_scm_recv_flags; 544 struct { 545 u8 sk_scm_credentials : 1, 546 sk_scm_security : 1, 547 sk_scm_pidfd : 1, 548 sk_scm_rights : 1, 549 sk_scm_unused : 4; 550 }; 551 }; 552 u8 sk_clockid; 553 u8 sk_txtime_deadline_mode : 1, 554 sk_txtime_report_errors : 1, 555 sk_txtime_unused : 6; 556 #define SK_BPF_CB_FLAG_TEST(SK, FLAG) ((SK)->sk_bpf_cb_flags & (FLAG)) 557 u8 sk_bpf_cb_flags; 558 559 void *sk_user_data; 560 #ifdef CONFIG_SECURITY 561 void *sk_security; 562 #endif 563 struct sock_cgroup_data sk_cgrp_data; 564 void (*sk_state_change)(struct sock *sk); 565 void (*sk_write_space)(struct sock *sk); 566 void (*sk_error_report)(struct sock *sk); 567 int (*sk_backlog_rcv)(struct sock *sk, 568 struct sk_buff *skb); 569 void (*sk_destruct)(struct sock *sk); 570 struct sock_reuseport __rcu *sk_reuseport_cb; 571 #ifdef CONFIG_BPF_SYSCALL 572 struct bpf_local_storage __rcu *sk_bpf_storage; 573 #endif 574 struct rcu_head sk_rcu; 575 netns_tracker ns_tracker; 576 struct xarray sk_user_frags; 577 578 #if IS_ENABLED(CONFIG_PROVE_LOCKING) && IS_ENABLED(CONFIG_MODULES) 579 struct module *sk_owner; 580 #endif 581 }; 582 583 struct sock_bh_locked { 584 struct sock *sock; 585 local_lock_t bh_lock; 586 }; 587 588 enum sk_pacing { 589 SK_PACING_NONE = 0, 590 SK_PACING_NEEDED = 1, 591 SK_PACING_FQ = 2, 592 }; 593 594 /* flag bits in sk_user_data 595 * 596 * - SK_USER_DATA_NOCOPY: Pointer stored in sk_user_data might 597 * not be suitable for copying when cloning the socket. For instance, 598 * it can point to a reference counted object. sk_user_data bottom 599 * bit is set if pointer must not be copied. 600 * 601 * - SK_USER_DATA_BPF: Mark whether sk_user_data field is 602 * managed/owned by a BPF reuseport array. This bit should be set 603 * when sk_user_data's sk is added to the bpf's reuseport_array. 604 * 605 * - SK_USER_DATA_PSOCK: Mark whether pointer stored in 606 * sk_user_data points to psock type. This bit should be set 607 * when sk_user_data is assigned to a psock object. 608 */ 609 #define SK_USER_DATA_NOCOPY 1UL 610 #define SK_USER_DATA_BPF 2UL 611 #define SK_USER_DATA_PSOCK 4UL 612 #define SK_USER_DATA_PTRMASK ~(SK_USER_DATA_NOCOPY | SK_USER_DATA_BPF |\ 613 SK_USER_DATA_PSOCK) 614 615 /** 616 * sk_user_data_is_nocopy - Test if sk_user_data pointer must not be copied 617 * @sk: socket 618 */ 619 static inline bool sk_user_data_is_nocopy(const struct sock *sk) 620 { 621 return ((uintptr_t)sk->sk_user_data & SK_USER_DATA_NOCOPY); 622 } 623 624 #define __sk_user_data(sk) ((*((void __rcu **)&(sk)->sk_user_data))) 625 626 /** 627 * __locked_read_sk_user_data_with_flags - return the pointer 628 * only if argument flags all has been set in sk_user_data. Otherwise 629 * return NULL 630 * 631 * @sk: socket 632 * @flags: flag bits 633 * 634 * The caller must be holding sk->sk_callback_lock. 635 */ 636 static inline void * 637 __locked_read_sk_user_data_with_flags(const struct sock *sk, 638 uintptr_t flags) 639 { 640 uintptr_t sk_user_data = 641 (uintptr_t)rcu_dereference_check(__sk_user_data(sk), 642 lockdep_is_held(&sk->sk_callback_lock)); 643 644 WARN_ON_ONCE(flags & SK_USER_DATA_PTRMASK); 645 646 if ((sk_user_data & flags) == flags) 647 return (void *)(sk_user_data & SK_USER_DATA_PTRMASK); 648 return NULL; 649 } 650 651 /** 652 * __rcu_dereference_sk_user_data_with_flags - return the pointer 653 * only if argument flags all has been set in sk_user_data. Otherwise 654 * return NULL 655 * 656 * @sk: socket 657 * @flags: flag bits 658 */ 659 static inline void * 660 __rcu_dereference_sk_user_data_with_flags(const struct sock *sk, 661 uintptr_t flags) 662 { 663 uintptr_t sk_user_data = (uintptr_t)rcu_dereference(__sk_user_data(sk)); 664 665 WARN_ON_ONCE(flags & SK_USER_DATA_PTRMASK); 666 667 if ((sk_user_data & flags) == flags) 668 return (void *)(sk_user_data & SK_USER_DATA_PTRMASK); 669 return NULL; 670 } 671 672 #define rcu_dereference_sk_user_data(sk) \ 673 __rcu_dereference_sk_user_data_with_flags(sk, 0) 674 #define __rcu_assign_sk_user_data_with_flags(sk, ptr, flags) \ 675 ({ \ 676 uintptr_t __tmp1 = (uintptr_t)(ptr), \ 677 __tmp2 = (uintptr_t)(flags); \ 678 WARN_ON_ONCE(__tmp1 & ~SK_USER_DATA_PTRMASK); \ 679 WARN_ON_ONCE(__tmp2 & SK_USER_DATA_PTRMASK); \ 680 rcu_assign_pointer(__sk_user_data((sk)), \ 681 __tmp1 | __tmp2); \ 682 }) 683 #define rcu_assign_sk_user_data(sk, ptr) \ 684 __rcu_assign_sk_user_data_with_flags(sk, ptr, 0) 685 686 static inline 687 struct net *sock_net(const struct sock *sk) 688 { 689 return read_pnet(&sk->sk_net); 690 } 691 692 static inline 693 void sock_net_set(struct sock *sk, struct net *net) 694 { 695 write_pnet(&sk->sk_net, net); 696 } 697 698 /* 699 * SK_CAN_REUSE and SK_NO_REUSE on a socket mean that the socket is OK 700 * or not whether his port will be reused by someone else. SK_FORCE_REUSE 701 * on a socket means that the socket will reuse everybody else's port 702 * without looking at the other's sk_reuse value. 703 */ 704 705 #define SK_NO_REUSE 0 706 #define SK_CAN_REUSE 1 707 #define SK_FORCE_REUSE 2 708 709 int sk_set_peek_off(struct sock *sk, int val); 710 711 static inline int sk_peek_offset(const struct sock *sk, int flags) 712 { 713 if (unlikely(flags & MSG_PEEK)) { 714 return READ_ONCE(sk->sk_peek_off); 715 } 716 717 return 0; 718 } 719 720 static inline void sk_peek_offset_bwd(struct sock *sk, int val) 721 { 722 s32 off = READ_ONCE(sk->sk_peek_off); 723 724 if (unlikely(off >= 0)) { 725 off = max_t(s32, off - val, 0); 726 WRITE_ONCE(sk->sk_peek_off, off); 727 } 728 } 729 730 static inline void sk_peek_offset_fwd(struct sock *sk, int val) 731 { 732 sk_peek_offset_bwd(sk, -val); 733 } 734 735 /* 736 * Hashed lists helper routines 737 */ 738 static inline struct sock *sk_entry(const struct hlist_node *node) 739 { 740 return hlist_entry(node, struct sock, sk_node); 741 } 742 743 static inline struct sock *__sk_head(const struct hlist_head *head) 744 { 745 return hlist_entry(head->first, struct sock, sk_node); 746 } 747 748 static inline struct sock *sk_head(const struct hlist_head *head) 749 { 750 return hlist_empty(head) ? NULL : __sk_head(head); 751 } 752 753 static inline struct sock *__sk_nulls_head(const struct hlist_nulls_head *head) 754 { 755 return hlist_nulls_entry(head->first, struct sock, sk_nulls_node); 756 } 757 758 static inline struct sock *sk_nulls_head(const struct hlist_nulls_head *head) 759 { 760 return hlist_nulls_empty(head) ? NULL : __sk_nulls_head(head); 761 } 762 763 static inline struct sock *sk_next(const struct sock *sk) 764 { 765 return hlist_entry_safe(sk->sk_node.next, struct sock, sk_node); 766 } 767 768 static inline struct sock *sk_nulls_next(const struct sock *sk) 769 { 770 return (!is_a_nulls(sk->sk_nulls_node.next)) ? 771 hlist_nulls_entry(sk->sk_nulls_node.next, 772 struct sock, sk_nulls_node) : 773 NULL; 774 } 775 776 static inline bool sk_unhashed(const struct sock *sk) 777 { 778 return hlist_unhashed(&sk->sk_node); 779 } 780 781 static inline bool sk_hashed(const struct sock *sk) 782 { 783 return !sk_unhashed(sk); 784 } 785 786 static inline void sk_node_init(struct hlist_node *node) 787 { 788 node->pprev = NULL; 789 } 790 791 static inline void __sk_del_node(struct sock *sk) 792 { 793 __hlist_del(&sk->sk_node); 794 } 795 796 /* NB: equivalent to hlist_del_init_rcu */ 797 static inline bool __sk_del_node_init(struct sock *sk) 798 { 799 if (sk_hashed(sk)) { 800 __sk_del_node(sk); 801 sk_node_init(&sk->sk_node); 802 return true; 803 } 804 return false; 805 } 806 807 /* Grab socket reference count. This operation is valid only 808 when sk is ALREADY grabbed f.e. it is found in hash table 809 or a list and the lookup is made under lock preventing hash table 810 modifications. 811 */ 812 813 static __always_inline void sock_hold(struct sock *sk) 814 { 815 refcount_inc(&sk->sk_refcnt); 816 } 817 818 /* Ungrab socket in the context, which assumes that socket refcnt 819 cannot hit zero, f.e. it is true in context of any socketcall. 820 */ 821 static __always_inline void __sock_put(struct sock *sk) 822 { 823 refcount_dec(&sk->sk_refcnt); 824 } 825 826 static inline bool sk_del_node_init(struct sock *sk) 827 { 828 bool rc = __sk_del_node_init(sk); 829 830 if (rc) { 831 /* paranoid for a while -acme */ 832 WARN_ON(refcount_read(&sk->sk_refcnt) == 1); 833 __sock_put(sk); 834 } 835 return rc; 836 } 837 #define sk_del_node_init_rcu(sk) sk_del_node_init(sk) 838 839 static inline bool __sk_nulls_del_node_init_rcu(struct sock *sk) 840 { 841 if (sk_hashed(sk)) { 842 hlist_nulls_del_init_rcu(&sk->sk_nulls_node); 843 return true; 844 } 845 return false; 846 } 847 848 static inline bool sk_nulls_del_node_init_rcu(struct sock *sk) 849 { 850 bool rc = __sk_nulls_del_node_init_rcu(sk); 851 852 if (rc) { 853 /* paranoid for a while -acme */ 854 WARN_ON(refcount_read(&sk->sk_refcnt) == 1); 855 __sock_put(sk); 856 } 857 return rc; 858 } 859 860 static inline void __sk_add_node(struct sock *sk, struct hlist_head *list) 861 { 862 hlist_add_head(&sk->sk_node, list); 863 } 864 865 static inline void sk_add_node(struct sock *sk, struct hlist_head *list) 866 { 867 sock_hold(sk); 868 __sk_add_node(sk, list); 869 } 870 871 static inline void sk_add_node_rcu(struct sock *sk, struct hlist_head *list) 872 { 873 sock_hold(sk); 874 if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport && 875 sk->sk_family == AF_INET6) 876 hlist_add_tail_rcu(&sk->sk_node, list); 877 else 878 hlist_add_head_rcu(&sk->sk_node, list); 879 } 880 881 static inline void sk_add_node_tail_rcu(struct sock *sk, struct hlist_head *list) 882 { 883 sock_hold(sk); 884 hlist_add_tail_rcu(&sk->sk_node, list); 885 } 886 887 static inline void __sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list) 888 { 889 hlist_nulls_add_head_rcu(&sk->sk_nulls_node, list); 890 } 891 892 static inline void __sk_nulls_add_node_tail_rcu(struct sock *sk, struct hlist_nulls_head *list) 893 { 894 hlist_nulls_add_tail_rcu(&sk->sk_nulls_node, list); 895 } 896 897 static inline void sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list) 898 { 899 sock_hold(sk); 900 __sk_nulls_add_node_rcu(sk, list); 901 } 902 903 static inline void __sk_del_bind_node(struct sock *sk) 904 { 905 __hlist_del(&sk->sk_bind_node); 906 } 907 908 static inline void sk_add_bind_node(struct sock *sk, 909 struct hlist_head *list) 910 { 911 hlist_add_head(&sk->sk_bind_node, list); 912 } 913 914 #define sk_for_each(__sk, list) \ 915 hlist_for_each_entry(__sk, list, sk_node) 916 #define sk_for_each_rcu(__sk, list) \ 917 hlist_for_each_entry_rcu(__sk, list, sk_node) 918 #define sk_nulls_for_each(__sk, node, list) \ 919 hlist_nulls_for_each_entry(__sk, node, list, sk_nulls_node) 920 #define sk_nulls_for_each_rcu(__sk, node, list) \ 921 hlist_nulls_for_each_entry_rcu(__sk, node, list, sk_nulls_node) 922 #define sk_for_each_from(__sk) \ 923 hlist_for_each_entry_from(__sk, sk_node) 924 #define sk_nulls_for_each_from(__sk, node) \ 925 if (__sk && ({ node = &(__sk)->sk_nulls_node; 1; })) \ 926 hlist_nulls_for_each_entry_from(__sk, node, sk_nulls_node) 927 #define sk_for_each_safe(__sk, tmp, list) \ 928 hlist_for_each_entry_safe(__sk, tmp, list, sk_node) 929 #define sk_for_each_bound(__sk, list) \ 930 hlist_for_each_entry(__sk, list, sk_bind_node) 931 #define sk_for_each_bound_safe(__sk, tmp, list) \ 932 hlist_for_each_entry_safe(__sk, tmp, list, sk_bind_node) 933 934 /** 935 * sk_for_each_entry_offset_rcu - iterate over a list at a given struct offset 936 * @tpos: the type * to use as a loop cursor. 937 * @pos: the &struct hlist_node to use as a loop cursor. 938 * @head: the head for your list. 939 * @offset: offset of hlist_node within the struct. 940 * 941 */ 942 #define sk_for_each_entry_offset_rcu(tpos, pos, head, offset) \ 943 for (pos = rcu_dereference(hlist_first_rcu(head)); \ 944 pos != NULL && \ 945 ({ tpos = (typeof(*tpos) *)((void *)pos - offset); 1;}); \ 946 pos = rcu_dereference(hlist_next_rcu(pos))) 947 948 static inline struct user_namespace *sk_user_ns(const struct sock *sk) 949 { 950 /* Careful only use this in a context where these parameters 951 * can not change and must all be valid, such as recvmsg from 952 * userspace. 953 */ 954 return sk->sk_socket->file->f_cred->user_ns; 955 } 956 957 /* Sock flags */ 958 enum sock_flags { 959 SOCK_DEAD, 960 SOCK_DONE, 961 SOCK_URGINLINE, 962 SOCK_KEEPOPEN, 963 SOCK_LINGER, 964 SOCK_DESTROY, 965 SOCK_BROADCAST, 966 SOCK_TIMESTAMP, 967 SOCK_ZAPPED, 968 SOCK_USE_WRITE_QUEUE, /* whether to call sk->sk_write_space in sock_wfree */ 969 SOCK_DBG, /* %SO_DEBUG setting */ 970 SOCK_RCVTSTAMP, /* %SO_TIMESTAMP setting */ 971 SOCK_RCVTSTAMPNS, /* %SO_TIMESTAMPNS setting */ 972 SOCK_LOCALROUTE, /* route locally only, %SO_DONTROUTE setting */ 973 SOCK_MEMALLOC, /* VM depends on this socket for swapping */ 974 SOCK_TIMESTAMPING_RX_SOFTWARE, /* %SOF_TIMESTAMPING_RX_SOFTWARE */ 975 SOCK_FASYNC, /* fasync() active */ 976 SOCK_RXQ_OVFL, 977 SOCK_ZEROCOPY, /* buffers from userspace */ 978 SOCK_WIFI_STATUS, /* push wifi status to userspace */ 979 SOCK_NOFCS, /* Tell NIC not to do the Ethernet FCS. 980 * Will use last 4 bytes of packet sent from 981 * user-space instead. 982 */ 983 SOCK_FILTER_LOCKED, /* Filter cannot be changed anymore */ 984 SOCK_SELECT_ERR_QUEUE, /* Wake select on error queue */ 985 SOCK_RCU_FREE, /* wait rcu grace period in sk_destruct() */ 986 SOCK_TXTIME, 987 SOCK_XDP, /* XDP is attached */ 988 SOCK_TSTAMP_NEW, /* Indicates 64 bit timestamps always */ 989 SOCK_RCVMARK, /* Receive SO_MARK ancillary data with packet */ 990 SOCK_RCVPRIORITY, /* Receive SO_PRIORITY ancillary data with packet */ 991 SOCK_TIMESTAMPING_ANY, /* Copy of sk_tsflags & TSFLAGS_ANY */ 992 }; 993 994 #define SK_FLAGS_TIMESTAMP ((1UL << SOCK_TIMESTAMP) | (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE)) 995 /* 996 * The highest bit of sk_tsflags is reserved for kernel-internal 997 * SOCKCM_FLAG_TS_OPT_ID. There is a check in core/sock.c to control that 998 * SOF_TIMESTAMPING* values do not reach this reserved area 999 */ 1000 #define SOCKCM_FLAG_TS_OPT_ID BIT(31) 1001 1002 static inline void sock_copy_flags(struct sock *nsk, const struct sock *osk) 1003 { 1004 nsk->sk_flags = osk->sk_flags; 1005 } 1006 1007 static inline void sock_set_flag(struct sock *sk, enum sock_flags flag) 1008 { 1009 __set_bit(flag, &sk->sk_flags); 1010 } 1011 1012 static inline void sock_reset_flag(struct sock *sk, enum sock_flags flag) 1013 { 1014 __clear_bit(flag, &sk->sk_flags); 1015 } 1016 1017 static inline void sock_valbool_flag(struct sock *sk, enum sock_flags bit, 1018 int valbool) 1019 { 1020 if (valbool) 1021 sock_set_flag(sk, bit); 1022 else 1023 sock_reset_flag(sk, bit); 1024 } 1025 1026 static inline bool sock_flag(const struct sock *sk, enum sock_flags flag) 1027 { 1028 return test_bit(flag, &sk->sk_flags); 1029 } 1030 1031 #ifdef CONFIG_NET 1032 DECLARE_STATIC_KEY_FALSE(memalloc_socks_key); 1033 static inline int sk_memalloc_socks(void) 1034 { 1035 return static_branch_unlikely(&memalloc_socks_key); 1036 } 1037 1038 void __receive_sock(struct file *file); 1039 #else 1040 1041 static inline int sk_memalloc_socks(void) 1042 { 1043 return 0; 1044 } 1045 1046 static inline void __receive_sock(struct file *file) 1047 { } 1048 #endif 1049 1050 static inline gfp_t sk_gfp_mask(const struct sock *sk, gfp_t gfp_mask) 1051 { 1052 return gfp_mask | (sk->sk_allocation & __GFP_MEMALLOC); 1053 } 1054 1055 static inline void sk_acceptq_removed(struct sock *sk) 1056 { 1057 WRITE_ONCE(sk->sk_ack_backlog, sk->sk_ack_backlog - 1); 1058 } 1059 1060 static inline void sk_acceptq_added(struct sock *sk) 1061 { 1062 WRITE_ONCE(sk->sk_ack_backlog, sk->sk_ack_backlog + 1); 1063 } 1064 1065 /* Note: If you think the test should be: 1066 * return READ_ONCE(sk->sk_ack_backlog) >= READ_ONCE(sk->sk_max_ack_backlog); 1067 * Then please take a look at commit 64a146513f8f ("[NET]: Revert incorrect accept queue backlog changes.") 1068 */ 1069 static inline bool sk_acceptq_is_full(const struct sock *sk) 1070 { 1071 return READ_ONCE(sk->sk_ack_backlog) > READ_ONCE(sk->sk_max_ack_backlog); 1072 } 1073 1074 /* 1075 * Compute minimal free write space needed to queue new packets. 1076 */ 1077 static inline int sk_stream_min_wspace(const struct sock *sk) 1078 { 1079 return READ_ONCE(sk->sk_wmem_queued) >> 1; 1080 } 1081 1082 static inline int sk_stream_wspace(const struct sock *sk) 1083 { 1084 return READ_ONCE(sk->sk_sndbuf) - READ_ONCE(sk->sk_wmem_queued); 1085 } 1086 1087 static inline void sk_wmem_queued_add(struct sock *sk, int val) 1088 { 1089 WRITE_ONCE(sk->sk_wmem_queued, sk->sk_wmem_queued + val); 1090 } 1091 1092 static inline void sk_forward_alloc_add(struct sock *sk, int val) 1093 { 1094 /* Paired with lockless reads of sk->sk_forward_alloc */ 1095 WRITE_ONCE(sk->sk_forward_alloc, sk->sk_forward_alloc + val); 1096 } 1097 1098 void sk_stream_write_space(struct sock *sk); 1099 1100 /* OOB backlog add */ 1101 static inline void __sk_add_backlog(struct sock *sk, struct sk_buff *skb) 1102 { 1103 /* dont let skb dst not refcounted, we are going to leave rcu lock */ 1104 skb_dst_force(skb); 1105 1106 if (!sk->sk_backlog.tail) 1107 WRITE_ONCE(sk->sk_backlog.head, skb); 1108 else 1109 sk->sk_backlog.tail->next = skb; 1110 1111 WRITE_ONCE(sk->sk_backlog.tail, skb); 1112 skb->next = NULL; 1113 } 1114 1115 /* 1116 * Take into account size of receive queue and backlog queue 1117 * Do not take into account this skb truesize, 1118 * to allow even a single big packet to come. 1119 */ 1120 static inline bool sk_rcvqueues_full(const struct sock *sk, unsigned int limit) 1121 { 1122 unsigned int qsize = sk->sk_backlog.len + atomic_read(&sk->sk_rmem_alloc); 1123 1124 return qsize > limit; 1125 } 1126 1127 /* The per-socket spinlock must be held here. */ 1128 static inline __must_check int sk_add_backlog(struct sock *sk, struct sk_buff *skb, 1129 unsigned int limit) 1130 { 1131 if (sk_rcvqueues_full(sk, limit)) 1132 return -ENOBUFS; 1133 1134 /* 1135 * If the skb was allocated from pfmemalloc reserves, only 1136 * allow SOCK_MEMALLOC sockets to use it as this socket is 1137 * helping free memory 1138 */ 1139 if (skb_pfmemalloc(skb) && !sock_flag(sk, SOCK_MEMALLOC)) 1140 return -ENOMEM; 1141 1142 __sk_add_backlog(sk, skb); 1143 sk->sk_backlog.len += skb->truesize; 1144 return 0; 1145 } 1146 1147 int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb); 1148 1149 INDIRECT_CALLABLE_DECLARE(int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb)); 1150 INDIRECT_CALLABLE_DECLARE(int tcp_v6_do_rcv(struct sock *sk, struct sk_buff *skb)); 1151 1152 static inline int sk_backlog_rcv(struct sock *sk, struct sk_buff *skb) 1153 { 1154 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) 1155 return __sk_backlog_rcv(sk, skb); 1156 1157 return INDIRECT_CALL_INET(sk->sk_backlog_rcv, 1158 tcp_v6_do_rcv, 1159 tcp_v4_do_rcv, 1160 sk, skb); 1161 } 1162 1163 static inline void sk_incoming_cpu_update(struct sock *sk) 1164 { 1165 int cpu = raw_smp_processor_id(); 1166 1167 if (unlikely(READ_ONCE(sk->sk_incoming_cpu) != cpu)) 1168 WRITE_ONCE(sk->sk_incoming_cpu, cpu); 1169 } 1170 1171 1172 static inline void sock_rps_save_rxhash(struct sock *sk, 1173 const struct sk_buff *skb) 1174 { 1175 #ifdef CONFIG_RPS 1176 /* The following WRITE_ONCE() is paired with the READ_ONCE() 1177 * here, and another one in sock_rps_record_flow(). 1178 */ 1179 if (unlikely(READ_ONCE(sk->sk_rxhash) != skb->hash)) 1180 WRITE_ONCE(sk->sk_rxhash, skb->hash); 1181 #endif 1182 } 1183 1184 static inline void sock_rps_reset_rxhash(struct sock *sk) 1185 { 1186 #ifdef CONFIG_RPS 1187 /* Paired with READ_ONCE() in sock_rps_record_flow() */ 1188 WRITE_ONCE(sk->sk_rxhash, 0); 1189 #endif 1190 } 1191 1192 #define sk_wait_event(__sk, __timeo, __condition, __wait) \ 1193 ({ int __rc, __dis = __sk->sk_disconnects; \ 1194 release_sock(__sk); \ 1195 __rc = __condition; \ 1196 if (!__rc) { \ 1197 *(__timeo) = wait_woken(__wait, \ 1198 TASK_INTERRUPTIBLE, \ 1199 *(__timeo)); \ 1200 } \ 1201 sched_annotate_sleep(); \ 1202 lock_sock(__sk); \ 1203 __rc = __dis == __sk->sk_disconnects ? __condition : -EPIPE; \ 1204 __rc; \ 1205 }) 1206 1207 int sk_stream_wait_connect(struct sock *sk, long *timeo_p); 1208 int sk_stream_wait_memory(struct sock *sk, long *timeo_p); 1209 void sk_stream_wait_close(struct sock *sk, long timeo_p); 1210 int sk_stream_error(struct sock *sk, int flags, int err); 1211 void sk_stream_kill_queues(struct sock *sk); 1212 void sk_set_memalloc(struct sock *sk); 1213 void sk_clear_memalloc(struct sock *sk); 1214 1215 void __sk_flush_backlog(struct sock *sk); 1216 1217 static inline bool sk_flush_backlog(struct sock *sk) 1218 { 1219 if (unlikely(READ_ONCE(sk->sk_backlog.tail))) { 1220 __sk_flush_backlog(sk); 1221 return true; 1222 } 1223 return false; 1224 } 1225 1226 int sk_wait_data(struct sock *sk, long *timeo, const struct sk_buff *skb); 1227 1228 struct request_sock_ops; 1229 struct timewait_sock_ops; 1230 struct inet_hashinfo; 1231 struct raw_hashinfo; 1232 struct smc_hashinfo; 1233 struct module; 1234 struct sk_psock; 1235 1236 /* 1237 * caches using SLAB_TYPESAFE_BY_RCU should let .next pointer from nulls nodes 1238 * un-modified. Special care is taken when initializing object to zero. 1239 */ 1240 static inline void sk_prot_clear_nulls(struct sock *sk, int size) 1241 { 1242 if (offsetof(struct sock, sk_node.next) != 0) 1243 memset(sk, 0, offsetof(struct sock, sk_node.next)); 1244 memset(&sk->sk_node.pprev, 0, 1245 size - offsetof(struct sock, sk_node.pprev)); 1246 } 1247 1248 struct proto_accept_arg { 1249 int flags; 1250 int err; 1251 int is_empty; 1252 bool kern; 1253 }; 1254 1255 /* Networking protocol blocks we attach to sockets. 1256 * socket layer -> transport layer interface 1257 */ 1258 struct proto { 1259 void (*close)(struct sock *sk, 1260 long timeout); 1261 int (*pre_connect)(struct sock *sk, 1262 struct sockaddr *uaddr, 1263 int addr_len); 1264 int (*connect)(struct sock *sk, 1265 struct sockaddr *uaddr, 1266 int addr_len); 1267 int (*disconnect)(struct sock *sk, int flags); 1268 1269 struct sock * (*accept)(struct sock *sk, 1270 struct proto_accept_arg *arg); 1271 1272 int (*ioctl)(struct sock *sk, int cmd, 1273 int *karg); 1274 int (*init)(struct sock *sk); 1275 void (*destroy)(struct sock *sk); 1276 void (*shutdown)(struct sock *sk, int how); 1277 int (*setsockopt)(struct sock *sk, int level, 1278 int optname, sockptr_t optval, 1279 unsigned int optlen); 1280 int (*getsockopt)(struct sock *sk, int level, 1281 int optname, char __user *optval, 1282 int __user *option); 1283 void (*keepalive)(struct sock *sk, int valbool); 1284 #ifdef CONFIG_COMPAT 1285 int (*compat_ioctl)(struct sock *sk, 1286 unsigned int cmd, unsigned long arg); 1287 #endif 1288 int (*sendmsg)(struct sock *sk, struct msghdr *msg, 1289 size_t len); 1290 int (*recvmsg)(struct sock *sk, struct msghdr *msg, 1291 size_t len, int flags, int *addr_len); 1292 void (*splice_eof)(struct socket *sock); 1293 int (*bind)(struct sock *sk, 1294 struct sockaddr *addr, int addr_len); 1295 int (*bind_add)(struct sock *sk, 1296 struct sockaddr *addr, int addr_len); 1297 1298 int (*backlog_rcv) (struct sock *sk, 1299 struct sk_buff *skb); 1300 bool (*bpf_bypass_getsockopt)(int level, 1301 int optname); 1302 1303 void (*release_cb)(struct sock *sk); 1304 1305 /* Keeping track of sk's, looking them up, and port selection methods. */ 1306 int (*hash)(struct sock *sk); 1307 void (*unhash)(struct sock *sk); 1308 void (*rehash)(struct sock *sk); 1309 int (*get_port)(struct sock *sk, unsigned short snum); 1310 void (*put_port)(struct sock *sk); 1311 #ifdef CONFIG_BPF_SYSCALL 1312 int (*psock_update_sk_prot)(struct sock *sk, 1313 struct sk_psock *psock, 1314 bool restore); 1315 #endif 1316 1317 /* Keeping track of sockets in use */ 1318 #ifdef CONFIG_PROC_FS 1319 unsigned int inuse_idx; 1320 #endif 1321 1322 bool (*stream_memory_free)(const struct sock *sk, int wake); 1323 bool (*sock_is_readable)(struct sock *sk); 1324 /* Memory pressure */ 1325 void (*enter_memory_pressure)(struct sock *sk); 1326 void (*leave_memory_pressure)(struct sock *sk); 1327 atomic_long_t *memory_allocated; /* Current allocated memory. */ 1328 int __percpu *per_cpu_fw_alloc; 1329 struct percpu_counter *sockets_allocated; /* Current number of sockets. */ 1330 1331 /* 1332 * Pressure flag: try to collapse. 1333 * Technical note: it is used by multiple contexts non atomically. 1334 * Make sure to use READ_ONCE()/WRITE_ONCE() for all reads/writes. 1335 * All the __sk_mem_schedule() is of this nature: accounting 1336 * is strict, actions are advisory and have some latency. 1337 */ 1338 unsigned long *memory_pressure; 1339 long *sysctl_mem; 1340 1341 int *sysctl_wmem; 1342 int *sysctl_rmem; 1343 u32 sysctl_wmem_offset; 1344 u32 sysctl_rmem_offset; 1345 1346 int max_header; 1347 bool no_autobind; 1348 1349 struct kmem_cache *slab; 1350 unsigned int obj_size; 1351 unsigned int ipv6_pinfo_offset; 1352 slab_flags_t slab_flags; 1353 unsigned int useroffset; /* Usercopy region offset */ 1354 unsigned int usersize; /* Usercopy region size */ 1355 1356 struct request_sock_ops *rsk_prot; 1357 struct timewait_sock_ops *twsk_prot; 1358 1359 union { 1360 struct inet_hashinfo *hashinfo; 1361 struct udp_table *udp_table; 1362 struct raw_hashinfo *raw_hash; 1363 struct smc_hashinfo *smc_hash; 1364 } h; 1365 1366 struct module *owner; 1367 1368 char name[32]; 1369 1370 struct list_head node; 1371 int (*diag_destroy)(struct sock *sk, int err); 1372 } __randomize_layout; 1373 1374 int proto_register(struct proto *prot, int alloc_slab); 1375 void proto_unregister(struct proto *prot); 1376 int sock_load_diag_module(int family, int protocol); 1377 1378 INDIRECT_CALLABLE_DECLARE(bool tcp_stream_memory_free(const struct sock *sk, int wake)); 1379 1380 static inline bool __sk_stream_memory_free(const struct sock *sk, int wake) 1381 { 1382 if (READ_ONCE(sk->sk_wmem_queued) >= READ_ONCE(sk->sk_sndbuf)) 1383 return false; 1384 1385 return sk->sk_prot->stream_memory_free ? 1386 INDIRECT_CALL_INET_1(sk->sk_prot->stream_memory_free, 1387 tcp_stream_memory_free, sk, wake) : true; 1388 } 1389 1390 static inline bool sk_stream_memory_free(const struct sock *sk) 1391 { 1392 return __sk_stream_memory_free(sk, 0); 1393 } 1394 1395 static inline bool __sk_stream_is_writeable(const struct sock *sk, int wake) 1396 { 1397 return sk_stream_wspace(sk) >= sk_stream_min_wspace(sk) && 1398 __sk_stream_memory_free(sk, wake); 1399 } 1400 1401 static inline bool sk_stream_is_writeable(const struct sock *sk) 1402 { 1403 return __sk_stream_is_writeable(sk, 0); 1404 } 1405 1406 static inline int sk_under_cgroup_hierarchy(struct sock *sk, 1407 struct cgroup *ancestor) 1408 { 1409 #ifdef CONFIG_SOCK_CGROUP_DATA 1410 return cgroup_is_descendant(sock_cgroup_ptr(&sk->sk_cgrp_data), 1411 ancestor); 1412 #else 1413 return -ENOTSUPP; 1414 #endif 1415 } 1416 1417 #define SK_ALLOC_PERCPU_COUNTER_BATCH 16 1418 1419 static inline void sk_sockets_allocated_dec(struct sock *sk) 1420 { 1421 percpu_counter_add_batch(sk->sk_prot->sockets_allocated, -1, 1422 SK_ALLOC_PERCPU_COUNTER_BATCH); 1423 } 1424 1425 static inline void sk_sockets_allocated_inc(struct sock *sk) 1426 { 1427 percpu_counter_add_batch(sk->sk_prot->sockets_allocated, 1, 1428 SK_ALLOC_PERCPU_COUNTER_BATCH); 1429 } 1430 1431 static inline u64 1432 sk_sockets_allocated_read_positive(struct sock *sk) 1433 { 1434 return percpu_counter_read_positive(sk->sk_prot->sockets_allocated); 1435 } 1436 1437 static inline int 1438 proto_sockets_allocated_sum_positive(struct proto *prot) 1439 { 1440 return percpu_counter_sum_positive(prot->sockets_allocated); 1441 } 1442 1443 #ifdef CONFIG_PROC_FS 1444 #define PROTO_INUSE_NR 64 /* should be enough for the first time */ 1445 struct prot_inuse { 1446 int all; 1447 int val[PROTO_INUSE_NR]; 1448 }; 1449 1450 static inline void sock_prot_inuse_add(const struct net *net, 1451 const struct proto *prot, int val) 1452 { 1453 this_cpu_add(net->core.prot_inuse->val[prot->inuse_idx], val); 1454 } 1455 1456 static inline void sock_inuse_add(const struct net *net, int val) 1457 { 1458 this_cpu_add(net->core.prot_inuse->all, val); 1459 } 1460 1461 int sock_prot_inuse_get(struct net *net, struct proto *proto); 1462 int sock_inuse_get(struct net *net); 1463 #else 1464 static inline void sock_prot_inuse_add(const struct net *net, 1465 const struct proto *prot, int val) 1466 { 1467 } 1468 1469 static inline void sock_inuse_add(const struct net *net, int val) 1470 { 1471 } 1472 #endif 1473 1474 1475 /* With per-bucket locks this operation is not-atomic, so that 1476 * this version is not worse. 1477 */ 1478 static inline int __sk_prot_rehash(struct sock *sk) 1479 { 1480 sk->sk_prot->unhash(sk); 1481 return sk->sk_prot->hash(sk); 1482 } 1483 1484 /* About 10 seconds */ 1485 #define SOCK_DESTROY_TIME (10*HZ) 1486 1487 /* Sockets 0-1023 can't be bound to unless you are superuser */ 1488 #define PROT_SOCK 1024 1489 1490 #define SHUTDOWN_MASK 3 1491 #define RCV_SHUTDOWN 1 1492 #define SEND_SHUTDOWN 2 1493 1494 #define SOCK_BINDADDR_LOCK 4 1495 #define SOCK_BINDPORT_LOCK 8 1496 1497 struct socket_alloc { 1498 struct socket socket; 1499 struct inode vfs_inode; 1500 }; 1501 1502 static inline struct socket *SOCKET_I(struct inode *inode) 1503 { 1504 return &container_of(inode, struct socket_alloc, vfs_inode)->socket; 1505 } 1506 1507 static inline struct inode *SOCK_INODE(struct socket *socket) 1508 { 1509 return &container_of(socket, struct socket_alloc, socket)->vfs_inode; 1510 } 1511 1512 /* 1513 * Functions for memory accounting 1514 */ 1515 int __sk_mem_raise_allocated(struct sock *sk, int size, int amt, int kind); 1516 int __sk_mem_schedule(struct sock *sk, int size, int kind); 1517 void __sk_mem_reduce_allocated(struct sock *sk, int amount); 1518 void __sk_mem_reclaim(struct sock *sk, int amount); 1519 1520 #define SK_MEM_SEND 0 1521 #define SK_MEM_RECV 1 1522 1523 /* sysctl_mem values are in pages */ 1524 static inline long sk_prot_mem_limits(const struct sock *sk, int index) 1525 { 1526 return READ_ONCE(sk->sk_prot->sysctl_mem[index]); 1527 } 1528 1529 static inline int sk_mem_pages(int amt) 1530 { 1531 return (amt + PAGE_SIZE - 1) >> PAGE_SHIFT; 1532 } 1533 1534 static inline bool sk_has_account(struct sock *sk) 1535 { 1536 /* return true if protocol supports memory accounting */ 1537 return !!sk->sk_prot->memory_allocated; 1538 } 1539 1540 static inline bool sk_wmem_schedule(struct sock *sk, int size) 1541 { 1542 int delta; 1543 1544 if (!sk_has_account(sk)) 1545 return true; 1546 delta = size - sk->sk_forward_alloc; 1547 return delta <= 0 || __sk_mem_schedule(sk, delta, SK_MEM_SEND); 1548 } 1549 1550 static inline bool 1551 __sk_rmem_schedule(struct sock *sk, int size, bool pfmemalloc) 1552 { 1553 int delta; 1554 1555 if (!sk_has_account(sk)) 1556 return true; 1557 delta = size - sk->sk_forward_alloc; 1558 return delta <= 0 || __sk_mem_schedule(sk, delta, SK_MEM_RECV) || 1559 pfmemalloc; 1560 } 1561 1562 static inline bool 1563 sk_rmem_schedule(struct sock *sk, const struct sk_buff *skb, int size) 1564 { 1565 return __sk_rmem_schedule(sk, size, skb_pfmemalloc(skb)); 1566 } 1567 1568 static inline int sk_unused_reserved_mem(const struct sock *sk) 1569 { 1570 int unused_mem; 1571 1572 if (likely(!sk->sk_reserved_mem)) 1573 return 0; 1574 1575 unused_mem = sk->sk_reserved_mem - sk->sk_wmem_queued - 1576 atomic_read(&sk->sk_rmem_alloc); 1577 1578 return unused_mem > 0 ? unused_mem : 0; 1579 } 1580 1581 static inline void sk_mem_reclaim(struct sock *sk) 1582 { 1583 int reclaimable; 1584 1585 if (!sk_has_account(sk)) 1586 return; 1587 1588 reclaimable = sk->sk_forward_alloc - sk_unused_reserved_mem(sk); 1589 1590 if (reclaimable >= (int)PAGE_SIZE) 1591 __sk_mem_reclaim(sk, reclaimable); 1592 } 1593 1594 static inline void sk_mem_reclaim_final(struct sock *sk) 1595 { 1596 sk->sk_reserved_mem = 0; 1597 sk_mem_reclaim(sk); 1598 } 1599 1600 static inline void sk_mem_charge(struct sock *sk, int size) 1601 { 1602 if (!sk_has_account(sk)) 1603 return; 1604 sk_forward_alloc_add(sk, -size); 1605 } 1606 1607 static inline void sk_mem_uncharge(struct sock *sk, int size) 1608 { 1609 if (!sk_has_account(sk)) 1610 return; 1611 sk_forward_alloc_add(sk, size); 1612 sk_mem_reclaim(sk); 1613 } 1614 1615 #if IS_ENABLED(CONFIG_PROVE_LOCKING) && IS_ENABLED(CONFIG_MODULES) 1616 static inline void sk_owner_set(struct sock *sk, struct module *owner) 1617 { 1618 __module_get(owner); 1619 sk->sk_owner = owner; 1620 } 1621 1622 static inline void sk_owner_clear(struct sock *sk) 1623 { 1624 sk->sk_owner = NULL; 1625 } 1626 1627 static inline void sk_owner_put(struct sock *sk) 1628 { 1629 module_put(sk->sk_owner); 1630 } 1631 #else 1632 static inline void sk_owner_set(struct sock *sk, struct module *owner) 1633 { 1634 } 1635 1636 static inline void sk_owner_clear(struct sock *sk) 1637 { 1638 } 1639 1640 static inline void sk_owner_put(struct sock *sk) 1641 { 1642 } 1643 #endif 1644 /* 1645 * Macro so as to not evaluate some arguments when 1646 * lockdep is not enabled. 1647 * 1648 * Mark both the sk_lock and the sk_lock.slock as a 1649 * per-address-family lock class. 1650 */ 1651 #define sock_lock_init_class_and_name(sk, sname, skey, name, key) \ 1652 do { \ 1653 sk_owner_set(sk, THIS_MODULE); \ 1654 sk->sk_lock.owned = 0; \ 1655 init_waitqueue_head(&sk->sk_lock.wq); \ 1656 spin_lock_init(&(sk)->sk_lock.slock); \ 1657 debug_check_no_locks_freed((void *)&(sk)->sk_lock, \ 1658 sizeof((sk)->sk_lock)); \ 1659 lockdep_set_class_and_name(&(sk)->sk_lock.slock, \ 1660 (skey), (sname)); \ 1661 lockdep_init_map(&(sk)->sk_lock.dep_map, (name), (key), 0); \ 1662 } while (0) 1663 1664 static inline bool lockdep_sock_is_held(const struct sock *sk) 1665 { 1666 return lockdep_is_held(&sk->sk_lock) || 1667 lockdep_is_held(&sk->sk_lock.slock); 1668 } 1669 1670 void lock_sock_nested(struct sock *sk, int subclass); 1671 1672 static inline void lock_sock(struct sock *sk) 1673 { 1674 lock_sock_nested(sk, 0); 1675 } 1676 1677 void __lock_sock(struct sock *sk); 1678 void __release_sock(struct sock *sk); 1679 void release_sock(struct sock *sk); 1680 1681 /* BH context may only use the following locking interface. */ 1682 #define bh_lock_sock(__sk) spin_lock(&((__sk)->sk_lock.slock)) 1683 #define bh_lock_sock_nested(__sk) \ 1684 spin_lock_nested(&((__sk)->sk_lock.slock), \ 1685 SINGLE_DEPTH_NESTING) 1686 #define bh_unlock_sock(__sk) spin_unlock(&((__sk)->sk_lock.slock)) 1687 1688 bool __lock_sock_fast(struct sock *sk) __acquires(&sk->sk_lock.slock); 1689 1690 /** 1691 * lock_sock_fast - fast version of lock_sock 1692 * @sk: socket 1693 * 1694 * This version should be used for very small section, where process won't block 1695 * return false if fast path is taken: 1696 * 1697 * sk_lock.slock locked, owned = 0, BH disabled 1698 * 1699 * return true if slow path is taken: 1700 * 1701 * sk_lock.slock unlocked, owned = 1, BH enabled 1702 */ 1703 static inline bool lock_sock_fast(struct sock *sk) 1704 { 1705 /* The sk_lock has mutex_lock() semantics here. */ 1706 mutex_acquire(&sk->sk_lock.dep_map, 0, 0, _RET_IP_); 1707 1708 return __lock_sock_fast(sk); 1709 } 1710 1711 /* fast socket lock variant for caller already holding a [different] socket lock */ 1712 static inline bool lock_sock_fast_nested(struct sock *sk) 1713 { 1714 mutex_acquire(&sk->sk_lock.dep_map, SINGLE_DEPTH_NESTING, 0, _RET_IP_); 1715 1716 return __lock_sock_fast(sk); 1717 } 1718 1719 /** 1720 * unlock_sock_fast - complement of lock_sock_fast 1721 * @sk: socket 1722 * @slow: slow mode 1723 * 1724 * fast unlock socket for user context. 1725 * If slow mode is on, we call regular release_sock() 1726 */ 1727 static inline void unlock_sock_fast(struct sock *sk, bool slow) 1728 __releases(&sk->sk_lock.slock) 1729 { 1730 if (slow) { 1731 release_sock(sk); 1732 __release(&sk->sk_lock.slock); 1733 } else { 1734 mutex_release(&sk->sk_lock.dep_map, _RET_IP_); 1735 spin_unlock_bh(&sk->sk_lock.slock); 1736 } 1737 } 1738 1739 void sockopt_lock_sock(struct sock *sk); 1740 void sockopt_release_sock(struct sock *sk); 1741 bool sockopt_ns_capable(struct user_namespace *ns, int cap); 1742 bool sockopt_capable(int cap); 1743 1744 /* Used by processes to "lock" a socket state, so that 1745 * interrupts and bottom half handlers won't change it 1746 * from under us. It essentially blocks any incoming 1747 * packets, so that we won't get any new data or any 1748 * packets that change the state of the socket. 1749 * 1750 * While locked, BH processing will add new packets to 1751 * the backlog queue. This queue is processed by the 1752 * owner of the socket lock right before it is released. 1753 * 1754 * Since ~2.3.5 it is also exclusive sleep lock serializing 1755 * accesses from user process context. 1756 */ 1757 1758 static inline void sock_owned_by_me(const struct sock *sk) 1759 { 1760 #ifdef CONFIG_LOCKDEP 1761 WARN_ON_ONCE(!lockdep_sock_is_held(sk) && debug_locks); 1762 #endif 1763 } 1764 1765 static inline void sock_not_owned_by_me(const struct sock *sk) 1766 { 1767 #ifdef CONFIG_LOCKDEP 1768 WARN_ON_ONCE(lockdep_sock_is_held(sk) && debug_locks); 1769 #endif 1770 } 1771 1772 static inline bool sock_owned_by_user(const struct sock *sk) 1773 { 1774 sock_owned_by_me(sk); 1775 return sk->sk_lock.owned; 1776 } 1777 1778 static inline bool sock_owned_by_user_nocheck(const struct sock *sk) 1779 { 1780 return sk->sk_lock.owned; 1781 } 1782 1783 static inline void sock_release_ownership(struct sock *sk) 1784 { 1785 DEBUG_NET_WARN_ON_ONCE(!sock_owned_by_user_nocheck(sk)); 1786 sk->sk_lock.owned = 0; 1787 1788 /* The sk_lock has mutex_unlock() semantics: */ 1789 mutex_release(&sk->sk_lock.dep_map, _RET_IP_); 1790 } 1791 1792 /* no reclassification while locks are held */ 1793 static inline bool sock_allow_reclassification(const struct sock *csk) 1794 { 1795 struct sock *sk = (struct sock *)csk; 1796 1797 return !sock_owned_by_user_nocheck(sk) && 1798 !spin_is_locked(&sk->sk_lock.slock); 1799 } 1800 1801 struct sock *sk_alloc(struct net *net, int family, gfp_t priority, 1802 struct proto *prot, int kern); 1803 void sk_free(struct sock *sk); 1804 void sk_net_refcnt_upgrade(struct sock *sk); 1805 void sk_destruct(struct sock *sk); 1806 struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority); 1807 1808 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force, 1809 gfp_t priority); 1810 void __sock_wfree(struct sk_buff *skb); 1811 void sock_wfree(struct sk_buff *skb); 1812 struct sk_buff *sock_omalloc(struct sock *sk, unsigned long size, 1813 gfp_t priority); 1814 void skb_orphan_partial(struct sk_buff *skb); 1815 void sock_rfree(struct sk_buff *skb); 1816 void sock_efree(struct sk_buff *skb); 1817 #ifdef CONFIG_INET 1818 void sock_edemux(struct sk_buff *skb); 1819 void sock_pfree(struct sk_buff *skb); 1820 1821 static inline void skb_set_owner_edemux(struct sk_buff *skb, struct sock *sk) 1822 { 1823 skb_orphan(skb); 1824 if (refcount_inc_not_zero(&sk->sk_refcnt)) { 1825 skb->sk = sk; 1826 skb->destructor = sock_edemux; 1827 } 1828 } 1829 #else 1830 #define sock_edemux sock_efree 1831 #endif 1832 1833 int sk_setsockopt(struct sock *sk, int level, int optname, 1834 sockptr_t optval, unsigned int optlen); 1835 int sock_setsockopt(struct socket *sock, int level, int op, 1836 sockptr_t optval, unsigned int optlen); 1837 int do_sock_setsockopt(struct socket *sock, bool compat, int level, 1838 int optname, sockptr_t optval, int optlen); 1839 int do_sock_getsockopt(struct socket *sock, bool compat, int level, 1840 int optname, sockptr_t optval, sockptr_t optlen); 1841 1842 int sk_getsockopt(struct sock *sk, int level, int optname, 1843 sockptr_t optval, sockptr_t optlen); 1844 int sock_gettstamp(struct socket *sock, void __user *userstamp, 1845 bool timeval, bool time32); 1846 struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len, 1847 unsigned long data_len, int noblock, 1848 int *errcode, int max_page_order); 1849 1850 static inline struct sk_buff *sock_alloc_send_skb(struct sock *sk, 1851 unsigned long size, 1852 int noblock, int *errcode) 1853 { 1854 return sock_alloc_send_pskb(sk, size, 0, noblock, errcode, 0); 1855 } 1856 1857 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority); 1858 void *sock_kmemdup(struct sock *sk, const void *src, 1859 int size, gfp_t priority); 1860 void sock_kfree_s(struct sock *sk, void *mem, int size); 1861 void sock_kzfree_s(struct sock *sk, void *mem, int size); 1862 void sk_send_sigurg(struct sock *sk); 1863 1864 static inline void sock_replace_proto(struct sock *sk, struct proto *proto) 1865 { 1866 if (sk->sk_socket) 1867 clear_bit(SOCK_SUPPORT_ZC, &sk->sk_socket->flags); 1868 WRITE_ONCE(sk->sk_prot, proto); 1869 } 1870 1871 struct sockcm_cookie { 1872 u64 transmit_time; 1873 u32 mark; 1874 u32 tsflags; 1875 u32 ts_opt_id; 1876 u32 priority; 1877 u32 dmabuf_id; 1878 }; 1879 1880 static inline void sockcm_init(struct sockcm_cookie *sockc, 1881 const struct sock *sk) 1882 { 1883 *sockc = (struct sockcm_cookie) { 1884 .mark = READ_ONCE(sk->sk_mark), 1885 .tsflags = READ_ONCE(sk->sk_tsflags), 1886 .priority = READ_ONCE(sk->sk_priority), 1887 }; 1888 } 1889 1890 int __sock_cmsg_send(struct sock *sk, struct cmsghdr *cmsg, 1891 struct sockcm_cookie *sockc); 1892 int sock_cmsg_send(struct sock *sk, struct msghdr *msg, 1893 struct sockcm_cookie *sockc); 1894 1895 /* 1896 * Functions to fill in entries in struct proto_ops when a protocol 1897 * does not implement a particular function. 1898 */ 1899 int sock_no_bind(struct socket *, struct sockaddr *, int); 1900 int sock_no_connect(struct socket *, struct sockaddr *, int, int); 1901 int sock_no_socketpair(struct socket *, struct socket *); 1902 int sock_no_accept(struct socket *, struct socket *, struct proto_accept_arg *); 1903 int sock_no_getname(struct socket *, struct sockaddr *, int); 1904 int sock_no_ioctl(struct socket *, unsigned int, unsigned long); 1905 int sock_no_listen(struct socket *, int); 1906 int sock_no_shutdown(struct socket *, int); 1907 int sock_no_sendmsg(struct socket *, struct msghdr *, size_t); 1908 int sock_no_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t len); 1909 int sock_no_recvmsg(struct socket *, struct msghdr *, size_t, int); 1910 int sock_no_mmap(struct file *file, struct socket *sock, 1911 struct vm_area_struct *vma); 1912 1913 /* 1914 * Functions to fill in entries in struct proto_ops when a protocol 1915 * uses the inet style. 1916 */ 1917 int sock_common_getsockopt(struct socket *sock, int level, int optname, 1918 char __user *optval, int __user *optlen); 1919 int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size, 1920 int flags); 1921 int sock_common_setsockopt(struct socket *sock, int level, int optname, 1922 sockptr_t optval, unsigned int optlen); 1923 1924 void sk_common_release(struct sock *sk); 1925 1926 /* 1927 * Default socket callbacks and setup code 1928 */ 1929 1930 /* Initialise core socket variables using an explicit uid. */ 1931 void sock_init_data_uid(struct socket *sock, struct sock *sk, kuid_t uid); 1932 1933 /* Initialise core socket variables. 1934 * Assumes struct socket *sock is embedded in a struct socket_alloc. 1935 */ 1936 void sock_init_data(struct socket *sock, struct sock *sk); 1937 1938 /* 1939 * Socket reference counting postulates. 1940 * 1941 * * Each user of socket SHOULD hold a reference count. 1942 * * Each access point to socket (an hash table bucket, reference from a list, 1943 * running timer, skb in flight MUST hold a reference count. 1944 * * When reference count hits 0, it means it will never increase back. 1945 * * When reference count hits 0, it means that no references from 1946 * outside exist to this socket and current process on current CPU 1947 * is last user and may/should destroy this socket. 1948 * * sk_free is called from any context: process, BH, IRQ. When 1949 * it is called, socket has no references from outside -> sk_free 1950 * may release descendant resources allocated by the socket, but 1951 * to the time when it is called, socket is NOT referenced by any 1952 * hash tables, lists etc. 1953 * * Packets, delivered from outside (from network or from another process) 1954 * and enqueued on receive/error queues SHOULD NOT grab reference count, 1955 * when they sit in queue. Otherwise, packets will leak to hole, when 1956 * socket is looked up by one cpu and unhasing is made by another CPU. 1957 * It is true for udp/raw, netlink (leak to receive and error queues), tcp 1958 * (leak to backlog). Packet socket does all the processing inside 1959 * BR_NETPROTO_LOCK, so that it has not this race condition. UNIX sockets 1960 * use separate SMP lock, so that they are prone too. 1961 */ 1962 1963 /* Ungrab socket and destroy it, if it was the last reference. */ 1964 static inline void sock_put(struct sock *sk) 1965 { 1966 if (refcount_dec_and_test(&sk->sk_refcnt)) 1967 sk_free(sk); 1968 } 1969 /* Generic version of sock_put(), dealing with all sockets 1970 * (TCP_TIMEWAIT, TCP_NEW_SYN_RECV, ESTABLISHED...) 1971 */ 1972 void sock_gen_put(struct sock *sk); 1973 1974 int __sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested, 1975 unsigned int trim_cap, bool refcounted); 1976 static inline int sk_receive_skb(struct sock *sk, struct sk_buff *skb, 1977 const int nested) 1978 { 1979 return __sk_receive_skb(sk, skb, nested, 1, true); 1980 } 1981 1982 static inline void sk_tx_queue_set(struct sock *sk, int tx_queue) 1983 { 1984 /* sk_tx_queue_mapping accept only upto a 16-bit value */ 1985 if (WARN_ON_ONCE((unsigned short)tx_queue >= USHRT_MAX)) 1986 return; 1987 /* Paired with READ_ONCE() in sk_tx_queue_get() and 1988 * other WRITE_ONCE() because socket lock might be not held. 1989 */ 1990 WRITE_ONCE(sk->sk_tx_queue_mapping, tx_queue); 1991 } 1992 1993 #define NO_QUEUE_MAPPING USHRT_MAX 1994 1995 static inline void sk_tx_queue_clear(struct sock *sk) 1996 { 1997 /* Paired with READ_ONCE() in sk_tx_queue_get() and 1998 * other WRITE_ONCE() because socket lock might be not held. 1999 */ 2000 WRITE_ONCE(sk->sk_tx_queue_mapping, NO_QUEUE_MAPPING); 2001 } 2002 2003 static inline int sk_tx_queue_get(const struct sock *sk) 2004 { 2005 if (sk) { 2006 /* Paired with WRITE_ONCE() in sk_tx_queue_clear() 2007 * and sk_tx_queue_set(). 2008 */ 2009 int val = READ_ONCE(sk->sk_tx_queue_mapping); 2010 2011 if (val != NO_QUEUE_MAPPING) 2012 return val; 2013 } 2014 return -1; 2015 } 2016 2017 static inline void __sk_rx_queue_set(struct sock *sk, 2018 const struct sk_buff *skb, 2019 bool force_set) 2020 { 2021 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING 2022 if (skb_rx_queue_recorded(skb)) { 2023 u16 rx_queue = skb_get_rx_queue(skb); 2024 2025 if (force_set || 2026 unlikely(READ_ONCE(sk->sk_rx_queue_mapping) != rx_queue)) 2027 WRITE_ONCE(sk->sk_rx_queue_mapping, rx_queue); 2028 } 2029 #endif 2030 } 2031 2032 static inline void sk_rx_queue_set(struct sock *sk, const struct sk_buff *skb) 2033 { 2034 __sk_rx_queue_set(sk, skb, true); 2035 } 2036 2037 static inline void sk_rx_queue_update(struct sock *sk, const struct sk_buff *skb) 2038 { 2039 __sk_rx_queue_set(sk, skb, false); 2040 } 2041 2042 static inline void sk_rx_queue_clear(struct sock *sk) 2043 { 2044 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING 2045 WRITE_ONCE(sk->sk_rx_queue_mapping, NO_QUEUE_MAPPING); 2046 #endif 2047 } 2048 2049 static inline int sk_rx_queue_get(const struct sock *sk) 2050 { 2051 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING 2052 if (sk) { 2053 int res = READ_ONCE(sk->sk_rx_queue_mapping); 2054 2055 if (res != NO_QUEUE_MAPPING) 2056 return res; 2057 } 2058 #endif 2059 2060 return -1; 2061 } 2062 2063 static inline void sk_set_socket(struct sock *sk, struct socket *sock) 2064 { 2065 sk->sk_socket = sock; 2066 } 2067 2068 static inline wait_queue_head_t *sk_sleep(struct sock *sk) 2069 { 2070 BUILD_BUG_ON(offsetof(struct socket_wq, wait) != 0); 2071 return &rcu_dereference_raw(sk->sk_wq)->wait; 2072 } 2073 /* Detach socket from process context. 2074 * Announce socket dead, detach it from wait queue and inode. 2075 * Note that parent inode held reference count on this struct sock, 2076 * we do not release it in this function, because protocol 2077 * probably wants some additional cleanups or even continuing 2078 * to work with this socket (TCP). 2079 */ 2080 static inline void sock_orphan(struct sock *sk) 2081 { 2082 write_lock_bh(&sk->sk_callback_lock); 2083 sock_set_flag(sk, SOCK_DEAD); 2084 sk_set_socket(sk, NULL); 2085 sk->sk_wq = NULL; 2086 /* Note: sk_uid is unchanged. */ 2087 write_unlock_bh(&sk->sk_callback_lock); 2088 } 2089 2090 static inline void sock_graft(struct sock *sk, struct socket *parent) 2091 { 2092 WARN_ON(parent->sk); 2093 write_lock_bh(&sk->sk_callback_lock); 2094 rcu_assign_pointer(sk->sk_wq, &parent->wq); 2095 parent->sk = sk; 2096 sk_set_socket(sk, parent); 2097 WRITE_ONCE(sk->sk_uid, SOCK_INODE(parent)->i_uid); 2098 security_sock_graft(sk, parent); 2099 write_unlock_bh(&sk->sk_callback_lock); 2100 } 2101 2102 static inline kuid_t sk_uid(const struct sock *sk) 2103 { 2104 /* Paired with WRITE_ONCE() in sockfs_setattr() */ 2105 return READ_ONCE(sk->sk_uid); 2106 } 2107 2108 unsigned long __sock_i_ino(struct sock *sk); 2109 unsigned long sock_i_ino(struct sock *sk); 2110 2111 static inline kuid_t sock_net_uid(const struct net *net, const struct sock *sk) 2112 { 2113 return sk ? sk_uid(sk) : make_kuid(net->user_ns, 0); 2114 } 2115 2116 static inline u32 net_tx_rndhash(void) 2117 { 2118 u32 v = get_random_u32(); 2119 2120 return v ?: 1; 2121 } 2122 2123 static inline void sk_set_txhash(struct sock *sk) 2124 { 2125 /* This pairs with READ_ONCE() in skb_set_hash_from_sk() */ 2126 WRITE_ONCE(sk->sk_txhash, net_tx_rndhash()); 2127 } 2128 2129 static inline bool sk_rethink_txhash(struct sock *sk) 2130 { 2131 if (sk->sk_txhash && sk->sk_txrehash == SOCK_TXREHASH_ENABLED) { 2132 sk_set_txhash(sk); 2133 return true; 2134 } 2135 return false; 2136 } 2137 2138 static inline struct dst_entry * 2139 __sk_dst_get(const struct sock *sk) 2140 { 2141 return rcu_dereference_check(sk->sk_dst_cache, 2142 lockdep_sock_is_held(sk)); 2143 } 2144 2145 static inline struct dst_entry * 2146 sk_dst_get(const struct sock *sk) 2147 { 2148 struct dst_entry *dst; 2149 2150 rcu_read_lock(); 2151 dst = rcu_dereference(sk->sk_dst_cache); 2152 if (dst && !rcuref_get(&dst->__rcuref)) 2153 dst = NULL; 2154 rcu_read_unlock(); 2155 return dst; 2156 } 2157 2158 static inline void __dst_negative_advice(struct sock *sk) 2159 { 2160 struct dst_entry *dst = __sk_dst_get(sk); 2161 2162 if (dst && dst->ops->negative_advice) 2163 dst->ops->negative_advice(sk, dst); 2164 } 2165 2166 static inline void dst_negative_advice(struct sock *sk) 2167 { 2168 sk_rethink_txhash(sk); 2169 __dst_negative_advice(sk); 2170 } 2171 2172 static inline void 2173 __sk_dst_set(struct sock *sk, struct dst_entry *dst) 2174 { 2175 struct dst_entry *old_dst; 2176 2177 sk_tx_queue_clear(sk); 2178 WRITE_ONCE(sk->sk_dst_pending_confirm, 0); 2179 old_dst = rcu_dereference_protected(sk->sk_dst_cache, 2180 lockdep_sock_is_held(sk)); 2181 rcu_assign_pointer(sk->sk_dst_cache, dst); 2182 dst_release(old_dst); 2183 } 2184 2185 static inline void 2186 sk_dst_set(struct sock *sk, struct dst_entry *dst) 2187 { 2188 struct dst_entry *old_dst; 2189 2190 sk_tx_queue_clear(sk); 2191 WRITE_ONCE(sk->sk_dst_pending_confirm, 0); 2192 old_dst = unrcu_pointer(xchg(&sk->sk_dst_cache, RCU_INITIALIZER(dst))); 2193 dst_release(old_dst); 2194 } 2195 2196 static inline void 2197 __sk_dst_reset(struct sock *sk) 2198 { 2199 __sk_dst_set(sk, NULL); 2200 } 2201 2202 static inline void 2203 sk_dst_reset(struct sock *sk) 2204 { 2205 sk_dst_set(sk, NULL); 2206 } 2207 2208 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie); 2209 2210 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie); 2211 2212 static inline void sk_dst_confirm(struct sock *sk) 2213 { 2214 if (!READ_ONCE(sk->sk_dst_pending_confirm)) 2215 WRITE_ONCE(sk->sk_dst_pending_confirm, 1); 2216 } 2217 2218 static inline void sock_confirm_neigh(struct sk_buff *skb, struct neighbour *n) 2219 { 2220 if (skb_get_dst_pending_confirm(skb)) { 2221 struct sock *sk = skb->sk; 2222 2223 if (sk && READ_ONCE(sk->sk_dst_pending_confirm)) 2224 WRITE_ONCE(sk->sk_dst_pending_confirm, 0); 2225 neigh_confirm(n); 2226 } 2227 } 2228 2229 bool sk_mc_loop(const struct sock *sk); 2230 2231 static inline bool sk_can_gso(const struct sock *sk) 2232 { 2233 return net_gso_ok(sk->sk_route_caps, sk->sk_gso_type); 2234 } 2235 2236 void sk_setup_caps(struct sock *sk, struct dst_entry *dst); 2237 2238 static inline void sk_gso_disable(struct sock *sk) 2239 { 2240 sk->sk_gso_disabled = 1; 2241 sk->sk_route_caps &= ~NETIF_F_GSO_MASK; 2242 } 2243 2244 static inline int skb_do_copy_data_nocache(struct sock *sk, struct sk_buff *skb, 2245 struct iov_iter *from, char *to, 2246 int copy, int offset) 2247 { 2248 if (skb->ip_summed == CHECKSUM_NONE) { 2249 __wsum csum = 0; 2250 if (!csum_and_copy_from_iter_full(to, copy, &csum, from)) 2251 return -EFAULT; 2252 skb->csum = csum_block_add(skb->csum, csum, offset); 2253 } else if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY) { 2254 if (!copy_from_iter_full_nocache(to, copy, from)) 2255 return -EFAULT; 2256 } else if (!copy_from_iter_full(to, copy, from)) 2257 return -EFAULT; 2258 2259 return 0; 2260 } 2261 2262 static inline int skb_add_data_nocache(struct sock *sk, struct sk_buff *skb, 2263 struct iov_iter *from, int copy) 2264 { 2265 int err, offset = skb->len; 2266 2267 err = skb_do_copy_data_nocache(sk, skb, from, skb_put(skb, copy), 2268 copy, offset); 2269 if (err) 2270 __skb_trim(skb, offset); 2271 2272 return err; 2273 } 2274 2275 static inline int skb_copy_to_page_nocache(struct sock *sk, struct iov_iter *from, 2276 struct sk_buff *skb, 2277 struct page *page, 2278 int off, int copy) 2279 { 2280 int err; 2281 2282 err = skb_do_copy_data_nocache(sk, skb, from, page_address(page) + off, 2283 copy, skb->len); 2284 if (err) 2285 return err; 2286 2287 skb_len_add(skb, copy); 2288 sk_wmem_queued_add(sk, copy); 2289 sk_mem_charge(sk, copy); 2290 return 0; 2291 } 2292 2293 /** 2294 * sk_wmem_alloc_get - returns write allocations 2295 * @sk: socket 2296 * 2297 * Return: sk_wmem_alloc minus initial offset of one 2298 */ 2299 static inline int sk_wmem_alloc_get(const struct sock *sk) 2300 { 2301 return refcount_read(&sk->sk_wmem_alloc) - 1; 2302 } 2303 2304 /** 2305 * sk_rmem_alloc_get - returns read allocations 2306 * @sk: socket 2307 * 2308 * Return: sk_rmem_alloc 2309 */ 2310 static inline int sk_rmem_alloc_get(const struct sock *sk) 2311 { 2312 return atomic_read(&sk->sk_rmem_alloc); 2313 } 2314 2315 /** 2316 * sk_has_allocations - check if allocations are outstanding 2317 * @sk: socket 2318 * 2319 * Return: true if socket has write or read allocations 2320 */ 2321 static inline bool sk_has_allocations(const struct sock *sk) 2322 { 2323 return sk_wmem_alloc_get(sk) || sk_rmem_alloc_get(sk); 2324 } 2325 2326 /** 2327 * skwq_has_sleeper - check if there are any waiting processes 2328 * @wq: struct socket_wq 2329 * 2330 * Return: true if socket_wq has waiting processes 2331 * 2332 * The purpose of the skwq_has_sleeper and sock_poll_wait is to wrap the memory 2333 * barrier call. They were added due to the race found within the tcp code. 2334 * 2335 * Consider following tcp code paths:: 2336 * 2337 * CPU1 CPU2 2338 * sys_select receive packet 2339 * ... ... 2340 * __add_wait_queue update tp->rcv_nxt 2341 * ... ... 2342 * tp->rcv_nxt check sock_def_readable 2343 * ... { 2344 * schedule rcu_read_lock(); 2345 * wq = rcu_dereference(sk->sk_wq); 2346 * if (wq && waitqueue_active(&wq->wait)) 2347 * wake_up_interruptible(&wq->wait) 2348 * ... 2349 * } 2350 * 2351 * The race for tcp fires when the __add_wait_queue changes done by CPU1 stay 2352 * in its cache, and so does the tp->rcv_nxt update on CPU2 side. The CPU1 2353 * could then endup calling schedule and sleep forever if there are no more 2354 * data on the socket. 2355 * 2356 */ 2357 static inline bool skwq_has_sleeper(struct socket_wq *wq) 2358 { 2359 return wq && wq_has_sleeper(&wq->wait); 2360 } 2361 2362 /** 2363 * sock_poll_wait - wrapper for the poll_wait call. 2364 * @filp: file 2365 * @sock: socket to wait on 2366 * @p: poll_table 2367 * 2368 * See the comments in the wq_has_sleeper function. 2369 */ 2370 static inline void sock_poll_wait(struct file *filp, struct socket *sock, 2371 poll_table *p) 2372 { 2373 /* Provides a barrier we need to be sure we are in sync 2374 * with the socket flags modification. 2375 * 2376 * This memory barrier is paired in the wq_has_sleeper. 2377 */ 2378 poll_wait(filp, &sock->wq.wait, p); 2379 } 2380 2381 static inline void skb_set_hash_from_sk(struct sk_buff *skb, struct sock *sk) 2382 { 2383 /* This pairs with WRITE_ONCE() in sk_set_txhash() */ 2384 u32 txhash = READ_ONCE(sk->sk_txhash); 2385 2386 if (txhash) { 2387 skb->l4_hash = 1; 2388 skb->hash = txhash; 2389 } 2390 } 2391 2392 void skb_set_owner_w(struct sk_buff *skb, struct sock *sk); 2393 2394 /* 2395 * Queue a received datagram if it will fit. Stream and sequenced 2396 * protocols can't normally use this as they need to fit buffers in 2397 * and play with them. 2398 * 2399 * Inlined as it's very short and called for pretty much every 2400 * packet ever received. 2401 */ 2402 static inline void skb_set_owner_r(struct sk_buff *skb, struct sock *sk) 2403 { 2404 skb_orphan(skb); 2405 skb->sk = sk; 2406 skb->destructor = sock_rfree; 2407 atomic_add(skb->truesize, &sk->sk_rmem_alloc); 2408 sk_mem_charge(sk, skb->truesize); 2409 } 2410 2411 static inline __must_check bool skb_set_owner_sk_safe(struct sk_buff *skb, struct sock *sk) 2412 { 2413 if (sk && refcount_inc_not_zero(&sk->sk_refcnt)) { 2414 skb_orphan(skb); 2415 skb->destructor = sock_efree; 2416 skb->sk = sk; 2417 return true; 2418 } 2419 return false; 2420 } 2421 2422 static inline struct sk_buff *skb_clone_and_charge_r(struct sk_buff *skb, struct sock *sk) 2423 { 2424 skb = skb_clone(skb, sk_gfp_mask(sk, GFP_ATOMIC)); 2425 if (skb) { 2426 if (sk_rmem_schedule(sk, skb, skb->truesize)) { 2427 skb_set_owner_r(skb, sk); 2428 return skb; 2429 } 2430 __kfree_skb(skb); 2431 } 2432 return NULL; 2433 } 2434 2435 static inline void skb_prepare_for_gro(struct sk_buff *skb) 2436 { 2437 if (skb->destructor != sock_wfree) { 2438 skb_orphan(skb); 2439 return; 2440 } 2441 skb->slow_gro = 1; 2442 } 2443 2444 void sk_reset_timer(struct sock *sk, struct timer_list *timer, 2445 unsigned long expires); 2446 2447 void sk_stop_timer(struct sock *sk, struct timer_list *timer); 2448 2449 void sk_stop_timer_sync(struct sock *sk, struct timer_list *timer); 2450 2451 int __sk_queue_drop_skb(struct sock *sk, struct sk_buff_head *sk_queue, 2452 struct sk_buff *skb, unsigned int flags, 2453 void (*destructor)(struct sock *sk, 2454 struct sk_buff *skb)); 2455 int __sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb); 2456 2457 int sock_queue_rcv_skb_reason(struct sock *sk, struct sk_buff *skb, 2458 enum skb_drop_reason *reason); 2459 2460 static inline int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb) 2461 { 2462 return sock_queue_rcv_skb_reason(sk, skb, NULL); 2463 } 2464 2465 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb); 2466 struct sk_buff *sock_dequeue_err_skb(struct sock *sk); 2467 2468 /* 2469 * Recover an error report and clear atomically 2470 */ 2471 2472 static inline int sock_error(struct sock *sk) 2473 { 2474 int err; 2475 2476 /* Avoid an atomic operation for the common case. 2477 * This is racy since another cpu/thread can change sk_err under us. 2478 */ 2479 if (likely(data_race(!sk->sk_err))) 2480 return 0; 2481 2482 err = xchg(&sk->sk_err, 0); 2483 return -err; 2484 } 2485 2486 void sk_error_report(struct sock *sk); 2487 2488 static inline unsigned long sock_wspace(struct sock *sk) 2489 { 2490 int amt = 0; 2491 2492 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) { 2493 amt = sk->sk_sndbuf - refcount_read(&sk->sk_wmem_alloc); 2494 if (amt < 0) 2495 amt = 0; 2496 } 2497 return amt; 2498 } 2499 2500 /* Note: 2501 * We use sk->sk_wq_raw, from contexts knowing this 2502 * pointer is not NULL and cannot disappear/change. 2503 */ 2504 static inline void sk_set_bit(int nr, struct sock *sk) 2505 { 2506 if ((nr == SOCKWQ_ASYNC_NOSPACE || nr == SOCKWQ_ASYNC_WAITDATA) && 2507 !sock_flag(sk, SOCK_FASYNC)) 2508 return; 2509 2510 set_bit(nr, &sk->sk_wq_raw->flags); 2511 } 2512 2513 static inline void sk_clear_bit(int nr, struct sock *sk) 2514 { 2515 if ((nr == SOCKWQ_ASYNC_NOSPACE || nr == SOCKWQ_ASYNC_WAITDATA) && 2516 !sock_flag(sk, SOCK_FASYNC)) 2517 return; 2518 2519 clear_bit(nr, &sk->sk_wq_raw->flags); 2520 } 2521 2522 static inline void sk_wake_async(const struct sock *sk, int how, int band) 2523 { 2524 if (sock_flag(sk, SOCK_FASYNC)) { 2525 rcu_read_lock(); 2526 sock_wake_async(rcu_dereference(sk->sk_wq), how, band); 2527 rcu_read_unlock(); 2528 } 2529 } 2530 2531 static inline void sk_wake_async_rcu(const struct sock *sk, int how, int band) 2532 { 2533 if (unlikely(sock_flag(sk, SOCK_FASYNC))) 2534 sock_wake_async(rcu_dereference(sk->sk_wq), how, band); 2535 } 2536 2537 /* Since sk_{r,w}mem_alloc sums skb->truesize, even a small frame might 2538 * need sizeof(sk_buff) + MTU + padding, unless net driver perform copybreak. 2539 * Note: for send buffers, TCP works better if we can build two skbs at 2540 * minimum. 2541 */ 2542 #define TCP_SKB_MIN_TRUESIZE (2048 + SKB_DATA_ALIGN(sizeof(struct sk_buff))) 2543 2544 #define SOCK_MIN_SNDBUF (TCP_SKB_MIN_TRUESIZE * 2) 2545 #define SOCK_MIN_RCVBUF TCP_SKB_MIN_TRUESIZE 2546 2547 static inline void sk_stream_moderate_sndbuf(struct sock *sk) 2548 { 2549 u32 val; 2550 2551 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK) 2552 return; 2553 2554 val = min(sk->sk_sndbuf, sk->sk_wmem_queued >> 1); 2555 val = max_t(u32, val, sk_unused_reserved_mem(sk)); 2556 2557 WRITE_ONCE(sk->sk_sndbuf, max_t(u32, val, SOCK_MIN_SNDBUF)); 2558 } 2559 2560 /** 2561 * sk_page_frag - return an appropriate page_frag 2562 * @sk: socket 2563 * 2564 * Use the per task page_frag instead of the per socket one for 2565 * optimization when we know that we're in process context and own 2566 * everything that's associated with %current. 2567 * 2568 * Both direct reclaim and page faults can nest inside other 2569 * socket operations and end up recursing into sk_page_frag() 2570 * while it's already in use: explicitly avoid task page_frag 2571 * when users disable sk_use_task_frag. 2572 * 2573 * Return: a per task page_frag if context allows that, 2574 * otherwise a per socket one. 2575 */ 2576 static inline struct page_frag *sk_page_frag(struct sock *sk) 2577 { 2578 if (sk->sk_use_task_frag) 2579 return ¤t->task_frag; 2580 2581 return &sk->sk_frag; 2582 } 2583 2584 bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag); 2585 2586 /* 2587 * Default write policy as shown to user space via poll/select/SIGIO 2588 */ 2589 static inline bool sock_writeable(const struct sock *sk) 2590 { 2591 return refcount_read(&sk->sk_wmem_alloc) < (READ_ONCE(sk->sk_sndbuf) >> 1); 2592 } 2593 2594 static inline gfp_t gfp_any(void) 2595 { 2596 return in_softirq() ? GFP_ATOMIC : GFP_KERNEL; 2597 } 2598 2599 static inline gfp_t gfp_memcg_charge(void) 2600 { 2601 return in_softirq() ? GFP_ATOMIC : GFP_KERNEL; 2602 } 2603 2604 #ifdef CONFIG_MEMCG 2605 static inline struct mem_cgroup *mem_cgroup_from_sk(const struct sock *sk) 2606 { 2607 return sk->sk_memcg; 2608 } 2609 2610 static inline bool mem_cgroup_sk_enabled(const struct sock *sk) 2611 { 2612 return mem_cgroup_sockets_enabled && mem_cgroup_from_sk(sk); 2613 } 2614 2615 static inline bool mem_cgroup_sk_under_memory_pressure(const struct sock *sk) 2616 { 2617 struct mem_cgroup *memcg = mem_cgroup_from_sk(sk); 2618 2619 #ifdef CONFIG_MEMCG_V1 2620 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) 2621 return !!memcg->tcpmem_pressure; 2622 #endif /* CONFIG_MEMCG_V1 */ 2623 2624 do { 2625 if (time_before64(get_jiffies_64(), mem_cgroup_get_socket_pressure(memcg))) 2626 return true; 2627 } while ((memcg = parent_mem_cgroup(memcg))); 2628 2629 return false; 2630 } 2631 #else 2632 static inline struct mem_cgroup *mem_cgroup_from_sk(const struct sock *sk) 2633 { 2634 return NULL; 2635 } 2636 2637 static inline bool mem_cgroup_sk_enabled(const struct sock *sk) 2638 { 2639 return false; 2640 } 2641 2642 static inline bool mem_cgroup_sk_under_memory_pressure(const struct sock *sk) 2643 { 2644 return false; 2645 } 2646 #endif 2647 2648 static inline long sock_rcvtimeo(const struct sock *sk, bool noblock) 2649 { 2650 return noblock ? 0 : READ_ONCE(sk->sk_rcvtimeo); 2651 } 2652 2653 static inline long sock_sndtimeo(const struct sock *sk, bool noblock) 2654 { 2655 return noblock ? 0 : READ_ONCE(sk->sk_sndtimeo); 2656 } 2657 2658 static inline int sock_rcvlowat(const struct sock *sk, int waitall, int len) 2659 { 2660 int v = waitall ? len : min_t(int, READ_ONCE(sk->sk_rcvlowat), len); 2661 2662 return v ?: 1; 2663 } 2664 2665 /* Alas, with timeout socket operations are not restartable. 2666 * Compare this to poll(). 2667 */ 2668 static inline int sock_intr_errno(long timeo) 2669 { 2670 return timeo == MAX_SCHEDULE_TIMEOUT ? -ERESTARTSYS : -EINTR; 2671 } 2672 2673 struct sock_skb_cb { 2674 u32 dropcount; 2675 }; 2676 2677 /* Store sock_skb_cb at the end of skb->cb[] so protocol families 2678 * using skb->cb[] would keep using it directly and utilize its 2679 * alignment guarantee. 2680 */ 2681 #define SOCK_SKB_CB_OFFSET (sizeof_field(struct sk_buff, cb) - \ 2682 sizeof(struct sock_skb_cb)) 2683 2684 #define SOCK_SKB_CB(__skb) ((struct sock_skb_cb *)((__skb)->cb + \ 2685 SOCK_SKB_CB_OFFSET)) 2686 2687 #define sock_skb_cb_check_size(size) \ 2688 BUILD_BUG_ON((size) > SOCK_SKB_CB_OFFSET) 2689 2690 static inline void sk_drops_add(struct sock *sk, int segs) 2691 { 2692 struct socket_drop_counters *sdc = sk->sk_drop_counters; 2693 2694 if (sdc) { 2695 int n = numa_node_id() % 2; 2696 2697 if (n) 2698 atomic_add(segs, &sdc->drops1); 2699 else 2700 atomic_add(segs, &sdc->drops0); 2701 } else { 2702 atomic_add(segs, &sk->sk_drops); 2703 } 2704 } 2705 2706 static inline void sk_drops_inc(struct sock *sk) 2707 { 2708 sk_drops_add(sk, 1); 2709 } 2710 2711 static inline int sk_drops_read(const struct sock *sk) 2712 { 2713 const struct socket_drop_counters *sdc = sk->sk_drop_counters; 2714 2715 if (sdc) { 2716 DEBUG_NET_WARN_ON_ONCE(atomic_read(&sk->sk_drops)); 2717 return atomic_read(&sdc->drops0) + atomic_read(&sdc->drops1); 2718 } 2719 return atomic_read(&sk->sk_drops); 2720 } 2721 2722 static inline void sk_drops_reset(struct sock *sk) 2723 { 2724 struct socket_drop_counters *sdc = sk->sk_drop_counters; 2725 2726 if (sdc) { 2727 atomic_set(&sdc->drops0, 0); 2728 atomic_set(&sdc->drops1, 0); 2729 } 2730 atomic_set(&sk->sk_drops, 0); 2731 } 2732 2733 static inline void 2734 sock_skb_set_dropcount(const struct sock *sk, struct sk_buff *skb) 2735 { 2736 SOCK_SKB_CB(skb)->dropcount = sock_flag(sk, SOCK_RXQ_OVFL) ? 2737 sk_drops_read(sk) : 0; 2738 } 2739 2740 static inline void sk_drops_skbadd(struct sock *sk, const struct sk_buff *skb) 2741 { 2742 int segs = max_t(u16, 1, skb_shinfo(skb)->gso_segs); 2743 2744 sk_drops_add(sk, segs); 2745 } 2746 2747 static inline ktime_t sock_read_timestamp(struct sock *sk) 2748 { 2749 #if BITS_PER_LONG==32 2750 unsigned int seq; 2751 ktime_t kt; 2752 2753 do { 2754 seq = read_seqbegin(&sk->sk_stamp_seq); 2755 kt = sk->sk_stamp; 2756 } while (read_seqretry(&sk->sk_stamp_seq, seq)); 2757 2758 return kt; 2759 #else 2760 return READ_ONCE(sk->sk_stamp); 2761 #endif 2762 } 2763 2764 static inline void sock_write_timestamp(struct sock *sk, ktime_t kt) 2765 { 2766 #if BITS_PER_LONG==32 2767 write_seqlock(&sk->sk_stamp_seq); 2768 sk->sk_stamp = kt; 2769 write_sequnlock(&sk->sk_stamp_seq); 2770 #else 2771 WRITE_ONCE(sk->sk_stamp, kt); 2772 #endif 2773 } 2774 2775 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk, 2776 struct sk_buff *skb); 2777 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk, 2778 struct sk_buff *skb); 2779 2780 bool skb_has_tx_timestamp(struct sk_buff *skb, const struct sock *sk); 2781 int skb_get_tx_timestamp(struct sk_buff *skb, struct sock *sk, 2782 struct timespec64 *ts); 2783 2784 static inline void 2785 sock_recv_timestamp(struct msghdr *msg, struct sock *sk, struct sk_buff *skb) 2786 { 2787 struct skb_shared_hwtstamps *hwtstamps = skb_hwtstamps(skb); 2788 u32 tsflags = READ_ONCE(sk->sk_tsflags); 2789 ktime_t kt = skb->tstamp; 2790 /* 2791 * generate control messages if 2792 * - receive time stamping in software requested 2793 * - software time stamp available and wanted 2794 * - hardware time stamps available and wanted 2795 */ 2796 if (sock_flag(sk, SOCK_RCVTSTAMP) || 2797 (tsflags & SOF_TIMESTAMPING_RX_SOFTWARE) || 2798 (kt && tsflags & SOF_TIMESTAMPING_SOFTWARE) || 2799 (hwtstamps->hwtstamp && 2800 (tsflags & SOF_TIMESTAMPING_RAW_HARDWARE))) 2801 __sock_recv_timestamp(msg, sk, skb); 2802 else 2803 sock_write_timestamp(sk, kt); 2804 2805 if (sock_flag(sk, SOCK_WIFI_STATUS) && skb_wifi_acked_valid(skb)) 2806 __sock_recv_wifi_status(msg, sk, skb); 2807 } 2808 2809 void __sock_recv_cmsgs(struct msghdr *msg, struct sock *sk, 2810 struct sk_buff *skb); 2811 2812 #define SK_DEFAULT_STAMP (-1L * NSEC_PER_SEC) 2813 static inline void sock_recv_cmsgs(struct msghdr *msg, struct sock *sk, 2814 struct sk_buff *skb) 2815 { 2816 #define FLAGS_RECV_CMSGS ((1UL << SOCK_RXQ_OVFL) | \ 2817 (1UL << SOCK_RCVTSTAMP) | \ 2818 (1UL << SOCK_RCVMARK) | \ 2819 (1UL << SOCK_RCVPRIORITY) | \ 2820 (1UL << SOCK_TIMESTAMPING_ANY)) 2821 #define TSFLAGS_ANY (SOF_TIMESTAMPING_SOFTWARE | \ 2822 SOF_TIMESTAMPING_RAW_HARDWARE) 2823 2824 if (READ_ONCE(sk->sk_flags) & FLAGS_RECV_CMSGS) 2825 __sock_recv_cmsgs(msg, sk, skb); 2826 else if (unlikely(sock_flag(sk, SOCK_TIMESTAMP))) 2827 sock_write_timestamp(sk, skb->tstamp); 2828 else if (unlikely(sock_read_timestamp(sk) == SK_DEFAULT_STAMP)) 2829 sock_write_timestamp(sk, 0); 2830 } 2831 2832 void __sock_tx_timestamp(__u32 tsflags, __u8 *tx_flags); 2833 2834 /** 2835 * _sock_tx_timestamp - checks whether the outgoing packet is to be time stamped 2836 * @sk: socket sending this packet 2837 * @sockc: pointer to socket cmsg cookie to get timestamping info 2838 * @tx_flags: completed with instructions for time stamping 2839 * @tskey: filled in with next sk_tskey (not for TCP, which uses seqno) 2840 * 2841 * Note: callers should take care of initial ``*tx_flags`` value (usually 0) 2842 */ 2843 static inline void _sock_tx_timestamp(struct sock *sk, 2844 const struct sockcm_cookie *sockc, 2845 __u8 *tx_flags, __u32 *tskey) 2846 { 2847 __u32 tsflags = sockc->tsflags; 2848 2849 if (unlikely(tsflags)) { 2850 __sock_tx_timestamp(tsflags, tx_flags); 2851 if (tsflags & SOF_TIMESTAMPING_OPT_ID && tskey && 2852 tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK) { 2853 if (tsflags & SOCKCM_FLAG_TS_OPT_ID) 2854 *tskey = sockc->ts_opt_id; 2855 else 2856 *tskey = atomic_inc_return(&sk->sk_tskey) - 1; 2857 } 2858 } 2859 } 2860 2861 static inline void sock_tx_timestamp(struct sock *sk, 2862 const struct sockcm_cookie *sockc, 2863 __u8 *tx_flags) 2864 { 2865 _sock_tx_timestamp(sk, sockc, tx_flags, NULL); 2866 } 2867 2868 static inline void skb_setup_tx_timestamp(struct sk_buff *skb, 2869 const struct sockcm_cookie *sockc) 2870 { 2871 _sock_tx_timestamp(skb->sk, sockc, &skb_shinfo(skb)->tx_flags, 2872 &skb_shinfo(skb)->tskey); 2873 } 2874 2875 static inline bool sk_is_inet(const struct sock *sk) 2876 { 2877 int family = READ_ONCE(sk->sk_family); 2878 2879 return family == AF_INET || family == AF_INET6; 2880 } 2881 2882 static inline bool sk_is_tcp(const struct sock *sk) 2883 { 2884 return sk_is_inet(sk) && 2885 sk->sk_type == SOCK_STREAM && 2886 sk->sk_protocol == IPPROTO_TCP; 2887 } 2888 2889 static inline bool sk_is_udp(const struct sock *sk) 2890 { 2891 return sk_is_inet(sk) && 2892 sk->sk_type == SOCK_DGRAM && 2893 sk->sk_protocol == IPPROTO_UDP; 2894 } 2895 2896 static inline bool sk_is_unix(const struct sock *sk) 2897 { 2898 return sk->sk_family == AF_UNIX; 2899 } 2900 2901 static inline bool sk_is_stream_unix(const struct sock *sk) 2902 { 2903 return sk_is_unix(sk) && sk->sk_type == SOCK_STREAM; 2904 } 2905 2906 static inline bool sk_is_vsock(const struct sock *sk) 2907 { 2908 return sk->sk_family == AF_VSOCK; 2909 } 2910 2911 static inline bool sk_may_scm_recv(const struct sock *sk) 2912 { 2913 return (IS_ENABLED(CONFIG_UNIX) && sk->sk_family == AF_UNIX) || 2914 sk->sk_family == AF_NETLINK || 2915 (IS_ENABLED(CONFIG_BT) && sk->sk_family == AF_BLUETOOTH); 2916 } 2917 2918 /** 2919 * sk_eat_skb - Release a skb if it is no longer needed 2920 * @sk: socket to eat this skb from 2921 * @skb: socket buffer to eat 2922 * 2923 * This routine must be called with interrupts disabled or with the socket 2924 * locked so that the sk_buff queue operation is ok. 2925 */ 2926 static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb) 2927 { 2928 __skb_unlink(skb, &sk->sk_receive_queue); 2929 __kfree_skb(skb); 2930 } 2931 2932 static inline bool 2933 skb_sk_is_prefetched(struct sk_buff *skb) 2934 { 2935 #ifdef CONFIG_INET 2936 return skb->destructor == sock_pfree; 2937 #else 2938 return false; 2939 #endif /* CONFIG_INET */ 2940 } 2941 2942 /* This helper checks if a socket is a full socket, 2943 * ie _not_ a timewait or request socket. 2944 */ 2945 static inline bool sk_fullsock(const struct sock *sk) 2946 { 2947 return (1 << sk->sk_state) & ~(TCPF_TIME_WAIT | TCPF_NEW_SYN_RECV); 2948 } 2949 2950 static inline bool 2951 sk_is_refcounted(struct sock *sk) 2952 { 2953 /* Only full sockets have sk->sk_flags. */ 2954 return !sk_fullsock(sk) || !sock_flag(sk, SOCK_RCU_FREE); 2955 } 2956 2957 static inline bool 2958 sk_requests_wifi_status(struct sock *sk) 2959 { 2960 return sk && sk_fullsock(sk) && sock_flag(sk, SOCK_WIFI_STATUS); 2961 } 2962 2963 /* Checks if this SKB belongs to an HW offloaded socket 2964 * and whether any SW fallbacks are required based on dev. 2965 * Check decrypted mark in case skb_orphan() cleared socket. 2966 */ 2967 static inline struct sk_buff *sk_validate_xmit_skb(struct sk_buff *skb, 2968 struct net_device *dev) 2969 { 2970 #ifdef CONFIG_SOCK_VALIDATE_XMIT 2971 struct sock *sk = skb->sk; 2972 2973 if (sk && sk_fullsock(sk) && sk->sk_validate_xmit_skb) { 2974 skb = sk->sk_validate_xmit_skb(sk, dev, skb); 2975 } else if (unlikely(skb_is_decrypted(skb))) { 2976 pr_warn_ratelimited("unencrypted skb with no associated socket - dropping\n"); 2977 kfree_skb(skb); 2978 skb = NULL; 2979 } 2980 #endif 2981 2982 return skb; 2983 } 2984 2985 /* This helper checks if a socket is a LISTEN or NEW_SYN_RECV 2986 * SYNACK messages can be attached to either ones (depending on SYNCOOKIE) 2987 */ 2988 static inline bool sk_listener(const struct sock *sk) 2989 { 2990 return (1 << sk->sk_state) & (TCPF_LISTEN | TCPF_NEW_SYN_RECV); 2991 } 2992 2993 /* This helper checks if a socket is a LISTEN or NEW_SYN_RECV or TIME_WAIT 2994 * TCP SYNACK messages can be attached to LISTEN or NEW_SYN_RECV (depending on SYNCOOKIE) 2995 * TCP RST and ACK can be attached to TIME_WAIT. 2996 */ 2997 static inline bool sk_listener_or_tw(const struct sock *sk) 2998 { 2999 return (1 << READ_ONCE(sk->sk_state)) & 3000 (TCPF_LISTEN | TCPF_NEW_SYN_RECV | TCPF_TIME_WAIT); 3001 } 3002 3003 void sock_enable_timestamp(struct sock *sk, enum sock_flags flag); 3004 int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len, int level, 3005 int type); 3006 3007 bool sk_ns_capable(const struct sock *sk, 3008 struct user_namespace *user_ns, int cap); 3009 bool sk_capable(const struct sock *sk, int cap); 3010 bool sk_net_capable(const struct sock *sk, int cap); 3011 3012 void sk_get_meminfo(const struct sock *sk, u32 *meminfo); 3013 3014 /* Take into consideration the size of the struct sk_buff overhead in the 3015 * determination of these values, since that is non-constant across 3016 * platforms. This makes socket queueing behavior and performance 3017 * not depend upon such differences. 3018 */ 3019 #define _SK_MEM_PACKETS 256 3020 #define _SK_MEM_OVERHEAD SKB_TRUESIZE(256) 3021 #define SK_WMEM_DEFAULT (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS) 3022 #define SK_RMEM_DEFAULT (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS) 3023 3024 extern __u32 sysctl_wmem_max; 3025 extern __u32 sysctl_rmem_max; 3026 3027 extern __u32 sysctl_wmem_default; 3028 extern __u32 sysctl_rmem_default; 3029 3030 #define SKB_FRAG_PAGE_ORDER get_order(32768) 3031 DECLARE_STATIC_KEY_FALSE(net_high_order_alloc_disable_key); 3032 3033 static inline int sk_get_wmem0(const struct sock *sk, const struct proto *proto) 3034 { 3035 /* Does this proto have per netns sysctl_wmem ? */ 3036 if (proto->sysctl_wmem_offset) 3037 return READ_ONCE(*(int *)((void *)sock_net(sk) + proto->sysctl_wmem_offset)); 3038 3039 return READ_ONCE(*proto->sysctl_wmem); 3040 } 3041 3042 static inline int sk_get_rmem0(const struct sock *sk, const struct proto *proto) 3043 { 3044 /* Does this proto have per netns sysctl_rmem ? */ 3045 if (proto->sysctl_rmem_offset) 3046 return READ_ONCE(*(int *)((void *)sock_net(sk) + proto->sysctl_rmem_offset)); 3047 3048 return READ_ONCE(*proto->sysctl_rmem); 3049 } 3050 3051 /* Default TCP Small queue budget is ~1 ms of data (1sec >> 10) 3052 * Some wifi drivers need to tweak it to get more chunks. 3053 * They can use this helper from their ndo_start_xmit() 3054 */ 3055 static inline void sk_pacing_shift_update(struct sock *sk, int val) 3056 { 3057 if (!sk || !sk_fullsock(sk) || READ_ONCE(sk->sk_pacing_shift) == val) 3058 return; 3059 WRITE_ONCE(sk->sk_pacing_shift, val); 3060 } 3061 3062 /* if a socket is bound to a device, check that the given device 3063 * index is either the same or that the socket is bound to an L3 3064 * master device and the given device index is also enslaved to 3065 * that L3 master 3066 */ 3067 static inline bool sk_dev_equal_l3scope(struct sock *sk, int dif) 3068 { 3069 int bound_dev_if = READ_ONCE(sk->sk_bound_dev_if); 3070 int mdif; 3071 3072 if (!bound_dev_if || bound_dev_if == dif) 3073 return true; 3074 3075 mdif = l3mdev_master_ifindex_by_index(sock_net(sk), dif); 3076 if (mdif && mdif == bound_dev_if) 3077 return true; 3078 3079 return false; 3080 } 3081 3082 void sock_def_readable(struct sock *sk); 3083 3084 int sock_bindtoindex(struct sock *sk, int ifindex, bool lock_sk); 3085 void sock_set_timestamp(struct sock *sk, int optname, bool valbool); 3086 int sock_set_timestamping(struct sock *sk, int optname, 3087 struct so_timestamping timestamping); 3088 3089 #if defined(CONFIG_CGROUP_BPF) 3090 void bpf_skops_tx_timestamping(struct sock *sk, struct sk_buff *skb, int op); 3091 #else 3092 static inline void bpf_skops_tx_timestamping(struct sock *sk, struct sk_buff *skb, int op) 3093 { 3094 } 3095 #endif 3096 void sock_no_linger(struct sock *sk); 3097 void sock_set_keepalive(struct sock *sk); 3098 void sock_set_priority(struct sock *sk, u32 priority); 3099 void sock_set_rcvbuf(struct sock *sk, int val); 3100 void sock_set_mark(struct sock *sk, u32 val); 3101 void sock_set_reuseaddr(struct sock *sk); 3102 void sock_set_reuseport(struct sock *sk); 3103 void sock_set_sndtimeo(struct sock *sk, s64 secs); 3104 3105 int sock_bind_add(struct sock *sk, struct sockaddr *addr, int addr_len); 3106 3107 int sock_get_timeout(long timeo, void *optval, bool old_timeval); 3108 int sock_copy_user_timeval(struct __kernel_sock_timeval *tv, 3109 sockptr_t optval, int optlen, bool old_timeval); 3110 3111 int sock_ioctl_inout(struct sock *sk, unsigned int cmd, 3112 void __user *arg, void *karg, size_t size); 3113 int sk_ioctl(struct sock *sk, unsigned int cmd, void __user *arg); 3114 static inline bool sk_is_readable(struct sock *sk) 3115 { 3116 const struct proto *prot = READ_ONCE(sk->sk_prot); 3117 3118 if (prot->sock_is_readable) 3119 return prot->sock_is_readable(sk); 3120 3121 return false; 3122 } 3123 #endif /* _SOCK_H */ 3124