xref: /linux/include/net/sock.h (revision a4eb44a6435d6d8f9e642407a4a06f65eb90ca04)
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Definitions for the AF_INET socket handler.
8  *
9  * Version:	@(#)sock.h	1.0.4	05/13/93
10  *
11  * Authors:	Ross Biro
12  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
13  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
14  *		Florian La Roche <flla@stud.uni-sb.de>
15  *
16  * Fixes:
17  *		Alan Cox	:	Volatiles in skbuff pointers. See
18  *					skbuff comments. May be overdone,
19  *					better to prove they can be removed
20  *					than the reverse.
21  *		Alan Cox	:	Added a zapped field for tcp to note
22  *					a socket is reset and must stay shut up
23  *		Alan Cox	:	New fields for options
24  *	Pauline Middelink	:	identd support
25  *		Alan Cox	:	Eliminate low level recv/recvfrom
26  *		David S. Miller	:	New socket lookup architecture.
27  *              Steve Whitehouse:       Default routines for sock_ops
28  *              Arnaldo C. Melo :	removed net_pinfo, tp_pinfo and made
29  *              			protinfo be just a void pointer, as the
30  *              			protocol specific parts were moved to
31  *              			respective headers and ipv4/v6, etc now
32  *              			use private slabcaches for its socks
33  *              Pedro Hortas	:	New flags field for socket options
34  */
35 #ifndef _SOCK_H
36 #define _SOCK_H
37 
38 #include <linux/hardirq.h>
39 #include <linux/kernel.h>
40 #include <linux/list.h>
41 #include <linux/list_nulls.h>
42 #include <linux/timer.h>
43 #include <linux/cache.h>
44 #include <linux/bitops.h>
45 #include <linux/lockdep.h>
46 #include <linux/netdevice.h>
47 #include <linux/skbuff.h>	/* struct sk_buff */
48 #include <linux/mm.h>
49 #include <linux/security.h>
50 #include <linux/slab.h>
51 #include <linux/uaccess.h>
52 #include <linux/page_counter.h>
53 #include <linux/memcontrol.h>
54 #include <linux/static_key.h>
55 #include <linux/sched.h>
56 #include <linux/wait.h>
57 #include <linux/cgroup-defs.h>
58 #include <linux/rbtree.h>
59 #include <linux/rculist_nulls.h>
60 #include <linux/poll.h>
61 #include <linux/sockptr.h>
62 #include <linux/indirect_call_wrapper.h>
63 #include <linux/atomic.h>
64 #include <linux/refcount.h>
65 #include <linux/llist.h>
66 #include <net/dst.h>
67 #include <net/checksum.h>
68 #include <net/tcp_states.h>
69 #include <linux/net_tstamp.h>
70 #include <net/l3mdev.h>
71 #include <uapi/linux/socket.h>
72 
73 /*
74  * This structure really needs to be cleaned up.
75  * Most of it is for TCP, and not used by any of
76  * the other protocols.
77  */
78 
79 /* Define this to get the SOCK_DBG debugging facility. */
80 #define SOCK_DEBUGGING
81 #ifdef SOCK_DEBUGGING
82 #define SOCK_DEBUG(sk, msg...) do { if ((sk) && sock_flag((sk), SOCK_DBG)) \
83 					printk(KERN_DEBUG msg); } while (0)
84 #else
85 /* Validate arguments and do nothing */
86 static inline __printf(2, 3)
87 void SOCK_DEBUG(const struct sock *sk, const char *msg, ...)
88 {
89 }
90 #endif
91 
92 /* This is the per-socket lock.  The spinlock provides a synchronization
93  * between user contexts and software interrupt processing, whereas the
94  * mini-semaphore synchronizes multiple users amongst themselves.
95  */
96 typedef struct {
97 	spinlock_t		slock;
98 	int			owned;
99 	wait_queue_head_t	wq;
100 	/*
101 	 * We express the mutex-alike socket_lock semantics
102 	 * to the lock validator by explicitly managing
103 	 * the slock as a lock variant (in addition to
104 	 * the slock itself):
105 	 */
106 #ifdef CONFIG_DEBUG_LOCK_ALLOC
107 	struct lockdep_map dep_map;
108 #endif
109 } socket_lock_t;
110 
111 struct sock;
112 struct proto;
113 struct net;
114 
115 typedef __u32 __bitwise __portpair;
116 typedef __u64 __bitwise __addrpair;
117 
118 /**
119  *	struct sock_common - minimal network layer representation of sockets
120  *	@skc_daddr: Foreign IPv4 addr
121  *	@skc_rcv_saddr: Bound local IPv4 addr
122  *	@skc_addrpair: 8-byte-aligned __u64 union of @skc_daddr & @skc_rcv_saddr
123  *	@skc_hash: hash value used with various protocol lookup tables
124  *	@skc_u16hashes: two u16 hash values used by UDP lookup tables
125  *	@skc_dport: placeholder for inet_dport/tw_dport
126  *	@skc_num: placeholder for inet_num/tw_num
127  *	@skc_portpair: __u32 union of @skc_dport & @skc_num
128  *	@skc_family: network address family
129  *	@skc_state: Connection state
130  *	@skc_reuse: %SO_REUSEADDR setting
131  *	@skc_reuseport: %SO_REUSEPORT setting
132  *	@skc_ipv6only: socket is IPV6 only
133  *	@skc_net_refcnt: socket is using net ref counting
134  *	@skc_bound_dev_if: bound device index if != 0
135  *	@skc_bind_node: bind hash linkage for various protocol lookup tables
136  *	@skc_portaddr_node: second hash linkage for UDP/UDP-Lite protocol
137  *	@skc_prot: protocol handlers inside a network family
138  *	@skc_net: reference to the network namespace of this socket
139  *	@skc_v6_daddr: IPV6 destination address
140  *	@skc_v6_rcv_saddr: IPV6 source address
141  *	@skc_cookie: socket's cookie value
142  *	@skc_node: main hash linkage for various protocol lookup tables
143  *	@skc_nulls_node: main hash linkage for TCP/UDP/UDP-Lite protocol
144  *	@skc_tx_queue_mapping: tx queue number for this connection
145  *	@skc_rx_queue_mapping: rx queue number for this connection
146  *	@skc_flags: place holder for sk_flags
147  *		%SO_LINGER (l_onoff), %SO_BROADCAST, %SO_KEEPALIVE,
148  *		%SO_OOBINLINE settings, %SO_TIMESTAMPING settings
149  *	@skc_listener: connection request listener socket (aka rsk_listener)
150  *		[union with @skc_flags]
151  *	@skc_tw_dr: (aka tw_dr) ptr to &struct inet_timewait_death_row
152  *		[union with @skc_flags]
153  *	@skc_incoming_cpu: record/match cpu processing incoming packets
154  *	@skc_rcv_wnd: (aka rsk_rcv_wnd) TCP receive window size (possibly scaled)
155  *		[union with @skc_incoming_cpu]
156  *	@skc_tw_rcv_nxt: (aka tw_rcv_nxt) TCP window next expected seq number
157  *		[union with @skc_incoming_cpu]
158  *	@skc_refcnt: reference count
159  *
160  *	This is the minimal network layer representation of sockets, the header
161  *	for struct sock and struct inet_timewait_sock.
162  */
163 struct sock_common {
164 	/* skc_daddr and skc_rcv_saddr must be grouped on a 8 bytes aligned
165 	 * address on 64bit arches : cf INET_MATCH()
166 	 */
167 	union {
168 		__addrpair	skc_addrpair;
169 		struct {
170 			__be32	skc_daddr;
171 			__be32	skc_rcv_saddr;
172 		};
173 	};
174 	union  {
175 		unsigned int	skc_hash;
176 		__u16		skc_u16hashes[2];
177 	};
178 	/* skc_dport && skc_num must be grouped as well */
179 	union {
180 		__portpair	skc_portpair;
181 		struct {
182 			__be16	skc_dport;
183 			__u16	skc_num;
184 		};
185 	};
186 
187 	unsigned short		skc_family;
188 	volatile unsigned char	skc_state;
189 	unsigned char		skc_reuse:4;
190 	unsigned char		skc_reuseport:1;
191 	unsigned char		skc_ipv6only:1;
192 	unsigned char		skc_net_refcnt:1;
193 	int			skc_bound_dev_if;
194 	union {
195 		struct hlist_node	skc_bind_node;
196 		struct hlist_node	skc_portaddr_node;
197 	};
198 	struct proto		*skc_prot;
199 	possible_net_t		skc_net;
200 
201 #if IS_ENABLED(CONFIG_IPV6)
202 	struct in6_addr		skc_v6_daddr;
203 	struct in6_addr		skc_v6_rcv_saddr;
204 #endif
205 
206 	atomic64_t		skc_cookie;
207 
208 	/* following fields are padding to force
209 	 * offset(struct sock, sk_refcnt) == 128 on 64bit arches
210 	 * assuming IPV6 is enabled. We use this padding differently
211 	 * for different kind of 'sockets'
212 	 */
213 	union {
214 		unsigned long	skc_flags;
215 		struct sock	*skc_listener; /* request_sock */
216 		struct inet_timewait_death_row *skc_tw_dr; /* inet_timewait_sock */
217 	};
218 	/*
219 	 * fields between dontcopy_begin/dontcopy_end
220 	 * are not copied in sock_copy()
221 	 */
222 	/* private: */
223 	int			skc_dontcopy_begin[0];
224 	/* public: */
225 	union {
226 		struct hlist_node	skc_node;
227 		struct hlist_nulls_node skc_nulls_node;
228 	};
229 	unsigned short		skc_tx_queue_mapping;
230 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
231 	unsigned short		skc_rx_queue_mapping;
232 #endif
233 	union {
234 		int		skc_incoming_cpu;
235 		u32		skc_rcv_wnd;
236 		u32		skc_tw_rcv_nxt; /* struct tcp_timewait_sock  */
237 	};
238 
239 	refcount_t		skc_refcnt;
240 	/* private: */
241 	int                     skc_dontcopy_end[0];
242 	union {
243 		u32		skc_rxhash;
244 		u32		skc_window_clamp;
245 		u32		skc_tw_snd_nxt; /* struct tcp_timewait_sock */
246 	};
247 	/* public: */
248 };
249 
250 struct bpf_local_storage;
251 struct sk_filter;
252 
253 /**
254   *	struct sock - network layer representation of sockets
255   *	@__sk_common: shared layout with inet_timewait_sock
256   *	@sk_shutdown: mask of %SEND_SHUTDOWN and/or %RCV_SHUTDOWN
257   *	@sk_userlocks: %SO_SNDBUF and %SO_RCVBUF settings
258   *	@sk_lock:	synchronizer
259   *	@sk_kern_sock: True if sock is using kernel lock classes
260   *	@sk_rcvbuf: size of receive buffer in bytes
261   *	@sk_wq: sock wait queue and async head
262   *	@sk_rx_dst: receive input route used by early demux
263   *	@sk_rx_dst_ifindex: ifindex for @sk_rx_dst
264   *	@sk_rx_dst_cookie: cookie for @sk_rx_dst
265   *	@sk_dst_cache: destination cache
266   *	@sk_dst_pending_confirm: need to confirm neighbour
267   *	@sk_policy: flow policy
268   *	@sk_receive_queue: incoming packets
269   *	@sk_wmem_alloc: transmit queue bytes committed
270   *	@sk_tsq_flags: TCP Small Queues flags
271   *	@sk_write_queue: Packet sending queue
272   *	@sk_omem_alloc: "o" is "option" or "other"
273   *	@sk_wmem_queued: persistent queue size
274   *	@sk_forward_alloc: space allocated forward
275   *	@sk_reserved_mem: space reserved and non-reclaimable for the socket
276   *	@sk_napi_id: id of the last napi context to receive data for sk
277   *	@sk_ll_usec: usecs to busypoll when there is no data
278   *	@sk_allocation: allocation mode
279   *	@sk_pacing_rate: Pacing rate (if supported by transport/packet scheduler)
280   *	@sk_pacing_status: Pacing status (requested, handled by sch_fq)
281   *	@sk_max_pacing_rate: Maximum pacing rate (%SO_MAX_PACING_RATE)
282   *	@sk_sndbuf: size of send buffer in bytes
283   *	@__sk_flags_offset: empty field used to determine location of bitfield
284   *	@sk_padding: unused element for alignment
285   *	@sk_no_check_tx: %SO_NO_CHECK setting, set checksum in TX packets
286   *	@sk_no_check_rx: allow zero checksum in RX packets
287   *	@sk_route_caps: route capabilities (e.g. %NETIF_F_TSO)
288   *	@sk_gso_disabled: if set, NETIF_F_GSO_MASK is forbidden.
289   *	@sk_gso_type: GSO type (e.g. %SKB_GSO_TCPV4)
290   *	@sk_gso_max_size: Maximum GSO segment size to build
291   *	@sk_gso_max_segs: Maximum number of GSO segments
292   *	@sk_pacing_shift: scaling factor for TCP Small Queues
293   *	@sk_lingertime: %SO_LINGER l_linger setting
294   *	@sk_backlog: always used with the per-socket spinlock held
295   *	@defer_list: head of llist storing skbs to be freed
296   *	@sk_callback_lock: used with the callbacks in the end of this struct
297   *	@sk_error_queue: rarely used
298   *	@sk_prot_creator: sk_prot of original sock creator (see ipv6_setsockopt,
299   *			  IPV6_ADDRFORM for instance)
300   *	@sk_err: last error
301   *	@sk_err_soft: errors that don't cause failure but are the cause of a
302   *		      persistent failure not just 'timed out'
303   *	@sk_drops: raw/udp drops counter
304   *	@sk_ack_backlog: current listen backlog
305   *	@sk_max_ack_backlog: listen backlog set in listen()
306   *	@sk_uid: user id of owner
307   *	@sk_prefer_busy_poll: prefer busypolling over softirq processing
308   *	@sk_busy_poll_budget: napi processing budget when busypolling
309   *	@sk_priority: %SO_PRIORITY setting
310   *	@sk_type: socket type (%SOCK_STREAM, etc)
311   *	@sk_protocol: which protocol this socket belongs in this network family
312   *	@sk_peer_lock: lock protecting @sk_peer_pid and @sk_peer_cred
313   *	@sk_peer_pid: &struct pid for this socket's peer
314   *	@sk_peer_cred: %SO_PEERCRED setting
315   *	@sk_rcvlowat: %SO_RCVLOWAT setting
316   *	@sk_rcvtimeo: %SO_RCVTIMEO setting
317   *	@sk_sndtimeo: %SO_SNDTIMEO setting
318   *	@sk_txhash: computed flow hash for use on transmit
319   *	@sk_filter: socket filtering instructions
320   *	@sk_timer: sock cleanup timer
321   *	@sk_stamp: time stamp of last packet received
322   *	@sk_stamp_seq: lock for accessing sk_stamp on 32 bit architectures only
323   *	@sk_tsflags: SO_TIMESTAMPING flags
324   *	@sk_bind_phc: SO_TIMESTAMPING bind PHC index of PTP virtual clock
325   *	              for timestamping
326   *	@sk_tskey: counter to disambiguate concurrent tstamp requests
327   *	@sk_zckey: counter to order MSG_ZEROCOPY notifications
328   *	@sk_socket: Identd and reporting IO signals
329   *	@sk_user_data: RPC layer private data
330   *	@sk_frag: cached page frag
331   *	@sk_peek_off: current peek_offset value
332   *	@sk_send_head: front of stuff to transmit
333   *	@tcp_rtx_queue: TCP re-transmit queue [union with @sk_send_head]
334   *	@sk_security: used by security modules
335   *	@sk_mark: generic packet mark
336   *	@sk_cgrp_data: cgroup data for this cgroup
337   *	@sk_memcg: this socket's memory cgroup association
338   *	@sk_write_pending: a write to stream socket waits to start
339   *	@sk_state_change: callback to indicate change in the state of the sock
340   *	@sk_data_ready: callback to indicate there is data to be processed
341   *	@sk_write_space: callback to indicate there is bf sending space available
342   *	@sk_error_report: callback to indicate errors (e.g. %MSG_ERRQUEUE)
343   *	@sk_backlog_rcv: callback to process the backlog
344   *	@sk_validate_xmit_skb: ptr to an optional validate function
345   *	@sk_destruct: called at sock freeing time, i.e. when all refcnt == 0
346   *	@sk_reuseport_cb: reuseport group container
347   *	@sk_bpf_storage: ptr to cache and control for bpf_sk_storage
348   *	@sk_rcu: used during RCU grace period
349   *	@sk_clockid: clockid used by time-based scheduling (SO_TXTIME)
350   *	@sk_txtime_deadline_mode: set deadline mode for SO_TXTIME
351   *	@sk_txtime_report_errors: set report errors mode for SO_TXTIME
352   *	@sk_txtime_unused: unused txtime flags
353   *	@ns_tracker: tracker for netns reference
354   */
355 struct sock {
356 	/*
357 	 * Now struct inet_timewait_sock also uses sock_common, so please just
358 	 * don't add nothing before this first member (__sk_common) --acme
359 	 */
360 	struct sock_common	__sk_common;
361 #define sk_node			__sk_common.skc_node
362 #define sk_nulls_node		__sk_common.skc_nulls_node
363 #define sk_refcnt		__sk_common.skc_refcnt
364 #define sk_tx_queue_mapping	__sk_common.skc_tx_queue_mapping
365 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
366 #define sk_rx_queue_mapping	__sk_common.skc_rx_queue_mapping
367 #endif
368 
369 #define sk_dontcopy_begin	__sk_common.skc_dontcopy_begin
370 #define sk_dontcopy_end		__sk_common.skc_dontcopy_end
371 #define sk_hash			__sk_common.skc_hash
372 #define sk_portpair		__sk_common.skc_portpair
373 #define sk_num			__sk_common.skc_num
374 #define sk_dport		__sk_common.skc_dport
375 #define sk_addrpair		__sk_common.skc_addrpair
376 #define sk_daddr		__sk_common.skc_daddr
377 #define sk_rcv_saddr		__sk_common.skc_rcv_saddr
378 #define sk_family		__sk_common.skc_family
379 #define sk_state		__sk_common.skc_state
380 #define sk_reuse		__sk_common.skc_reuse
381 #define sk_reuseport		__sk_common.skc_reuseport
382 #define sk_ipv6only		__sk_common.skc_ipv6only
383 #define sk_net_refcnt		__sk_common.skc_net_refcnt
384 #define sk_bound_dev_if		__sk_common.skc_bound_dev_if
385 #define sk_bind_node		__sk_common.skc_bind_node
386 #define sk_prot			__sk_common.skc_prot
387 #define sk_net			__sk_common.skc_net
388 #define sk_v6_daddr		__sk_common.skc_v6_daddr
389 #define sk_v6_rcv_saddr	__sk_common.skc_v6_rcv_saddr
390 #define sk_cookie		__sk_common.skc_cookie
391 #define sk_incoming_cpu		__sk_common.skc_incoming_cpu
392 #define sk_flags		__sk_common.skc_flags
393 #define sk_rxhash		__sk_common.skc_rxhash
394 
395 	/* early demux fields */
396 	struct dst_entry __rcu	*sk_rx_dst;
397 	int			sk_rx_dst_ifindex;
398 	u32			sk_rx_dst_cookie;
399 
400 	socket_lock_t		sk_lock;
401 	atomic_t		sk_drops;
402 	int			sk_rcvlowat;
403 	struct sk_buff_head	sk_error_queue;
404 	struct sk_buff_head	sk_receive_queue;
405 	/*
406 	 * The backlog queue is special, it is always used with
407 	 * the per-socket spinlock held and requires low latency
408 	 * access. Therefore we special case it's implementation.
409 	 * Note : rmem_alloc is in this structure to fill a hole
410 	 * on 64bit arches, not because its logically part of
411 	 * backlog.
412 	 */
413 	struct {
414 		atomic_t	rmem_alloc;
415 		int		len;
416 		struct sk_buff	*head;
417 		struct sk_buff	*tail;
418 	} sk_backlog;
419 	struct llist_head defer_list;
420 
421 #define sk_rmem_alloc sk_backlog.rmem_alloc
422 
423 	int			sk_forward_alloc;
424 	u32			sk_reserved_mem;
425 #ifdef CONFIG_NET_RX_BUSY_POLL
426 	unsigned int		sk_ll_usec;
427 	/* ===== mostly read cache line ===== */
428 	unsigned int		sk_napi_id;
429 #endif
430 	int			sk_rcvbuf;
431 
432 	struct sk_filter __rcu	*sk_filter;
433 	union {
434 		struct socket_wq __rcu	*sk_wq;
435 		/* private: */
436 		struct socket_wq	*sk_wq_raw;
437 		/* public: */
438 	};
439 #ifdef CONFIG_XFRM
440 	struct xfrm_policy __rcu *sk_policy[2];
441 #endif
442 
443 	struct dst_entry __rcu	*sk_dst_cache;
444 	atomic_t		sk_omem_alloc;
445 	int			sk_sndbuf;
446 
447 	/* ===== cache line for TX ===== */
448 	int			sk_wmem_queued;
449 	refcount_t		sk_wmem_alloc;
450 	unsigned long		sk_tsq_flags;
451 	union {
452 		struct sk_buff	*sk_send_head;
453 		struct rb_root	tcp_rtx_queue;
454 	};
455 	struct sk_buff_head	sk_write_queue;
456 	__s32			sk_peek_off;
457 	int			sk_write_pending;
458 	__u32			sk_dst_pending_confirm;
459 	u32			sk_pacing_status; /* see enum sk_pacing */
460 	long			sk_sndtimeo;
461 	struct timer_list	sk_timer;
462 	__u32			sk_priority;
463 	__u32			sk_mark;
464 	unsigned long		sk_pacing_rate; /* bytes per second */
465 	unsigned long		sk_max_pacing_rate;
466 	struct page_frag	sk_frag;
467 	netdev_features_t	sk_route_caps;
468 	int			sk_gso_type;
469 	unsigned int		sk_gso_max_size;
470 	gfp_t			sk_allocation;
471 	__u32			sk_txhash;
472 
473 	/*
474 	 * Because of non atomicity rules, all
475 	 * changes are protected by socket lock.
476 	 */
477 	u8			sk_gso_disabled : 1,
478 				sk_kern_sock : 1,
479 				sk_no_check_tx : 1,
480 				sk_no_check_rx : 1,
481 				sk_userlocks : 4;
482 	u8			sk_pacing_shift;
483 	u16			sk_type;
484 	u16			sk_protocol;
485 	u16			sk_gso_max_segs;
486 	unsigned long	        sk_lingertime;
487 	struct proto		*sk_prot_creator;
488 	rwlock_t		sk_callback_lock;
489 	int			sk_err,
490 				sk_err_soft;
491 	u32			sk_ack_backlog;
492 	u32			sk_max_ack_backlog;
493 	kuid_t			sk_uid;
494 #ifdef CONFIG_NET_RX_BUSY_POLL
495 	u8			sk_prefer_busy_poll;
496 	u16			sk_busy_poll_budget;
497 #endif
498 	spinlock_t		sk_peer_lock;
499 	int			sk_bind_phc;
500 	struct pid		*sk_peer_pid;
501 	const struct cred	*sk_peer_cred;
502 
503 	long			sk_rcvtimeo;
504 	ktime_t			sk_stamp;
505 #if BITS_PER_LONG==32
506 	seqlock_t		sk_stamp_seq;
507 #endif
508 	u16			sk_tsflags;
509 	u8			sk_shutdown;
510 	atomic_t		sk_tskey;
511 	atomic_t		sk_zckey;
512 
513 	u8			sk_clockid;
514 	u8			sk_txtime_deadline_mode : 1,
515 				sk_txtime_report_errors : 1,
516 				sk_txtime_unused : 6;
517 
518 	struct socket		*sk_socket;
519 	void			*sk_user_data;
520 #ifdef CONFIG_SECURITY
521 	void			*sk_security;
522 #endif
523 	struct sock_cgroup_data	sk_cgrp_data;
524 	struct mem_cgroup	*sk_memcg;
525 	void			(*sk_state_change)(struct sock *sk);
526 	void			(*sk_data_ready)(struct sock *sk);
527 	void			(*sk_write_space)(struct sock *sk);
528 	void			(*sk_error_report)(struct sock *sk);
529 	int			(*sk_backlog_rcv)(struct sock *sk,
530 						  struct sk_buff *skb);
531 #ifdef CONFIG_SOCK_VALIDATE_XMIT
532 	struct sk_buff*		(*sk_validate_xmit_skb)(struct sock *sk,
533 							struct net_device *dev,
534 							struct sk_buff *skb);
535 #endif
536 	void                    (*sk_destruct)(struct sock *sk);
537 	struct sock_reuseport __rcu	*sk_reuseport_cb;
538 #ifdef CONFIG_BPF_SYSCALL
539 	struct bpf_local_storage __rcu	*sk_bpf_storage;
540 #endif
541 	struct rcu_head		sk_rcu;
542 	netns_tracker		ns_tracker;
543 };
544 
545 enum sk_pacing {
546 	SK_PACING_NONE		= 0,
547 	SK_PACING_NEEDED	= 1,
548 	SK_PACING_FQ		= 2,
549 };
550 
551 /* Pointer stored in sk_user_data might not be suitable for copying
552  * when cloning the socket. For instance, it can point to a reference
553  * counted object. sk_user_data bottom bit is set if pointer must not
554  * be copied.
555  */
556 #define SK_USER_DATA_NOCOPY	1UL
557 #define SK_USER_DATA_BPF	2UL	/* Managed by BPF */
558 #define SK_USER_DATA_PTRMASK	~(SK_USER_DATA_NOCOPY | SK_USER_DATA_BPF)
559 
560 /**
561  * sk_user_data_is_nocopy - Test if sk_user_data pointer must not be copied
562  * @sk: socket
563  */
564 static inline bool sk_user_data_is_nocopy(const struct sock *sk)
565 {
566 	return ((uintptr_t)sk->sk_user_data & SK_USER_DATA_NOCOPY);
567 }
568 
569 #define __sk_user_data(sk) ((*((void __rcu **)&(sk)->sk_user_data)))
570 
571 #define rcu_dereference_sk_user_data(sk)				\
572 ({									\
573 	void *__tmp = rcu_dereference(__sk_user_data((sk)));		\
574 	(void *)((uintptr_t)__tmp & SK_USER_DATA_PTRMASK);		\
575 })
576 #define rcu_assign_sk_user_data(sk, ptr)				\
577 ({									\
578 	uintptr_t __tmp = (uintptr_t)(ptr);				\
579 	WARN_ON_ONCE(__tmp & ~SK_USER_DATA_PTRMASK);			\
580 	rcu_assign_pointer(__sk_user_data((sk)), __tmp);		\
581 })
582 #define rcu_assign_sk_user_data_nocopy(sk, ptr)				\
583 ({									\
584 	uintptr_t __tmp = (uintptr_t)(ptr);				\
585 	WARN_ON_ONCE(__tmp & ~SK_USER_DATA_PTRMASK);			\
586 	rcu_assign_pointer(__sk_user_data((sk)),			\
587 			   __tmp | SK_USER_DATA_NOCOPY);		\
588 })
589 
590 /*
591  * SK_CAN_REUSE and SK_NO_REUSE on a socket mean that the socket is OK
592  * or not whether his port will be reused by someone else. SK_FORCE_REUSE
593  * on a socket means that the socket will reuse everybody else's port
594  * without looking at the other's sk_reuse value.
595  */
596 
597 #define SK_NO_REUSE	0
598 #define SK_CAN_REUSE	1
599 #define SK_FORCE_REUSE	2
600 
601 int sk_set_peek_off(struct sock *sk, int val);
602 
603 static inline int sk_peek_offset(struct sock *sk, int flags)
604 {
605 	if (unlikely(flags & MSG_PEEK)) {
606 		return READ_ONCE(sk->sk_peek_off);
607 	}
608 
609 	return 0;
610 }
611 
612 static inline void sk_peek_offset_bwd(struct sock *sk, int val)
613 {
614 	s32 off = READ_ONCE(sk->sk_peek_off);
615 
616 	if (unlikely(off >= 0)) {
617 		off = max_t(s32, off - val, 0);
618 		WRITE_ONCE(sk->sk_peek_off, off);
619 	}
620 }
621 
622 static inline void sk_peek_offset_fwd(struct sock *sk, int val)
623 {
624 	sk_peek_offset_bwd(sk, -val);
625 }
626 
627 /*
628  * Hashed lists helper routines
629  */
630 static inline struct sock *sk_entry(const struct hlist_node *node)
631 {
632 	return hlist_entry(node, struct sock, sk_node);
633 }
634 
635 static inline struct sock *__sk_head(const struct hlist_head *head)
636 {
637 	return hlist_entry(head->first, struct sock, sk_node);
638 }
639 
640 static inline struct sock *sk_head(const struct hlist_head *head)
641 {
642 	return hlist_empty(head) ? NULL : __sk_head(head);
643 }
644 
645 static inline struct sock *__sk_nulls_head(const struct hlist_nulls_head *head)
646 {
647 	return hlist_nulls_entry(head->first, struct sock, sk_nulls_node);
648 }
649 
650 static inline struct sock *sk_nulls_head(const struct hlist_nulls_head *head)
651 {
652 	return hlist_nulls_empty(head) ? NULL : __sk_nulls_head(head);
653 }
654 
655 static inline struct sock *sk_next(const struct sock *sk)
656 {
657 	return hlist_entry_safe(sk->sk_node.next, struct sock, sk_node);
658 }
659 
660 static inline struct sock *sk_nulls_next(const struct sock *sk)
661 {
662 	return (!is_a_nulls(sk->sk_nulls_node.next)) ?
663 		hlist_nulls_entry(sk->sk_nulls_node.next,
664 				  struct sock, sk_nulls_node) :
665 		NULL;
666 }
667 
668 static inline bool sk_unhashed(const struct sock *sk)
669 {
670 	return hlist_unhashed(&sk->sk_node);
671 }
672 
673 static inline bool sk_hashed(const struct sock *sk)
674 {
675 	return !sk_unhashed(sk);
676 }
677 
678 static inline void sk_node_init(struct hlist_node *node)
679 {
680 	node->pprev = NULL;
681 }
682 
683 static inline void sk_nulls_node_init(struct hlist_nulls_node *node)
684 {
685 	node->pprev = NULL;
686 }
687 
688 static inline void __sk_del_node(struct sock *sk)
689 {
690 	__hlist_del(&sk->sk_node);
691 }
692 
693 /* NB: equivalent to hlist_del_init_rcu */
694 static inline bool __sk_del_node_init(struct sock *sk)
695 {
696 	if (sk_hashed(sk)) {
697 		__sk_del_node(sk);
698 		sk_node_init(&sk->sk_node);
699 		return true;
700 	}
701 	return false;
702 }
703 
704 /* Grab socket reference count. This operation is valid only
705    when sk is ALREADY grabbed f.e. it is found in hash table
706    or a list and the lookup is made under lock preventing hash table
707    modifications.
708  */
709 
710 static __always_inline void sock_hold(struct sock *sk)
711 {
712 	refcount_inc(&sk->sk_refcnt);
713 }
714 
715 /* Ungrab socket in the context, which assumes that socket refcnt
716    cannot hit zero, f.e. it is true in context of any socketcall.
717  */
718 static __always_inline void __sock_put(struct sock *sk)
719 {
720 	refcount_dec(&sk->sk_refcnt);
721 }
722 
723 static inline bool sk_del_node_init(struct sock *sk)
724 {
725 	bool rc = __sk_del_node_init(sk);
726 
727 	if (rc) {
728 		/* paranoid for a while -acme */
729 		WARN_ON(refcount_read(&sk->sk_refcnt) == 1);
730 		__sock_put(sk);
731 	}
732 	return rc;
733 }
734 #define sk_del_node_init_rcu(sk)	sk_del_node_init(sk)
735 
736 static inline bool __sk_nulls_del_node_init_rcu(struct sock *sk)
737 {
738 	if (sk_hashed(sk)) {
739 		hlist_nulls_del_init_rcu(&sk->sk_nulls_node);
740 		return true;
741 	}
742 	return false;
743 }
744 
745 static inline bool sk_nulls_del_node_init_rcu(struct sock *sk)
746 {
747 	bool rc = __sk_nulls_del_node_init_rcu(sk);
748 
749 	if (rc) {
750 		/* paranoid for a while -acme */
751 		WARN_ON(refcount_read(&sk->sk_refcnt) == 1);
752 		__sock_put(sk);
753 	}
754 	return rc;
755 }
756 
757 static inline void __sk_add_node(struct sock *sk, struct hlist_head *list)
758 {
759 	hlist_add_head(&sk->sk_node, list);
760 }
761 
762 static inline void sk_add_node(struct sock *sk, struct hlist_head *list)
763 {
764 	sock_hold(sk);
765 	__sk_add_node(sk, list);
766 }
767 
768 static inline void sk_add_node_rcu(struct sock *sk, struct hlist_head *list)
769 {
770 	sock_hold(sk);
771 	if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport &&
772 	    sk->sk_family == AF_INET6)
773 		hlist_add_tail_rcu(&sk->sk_node, list);
774 	else
775 		hlist_add_head_rcu(&sk->sk_node, list);
776 }
777 
778 static inline void sk_add_node_tail_rcu(struct sock *sk, struct hlist_head *list)
779 {
780 	sock_hold(sk);
781 	hlist_add_tail_rcu(&sk->sk_node, list);
782 }
783 
784 static inline void __sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
785 {
786 	hlist_nulls_add_head_rcu(&sk->sk_nulls_node, list);
787 }
788 
789 static inline void __sk_nulls_add_node_tail_rcu(struct sock *sk, struct hlist_nulls_head *list)
790 {
791 	hlist_nulls_add_tail_rcu(&sk->sk_nulls_node, list);
792 }
793 
794 static inline void sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
795 {
796 	sock_hold(sk);
797 	__sk_nulls_add_node_rcu(sk, list);
798 }
799 
800 static inline void __sk_del_bind_node(struct sock *sk)
801 {
802 	__hlist_del(&sk->sk_bind_node);
803 }
804 
805 static inline void sk_add_bind_node(struct sock *sk,
806 					struct hlist_head *list)
807 {
808 	hlist_add_head(&sk->sk_bind_node, list);
809 }
810 
811 #define sk_for_each(__sk, list) \
812 	hlist_for_each_entry(__sk, list, sk_node)
813 #define sk_for_each_rcu(__sk, list) \
814 	hlist_for_each_entry_rcu(__sk, list, sk_node)
815 #define sk_nulls_for_each(__sk, node, list) \
816 	hlist_nulls_for_each_entry(__sk, node, list, sk_nulls_node)
817 #define sk_nulls_for_each_rcu(__sk, node, list) \
818 	hlist_nulls_for_each_entry_rcu(__sk, node, list, sk_nulls_node)
819 #define sk_for_each_from(__sk) \
820 	hlist_for_each_entry_from(__sk, sk_node)
821 #define sk_nulls_for_each_from(__sk, node) \
822 	if (__sk && ({ node = &(__sk)->sk_nulls_node; 1; })) \
823 		hlist_nulls_for_each_entry_from(__sk, node, sk_nulls_node)
824 #define sk_for_each_safe(__sk, tmp, list) \
825 	hlist_for_each_entry_safe(__sk, tmp, list, sk_node)
826 #define sk_for_each_bound(__sk, list) \
827 	hlist_for_each_entry(__sk, list, sk_bind_node)
828 
829 /**
830  * sk_for_each_entry_offset_rcu - iterate over a list at a given struct offset
831  * @tpos:	the type * to use as a loop cursor.
832  * @pos:	the &struct hlist_node to use as a loop cursor.
833  * @head:	the head for your list.
834  * @offset:	offset of hlist_node within the struct.
835  *
836  */
837 #define sk_for_each_entry_offset_rcu(tpos, pos, head, offset)		       \
838 	for (pos = rcu_dereference(hlist_first_rcu(head));		       \
839 	     pos != NULL &&						       \
840 		({ tpos = (typeof(*tpos) *)((void *)pos - offset); 1;});       \
841 	     pos = rcu_dereference(hlist_next_rcu(pos)))
842 
843 static inline struct user_namespace *sk_user_ns(struct sock *sk)
844 {
845 	/* Careful only use this in a context where these parameters
846 	 * can not change and must all be valid, such as recvmsg from
847 	 * userspace.
848 	 */
849 	return sk->sk_socket->file->f_cred->user_ns;
850 }
851 
852 /* Sock flags */
853 enum sock_flags {
854 	SOCK_DEAD,
855 	SOCK_DONE,
856 	SOCK_URGINLINE,
857 	SOCK_KEEPOPEN,
858 	SOCK_LINGER,
859 	SOCK_DESTROY,
860 	SOCK_BROADCAST,
861 	SOCK_TIMESTAMP,
862 	SOCK_ZAPPED,
863 	SOCK_USE_WRITE_QUEUE, /* whether to call sk->sk_write_space in sock_wfree */
864 	SOCK_DBG, /* %SO_DEBUG setting */
865 	SOCK_RCVTSTAMP, /* %SO_TIMESTAMP setting */
866 	SOCK_RCVTSTAMPNS, /* %SO_TIMESTAMPNS setting */
867 	SOCK_LOCALROUTE, /* route locally only, %SO_DONTROUTE setting */
868 	SOCK_MEMALLOC, /* VM depends on this socket for swapping */
869 	SOCK_TIMESTAMPING_RX_SOFTWARE,  /* %SOF_TIMESTAMPING_RX_SOFTWARE */
870 	SOCK_FASYNC, /* fasync() active */
871 	SOCK_RXQ_OVFL,
872 	SOCK_ZEROCOPY, /* buffers from userspace */
873 	SOCK_WIFI_STATUS, /* push wifi status to userspace */
874 	SOCK_NOFCS, /* Tell NIC not to do the Ethernet FCS.
875 		     * Will use last 4 bytes of packet sent from
876 		     * user-space instead.
877 		     */
878 	SOCK_FILTER_LOCKED, /* Filter cannot be changed anymore */
879 	SOCK_SELECT_ERR_QUEUE, /* Wake select on error queue */
880 	SOCK_RCU_FREE, /* wait rcu grace period in sk_destruct() */
881 	SOCK_TXTIME,
882 	SOCK_XDP, /* XDP is attached */
883 	SOCK_TSTAMP_NEW, /* Indicates 64 bit timestamps always */
884 };
885 
886 #define SK_FLAGS_TIMESTAMP ((1UL << SOCK_TIMESTAMP) | (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE))
887 
888 static inline void sock_copy_flags(struct sock *nsk, struct sock *osk)
889 {
890 	nsk->sk_flags = osk->sk_flags;
891 }
892 
893 static inline void sock_set_flag(struct sock *sk, enum sock_flags flag)
894 {
895 	__set_bit(flag, &sk->sk_flags);
896 }
897 
898 static inline void sock_reset_flag(struct sock *sk, enum sock_flags flag)
899 {
900 	__clear_bit(flag, &sk->sk_flags);
901 }
902 
903 static inline void sock_valbool_flag(struct sock *sk, enum sock_flags bit,
904 				     int valbool)
905 {
906 	if (valbool)
907 		sock_set_flag(sk, bit);
908 	else
909 		sock_reset_flag(sk, bit);
910 }
911 
912 static inline bool sock_flag(const struct sock *sk, enum sock_flags flag)
913 {
914 	return test_bit(flag, &sk->sk_flags);
915 }
916 
917 #ifdef CONFIG_NET
918 DECLARE_STATIC_KEY_FALSE(memalloc_socks_key);
919 static inline int sk_memalloc_socks(void)
920 {
921 	return static_branch_unlikely(&memalloc_socks_key);
922 }
923 
924 void __receive_sock(struct file *file);
925 #else
926 
927 static inline int sk_memalloc_socks(void)
928 {
929 	return 0;
930 }
931 
932 static inline void __receive_sock(struct file *file)
933 { }
934 #endif
935 
936 static inline gfp_t sk_gfp_mask(const struct sock *sk, gfp_t gfp_mask)
937 {
938 	return gfp_mask | (sk->sk_allocation & __GFP_MEMALLOC);
939 }
940 
941 static inline void sk_acceptq_removed(struct sock *sk)
942 {
943 	WRITE_ONCE(sk->sk_ack_backlog, sk->sk_ack_backlog - 1);
944 }
945 
946 static inline void sk_acceptq_added(struct sock *sk)
947 {
948 	WRITE_ONCE(sk->sk_ack_backlog, sk->sk_ack_backlog + 1);
949 }
950 
951 /* Note: If you think the test should be:
952  *	return READ_ONCE(sk->sk_ack_backlog) >= READ_ONCE(sk->sk_max_ack_backlog);
953  * Then please take a look at commit 64a146513f8f ("[NET]: Revert incorrect accept queue backlog changes.")
954  */
955 static inline bool sk_acceptq_is_full(const struct sock *sk)
956 {
957 	return READ_ONCE(sk->sk_ack_backlog) > READ_ONCE(sk->sk_max_ack_backlog);
958 }
959 
960 /*
961  * Compute minimal free write space needed to queue new packets.
962  */
963 static inline int sk_stream_min_wspace(const struct sock *sk)
964 {
965 	return READ_ONCE(sk->sk_wmem_queued) >> 1;
966 }
967 
968 static inline int sk_stream_wspace(const struct sock *sk)
969 {
970 	return READ_ONCE(sk->sk_sndbuf) - READ_ONCE(sk->sk_wmem_queued);
971 }
972 
973 static inline void sk_wmem_queued_add(struct sock *sk, int val)
974 {
975 	WRITE_ONCE(sk->sk_wmem_queued, sk->sk_wmem_queued + val);
976 }
977 
978 void sk_stream_write_space(struct sock *sk);
979 
980 /* OOB backlog add */
981 static inline void __sk_add_backlog(struct sock *sk, struct sk_buff *skb)
982 {
983 	/* dont let skb dst not refcounted, we are going to leave rcu lock */
984 	skb_dst_force(skb);
985 
986 	if (!sk->sk_backlog.tail)
987 		WRITE_ONCE(sk->sk_backlog.head, skb);
988 	else
989 		sk->sk_backlog.tail->next = skb;
990 
991 	WRITE_ONCE(sk->sk_backlog.tail, skb);
992 	skb->next = NULL;
993 }
994 
995 /*
996  * Take into account size of receive queue and backlog queue
997  * Do not take into account this skb truesize,
998  * to allow even a single big packet to come.
999  */
1000 static inline bool sk_rcvqueues_full(const struct sock *sk, unsigned int limit)
1001 {
1002 	unsigned int qsize = sk->sk_backlog.len + atomic_read(&sk->sk_rmem_alloc);
1003 
1004 	return qsize > limit;
1005 }
1006 
1007 /* The per-socket spinlock must be held here. */
1008 static inline __must_check int sk_add_backlog(struct sock *sk, struct sk_buff *skb,
1009 					      unsigned int limit)
1010 {
1011 	if (sk_rcvqueues_full(sk, limit))
1012 		return -ENOBUFS;
1013 
1014 	/*
1015 	 * If the skb was allocated from pfmemalloc reserves, only
1016 	 * allow SOCK_MEMALLOC sockets to use it as this socket is
1017 	 * helping free memory
1018 	 */
1019 	if (skb_pfmemalloc(skb) && !sock_flag(sk, SOCK_MEMALLOC))
1020 		return -ENOMEM;
1021 
1022 	__sk_add_backlog(sk, skb);
1023 	sk->sk_backlog.len += skb->truesize;
1024 	return 0;
1025 }
1026 
1027 int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb);
1028 
1029 INDIRECT_CALLABLE_DECLARE(int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb));
1030 INDIRECT_CALLABLE_DECLARE(int tcp_v6_do_rcv(struct sock *sk, struct sk_buff *skb));
1031 
1032 static inline int sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
1033 {
1034 	if (sk_memalloc_socks() && skb_pfmemalloc(skb))
1035 		return __sk_backlog_rcv(sk, skb);
1036 
1037 	return INDIRECT_CALL_INET(sk->sk_backlog_rcv,
1038 				  tcp_v6_do_rcv,
1039 				  tcp_v4_do_rcv,
1040 				  sk, skb);
1041 }
1042 
1043 static inline void sk_incoming_cpu_update(struct sock *sk)
1044 {
1045 	int cpu = raw_smp_processor_id();
1046 
1047 	if (unlikely(READ_ONCE(sk->sk_incoming_cpu) != cpu))
1048 		WRITE_ONCE(sk->sk_incoming_cpu, cpu);
1049 }
1050 
1051 static inline void sock_rps_record_flow_hash(__u32 hash)
1052 {
1053 #ifdef CONFIG_RPS
1054 	struct rps_sock_flow_table *sock_flow_table;
1055 
1056 	rcu_read_lock();
1057 	sock_flow_table = rcu_dereference(rps_sock_flow_table);
1058 	rps_record_sock_flow(sock_flow_table, hash);
1059 	rcu_read_unlock();
1060 #endif
1061 }
1062 
1063 static inline void sock_rps_record_flow(const struct sock *sk)
1064 {
1065 #ifdef CONFIG_RPS
1066 	if (static_branch_unlikely(&rfs_needed)) {
1067 		/* Reading sk->sk_rxhash might incur an expensive cache line
1068 		 * miss.
1069 		 *
1070 		 * TCP_ESTABLISHED does cover almost all states where RFS
1071 		 * might be useful, and is cheaper [1] than testing :
1072 		 *	IPv4: inet_sk(sk)->inet_daddr
1073 		 * 	IPv6: ipv6_addr_any(&sk->sk_v6_daddr)
1074 		 * OR	an additional socket flag
1075 		 * [1] : sk_state and sk_prot are in the same cache line.
1076 		 */
1077 		if (sk->sk_state == TCP_ESTABLISHED)
1078 			sock_rps_record_flow_hash(sk->sk_rxhash);
1079 	}
1080 #endif
1081 }
1082 
1083 static inline void sock_rps_save_rxhash(struct sock *sk,
1084 					const struct sk_buff *skb)
1085 {
1086 #ifdef CONFIG_RPS
1087 	if (unlikely(sk->sk_rxhash != skb->hash))
1088 		sk->sk_rxhash = skb->hash;
1089 #endif
1090 }
1091 
1092 static inline void sock_rps_reset_rxhash(struct sock *sk)
1093 {
1094 #ifdef CONFIG_RPS
1095 	sk->sk_rxhash = 0;
1096 #endif
1097 }
1098 
1099 #define sk_wait_event(__sk, __timeo, __condition, __wait)		\
1100 	({	int __rc;						\
1101 		release_sock(__sk);					\
1102 		__rc = __condition;					\
1103 		if (!__rc) {						\
1104 			*(__timeo) = wait_woken(__wait,			\
1105 						TASK_INTERRUPTIBLE,	\
1106 						*(__timeo));		\
1107 		}							\
1108 		sched_annotate_sleep();					\
1109 		lock_sock(__sk);					\
1110 		__rc = __condition;					\
1111 		__rc;							\
1112 	})
1113 
1114 int sk_stream_wait_connect(struct sock *sk, long *timeo_p);
1115 int sk_stream_wait_memory(struct sock *sk, long *timeo_p);
1116 void sk_stream_wait_close(struct sock *sk, long timeo_p);
1117 int sk_stream_error(struct sock *sk, int flags, int err);
1118 void sk_stream_kill_queues(struct sock *sk);
1119 void sk_set_memalloc(struct sock *sk);
1120 void sk_clear_memalloc(struct sock *sk);
1121 
1122 void __sk_flush_backlog(struct sock *sk);
1123 
1124 static inline bool sk_flush_backlog(struct sock *sk)
1125 {
1126 	if (unlikely(READ_ONCE(sk->sk_backlog.tail))) {
1127 		__sk_flush_backlog(sk);
1128 		return true;
1129 	}
1130 	return false;
1131 }
1132 
1133 int sk_wait_data(struct sock *sk, long *timeo, const struct sk_buff *skb);
1134 
1135 struct request_sock_ops;
1136 struct timewait_sock_ops;
1137 struct inet_hashinfo;
1138 struct raw_hashinfo;
1139 struct smc_hashinfo;
1140 struct module;
1141 struct sk_psock;
1142 
1143 /*
1144  * caches using SLAB_TYPESAFE_BY_RCU should let .next pointer from nulls nodes
1145  * un-modified. Special care is taken when initializing object to zero.
1146  */
1147 static inline void sk_prot_clear_nulls(struct sock *sk, int size)
1148 {
1149 	if (offsetof(struct sock, sk_node.next) != 0)
1150 		memset(sk, 0, offsetof(struct sock, sk_node.next));
1151 	memset(&sk->sk_node.pprev, 0,
1152 	       size - offsetof(struct sock, sk_node.pprev));
1153 }
1154 
1155 /* Networking protocol blocks we attach to sockets.
1156  * socket layer -> transport layer interface
1157  */
1158 struct proto {
1159 	void			(*close)(struct sock *sk,
1160 					long timeout);
1161 	int			(*pre_connect)(struct sock *sk,
1162 					struct sockaddr *uaddr,
1163 					int addr_len);
1164 	int			(*connect)(struct sock *sk,
1165 					struct sockaddr *uaddr,
1166 					int addr_len);
1167 	int			(*disconnect)(struct sock *sk, int flags);
1168 
1169 	struct sock *		(*accept)(struct sock *sk, int flags, int *err,
1170 					  bool kern);
1171 
1172 	int			(*ioctl)(struct sock *sk, int cmd,
1173 					 unsigned long arg);
1174 	int			(*init)(struct sock *sk);
1175 	void			(*destroy)(struct sock *sk);
1176 	void			(*shutdown)(struct sock *sk, int how);
1177 	int			(*setsockopt)(struct sock *sk, int level,
1178 					int optname, sockptr_t optval,
1179 					unsigned int optlen);
1180 	int			(*getsockopt)(struct sock *sk, int level,
1181 					int optname, char __user *optval,
1182 					int __user *option);
1183 	void			(*keepalive)(struct sock *sk, int valbool);
1184 #ifdef CONFIG_COMPAT
1185 	int			(*compat_ioctl)(struct sock *sk,
1186 					unsigned int cmd, unsigned long arg);
1187 #endif
1188 	int			(*sendmsg)(struct sock *sk, struct msghdr *msg,
1189 					   size_t len);
1190 	int			(*recvmsg)(struct sock *sk, struct msghdr *msg,
1191 					   size_t len, int noblock, int flags,
1192 					   int *addr_len);
1193 	int			(*sendpage)(struct sock *sk, struct page *page,
1194 					int offset, size_t size, int flags);
1195 	int			(*bind)(struct sock *sk,
1196 					struct sockaddr *addr, int addr_len);
1197 	int			(*bind_add)(struct sock *sk,
1198 					struct sockaddr *addr, int addr_len);
1199 
1200 	int			(*backlog_rcv) (struct sock *sk,
1201 						struct sk_buff *skb);
1202 	bool			(*bpf_bypass_getsockopt)(int level,
1203 							 int optname);
1204 
1205 	void		(*release_cb)(struct sock *sk);
1206 
1207 	/* Keeping track of sk's, looking them up, and port selection methods. */
1208 	int			(*hash)(struct sock *sk);
1209 	void			(*unhash)(struct sock *sk);
1210 	void			(*rehash)(struct sock *sk);
1211 	int			(*get_port)(struct sock *sk, unsigned short snum);
1212 	void			(*put_port)(struct sock *sk);
1213 #ifdef CONFIG_BPF_SYSCALL
1214 	int			(*psock_update_sk_prot)(struct sock *sk,
1215 							struct sk_psock *psock,
1216 							bool restore);
1217 #endif
1218 
1219 	/* Keeping track of sockets in use */
1220 #ifdef CONFIG_PROC_FS
1221 	unsigned int		inuse_idx;
1222 #endif
1223 
1224 #if IS_ENABLED(CONFIG_MPTCP)
1225 	int			(*forward_alloc_get)(const struct sock *sk);
1226 #endif
1227 
1228 	bool			(*stream_memory_free)(const struct sock *sk, int wake);
1229 	bool			(*sock_is_readable)(struct sock *sk);
1230 	/* Memory pressure */
1231 	void			(*enter_memory_pressure)(struct sock *sk);
1232 	void			(*leave_memory_pressure)(struct sock *sk);
1233 	atomic_long_t		*memory_allocated;	/* Current allocated memory. */
1234 	struct percpu_counter	*sockets_allocated;	/* Current number of sockets. */
1235 
1236 	/*
1237 	 * Pressure flag: try to collapse.
1238 	 * Technical note: it is used by multiple contexts non atomically.
1239 	 * All the __sk_mem_schedule() is of this nature: accounting
1240 	 * is strict, actions are advisory and have some latency.
1241 	 */
1242 	unsigned long		*memory_pressure;
1243 	long			*sysctl_mem;
1244 
1245 	int			*sysctl_wmem;
1246 	int			*sysctl_rmem;
1247 	u32			sysctl_wmem_offset;
1248 	u32			sysctl_rmem_offset;
1249 
1250 	int			max_header;
1251 	bool			no_autobind;
1252 
1253 	struct kmem_cache	*slab;
1254 	unsigned int		obj_size;
1255 	slab_flags_t		slab_flags;
1256 	unsigned int		useroffset;	/* Usercopy region offset */
1257 	unsigned int		usersize;	/* Usercopy region size */
1258 
1259 	unsigned int __percpu	*orphan_count;
1260 
1261 	struct request_sock_ops	*rsk_prot;
1262 	struct timewait_sock_ops *twsk_prot;
1263 
1264 	union {
1265 		struct inet_hashinfo	*hashinfo;
1266 		struct udp_table	*udp_table;
1267 		struct raw_hashinfo	*raw_hash;
1268 		struct smc_hashinfo	*smc_hash;
1269 	} h;
1270 
1271 	struct module		*owner;
1272 
1273 	char			name[32];
1274 
1275 	struct list_head	node;
1276 #ifdef SOCK_REFCNT_DEBUG
1277 	atomic_t		socks;
1278 #endif
1279 	int			(*diag_destroy)(struct sock *sk, int err);
1280 } __randomize_layout;
1281 
1282 int proto_register(struct proto *prot, int alloc_slab);
1283 void proto_unregister(struct proto *prot);
1284 int sock_load_diag_module(int family, int protocol);
1285 
1286 #ifdef SOCK_REFCNT_DEBUG
1287 static inline void sk_refcnt_debug_inc(struct sock *sk)
1288 {
1289 	atomic_inc(&sk->sk_prot->socks);
1290 }
1291 
1292 static inline void sk_refcnt_debug_dec(struct sock *sk)
1293 {
1294 	atomic_dec(&sk->sk_prot->socks);
1295 	printk(KERN_DEBUG "%s socket %p released, %d are still alive\n",
1296 	       sk->sk_prot->name, sk, atomic_read(&sk->sk_prot->socks));
1297 }
1298 
1299 static inline void sk_refcnt_debug_release(const struct sock *sk)
1300 {
1301 	if (refcount_read(&sk->sk_refcnt) != 1)
1302 		printk(KERN_DEBUG "Destruction of the %s socket %p delayed, refcnt=%d\n",
1303 		       sk->sk_prot->name, sk, refcount_read(&sk->sk_refcnt));
1304 }
1305 #else /* SOCK_REFCNT_DEBUG */
1306 #define sk_refcnt_debug_inc(sk) do { } while (0)
1307 #define sk_refcnt_debug_dec(sk) do { } while (0)
1308 #define sk_refcnt_debug_release(sk) do { } while (0)
1309 #endif /* SOCK_REFCNT_DEBUG */
1310 
1311 INDIRECT_CALLABLE_DECLARE(bool tcp_stream_memory_free(const struct sock *sk, int wake));
1312 
1313 static inline int sk_forward_alloc_get(const struct sock *sk)
1314 {
1315 #if IS_ENABLED(CONFIG_MPTCP)
1316 	if (sk->sk_prot->forward_alloc_get)
1317 		return sk->sk_prot->forward_alloc_get(sk);
1318 #endif
1319 	return sk->sk_forward_alloc;
1320 }
1321 
1322 static inline bool __sk_stream_memory_free(const struct sock *sk, int wake)
1323 {
1324 	if (READ_ONCE(sk->sk_wmem_queued) >= READ_ONCE(sk->sk_sndbuf))
1325 		return false;
1326 
1327 	return sk->sk_prot->stream_memory_free ?
1328 		INDIRECT_CALL_INET_1(sk->sk_prot->stream_memory_free,
1329 				     tcp_stream_memory_free, sk, wake) : true;
1330 }
1331 
1332 static inline bool sk_stream_memory_free(const struct sock *sk)
1333 {
1334 	return __sk_stream_memory_free(sk, 0);
1335 }
1336 
1337 static inline bool __sk_stream_is_writeable(const struct sock *sk, int wake)
1338 {
1339 	return sk_stream_wspace(sk) >= sk_stream_min_wspace(sk) &&
1340 	       __sk_stream_memory_free(sk, wake);
1341 }
1342 
1343 static inline bool sk_stream_is_writeable(const struct sock *sk)
1344 {
1345 	return __sk_stream_is_writeable(sk, 0);
1346 }
1347 
1348 static inline int sk_under_cgroup_hierarchy(struct sock *sk,
1349 					    struct cgroup *ancestor)
1350 {
1351 #ifdef CONFIG_SOCK_CGROUP_DATA
1352 	return cgroup_is_descendant(sock_cgroup_ptr(&sk->sk_cgrp_data),
1353 				    ancestor);
1354 #else
1355 	return -ENOTSUPP;
1356 #endif
1357 }
1358 
1359 static inline bool sk_has_memory_pressure(const struct sock *sk)
1360 {
1361 	return sk->sk_prot->memory_pressure != NULL;
1362 }
1363 
1364 static inline bool sk_under_memory_pressure(const struct sock *sk)
1365 {
1366 	if (!sk->sk_prot->memory_pressure)
1367 		return false;
1368 
1369 	if (mem_cgroup_sockets_enabled && sk->sk_memcg &&
1370 	    mem_cgroup_under_socket_pressure(sk->sk_memcg))
1371 		return true;
1372 
1373 	return !!*sk->sk_prot->memory_pressure;
1374 }
1375 
1376 static inline long
1377 sk_memory_allocated(const struct sock *sk)
1378 {
1379 	return atomic_long_read(sk->sk_prot->memory_allocated);
1380 }
1381 
1382 static inline long
1383 sk_memory_allocated_add(struct sock *sk, int amt)
1384 {
1385 	return atomic_long_add_return(amt, sk->sk_prot->memory_allocated);
1386 }
1387 
1388 static inline void
1389 sk_memory_allocated_sub(struct sock *sk, int amt)
1390 {
1391 	atomic_long_sub(amt, sk->sk_prot->memory_allocated);
1392 }
1393 
1394 #define SK_ALLOC_PERCPU_COUNTER_BATCH 16
1395 
1396 static inline void sk_sockets_allocated_dec(struct sock *sk)
1397 {
1398 	percpu_counter_add_batch(sk->sk_prot->sockets_allocated, -1,
1399 				 SK_ALLOC_PERCPU_COUNTER_BATCH);
1400 }
1401 
1402 static inline void sk_sockets_allocated_inc(struct sock *sk)
1403 {
1404 	percpu_counter_add_batch(sk->sk_prot->sockets_allocated, 1,
1405 				 SK_ALLOC_PERCPU_COUNTER_BATCH);
1406 }
1407 
1408 static inline u64
1409 sk_sockets_allocated_read_positive(struct sock *sk)
1410 {
1411 	return percpu_counter_read_positive(sk->sk_prot->sockets_allocated);
1412 }
1413 
1414 static inline int
1415 proto_sockets_allocated_sum_positive(struct proto *prot)
1416 {
1417 	return percpu_counter_sum_positive(prot->sockets_allocated);
1418 }
1419 
1420 static inline long
1421 proto_memory_allocated(struct proto *prot)
1422 {
1423 	return atomic_long_read(prot->memory_allocated);
1424 }
1425 
1426 static inline bool
1427 proto_memory_pressure(struct proto *prot)
1428 {
1429 	if (!prot->memory_pressure)
1430 		return false;
1431 	return !!*prot->memory_pressure;
1432 }
1433 
1434 
1435 #ifdef CONFIG_PROC_FS
1436 #define PROTO_INUSE_NR	64	/* should be enough for the first time */
1437 struct prot_inuse {
1438 	int all;
1439 	int val[PROTO_INUSE_NR];
1440 };
1441 
1442 static inline void sock_prot_inuse_add(const struct net *net,
1443 				       const struct proto *prot, int val)
1444 {
1445 	this_cpu_add(net->core.prot_inuse->val[prot->inuse_idx], val);
1446 }
1447 
1448 static inline void sock_inuse_add(const struct net *net, int val)
1449 {
1450 	this_cpu_add(net->core.prot_inuse->all, val);
1451 }
1452 
1453 int sock_prot_inuse_get(struct net *net, struct proto *proto);
1454 int sock_inuse_get(struct net *net);
1455 #else
1456 static inline void sock_prot_inuse_add(const struct net *net,
1457 				       const struct proto *prot, int val)
1458 {
1459 }
1460 
1461 static inline void sock_inuse_add(const struct net *net, int val)
1462 {
1463 }
1464 #endif
1465 
1466 
1467 /* With per-bucket locks this operation is not-atomic, so that
1468  * this version is not worse.
1469  */
1470 static inline int __sk_prot_rehash(struct sock *sk)
1471 {
1472 	sk->sk_prot->unhash(sk);
1473 	return sk->sk_prot->hash(sk);
1474 }
1475 
1476 /* About 10 seconds */
1477 #define SOCK_DESTROY_TIME (10*HZ)
1478 
1479 /* Sockets 0-1023 can't be bound to unless you are superuser */
1480 #define PROT_SOCK	1024
1481 
1482 #define SHUTDOWN_MASK	3
1483 #define RCV_SHUTDOWN	1
1484 #define SEND_SHUTDOWN	2
1485 
1486 #define SOCK_BINDADDR_LOCK	4
1487 #define SOCK_BINDPORT_LOCK	8
1488 
1489 struct socket_alloc {
1490 	struct socket socket;
1491 	struct inode vfs_inode;
1492 };
1493 
1494 static inline struct socket *SOCKET_I(struct inode *inode)
1495 {
1496 	return &container_of(inode, struct socket_alloc, vfs_inode)->socket;
1497 }
1498 
1499 static inline struct inode *SOCK_INODE(struct socket *socket)
1500 {
1501 	return &container_of(socket, struct socket_alloc, socket)->vfs_inode;
1502 }
1503 
1504 /*
1505  * Functions for memory accounting
1506  */
1507 int __sk_mem_raise_allocated(struct sock *sk, int size, int amt, int kind);
1508 int __sk_mem_schedule(struct sock *sk, int size, int kind);
1509 void __sk_mem_reduce_allocated(struct sock *sk, int amount);
1510 void __sk_mem_reclaim(struct sock *sk, int amount);
1511 
1512 /* We used to have PAGE_SIZE here, but systems with 64KB pages
1513  * do not necessarily have 16x time more memory than 4KB ones.
1514  */
1515 #define SK_MEM_QUANTUM 4096
1516 #define SK_MEM_QUANTUM_SHIFT ilog2(SK_MEM_QUANTUM)
1517 #define SK_MEM_SEND	0
1518 #define SK_MEM_RECV	1
1519 
1520 /* sysctl_mem values are in pages, we convert them in SK_MEM_QUANTUM units */
1521 static inline long sk_prot_mem_limits(const struct sock *sk, int index)
1522 {
1523 	long val = sk->sk_prot->sysctl_mem[index];
1524 
1525 #if PAGE_SIZE > SK_MEM_QUANTUM
1526 	val <<= PAGE_SHIFT - SK_MEM_QUANTUM_SHIFT;
1527 #elif PAGE_SIZE < SK_MEM_QUANTUM
1528 	val >>= SK_MEM_QUANTUM_SHIFT - PAGE_SHIFT;
1529 #endif
1530 	return val;
1531 }
1532 
1533 static inline int sk_mem_pages(int amt)
1534 {
1535 	return (amt + SK_MEM_QUANTUM - 1) >> SK_MEM_QUANTUM_SHIFT;
1536 }
1537 
1538 static inline bool sk_has_account(struct sock *sk)
1539 {
1540 	/* return true if protocol supports memory accounting */
1541 	return !!sk->sk_prot->memory_allocated;
1542 }
1543 
1544 static inline bool sk_wmem_schedule(struct sock *sk, int size)
1545 {
1546 	if (!sk_has_account(sk))
1547 		return true;
1548 	return size <= sk->sk_forward_alloc ||
1549 		__sk_mem_schedule(sk, size, SK_MEM_SEND);
1550 }
1551 
1552 static inline bool
1553 sk_rmem_schedule(struct sock *sk, struct sk_buff *skb, int size)
1554 {
1555 	if (!sk_has_account(sk))
1556 		return true;
1557 	return size <= sk->sk_forward_alloc ||
1558 		__sk_mem_schedule(sk, size, SK_MEM_RECV) ||
1559 		skb_pfmemalloc(skb);
1560 }
1561 
1562 static inline int sk_unused_reserved_mem(const struct sock *sk)
1563 {
1564 	int unused_mem;
1565 
1566 	if (likely(!sk->sk_reserved_mem))
1567 		return 0;
1568 
1569 	unused_mem = sk->sk_reserved_mem - sk->sk_wmem_queued -
1570 			atomic_read(&sk->sk_rmem_alloc);
1571 
1572 	return unused_mem > 0 ? unused_mem : 0;
1573 }
1574 
1575 static inline void sk_mem_reclaim(struct sock *sk)
1576 {
1577 	int reclaimable;
1578 
1579 	if (!sk_has_account(sk))
1580 		return;
1581 
1582 	reclaimable = sk->sk_forward_alloc - sk_unused_reserved_mem(sk);
1583 
1584 	if (reclaimable >= SK_MEM_QUANTUM)
1585 		__sk_mem_reclaim(sk, reclaimable);
1586 }
1587 
1588 static inline void sk_mem_reclaim_final(struct sock *sk)
1589 {
1590 	sk->sk_reserved_mem = 0;
1591 	sk_mem_reclaim(sk);
1592 }
1593 
1594 static inline void sk_mem_reclaim_partial(struct sock *sk)
1595 {
1596 	int reclaimable;
1597 
1598 	if (!sk_has_account(sk))
1599 		return;
1600 
1601 	reclaimable = sk->sk_forward_alloc - sk_unused_reserved_mem(sk);
1602 
1603 	if (reclaimable > SK_MEM_QUANTUM)
1604 		__sk_mem_reclaim(sk, reclaimable - 1);
1605 }
1606 
1607 static inline void sk_mem_charge(struct sock *sk, int size)
1608 {
1609 	if (!sk_has_account(sk))
1610 		return;
1611 	sk->sk_forward_alloc -= size;
1612 }
1613 
1614 /* the following macros control memory reclaiming in sk_mem_uncharge()
1615  */
1616 #define SK_RECLAIM_THRESHOLD	(1 << 21)
1617 #define SK_RECLAIM_CHUNK	(1 << 20)
1618 
1619 static inline void sk_mem_uncharge(struct sock *sk, int size)
1620 {
1621 	int reclaimable;
1622 
1623 	if (!sk_has_account(sk))
1624 		return;
1625 	sk->sk_forward_alloc += size;
1626 	reclaimable = sk->sk_forward_alloc - sk_unused_reserved_mem(sk);
1627 
1628 	/* Avoid a possible overflow.
1629 	 * TCP send queues can make this happen, if sk_mem_reclaim()
1630 	 * is not called and more than 2 GBytes are released at once.
1631 	 *
1632 	 * If we reach 2 MBytes, reclaim 1 MBytes right now, there is
1633 	 * no need to hold that much forward allocation anyway.
1634 	 */
1635 	if (unlikely(reclaimable >= SK_RECLAIM_THRESHOLD))
1636 		__sk_mem_reclaim(sk, SK_RECLAIM_CHUNK);
1637 }
1638 
1639 /*
1640  * Macro so as to not evaluate some arguments when
1641  * lockdep is not enabled.
1642  *
1643  * Mark both the sk_lock and the sk_lock.slock as a
1644  * per-address-family lock class.
1645  */
1646 #define sock_lock_init_class_and_name(sk, sname, skey, name, key)	\
1647 do {									\
1648 	sk->sk_lock.owned = 0;						\
1649 	init_waitqueue_head(&sk->sk_lock.wq);				\
1650 	spin_lock_init(&(sk)->sk_lock.slock);				\
1651 	debug_check_no_locks_freed((void *)&(sk)->sk_lock,		\
1652 			sizeof((sk)->sk_lock));				\
1653 	lockdep_set_class_and_name(&(sk)->sk_lock.slock,		\
1654 				(skey), (sname));				\
1655 	lockdep_init_map(&(sk)->sk_lock.dep_map, (name), (key), 0);	\
1656 } while (0)
1657 
1658 static inline bool lockdep_sock_is_held(const struct sock *sk)
1659 {
1660 	return lockdep_is_held(&sk->sk_lock) ||
1661 	       lockdep_is_held(&sk->sk_lock.slock);
1662 }
1663 
1664 void lock_sock_nested(struct sock *sk, int subclass);
1665 
1666 static inline void lock_sock(struct sock *sk)
1667 {
1668 	lock_sock_nested(sk, 0);
1669 }
1670 
1671 void __lock_sock(struct sock *sk);
1672 void __release_sock(struct sock *sk);
1673 void release_sock(struct sock *sk);
1674 
1675 /* BH context may only use the following locking interface. */
1676 #define bh_lock_sock(__sk)	spin_lock(&((__sk)->sk_lock.slock))
1677 #define bh_lock_sock_nested(__sk) \
1678 				spin_lock_nested(&((__sk)->sk_lock.slock), \
1679 				SINGLE_DEPTH_NESTING)
1680 #define bh_unlock_sock(__sk)	spin_unlock(&((__sk)->sk_lock.slock))
1681 
1682 bool __lock_sock_fast(struct sock *sk) __acquires(&sk->sk_lock.slock);
1683 
1684 /**
1685  * lock_sock_fast - fast version of lock_sock
1686  * @sk: socket
1687  *
1688  * This version should be used for very small section, where process wont block
1689  * return false if fast path is taken:
1690  *
1691  *   sk_lock.slock locked, owned = 0, BH disabled
1692  *
1693  * return true if slow path is taken:
1694  *
1695  *   sk_lock.slock unlocked, owned = 1, BH enabled
1696  */
1697 static inline bool lock_sock_fast(struct sock *sk)
1698 {
1699 	/* The sk_lock has mutex_lock() semantics here. */
1700 	mutex_acquire(&sk->sk_lock.dep_map, 0, 0, _RET_IP_);
1701 
1702 	return __lock_sock_fast(sk);
1703 }
1704 
1705 /* fast socket lock variant for caller already holding a [different] socket lock */
1706 static inline bool lock_sock_fast_nested(struct sock *sk)
1707 {
1708 	mutex_acquire(&sk->sk_lock.dep_map, SINGLE_DEPTH_NESTING, 0, _RET_IP_);
1709 
1710 	return __lock_sock_fast(sk);
1711 }
1712 
1713 /**
1714  * unlock_sock_fast - complement of lock_sock_fast
1715  * @sk: socket
1716  * @slow: slow mode
1717  *
1718  * fast unlock socket for user context.
1719  * If slow mode is on, we call regular release_sock()
1720  */
1721 static inline void unlock_sock_fast(struct sock *sk, bool slow)
1722 	__releases(&sk->sk_lock.slock)
1723 {
1724 	if (slow) {
1725 		release_sock(sk);
1726 		__release(&sk->sk_lock.slock);
1727 	} else {
1728 		mutex_release(&sk->sk_lock.dep_map, _RET_IP_);
1729 		spin_unlock_bh(&sk->sk_lock.slock);
1730 	}
1731 }
1732 
1733 /* Used by processes to "lock" a socket state, so that
1734  * interrupts and bottom half handlers won't change it
1735  * from under us. It essentially blocks any incoming
1736  * packets, so that we won't get any new data or any
1737  * packets that change the state of the socket.
1738  *
1739  * While locked, BH processing will add new packets to
1740  * the backlog queue.  This queue is processed by the
1741  * owner of the socket lock right before it is released.
1742  *
1743  * Since ~2.3.5 it is also exclusive sleep lock serializing
1744  * accesses from user process context.
1745  */
1746 
1747 static inline void sock_owned_by_me(const struct sock *sk)
1748 {
1749 #ifdef CONFIG_LOCKDEP
1750 	WARN_ON_ONCE(!lockdep_sock_is_held(sk) && debug_locks);
1751 #endif
1752 }
1753 
1754 static inline bool sock_owned_by_user(const struct sock *sk)
1755 {
1756 	sock_owned_by_me(sk);
1757 	return sk->sk_lock.owned;
1758 }
1759 
1760 static inline bool sock_owned_by_user_nocheck(const struct sock *sk)
1761 {
1762 	return sk->sk_lock.owned;
1763 }
1764 
1765 static inline void sock_release_ownership(struct sock *sk)
1766 {
1767 	if (sock_owned_by_user_nocheck(sk)) {
1768 		sk->sk_lock.owned = 0;
1769 
1770 		/* The sk_lock has mutex_unlock() semantics: */
1771 		mutex_release(&sk->sk_lock.dep_map, _RET_IP_);
1772 	}
1773 }
1774 
1775 /* no reclassification while locks are held */
1776 static inline bool sock_allow_reclassification(const struct sock *csk)
1777 {
1778 	struct sock *sk = (struct sock *)csk;
1779 
1780 	return !sock_owned_by_user_nocheck(sk) &&
1781 		!spin_is_locked(&sk->sk_lock.slock);
1782 }
1783 
1784 struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
1785 		      struct proto *prot, int kern);
1786 void sk_free(struct sock *sk);
1787 void sk_destruct(struct sock *sk);
1788 struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority);
1789 void sk_free_unlock_clone(struct sock *sk);
1790 
1791 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
1792 			     gfp_t priority);
1793 void __sock_wfree(struct sk_buff *skb);
1794 void sock_wfree(struct sk_buff *skb);
1795 struct sk_buff *sock_omalloc(struct sock *sk, unsigned long size,
1796 			     gfp_t priority);
1797 void skb_orphan_partial(struct sk_buff *skb);
1798 void sock_rfree(struct sk_buff *skb);
1799 void sock_efree(struct sk_buff *skb);
1800 #ifdef CONFIG_INET
1801 void sock_edemux(struct sk_buff *skb);
1802 void sock_pfree(struct sk_buff *skb);
1803 #else
1804 #define sock_edemux sock_efree
1805 #endif
1806 
1807 int sock_setsockopt(struct socket *sock, int level, int op,
1808 		    sockptr_t optval, unsigned int optlen);
1809 
1810 int sock_getsockopt(struct socket *sock, int level, int op,
1811 		    char __user *optval, int __user *optlen);
1812 int sock_gettstamp(struct socket *sock, void __user *userstamp,
1813 		   bool timeval, bool time32);
1814 struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
1815 				    int noblock, int *errcode);
1816 struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
1817 				     unsigned long data_len, int noblock,
1818 				     int *errcode, int max_page_order);
1819 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority);
1820 void sock_kfree_s(struct sock *sk, void *mem, int size);
1821 void sock_kzfree_s(struct sock *sk, void *mem, int size);
1822 void sk_send_sigurg(struct sock *sk);
1823 
1824 struct sockcm_cookie {
1825 	u64 transmit_time;
1826 	u32 mark;
1827 	u16 tsflags;
1828 };
1829 
1830 static inline void sockcm_init(struct sockcm_cookie *sockc,
1831 			       const struct sock *sk)
1832 {
1833 	*sockc = (struct sockcm_cookie) { .tsflags = sk->sk_tsflags };
1834 }
1835 
1836 int __sock_cmsg_send(struct sock *sk, struct msghdr *msg, struct cmsghdr *cmsg,
1837 		     struct sockcm_cookie *sockc);
1838 int sock_cmsg_send(struct sock *sk, struct msghdr *msg,
1839 		   struct sockcm_cookie *sockc);
1840 
1841 /*
1842  * Functions to fill in entries in struct proto_ops when a protocol
1843  * does not implement a particular function.
1844  */
1845 int sock_no_bind(struct socket *, struct sockaddr *, int);
1846 int sock_no_connect(struct socket *, struct sockaddr *, int, int);
1847 int sock_no_socketpair(struct socket *, struct socket *);
1848 int sock_no_accept(struct socket *, struct socket *, int, bool);
1849 int sock_no_getname(struct socket *, struct sockaddr *, int);
1850 int sock_no_ioctl(struct socket *, unsigned int, unsigned long);
1851 int sock_no_listen(struct socket *, int);
1852 int sock_no_shutdown(struct socket *, int);
1853 int sock_no_sendmsg(struct socket *, struct msghdr *, size_t);
1854 int sock_no_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t len);
1855 int sock_no_recvmsg(struct socket *, struct msghdr *, size_t, int);
1856 int sock_no_mmap(struct file *file, struct socket *sock,
1857 		 struct vm_area_struct *vma);
1858 ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset,
1859 			 size_t size, int flags);
1860 ssize_t sock_no_sendpage_locked(struct sock *sk, struct page *page,
1861 				int offset, size_t size, int flags);
1862 
1863 /*
1864  * Functions to fill in entries in struct proto_ops when a protocol
1865  * uses the inet style.
1866  */
1867 int sock_common_getsockopt(struct socket *sock, int level, int optname,
1868 				  char __user *optval, int __user *optlen);
1869 int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
1870 			int flags);
1871 int sock_common_setsockopt(struct socket *sock, int level, int optname,
1872 			   sockptr_t optval, unsigned int optlen);
1873 
1874 void sk_common_release(struct sock *sk);
1875 
1876 /*
1877  *	Default socket callbacks and setup code
1878  */
1879 
1880 /* Initialise core socket variables */
1881 void sock_init_data(struct socket *sock, struct sock *sk);
1882 
1883 /*
1884  * Socket reference counting postulates.
1885  *
1886  * * Each user of socket SHOULD hold a reference count.
1887  * * Each access point to socket (an hash table bucket, reference from a list,
1888  *   running timer, skb in flight MUST hold a reference count.
1889  * * When reference count hits 0, it means it will never increase back.
1890  * * When reference count hits 0, it means that no references from
1891  *   outside exist to this socket and current process on current CPU
1892  *   is last user and may/should destroy this socket.
1893  * * sk_free is called from any context: process, BH, IRQ. When
1894  *   it is called, socket has no references from outside -> sk_free
1895  *   may release descendant resources allocated by the socket, but
1896  *   to the time when it is called, socket is NOT referenced by any
1897  *   hash tables, lists etc.
1898  * * Packets, delivered from outside (from network or from another process)
1899  *   and enqueued on receive/error queues SHOULD NOT grab reference count,
1900  *   when they sit in queue. Otherwise, packets will leak to hole, when
1901  *   socket is looked up by one cpu and unhasing is made by another CPU.
1902  *   It is true for udp/raw, netlink (leak to receive and error queues), tcp
1903  *   (leak to backlog). Packet socket does all the processing inside
1904  *   BR_NETPROTO_LOCK, so that it has not this race condition. UNIX sockets
1905  *   use separate SMP lock, so that they are prone too.
1906  */
1907 
1908 /* Ungrab socket and destroy it, if it was the last reference. */
1909 static inline void sock_put(struct sock *sk)
1910 {
1911 	if (refcount_dec_and_test(&sk->sk_refcnt))
1912 		sk_free(sk);
1913 }
1914 /* Generic version of sock_put(), dealing with all sockets
1915  * (TCP_TIMEWAIT, TCP_NEW_SYN_RECV, ESTABLISHED...)
1916  */
1917 void sock_gen_put(struct sock *sk);
1918 
1919 int __sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested,
1920 		     unsigned int trim_cap, bool refcounted);
1921 static inline int sk_receive_skb(struct sock *sk, struct sk_buff *skb,
1922 				 const int nested)
1923 {
1924 	return __sk_receive_skb(sk, skb, nested, 1, true);
1925 }
1926 
1927 static inline void sk_tx_queue_set(struct sock *sk, int tx_queue)
1928 {
1929 	/* sk_tx_queue_mapping accept only upto a 16-bit value */
1930 	if (WARN_ON_ONCE((unsigned short)tx_queue >= USHRT_MAX))
1931 		return;
1932 	sk->sk_tx_queue_mapping = tx_queue;
1933 }
1934 
1935 #define NO_QUEUE_MAPPING	USHRT_MAX
1936 
1937 static inline void sk_tx_queue_clear(struct sock *sk)
1938 {
1939 	sk->sk_tx_queue_mapping = NO_QUEUE_MAPPING;
1940 }
1941 
1942 static inline int sk_tx_queue_get(const struct sock *sk)
1943 {
1944 	if (sk && sk->sk_tx_queue_mapping != NO_QUEUE_MAPPING)
1945 		return sk->sk_tx_queue_mapping;
1946 
1947 	return -1;
1948 }
1949 
1950 static inline void __sk_rx_queue_set(struct sock *sk,
1951 				     const struct sk_buff *skb,
1952 				     bool force_set)
1953 {
1954 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
1955 	if (skb_rx_queue_recorded(skb)) {
1956 		u16 rx_queue = skb_get_rx_queue(skb);
1957 
1958 		if (force_set ||
1959 		    unlikely(READ_ONCE(sk->sk_rx_queue_mapping) != rx_queue))
1960 			WRITE_ONCE(sk->sk_rx_queue_mapping, rx_queue);
1961 	}
1962 #endif
1963 }
1964 
1965 static inline void sk_rx_queue_set(struct sock *sk, const struct sk_buff *skb)
1966 {
1967 	__sk_rx_queue_set(sk, skb, true);
1968 }
1969 
1970 static inline void sk_rx_queue_update(struct sock *sk, const struct sk_buff *skb)
1971 {
1972 	__sk_rx_queue_set(sk, skb, false);
1973 }
1974 
1975 static inline void sk_rx_queue_clear(struct sock *sk)
1976 {
1977 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
1978 	WRITE_ONCE(sk->sk_rx_queue_mapping, NO_QUEUE_MAPPING);
1979 #endif
1980 }
1981 
1982 static inline int sk_rx_queue_get(const struct sock *sk)
1983 {
1984 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
1985 	if (sk) {
1986 		int res = READ_ONCE(sk->sk_rx_queue_mapping);
1987 
1988 		if (res != NO_QUEUE_MAPPING)
1989 			return res;
1990 	}
1991 #endif
1992 
1993 	return -1;
1994 }
1995 
1996 static inline void sk_set_socket(struct sock *sk, struct socket *sock)
1997 {
1998 	sk->sk_socket = sock;
1999 }
2000 
2001 static inline wait_queue_head_t *sk_sleep(struct sock *sk)
2002 {
2003 	BUILD_BUG_ON(offsetof(struct socket_wq, wait) != 0);
2004 	return &rcu_dereference_raw(sk->sk_wq)->wait;
2005 }
2006 /* Detach socket from process context.
2007  * Announce socket dead, detach it from wait queue and inode.
2008  * Note that parent inode held reference count on this struct sock,
2009  * we do not release it in this function, because protocol
2010  * probably wants some additional cleanups or even continuing
2011  * to work with this socket (TCP).
2012  */
2013 static inline void sock_orphan(struct sock *sk)
2014 {
2015 	write_lock_bh(&sk->sk_callback_lock);
2016 	sock_set_flag(sk, SOCK_DEAD);
2017 	sk_set_socket(sk, NULL);
2018 	sk->sk_wq  = NULL;
2019 	write_unlock_bh(&sk->sk_callback_lock);
2020 }
2021 
2022 static inline void sock_graft(struct sock *sk, struct socket *parent)
2023 {
2024 	WARN_ON(parent->sk);
2025 	write_lock_bh(&sk->sk_callback_lock);
2026 	rcu_assign_pointer(sk->sk_wq, &parent->wq);
2027 	parent->sk = sk;
2028 	sk_set_socket(sk, parent);
2029 	sk->sk_uid = SOCK_INODE(parent)->i_uid;
2030 	security_sock_graft(sk, parent);
2031 	write_unlock_bh(&sk->sk_callback_lock);
2032 }
2033 
2034 kuid_t sock_i_uid(struct sock *sk);
2035 unsigned long sock_i_ino(struct sock *sk);
2036 
2037 static inline kuid_t sock_net_uid(const struct net *net, const struct sock *sk)
2038 {
2039 	return sk ? sk->sk_uid : make_kuid(net->user_ns, 0);
2040 }
2041 
2042 static inline u32 net_tx_rndhash(void)
2043 {
2044 	u32 v = prandom_u32();
2045 
2046 	return v ?: 1;
2047 }
2048 
2049 static inline void sk_set_txhash(struct sock *sk)
2050 {
2051 	/* This pairs with READ_ONCE() in skb_set_hash_from_sk() */
2052 	WRITE_ONCE(sk->sk_txhash, net_tx_rndhash());
2053 }
2054 
2055 static inline bool sk_rethink_txhash(struct sock *sk)
2056 {
2057 	if (sk->sk_txhash) {
2058 		sk_set_txhash(sk);
2059 		return true;
2060 	}
2061 	return false;
2062 }
2063 
2064 static inline struct dst_entry *
2065 __sk_dst_get(struct sock *sk)
2066 {
2067 	return rcu_dereference_check(sk->sk_dst_cache,
2068 				     lockdep_sock_is_held(sk));
2069 }
2070 
2071 static inline struct dst_entry *
2072 sk_dst_get(struct sock *sk)
2073 {
2074 	struct dst_entry *dst;
2075 
2076 	rcu_read_lock();
2077 	dst = rcu_dereference(sk->sk_dst_cache);
2078 	if (dst && !atomic_inc_not_zero(&dst->__refcnt))
2079 		dst = NULL;
2080 	rcu_read_unlock();
2081 	return dst;
2082 }
2083 
2084 static inline void __dst_negative_advice(struct sock *sk)
2085 {
2086 	struct dst_entry *ndst, *dst = __sk_dst_get(sk);
2087 
2088 	if (dst && dst->ops->negative_advice) {
2089 		ndst = dst->ops->negative_advice(dst);
2090 
2091 		if (ndst != dst) {
2092 			rcu_assign_pointer(sk->sk_dst_cache, ndst);
2093 			sk_tx_queue_clear(sk);
2094 			sk->sk_dst_pending_confirm = 0;
2095 		}
2096 	}
2097 }
2098 
2099 static inline void dst_negative_advice(struct sock *sk)
2100 {
2101 	sk_rethink_txhash(sk);
2102 	__dst_negative_advice(sk);
2103 }
2104 
2105 static inline void
2106 __sk_dst_set(struct sock *sk, struct dst_entry *dst)
2107 {
2108 	struct dst_entry *old_dst;
2109 
2110 	sk_tx_queue_clear(sk);
2111 	sk->sk_dst_pending_confirm = 0;
2112 	old_dst = rcu_dereference_protected(sk->sk_dst_cache,
2113 					    lockdep_sock_is_held(sk));
2114 	rcu_assign_pointer(sk->sk_dst_cache, dst);
2115 	dst_release(old_dst);
2116 }
2117 
2118 static inline void
2119 sk_dst_set(struct sock *sk, struct dst_entry *dst)
2120 {
2121 	struct dst_entry *old_dst;
2122 
2123 	sk_tx_queue_clear(sk);
2124 	sk->sk_dst_pending_confirm = 0;
2125 	old_dst = xchg((__force struct dst_entry **)&sk->sk_dst_cache, dst);
2126 	dst_release(old_dst);
2127 }
2128 
2129 static inline void
2130 __sk_dst_reset(struct sock *sk)
2131 {
2132 	__sk_dst_set(sk, NULL);
2133 }
2134 
2135 static inline void
2136 sk_dst_reset(struct sock *sk)
2137 {
2138 	sk_dst_set(sk, NULL);
2139 }
2140 
2141 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie);
2142 
2143 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie);
2144 
2145 static inline void sk_dst_confirm(struct sock *sk)
2146 {
2147 	if (!READ_ONCE(sk->sk_dst_pending_confirm))
2148 		WRITE_ONCE(sk->sk_dst_pending_confirm, 1);
2149 }
2150 
2151 static inline void sock_confirm_neigh(struct sk_buff *skb, struct neighbour *n)
2152 {
2153 	if (skb_get_dst_pending_confirm(skb)) {
2154 		struct sock *sk = skb->sk;
2155 
2156 		if (sk && READ_ONCE(sk->sk_dst_pending_confirm))
2157 			WRITE_ONCE(sk->sk_dst_pending_confirm, 0);
2158 		neigh_confirm(n);
2159 	}
2160 }
2161 
2162 bool sk_mc_loop(struct sock *sk);
2163 
2164 static inline bool sk_can_gso(const struct sock *sk)
2165 {
2166 	return net_gso_ok(sk->sk_route_caps, sk->sk_gso_type);
2167 }
2168 
2169 void sk_setup_caps(struct sock *sk, struct dst_entry *dst);
2170 
2171 static inline void sk_gso_disable(struct sock *sk)
2172 {
2173 	sk->sk_gso_disabled = 1;
2174 	sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
2175 }
2176 
2177 static inline int skb_do_copy_data_nocache(struct sock *sk, struct sk_buff *skb,
2178 					   struct iov_iter *from, char *to,
2179 					   int copy, int offset)
2180 {
2181 	if (skb->ip_summed == CHECKSUM_NONE) {
2182 		__wsum csum = 0;
2183 		if (!csum_and_copy_from_iter_full(to, copy, &csum, from))
2184 			return -EFAULT;
2185 		skb->csum = csum_block_add(skb->csum, csum, offset);
2186 	} else if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY) {
2187 		if (!copy_from_iter_full_nocache(to, copy, from))
2188 			return -EFAULT;
2189 	} else if (!copy_from_iter_full(to, copy, from))
2190 		return -EFAULT;
2191 
2192 	return 0;
2193 }
2194 
2195 static inline int skb_add_data_nocache(struct sock *sk, struct sk_buff *skb,
2196 				       struct iov_iter *from, int copy)
2197 {
2198 	int err, offset = skb->len;
2199 
2200 	err = skb_do_copy_data_nocache(sk, skb, from, skb_put(skb, copy),
2201 				       copy, offset);
2202 	if (err)
2203 		__skb_trim(skb, offset);
2204 
2205 	return err;
2206 }
2207 
2208 static inline int skb_copy_to_page_nocache(struct sock *sk, struct iov_iter *from,
2209 					   struct sk_buff *skb,
2210 					   struct page *page,
2211 					   int off, int copy)
2212 {
2213 	int err;
2214 
2215 	err = skb_do_copy_data_nocache(sk, skb, from, page_address(page) + off,
2216 				       copy, skb->len);
2217 	if (err)
2218 		return err;
2219 
2220 	skb->len	     += copy;
2221 	skb->data_len	     += copy;
2222 	skb->truesize	     += copy;
2223 	sk_wmem_queued_add(sk, copy);
2224 	sk_mem_charge(sk, copy);
2225 	return 0;
2226 }
2227 
2228 /**
2229  * sk_wmem_alloc_get - returns write allocations
2230  * @sk: socket
2231  *
2232  * Return: sk_wmem_alloc minus initial offset of one
2233  */
2234 static inline int sk_wmem_alloc_get(const struct sock *sk)
2235 {
2236 	return refcount_read(&sk->sk_wmem_alloc) - 1;
2237 }
2238 
2239 /**
2240  * sk_rmem_alloc_get - returns read allocations
2241  * @sk: socket
2242  *
2243  * Return: sk_rmem_alloc
2244  */
2245 static inline int sk_rmem_alloc_get(const struct sock *sk)
2246 {
2247 	return atomic_read(&sk->sk_rmem_alloc);
2248 }
2249 
2250 /**
2251  * sk_has_allocations - check if allocations are outstanding
2252  * @sk: socket
2253  *
2254  * Return: true if socket has write or read allocations
2255  */
2256 static inline bool sk_has_allocations(const struct sock *sk)
2257 {
2258 	return sk_wmem_alloc_get(sk) || sk_rmem_alloc_get(sk);
2259 }
2260 
2261 /**
2262  * skwq_has_sleeper - check if there are any waiting processes
2263  * @wq: struct socket_wq
2264  *
2265  * Return: true if socket_wq has waiting processes
2266  *
2267  * The purpose of the skwq_has_sleeper and sock_poll_wait is to wrap the memory
2268  * barrier call. They were added due to the race found within the tcp code.
2269  *
2270  * Consider following tcp code paths::
2271  *
2272  *   CPU1                CPU2
2273  *   sys_select          receive packet
2274  *   ...                 ...
2275  *   __add_wait_queue    update tp->rcv_nxt
2276  *   ...                 ...
2277  *   tp->rcv_nxt check   sock_def_readable
2278  *   ...                 {
2279  *   schedule               rcu_read_lock();
2280  *                          wq = rcu_dereference(sk->sk_wq);
2281  *                          if (wq && waitqueue_active(&wq->wait))
2282  *                              wake_up_interruptible(&wq->wait)
2283  *                          ...
2284  *                       }
2285  *
2286  * The race for tcp fires when the __add_wait_queue changes done by CPU1 stay
2287  * in its cache, and so does the tp->rcv_nxt update on CPU2 side.  The CPU1
2288  * could then endup calling schedule and sleep forever if there are no more
2289  * data on the socket.
2290  *
2291  */
2292 static inline bool skwq_has_sleeper(struct socket_wq *wq)
2293 {
2294 	return wq && wq_has_sleeper(&wq->wait);
2295 }
2296 
2297 /**
2298  * sock_poll_wait - place memory barrier behind the poll_wait call.
2299  * @filp:           file
2300  * @sock:           socket to wait on
2301  * @p:              poll_table
2302  *
2303  * See the comments in the wq_has_sleeper function.
2304  */
2305 static inline void sock_poll_wait(struct file *filp, struct socket *sock,
2306 				  poll_table *p)
2307 {
2308 	if (!poll_does_not_wait(p)) {
2309 		poll_wait(filp, &sock->wq.wait, p);
2310 		/* We need to be sure we are in sync with the
2311 		 * socket flags modification.
2312 		 *
2313 		 * This memory barrier is paired in the wq_has_sleeper.
2314 		 */
2315 		smp_mb();
2316 	}
2317 }
2318 
2319 static inline void skb_set_hash_from_sk(struct sk_buff *skb, struct sock *sk)
2320 {
2321 	/* This pairs with WRITE_ONCE() in sk_set_txhash() */
2322 	u32 txhash = READ_ONCE(sk->sk_txhash);
2323 
2324 	if (txhash) {
2325 		skb->l4_hash = 1;
2326 		skb->hash = txhash;
2327 	}
2328 }
2329 
2330 void skb_set_owner_w(struct sk_buff *skb, struct sock *sk);
2331 
2332 /*
2333  *	Queue a received datagram if it will fit. Stream and sequenced
2334  *	protocols can't normally use this as they need to fit buffers in
2335  *	and play with them.
2336  *
2337  *	Inlined as it's very short and called for pretty much every
2338  *	packet ever received.
2339  */
2340 static inline void skb_set_owner_r(struct sk_buff *skb, struct sock *sk)
2341 {
2342 	skb_orphan(skb);
2343 	skb->sk = sk;
2344 	skb->destructor = sock_rfree;
2345 	atomic_add(skb->truesize, &sk->sk_rmem_alloc);
2346 	sk_mem_charge(sk, skb->truesize);
2347 }
2348 
2349 static inline __must_check bool skb_set_owner_sk_safe(struct sk_buff *skb, struct sock *sk)
2350 {
2351 	if (sk && refcount_inc_not_zero(&sk->sk_refcnt)) {
2352 		skb_orphan(skb);
2353 		skb->destructor = sock_efree;
2354 		skb->sk = sk;
2355 		return true;
2356 	}
2357 	return false;
2358 }
2359 
2360 static inline void skb_prepare_for_gro(struct sk_buff *skb)
2361 {
2362 	if (skb->destructor != sock_wfree) {
2363 		skb_orphan(skb);
2364 		return;
2365 	}
2366 	skb->slow_gro = 1;
2367 }
2368 
2369 void sk_reset_timer(struct sock *sk, struct timer_list *timer,
2370 		    unsigned long expires);
2371 
2372 void sk_stop_timer(struct sock *sk, struct timer_list *timer);
2373 
2374 void sk_stop_timer_sync(struct sock *sk, struct timer_list *timer);
2375 
2376 int __sk_queue_drop_skb(struct sock *sk, struct sk_buff_head *sk_queue,
2377 			struct sk_buff *skb, unsigned int flags,
2378 			void (*destructor)(struct sock *sk,
2379 					   struct sk_buff *skb));
2380 int __sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
2381 int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
2382 
2383 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb);
2384 struct sk_buff *sock_dequeue_err_skb(struct sock *sk);
2385 
2386 /*
2387  *	Recover an error report and clear atomically
2388  */
2389 
2390 static inline int sock_error(struct sock *sk)
2391 {
2392 	int err;
2393 
2394 	/* Avoid an atomic operation for the common case.
2395 	 * This is racy since another cpu/thread can change sk_err under us.
2396 	 */
2397 	if (likely(data_race(!sk->sk_err)))
2398 		return 0;
2399 
2400 	err = xchg(&sk->sk_err, 0);
2401 	return -err;
2402 }
2403 
2404 void sk_error_report(struct sock *sk);
2405 
2406 static inline unsigned long sock_wspace(struct sock *sk)
2407 {
2408 	int amt = 0;
2409 
2410 	if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
2411 		amt = sk->sk_sndbuf - refcount_read(&sk->sk_wmem_alloc);
2412 		if (amt < 0)
2413 			amt = 0;
2414 	}
2415 	return amt;
2416 }
2417 
2418 /* Note:
2419  *  We use sk->sk_wq_raw, from contexts knowing this
2420  *  pointer is not NULL and cannot disappear/change.
2421  */
2422 static inline void sk_set_bit(int nr, struct sock *sk)
2423 {
2424 	if ((nr == SOCKWQ_ASYNC_NOSPACE || nr == SOCKWQ_ASYNC_WAITDATA) &&
2425 	    !sock_flag(sk, SOCK_FASYNC))
2426 		return;
2427 
2428 	set_bit(nr, &sk->sk_wq_raw->flags);
2429 }
2430 
2431 static inline void sk_clear_bit(int nr, struct sock *sk)
2432 {
2433 	if ((nr == SOCKWQ_ASYNC_NOSPACE || nr == SOCKWQ_ASYNC_WAITDATA) &&
2434 	    !sock_flag(sk, SOCK_FASYNC))
2435 		return;
2436 
2437 	clear_bit(nr, &sk->sk_wq_raw->flags);
2438 }
2439 
2440 static inline void sk_wake_async(const struct sock *sk, int how, int band)
2441 {
2442 	if (sock_flag(sk, SOCK_FASYNC)) {
2443 		rcu_read_lock();
2444 		sock_wake_async(rcu_dereference(sk->sk_wq), how, band);
2445 		rcu_read_unlock();
2446 	}
2447 }
2448 
2449 /* Since sk_{r,w}mem_alloc sums skb->truesize, even a small frame might
2450  * need sizeof(sk_buff) + MTU + padding, unless net driver perform copybreak.
2451  * Note: for send buffers, TCP works better if we can build two skbs at
2452  * minimum.
2453  */
2454 #define TCP_SKB_MIN_TRUESIZE	(2048 + SKB_DATA_ALIGN(sizeof(struct sk_buff)))
2455 
2456 #define SOCK_MIN_SNDBUF		(TCP_SKB_MIN_TRUESIZE * 2)
2457 #define SOCK_MIN_RCVBUF		 TCP_SKB_MIN_TRUESIZE
2458 
2459 static inline void sk_stream_moderate_sndbuf(struct sock *sk)
2460 {
2461 	u32 val;
2462 
2463 	if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
2464 		return;
2465 
2466 	val = min(sk->sk_sndbuf, sk->sk_wmem_queued >> 1);
2467 	val = max_t(u32, val, sk_unused_reserved_mem(sk));
2468 
2469 	WRITE_ONCE(sk->sk_sndbuf, max_t(u32, val, SOCK_MIN_SNDBUF));
2470 }
2471 
2472 /**
2473  * sk_page_frag - return an appropriate page_frag
2474  * @sk: socket
2475  *
2476  * Use the per task page_frag instead of the per socket one for
2477  * optimization when we know that we're in process context and own
2478  * everything that's associated with %current.
2479  *
2480  * Both direct reclaim and page faults can nest inside other
2481  * socket operations and end up recursing into sk_page_frag()
2482  * while it's already in use: explicitly avoid task page_frag
2483  * usage if the caller is potentially doing any of them.
2484  * This assumes that page fault handlers use the GFP_NOFS flags.
2485  *
2486  * Return: a per task page_frag if context allows that,
2487  * otherwise a per socket one.
2488  */
2489 static inline struct page_frag *sk_page_frag(struct sock *sk)
2490 {
2491 	if ((sk->sk_allocation & (__GFP_DIRECT_RECLAIM | __GFP_MEMALLOC | __GFP_FS)) ==
2492 	    (__GFP_DIRECT_RECLAIM | __GFP_FS))
2493 		return &current->task_frag;
2494 
2495 	return &sk->sk_frag;
2496 }
2497 
2498 bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag);
2499 
2500 /*
2501  *	Default write policy as shown to user space via poll/select/SIGIO
2502  */
2503 static inline bool sock_writeable(const struct sock *sk)
2504 {
2505 	return refcount_read(&sk->sk_wmem_alloc) < (READ_ONCE(sk->sk_sndbuf) >> 1);
2506 }
2507 
2508 static inline gfp_t gfp_any(void)
2509 {
2510 	return in_softirq() ? GFP_ATOMIC : GFP_KERNEL;
2511 }
2512 
2513 static inline gfp_t gfp_memcg_charge(void)
2514 {
2515 	return in_softirq() ? GFP_NOWAIT : GFP_KERNEL;
2516 }
2517 
2518 static inline long sock_rcvtimeo(const struct sock *sk, bool noblock)
2519 {
2520 	return noblock ? 0 : sk->sk_rcvtimeo;
2521 }
2522 
2523 static inline long sock_sndtimeo(const struct sock *sk, bool noblock)
2524 {
2525 	return noblock ? 0 : sk->sk_sndtimeo;
2526 }
2527 
2528 static inline int sock_rcvlowat(const struct sock *sk, int waitall, int len)
2529 {
2530 	int v = waitall ? len : min_t(int, READ_ONCE(sk->sk_rcvlowat), len);
2531 
2532 	return v ?: 1;
2533 }
2534 
2535 /* Alas, with timeout socket operations are not restartable.
2536  * Compare this to poll().
2537  */
2538 static inline int sock_intr_errno(long timeo)
2539 {
2540 	return timeo == MAX_SCHEDULE_TIMEOUT ? -ERESTARTSYS : -EINTR;
2541 }
2542 
2543 struct sock_skb_cb {
2544 	u32 dropcount;
2545 };
2546 
2547 /* Store sock_skb_cb at the end of skb->cb[] so protocol families
2548  * using skb->cb[] would keep using it directly and utilize its
2549  * alignement guarantee.
2550  */
2551 #define SOCK_SKB_CB_OFFSET ((sizeof_field(struct sk_buff, cb) - \
2552 			    sizeof(struct sock_skb_cb)))
2553 
2554 #define SOCK_SKB_CB(__skb) ((struct sock_skb_cb *)((__skb)->cb + \
2555 			    SOCK_SKB_CB_OFFSET))
2556 
2557 #define sock_skb_cb_check_size(size) \
2558 	BUILD_BUG_ON((size) > SOCK_SKB_CB_OFFSET)
2559 
2560 static inline void
2561 sock_skb_set_dropcount(const struct sock *sk, struct sk_buff *skb)
2562 {
2563 	SOCK_SKB_CB(skb)->dropcount = sock_flag(sk, SOCK_RXQ_OVFL) ?
2564 						atomic_read(&sk->sk_drops) : 0;
2565 }
2566 
2567 static inline void sk_drops_add(struct sock *sk, const struct sk_buff *skb)
2568 {
2569 	int segs = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
2570 
2571 	atomic_add(segs, &sk->sk_drops);
2572 }
2573 
2574 static inline ktime_t sock_read_timestamp(struct sock *sk)
2575 {
2576 #if BITS_PER_LONG==32
2577 	unsigned int seq;
2578 	ktime_t kt;
2579 
2580 	do {
2581 		seq = read_seqbegin(&sk->sk_stamp_seq);
2582 		kt = sk->sk_stamp;
2583 	} while (read_seqretry(&sk->sk_stamp_seq, seq));
2584 
2585 	return kt;
2586 #else
2587 	return READ_ONCE(sk->sk_stamp);
2588 #endif
2589 }
2590 
2591 static inline void sock_write_timestamp(struct sock *sk, ktime_t kt)
2592 {
2593 #if BITS_PER_LONG==32
2594 	write_seqlock(&sk->sk_stamp_seq);
2595 	sk->sk_stamp = kt;
2596 	write_sequnlock(&sk->sk_stamp_seq);
2597 #else
2598 	WRITE_ONCE(sk->sk_stamp, kt);
2599 #endif
2600 }
2601 
2602 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
2603 			   struct sk_buff *skb);
2604 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
2605 			     struct sk_buff *skb);
2606 
2607 static inline void
2608 sock_recv_timestamp(struct msghdr *msg, struct sock *sk, struct sk_buff *skb)
2609 {
2610 	ktime_t kt = skb->tstamp;
2611 	struct skb_shared_hwtstamps *hwtstamps = skb_hwtstamps(skb);
2612 
2613 	/*
2614 	 * generate control messages if
2615 	 * - receive time stamping in software requested
2616 	 * - software time stamp available and wanted
2617 	 * - hardware time stamps available and wanted
2618 	 */
2619 	if (sock_flag(sk, SOCK_RCVTSTAMP) ||
2620 	    (sk->sk_tsflags & SOF_TIMESTAMPING_RX_SOFTWARE) ||
2621 	    (kt && sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) ||
2622 	    (hwtstamps->hwtstamp &&
2623 	     (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE)))
2624 		__sock_recv_timestamp(msg, sk, skb);
2625 	else
2626 		sock_write_timestamp(sk, kt);
2627 
2628 	if (sock_flag(sk, SOCK_WIFI_STATUS) && skb->wifi_acked_valid)
2629 		__sock_recv_wifi_status(msg, sk, skb);
2630 }
2631 
2632 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
2633 			      struct sk_buff *skb);
2634 
2635 #define SK_DEFAULT_STAMP (-1L * NSEC_PER_SEC)
2636 static inline void sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
2637 					  struct sk_buff *skb)
2638 {
2639 #define FLAGS_TS_OR_DROPS ((1UL << SOCK_RXQ_OVFL)			| \
2640 			   (1UL << SOCK_RCVTSTAMP))
2641 #define TSFLAGS_ANY	  (SOF_TIMESTAMPING_SOFTWARE			| \
2642 			   SOF_TIMESTAMPING_RAW_HARDWARE)
2643 
2644 	if (sk->sk_flags & FLAGS_TS_OR_DROPS || sk->sk_tsflags & TSFLAGS_ANY)
2645 		__sock_recv_ts_and_drops(msg, sk, skb);
2646 	else if (unlikely(sock_flag(sk, SOCK_TIMESTAMP)))
2647 		sock_write_timestamp(sk, skb->tstamp);
2648 	else if (unlikely(sk->sk_stamp == SK_DEFAULT_STAMP))
2649 		sock_write_timestamp(sk, 0);
2650 }
2651 
2652 void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags);
2653 
2654 /**
2655  * _sock_tx_timestamp - checks whether the outgoing packet is to be time stamped
2656  * @sk:		socket sending this packet
2657  * @tsflags:	timestamping flags to use
2658  * @tx_flags:	completed with instructions for time stamping
2659  * @tskey:      filled in with next sk_tskey (not for TCP, which uses seqno)
2660  *
2661  * Note: callers should take care of initial ``*tx_flags`` value (usually 0)
2662  */
2663 static inline void _sock_tx_timestamp(struct sock *sk, __u16 tsflags,
2664 				      __u8 *tx_flags, __u32 *tskey)
2665 {
2666 	if (unlikely(tsflags)) {
2667 		__sock_tx_timestamp(tsflags, tx_flags);
2668 		if (tsflags & SOF_TIMESTAMPING_OPT_ID && tskey &&
2669 		    tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK)
2670 			*tskey = atomic_inc_return(&sk->sk_tskey) - 1;
2671 	}
2672 	if (unlikely(sock_flag(sk, SOCK_WIFI_STATUS)))
2673 		*tx_flags |= SKBTX_WIFI_STATUS;
2674 }
2675 
2676 static inline void sock_tx_timestamp(struct sock *sk, __u16 tsflags,
2677 				     __u8 *tx_flags)
2678 {
2679 	_sock_tx_timestamp(sk, tsflags, tx_flags, NULL);
2680 }
2681 
2682 static inline void skb_setup_tx_timestamp(struct sk_buff *skb, __u16 tsflags)
2683 {
2684 	_sock_tx_timestamp(skb->sk, tsflags, &skb_shinfo(skb)->tx_flags,
2685 			   &skb_shinfo(skb)->tskey);
2686 }
2687 
2688 static inline bool sk_is_tcp(const struct sock *sk)
2689 {
2690 	return sk->sk_type == SOCK_STREAM && sk->sk_protocol == IPPROTO_TCP;
2691 }
2692 
2693 /**
2694  * sk_eat_skb - Release a skb if it is no longer needed
2695  * @sk: socket to eat this skb from
2696  * @skb: socket buffer to eat
2697  *
2698  * This routine must be called with interrupts disabled or with the socket
2699  * locked so that the sk_buff queue operation is ok.
2700 */
2701 static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb)
2702 {
2703 	__skb_unlink(skb, &sk->sk_receive_queue);
2704 	__kfree_skb(skb);
2705 }
2706 
2707 static inline
2708 struct net *sock_net(const struct sock *sk)
2709 {
2710 	return read_pnet(&sk->sk_net);
2711 }
2712 
2713 static inline
2714 void sock_net_set(struct sock *sk, struct net *net)
2715 {
2716 	write_pnet(&sk->sk_net, net);
2717 }
2718 
2719 static inline bool
2720 skb_sk_is_prefetched(struct sk_buff *skb)
2721 {
2722 #ifdef CONFIG_INET
2723 	return skb->destructor == sock_pfree;
2724 #else
2725 	return false;
2726 #endif /* CONFIG_INET */
2727 }
2728 
2729 /* This helper checks if a socket is a full socket,
2730  * ie _not_ a timewait or request socket.
2731  */
2732 static inline bool sk_fullsock(const struct sock *sk)
2733 {
2734 	return (1 << sk->sk_state) & ~(TCPF_TIME_WAIT | TCPF_NEW_SYN_RECV);
2735 }
2736 
2737 static inline bool
2738 sk_is_refcounted(struct sock *sk)
2739 {
2740 	/* Only full sockets have sk->sk_flags. */
2741 	return !sk_fullsock(sk) || !sock_flag(sk, SOCK_RCU_FREE);
2742 }
2743 
2744 /**
2745  * skb_steal_sock - steal a socket from an sk_buff
2746  * @skb: sk_buff to steal the socket from
2747  * @refcounted: is set to true if the socket is reference-counted
2748  */
2749 static inline struct sock *
2750 skb_steal_sock(struct sk_buff *skb, bool *refcounted)
2751 {
2752 	if (skb->sk) {
2753 		struct sock *sk = skb->sk;
2754 
2755 		*refcounted = true;
2756 		if (skb_sk_is_prefetched(skb))
2757 			*refcounted = sk_is_refcounted(sk);
2758 		skb->destructor = NULL;
2759 		skb->sk = NULL;
2760 		return sk;
2761 	}
2762 	*refcounted = false;
2763 	return NULL;
2764 }
2765 
2766 /* Checks if this SKB belongs to an HW offloaded socket
2767  * and whether any SW fallbacks are required based on dev.
2768  * Check decrypted mark in case skb_orphan() cleared socket.
2769  */
2770 static inline struct sk_buff *sk_validate_xmit_skb(struct sk_buff *skb,
2771 						   struct net_device *dev)
2772 {
2773 #ifdef CONFIG_SOCK_VALIDATE_XMIT
2774 	struct sock *sk = skb->sk;
2775 
2776 	if (sk && sk_fullsock(sk) && sk->sk_validate_xmit_skb) {
2777 		skb = sk->sk_validate_xmit_skb(sk, dev, skb);
2778 #ifdef CONFIG_TLS_DEVICE
2779 	} else if (unlikely(skb->decrypted)) {
2780 		pr_warn_ratelimited("unencrypted skb with no associated socket - dropping\n");
2781 		kfree_skb(skb);
2782 		skb = NULL;
2783 #endif
2784 	}
2785 #endif
2786 
2787 	return skb;
2788 }
2789 
2790 /* This helper checks if a socket is a LISTEN or NEW_SYN_RECV
2791  * SYNACK messages can be attached to either ones (depending on SYNCOOKIE)
2792  */
2793 static inline bool sk_listener(const struct sock *sk)
2794 {
2795 	return (1 << sk->sk_state) & (TCPF_LISTEN | TCPF_NEW_SYN_RECV);
2796 }
2797 
2798 void sock_enable_timestamp(struct sock *sk, enum sock_flags flag);
2799 int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len, int level,
2800 		       int type);
2801 
2802 bool sk_ns_capable(const struct sock *sk,
2803 		   struct user_namespace *user_ns, int cap);
2804 bool sk_capable(const struct sock *sk, int cap);
2805 bool sk_net_capable(const struct sock *sk, int cap);
2806 
2807 void sk_get_meminfo(const struct sock *sk, u32 *meminfo);
2808 
2809 /* Take into consideration the size of the struct sk_buff overhead in the
2810  * determination of these values, since that is non-constant across
2811  * platforms.  This makes socket queueing behavior and performance
2812  * not depend upon such differences.
2813  */
2814 #define _SK_MEM_PACKETS		256
2815 #define _SK_MEM_OVERHEAD	SKB_TRUESIZE(256)
2816 #define SK_WMEM_MAX		(_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
2817 #define SK_RMEM_MAX		(_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
2818 
2819 extern __u32 sysctl_wmem_max;
2820 extern __u32 sysctl_rmem_max;
2821 
2822 extern int sysctl_tstamp_allow_data;
2823 extern int sysctl_optmem_max;
2824 
2825 extern __u32 sysctl_wmem_default;
2826 extern __u32 sysctl_rmem_default;
2827 
2828 #define SKB_FRAG_PAGE_ORDER	get_order(32768)
2829 DECLARE_STATIC_KEY_FALSE(net_high_order_alloc_disable_key);
2830 
2831 static inline int sk_get_wmem0(const struct sock *sk, const struct proto *proto)
2832 {
2833 	/* Does this proto have per netns sysctl_wmem ? */
2834 	if (proto->sysctl_wmem_offset)
2835 		return *(int *)((void *)sock_net(sk) + proto->sysctl_wmem_offset);
2836 
2837 	return *proto->sysctl_wmem;
2838 }
2839 
2840 static inline int sk_get_rmem0(const struct sock *sk, const struct proto *proto)
2841 {
2842 	/* Does this proto have per netns sysctl_rmem ? */
2843 	if (proto->sysctl_rmem_offset)
2844 		return *(int *)((void *)sock_net(sk) + proto->sysctl_rmem_offset);
2845 
2846 	return *proto->sysctl_rmem;
2847 }
2848 
2849 /* Default TCP Small queue budget is ~1 ms of data (1sec >> 10)
2850  * Some wifi drivers need to tweak it to get more chunks.
2851  * They can use this helper from their ndo_start_xmit()
2852  */
2853 static inline void sk_pacing_shift_update(struct sock *sk, int val)
2854 {
2855 	if (!sk || !sk_fullsock(sk) || READ_ONCE(sk->sk_pacing_shift) == val)
2856 		return;
2857 	WRITE_ONCE(sk->sk_pacing_shift, val);
2858 }
2859 
2860 /* if a socket is bound to a device, check that the given device
2861  * index is either the same or that the socket is bound to an L3
2862  * master device and the given device index is also enslaved to
2863  * that L3 master
2864  */
2865 static inline bool sk_dev_equal_l3scope(struct sock *sk, int dif)
2866 {
2867 	int mdif;
2868 
2869 	if (!sk->sk_bound_dev_if || sk->sk_bound_dev_if == dif)
2870 		return true;
2871 
2872 	mdif = l3mdev_master_ifindex_by_index(sock_net(sk), dif);
2873 	if (mdif && mdif == sk->sk_bound_dev_if)
2874 		return true;
2875 
2876 	return false;
2877 }
2878 
2879 void sock_def_readable(struct sock *sk);
2880 
2881 int sock_bindtoindex(struct sock *sk, int ifindex, bool lock_sk);
2882 void sock_set_timestamp(struct sock *sk, int optname, bool valbool);
2883 int sock_set_timestamping(struct sock *sk, int optname,
2884 			  struct so_timestamping timestamping);
2885 
2886 void sock_enable_timestamps(struct sock *sk);
2887 void sock_no_linger(struct sock *sk);
2888 void sock_set_keepalive(struct sock *sk);
2889 void sock_set_priority(struct sock *sk, u32 priority);
2890 void sock_set_rcvbuf(struct sock *sk, int val);
2891 void sock_set_mark(struct sock *sk, u32 val);
2892 void sock_set_reuseaddr(struct sock *sk);
2893 void sock_set_reuseport(struct sock *sk);
2894 void sock_set_sndtimeo(struct sock *sk, s64 secs);
2895 
2896 int sock_bind_add(struct sock *sk, struct sockaddr *addr, int addr_len);
2897 
2898 int sock_get_timeout(long timeo, void *optval, bool old_timeval);
2899 int sock_copy_user_timeval(struct __kernel_sock_timeval *tv,
2900 			   sockptr_t optval, int optlen, bool old_timeval);
2901 
2902 static inline bool sk_is_readable(struct sock *sk)
2903 {
2904 	if (sk->sk_prot->sock_is_readable)
2905 		return sk->sk_prot->sock_is_readable(sk);
2906 	return false;
2907 }
2908 #endif	/* _SOCK_H */
2909