xref: /linux/include/net/sock.h (revision a508da6cc0093171833efb8376b00473f24221b9)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Definitions for the AF_INET socket handler.
7  *
8  * Version:	@(#)sock.h	1.0.4	05/13/93
9  *
10  * Authors:	Ross Biro
11  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
13  *		Florian La Roche <flla@stud.uni-sb.de>
14  *
15  * Fixes:
16  *		Alan Cox	:	Volatiles in skbuff pointers. See
17  *					skbuff comments. May be overdone,
18  *					better to prove they can be removed
19  *					than the reverse.
20  *		Alan Cox	:	Added a zapped field for tcp to note
21  *					a socket is reset and must stay shut up
22  *		Alan Cox	:	New fields for options
23  *	Pauline Middelink	:	identd support
24  *		Alan Cox	:	Eliminate low level recv/recvfrom
25  *		David S. Miller	:	New socket lookup architecture.
26  *              Steve Whitehouse:       Default routines for sock_ops
27  *              Arnaldo C. Melo :	removed net_pinfo, tp_pinfo and made
28  *              			protinfo be just a void pointer, as the
29  *              			protocol specific parts were moved to
30  *              			respective headers and ipv4/v6, etc now
31  *              			use private slabcaches for its socks
32  *              Pedro Hortas	:	New flags field for socket options
33  *
34  *
35  *		This program is free software; you can redistribute it and/or
36  *		modify it under the terms of the GNU General Public License
37  *		as published by the Free Software Foundation; either version
38  *		2 of the License, or (at your option) any later version.
39  */
40 #ifndef _SOCK_H
41 #define _SOCK_H
42 
43 #include <linux/hardirq.h>
44 #include <linux/kernel.h>
45 #include <linux/list.h>
46 #include <linux/list_nulls.h>
47 #include <linux/timer.h>
48 #include <linux/cache.h>
49 #include <linux/lockdep.h>
50 #include <linux/netdevice.h>
51 #include <linux/skbuff.h>	/* struct sk_buff */
52 #include <linux/mm.h>
53 #include <linux/security.h>
54 #include <linux/slab.h>
55 #include <linux/uaccess.h>
56 #include <linux/memcontrol.h>
57 #include <linux/res_counter.h>
58 #include <linux/static_key.h>
59 #include <linux/aio.h>
60 #include <linux/sched.h>
61 
62 #include <linux/filter.h>
63 #include <linux/rculist_nulls.h>
64 #include <linux/poll.h>
65 
66 #include <linux/atomic.h>
67 #include <net/dst.h>
68 #include <net/checksum.h>
69 
70 struct cgroup;
71 struct cgroup_subsys;
72 #ifdef CONFIG_NET
73 int mem_cgroup_sockets_init(struct cgroup *cgrp, struct cgroup_subsys *ss);
74 void mem_cgroup_sockets_destroy(struct cgroup *cgrp);
75 #else
76 static inline
77 int mem_cgroup_sockets_init(struct cgroup *cgrp, struct cgroup_subsys *ss)
78 {
79 	return 0;
80 }
81 static inline
82 void mem_cgroup_sockets_destroy(struct cgroup *cgrp)
83 {
84 }
85 #endif
86 /*
87  * This structure really needs to be cleaned up.
88  * Most of it is for TCP, and not used by any of
89  * the other protocols.
90  */
91 
92 /* Define this to get the SOCK_DBG debugging facility. */
93 #define SOCK_DEBUGGING
94 #ifdef SOCK_DEBUGGING
95 #define SOCK_DEBUG(sk, msg...) do { if ((sk) && sock_flag((sk), SOCK_DBG)) \
96 					printk(KERN_DEBUG msg); } while (0)
97 #else
98 /* Validate arguments and do nothing */
99 static inline __printf(2, 3)
100 void SOCK_DEBUG(const struct sock *sk, const char *msg, ...)
101 {
102 }
103 #endif
104 
105 /* This is the per-socket lock.  The spinlock provides a synchronization
106  * between user contexts and software interrupt processing, whereas the
107  * mini-semaphore synchronizes multiple users amongst themselves.
108  */
109 typedef struct {
110 	spinlock_t		slock;
111 	int			owned;
112 	wait_queue_head_t	wq;
113 	/*
114 	 * We express the mutex-alike socket_lock semantics
115 	 * to the lock validator by explicitly managing
116 	 * the slock as a lock variant (in addition to
117 	 * the slock itself):
118 	 */
119 #ifdef CONFIG_DEBUG_LOCK_ALLOC
120 	struct lockdep_map dep_map;
121 #endif
122 } socket_lock_t;
123 
124 struct sock;
125 struct proto;
126 struct net;
127 
128 /**
129  *	struct sock_common - minimal network layer representation of sockets
130  *	@skc_daddr: Foreign IPv4 addr
131  *	@skc_rcv_saddr: Bound local IPv4 addr
132  *	@skc_hash: hash value used with various protocol lookup tables
133  *	@skc_u16hashes: two u16 hash values used by UDP lookup tables
134  *	@skc_family: network address family
135  *	@skc_state: Connection state
136  *	@skc_reuse: %SO_REUSEADDR setting
137  *	@skc_bound_dev_if: bound device index if != 0
138  *	@skc_bind_node: bind hash linkage for various protocol lookup tables
139  *	@skc_portaddr_node: second hash linkage for UDP/UDP-Lite protocol
140  *	@skc_prot: protocol handlers inside a network family
141  *	@skc_net: reference to the network namespace of this socket
142  *	@skc_node: main hash linkage for various protocol lookup tables
143  *	@skc_nulls_node: main hash linkage for TCP/UDP/UDP-Lite protocol
144  *	@skc_tx_queue_mapping: tx queue number for this connection
145  *	@skc_refcnt: reference count
146  *
147  *	This is the minimal network layer representation of sockets, the header
148  *	for struct sock and struct inet_timewait_sock.
149  */
150 struct sock_common {
151 	/* skc_daddr and skc_rcv_saddr must be grouped :
152 	 * cf INET_MATCH() and INET_TW_MATCH()
153 	 */
154 	__be32			skc_daddr;
155 	__be32			skc_rcv_saddr;
156 
157 	union  {
158 		unsigned int	skc_hash;
159 		__u16		skc_u16hashes[2];
160 	};
161 	unsigned short		skc_family;
162 	volatile unsigned char	skc_state;
163 	unsigned char		skc_reuse;
164 	int			skc_bound_dev_if;
165 	union {
166 		struct hlist_node	skc_bind_node;
167 		struct hlist_nulls_node skc_portaddr_node;
168 	};
169 	struct proto		*skc_prot;
170 #ifdef CONFIG_NET_NS
171 	struct net	 	*skc_net;
172 #endif
173 	/*
174 	 * fields between dontcopy_begin/dontcopy_end
175 	 * are not copied in sock_copy()
176 	 */
177 	/* private: */
178 	int			skc_dontcopy_begin[0];
179 	/* public: */
180 	union {
181 		struct hlist_node	skc_node;
182 		struct hlist_nulls_node skc_nulls_node;
183 	};
184 	int			skc_tx_queue_mapping;
185 	atomic_t		skc_refcnt;
186 	/* private: */
187 	int                     skc_dontcopy_end[0];
188 	/* public: */
189 };
190 
191 struct cg_proto;
192 /**
193   *	struct sock - network layer representation of sockets
194   *	@__sk_common: shared layout with inet_timewait_sock
195   *	@sk_shutdown: mask of %SEND_SHUTDOWN and/or %RCV_SHUTDOWN
196   *	@sk_userlocks: %SO_SNDBUF and %SO_RCVBUF settings
197   *	@sk_lock:	synchronizer
198   *	@sk_rcvbuf: size of receive buffer in bytes
199   *	@sk_wq: sock wait queue and async head
200   *	@sk_dst_cache: destination cache
201   *	@sk_dst_lock: destination cache lock
202   *	@sk_policy: flow policy
203   *	@sk_receive_queue: incoming packets
204   *	@sk_wmem_alloc: transmit queue bytes committed
205   *	@sk_write_queue: Packet sending queue
206   *	@sk_async_wait_queue: DMA copied packets
207   *	@sk_omem_alloc: "o" is "option" or "other"
208   *	@sk_wmem_queued: persistent queue size
209   *	@sk_forward_alloc: space allocated forward
210   *	@sk_allocation: allocation mode
211   *	@sk_sndbuf: size of send buffer in bytes
212   *	@sk_flags: %SO_LINGER (l_onoff), %SO_BROADCAST, %SO_KEEPALIVE,
213   *		   %SO_OOBINLINE settings, %SO_TIMESTAMPING settings
214   *	@sk_no_check: %SO_NO_CHECK setting, wether or not checkup packets
215   *	@sk_route_caps: route capabilities (e.g. %NETIF_F_TSO)
216   *	@sk_route_nocaps: forbidden route capabilities (e.g NETIF_F_GSO_MASK)
217   *	@sk_gso_type: GSO type (e.g. %SKB_GSO_TCPV4)
218   *	@sk_gso_max_size: Maximum GSO segment size to build
219   *	@sk_lingertime: %SO_LINGER l_linger setting
220   *	@sk_backlog: always used with the per-socket spinlock held
221   *	@sk_callback_lock: used with the callbacks in the end of this struct
222   *	@sk_error_queue: rarely used
223   *	@sk_prot_creator: sk_prot of original sock creator (see ipv6_setsockopt,
224   *			  IPV6_ADDRFORM for instance)
225   *	@sk_err: last error
226   *	@sk_err_soft: errors that don't cause failure but are the cause of a
227   *		      persistent failure not just 'timed out'
228   *	@sk_drops: raw/udp drops counter
229   *	@sk_ack_backlog: current listen backlog
230   *	@sk_max_ack_backlog: listen backlog set in listen()
231   *	@sk_priority: %SO_PRIORITY setting
232   *	@sk_cgrp_prioidx: socket group's priority map index
233   *	@sk_type: socket type (%SOCK_STREAM, etc)
234   *	@sk_protocol: which protocol this socket belongs in this network family
235   *	@sk_peer_pid: &struct pid for this socket's peer
236   *	@sk_peer_cred: %SO_PEERCRED setting
237   *	@sk_rcvlowat: %SO_RCVLOWAT setting
238   *	@sk_rcvtimeo: %SO_RCVTIMEO setting
239   *	@sk_sndtimeo: %SO_SNDTIMEO setting
240   *	@sk_rxhash: flow hash received from netif layer
241   *	@sk_filter: socket filtering instructions
242   *	@sk_protinfo: private area, net family specific, when not using slab
243   *	@sk_timer: sock cleanup timer
244   *	@sk_stamp: time stamp of last packet received
245   *	@sk_socket: Identd and reporting IO signals
246   *	@sk_user_data: RPC layer private data
247   *	@sk_sndmsg_page: cached page for sendmsg
248   *	@sk_sndmsg_off: cached offset for sendmsg
249   *	@sk_peek_off: current peek_offset value
250   *	@sk_send_head: front of stuff to transmit
251   *	@sk_security: used by security modules
252   *	@sk_mark: generic packet mark
253   *	@sk_classid: this socket's cgroup classid
254   *	@sk_cgrp: this socket's cgroup-specific proto data
255   *	@sk_write_pending: a write to stream socket waits to start
256   *	@sk_state_change: callback to indicate change in the state of the sock
257   *	@sk_data_ready: callback to indicate there is data to be processed
258   *	@sk_write_space: callback to indicate there is bf sending space available
259   *	@sk_error_report: callback to indicate errors (e.g. %MSG_ERRQUEUE)
260   *	@sk_backlog_rcv: callback to process the backlog
261   *	@sk_destruct: called at sock freeing time, i.e. when all refcnt == 0
262  */
263 struct sock {
264 	/*
265 	 * Now struct inet_timewait_sock also uses sock_common, so please just
266 	 * don't add nothing before this first member (__sk_common) --acme
267 	 */
268 	struct sock_common	__sk_common;
269 #define sk_node			__sk_common.skc_node
270 #define sk_nulls_node		__sk_common.skc_nulls_node
271 #define sk_refcnt		__sk_common.skc_refcnt
272 #define sk_tx_queue_mapping	__sk_common.skc_tx_queue_mapping
273 
274 #define sk_dontcopy_begin	__sk_common.skc_dontcopy_begin
275 #define sk_dontcopy_end		__sk_common.skc_dontcopy_end
276 #define sk_hash			__sk_common.skc_hash
277 #define sk_family		__sk_common.skc_family
278 #define sk_state		__sk_common.skc_state
279 #define sk_reuse		__sk_common.skc_reuse
280 #define sk_bound_dev_if		__sk_common.skc_bound_dev_if
281 #define sk_bind_node		__sk_common.skc_bind_node
282 #define sk_prot			__sk_common.skc_prot
283 #define sk_net			__sk_common.skc_net
284 	socket_lock_t		sk_lock;
285 	struct sk_buff_head	sk_receive_queue;
286 	/*
287 	 * The backlog queue is special, it is always used with
288 	 * the per-socket spinlock held and requires low latency
289 	 * access. Therefore we special case it's implementation.
290 	 * Note : rmem_alloc is in this structure to fill a hole
291 	 * on 64bit arches, not because its logically part of
292 	 * backlog.
293 	 */
294 	struct {
295 		atomic_t	rmem_alloc;
296 		int		len;
297 		struct sk_buff	*head;
298 		struct sk_buff	*tail;
299 	} sk_backlog;
300 #define sk_rmem_alloc sk_backlog.rmem_alloc
301 	int			sk_forward_alloc;
302 #ifdef CONFIG_RPS
303 	__u32			sk_rxhash;
304 #endif
305 	atomic_t		sk_drops;
306 	int			sk_rcvbuf;
307 
308 	struct sk_filter __rcu	*sk_filter;
309 	struct socket_wq __rcu	*sk_wq;
310 
311 #ifdef CONFIG_NET_DMA
312 	struct sk_buff_head	sk_async_wait_queue;
313 #endif
314 
315 #ifdef CONFIG_XFRM
316 	struct xfrm_policy	*sk_policy[2];
317 #endif
318 	unsigned long 		sk_flags;
319 	struct dst_entry	*sk_dst_cache;
320 	spinlock_t		sk_dst_lock;
321 	atomic_t		sk_wmem_alloc;
322 	atomic_t		sk_omem_alloc;
323 	int			sk_sndbuf;
324 	struct sk_buff_head	sk_write_queue;
325 	kmemcheck_bitfield_begin(flags);
326 	unsigned int		sk_shutdown  : 2,
327 				sk_no_check  : 2,
328 				sk_userlocks : 4,
329 				sk_protocol  : 8,
330 				sk_type      : 16;
331 	kmemcheck_bitfield_end(flags);
332 	int			sk_wmem_queued;
333 	gfp_t			sk_allocation;
334 	netdev_features_t	sk_route_caps;
335 	netdev_features_t	sk_route_nocaps;
336 	int			sk_gso_type;
337 	unsigned int		sk_gso_max_size;
338 	int			sk_rcvlowat;
339 	unsigned long	        sk_lingertime;
340 	struct sk_buff_head	sk_error_queue;
341 	struct proto		*sk_prot_creator;
342 	rwlock_t		sk_callback_lock;
343 	int			sk_err,
344 				sk_err_soft;
345 	unsigned short		sk_ack_backlog;
346 	unsigned short		sk_max_ack_backlog;
347 	__u32			sk_priority;
348 #ifdef CONFIG_CGROUPS
349 	__u32			sk_cgrp_prioidx;
350 #endif
351 	struct pid		*sk_peer_pid;
352 	const struct cred	*sk_peer_cred;
353 	long			sk_rcvtimeo;
354 	long			sk_sndtimeo;
355 	void			*sk_protinfo;
356 	struct timer_list	sk_timer;
357 	ktime_t			sk_stamp;
358 	struct socket		*sk_socket;
359 	void			*sk_user_data;
360 	struct page		*sk_sndmsg_page;
361 	struct sk_buff		*sk_send_head;
362 	__u32			sk_sndmsg_off;
363 	__s32			sk_peek_off;
364 	int			sk_write_pending;
365 #ifdef CONFIG_SECURITY
366 	void			*sk_security;
367 #endif
368 	__u32			sk_mark;
369 	u32			sk_classid;
370 	struct cg_proto		*sk_cgrp;
371 	void			(*sk_state_change)(struct sock *sk);
372 	void			(*sk_data_ready)(struct sock *sk, int bytes);
373 	void			(*sk_write_space)(struct sock *sk);
374 	void			(*sk_error_report)(struct sock *sk);
375 	int			(*sk_backlog_rcv)(struct sock *sk,
376 						  struct sk_buff *skb);
377 	void                    (*sk_destruct)(struct sock *sk);
378 };
379 
380 /*
381  * SK_CAN_REUSE and SK_NO_REUSE on a socket mean that the socket is OK
382  * or not whether his port will be reused by someone else. SK_FORCE_REUSE
383  * on a socket means that the socket will reuse everybody else's port
384  * without looking at the other's sk_reuse value.
385  */
386 
387 #define SK_NO_REUSE	0
388 #define SK_CAN_REUSE	1
389 #define SK_FORCE_REUSE	2
390 
391 static inline int sk_peek_offset(struct sock *sk, int flags)
392 {
393 	if ((flags & MSG_PEEK) && (sk->sk_peek_off >= 0))
394 		return sk->sk_peek_off;
395 	else
396 		return 0;
397 }
398 
399 static inline void sk_peek_offset_bwd(struct sock *sk, int val)
400 {
401 	if (sk->sk_peek_off >= 0) {
402 		if (sk->sk_peek_off >= val)
403 			sk->sk_peek_off -= val;
404 		else
405 			sk->sk_peek_off = 0;
406 	}
407 }
408 
409 static inline void sk_peek_offset_fwd(struct sock *sk, int val)
410 {
411 	if (sk->sk_peek_off >= 0)
412 		sk->sk_peek_off += val;
413 }
414 
415 /*
416  * Hashed lists helper routines
417  */
418 static inline struct sock *sk_entry(const struct hlist_node *node)
419 {
420 	return hlist_entry(node, struct sock, sk_node);
421 }
422 
423 static inline struct sock *__sk_head(const struct hlist_head *head)
424 {
425 	return hlist_entry(head->first, struct sock, sk_node);
426 }
427 
428 static inline struct sock *sk_head(const struct hlist_head *head)
429 {
430 	return hlist_empty(head) ? NULL : __sk_head(head);
431 }
432 
433 static inline struct sock *__sk_nulls_head(const struct hlist_nulls_head *head)
434 {
435 	return hlist_nulls_entry(head->first, struct sock, sk_nulls_node);
436 }
437 
438 static inline struct sock *sk_nulls_head(const struct hlist_nulls_head *head)
439 {
440 	return hlist_nulls_empty(head) ? NULL : __sk_nulls_head(head);
441 }
442 
443 static inline struct sock *sk_next(const struct sock *sk)
444 {
445 	return sk->sk_node.next ?
446 		hlist_entry(sk->sk_node.next, struct sock, sk_node) : NULL;
447 }
448 
449 static inline struct sock *sk_nulls_next(const struct sock *sk)
450 {
451 	return (!is_a_nulls(sk->sk_nulls_node.next)) ?
452 		hlist_nulls_entry(sk->sk_nulls_node.next,
453 				  struct sock, sk_nulls_node) :
454 		NULL;
455 }
456 
457 static inline bool sk_unhashed(const struct sock *sk)
458 {
459 	return hlist_unhashed(&sk->sk_node);
460 }
461 
462 static inline bool sk_hashed(const struct sock *sk)
463 {
464 	return !sk_unhashed(sk);
465 }
466 
467 static inline void sk_node_init(struct hlist_node *node)
468 {
469 	node->pprev = NULL;
470 }
471 
472 static inline void sk_nulls_node_init(struct hlist_nulls_node *node)
473 {
474 	node->pprev = NULL;
475 }
476 
477 static inline void __sk_del_node(struct sock *sk)
478 {
479 	__hlist_del(&sk->sk_node);
480 }
481 
482 /* NB: equivalent to hlist_del_init_rcu */
483 static inline bool __sk_del_node_init(struct sock *sk)
484 {
485 	if (sk_hashed(sk)) {
486 		__sk_del_node(sk);
487 		sk_node_init(&sk->sk_node);
488 		return true;
489 	}
490 	return false;
491 }
492 
493 /* Grab socket reference count. This operation is valid only
494    when sk is ALREADY grabbed f.e. it is found in hash table
495    or a list and the lookup is made under lock preventing hash table
496    modifications.
497  */
498 
499 static inline void sock_hold(struct sock *sk)
500 {
501 	atomic_inc(&sk->sk_refcnt);
502 }
503 
504 /* Ungrab socket in the context, which assumes that socket refcnt
505    cannot hit zero, f.e. it is true in context of any socketcall.
506  */
507 static inline void __sock_put(struct sock *sk)
508 {
509 	atomic_dec(&sk->sk_refcnt);
510 }
511 
512 static inline bool sk_del_node_init(struct sock *sk)
513 {
514 	bool rc = __sk_del_node_init(sk);
515 
516 	if (rc) {
517 		/* paranoid for a while -acme */
518 		WARN_ON(atomic_read(&sk->sk_refcnt) == 1);
519 		__sock_put(sk);
520 	}
521 	return rc;
522 }
523 #define sk_del_node_init_rcu(sk)	sk_del_node_init(sk)
524 
525 static inline bool __sk_nulls_del_node_init_rcu(struct sock *sk)
526 {
527 	if (sk_hashed(sk)) {
528 		hlist_nulls_del_init_rcu(&sk->sk_nulls_node);
529 		return true;
530 	}
531 	return false;
532 }
533 
534 static inline bool sk_nulls_del_node_init_rcu(struct sock *sk)
535 {
536 	bool rc = __sk_nulls_del_node_init_rcu(sk);
537 
538 	if (rc) {
539 		/* paranoid for a while -acme */
540 		WARN_ON(atomic_read(&sk->sk_refcnt) == 1);
541 		__sock_put(sk);
542 	}
543 	return rc;
544 }
545 
546 static inline void __sk_add_node(struct sock *sk, struct hlist_head *list)
547 {
548 	hlist_add_head(&sk->sk_node, list);
549 }
550 
551 static inline void sk_add_node(struct sock *sk, struct hlist_head *list)
552 {
553 	sock_hold(sk);
554 	__sk_add_node(sk, list);
555 }
556 
557 static inline void sk_add_node_rcu(struct sock *sk, struct hlist_head *list)
558 {
559 	sock_hold(sk);
560 	hlist_add_head_rcu(&sk->sk_node, list);
561 }
562 
563 static inline void __sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
564 {
565 	hlist_nulls_add_head_rcu(&sk->sk_nulls_node, list);
566 }
567 
568 static inline void sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
569 {
570 	sock_hold(sk);
571 	__sk_nulls_add_node_rcu(sk, list);
572 }
573 
574 static inline void __sk_del_bind_node(struct sock *sk)
575 {
576 	__hlist_del(&sk->sk_bind_node);
577 }
578 
579 static inline void sk_add_bind_node(struct sock *sk,
580 					struct hlist_head *list)
581 {
582 	hlist_add_head(&sk->sk_bind_node, list);
583 }
584 
585 #define sk_for_each(__sk, node, list) \
586 	hlist_for_each_entry(__sk, node, list, sk_node)
587 #define sk_for_each_rcu(__sk, node, list) \
588 	hlist_for_each_entry_rcu(__sk, node, list, sk_node)
589 #define sk_nulls_for_each(__sk, node, list) \
590 	hlist_nulls_for_each_entry(__sk, node, list, sk_nulls_node)
591 #define sk_nulls_for_each_rcu(__sk, node, list) \
592 	hlist_nulls_for_each_entry_rcu(__sk, node, list, sk_nulls_node)
593 #define sk_for_each_from(__sk, node) \
594 	if (__sk && ({ node = &(__sk)->sk_node; 1; })) \
595 		hlist_for_each_entry_from(__sk, node, sk_node)
596 #define sk_nulls_for_each_from(__sk, node) \
597 	if (__sk && ({ node = &(__sk)->sk_nulls_node; 1; })) \
598 		hlist_nulls_for_each_entry_from(__sk, node, sk_nulls_node)
599 #define sk_for_each_safe(__sk, node, tmp, list) \
600 	hlist_for_each_entry_safe(__sk, node, tmp, list, sk_node)
601 #define sk_for_each_bound(__sk, node, list) \
602 	hlist_for_each_entry(__sk, node, list, sk_bind_node)
603 
604 /* Sock flags */
605 enum sock_flags {
606 	SOCK_DEAD,
607 	SOCK_DONE,
608 	SOCK_URGINLINE,
609 	SOCK_KEEPOPEN,
610 	SOCK_LINGER,
611 	SOCK_DESTROY,
612 	SOCK_BROADCAST,
613 	SOCK_TIMESTAMP,
614 	SOCK_ZAPPED,
615 	SOCK_USE_WRITE_QUEUE, /* whether to call sk->sk_write_space in sock_wfree */
616 	SOCK_DBG, /* %SO_DEBUG setting */
617 	SOCK_RCVTSTAMP, /* %SO_TIMESTAMP setting */
618 	SOCK_RCVTSTAMPNS, /* %SO_TIMESTAMPNS setting */
619 	SOCK_LOCALROUTE, /* route locally only, %SO_DONTROUTE setting */
620 	SOCK_QUEUE_SHRUNK, /* write queue has been shrunk recently */
621 	SOCK_TIMESTAMPING_TX_HARDWARE,  /* %SOF_TIMESTAMPING_TX_HARDWARE */
622 	SOCK_TIMESTAMPING_TX_SOFTWARE,  /* %SOF_TIMESTAMPING_TX_SOFTWARE */
623 	SOCK_TIMESTAMPING_RX_HARDWARE,  /* %SOF_TIMESTAMPING_RX_HARDWARE */
624 	SOCK_TIMESTAMPING_RX_SOFTWARE,  /* %SOF_TIMESTAMPING_RX_SOFTWARE */
625 	SOCK_TIMESTAMPING_SOFTWARE,     /* %SOF_TIMESTAMPING_SOFTWARE */
626 	SOCK_TIMESTAMPING_RAW_HARDWARE, /* %SOF_TIMESTAMPING_RAW_HARDWARE */
627 	SOCK_TIMESTAMPING_SYS_HARDWARE, /* %SOF_TIMESTAMPING_SYS_HARDWARE */
628 	SOCK_FASYNC, /* fasync() active */
629 	SOCK_RXQ_OVFL,
630 	SOCK_ZEROCOPY, /* buffers from userspace */
631 	SOCK_WIFI_STATUS, /* push wifi status to userspace */
632 	SOCK_NOFCS, /* Tell NIC not to do the Ethernet FCS.
633 		     * Will use last 4 bytes of packet sent from
634 		     * user-space instead.
635 		     */
636 };
637 
638 static inline void sock_copy_flags(struct sock *nsk, struct sock *osk)
639 {
640 	nsk->sk_flags = osk->sk_flags;
641 }
642 
643 static inline void sock_set_flag(struct sock *sk, enum sock_flags flag)
644 {
645 	__set_bit(flag, &sk->sk_flags);
646 }
647 
648 static inline void sock_reset_flag(struct sock *sk, enum sock_flags flag)
649 {
650 	__clear_bit(flag, &sk->sk_flags);
651 }
652 
653 static inline bool sock_flag(const struct sock *sk, enum sock_flags flag)
654 {
655 	return test_bit(flag, &sk->sk_flags);
656 }
657 
658 static inline void sk_acceptq_removed(struct sock *sk)
659 {
660 	sk->sk_ack_backlog--;
661 }
662 
663 static inline void sk_acceptq_added(struct sock *sk)
664 {
665 	sk->sk_ack_backlog++;
666 }
667 
668 static inline bool sk_acceptq_is_full(const struct sock *sk)
669 {
670 	return sk->sk_ack_backlog > sk->sk_max_ack_backlog;
671 }
672 
673 /*
674  * Compute minimal free write space needed to queue new packets.
675  */
676 static inline int sk_stream_min_wspace(const struct sock *sk)
677 {
678 	return sk->sk_wmem_queued >> 1;
679 }
680 
681 static inline int sk_stream_wspace(const struct sock *sk)
682 {
683 	return sk->sk_sndbuf - sk->sk_wmem_queued;
684 }
685 
686 extern void sk_stream_write_space(struct sock *sk);
687 
688 static inline bool sk_stream_memory_free(const struct sock *sk)
689 {
690 	return sk->sk_wmem_queued < sk->sk_sndbuf;
691 }
692 
693 /* OOB backlog add */
694 static inline void __sk_add_backlog(struct sock *sk, struct sk_buff *skb)
695 {
696 	/* dont let skb dst not refcounted, we are going to leave rcu lock */
697 	skb_dst_force(skb);
698 
699 	if (!sk->sk_backlog.tail)
700 		sk->sk_backlog.head = skb;
701 	else
702 		sk->sk_backlog.tail->next = skb;
703 
704 	sk->sk_backlog.tail = skb;
705 	skb->next = NULL;
706 }
707 
708 /*
709  * Take into account size of receive queue and backlog queue
710  * Do not take into account this skb truesize,
711  * to allow even a single big packet to come.
712  */
713 static inline bool sk_rcvqueues_full(const struct sock *sk, const struct sk_buff *skb,
714 				     unsigned int limit)
715 {
716 	unsigned int qsize = sk->sk_backlog.len + atomic_read(&sk->sk_rmem_alloc);
717 
718 	return qsize > limit;
719 }
720 
721 /* The per-socket spinlock must be held here. */
722 static inline __must_check int sk_add_backlog(struct sock *sk, struct sk_buff *skb,
723 					      unsigned int limit)
724 {
725 	if (sk_rcvqueues_full(sk, skb, limit))
726 		return -ENOBUFS;
727 
728 	__sk_add_backlog(sk, skb);
729 	sk->sk_backlog.len += skb->truesize;
730 	return 0;
731 }
732 
733 static inline int sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
734 {
735 	return sk->sk_backlog_rcv(sk, skb);
736 }
737 
738 static inline void sock_rps_record_flow(const struct sock *sk)
739 {
740 #ifdef CONFIG_RPS
741 	struct rps_sock_flow_table *sock_flow_table;
742 
743 	rcu_read_lock();
744 	sock_flow_table = rcu_dereference(rps_sock_flow_table);
745 	rps_record_sock_flow(sock_flow_table, sk->sk_rxhash);
746 	rcu_read_unlock();
747 #endif
748 }
749 
750 static inline void sock_rps_reset_flow(const struct sock *sk)
751 {
752 #ifdef CONFIG_RPS
753 	struct rps_sock_flow_table *sock_flow_table;
754 
755 	rcu_read_lock();
756 	sock_flow_table = rcu_dereference(rps_sock_flow_table);
757 	rps_reset_sock_flow(sock_flow_table, sk->sk_rxhash);
758 	rcu_read_unlock();
759 #endif
760 }
761 
762 static inline void sock_rps_save_rxhash(struct sock *sk,
763 					const struct sk_buff *skb)
764 {
765 #ifdef CONFIG_RPS
766 	if (unlikely(sk->sk_rxhash != skb->rxhash)) {
767 		sock_rps_reset_flow(sk);
768 		sk->sk_rxhash = skb->rxhash;
769 	}
770 #endif
771 }
772 
773 static inline void sock_rps_reset_rxhash(struct sock *sk)
774 {
775 #ifdef CONFIG_RPS
776 	sock_rps_reset_flow(sk);
777 	sk->sk_rxhash = 0;
778 #endif
779 }
780 
781 #define sk_wait_event(__sk, __timeo, __condition)			\
782 	({	int __rc;						\
783 		release_sock(__sk);					\
784 		__rc = __condition;					\
785 		if (!__rc) {						\
786 			*(__timeo) = schedule_timeout(*(__timeo));	\
787 		}							\
788 		lock_sock(__sk);					\
789 		__rc = __condition;					\
790 		__rc;							\
791 	})
792 
793 extern int sk_stream_wait_connect(struct sock *sk, long *timeo_p);
794 extern int sk_stream_wait_memory(struct sock *sk, long *timeo_p);
795 extern void sk_stream_wait_close(struct sock *sk, long timeo_p);
796 extern int sk_stream_error(struct sock *sk, int flags, int err);
797 extern void sk_stream_kill_queues(struct sock *sk);
798 
799 extern int sk_wait_data(struct sock *sk, long *timeo);
800 
801 struct request_sock_ops;
802 struct timewait_sock_ops;
803 struct inet_hashinfo;
804 struct raw_hashinfo;
805 struct module;
806 
807 /* Networking protocol blocks we attach to sockets.
808  * socket layer -> transport layer interface
809  * transport -> network interface is defined by struct inet_proto
810  */
811 struct proto {
812 	void			(*close)(struct sock *sk,
813 					long timeout);
814 	int			(*connect)(struct sock *sk,
815 					struct sockaddr *uaddr,
816 					int addr_len);
817 	int			(*disconnect)(struct sock *sk, int flags);
818 
819 	struct sock *		(*accept)(struct sock *sk, int flags, int *err);
820 
821 	int			(*ioctl)(struct sock *sk, int cmd,
822 					 unsigned long arg);
823 	int			(*init)(struct sock *sk);
824 	void			(*destroy)(struct sock *sk);
825 	void			(*shutdown)(struct sock *sk, int how);
826 	int			(*setsockopt)(struct sock *sk, int level,
827 					int optname, char __user *optval,
828 					unsigned int optlen);
829 	int			(*getsockopt)(struct sock *sk, int level,
830 					int optname, char __user *optval,
831 					int __user *option);
832 #ifdef CONFIG_COMPAT
833 	int			(*compat_setsockopt)(struct sock *sk,
834 					int level,
835 					int optname, char __user *optval,
836 					unsigned int optlen);
837 	int			(*compat_getsockopt)(struct sock *sk,
838 					int level,
839 					int optname, char __user *optval,
840 					int __user *option);
841 	int			(*compat_ioctl)(struct sock *sk,
842 					unsigned int cmd, unsigned long arg);
843 #endif
844 	int			(*sendmsg)(struct kiocb *iocb, struct sock *sk,
845 					   struct msghdr *msg, size_t len);
846 	int			(*recvmsg)(struct kiocb *iocb, struct sock *sk,
847 					   struct msghdr *msg,
848 					   size_t len, int noblock, int flags,
849 					   int *addr_len);
850 	int			(*sendpage)(struct sock *sk, struct page *page,
851 					int offset, size_t size, int flags);
852 	int			(*bind)(struct sock *sk,
853 					struct sockaddr *uaddr, int addr_len);
854 
855 	int			(*backlog_rcv) (struct sock *sk,
856 						struct sk_buff *skb);
857 
858 	/* Keeping track of sk's, looking them up, and port selection methods. */
859 	void			(*hash)(struct sock *sk);
860 	void			(*unhash)(struct sock *sk);
861 	void			(*rehash)(struct sock *sk);
862 	int			(*get_port)(struct sock *sk, unsigned short snum);
863 	void			(*clear_sk)(struct sock *sk, int size);
864 
865 	/* Keeping track of sockets in use */
866 #ifdef CONFIG_PROC_FS
867 	unsigned int		inuse_idx;
868 #endif
869 
870 	/* Memory pressure */
871 	void			(*enter_memory_pressure)(struct sock *sk);
872 	atomic_long_t		*memory_allocated;	/* Current allocated memory. */
873 	struct percpu_counter	*sockets_allocated;	/* Current number of sockets. */
874 	/*
875 	 * Pressure flag: try to collapse.
876 	 * Technical note: it is used by multiple contexts non atomically.
877 	 * All the __sk_mem_schedule() is of this nature: accounting
878 	 * is strict, actions are advisory and have some latency.
879 	 */
880 	int			*memory_pressure;
881 	long			*sysctl_mem;
882 	int			*sysctl_wmem;
883 	int			*sysctl_rmem;
884 	int			max_header;
885 	bool			no_autobind;
886 
887 	struct kmem_cache	*slab;
888 	unsigned int		obj_size;
889 	int			slab_flags;
890 
891 	struct percpu_counter	*orphan_count;
892 
893 	struct request_sock_ops	*rsk_prot;
894 	struct timewait_sock_ops *twsk_prot;
895 
896 	union {
897 		struct inet_hashinfo	*hashinfo;
898 		struct udp_table	*udp_table;
899 		struct raw_hashinfo	*raw_hash;
900 	} h;
901 
902 	struct module		*owner;
903 
904 	char			name[32];
905 
906 	struct list_head	node;
907 #ifdef SOCK_REFCNT_DEBUG
908 	atomic_t		socks;
909 #endif
910 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_KMEM
911 	/*
912 	 * cgroup specific init/deinit functions. Called once for all
913 	 * protocols that implement it, from cgroups populate function.
914 	 * This function has to setup any files the protocol want to
915 	 * appear in the kmem cgroup filesystem.
916 	 */
917 	int			(*init_cgroup)(struct cgroup *cgrp,
918 					       struct cgroup_subsys *ss);
919 	void			(*destroy_cgroup)(struct cgroup *cgrp);
920 	struct cg_proto		*(*proto_cgroup)(struct mem_cgroup *memcg);
921 #endif
922 };
923 
924 struct cg_proto {
925 	void			(*enter_memory_pressure)(struct sock *sk);
926 	struct res_counter	*memory_allocated;	/* Current allocated memory. */
927 	struct percpu_counter	*sockets_allocated;	/* Current number of sockets. */
928 	int			*memory_pressure;
929 	long			*sysctl_mem;
930 	/*
931 	 * memcg field is used to find which memcg we belong directly
932 	 * Each memcg struct can hold more than one cg_proto, so container_of
933 	 * won't really cut.
934 	 *
935 	 * The elegant solution would be having an inverse function to
936 	 * proto_cgroup in struct proto, but that means polluting the structure
937 	 * for everybody, instead of just for memcg users.
938 	 */
939 	struct mem_cgroup	*memcg;
940 };
941 
942 extern int proto_register(struct proto *prot, int alloc_slab);
943 extern void proto_unregister(struct proto *prot);
944 
945 #ifdef SOCK_REFCNT_DEBUG
946 static inline void sk_refcnt_debug_inc(struct sock *sk)
947 {
948 	atomic_inc(&sk->sk_prot->socks);
949 }
950 
951 static inline void sk_refcnt_debug_dec(struct sock *sk)
952 {
953 	atomic_dec(&sk->sk_prot->socks);
954 	printk(KERN_DEBUG "%s socket %p released, %d are still alive\n",
955 	       sk->sk_prot->name, sk, atomic_read(&sk->sk_prot->socks));
956 }
957 
958 inline void sk_refcnt_debug_release(const struct sock *sk)
959 {
960 	if (atomic_read(&sk->sk_refcnt) != 1)
961 		printk(KERN_DEBUG "Destruction of the %s socket %p delayed, refcnt=%d\n",
962 		       sk->sk_prot->name, sk, atomic_read(&sk->sk_refcnt));
963 }
964 #else /* SOCK_REFCNT_DEBUG */
965 #define sk_refcnt_debug_inc(sk) do { } while (0)
966 #define sk_refcnt_debug_dec(sk) do { } while (0)
967 #define sk_refcnt_debug_release(sk) do { } while (0)
968 #endif /* SOCK_REFCNT_DEBUG */
969 
970 #if defined(CONFIG_CGROUP_MEM_RES_CTLR_KMEM) && defined(CONFIG_NET)
971 extern struct static_key memcg_socket_limit_enabled;
972 static inline struct cg_proto *parent_cg_proto(struct proto *proto,
973 					       struct cg_proto *cg_proto)
974 {
975 	return proto->proto_cgroup(parent_mem_cgroup(cg_proto->memcg));
976 }
977 #define mem_cgroup_sockets_enabled static_key_false(&memcg_socket_limit_enabled)
978 #else
979 #define mem_cgroup_sockets_enabled 0
980 static inline struct cg_proto *parent_cg_proto(struct proto *proto,
981 					       struct cg_proto *cg_proto)
982 {
983 	return NULL;
984 }
985 #endif
986 
987 
988 static inline bool sk_has_memory_pressure(const struct sock *sk)
989 {
990 	return sk->sk_prot->memory_pressure != NULL;
991 }
992 
993 static inline bool sk_under_memory_pressure(const struct sock *sk)
994 {
995 	if (!sk->sk_prot->memory_pressure)
996 		return false;
997 
998 	if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
999 		return !!*sk->sk_cgrp->memory_pressure;
1000 
1001 	return !!*sk->sk_prot->memory_pressure;
1002 }
1003 
1004 static inline void sk_leave_memory_pressure(struct sock *sk)
1005 {
1006 	int *memory_pressure = sk->sk_prot->memory_pressure;
1007 
1008 	if (!memory_pressure)
1009 		return;
1010 
1011 	if (*memory_pressure)
1012 		*memory_pressure = 0;
1013 
1014 	if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
1015 		struct cg_proto *cg_proto = sk->sk_cgrp;
1016 		struct proto *prot = sk->sk_prot;
1017 
1018 		for (; cg_proto; cg_proto = parent_cg_proto(prot, cg_proto))
1019 			if (*cg_proto->memory_pressure)
1020 				*cg_proto->memory_pressure = 0;
1021 	}
1022 
1023 }
1024 
1025 static inline void sk_enter_memory_pressure(struct sock *sk)
1026 {
1027 	if (!sk->sk_prot->enter_memory_pressure)
1028 		return;
1029 
1030 	if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
1031 		struct cg_proto *cg_proto = sk->sk_cgrp;
1032 		struct proto *prot = sk->sk_prot;
1033 
1034 		for (; cg_proto; cg_proto = parent_cg_proto(prot, cg_proto))
1035 			cg_proto->enter_memory_pressure(sk);
1036 	}
1037 
1038 	sk->sk_prot->enter_memory_pressure(sk);
1039 }
1040 
1041 static inline long sk_prot_mem_limits(const struct sock *sk, int index)
1042 {
1043 	long *prot = sk->sk_prot->sysctl_mem;
1044 	if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
1045 		prot = sk->sk_cgrp->sysctl_mem;
1046 	return prot[index];
1047 }
1048 
1049 static inline void memcg_memory_allocated_add(struct cg_proto *prot,
1050 					      unsigned long amt,
1051 					      int *parent_status)
1052 {
1053 	struct res_counter *fail;
1054 	int ret;
1055 
1056 	ret = res_counter_charge_nofail(prot->memory_allocated,
1057 					amt << PAGE_SHIFT, &fail);
1058 	if (ret < 0)
1059 		*parent_status = OVER_LIMIT;
1060 }
1061 
1062 static inline void memcg_memory_allocated_sub(struct cg_proto *prot,
1063 					      unsigned long amt)
1064 {
1065 	res_counter_uncharge(prot->memory_allocated, amt << PAGE_SHIFT);
1066 }
1067 
1068 static inline u64 memcg_memory_allocated_read(struct cg_proto *prot)
1069 {
1070 	u64 ret;
1071 	ret = res_counter_read_u64(prot->memory_allocated, RES_USAGE);
1072 	return ret >> PAGE_SHIFT;
1073 }
1074 
1075 static inline long
1076 sk_memory_allocated(const struct sock *sk)
1077 {
1078 	struct proto *prot = sk->sk_prot;
1079 	if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
1080 		return memcg_memory_allocated_read(sk->sk_cgrp);
1081 
1082 	return atomic_long_read(prot->memory_allocated);
1083 }
1084 
1085 static inline long
1086 sk_memory_allocated_add(struct sock *sk, int amt, int *parent_status)
1087 {
1088 	struct proto *prot = sk->sk_prot;
1089 
1090 	if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
1091 		memcg_memory_allocated_add(sk->sk_cgrp, amt, parent_status);
1092 		/* update the root cgroup regardless */
1093 		atomic_long_add_return(amt, prot->memory_allocated);
1094 		return memcg_memory_allocated_read(sk->sk_cgrp);
1095 	}
1096 
1097 	return atomic_long_add_return(amt, prot->memory_allocated);
1098 }
1099 
1100 static inline void
1101 sk_memory_allocated_sub(struct sock *sk, int amt)
1102 {
1103 	struct proto *prot = sk->sk_prot;
1104 
1105 	if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
1106 		memcg_memory_allocated_sub(sk->sk_cgrp, amt);
1107 
1108 	atomic_long_sub(amt, prot->memory_allocated);
1109 }
1110 
1111 static inline void sk_sockets_allocated_dec(struct sock *sk)
1112 {
1113 	struct proto *prot = sk->sk_prot;
1114 
1115 	if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
1116 		struct cg_proto *cg_proto = sk->sk_cgrp;
1117 
1118 		for (; cg_proto; cg_proto = parent_cg_proto(prot, cg_proto))
1119 			percpu_counter_dec(cg_proto->sockets_allocated);
1120 	}
1121 
1122 	percpu_counter_dec(prot->sockets_allocated);
1123 }
1124 
1125 static inline void sk_sockets_allocated_inc(struct sock *sk)
1126 {
1127 	struct proto *prot = sk->sk_prot;
1128 
1129 	if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
1130 		struct cg_proto *cg_proto = sk->sk_cgrp;
1131 
1132 		for (; cg_proto; cg_proto = parent_cg_proto(prot, cg_proto))
1133 			percpu_counter_inc(cg_proto->sockets_allocated);
1134 	}
1135 
1136 	percpu_counter_inc(prot->sockets_allocated);
1137 }
1138 
1139 static inline int
1140 sk_sockets_allocated_read_positive(struct sock *sk)
1141 {
1142 	struct proto *prot = sk->sk_prot;
1143 
1144 	if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
1145 		return percpu_counter_read_positive(sk->sk_cgrp->sockets_allocated);
1146 
1147 	return percpu_counter_read_positive(prot->sockets_allocated);
1148 }
1149 
1150 static inline int
1151 proto_sockets_allocated_sum_positive(struct proto *prot)
1152 {
1153 	return percpu_counter_sum_positive(prot->sockets_allocated);
1154 }
1155 
1156 static inline long
1157 proto_memory_allocated(struct proto *prot)
1158 {
1159 	return atomic_long_read(prot->memory_allocated);
1160 }
1161 
1162 static inline bool
1163 proto_memory_pressure(struct proto *prot)
1164 {
1165 	if (!prot->memory_pressure)
1166 		return false;
1167 	return !!*prot->memory_pressure;
1168 }
1169 
1170 
1171 #ifdef CONFIG_PROC_FS
1172 /* Called with local bh disabled */
1173 extern void sock_prot_inuse_add(struct net *net, struct proto *prot, int inc);
1174 extern int sock_prot_inuse_get(struct net *net, struct proto *proto);
1175 #else
1176 static inline void sock_prot_inuse_add(struct net *net, struct proto *prot,
1177 		int inc)
1178 {
1179 }
1180 #endif
1181 
1182 
1183 /* With per-bucket locks this operation is not-atomic, so that
1184  * this version is not worse.
1185  */
1186 static inline void __sk_prot_rehash(struct sock *sk)
1187 {
1188 	sk->sk_prot->unhash(sk);
1189 	sk->sk_prot->hash(sk);
1190 }
1191 
1192 void sk_prot_clear_portaddr_nulls(struct sock *sk, int size);
1193 
1194 /* About 10 seconds */
1195 #define SOCK_DESTROY_TIME (10*HZ)
1196 
1197 /* Sockets 0-1023 can't be bound to unless you are superuser */
1198 #define PROT_SOCK	1024
1199 
1200 #define SHUTDOWN_MASK	3
1201 #define RCV_SHUTDOWN	1
1202 #define SEND_SHUTDOWN	2
1203 
1204 #define SOCK_SNDBUF_LOCK	1
1205 #define SOCK_RCVBUF_LOCK	2
1206 #define SOCK_BINDADDR_LOCK	4
1207 #define SOCK_BINDPORT_LOCK	8
1208 
1209 /* sock_iocb: used to kick off async processing of socket ios */
1210 struct sock_iocb {
1211 	struct list_head	list;
1212 
1213 	int			flags;
1214 	int			size;
1215 	struct socket		*sock;
1216 	struct sock		*sk;
1217 	struct scm_cookie	*scm;
1218 	struct msghdr		*msg, async_msg;
1219 	struct kiocb		*kiocb;
1220 };
1221 
1222 static inline struct sock_iocb *kiocb_to_siocb(struct kiocb *iocb)
1223 {
1224 	return (struct sock_iocb *)iocb->private;
1225 }
1226 
1227 static inline struct kiocb *siocb_to_kiocb(struct sock_iocb *si)
1228 {
1229 	return si->kiocb;
1230 }
1231 
1232 struct socket_alloc {
1233 	struct socket socket;
1234 	struct inode vfs_inode;
1235 };
1236 
1237 static inline struct socket *SOCKET_I(struct inode *inode)
1238 {
1239 	return &container_of(inode, struct socket_alloc, vfs_inode)->socket;
1240 }
1241 
1242 static inline struct inode *SOCK_INODE(struct socket *socket)
1243 {
1244 	return &container_of(socket, struct socket_alloc, socket)->vfs_inode;
1245 }
1246 
1247 /*
1248  * Functions for memory accounting
1249  */
1250 extern int __sk_mem_schedule(struct sock *sk, int size, int kind);
1251 extern void __sk_mem_reclaim(struct sock *sk);
1252 
1253 #define SK_MEM_QUANTUM ((int)PAGE_SIZE)
1254 #define SK_MEM_QUANTUM_SHIFT ilog2(SK_MEM_QUANTUM)
1255 #define SK_MEM_SEND	0
1256 #define SK_MEM_RECV	1
1257 
1258 static inline int sk_mem_pages(int amt)
1259 {
1260 	return (amt + SK_MEM_QUANTUM - 1) >> SK_MEM_QUANTUM_SHIFT;
1261 }
1262 
1263 static inline bool sk_has_account(struct sock *sk)
1264 {
1265 	/* return true if protocol supports memory accounting */
1266 	return !!sk->sk_prot->memory_allocated;
1267 }
1268 
1269 static inline bool sk_wmem_schedule(struct sock *sk, int size)
1270 {
1271 	if (!sk_has_account(sk))
1272 		return true;
1273 	return size <= sk->sk_forward_alloc ||
1274 		__sk_mem_schedule(sk, size, SK_MEM_SEND);
1275 }
1276 
1277 static inline bool sk_rmem_schedule(struct sock *sk, int size)
1278 {
1279 	if (!sk_has_account(sk))
1280 		return true;
1281 	return size <= sk->sk_forward_alloc ||
1282 		__sk_mem_schedule(sk, size, SK_MEM_RECV);
1283 }
1284 
1285 static inline void sk_mem_reclaim(struct sock *sk)
1286 {
1287 	if (!sk_has_account(sk))
1288 		return;
1289 	if (sk->sk_forward_alloc >= SK_MEM_QUANTUM)
1290 		__sk_mem_reclaim(sk);
1291 }
1292 
1293 static inline void sk_mem_reclaim_partial(struct sock *sk)
1294 {
1295 	if (!sk_has_account(sk))
1296 		return;
1297 	if (sk->sk_forward_alloc > SK_MEM_QUANTUM)
1298 		__sk_mem_reclaim(sk);
1299 }
1300 
1301 static inline void sk_mem_charge(struct sock *sk, int size)
1302 {
1303 	if (!sk_has_account(sk))
1304 		return;
1305 	sk->sk_forward_alloc -= size;
1306 }
1307 
1308 static inline void sk_mem_uncharge(struct sock *sk, int size)
1309 {
1310 	if (!sk_has_account(sk))
1311 		return;
1312 	sk->sk_forward_alloc += size;
1313 }
1314 
1315 static inline void sk_wmem_free_skb(struct sock *sk, struct sk_buff *skb)
1316 {
1317 	sock_set_flag(sk, SOCK_QUEUE_SHRUNK);
1318 	sk->sk_wmem_queued -= skb->truesize;
1319 	sk_mem_uncharge(sk, skb->truesize);
1320 	__kfree_skb(skb);
1321 }
1322 
1323 /* Used by processes to "lock" a socket state, so that
1324  * interrupts and bottom half handlers won't change it
1325  * from under us. It essentially blocks any incoming
1326  * packets, so that we won't get any new data or any
1327  * packets that change the state of the socket.
1328  *
1329  * While locked, BH processing will add new packets to
1330  * the backlog queue.  This queue is processed by the
1331  * owner of the socket lock right before it is released.
1332  *
1333  * Since ~2.3.5 it is also exclusive sleep lock serializing
1334  * accesses from user process context.
1335  */
1336 #define sock_owned_by_user(sk)	((sk)->sk_lock.owned)
1337 
1338 /*
1339  * Macro so as to not evaluate some arguments when
1340  * lockdep is not enabled.
1341  *
1342  * Mark both the sk_lock and the sk_lock.slock as a
1343  * per-address-family lock class.
1344  */
1345 #define sock_lock_init_class_and_name(sk, sname, skey, name, key)	\
1346 do {									\
1347 	sk->sk_lock.owned = 0;						\
1348 	init_waitqueue_head(&sk->sk_lock.wq);				\
1349 	spin_lock_init(&(sk)->sk_lock.slock);				\
1350 	debug_check_no_locks_freed((void *)&(sk)->sk_lock,		\
1351 			sizeof((sk)->sk_lock));				\
1352 	lockdep_set_class_and_name(&(sk)->sk_lock.slock,		\
1353 				(skey), (sname));				\
1354 	lockdep_init_map(&(sk)->sk_lock.dep_map, (name), (key), 0);	\
1355 } while (0)
1356 
1357 extern void lock_sock_nested(struct sock *sk, int subclass);
1358 
1359 static inline void lock_sock(struct sock *sk)
1360 {
1361 	lock_sock_nested(sk, 0);
1362 }
1363 
1364 extern void release_sock(struct sock *sk);
1365 
1366 /* BH context may only use the following locking interface. */
1367 #define bh_lock_sock(__sk)	spin_lock(&((__sk)->sk_lock.slock))
1368 #define bh_lock_sock_nested(__sk) \
1369 				spin_lock_nested(&((__sk)->sk_lock.slock), \
1370 				SINGLE_DEPTH_NESTING)
1371 #define bh_unlock_sock(__sk)	spin_unlock(&((__sk)->sk_lock.slock))
1372 
1373 extern bool lock_sock_fast(struct sock *sk);
1374 /**
1375  * unlock_sock_fast - complement of lock_sock_fast
1376  * @sk: socket
1377  * @slow: slow mode
1378  *
1379  * fast unlock socket for user context.
1380  * If slow mode is on, we call regular release_sock()
1381  */
1382 static inline void unlock_sock_fast(struct sock *sk, bool slow)
1383 {
1384 	if (slow)
1385 		release_sock(sk);
1386 	else
1387 		spin_unlock_bh(&sk->sk_lock.slock);
1388 }
1389 
1390 
1391 extern struct sock		*sk_alloc(struct net *net, int family,
1392 					  gfp_t priority,
1393 					  struct proto *prot);
1394 extern void			sk_free(struct sock *sk);
1395 extern void			sk_release_kernel(struct sock *sk);
1396 extern struct sock		*sk_clone_lock(const struct sock *sk,
1397 					       const gfp_t priority);
1398 
1399 extern struct sk_buff		*sock_wmalloc(struct sock *sk,
1400 					      unsigned long size, int force,
1401 					      gfp_t priority);
1402 extern struct sk_buff		*sock_rmalloc(struct sock *sk,
1403 					      unsigned long size, int force,
1404 					      gfp_t priority);
1405 extern void			sock_wfree(struct sk_buff *skb);
1406 extern void			sock_rfree(struct sk_buff *skb);
1407 
1408 extern int			sock_setsockopt(struct socket *sock, int level,
1409 						int op, char __user *optval,
1410 						unsigned int optlen);
1411 
1412 extern int			sock_getsockopt(struct socket *sock, int level,
1413 						int op, char __user *optval,
1414 						int __user *optlen);
1415 extern struct sk_buff		*sock_alloc_send_skb(struct sock *sk,
1416 						     unsigned long size,
1417 						     int noblock,
1418 						     int *errcode);
1419 extern struct sk_buff		*sock_alloc_send_pskb(struct sock *sk,
1420 						      unsigned long header_len,
1421 						      unsigned long data_len,
1422 						      int noblock,
1423 						      int *errcode);
1424 extern void *sock_kmalloc(struct sock *sk, int size,
1425 			  gfp_t priority);
1426 extern void sock_kfree_s(struct sock *sk, void *mem, int size);
1427 extern void sk_send_sigurg(struct sock *sk);
1428 
1429 #ifdef CONFIG_CGROUPS
1430 extern void sock_update_classid(struct sock *sk);
1431 #else
1432 static inline void sock_update_classid(struct sock *sk)
1433 {
1434 }
1435 #endif
1436 
1437 /*
1438  * Functions to fill in entries in struct proto_ops when a protocol
1439  * does not implement a particular function.
1440  */
1441 extern int                      sock_no_bind(struct socket *,
1442 					     struct sockaddr *, int);
1443 extern int                      sock_no_connect(struct socket *,
1444 						struct sockaddr *, int, int);
1445 extern int                      sock_no_socketpair(struct socket *,
1446 						   struct socket *);
1447 extern int                      sock_no_accept(struct socket *,
1448 					       struct socket *, int);
1449 extern int                      sock_no_getname(struct socket *,
1450 						struct sockaddr *, int *, int);
1451 extern unsigned int             sock_no_poll(struct file *, struct socket *,
1452 					     struct poll_table_struct *);
1453 extern int                      sock_no_ioctl(struct socket *, unsigned int,
1454 					      unsigned long);
1455 extern int			sock_no_listen(struct socket *, int);
1456 extern int                      sock_no_shutdown(struct socket *, int);
1457 extern int			sock_no_getsockopt(struct socket *, int , int,
1458 						   char __user *, int __user *);
1459 extern int			sock_no_setsockopt(struct socket *, int, int,
1460 						   char __user *, unsigned int);
1461 extern int                      sock_no_sendmsg(struct kiocb *, struct socket *,
1462 						struct msghdr *, size_t);
1463 extern int                      sock_no_recvmsg(struct kiocb *, struct socket *,
1464 						struct msghdr *, size_t, int);
1465 extern int			sock_no_mmap(struct file *file,
1466 					     struct socket *sock,
1467 					     struct vm_area_struct *vma);
1468 extern ssize_t			sock_no_sendpage(struct socket *sock,
1469 						struct page *page,
1470 						int offset, size_t size,
1471 						int flags);
1472 
1473 /*
1474  * Functions to fill in entries in struct proto_ops when a protocol
1475  * uses the inet style.
1476  */
1477 extern int sock_common_getsockopt(struct socket *sock, int level, int optname,
1478 				  char __user *optval, int __user *optlen);
1479 extern int sock_common_recvmsg(struct kiocb *iocb, struct socket *sock,
1480 			       struct msghdr *msg, size_t size, int flags);
1481 extern int sock_common_setsockopt(struct socket *sock, int level, int optname,
1482 				  char __user *optval, unsigned int optlen);
1483 extern int compat_sock_common_getsockopt(struct socket *sock, int level,
1484 		int optname, char __user *optval, int __user *optlen);
1485 extern int compat_sock_common_setsockopt(struct socket *sock, int level,
1486 		int optname, char __user *optval, unsigned int optlen);
1487 
1488 extern void sk_common_release(struct sock *sk);
1489 
1490 /*
1491  *	Default socket callbacks and setup code
1492  */
1493 
1494 /* Initialise core socket variables */
1495 extern void sock_init_data(struct socket *sock, struct sock *sk);
1496 
1497 extern void sk_filter_release_rcu(struct rcu_head *rcu);
1498 
1499 /**
1500  *	sk_filter_release - release a socket filter
1501  *	@fp: filter to remove
1502  *
1503  *	Remove a filter from a socket and release its resources.
1504  */
1505 
1506 static inline void sk_filter_release(struct sk_filter *fp)
1507 {
1508 	if (atomic_dec_and_test(&fp->refcnt))
1509 		call_rcu(&fp->rcu, sk_filter_release_rcu);
1510 }
1511 
1512 static inline void sk_filter_uncharge(struct sock *sk, struct sk_filter *fp)
1513 {
1514 	unsigned int size = sk_filter_len(fp);
1515 
1516 	atomic_sub(size, &sk->sk_omem_alloc);
1517 	sk_filter_release(fp);
1518 }
1519 
1520 static inline void sk_filter_charge(struct sock *sk, struct sk_filter *fp)
1521 {
1522 	atomic_inc(&fp->refcnt);
1523 	atomic_add(sk_filter_len(fp), &sk->sk_omem_alloc);
1524 }
1525 
1526 /*
1527  * Socket reference counting postulates.
1528  *
1529  * * Each user of socket SHOULD hold a reference count.
1530  * * Each access point to socket (an hash table bucket, reference from a list,
1531  *   running timer, skb in flight MUST hold a reference count.
1532  * * When reference count hits 0, it means it will never increase back.
1533  * * When reference count hits 0, it means that no references from
1534  *   outside exist to this socket and current process on current CPU
1535  *   is last user and may/should destroy this socket.
1536  * * sk_free is called from any context: process, BH, IRQ. When
1537  *   it is called, socket has no references from outside -> sk_free
1538  *   may release descendant resources allocated by the socket, but
1539  *   to the time when it is called, socket is NOT referenced by any
1540  *   hash tables, lists etc.
1541  * * Packets, delivered from outside (from network or from another process)
1542  *   and enqueued on receive/error queues SHOULD NOT grab reference count,
1543  *   when they sit in queue. Otherwise, packets will leak to hole, when
1544  *   socket is looked up by one cpu and unhasing is made by another CPU.
1545  *   It is true for udp/raw, netlink (leak to receive and error queues), tcp
1546  *   (leak to backlog). Packet socket does all the processing inside
1547  *   BR_NETPROTO_LOCK, so that it has not this race condition. UNIX sockets
1548  *   use separate SMP lock, so that they are prone too.
1549  */
1550 
1551 /* Ungrab socket and destroy it, if it was the last reference. */
1552 static inline void sock_put(struct sock *sk)
1553 {
1554 	if (atomic_dec_and_test(&sk->sk_refcnt))
1555 		sk_free(sk);
1556 }
1557 
1558 extern int sk_receive_skb(struct sock *sk, struct sk_buff *skb,
1559 			  const int nested);
1560 
1561 static inline void sk_tx_queue_set(struct sock *sk, int tx_queue)
1562 {
1563 	sk->sk_tx_queue_mapping = tx_queue;
1564 }
1565 
1566 static inline void sk_tx_queue_clear(struct sock *sk)
1567 {
1568 	sk->sk_tx_queue_mapping = -1;
1569 }
1570 
1571 static inline int sk_tx_queue_get(const struct sock *sk)
1572 {
1573 	return sk ? sk->sk_tx_queue_mapping : -1;
1574 }
1575 
1576 static inline void sk_set_socket(struct sock *sk, struct socket *sock)
1577 {
1578 	sk_tx_queue_clear(sk);
1579 	sk->sk_socket = sock;
1580 }
1581 
1582 static inline wait_queue_head_t *sk_sleep(struct sock *sk)
1583 {
1584 	BUILD_BUG_ON(offsetof(struct socket_wq, wait) != 0);
1585 	return &rcu_dereference_raw(sk->sk_wq)->wait;
1586 }
1587 /* Detach socket from process context.
1588  * Announce socket dead, detach it from wait queue and inode.
1589  * Note that parent inode held reference count on this struct sock,
1590  * we do not release it in this function, because protocol
1591  * probably wants some additional cleanups or even continuing
1592  * to work with this socket (TCP).
1593  */
1594 static inline void sock_orphan(struct sock *sk)
1595 {
1596 	write_lock_bh(&sk->sk_callback_lock);
1597 	sock_set_flag(sk, SOCK_DEAD);
1598 	sk_set_socket(sk, NULL);
1599 	sk->sk_wq  = NULL;
1600 	write_unlock_bh(&sk->sk_callback_lock);
1601 }
1602 
1603 static inline void sock_graft(struct sock *sk, struct socket *parent)
1604 {
1605 	write_lock_bh(&sk->sk_callback_lock);
1606 	sk->sk_wq = parent->wq;
1607 	parent->sk = sk;
1608 	sk_set_socket(sk, parent);
1609 	security_sock_graft(sk, parent);
1610 	write_unlock_bh(&sk->sk_callback_lock);
1611 }
1612 
1613 extern int sock_i_uid(struct sock *sk);
1614 extern unsigned long sock_i_ino(struct sock *sk);
1615 
1616 static inline struct dst_entry *
1617 __sk_dst_get(struct sock *sk)
1618 {
1619 	return rcu_dereference_check(sk->sk_dst_cache, sock_owned_by_user(sk) ||
1620 						       lockdep_is_held(&sk->sk_lock.slock));
1621 }
1622 
1623 static inline struct dst_entry *
1624 sk_dst_get(struct sock *sk)
1625 {
1626 	struct dst_entry *dst;
1627 
1628 	rcu_read_lock();
1629 	dst = rcu_dereference(sk->sk_dst_cache);
1630 	if (dst)
1631 		dst_hold(dst);
1632 	rcu_read_unlock();
1633 	return dst;
1634 }
1635 
1636 extern void sk_reset_txq(struct sock *sk);
1637 
1638 static inline void dst_negative_advice(struct sock *sk)
1639 {
1640 	struct dst_entry *ndst, *dst = __sk_dst_get(sk);
1641 
1642 	if (dst && dst->ops->negative_advice) {
1643 		ndst = dst->ops->negative_advice(dst);
1644 
1645 		if (ndst != dst) {
1646 			rcu_assign_pointer(sk->sk_dst_cache, ndst);
1647 			sk_reset_txq(sk);
1648 		}
1649 	}
1650 }
1651 
1652 static inline void
1653 __sk_dst_set(struct sock *sk, struct dst_entry *dst)
1654 {
1655 	struct dst_entry *old_dst;
1656 
1657 	sk_tx_queue_clear(sk);
1658 	/*
1659 	 * This can be called while sk is owned by the caller only,
1660 	 * with no state that can be checked in a rcu_dereference_check() cond
1661 	 */
1662 	old_dst = rcu_dereference_raw(sk->sk_dst_cache);
1663 	rcu_assign_pointer(sk->sk_dst_cache, dst);
1664 	dst_release(old_dst);
1665 }
1666 
1667 static inline void
1668 sk_dst_set(struct sock *sk, struct dst_entry *dst)
1669 {
1670 	spin_lock(&sk->sk_dst_lock);
1671 	__sk_dst_set(sk, dst);
1672 	spin_unlock(&sk->sk_dst_lock);
1673 }
1674 
1675 static inline void
1676 __sk_dst_reset(struct sock *sk)
1677 {
1678 	__sk_dst_set(sk, NULL);
1679 }
1680 
1681 static inline void
1682 sk_dst_reset(struct sock *sk)
1683 {
1684 	spin_lock(&sk->sk_dst_lock);
1685 	__sk_dst_reset(sk);
1686 	spin_unlock(&sk->sk_dst_lock);
1687 }
1688 
1689 extern struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie);
1690 
1691 extern struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie);
1692 
1693 static inline bool sk_can_gso(const struct sock *sk)
1694 {
1695 	return net_gso_ok(sk->sk_route_caps, sk->sk_gso_type);
1696 }
1697 
1698 extern void sk_setup_caps(struct sock *sk, struct dst_entry *dst);
1699 
1700 static inline void sk_nocaps_add(struct sock *sk, netdev_features_t flags)
1701 {
1702 	sk->sk_route_nocaps |= flags;
1703 	sk->sk_route_caps &= ~flags;
1704 }
1705 
1706 static inline int skb_do_copy_data_nocache(struct sock *sk, struct sk_buff *skb,
1707 					   char __user *from, char *to,
1708 					   int copy, int offset)
1709 {
1710 	if (skb->ip_summed == CHECKSUM_NONE) {
1711 		int err = 0;
1712 		__wsum csum = csum_and_copy_from_user(from, to, copy, 0, &err);
1713 		if (err)
1714 			return err;
1715 		skb->csum = csum_block_add(skb->csum, csum, offset);
1716 	} else if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY) {
1717 		if (!access_ok(VERIFY_READ, from, copy) ||
1718 		    __copy_from_user_nocache(to, from, copy))
1719 			return -EFAULT;
1720 	} else if (copy_from_user(to, from, copy))
1721 		return -EFAULT;
1722 
1723 	return 0;
1724 }
1725 
1726 static inline int skb_add_data_nocache(struct sock *sk, struct sk_buff *skb,
1727 				       char __user *from, int copy)
1728 {
1729 	int err, offset = skb->len;
1730 
1731 	err = skb_do_copy_data_nocache(sk, skb, from, skb_put(skb, copy),
1732 				       copy, offset);
1733 	if (err)
1734 		__skb_trim(skb, offset);
1735 
1736 	return err;
1737 }
1738 
1739 static inline int skb_copy_to_page_nocache(struct sock *sk, char __user *from,
1740 					   struct sk_buff *skb,
1741 					   struct page *page,
1742 					   int off, int copy)
1743 {
1744 	int err;
1745 
1746 	err = skb_do_copy_data_nocache(sk, skb, from, page_address(page) + off,
1747 				       copy, skb->len);
1748 	if (err)
1749 		return err;
1750 
1751 	skb->len	     += copy;
1752 	skb->data_len	     += copy;
1753 	skb->truesize	     += copy;
1754 	sk->sk_wmem_queued   += copy;
1755 	sk_mem_charge(sk, copy);
1756 	return 0;
1757 }
1758 
1759 static inline int skb_copy_to_page(struct sock *sk, char __user *from,
1760 				   struct sk_buff *skb, struct page *page,
1761 				   int off, int copy)
1762 {
1763 	if (skb->ip_summed == CHECKSUM_NONE) {
1764 		int err = 0;
1765 		__wsum csum = csum_and_copy_from_user(from,
1766 						     page_address(page) + off,
1767 							    copy, 0, &err);
1768 		if (err)
1769 			return err;
1770 		skb->csum = csum_block_add(skb->csum, csum, skb->len);
1771 	} else if (copy_from_user(page_address(page) + off, from, copy))
1772 		return -EFAULT;
1773 
1774 	skb->len	     += copy;
1775 	skb->data_len	     += copy;
1776 	skb->truesize	     += copy;
1777 	sk->sk_wmem_queued   += copy;
1778 	sk_mem_charge(sk, copy);
1779 	return 0;
1780 }
1781 
1782 /**
1783  * sk_wmem_alloc_get - returns write allocations
1784  * @sk: socket
1785  *
1786  * Returns sk_wmem_alloc minus initial offset of one
1787  */
1788 static inline int sk_wmem_alloc_get(const struct sock *sk)
1789 {
1790 	return atomic_read(&sk->sk_wmem_alloc) - 1;
1791 }
1792 
1793 /**
1794  * sk_rmem_alloc_get - returns read allocations
1795  * @sk: socket
1796  *
1797  * Returns sk_rmem_alloc
1798  */
1799 static inline int sk_rmem_alloc_get(const struct sock *sk)
1800 {
1801 	return atomic_read(&sk->sk_rmem_alloc);
1802 }
1803 
1804 /**
1805  * sk_has_allocations - check if allocations are outstanding
1806  * @sk: socket
1807  *
1808  * Returns true if socket has write or read allocations
1809  */
1810 static inline bool sk_has_allocations(const struct sock *sk)
1811 {
1812 	return sk_wmem_alloc_get(sk) || sk_rmem_alloc_get(sk);
1813 }
1814 
1815 /**
1816  * wq_has_sleeper - check if there are any waiting processes
1817  * @wq: struct socket_wq
1818  *
1819  * Returns true if socket_wq has waiting processes
1820  *
1821  * The purpose of the wq_has_sleeper and sock_poll_wait is to wrap the memory
1822  * barrier call. They were added due to the race found within the tcp code.
1823  *
1824  * Consider following tcp code paths:
1825  *
1826  * CPU1                  CPU2
1827  *
1828  * sys_select            receive packet
1829  *   ...                 ...
1830  *   __add_wait_queue    update tp->rcv_nxt
1831  *   ...                 ...
1832  *   tp->rcv_nxt check   sock_def_readable
1833  *   ...                 {
1834  *   schedule               rcu_read_lock();
1835  *                          wq = rcu_dereference(sk->sk_wq);
1836  *                          if (wq && waitqueue_active(&wq->wait))
1837  *                              wake_up_interruptible(&wq->wait)
1838  *                          ...
1839  *                       }
1840  *
1841  * The race for tcp fires when the __add_wait_queue changes done by CPU1 stay
1842  * in its cache, and so does the tp->rcv_nxt update on CPU2 side.  The CPU1
1843  * could then endup calling schedule and sleep forever if there are no more
1844  * data on the socket.
1845  *
1846  */
1847 static inline bool wq_has_sleeper(struct socket_wq *wq)
1848 {
1849 	/* We need to be sure we are in sync with the
1850 	 * add_wait_queue modifications to the wait queue.
1851 	 *
1852 	 * This memory barrier is paired in the sock_poll_wait.
1853 	 */
1854 	smp_mb();
1855 	return wq && waitqueue_active(&wq->wait);
1856 }
1857 
1858 /**
1859  * sock_poll_wait - place memory barrier behind the poll_wait call.
1860  * @filp:           file
1861  * @wait_address:   socket wait queue
1862  * @p:              poll_table
1863  *
1864  * See the comments in the wq_has_sleeper function.
1865  */
1866 static inline void sock_poll_wait(struct file *filp,
1867 		wait_queue_head_t *wait_address, poll_table *p)
1868 {
1869 	if (!poll_does_not_wait(p) && wait_address) {
1870 		poll_wait(filp, wait_address, p);
1871 		/* We need to be sure we are in sync with the
1872 		 * socket flags modification.
1873 		 *
1874 		 * This memory barrier is paired in the wq_has_sleeper.
1875 		 */
1876 		smp_mb();
1877 	}
1878 }
1879 
1880 /*
1881  *	Queue a received datagram if it will fit. Stream and sequenced
1882  *	protocols can't normally use this as they need to fit buffers in
1883  *	and play with them.
1884  *
1885  *	Inlined as it's very short and called for pretty much every
1886  *	packet ever received.
1887  */
1888 
1889 static inline void skb_set_owner_w(struct sk_buff *skb, struct sock *sk)
1890 {
1891 	skb_orphan(skb);
1892 	skb->sk = sk;
1893 	skb->destructor = sock_wfree;
1894 	/*
1895 	 * We used to take a refcount on sk, but following operation
1896 	 * is enough to guarantee sk_free() wont free this sock until
1897 	 * all in-flight packets are completed
1898 	 */
1899 	atomic_add(skb->truesize, &sk->sk_wmem_alloc);
1900 }
1901 
1902 static inline void skb_set_owner_r(struct sk_buff *skb, struct sock *sk)
1903 {
1904 	skb_orphan(skb);
1905 	skb->sk = sk;
1906 	skb->destructor = sock_rfree;
1907 	atomic_add(skb->truesize, &sk->sk_rmem_alloc);
1908 	sk_mem_charge(sk, skb->truesize);
1909 }
1910 
1911 extern void sk_reset_timer(struct sock *sk, struct timer_list *timer,
1912 			   unsigned long expires);
1913 
1914 extern void sk_stop_timer(struct sock *sk, struct timer_list *timer);
1915 
1916 extern int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
1917 
1918 extern int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb);
1919 
1920 /*
1921  *	Recover an error report and clear atomically
1922  */
1923 
1924 static inline int sock_error(struct sock *sk)
1925 {
1926 	int err;
1927 	if (likely(!sk->sk_err))
1928 		return 0;
1929 	err = xchg(&sk->sk_err, 0);
1930 	return -err;
1931 }
1932 
1933 static inline unsigned long sock_wspace(struct sock *sk)
1934 {
1935 	int amt = 0;
1936 
1937 	if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
1938 		amt = sk->sk_sndbuf - atomic_read(&sk->sk_wmem_alloc);
1939 		if (amt < 0)
1940 			amt = 0;
1941 	}
1942 	return amt;
1943 }
1944 
1945 static inline void sk_wake_async(struct sock *sk, int how, int band)
1946 {
1947 	if (sock_flag(sk, SOCK_FASYNC))
1948 		sock_wake_async(sk->sk_socket, how, band);
1949 }
1950 
1951 #define SOCK_MIN_SNDBUF 2048
1952 /*
1953  * Since sk_rmem_alloc sums skb->truesize, even a small frame might need
1954  * sizeof(sk_buff) + MTU + padding, unless net driver perform copybreak
1955  */
1956 #define SOCK_MIN_RCVBUF (2048 + sizeof(struct sk_buff))
1957 
1958 static inline void sk_stream_moderate_sndbuf(struct sock *sk)
1959 {
1960 	if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK)) {
1961 		sk->sk_sndbuf = min(sk->sk_sndbuf, sk->sk_wmem_queued >> 1);
1962 		sk->sk_sndbuf = max(sk->sk_sndbuf, SOCK_MIN_SNDBUF);
1963 	}
1964 }
1965 
1966 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp);
1967 
1968 static inline struct page *sk_stream_alloc_page(struct sock *sk)
1969 {
1970 	struct page *page = NULL;
1971 
1972 	page = alloc_pages(sk->sk_allocation, 0);
1973 	if (!page) {
1974 		sk_enter_memory_pressure(sk);
1975 		sk_stream_moderate_sndbuf(sk);
1976 	}
1977 	return page;
1978 }
1979 
1980 /*
1981  *	Default write policy as shown to user space via poll/select/SIGIO
1982  */
1983 static inline bool sock_writeable(const struct sock *sk)
1984 {
1985 	return atomic_read(&sk->sk_wmem_alloc) < (sk->sk_sndbuf >> 1);
1986 }
1987 
1988 static inline gfp_t gfp_any(void)
1989 {
1990 	return in_softirq() ? GFP_ATOMIC : GFP_KERNEL;
1991 }
1992 
1993 static inline long sock_rcvtimeo(const struct sock *sk, bool noblock)
1994 {
1995 	return noblock ? 0 : sk->sk_rcvtimeo;
1996 }
1997 
1998 static inline long sock_sndtimeo(const struct sock *sk, bool noblock)
1999 {
2000 	return noblock ? 0 : sk->sk_sndtimeo;
2001 }
2002 
2003 static inline int sock_rcvlowat(const struct sock *sk, int waitall, int len)
2004 {
2005 	return (waitall ? len : min_t(int, sk->sk_rcvlowat, len)) ? : 1;
2006 }
2007 
2008 /* Alas, with timeout socket operations are not restartable.
2009  * Compare this to poll().
2010  */
2011 static inline int sock_intr_errno(long timeo)
2012 {
2013 	return timeo == MAX_SCHEDULE_TIMEOUT ? -ERESTARTSYS : -EINTR;
2014 }
2015 
2016 extern void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
2017 	struct sk_buff *skb);
2018 extern void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
2019 	struct sk_buff *skb);
2020 
2021 static inline void
2022 sock_recv_timestamp(struct msghdr *msg, struct sock *sk, struct sk_buff *skb)
2023 {
2024 	ktime_t kt = skb->tstamp;
2025 	struct skb_shared_hwtstamps *hwtstamps = skb_hwtstamps(skb);
2026 
2027 	/*
2028 	 * generate control messages if
2029 	 * - receive time stamping in software requested (SOCK_RCVTSTAMP
2030 	 *   or SOCK_TIMESTAMPING_RX_SOFTWARE)
2031 	 * - software time stamp available and wanted
2032 	 *   (SOCK_TIMESTAMPING_SOFTWARE)
2033 	 * - hardware time stamps available and wanted
2034 	 *   (SOCK_TIMESTAMPING_SYS_HARDWARE or
2035 	 *   SOCK_TIMESTAMPING_RAW_HARDWARE)
2036 	 */
2037 	if (sock_flag(sk, SOCK_RCVTSTAMP) ||
2038 	    sock_flag(sk, SOCK_TIMESTAMPING_RX_SOFTWARE) ||
2039 	    (kt.tv64 && sock_flag(sk, SOCK_TIMESTAMPING_SOFTWARE)) ||
2040 	    (hwtstamps->hwtstamp.tv64 &&
2041 	     sock_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE)) ||
2042 	    (hwtstamps->syststamp.tv64 &&
2043 	     sock_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE)))
2044 		__sock_recv_timestamp(msg, sk, skb);
2045 	else
2046 		sk->sk_stamp = kt;
2047 
2048 	if (sock_flag(sk, SOCK_WIFI_STATUS) && skb->wifi_acked_valid)
2049 		__sock_recv_wifi_status(msg, sk, skb);
2050 }
2051 
2052 extern void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
2053 				     struct sk_buff *skb);
2054 
2055 static inline void sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
2056 					  struct sk_buff *skb)
2057 {
2058 #define FLAGS_TS_OR_DROPS ((1UL << SOCK_RXQ_OVFL)			| \
2059 			   (1UL << SOCK_RCVTSTAMP)			| \
2060 			   (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE)	| \
2061 			   (1UL << SOCK_TIMESTAMPING_SOFTWARE)		| \
2062 			   (1UL << SOCK_TIMESTAMPING_RAW_HARDWARE)	| \
2063 			   (1UL << SOCK_TIMESTAMPING_SYS_HARDWARE))
2064 
2065 	if (sk->sk_flags & FLAGS_TS_OR_DROPS)
2066 		__sock_recv_ts_and_drops(msg, sk, skb);
2067 	else
2068 		sk->sk_stamp = skb->tstamp;
2069 }
2070 
2071 /**
2072  * sock_tx_timestamp - checks whether the outgoing packet is to be time stamped
2073  * @sk:		socket sending this packet
2074  * @tx_flags:	filled with instructions for time stamping
2075  *
2076  * Currently only depends on SOCK_TIMESTAMPING* flags. Returns error code if
2077  * parameters are invalid.
2078  */
2079 extern int sock_tx_timestamp(struct sock *sk, __u8 *tx_flags);
2080 
2081 /**
2082  * sk_eat_skb - Release a skb if it is no longer needed
2083  * @sk: socket to eat this skb from
2084  * @skb: socket buffer to eat
2085  * @copied_early: flag indicating whether DMA operations copied this data early
2086  *
2087  * This routine must be called with interrupts disabled or with the socket
2088  * locked so that the sk_buff queue operation is ok.
2089 */
2090 #ifdef CONFIG_NET_DMA
2091 static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb, bool copied_early)
2092 {
2093 	__skb_unlink(skb, &sk->sk_receive_queue);
2094 	if (!copied_early)
2095 		__kfree_skb(skb);
2096 	else
2097 		__skb_queue_tail(&sk->sk_async_wait_queue, skb);
2098 }
2099 #else
2100 static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb, bool copied_early)
2101 {
2102 	__skb_unlink(skb, &sk->sk_receive_queue);
2103 	__kfree_skb(skb);
2104 }
2105 #endif
2106 
2107 static inline
2108 struct net *sock_net(const struct sock *sk)
2109 {
2110 	return read_pnet(&sk->sk_net);
2111 }
2112 
2113 static inline
2114 void sock_net_set(struct sock *sk, struct net *net)
2115 {
2116 	write_pnet(&sk->sk_net, net);
2117 }
2118 
2119 /*
2120  * Kernel sockets, f.e. rtnl or icmp_socket, are a part of a namespace.
2121  * They should not hold a reference to a namespace in order to allow
2122  * to stop it.
2123  * Sockets after sk_change_net should be released using sk_release_kernel
2124  */
2125 static inline void sk_change_net(struct sock *sk, struct net *net)
2126 {
2127 	put_net(sock_net(sk));
2128 	sock_net_set(sk, hold_net(net));
2129 }
2130 
2131 static inline struct sock *skb_steal_sock(struct sk_buff *skb)
2132 {
2133 	if (unlikely(skb->sk)) {
2134 		struct sock *sk = skb->sk;
2135 
2136 		skb->destructor = NULL;
2137 		skb->sk = NULL;
2138 		return sk;
2139 	}
2140 	return NULL;
2141 }
2142 
2143 extern void sock_enable_timestamp(struct sock *sk, int flag);
2144 extern int sock_get_timestamp(struct sock *, struct timeval __user *);
2145 extern int sock_get_timestampns(struct sock *, struct timespec __user *);
2146 
2147 /*
2148  *	Enable debug/info messages
2149  */
2150 extern int net_msg_warn;
2151 #define NETDEBUG(fmt, args...) \
2152 	do { if (net_msg_warn) printk(fmt,##args); } while (0)
2153 
2154 #define LIMIT_NETDEBUG(fmt, args...) \
2155 	do { if (net_msg_warn && net_ratelimit()) printk(fmt,##args); } while(0)
2156 
2157 extern __u32 sysctl_wmem_max;
2158 extern __u32 sysctl_rmem_max;
2159 
2160 extern void sk_init(void);
2161 
2162 extern int sysctl_optmem_max;
2163 
2164 extern __u32 sysctl_wmem_default;
2165 extern __u32 sysctl_rmem_default;
2166 
2167 #endif	/* _SOCK_H */
2168