xref: /linux/include/net/sock.h (revision a5c4300389bb33ade2515c082709217f0614cf15)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Definitions for the AF_INET socket handler.
7  *
8  * Version:	@(#)sock.h	1.0.4	05/13/93
9  *
10  * Authors:	Ross Biro
11  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
13  *		Florian La Roche <flla@stud.uni-sb.de>
14  *
15  * Fixes:
16  *		Alan Cox	:	Volatiles in skbuff pointers. See
17  *					skbuff comments. May be overdone,
18  *					better to prove they can be removed
19  *					than the reverse.
20  *		Alan Cox	:	Added a zapped field for tcp to note
21  *					a socket is reset and must stay shut up
22  *		Alan Cox	:	New fields for options
23  *	Pauline Middelink	:	identd support
24  *		Alan Cox	:	Eliminate low level recv/recvfrom
25  *		David S. Miller	:	New socket lookup architecture.
26  *              Steve Whitehouse:       Default routines for sock_ops
27  *              Arnaldo C. Melo :	removed net_pinfo, tp_pinfo and made
28  *              			protinfo be just a void pointer, as the
29  *              			protocol specific parts were moved to
30  *              			respective headers and ipv4/v6, etc now
31  *              			use private slabcaches for its socks
32  *              Pedro Hortas	:	New flags field for socket options
33  *
34  *
35  *		This program is free software; you can redistribute it and/or
36  *		modify it under the terms of the GNU General Public License
37  *		as published by the Free Software Foundation; either version
38  *		2 of the License, or (at your option) any later version.
39  */
40 #ifndef _SOCK_H
41 #define _SOCK_H
42 
43 #include <linux/kernel.h>
44 #include <linux/list.h>
45 #include <linux/list_nulls.h>
46 #include <linux/timer.h>
47 #include <linux/cache.h>
48 #include <linux/module.h>
49 #include <linux/lockdep.h>
50 #include <linux/netdevice.h>
51 #include <linux/skbuff.h>	/* struct sk_buff */
52 #include <linux/mm.h>
53 #include <linux/security.h>
54 #include <linux/slab.h>
55 
56 #include <linux/filter.h>
57 #include <linux/rculist_nulls.h>
58 #include <linux/poll.h>
59 
60 #include <asm/atomic.h>
61 #include <net/dst.h>
62 #include <net/checksum.h>
63 
64 /*
65  * This structure really needs to be cleaned up.
66  * Most of it is for TCP, and not used by any of
67  * the other protocols.
68  */
69 
70 /* Define this to get the SOCK_DBG debugging facility. */
71 #define SOCK_DEBUGGING
72 #ifdef SOCK_DEBUGGING
73 #define SOCK_DEBUG(sk, msg...) do { if ((sk) && sock_flag((sk), SOCK_DBG)) \
74 					printk(KERN_DEBUG msg); } while (0)
75 #else
76 /* Validate arguments and do nothing */
77 static inline void __attribute__ ((format (printf, 2, 3)))
78 SOCK_DEBUG(struct sock *sk, const char *msg, ...)
79 {
80 }
81 #endif
82 
83 /* This is the per-socket lock.  The spinlock provides a synchronization
84  * between user contexts and software interrupt processing, whereas the
85  * mini-semaphore synchronizes multiple users amongst themselves.
86  */
87 typedef struct {
88 	spinlock_t		slock;
89 	int			owned;
90 	wait_queue_head_t	wq;
91 	/*
92 	 * We express the mutex-alike socket_lock semantics
93 	 * to the lock validator by explicitly managing
94 	 * the slock as a lock variant (in addition to
95 	 * the slock itself):
96 	 */
97 #ifdef CONFIG_DEBUG_LOCK_ALLOC
98 	struct lockdep_map dep_map;
99 #endif
100 } socket_lock_t;
101 
102 struct sock;
103 struct proto;
104 struct net;
105 
106 /**
107  *	struct sock_common - minimal network layer representation of sockets
108  *	@skc_node: main hash linkage for various protocol lookup tables
109  *	@skc_nulls_node: main hash linkage for TCP/UDP/UDP-Lite protocol
110  *	@skc_refcnt: reference count
111  *	@skc_tx_queue_mapping: tx queue number for this connection
112  *	@skc_hash: hash value used with various protocol lookup tables
113  *	@skc_u16hashes: two u16 hash values used by UDP lookup tables
114  *	@skc_family: network address family
115  *	@skc_state: Connection state
116  *	@skc_reuse: %SO_REUSEADDR setting
117  *	@skc_bound_dev_if: bound device index if != 0
118  *	@skc_bind_node: bind hash linkage for various protocol lookup tables
119  *	@skc_portaddr_node: second hash linkage for UDP/UDP-Lite protocol
120  *	@skc_prot: protocol handlers inside a network family
121  *	@skc_net: reference to the network namespace of this socket
122  *
123  *	This is the minimal network layer representation of sockets, the header
124  *	for struct sock and struct inet_timewait_sock.
125  */
126 struct sock_common {
127 	/*
128 	 * first fields are not copied in sock_copy()
129 	 */
130 	union {
131 		struct hlist_node	skc_node;
132 		struct hlist_nulls_node skc_nulls_node;
133 	};
134 	atomic_t		skc_refcnt;
135 	int			skc_tx_queue_mapping;
136 
137 	union  {
138 		unsigned int	skc_hash;
139 		__u16		skc_u16hashes[2];
140 	};
141 	unsigned short		skc_family;
142 	volatile unsigned char	skc_state;
143 	unsigned char		skc_reuse;
144 	int			skc_bound_dev_if;
145 	union {
146 		struct hlist_node	skc_bind_node;
147 		struct hlist_nulls_node skc_portaddr_node;
148 	};
149 	struct proto		*skc_prot;
150 #ifdef CONFIG_NET_NS
151 	struct net	 	*skc_net;
152 #endif
153 };
154 
155 /**
156   *	struct sock - network layer representation of sockets
157   *	@__sk_common: shared layout with inet_timewait_sock
158   *	@sk_shutdown: mask of %SEND_SHUTDOWN and/or %RCV_SHUTDOWN
159   *	@sk_userlocks: %SO_SNDBUF and %SO_RCVBUF settings
160   *	@sk_lock:	synchronizer
161   *	@sk_rcvbuf: size of receive buffer in bytes
162   *	@sk_wq: sock wait queue and async head
163   *	@sk_dst_cache: destination cache
164   *	@sk_dst_lock: destination cache lock
165   *	@sk_policy: flow policy
166   *	@sk_rmem_alloc: receive queue bytes committed
167   *	@sk_receive_queue: incoming packets
168   *	@sk_wmem_alloc: transmit queue bytes committed
169   *	@sk_write_queue: Packet sending queue
170   *	@sk_async_wait_queue: DMA copied packets
171   *	@sk_omem_alloc: "o" is "option" or "other"
172   *	@sk_wmem_queued: persistent queue size
173   *	@sk_forward_alloc: space allocated forward
174   *	@sk_allocation: allocation mode
175   *	@sk_sndbuf: size of send buffer in bytes
176   *	@sk_flags: %SO_LINGER (l_onoff), %SO_BROADCAST, %SO_KEEPALIVE,
177   *		   %SO_OOBINLINE settings, %SO_TIMESTAMPING settings
178   *	@sk_no_check: %SO_NO_CHECK setting, wether or not checkup packets
179   *	@sk_route_caps: route capabilities (e.g. %NETIF_F_TSO)
180   *	@sk_route_nocaps: forbidden route capabilities (e.g NETIF_F_GSO_MASK)
181   *	@sk_gso_type: GSO type (e.g. %SKB_GSO_TCPV4)
182   *	@sk_gso_max_size: Maximum GSO segment size to build
183   *	@sk_lingertime: %SO_LINGER l_linger setting
184   *	@sk_backlog: always used with the per-socket spinlock held
185   *	@sk_callback_lock: used with the callbacks in the end of this struct
186   *	@sk_error_queue: rarely used
187   *	@sk_prot_creator: sk_prot of original sock creator (see ipv6_setsockopt,
188   *			  IPV6_ADDRFORM for instance)
189   *	@sk_err: last error
190   *	@sk_err_soft: errors that don't cause failure but are the cause of a
191   *		      persistent failure not just 'timed out'
192   *	@sk_drops: raw/udp drops counter
193   *	@sk_ack_backlog: current listen backlog
194   *	@sk_max_ack_backlog: listen backlog set in listen()
195   *	@sk_priority: %SO_PRIORITY setting
196   *	@sk_type: socket type (%SOCK_STREAM, etc)
197   *	@sk_protocol: which protocol this socket belongs in this network family
198   *	@sk_peercred: %SO_PEERCRED setting
199   *	@sk_rcvlowat: %SO_RCVLOWAT setting
200   *	@sk_rcvtimeo: %SO_RCVTIMEO setting
201   *	@sk_sndtimeo: %SO_SNDTIMEO setting
202   *	@sk_rxhash: flow hash received from netif layer
203   *	@sk_filter: socket filtering instructions
204   *	@sk_protinfo: private area, net family specific, when not using slab
205   *	@sk_timer: sock cleanup timer
206   *	@sk_stamp: time stamp of last packet received
207   *	@sk_socket: Identd and reporting IO signals
208   *	@sk_user_data: RPC layer private data
209   *	@sk_sndmsg_page: cached page for sendmsg
210   *	@sk_sndmsg_off: cached offset for sendmsg
211   *	@sk_send_head: front of stuff to transmit
212   *	@sk_security: used by security modules
213   *	@sk_mark: generic packet mark
214   *	@sk_write_pending: a write to stream socket waits to start
215   *	@sk_state_change: callback to indicate change in the state of the sock
216   *	@sk_data_ready: callback to indicate there is data to be processed
217   *	@sk_write_space: callback to indicate there is bf sending space available
218   *	@sk_error_report: callback to indicate errors (e.g. %MSG_ERRQUEUE)
219   *	@sk_backlog_rcv: callback to process the backlog
220   *	@sk_destruct: called at sock freeing time, i.e. when all refcnt == 0
221  */
222 struct sock {
223 	/*
224 	 * Now struct inet_timewait_sock also uses sock_common, so please just
225 	 * don't add nothing before this first member (__sk_common) --acme
226 	 */
227 	struct sock_common	__sk_common;
228 #define sk_node			__sk_common.skc_node
229 #define sk_nulls_node		__sk_common.skc_nulls_node
230 #define sk_refcnt		__sk_common.skc_refcnt
231 #define sk_tx_queue_mapping	__sk_common.skc_tx_queue_mapping
232 
233 #define sk_copy_start		__sk_common.skc_hash
234 #define sk_hash			__sk_common.skc_hash
235 #define sk_family		__sk_common.skc_family
236 #define sk_state		__sk_common.skc_state
237 #define sk_reuse		__sk_common.skc_reuse
238 #define sk_bound_dev_if		__sk_common.skc_bound_dev_if
239 #define sk_bind_node		__sk_common.skc_bind_node
240 #define sk_prot			__sk_common.skc_prot
241 #define sk_net			__sk_common.skc_net
242 	kmemcheck_bitfield_begin(flags);
243 	unsigned int		sk_shutdown  : 2,
244 				sk_no_check  : 2,
245 				sk_userlocks : 4,
246 				sk_protocol  : 8,
247 				sk_type      : 16;
248 	kmemcheck_bitfield_end(flags);
249 	int			sk_rcvbuf;
250 	socket_lock_t		sk_lock;
251 	/*
252 	 * The backlog queue is special, it is always used with
253 	 * the per-socket spinlock held and requires low latency
254 	 * access. Therefore we special case it's implementation.
255 	 */
256 	struct {
257 		struct sk_buff *head;
258 		struct sk_buff *tail;
259 		int len;
260 	} sk_backlog;
261 	struct socket_wq	*sk_wq;
262 	struct dst_entry	*sk_dst_cache;
263 #ifdef CONFIG_XFRM
264 	struct xfrm_policy	*sk_policy[2];
265 #endif
266 	spinlock_t		sk_dst_lock;
267 	atomic_t		sk_rmem_alloc;
268 	atomic_t		sk_wmem_alloc;
269 	atomic_t		sk_omem_alloc;
270 	int			sk_sndbuf;
271 	struct sk_buff_head	sk_receive_queue;
272 	struct sk_buff_head	sk_write_queue;
273 #ifdef CONFIG_NET_DMA
274 	struct sk_buff_head	sk_async_wait_queue;
275 #endif
276 	int			sk_wmem_queued;
277 	int			sk_forward_alloc;
278 	gfp_t			sk_allocation;
279 	int			sk_route_caps;
280 	int			sk_route_nocaps;
281 	int			sk_gso_type;
282 	unsigned int		sk_gso_max_size;
283 	int			sk_rcvlowat;
284 #ifdef CONFIG_RPS
285 	__u32			sk_rxhash;
286 #endif
287 	unsigned long 		sk_flags;
288 	unsigned long	        sk_lingertime;
289 	struct sk_buff_head	sk_error_queue;
290 	struct proto		*sk_prot_creator;
291 	rwlock_t		sk_callback_lock;
292 	int			sk_err,
293 				sk_err_soft;
294 	atomic_t		sk_drops;
295 	unsigned short		sk_ack_backlog;
296 	unsigned short		sk_max_ack_backlog;
297 	__u32			sk_priority;
298 	struct ucred		sk_peercred;
299 	long			sk_rcvtimeo;
300 	long			sk_sndtimeo;
301 	struct sk_filter      	*sk_filter;
302 	void			*sk_protinfo;
303 	struct timer_list	sk_timer;
304 	ktime_t			sk_stamp;
305 	struct socket		*sk_socket;
306 	void			*sk_user_data;
307 	struct page		*sk_sndmsg_page;
308 	struct sk_buff		*sk_send_head;
309 	__u32			sk_sndmsg_off;
310 	int			sk_write_pending;
311 #ifdef CONFIG_SECURITY
312 	void			*sk_security;
313 #endif
314 	__u32			sk_mark;
315 	/* XXX 4 bytes hole on 64 bit */
316 	void			(*sk_state_change)(struct sock *sk);
317 	void			(*sk_data_ready)(struct sock *sk, int bytes);
318 	void			(*sk_write_space)(struct sock *sk);
319 	void			(*sk_error_report)(struct sock *sk);
320   	int			(*sk_backlog_rcv)(struct sock *sk,
321 						  struct sk_buff *skb);
322 	void                    (*sk_destruct)(struct sock *sk);
323 };
324 
325 /*
326  * Hashed lists helper routines
327  */
328 static inline struct sock *sk_entry(const struct hlist_node *node)
329 {
330 	return hlist_entry(node, struct sock, sk_node);
331 }
332 
333 static inline struct sock *__sk_head(const struct hlist_head *head)
334 {
335 	return hlist_entry(head->first, struct sock, sk_node);
336 }
337 
338 static inline struct sock *sk_head(const struct hlist_head *head)
339 {
340 	return hlist_empty(head) ? NULL : __sk_head(head);
341 }
342 
343 static inline struct sock *__sk_nulls_head(const struct hlist_nulls_head *head)
344 {
345 	return hlist_nulls_entry(head->first, struct sock, sk_nulls_node);
346 }
347 
348 static inline struct sock *sk_nulls_head(const struct hlist_nulls_head *head)
349 {
350 	return hlist_nulls_empty(head) ? NULL : __sk_nulls_head(head);
351 }
352 
353 static inline struct sock *sk_next(const struct sock *sk)
354 {
355 	return sk->sk_node.next ?
356 		hlist_entry(sk->sk_node.next, struct sock, sk_node) : NULL;
357 }
358 
359 static inline struct sock *sk_nulls_next(const struct sock *sk)
360 {
361 	return (!is_a_nulls(sk->sk_nulls_node.next)) ?
362 		hlist_nulls_entry(sk->sk_nulls_node.next,
363 				  struct sock, sk_nulls_node) :
364 		NULL;
365 }
366 
367 static inline int sk_unhashed(const struct sock *sk)
368 {
369 	return hlist_unhashed(&sk->sk_node);
370 }
371 
372 static inline int sk_hashed(const struct sock *sk)
373 {
374 	return !sk_unhashed(sk);
375 }
376 
377 static __inline__ void sk_node_init(struct hlist_node *node)
378 {
379 	node->pprev = NULL;
380 }
381 
382 static __inline__ void sk_nulls_node_init(struct hlist_nulls_node *node)
383 {
384 	node->pprev = NULL;
385 }
386 
387 static __inline__ void __sk_del_node(struct sock *sk)
388 {
389 	__hlist_del(&sk->sk_node);
390 }
391 
392 /* NB: equivalent to hlist_del_init_rcu */
393 static __inline__ int __sk_del_node_init(struct sock *sk)
394 {
395 	if (sk_hashed(sk)) {
396 		__sk_del_node(sk);
397 		sk_node_init(&sk->sk_node);
398 		return 1;
399 	}
400 	return 0;
401 }
402 
403 /* Grab socket reference count. This operation is valid only
404    when sk is ALREADY grabbed f.e. it is found in hash table
405    or a list and the lookup is made under lock preventing hash table
406    modifications.
407  */
408 
409 static inline void sock_hold(struct sock *sk)
410 {
411 	atomic_inc(&sk->sk_refcnt);
412 }
413 
414 /* Ungrab socket in the context, which assumes that socket refcnt
415    cannot hit zero, f.e. it is true in context of any socketcall.
416  */
417 static inline void __sock_put(struct sock *sk)
418 {
419 	atomic_dec(&sk->sk_refcnt);
420 }
421 
422 static __inline__ int sk_del_node_init(struct sock *sk)
423 {
424 	int rc = __sk_del_node_init(sk);
425 
426 	if (rc) {
427 		/* paranoid for a while -acme */
428 		WARN_ON(atomic_read(&sk->sk_refcnt) == 1);
429 		__sock_put(sk);
430 	}
431 	return rc;
432 }
433 #define sk_del_node_init_rcu(sk)	sk_del_node_init(sk)
434 
435 static __inline__ int __sk_nulls_del_node_init_rcu(struct sock *sk)
436 {
437 	if (sk_hashed(sk)) {
438 		hlist_nulls_del_init_rcu(&sk->sk_nulls_node);
439 		return 1;
440 	}
441 	return 0;
442 }
443 
444 static __inline__ int sk_nulls_del_node_init_rcu(struct sock *sk)
445 {
446 	int rc = __sk_nulls_del_node_init_rcu(sk);
447 
448 	if (rc) {
449 		/* paranoid for a while -acme */
450 		WARN_ON(atomic_read(&sk->sk_refcnt) == 1);
451 		__sock_put(sk);
452 	}
453 	return rc;
454 }
455 
456 static __inline__ void __sk_add_node(struct sock *sk, struct hlist_head *list)
457 {
458 	hlist_add_head(&sk->sk_node, list);
459 }
460 
461 static __inline__ void sk_add_node(struct sock *sk, struct hlist_head *list)
462 {
463 	sock_hold(sk);
464 	__sk_add_node(sk, list);
465 }
466 
467 static __inline__ void sk_add_node_rcu(struct sock *sk, struct hlist_head *list)
468 {
469 	sock_hold(sk);
470 	hlist_add_head_rcu(&sk->sk_node, list);
471 }
472 
473 static __inline__ void __sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
474 {
475 	hlist_nulls_add_head_rcu(&sk->sk_nulls_node, list);
476 }
477 
478 static __inline__ void sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
479 {
480 	sock_hold(sk);
481 	__sk_nulls_add_node_rcu(sk, list);
482 }
483 
484 static __inline__ void __sk_del_bind_node(struct sock *sk)
485 {
486 	__hlist_del(&sk->sk_bind_node);
487 }
488 
489 static __inline__ void sk_add_bind_node(struct sock *sk,
490 					struct hlist_head *list)
491 {
492 	hlist_add_head(&sk->sk_bind_node, list);
493 }
494 
495 #define sk_for_each(__sk, node, list) \
496 	hlist_for_each_entry(__sk, node, list, sk_node)
497 #define sk_for_each_rcu(__sk, node, list) \
498 	hlist_for_each_entry_rcu(__sk, node, list, sk_node)
499 #define sk_nulls_for_each(__sk, node, list) \
500 	hlist_nulls_for_each_entry(__sk, node, list, sk_nulls_node)
501 #define sk_nulls_for_each_rcu(__sk, node, list) \
502 	hlist_nulls_for_each_entry_rcu(__sk, node, list, sk_nulls_node)
503 #define sk_for_each_from(__sk, node) \
504 	if (__sk && ({ node = &(__sk)->sk_node; 1; })) \
505 		hlist_for_each_entry_from(__sk, node, sk_node)
506 #define sk_nulls_for_each_from(__sk, node) \
507 	if (__sk && ({ node = &(__sk)->sk_nulls_node; 1; })) \
508 		hlist_nulls_for_each_entry_from(__sk, node, sk_nulls_node)
509 #define sk_for_each_continue(__sk, node) \
510 	if (__sk && ({ node = &(__sk)->sk_node; 1; })) \
511 		hlist_for_each_entry_continue(__sk, node, sk_node)
512 #define sk_for_each_safe(__sk, node, tmp, list) \
513 	hlist_for_each_entry_safe(__sk, node, tmp, list, sk_node)
514 #define sk_for_each_bound(__sk, node, list) \
515 	hlist_for_each_entry(__sk, node, list, sk_bind_node)
516 
517 /* Sock flags */
518 enum sock_flags {
519 	SOCK_DEAD,
520 	SOCK_DONE,
521 	SOCK_URGINLINE,
522 	SOCK_KEEPOPEN,
523 	SOCK_LINGER,
524 	SOCK_DESTROY,
525 	SOCK_BROADCAST,
526 	SOCK_TIMESTAMP,
527 	SOCK_ZAPPED,
528 	SOCK_USE_WRITE_QUEUE, /* whether to call sk->sk_write_space in sock_wfree */
529 	SOCK_DBG, /* %SO_DEBUG setting */
530 	SOCK_RCVTSTAMP, /* %SO_TIMESTAMP setting */
531 	SOCK_RCVTSTAMPNS, /* %SO_TIMESTAMPNS setting */
532 	SOCK_LOCALROUTE, /* route locally only, %SO_DONTROUTE setting */
533 	SOCK_QUEUE_SHRUNK, /* write queue has been shrunk recently */
534 	SOCK_TIMESTAMPING_TX_HARDWARE,  /* %SOF_TIMESTAMPING_TX_HARDWARE */
535 	SOCK_TIMESTAMPING_TX_SOFTWARE,  /* %SOF_TIMESTAMPING_TX_SOFTWARE */
536 	SOCK_TIMESTAMPING_RX_HARDWARE,  /* %SOF_TIMESTAMPING_RX_HARDWARE */
537 	SOCK_TIMESTAMPING_RX_SOFTWARE,  /* %SOF_TIMESTAMPING_RX_SOFTWARE */
538 	SOCK_TIMESTAMPING_SOFTWARE,     /* %SOF_TIMESTAMPING_SOFTWARE */
539 	SOCK_TIMESTAMPING_RAW_HARDWARE, /* %SOF_TIMESTAMPING_RAW_HARDWARE */
540 	SOCK_TIMESTAMPING_SYS_HARDWARE, /* %SOF_TIMESTAMPING_SYS_HARDWARE */
541 	SOCK_FASYNC, /* fasync() active */
542 	SOCK_RXQ_OVFL,
543 };
544 
545 static inline void sock_copy_flags(struct sock *nsk, struct sock *osk)
546 {
547 	nsk->sk_flags = osk->sk_flags;
548 }
549 
550 static inline void sock_set_flag(struct sock *sk, enum sock_flags flag)
551 {
552 	__set_bit(flag, &sk->sk_flags);
553 }
554 
555 static inline void sock_reset_flag(struct sock *sk, enum sock_flags flag)
556 {
557 	__clear_bit(flag, &sk->sk_flags);
558 }
559 
560 static inline int sock_flag(struct sock *sk, enum sock_flags flag)
561 {
562 	return test_bit(flag, &sk->sk_flags);
563 }
564 
565 static inline void sk_acceptq_removed(struct sock *sk)
566 {
567 	sk->sk_ack_backlog--;
568 }
569 
570 static inline void sk_acceptq_added(struct sock *sk)
571 {
572 	sk->sk_ack_backlog++;
573 }
574 
575 static inline int sk_acceptq_is_full(struct sock *sk)
576 {
577 	return sk->sk_ack_backlog > sk->sk_max_ack_backlog;
578 }
579 
580 /*
581  * Compute minimal free write space needed to queue new packets.
582  */
583 static inline int sk_stream_min_wspace(struct sock *sk)
584 {
585 	return sk->sk_wmem_queued >> 1;
586 }
587 
588 static inline int sk_stream_wspace(struct sock *sk)
589 {
590 	return sk->sk_sndbuf - sk->sk_wmem_queued;
591 }
592 
593 extern void sk_stream_write_space(struct sock *sk);
594 
595 static inline int sk_stream_memory_free(struct sock *sk)
596 {
597 	return sk->sk_wmem_queued < sk->sk_sndbuf;
598 }
599 
600 /* OOB backlog add */
601 static inline void __sk_add_backlog(struct sock *sk, struct sk_buff *skb)
602 {
603 	/* dont let skb dst not refcounted, we are going to leave rcu lock */
604 	skb_dst_force(skb);
605 
606 	if (!sk->sk_backlog.tail)
607 		sk->sk_backlog.head = skb;
608 	else
609 		sk->sk_backlog.tail->next = skb;
610 
611 	sk->sk_backlog.tail = skb;
612 	skb->next = NULL;
613 }
614 
615 /*
616  * Take into account size of receive queue and backlog queue
617  */
618 static inline bool sk_rcvqueues_full(const struct sock *sk, const struct sk_buff *skb)
619 {
620 	unsigned int qsize = sk->sk_backlog.len + atomic_read(&sk->sk_rmem_alloc);
621 
622 	return qsize + skb->truesize > sk->sk_rcvbuf;
623 }
624 
625 /* The per-socket spinlock must be held here. */
626 static inline __must_check int sk_add_backlog(struct sock *sk, struct sk_buff *skb)
627 {
628 	if (sk_rcvqueues_full(sk, skb))
629 		return -ENOBUFS;
630 
631 	__sk_add_backlog(sk, skb);
632 	sk->sk_backlog.len += skb->truesize;
633 	return 0;
634 }
635 
636 static inline int sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
637 {
638 	return sk->sk_backlog_rcv(sk, skb);
639 }
640 
641 static inline void sock_rps_record_flow(const struct sock *sk)
642 {
643 #ifdef CONFIG_RPS
644 	struct rps_sock_flow_table *sock_flow_table;
645 
646 	rcu_read_lock();
647 	sock_flow_table = rcu_dereference(rps_sock_flow_table);
648 	rps_record_sock_flow(sock_flow_table, sk->sk_rxhash);
649 	rcu_read_unlock();
650 #endif
651 }
652 
653 static inline void sock_rps_reset_flow(const struct sock *sk)
654 {
655 #ifdef CONFIG_RPS
656 	struct rps_sock_flow_table *sock_flow_table;
657 
658 	rcu_read_lock();
659 	sock_flow_table = rcu_dereference(rps_sock_flow_table);
660 	rps_reset_sock_flow(sock_flow_table, sk->sk_rxhash);
661 	rcu_read_unlock();
662 #endif
663 }
664 
665 static inline void sock_rps_save_rxhash(struct sock *sk, u32 rxhash)
666 {
667 #ifdef CONFIG_RPS
668 	if (unlikely(sk->sk_rxhash != rxhash)) {
669 		sock_rps_reset_flow(sk);
670 		sk->sk_rxhash = rxhash;
671 	}
672 #endif
673 }
674 
675 #define sk_wait_event(__sk, __timeo, __condition)			\
676 	({	int __rc;						\
677 		release_sock(__sk);					\
678 		__rc = __condition;					\
679 		if (!__rc) {						\
680 			*(__timeo) = schedule_timeout(*(__timeo));	\
681 		}							\
682 		lock_sock(__sk);					\
683 		__rc = __condition;					\
684 		__rc;							\
685 	})
686 
687 extern int sk_stream_wait_connect(struct sock *sk, long *timeo_p);
688 extern int sk_stream_wait_memory(struct sock *sk, long *timeo_p);
689 extern void sk_stream_wait_close(struct sock *sk, long timeo_p);
690 extern int sk_stream_error(struct sock *sk, int flags, int err);
691 extern void sk_stream_kill_queues(struct sock *sk);
692 
693 extern int sk_wait_data(struct sock *sk, long *timeo);
694 
695 struct request_sock_ops;
696 struct timewait_sock_ops;
697 struct inet_hashinfo;
698 struct raw_hashinfo;
699 
700 /* Networking protocol blocks we attach to sockets.
701  * socket layer -> transport layer interface
702  * transport -> network interface is defined by struct inet_proto
703  */
704 struct proto {
705 	void			(*close)(struct sock *sk,
706 					long timeout);
707 	int			(*connect)(struct sock *sk,
708 				        struct sockaddr *uaddr,
709 					int addr_len);
710 	int			(*disconnect)(struct sock *sk, int flags);
711 
712 	struct sock *		(*accept) (struct sock *sk, int flags, int *err);
713 
714 	int			(*ioctl)(struct sock *sk, int cmd,
715 					 unsigned long arg);
716 	int			(*init)(struct sock *sk);
717 	void			(*destroy)(struct sock *sk);
718 	void			(*shutdown)(struct sock *sk, int how);
719 	int			(*setsockopt)(struct sock *sk, int level,
720 					int optname, char __user *optval,
721 					unsigned int optlen);
722 	int			(*getsockopt)(struct sock *sk, int level,
723 					int optname, char __user *optval,
724 					int __user *option);
725 #ifdef CONFIG_COMPAT
726 	int			(*compat_setsockopt)(struct sock *sk,
727 					int level,
728 					int optname, char __user *optval,
729 					unsigned int optlen);
730 	int			(*compat_getsockopt)(struct sock *sk,
731 					int level,
732 					int optname, char __user *optval,
733 					int __user *option);
734 #endif
735 	int			(*sendmsg)(struct kiocb *iocb, struct sock *sk,
736 					   struct msghdr *msg, size_t len);
737 	int			(*recvmsg)(struct kiocb *iocb, struct sock *sk,
738 					   struct msghdr *msg,
739 					size_t len, int noblock, int flags,
740 					int *addr_len);
741 	int			(*sendpage)(struct sock *sk, struct page *page,
742 					int offset, size_t size, int flags);
743 	int			(*bind)(struct sock *sk,
744 					struct sockaddr *uaddr, int addr_len);
745 
746 	int			(*backlog_rcv) (struct sock *sk,
747 						struct sk_buff *skb);
748 
749 	/* Keeping track of sk's, looking them up, and port selection methods. */
750 	void			(*hash)(struct sock *sk);
751 	void			(*unhash)(struct sock *sk);
752 	int			(*get_port)(struct sock *sk, unsigned short snum);
753 
754 	/* Keeping track of sockets in use */
755 #ifdef CONFIG_PROC_FS
756 	unsigned int		inuse_idx;
757 #endif
758 
759 	/* Memory pressure */
760 	void			(*enter_memory_pressure)(struct sock *sk);
761 	atomic_t		*memory_allocated;	/* Current allocated memory. */
762 	struct percpu_counter	*sockets_allocated;	/* Current number of sockets. */
763 	/*
764 	 * Pressure flag: try to collapse.
765 	 * Technical note: it is used by multiple contexts non atomically.
766 	 * All the __sk_mem_schedule() is of this nature: accounting
767 	 * is strict, actions are advisory and have some latency.
768 	 */
769 	int			*memory_pressure;
770 	int			*sysctl_mem;
771 	int			*sysctl_wmem;
772 	int			*sysctl_rmem;
773 	int			max_header;
774 
775 	struct kmem_cache	*slab;
776 	unsigned int		obj_size;
777 	int			slab_flags;
778 
779 	struct percpu_counter	*orphan_count;
780 
781 	struct request_sock_ops	*rsk_prot;
782 	struct timewait_sock_ops *twsk_prot;
783 
784 	union {
785 		struct inet_hashinfo	*hashinfo;
786 		struct udp_table	*udp_table;
787 		struct raw_hashinfo	*raw_hash;
788 	} h;
789 
790 	struct module		*owner;
791 
792 	char			name[32];
793 
794 	struct list_head	node;
795 #ifdef SOCK_REFCNT_DEBUG
796 	atomic_t		socks;
797 #endif
798 };
799 
800 extern int proto_register(struct proto *prot, int alloc_slab);
801 extern void proto_unregister(struct proto *prot);
802 
803 #ifdef SOCK_REFCNT_DEBUG
804 static inline void sk_refcnt_debug_inc(struct sock *sk)
805 {
806 	atomic_inc(&sk->sk_prot->socks);
807 }
808 
809 static inline void sk_refcnt_debug_dec(struct sock *sk)
810 {
811 	atomic_dec(&sk->sk_prot->socks);
812 	printk(KERN_DEBUG "%s socket %p released, %d are still alive\n",
813 	       sk->sk_prot->name, sk, atomic_read(&sk->sk_prot->socks));
814 }
815 
816 static inline void sk_refcnt_debug_release(const struct sock *sk)
817 {
818 	if (atomic_read(&sk->sk_refcnt) != 1)
819 		printk(KERN_DEBUG "Destruction of the %s socket %p delayed, refcnt=%d\n",
820 		       sk->sk_prot->name, sk, atomic_read(&sk->sk_refcnt));
821 }
822 #else /* SOCK_REFCNT_DEBUG */
823 #define sk_refcnt_debug_inc(sk) do { } while (0)
824 #define sk_refcnt_debug_dec(sk) do { } while (0)
825 #define sk_refcnt_debug_release(sk) do { } while (0)
826 #endif /* SOCK_REFCNT_DEBUG */
827 
828 
829 #ifdef CONFIG_PROC_FS
830 /* Called with local bh disabled */
831 extern void sock_prot_inuse_add(struct net *net, struct proto *prot, int inc);
832 extern int sock_prot_inuse_get(struct net *net, struct proto *proto);
833 #else
834 static void inline sock_prot_inuse_add(struct net *net, struct proto *prot,
835 		int inc)
836 {
837 }
838 #endif
839 
840 
841 /* With per-bucket locks this operation is not-atomic, so that
842  * this version is not worse.
843  */
844 static inline void __sk_prot_rehash(struct sock *sk)
845 {
846 	sk->sk_prot->unhash(sk);
847 	sk->sk_prot->hash(sk);
848 }
849 
850 /* About 10 seconds */
851 #define SOCK_DESTROY_TIME (10*HZ)
852 
853 /* Sockets 0-1023 can't be bound to unless you are superuser */
854 #define PROT_SOCK	1024
855 
856 #define SHUTDOWN_MASK	3
857 #define RCV_SHUTDOWN	1
858 #define SEND_SHUTDOWN	2
859 
860 #define SOCK_SNDBUF_LOCK	1
861 #define SOCK_RCVBUF_LOCK	2
862 #define SOCK_BINDADDR_LOCK	4
863 #define SOCK_BINDPORT_LOCK	8
864 
865 /* sock_iocb: used to kick off async processing of socket ios */
866 struct sock_iocb {
867 	struct list_head	list;
868 
869 	int			flags;
870 	int			size;
871 	struct socket		*sock;
872 	struct sock		*sk;
873 	struct scm_cookie	*scm;
874 	struct msghdr		*msg, async_msg;
875 	struct kiocb		*kiocb;
876 };
877 
878 static inline struct sock_iocb *kiocb_to_siocb(struct kiocb *iocb)
879 {
880 	return (struct sock_iocb *)iocb->private;
881 }
882 
883 static inline struct kiocb *siocb_to_kiocb(struct sock_iocb *si)
884 {
885 	return si->kiocb;
886 }
887 
888 struct socket_alloc {
889 	struct socket socket;
890 	struct inode vfs_inode;
891 };
892 
893 static inline struct socket *SOCKET_I(struct inode *inode)
894 {
895 	return &container_of(inode, struct socket_alloc, vfs_inode)->socket;
896 }
897 
898 static inline struct inode *SOCK_INODE(struct socket *socket)
899 {
900 	return &container_of(socket, struct socket_alloc, socket)->vfs_inode;
901 }
902 
903 /*
904  * Functions for memory accounting
905  */
906 extern int __sk_mem_schedule(struct sock *sk, int size, int kind);
907 extern void __sk_mem_reclaim(struct sock *sk);
908 
909 #define SK_MEM_QUANTUM ((int)PAGE_SIZE)
910 #define SK_MEM_QUANTUM_SHIFT ilog2(SK_MEM_QUANTUM)
911 #define SK_MEM_SEND	0
912 #define SK_MEM_RECV	1
913 
914 static inline int sk_mem_pages(int amt)
915 {
916 	return (amt + SK_MEM_QUANTUM - 1) >> SK_MEM_QUANTUM_SHIFT;
917 }
918 
919 static inline int sk_has_account(struct sock *sk)
920 {
921 	/* return true if protocol supports memory accounting */
922 	return !!sk->sk_prot->memory_allocated;
923 }
924 
925 static inline int sk_wmem_schedule(struct sock *sk, int size)
926 {
927 	if (!sk_has_account(sk))
928 		return 1;
929 	return size <= sk->sk_forward_alloc ||
930 		__sk_mem_schedule(sk, size, SK_MEM_SEND);
931 }
932 
933 static inline int sk_rmem_schedule(struct sock *sk, int size)
934 {
935 	if (!sk_has_account(sk))
936 		return 1;
937 	return size <= sk->sk_forward_alloc ||
938 		__sk_mem_schedule(sk, size, SK_MEM_RECV);
939 }
940 
941 static inline void sk_mem_reclaim(struct sock *sk)
942 {
943 	if (!sk_has_account(sk))
944 		return;
945 	if (sk->sk_forward_alloc >= SK_MEM_QUANTUM)
946 		__sk_mem_reclaim(sk);
947 }
948 
949 static inline void sk_mem_reclaim_partial(struct sock *sk)
950 {
951 	if (!sk_has_account(sk))
952 		return;
953 	if (sk->sk_forward_alloc > SK_MEM_QUANTUM)
954 		__sk_mem_reclaim(sk);
955 }
956 
957 static inline void sk_mem_charge(struct sock *sk, int size)
958 {
959 	if (!sk_has_account(sk))
960 		return;
961 	sk->sk_forward_alloc -= size;
962 }
963 
964 static inline void sk_mem_uncharge(struct sock *sk, int size)
965 {
966 	if (!sk_has_account(sk))
967 		return;
968 	sk->sk_forward_alloc += size;
969 }
970 
971 static inline void sk_wmem_free_skb(struct sock *sk, struct sk_buff *skb)
972 {
973 	sock_set_flag(sk, SOCK_QUEUE_SHRUNK);
974 	sk->sk_wmem_queued -= skb->truesize;
975 	sk_mem_uncharge(sk, skb->truesize);
976 	__kfree_skb(skb);
977 }
978 
979 /* Used by processes to "lock" a socket state, so that
980  * interrupts and bottom half handlers won't change it
981  * from under us. It essentially blocks any incoming
982  * packets, so that we won't get any new data or any
983  * packets that change the state of the socket.
984  *
985  * While locked, BH processing will add new packets to
986  * the backlog queue.  This queue is processed by the
987  * owner of the socket lock right before it is released.
988  *
989  * Since ~2.3.5 it is also exclusive sleep lock serializing
990  * accesses from user process context.
991  */
992 #define sock_owned_by_user(sk)	((sk)->sk_lock.owned)
993 
994 /*
995  * Macro so as to not evaluate some arguments when
996  * lockdep is not enabled.
997  *
998  * Mark both the sk_lock and the sk_lock.slock as a
999  * per-address-family lock class.
1000  */
1001 #define sock_lock_init_class_and_name(sk, sname, skey, name, key) 	\
1002 do {									\
1003 	sk->sk_lock.owned = 0;						\
1004 	init_waitqueue_head(&sk->sk_lock.wq);				\
1005 	spin_lock_init(&(sk)->sk_lock.slock);				\
1006 	debug_check_no_locks_freed((void *)&(sk)->sk_lock,		\
1007 			sizeof((sk)->sk_lock));				\
1008 	lockdep_set_class_and_name(&(sk)->sk_lock.slock,		\
1009 		       	(skey), (sname));				\
1010 	lockdep_init_map(&(sk)->sk_lock.dep_map, (name), (key), 0);	\
1011 } while (0)
1012 
1013 extern void lock_sock_nested(struct sock *sk, int subclass);
1014 
1015 static inline void lock_sock(struct sock *sk)
1016 {
1017 	lock_sock_nested(sk, 0);
1018 }
1019 
1020 extern void release_sock(struct sock *sk);
1021 
1022 /* BH context may only use the following locking interface. */
1023 #define bh_lock_sock(__sk)	spin_lock(&((__sk)->sk_lock.slock))
1024 #define bh_lock_sock_nested(__sk) \
1025 				spin_lock_nested(&((__sk)->sk_lock.slock), \
1026 				SINGLE_DEPTH_NESTING)
1027 #define bh_unlock_sock(__sk)	spin_unlock(&((__sk)->sk_lock.slock))
1028 
1029 static inline void lock_sock_bh(struct sock *sk)
1030 {
1031 	spin_lock_bh(&sk->sk_lock.slock);
1032 }
1033 
1034 static inline void unlock_sock_bh(struct sock *sk)
1035 {
1036 	spin_unlock_bh(&sk->sk_lock.slock);
1037 }
1038 
1039 extern struct sock		*sk_alloc(struct net *net, int family,
1040 					  gfp_t priority,
1041 					  struct proto *prot);
1042 extern void			sk_free(struct sock *sk);
1043 extern void			sk_release_kernel(struct sock *sk);
1044 extern struct sock		*sk_clone(const struct sock *sk,
1045 					  const gfp_t priority);
1046 
1047 extern struct sk_buff		*sock_wmalloc(struct sock *sk,
1048 					      unsigned long size, int force,
1049 					      gfp_t priority);
1050 extern struct sk_buff		*sock_rmalloc(struct sock *sk,
1051 					      unsigned long size, int force,
1052 					      gfp_t priority);
1053 extern void			sock_wfree(struct sk_buff *skb);
1054 extern void			sock_rfree(struct sk_buff *skb);
1055 
1056 extern int			sock_setsockopt(struct socket *sock, int level,
1057 						int op, char __user *optval,
1058 						unsigned int optlen);
1059 
1060 extern int			sock_getsockopt(struct socket *sock, int level,
1061 						int op, char __user *optval,
1062 						int __user *optlen);
1063 extern struct sk_buff 		*sock_alloc_send_skb(struct sock *sk,
1064 						     unsigned long size,
1065 						     int noblock,
1066 						     int *errcode);
1067 extern struct sk_buff 		*sock_alloc_send_pskb(struct sock *sk,
1068 						      unsigned long header_len,
1069 						      unsigned long data_len,
1070 						      int noblock,
1071 						      int *errcode);
1072 extern void *sock_kmalloc(struct sock *sk, int size,
1073 			  gfp_t priority);
1074 extern void sock_kfree_s(struct sock *sk, void *mem, int size);
1075 extern void sk_send_sigurg(struct sock *sk);
1076 
1077 /*
1078  * Functions to fill in entries in struct proto_ops when a protocol
1079  * does not implement a particular function.
1080  */
1081 extern int                      sock_no_bind(struct socket *,
1082 					     struct sockaddr *, int);
1083 extern int                      sock_no_connect(struct socket *,
1084 						struct sockaddr *, int, int);
1085 extern int                      sock_no_socketpair(struct socket *,
1086 						   struct socket *);
1087 extern int                      sock_no_accept(struct socket *,
1088 					       struct socket *, int);
1089 extern int                      sock_no_getname(struct socket *,
1090 						struct sockaddr *, int *, int);
1091 extern unsigned int             sock_no_poll(struct file *, struct socket *,
1092 					     struct poll_table_struct *);
1093 extern int                      sock_no_ioctl(struct socket *, unsigned int,
1094 					      unsigned long);
1095 extern int			sock_no_listen(struct socket *, int);
1096 extern int                      sock_no_shutdown(struct socket *, int);
1097 extern int			sock_no_getsockopt(struct socket *, int , int,
1098 						   char __user *, int __user *);
1099 extern int			sock_no_setsockopt(struct socket *, int, int,
1100 						   char __user *, unsigned int);
1101 extern int                      sock_no_sendmsg(struct kiocb *, struct socket *,
1102 						struct msghdr *, size_t);
1103 extern int                      sock_no_recvmsg(struct kiocb *, struct socket *,
1104 						struct msghdr *, size_t, int);
1105 extern int			sock_no_mmap(struct file *file,
1106 					     struct socket *sock,
1107 					     struct vm_area_struct *vma);
1108 extern ssize_t			sock_no_sendpage(struct socket *sock,
1109 						struct page *page,
1110 						int offset, size_t size,
1111 						int flags);
1112 
1113 /*
1114  * Functions to fill in entries in struct proto_ops when a protocol
1115  * uses the inet style.
1116  */
1117 extern int sock_common_getsockopt(struct socket *sock, int level, int optname,
1118 				  char __user *optval, int __user *optlen);
1119 extern int sock_common_recvmsg(struct kiocb *iocb, struct socket *sock,
1120 			       struct msghdr *msg, size_t size, int flags);
1121 extern int sock_common_setsockopt(struct socket *sock, int level, int optname,
1122 				  char __user *optval, unsigned int optlen);
1123 extern int compat_sock_common_getsockopt(struct socket *sock, int level,
1124 		int optname, char __user *optval, int __user *optlen);
1125 extern int compat_sock_common_setsockopt(struct socket *sock, int level,
1126 		int optname, char __user *optval, unsigned int optlen);
1127 
1128 extern void sk_common_release(struct sock *sk);
1129 
1130 /*
1131  *	Default socket callbacks and setup code
1132  */
1133 
1134 /* Initialise core socket variables */
1135 extern void sock_init_data(struct socket *sock, struct sock *sk);
1136 
1137 /**
1138  *	sk_filter_release - release a socket filter
1139  *	@fp: filter to remove
1140  *
1141  *	Remove a filter from a socket and release its resources.
1142  */
1143 
1144 static inline void sk_filter_release(struct sk_filter *fp)
1145 {
1146 	if (atomic_dec_and_test(&fp->refcnt))
1147 		kfree(fp);
1148 }
1149 
1150 static inline void sk_filter_uncharge(struct sock *sk, struct sk_filter *fp)
1151 {
1152 	unsigned int size = sk_filter_len(fp);
1153 
1154 	atomic_sub(size, &sk->sk_omem_alloc);
1155 	sk_filter_release(fp);
1156 }
1157 
1158 static inline void sk_filter_charge(struct sock *sk, struct sk_filter *fp)
1159 {
1160 	atomic_inc(&fp->refcnt);
1161 	atomic_add(sk_filter_len(fp), &sk->sk_omem_alloc);
1162 }
1163 
1164 /*
1165  * Socket reference counting postulates.
1166  *
1167  * * Each user of socket SHOULD hold a reference count.
1168  * * Each access point to socket (an hash table bucket, reference from a list,
1169  *   running timer, skb in flight MUST hold a reference count.
1170  * * When reference count hits 0, it means it will never increase back.
1171  * * When reference count hits 0, it means that no references from
1172  *   outside exist to this socket and current process on current CPU
1173  *   is last user and may/should destroy this socket.
1174  * * sk_free is called from any context: process, BH, IRQ. When
1175  *   it is called, socket has no references from outside -> sk_free
1176  *   may release descendant resources allocated by the socket, but
1177  *   to the time when it is called, socket is NOT referenced by any
1178  *   hash tables, lists etc.
1179  * * Packets, delivered from outside (from network or from another process)
1180  *   and enqueued on receive/error queues SHOULD NOT grab reference count,
1181  *   when they sit in queue. Otherwise, packets will leak to hole, when
1182  *   socket is looked up by one cpu and unhasing is made by another CPU.
1183  *   It is true for udp/raw, netlink (leak to receive and error queues), tcp
1184  *   (leak to backlog). Packet socket does all the processing inside
1185  *   BR_NETPROTO_LOCK, so that it has not this race condition. UNIX sockets
1186  *   use separate SMP lock, so that they are prone too.
1187  */
1188 
1189 /* Ungrab socket and destroy it, if it was the last reference. */
1190 static inline void sock_put(struct sock *sk)
1191 {
1192 	if (atomic_dec_and_test(&sk->sk_refcnt))
1193 		sk_free(sk);
1194 }
1195 
1196 extern int sk_receive_skb(struct sock *sk, struct sk_buff *skb,
1197 			  const int nested);
1198 
1199 static inline void sk_tx_queue_set(struct sock *sk, int tx_queue)
1200 {
1201 	sk->sk_tx_queue_mapping = tx_queue;
1202 }
1203 
1204 static inline void sk_tx_queue_clear(struct sock *sk)
1205 {
1206 	sk->sk_tx_queue_mapping = -1;
1207 }
1208 
1209 static inline int sk_tx_queue_get(const struct sock *sk)
1210 {
1211 	return sk->sk_tx_queue_mapping;
1212 }
1213 
1214 static inline bool sk_tx_queue_recorded(const struct sock *sk)
1215 {
1216 	return (sk && sk->sk_tx_queue_mapping >= 0);
1217 }
1218 
1219 static inline void sk_set_socket(struct sock *sk, struct socket *sock)
1220 {
1221 	sk_tx_queue_clear(sk);
1222 	sk->sk_socket = sock;
1223 }
1224 
1225 static inline wait_queue_head_t *sk_sleep(struct sock *sk)
1226 {
1227 	return &sk->sk_wq->wait;
1228 }
1229 /* Detach socket from process context.
1230  * Announce socket dead, detach it from wait queue and inode.
1231  * Note that parent inode held reference count on this struct sock,
1232  * we do not release it in this function, because protocol
1233  * probably wants some additional cleanups or even continuing
1234  * to work with this socket (TCP).
1235  */
1236 static inline void sock_orphan(struct sock *sk)
1237 {
1238 	write_lock_bh(&sk->sk_callback_lock);
1239 	sock_set_flag(sk, SOCK_DEAD);
1240 	sk_set_socket(sk, NULL);
1241 	sk->sk_wq  = NULL;
1242 	write_unlock_bh(&sk->sk_callback_lock);
1243 }
1244 
1245 static inline void sock_graft(struct sock *sk, struct socket *parent)
1246 {
1247 	write_lock_bh(&sk->sk_callback_lock);
1248 	rcu_assign_pointer(sk->sk_wq, parent->wq);
1249 	parent->sk = sk;
1250 	sk_set_socket(sk, parent);
1251 	security_sock_graft(sk, parent);
1252 	write_unlock_bh(&sk->sk_callback_lock);
1253 }
1254 
1255 extern int sock_i_uid(struct sock *sk);
1256 extern unsigned long sock_i_ino(struct sock *sk);
1257 
1258 static inline struct dst_entry *
1259 __sk_dst_get(struct sock *sk)
1260 {
1261 	return rcu_dereference_check(sk->sk_dst_cache, rcu_read_lock_held() ||
1262 						       sock_owned_by_user(sk) ||
1263 						       lockdep_is_held(&sk->sk_lock.slock));
1264 }
1265 
1266 static inline struct dst_entry *
1267 sk_dst_get(struct sock *sk)
1268 {
1269 	struct dst_entry *dst;
1270 
1271 	rcu_read_lock();
1272 	dst = rcu_dereference(sk->sk_dst_cache);
1273 	if (dst)
1274 		dst_hold(dst);
1275 	rcu_read_unlock();
1276 	return dst;
1277 }
1278 
1279 extern void sk_reset_txq(struct sock *sk);
1280 
1281 static inline void dst_negative_advice(struct sock *sk)
1282 {
1283 	struct dst_entry *ndst, *dst = __sk_dst_get(sk);
1284 
1285 	if (dst && dst->ops->negative_advice) {
1286 		ndst = dst->ops->negative_advice(dst);
1287 
1288 		if (ndst != dst) {
1289 			rcu_assign_pointer(sk->sk_dst_cache, ndst);
1290 			sk_reset_txq(sk);
1291 		}
1292 	}
1293 }
1294 
1295 static inline void
1296 __sk_dst_set(struct sock *sk, struct dst_entry *dst)
1297 {
1298 	struct dst_entry *old_dst;
1299 
1300 	sk_tx_queue_clear(sk);
1301 	/*
1302 	 * This can be called while sk is owned by the caller only,
1303 	 * with no state that can be checked in a rcu_dereference_check() cond
1304 	 */
1305 	old_dst = rcu_dereference_raw(sk->sk_dst_cache);
1306 	rcu_assign_pointer(sk->sk_dst_cache, dst);
1307 	dst_release(old_dst);
1308 }
1309 
1310 static inline void
1311 sk_dst_set(struct sock *sk, struct dst_entry *dst)
1312 {
1313 	spin_lock(&sk->sk_dst_lock);
1314 	__sk_dst_set(sk, dst);
1315 	spin_unlock(&sk->sk_dst_lock);
1316 }
1317 
1318 static inline void
1319 __sk_dst_reset(struct sock *sk)
1320 {
1321 	__sk_dst_set(sk, NULL);
1322 }
1323 
1324 static inline void
1325 sk_dst_reset(struct sock *sk)
1326 {
1327 	spin_lock(&sk->sk_dst_lock);
1328 	__sk_dst_reset(sk);
1329 	spin_unlock(&sk->sk_dst_lock);
1330 }
1331 
1332 extern struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie);
1333 
1334 extern struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie);
1335 
1336 static inline int sk_can_gso(const struct sock *sk)
1337 {
1338 	return net_gso_ok(sk->sk_route_caps, sk->sk_gso_type);
1339 }
1340 
1341 extern void sk_setup_caps(struct sock *sk, struct dst_entry *dst);
1342 
1343 static inline void sk_nocaps_add(struct sock *sk, int flags)
1344 {
1345 	sk->sk_route_nocaps |= flags;
1346 	sk->sk_route_caps &= ~flags;
1347 }
1348 
1349 static inline int skb_copy_to_page(struct sock *sk, char __user *from,
1350 				   struct sk_buff *skb, struct page *page,
1351 				   int off, int copy)
1352 {
1353 	if (skb->ip_summed == CHECKSUM_NONE) {
1354 		int err = 0;
1355 		__wsum csum = csum_and_copy_from_user(from,
1356 						     page_address(page) + off,
1357 							    copy, 0, &err);
1358 		if (err)
1359 			return err;
1360 		skb->csum = csum_block_add(skb->csum, csum, skb->len);
1361 	} else if (copy_from_user(page_address(page) + off, from, copy))
1362 		return -EFAULT;
1363 
1364 	skb->len	     += copy;
1365 	skb->data_len	     += copy;
1366 	skb->truesize	     += copy;
1367 	sk->sk_wmem_queued   += copy;
1368 	sk_mem_charge(sk, copy);
1369 	return 0;
1370 }
1371 
1372 /**
1373  * sk_wmem_alloc_get - returns write allocations
1374  * @sk: socket
1375  *
1376  * Returns sk_wmem_alloc minus initial offset of one
1377  */
1378 static inline int sk_wmem_alloc_get(const struct sock *sk)
1379 {
1380 	return atomic_read(&sk->sk_wmem_alloc) - 1;
1381 }
1382 
1383 /**
1384  * sk_rmem_alloc_get - returns read allocations
1385  * @sk: socket
1386  *
1387  * Returns sk_rmem_alloc
1388  */
1389 static inline int sk_rmem_alloc_get(const struct sock *sk)
1390 {
1391 	return atomic_read(&sk->sk_rmem_alloc);
1392 }
1393 
1394 /**
1395  * sk_has_allocations - check if allocations are outstanding
1396  * @sk: socket
1397  *
1398  * Returns true if socket has write or read allocations
1399  */
1400 static inline int sk_has_allocations(const struct sock *sk)
1401 {
1402 	return sk_wmem_alloc_get(sk) || sk_rmem_alloc_get(sk);
1403 }
1404 
1405 /**
1406  * wq_has_sleeper - check if there are any waiting processes
1407  * @sk: struct socket_wq
1408  *
1409  * Returns true if socket_wq has waiting processes
1410  *
1411  * The purpose of the wq_has_sleeper and sock_poll_wait is to wrap the memory
1412  * barrier call. They were added due to the race found within the tcp code.
1413  *
1414  * Consider following tcp code paths:
1415  *
1416  * CPU1                  CPU2
1417  *
1418  * sys_select            receive packet
1419  *   ...                 ...
1420  *   __add_wait_queue    update tp->rcv_nxt
1421  *   ...                 ...
1422  *   tp->rcv_nxt check   sock_def_readable
1423  *   ...                 {
1424  *   schedule               rcu_read_lock();
1425  *                          wq = rcu_dereference(sk->sk_wq);
1426  *                          if (wq && waitqueue_active(&wq->wait))
1427  *                              wake_up_interruptible(&wq->wait)
1428  *                          ...
1429  *                       }
1430  *
1431  * The race for tcp fires when the __add_wait_queue changes done by CPU1 stay
1432  * in its cache, and so does the tp->rcv_nxt update on CPU2 side.  The CPU1
1433  * could then endup calling schedule and sleep forever if there are no more
1434  * data on the socket.
1435  *
1436  */
1437 static inline bool wq_has_sleeper(struct socket_wq *wq)
1438 {
1439 
1440 	/*
1441 	 * We need to be sure we are in sync with the
1442 	 * add_wait_queue modifications to the wait queue.
1443 	 *
1444 	 * This memory barrier is paired in the sock_poll_wait.
1445 	 */
1446 	smp_mb();
1447 	return wq && waitqueue_active(&wq->wait);
1448 }
1449 
1450 /**
1451  * sock_poll_wait - place memory barrier behind the poll_wait call.
1452  * @filp:           file
1453  * @wait_address:   socket wait queue
1454  * @p:              poll_table
1455  *
1456  * See the comments in the wq_has_sleeper function.
1457  */
1458 static inline void sock_poll_wait(struct file *filp,
1459 		wait_queue_head_t *wait_address, poll_table *p)
1460 {
1461 	if (p && wait_address) {
1462 		poll_wait(filp, wait_address, p);
1463 		/*
1464 		 * We need to be sure we are in sync with the
1465 		 * socket flags modification.
1466 		 *
1467 		 * This memory barrier is paired in the wq_has_sleeper.
1468 		*/
1469 		smp_mb();
1470 	}
1471 }
1472 
1473 /*
1474  * 	Queue a received datagram if it will fit. Stream and sequenced
1475  *	protocols can't normally use this as they need to fit buffers in
1476  *	and play with them.
1477  *
1478  * 	Inlined as it's very short and called for pretty much every
1479  *	packet ever received.
1480  */
1481 
1482 static inline void skb_set_owner_w(struct sk_buff *skb, struct sock *sk)
1483 {
1484 	skb_orphan(skb);
1485 	skb->sk = sk;
1486 	skb->destructor = sock_wfree;
1487 	/*
1488 	 * We used to take a refcount on sk, but following operation
1489 	 * is enough to guarantee sk_free() wont free this sock until
1490 	 * all in-flight packets are completed
1491 	 */
1492 	atomic_add(skb->truesize, &sk->sk_wmem_alloc);
1493 }
1494 
1495 static inline void skb_set_owner_r(struct sk_buff *skb, struct sock *sk)
1496 {
1497 	skb_orphan(skb);
1498 	skb->sk = sk;
1499 	skb->destructor = sock_rfree;
1500 	atomic_add(skb->truesize, &sk->sk_rmem_alloc);
1501 	sk_mem_charge(sk, skb->truesize);
1502 }
1503 
1504 extern void sk_reset_timer(struct sock *sk, struct timer_list* timer,
1505 			   unsigned long expires);
1506 
1507 extern void sk_stop_timer(struct sock *sk, struct timer_list* timer);
1508 
1509 extern int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
1510 
1511 static inline int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb)
1512 {
1513 	/* Cast skb->rcvbuf to unsigned... It's pointless, but reduces
1514 	   number of warnings when compiling with -W --ANK
1515 	 */
1516 	if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
1517 	    (unsigned)sk->sk_rcvbuf)
1518 		return -ENOMEM;
1519 	skb_set_owner_r(skb, sk);
1520 	skb_queue_tail(&sk->sk_error_queue, skb);
1521 	if (!sock_flag(sk, SOCK_DEAD))
1522 		sk->sk_data_ready(sk, skb->len);
1523 	return 0;
1524 }
1525 
1526 /*
1527  *	Recover an error report and clear atomically
1528  */
1529 
1530 static inline int sock_error(struct sock *sk)
1531 {
1532 	int err;
1533 	if (likely(!sk->sk_err))
1534 		return 0;
1535 	err = xchg(&sk->sk_err, 0);
1536 	return -err;
1537 }
1538 
1539 static inline unsigned long sock_wspace(struct sock *sk)
1540 {
1541 	int amt = 0;
1542 
1543 	if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
1544 		amt = sk->sk_sndbuf - atomic_read(&sk->sk_wmem_alloc);
1545 		if (amt < 0)
1546 			amt = 0;
1547 	}
1548 	return amt;
1549 }
1550 
1551 static inline void sk_wake_async(struct sock *sk, int how, int band)
1552 {
1553 	if (sock_flag(sk, SOCK_FASYNC))
1554 		sock_wake_async(sk->sk_socket, how, band);
1555 }
1556 
1557 #define SOCK_MIN_SNDBUF 2048
1558 #define SOCK_MIN_RCVBUF 256
1559 
1560 static inline void sk_stream_moderate_sndbuf(struct sock *sk)
1561 {
1562 	if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK)) {
1563 		sk->sk_sndbuf = min(sk->sk_sndbuf, sk->sk_wmem_queued >> 1);
1564 		sk->sk_sndbuf = max(sk->sk_sndbuf, SOCK_MIN_SNDBUF);
1565 	}
1566 }
1567 
1568 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp);
1569 
1570 static inline struct page *sk_stream_alloc_page(struct sock *sk)
1571 {
1572 	struct page *page = NULL;
1573 
1574 	page = alloc_pages(sk->sk_allocation, 0);
1575 	if (!page) {
1576 		sk->sk_prot->enter_memory_pressure(sk);
1577 		sk_stream_moderate_sndbuf(sk);
1578 	}
1579 	return page;
1580 }
1581 
1582 /*
1583  *	Default write policy as shown to user space via poll/select/SIGIO
1584  */
1585 static inline int sock_writeable(const struct sock *sk)
1586 {
1587 	return atomic_read(&sk->sk_wmem_alloc) < (sk->sk_sndbuf >> 1);
1588 }
1589 
1590 static inline gfp_t gfp_any(void)
1591 {
1592 	return in_softirq() ? GFP_ATOMIC : GFP_KERNEL;
1593 }
1594 
1595 static inline long sock_rcvtimeo(const struct sock *sk, int noblock)
1596 {
1597 	return noblock ? 0 : sk->sk_rcvtimeo;
1598 }
1599 
1600 static inline long sock_sndtimeo(const struct sock *sk, int noblock)
1601 {
1602 	return noblock ? 0 : sk->sk_sndtimeo;
1603 }
1604 
1605 static inline int sock_rcvlowat(const struct sock *sk, int waitall, int len)
1606 {
1607 	return (waitall ? len : min_t(int, sk->sk_rcvlowat, len)) ? : 1;
1608 }
1609 
1610 /* Alas, with timeout socket operations are not restartable.
1611  * Compare this to poll().
1612  */
1613 static inline int sock_intr_errno(long timeo)
1614 {
1615 	return timeo == MAX_SCHEDULE_TIMEOUT ? -ERESTARTSYS : -EINTR;
1616 }
1617 
1618 extern void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
1619 	struct sk_buff *skb);
1620 
1621 static __inline__ void
1622 sock_recv_timestamp(struct msghdr *msg, struct sock *sk, struct sk_buff *skb)
1623 {
1624 	ktime_t kt = skb->tstamp;
1625 	struct skb_shared_hwtstamps *hwtstamps = skb_hwtstamps(skb);
1626 
1627 	/*
1628 	 * generate control messages if
1629 	 * - receive time stamping in software requested (SOCK_RCVTSTAMP
1630 	 *   or SOCK_TIMESTAMPING_RX_SOFTWARE)
1631 	 * - software time stamp available and wanted
1632 	 *   (SOCK_TIMESTAMPING_SOFTWARE)
1633 	 * - hardware time stamps available and wanted
1634 	 *   (SOCK_TIMESTAMPING_SYS_HARDWARE or
1635 	 *   SOCK_TIMESTAMPING_RAW_HARDWARE)
1636 	 */
1637 	if (sock_flag(sk, SOCK_RCVTSTAMP) ||
1638 	    sock_flag(sk, SOCK_TIMESTAMPING_RX_SOFTWARE) ||
1639 	    (kt.tv64 && sock_flag(sk, SOCK_TIMESTAMPING_SOFTWARE)) ||
1640 	    (hwtstamps->hwtstamp.tv64 &&
1641 	     sock_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE)) ||
1642 	    (hwtstamps->syststamp.tv64 &&
1643 	     sock_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE)))
1644 		__sock_recv_timestamp(msg, sk, skb);
1645 	else
1646 		sk->sk_stamp = kt;
1647 }
1648 
1649 extern void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
1650 				     struct sk_buff *skb);
1651 
1652 static inline void sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
1653 					  struct sk_buff *skb)
1654 {
1655 #define FLAGS_TS_OR_DROPS ((1UL << SOCK_RXQ_OVFL)			| \
1656 			   (1UL << SOCK_RCVTSTAMP)			| \
1657 			   (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE)	| \
1658 			   (1UL << SOCK_TIMESTAMPING_SOFTWARE)		| \
1659 			   (1UL << SOCK_TIMESTAMPING_RAW_HARDWARE) 	| \
1660 			   (1UL << SOCK_TIMESTAMPING_SYS_HARDWARE))
1661 
1662 	if (sk->sk_flags & FLAGS_TS_OR_DROPS)
1663 		__sock_recv_ts_and_drops(msg, sk, skb);
1664 	else
1665 		sk->sk_stamp = skb->tstamp;
1666 }
1667 
1668 /**
1669  * sock_tx_timestamp - checks whether the outgoing packet is to be time stamped
1670  * @msg:	outgoing packet
1671  * @sk:		socket sending this packet
1672  * @shtx:	filled with instructions for time stamping
1673  *
1674  * Currently only depends on SOCK_TIMESTAMPING* flags. Returns error code if
1675  * parameters are invalid.
1676  */
1677 extern int sock_tx_timestamp(struct msghdr *msg,
1678 			     struct sock *sk,
1679 			     union skb_shared_tx *shtx);
1680 
1681 
1682 /**
1683  * sk_eat_skb - Release a skb if it is no longer needed
1684  * @sk: socket to eat this skb from
1685  * @skb: socket buffer to eat
1686  * @copied_early: flag indicating whether DMA operations copied this data early
1687  *
1688  * This routine must be called with interrupts disabled or with the socket
1689  * locked so that the sk_buff queue operation is ok.
1690 */
1691 #ifdef CONFIG_NET_DMA
1692 static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb, int copied_early)
1693 {
1694 	__skb_unlink(skb, &sk->sk_receive_queue);
1695 	if (!copied_early)
1696 		__kfree_skb(skb);
1697 	else
1698 		__skb_queue_tail(&sk->sk_async_wait_queue, skb);
1699 }
1700 #else
1701 static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb, int copied_early)
1702 {
1703 	__skb_unlink(skb, &sk->sk_receive_queue);
1704 	__kfree_skb(skb);
1705 }
1706 #endif
1707 
1708 static inline
1709 struct net *sock_net(const struct sock *sk)
1710 {
1711 #ifdef CONFIG_NET_NS
1712 	return sk->sk_net;
1713 #else
1714 	return &init_net;
1715 #endif
1716 }
1717 
1718 static inline
1719 void sock_net_set(struct sock *sk, struct net *net)
1720 {
1721 #ifdef CONFIG_NET_NS
1722 	sk->sk_net = net;
1723 #endif
1724 }
1725 
1726 /*
1727  * Kernel sockets, f.e. rtnl or icmp_socket, are a part of a namespace.
1728  * They should not hold a referrence to a namespace in order to allow
1729  * to stop it.
1730  * Sockets after sk_change_net should be released using sk_release_kernel
1731  */
1732 static inline void sk_change_net(struct sock *sk, struct net *net)
1733 {
1734 	put_net(sock_net(sk));
1735 	sock_net_set(sk, hold_net(net));
1736 }
1737 
1738 static inline struct sock *skb_steal_sock(struct sk_buff *skb)
1739 {
1740 	if (unlikely(skb->sk)) {
1741 		struct sock *sk = skb->sk;
1742 
1743 		skb->destructor = NULL;
1744 		skb->sk = NULL;
1745 		return sk;
1746 	}
1747 	return NULL;
1748 }
1749 
1750 extern void sock_enable_timestamp(struct sock *sk, int flag);
1751 extern int sock_get_timestamp(struct sock *, struct timeval __user *);
1752 extern int sock_get_timestampns(struct sock *, struct timespec __user *);
1753 
1754 /*
1755  *	Enable debug/info messages
1756  */
1757 extern int net_msg_warn;
1758 #define NETDEBUG(fmt, args...) \
1759 	do { if (net_msg_warn) printk(fmt,##args); } while (0)
1760 
1761 #define LIMIT_NETDEBUG(fmt, args...) \
1762 	do { if (net_msg_warn && net_ratelimit()) printk(fmt,##args); } while(0)
1763 
1764 extern __u32 sysctl_wmem_max;
1765 extern __u32 sysctl_rmem_max;
1766 
1767 extern void sk_init(void);
1768 
1769 extern int sysctl_optmem_max;
1770 
1771 extern __u32 sysctl_wmem_default;
1772 extern __u32 sysctl_rmem_default;
1773 
1774 #endif	/* _SOCK_H */
1775