xref: /linux/include/net/sock.h (revision a115bc070b1fc57ab23f3972401425927b5b465c)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Definitions for the AF_INET socket handler.
7  *
8  * Version:	@(#)sock.h	1.0.4	05/13/93
9  *
10  * Authors:	Ross Biro
11  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
13  *		Florian La Roche <flla@stud.uni-sb.de>
14  *
15  * Fixes:
16  *		Alan Cox	:	Volatiles in skbuff pointers. See
17  *					skbuff comments. May be overdone,
18  *					better to prove they can be removed
19  *					than the reverse.
20  *		Alan Cox	:	Added a zapped field for tcp to note
21  *					a socket is reset and must stay shut up
22  *		Alan Cox	:	New fields for options
23  *	Pauline Middelink	:	identd support
24  *		Alan Cox	:	Eliminate low level recv/recvfrom
25  *		David S. Miller	:	New socket lookup architecture.
26  *              Steve Whitehouse:       Default routines for sock_ops
27  *              Arnaldo C. Melo :	removed net_pinfo, tp_pinfo and made
28  *              			protinfo be just a void pointer, as the
29  *              			protocol specific parts were moved to
30  *              			respective headers and ipv4/v6, etc now
31  *              			use private slabcaches for its socks
32  *              Pedro Hortas	:	New flags field for socket options
33  *
34  *
35  *		This program is free software; you can redistribute it and/or
36  *		modify it under the terms of the GNU General Public License
37  *		as published by the Free Software Foundation; either version
38  *		2 of the License, or (at your option) any later version.
39  */
40 #ifndef _SOCK_H
41 #define _SOCK_H
42 
43 #include <linux/kernel.h>
44 #include <linux/list.h>
45 #include <linux/list_nulls.h>
46 #include <linux/timer.h>
47 #include <linux/cache.h>
48 #include <linux/module.h>
49 #include <linux/lockdep.h>
50 #include <linux/netdevice.h>
51 #include <linux/skbuff.h>	/* struct sk_buff */
52 #include <linux/mm.h>
53 #include <linux/security.h>
54 
55 #include <linux/filter.h>
56 #include <linux/rculist_nulls.h>
57 #include <linux/poll.h>
58 
59 #include <asm/atomic.h>
60 #include <net/dst.h>
61 #include <net/checksum.h>
62 
63 /*
64  * This structure really needs to be cleaned up.
65  * Most of it is for TCP, and not used by any of
66  * the other protocols.
67  */
68 
69 /* Define this to get the SOCK_DBG debugging facility. */
70 #define SOCK_DEBUGGING
71 #ifdef SOCK_DEBUGGING
72 #define SOCK_DEBUG(sk, msg...) do { if ((sk) && sock_flag((sk), SOCK_DBG)) \
73 					printk(KERN_DEBUG msg); } while (0)
74 #else
75 /* Validate arguments and do nothing */
76 static void inline int __attribute__ ((format (printf, 2, 3)))
77 SOCK_DEBUG(struct sock *sk, const char *msg, ...)
78 {
79 }
80 #endif
81 
82 /* This is the per-socket lock.  The spinlock provides a synchronization
83  * between user contexts and software interrupt processing, whereas the
84  * mini-semaphore synchronizes multiple users amongst themselves.
85  */
86 typedef struct {
87 	spinlock_t		slock;
88 	int			owned;
89 	wait_queue_head_t	wq;
90 	/*
91 	 * We express the mutex-alike socket_lock semantics
92 	 * to the lock validator by explicitly managing
93 	 * the slock as a lock variant (in addition to
94 	 * the slock itself):
95 	 */
96 #ifdef CONFIG_DEBUG_LOCK_ALLOC
97 	struct lockdep_map dep_map;
98 #endif
99 } socket_lock_t;
100 
101 struct sock;
102 struct proto;
103 struct net;
104 
105 /**
106  *	struct sock_common - minimal network layer representation of sockets
107  *	@skc_node: main hash linkage for various protocol lookup tables
108  *	@skc_nulls_node: main hash linkage for TCP/UDP/UDP-Lite protocol
109  *	@skc_refcnt: reference count
110  *	@skc_tx_queue_mapping: tx queue number for this connection
111  *	@skc_hash: hash value used with various protocol lookup tables
112  *	@skc_u16hashes: two u16 hash values used by UDP lookup tables
113  *	@skc_family: network address family
114  *	@skc_state: Connection state
115  *	@skc_reuse: %SO_REUSEADDR setting
116  *	@skc_bound_dev_if: bound device index if != 0
117  *	@skc_bind_node: bind hash linkage for various protocol lookup tables
118  *	@skc_portaddr_node: second hash linkage for UDP/UDP-Lite protocol
119  *	@skc_prot: protocol handlers inside a network family
120  *	@skc_net: reference to the network namespace of this socket
121  *
122  *	This is the minimal network layer representation of sockets, the header
123  *	for struct sock and struct inet_timewait_sock.
124  */
125 struct sock_common {
126 	/*
127 	 * first fields are not copied in sock_copy()
128 	 */
129 	union {
130 		struct hlist_node	skc_node;
131 		struct hlist_nulls_node skc_nulls_node;
132 	};
133 	atomic_t		skc_refcnt;
134 	int			skc_tx_queue_mapping;
135 
136 	union  {
137 		unsigned int	skc_hash;
138 		__u16		skc_u16hashes[2];
139 	};
140 	unsigned short		skc_family;
141 	volatile unsigned char	skc_state;
142 	unsigned char		skc_reuse;
143 	int			skc_bound_dev_if;
144 	union {
145 		struct hlist_node	skc_bind_node;
146 		struct hlist_nulls_node skc_portaddr_node;
147 	};
148 	struct proto		*skc_prot;
149 #ifdef CONFIG_NET_NS
150 	struct net	 	*skc_net;
151 #endif
152 };
153 
154 /**
155   *	struct sock - network layer representation of sockets
156   *	@__sk_common: shared layout with inet_timewait_sock
157   *	@sk_shutdown: mask of %SEND_SHUTDOWN and/or %RCV_SHUTDOWN
158   *	@sk_userlocks: %SO_SNDBUF and %SO_RCVBUF settings
159   *	@sk_lock:	synchronizer
160   *	@sk_rcvbuf: size of receive buffer in bytes
161   *	@sk_sleep: sock wait queue
162   *	@sk_dst_cache: destination cache
163   *	@sk_dst_lock: destination cache lock
164   *	@sk_policy: flow policy
165   *	@sk_rmem_alloc: receive queue bytes committed
166   *	@sk_receive_queue: incoming packets
167   *	@sk_wmem_alloc: transmit queue bytes committed
168   *	@sk_write_queue: Packet sending queue
169   *	@sk_async_wait_queue: DMA copied packets
170   *	@sk_omem_alloc: "o" is "option" or "other"
171   *	@sk_wmem_queued: persistent queue size
172   *	@sk_forward_alloc: space allocated forward
173   *	@sk_allocation: allocation mode
174   *	@sk_sndbuf: size of send buffer in bytes
175   *	@sk_flags: %SO_LINGER (l_onoff), %SO_BROADCAST, %SO_KEEPALIVE,
176   *		   %SO_OOBINLINE settings, %SO_TIMESTAMPING settings
177   *	@sk_no_check: %SO_NO_CHECK setting, wether or not checkup packets
178   *	@sk_route_caps: route capabilities (e.g. %NETIF_F_TSO)
179   *	@sk_gso_type: GSO type (e.g. %SKB_GSO_TCPV4)
180   *	@sk_gso_max_size: Maximum GSO segment size to build
181   *	@sk_lingertime: %SO_LINGER l_linger setting
182   *	@sk_backlog: always used with the per-socket spinlock held
183   *	@sk_callback_lock: used with the callbacks in the end of this struct
184   *	@sk_error_queue: rarely used
185   *	@sk_prot_creator: sk_prot of original sock creator (see ipv6_setsockopt,
186   *			  IPV6_ADDRFORM for instance)
187   *	@sk_err: last error
188   *	@sk_err_soft: errors that don't cause failure but are the cause of a
189   *		      persistent failure not just 'timed out'
190   *	@sk_drops: raw/udp drops counter
191   *	@sk_ack_backlog: current listen backlog
192   *	@sk_max_ack_backlog: listen backlog set in listen()
193   *	@sk_priority: %SO_PRIORITY setting
194   *	@sk_type: socket type (%SOCK_STREAM, etc)
195   *	@sk_protocol: which protocol this socket belongs in this network family
196   *	@sk_peercred: %SO_PEERCRED setting
197   *	@sk_rcvlowat: %SO_RCVLOWAT setting
198   *	@sk_rcvtimeo: %SO_RCVTIMEO setting
199   *	@sk_sndtimeo: %SO_SNDTIMEO setting
200   *	@sk_filter: socket filtering instructions
201   *	@sk_protinfo: private area, net family specific, when not using slab
202   *	@sk_timer: sock cleanup timer
203   *	@sk_stamp: time stamp of last packet received
204   *	@sk_socket: Identd and reporting IO signals
205   *	@sk_user_data: RPC layer private data
206   *	@sk_sndmsg_page: cached page for sendmsg
207   *	@sk_sndmsg_off: cached offset for sendmsg
208   *	@sk_send_head: front of stuff to transmit
209   *	@sk_security: used by security modules
210   *	@sk_mark: generic packet mark
211   *	@sk_write_pending: a write to stream socket waits to start
212   *	@sk_state_change: callback to indicate change in the state of the sock
213   *	@sk_data_ready: callback to indicate there is data to be processed
214   *	@sk_write_space: callback to indicate there is bf sending space available
215   *	@sk_error_report: callback to indicate errors (e.g. %MSG_ERRQUEUE)
216   *	@sk_backlog_rcv: callback to process the backlog
217   *	@sk_destruct: called at sock freeing time, i.e. when all refcnt == 0
218  */
219 struct sock {
220 	/*
221 	 * Now struct inet_timewait_sock also uses sock_common, so please just
222 	 * don't add nothing before this first member (__sk_common) --acme
223 	 */
224 	struct sock_common	__sk_common;
225 #define sk_node			__sk_common.skc_node
226 #define sk_nulls_node		__sk_common.skc_nulls_node
227 #define sk_refcnt		__sk_common.skc_refcnt
228 #define sk_tx_queue_mapping	__sk_common.skc_tx_queue_mapping
229 
230 #define sk_copy_start		__sk_common.skc_hash
231 #define sk_hash			__sk_common.skc_hash
232 #define sk_family		__sk_common.skc_family
233 #define sk_state		__sk_common.skc_state
234 #define sk_reuse		__sk_common.skc_reuse
235 #define sk_bound_dev_if		__sk_common.skc_bound_dev_if
236 #define sk_bind_node		__sk_common.skc_bind_node
237 #define sk_prot			__sk_common.skc_prot
238 #define sk_net			__sk_common.skc_net
239 	kmemcheck_bitfield_begin(flags);
240 	unsigned int		sk_shutdown  : 2,
241 				sk_no_check  : 2,
242 				sk_userlocks : 4,
243 				sk_protocol  : 8,
244 				sk_type      : 16;
245 	kmemcheck_bitfield_end(flags);
246 	int			sk_rcvbuf;
247 	socket_lock_t		sk_lock;
248 	/*
249 	 * The backlog queue is special, it is always used with
250 	 * the per-socket spinlock held and requires low latency
251 	 * access. Therefore we special case it's implementation.
252 	 */
253 	struct {
254 		struct sk_buff *head;
255 		struct sk_buff *tail;
256 	} sk_backlog;
257 	wait_queue_head_t	*sk_sleep;
258 	struct dst_entry	*sk_dst_cache;
259 #ifdef CONFIG_XFRM
260 	struct xfrm_policy	*sk_policy[2];
261 #endif
262 	rwlock_t		sk_dst_lock;
263 	atomic_t		sk_rmem_alloc;
264 	atomic_t		sk_wmem_alloc;
265 	atomic_t		sk_omem_alloc;
266 	int			sk_sndbuf;
267 	struct sk_buff_head	sk_receive_queue;
268 	struct sk_buff_head	sk_write_queue;
269 #ifdef CONFIG_NET_DMA
270 	struct sk_buff_head	sk_async_wait_queue;
271 #endif
272 	int			sk_wmem_queued;
273 	int			sk_forward_alloc;
274 	gfp_t			sk_allocation;
275 	int			sk_route_caps;
276 	int			sk_gso_type;
277 	unsigned int		sk_gso_max_size;
278 	int			sk_rcvlowat;
279 	unsigned long 		sk_flags;
280 	unsigned long	        sk_lingertime;
281 	struct sk_buff_head	sk_error_queue;
282 	struct proto		*sk_prot_creator;
283 	rwlock_t		sk_callback_lock;
284 	int			sk_err,
285 				sk_err_soft;
286 	atomic_t		sk_drops;
287 	unsigned short		sk_ack_backlog;
288 	unsigned short		sk_max_ack_backlog;
289 	__u32			sk_priority;
290 	struct ucred		sk_peercred;
291 	long			sk_rcvtimeo;
292 	long			sk_sndtimeo;
293 	struct sk_filter      	*sk_filter;
294 	void			*sk_protinfo;
295 	struct timer_list	sk_timer;
296 	ktime_t			sk_stamp;
297 	struct socket		*sk_socket;
298 	void			*sk_user_data;
299 	struct page		*sk_sndmsg_page;
300 	struct sk_buff		*sk_send_head;
301 	__u32			sk_sndmsg_off;
302 	int			sk_write_pending;
303 #ifdef CONFIG_SECURITY
304 	void			*sk_security;
305 #endif
306 	__u32			sk_mark;
307 	/* XXX 4 bytes hole on 64 bit */
308 	void			(*sk_state_change)(struct sock *sk);
309 	void			(*sk_data_ready)(struct sock *sk, int bytes);
310 	void			(*sk_write_space)(struct sock *sk);
311 	void			(*sk_error_report)(struct sock *sk);
312   	int			(*sk_backlog_rcv)(struct sock *sk,
313 						  struct sk_buff *skb);
314 	void                    (*sk_destruct)(struct sock *sk);
315 };
316 
317 /*
318  * Hashed lists helper routines
319  */
320 static inline struct sock *sk_entry(const struct hlist_node *node)
321 {
322 	return hlist_entry(node, struct sock, sk_node);
323 }
324 
325 static inline struct sock *__sk_head(const struct hlist_head *head)
326 {
327 	return hlist_entry(head->first, struct sock, sk_node);
328 }
329 
330 static inline struct sock *sk_head(const struct hlist_head *head)
331 {
332 	return hlist_empty(head) ? NULL : __sk_head(head);
333 }
334 
335 static inline struct sock *__sk_nulls_head(const struct hlist_nulls_head *head)
336 {
337 	return hlist_nulls_entry(head->first, struct sock, sk_nulls_node);
338 }
339 
340 static inline struct sock *sk_nulls_head(const struct hlist_nulls_head *head)
341 {
342 	return hlist_nulls_empty(head) ? NULL : __sk_nulls_head(head);
343 }
344 
345 static inline struct sock *sk_next(const struct sock *sk)
346 {
347 	return sk->sk_node.next ?
348 		hlist_entry(sk->sk_node.next, struct sock, sk_node) : NULL;
349 }
350 
351 static inline struct sock *sk_nulls_next(const struct sock *sk)
352 {
353 	return (!is_a_nulls(sk->sk_nulls_node.next)) ?
354 		hlist_nulls_entry(sk->sk_nulls_node.next,
355 				  struct sock, sk_nulls_node) :
356 		NULL;
357 }
358 
359 static inline int sk_unhashed(const struct sock *sk)
360 {
361 	return hlist_unhashed(&sk->sk_node);
362 }
363 
364 static inline int sk_hashed(const struct sock *sk)
365 {
366 	return !sk_unhashed(sk);
367 }
368 
369 static __inline__ void sk_node_init(struct hlist_node *node)
370 {
371 	node->pprev = NULL;
372 }
373 
374 static __inline__ void sk_nulls_node_init(struct hlist_nulls_node *node)
375 {
376 	node->pprev = NULL;
377 }
378 
379 static __inline__ void __sk_del_node(struct sock *sk)
380 {
381 	__hlist_del(&sk->sk_node);
382 }
383 
384 /* NB: equivalent to hlist_del_init_rcu */
385 static __inline__ int __sk_del_node_init(struct sock *sk)
386 {
387 	if (sk_hashed(sk)) {
388 		__sk_del_node(sk);
389 		sk_node_init(&sk->sk_node);
390 		return 1;
391 	}
392 	return 0;
393 }
394 
395 /* Grab socket reference count. This operation is valid only
396    when sk is ALREADY grabbed f.e. it is found in hash table
397    or a list and the lookup is made under lock preventing hash table
398    modifications.
399  */
400 
401 static inline void sock_hold(struct sock *sk)
402 {
403 	atomic_inc(&sk->sk_refcnt);
404 }
405 
406 /* Ungrab socket in the context, which assumes that socket refcnt
407    cannot hit zero, f.e. it is true in context of any socketcall.
408  */
409 static inline void __sock_put(struct sock *sk)
410 {
411 	atomic_dec(&sk->sk_refcnt);
412 }
413 
414 static __inline__ int sk_del_node_init(struct sock *sk)
415 {
416 	int rc = __sk_del_node_init(sk);
417 
418 	if (rc) {
419 		/* paranoid for a while -acme */
420 		WARN_ON(atomic_read(&sk->sk_refcnt) == 1);
421 		__sock_put(sk);
422 	}
423 	return rc;
424 }
425 #define sk_del_node_init_rcu(sk)	sk_del_node_init(sk)
426 
427 static __inline__ int __sk_nulls_del_node_init_rcu(struct sock *sk)
428 {
429 	if (sk_hashed(sk)) {
430 		hlist_nulls_del_init_rcu(&sk->sk_nulls_node);
431 		return 1;
432 	}
433 	return 0;
434 }
435 
436 static __inline__ int sk_nulls_del_node_init_rcu(struct sock *sk)
437 {
438 	int rc = __sk_nulls_del_node_init_rcu(sk);
439 
440 	if (rc) {
441 		/* paranoid for a while -acme */
442 		WARN_ON(atomic_read(&sk->sk_refcnt) == 1);
443 		__sock_put(sk);
444 	}
445 	return rc;
446 }
447 
448 static __inline__ void __sk_add_node(struct sock *sk, struct hlist_head *list)
449 {
450 	hlist_add_head(&sk->sk_node, list);
451 }
452 
453 static __inline__ void sk_add_node(struct sock *sk, struct hlist_head *list)
454 {
455 	sock_hold(sk);
456 	__sk_add_node(sk, list);
457 }
458 
459 static __inline__ void sk_add_node_rcu(struct sock *sk, struct hlist_head *list)
460 {
461 	sock_hold(sk);
462 	hlist_add_head_rcu(&sk->sk_node, list);
463 }
464 
465 static __inline__ void __sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
466 {
467 	hlist_nulls_add_head_rcu(&sk->sk_nulls_node, list);
468 }
469 
470 static __inline__ void sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
471 {
472 	sock_hold(sk);
473 	__sk_nulls_add_node_rcu(sk, list);
474 }
475 
476 static __inline__ void __sk_del_bind_node(struct sock *sk)
477 {
478 	__hlist_del(&sk->sk_bind_node);
479 }
480 
481 static __inline__ void sk_add_bind_node(struct sock *sk,
482 					struct hlist_head *list)
483 {
484 	hlist_add_head(&sk->sk_bind_node, list);
485 }
486 
487 #define sk_for_each(__sk, node, list) \
488 	hlist_for_each_entry(__sk, node, list, sk_node)
489 #define sk_for_each_rcu(__sk, node, list) \
490 	hlist_for_each_entry_rcu(__sk, node, list, sk_node)
491 #define sk_nulls_for_each(__sk, node, list) \
492 	hlist_nulls_for_each_entry(__sk, node, list, sk_nulls_node)
493 #define sk_nulls_for_each_rcu(__sk, node, list) \
494 	hlist_nulls_for_each_entry_rcu(__sk, node, list, sk_nulls_node)
495 #define sk_for_each_from(__sk, node) \
496 	if (__sk && ({ node = &(__sk)->sk_node; 1; })) \
497 		hlist_for_each_entry_from(__sk, node, sk_node)
498 #define sk_nulls_for_each_from(__sk, node) \
499 	if (__sk && ({ node = &(__sk)->sk_nulls_node; 1; })) \
500 		hlist_nulls_for_each_entry_from(__sk, node, sk_nulls_node)
501 #define sk_for_each_continue(__sk, node) \
502 	if (__sk && ({ node = &(__sk)->sk_node; 1; })) \
503 		hlist_for_each_entry_continue(__sk, node, sk_node)
504 #define sk_for_each_safe(__sk, node, tmp, list) \
505 	hlist_for_each_entry_safe(__sk, node, tmp, list, sk_node)
506 #define sk_for_each_bound(__sk, node, list) \
507 	hlist_for_each_entry(__sk, node, list, sk_bind_node)
508 
509 /* Sock flags */
510 enum sock_flags {
511 	SOCK_DEAD,
512 	SOCK_DONE,
513 	SOCK_URGINLINE,
514 	SOCK_KEEPOPEN,
515 	SOCK_LINGER,
516 	SOCK_DESTROY,
517 	SOCK_BROADCAST,
518 	SOCK_TIMESTAMP,
519 	SOCK_ZAPPED,
520 	SOCK_USE_WRITE_QUEUE, /* whether to call sk->sk_write_space in sock_wfree */
521 	SOCK_DBG, /* %SO_DEBUG setting */
522 	SOCK_RCVTSTAMP, /* %SO_TIMESTAMP setting */
523 	SOCK_RCVTSTAMPNS, /* %SO_TIMESTAMPNS setting */
524 	SOCK_LOCALROUTE, /* route locally only, %SO_DONTROUTE setting */
525 	SOCK_QUEUE_SHRUNK, /* write queue has been shrunk recently */
526 	SOCK_TIMESTAMPING_TX_HARDWARE,  /* %SOF_TIMESTAMPING_TX_HARDWARE */
527 	SOCK_TIMESTAMPING_TX_SOFTWARE,  /* %SOF_TIMESTAMPING_TX_SOFTWARE */
528 	SOCK_TIMESTAMPING_RX_HARDWARE,  /* %SOF_TIMESTAMPING_RX_HARDWARE */
529 	SOCK_TIMESTAMPING_RX_SOFTWARE,  /* %SOF_TIMESTAMPING_RX_SOFTWARE */
530 	SOCK_TIMESTAMPING_SOFTWARE,     /* %SOF_TIMESTAMPING_SOFTWARE */
531 	SOCK_TIMESTAMPING_RAW_HARDWARE, /* %SOF_TIMESTAMPING_RAW_HARDWARE */
532 	SOCK_TIMESTAMPING_SYS_HARDWARE, /* %SOF_TIMESTAMPING_SYS_HARDWARE */
533 	SOCK_FASYNC, /* fasync() active */
534 	SOCK_RXQ_OVFL,
535 };
536 
537 static inline void sock_copy_flags(struct sock *nsk, struct sock *osk)
538 {
539 	nsk->sk_flags = osk->sk_flags;
540 }
541 
542 static inline void sock_set_flag(struct sock *sk, enum sock_flags flag)
543 {
544 	__set_bit(flag, &sk->sk_flags);
545 }
546 
547 static inline void sock_reset_flag(struct sock *sk, enum sock_flags flag)
548 {
549 	__clear_bit(flag, &sk->sk_flags);
550 }
551 
552 static inline int sock_flag(struct sock *sk, enum sock_flags flag)
553 {
554 	return test_bit(flag, &sk->sk_flags);
555 }
556 
557 static inline void sk_acceptq_removed(struct sock *sk)
558 {
559 	sk->sk_ack_backlog--;
560 }
561 
562 static inline void sk_acceptq_added(struct sock *sk)
563 {
564 	sk->sk_ack_backlog++;
565 }
566 
567 static inline int sk_acceptq_is_full(struct sock *sk)
568 {
569 	return sk->sk_ack_backlog > sk->sk_max_ack_backlog;
570 }
571 
572 /*
573  * Compute minimal free write space needed to queue new packets.
574  */
575 static inline int sk_stream_min_wspace(struct sock *sk)
576 {
577 	return sk->sk_wmem_queued >> 1;
578 }
579 
580 static inline int sk_stream_wspace(struct sock *sk)
581 {
582 	return sk->sk_sndbuf - sk->sk_wmem_queued;
583 }
584 
585 extern void sk_stream_write_space(struct sock *sk);
586 
587 static inline int sk_stream_memory_free(struct sock *sk)
588 {
589 	return sk->sk_wmem_queued < sk->sk_sndbuf;
590 }
591 
592 /* The per-socket spinlock must be held here. */
593 static inline void sk_add_backlog(struct sock *sk, struct sk_buff *skb)
594 {
595 	if (!sk->sk_backlog.tail) {
596 		sk->sk_backlog.head = sk->sk_backlog.tail = skb;
597 	} else {
598 		sk->sk_backlog.tail->next = skb;
599 		sk->sk_backlog.tail = skb;
600 	}
601 	skb->next = NULL;
602 }
603 
604 static inline int sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
605 {
606 	return sk->sk_backlog_rcv(sk, skb);
607 }
608 
609 #define sk_wait_event(__sk, __timeo, __condition)			\
610 	({	int __rc;						\
611 		release_sock(__sk);					\
612 		__rc = __condition;					\
613 		if (!__rc) {						\
614 			*(__timeo) = schedule_timeout(*(__timeo));	\
615 		}							\
616 		lock_sock(__sk);					\
617 		__rc = __condition;					\
618 		__rc;							\
619 	})
620 
621 extern int sk_stream_wait_connect(struct sock *sk, long *timeo_p);
622 extern int sk_stream_wait_memory(struct sock *sk, long *timeo_p);
623 extern void sk_stream_wait_close(struct sock *sk, long timeo_p);
624 extern int sk_stream_error(struct sock *sk, int flags, int err);
625 extern void sk_stream_kill_queues(struct sock *sk);
626 
627 extern int sk_wait_data(struct sock *sk, long *timeo);
628 
629 struct request_sock_ops;
630 struct timewait_sock_ops;
631 struct inet_hashinfo;
632 struct raw_hashinfo;
633 
634 /* Networking protocol blocks we attach to sockets.
635  * socket layer -> transport layer interface
636  * transport -> network interface is defined by struct inet_proto
637  */
638 struct proto {
639 	void			(*close)(struct sock *sk,
640 					long timeout);
641 	int			(*connect)(struct sock *sk,
642 				        struct sockaddr *uaddr,
643 					int addr_len);
644 	int			(*disconnect)(struct sock *sk, int flags);
645 
646 	struct sock *		(*accept) (struct sock *sk, int flags, int *err);
647 
648 	int			(*ioctl)(struct sock *sk, int cmd,
649 					 unsigned long arg);
650 	int			(*init)(struct sock *sk);
651 	void			(*destroy)(struct sock *sk);
652 	void			(*shutdown)(struct sock *sk, int how);
653 	int			(*setsockopt)(struct sock *sk, int level,
654 					int optname, char __user *optval,
655 					unsigned int optlen);
656 	int			(*getsockopt)(struct sock *sk, int level,
657 					int optname, char __user *optval,
658 					int __user *option);
659 #ifdef CONFIG_COMPAT
660 	int			(*compat_setsockopt)(struct sock *sk,
661 					int level,
662 					int optname, char __user *optval,
663 					unsigned int optlen);
664 	int			(*compat_getsockopt)(struct sock *sk,
665 					int level,
666 					int optname, char __user *optval,
667 					int __user *option);
668 #endif
669 	int			(*sendmsg)(struct kiocb *iocb, struct sock *sk,
670 					   struct msghdr *msg, size_t len);
671 	int			(*recvmsg)(struct kiocb *iocb, struct sock *sk,
672 					   struct msghdr *msg,
673 					size_t len, int noblock, int flags,
674 					int *addr_len);
675 	int			(*sendpage)(struct sock *sk, struct page *page,
676 					int offset, size_t size, int flags);
677 	int			(*bind)(struct sock *sk,
678 					struct sockaddr *uaddr, int addr_len);
679 
680 	int			(*backlog_rcv) (struct sock *sk,
681 						struct sk_buff *skb);
682 
683 	/* Keeping track of sk's, looking them up, and port selection methods. */
684 	void			(*hash)(struct sock *sk);
685 	void			(*unhash)(struct sock *sk);
686 	int			(*get_port)(struct sock *sk, unsigned short snum);
687 
688 	/* Keeping track of sockets in use */
689 #ifdef CONFIG_PROC_FS
690 	unsigned int		inuse_idx;
691 #endif
692 
693 	/* Memory pressure */
694 	void			(*enter_memory_pressure)(struct sock *sk);
695 	atomic_t		*memory_allocated;	/* Current allocated memory. */
696 	struct percpu_counter	*sockets_allocated;	/* Current number of sockets. */
697 	/*
698 	 * Pressure flag: try to collapse.
699 	 * Technical note: it is used by multiple contexts non atomically.
700 	 * All the __sk_mem_schedule() is of this nature: accounting
701 	 * is strict, actions are advisory and have some latency.
702 	 */
703 	int			*memory_pressure;
704 	int			*sysctl_mem;
705 	int			*sysctl_wmem;
706 	int			*sysctl_rmem;
707 	int			max_header;
708 
709 	struct kmem_cache	*slab;
710 	unsigned int		obj_size;
711 	int			slab_flags;
712 
713 	struct percpu_counter	*orphan_count;
714 
715 	struct request_sock_ops	*rsk_prot;
716 	struct timewait_sock_ops *twsk_prot;
717 
718 	union {
719 		struct inet_hashinfo	*hashinfo;
720 		struct udp_table	*udp_table;
721 		struct raw_hashinfo	*raw_hash;
722 	} h;
723 
724 	struct module		*owner;
725 
726 	char			name[32];
727 
728 	struct list_head	node;
729 #ifdef SOCK_REFCNT_DEBUG
730 	atomic_t		socks;
731 #endif
732 };
733 
734 extern int proto_register(struct proto *prot, int alloc_slab);
735 extern void proto_unregister(struct proto *prot);
736 
737 #ifdef SOCK_REFCNT_DEBUG
738 static inline void sk_refcnt_debug_inc(struct sock *sk)
739 {
740 	atomic_inc(&sk->sk_prot->socks);
741 }
742 
743 static inline void sk_refcnt_debug_dec(struct sock *sk)
744 {
745 	atomic_dec(&sk->sk_prot->socks);
746 	printk(KERN_DEBUG "%s socket %p released, %d are still alive\n",
747 	       sk->sk_prot->name, sk, atomic_read(&sk->sk_prot->socks));
748 }
749 
750 static inline void sk_refcnt_debug_release(const struct sock *sk)
751 {
752 	if (atomic_read(&sk->sk_refcnt) != 1)
753 		printk(KERN_DEBUG "Destruction of the %s socket %p delayed, refcnt=%d\n",
754 		       sk->sk_prot->name, sk, atomic_read(&sk->sk_refcnt));
755 }
756 #else /* SOCK_REFCNT_DEBUG */
757 #define sk_refcnt_debug_inc(sk) do { } while (0)
758 #define sk_refcnt_debug_dec(sk) do { } while (0)
759 #define sk_refcnt_debug_release(sk) do { } while (0)
760 #endif /* SOCK_REFCNT_DEBUG */
761 
762 
763 #ifdef CONFIG_PROC_FS
764 /* Called with local bh disabled */
765 extern void sock_prot_inuse_add(struct net *net, struct proto *prot, int inc);
766 extern int sock_prot_inuse_get(struct net *net, struct proto *proto);
767 #else
768 static void inline sock_prot_inuse_add(struct net *net, struct proto *prot,
769 		int inc)
770 {
771 }
772 #endif
773 
774 
775 /* With per-bucket locks this operation is not-atomic, so that
776  * this version is not worse.
777  */
778 static inline void __sk_prot_rehash(struct sock *sk)
779 {
780 	sk->sk_prot->unhash(sk);
781 	sk->sk_prot->hash(sk);
782 }
783 
784 /* About 10 seconds */
785 #define SOCK_DESTROY_TIME (10*HZ)
786 
787 /* Sockets 0-1023 can't be bound to unless you are superuser */
788 #define PROT_SOCK	1024
789 
790 #define SHUTDOWN_MASK	3
791 #define RCV_SHUTDOWN	1
792 #define SEND_SHUTDOWN	2
793 
794 #define SOCK_SNDBUF_LOCK	1
795 #define SOCK_RCVBUF_LOCK	2
796 #define SOCK_BINDADDR_LOCK	4
797 #define SOCK_BINDPORT_LOCK	8
798 
799 /* sock_iocb: used to kick off async processing of socket ios */
800 struct sock_iocb {
801 	struct list_head	list;
802 
803 	int			flags;
804 	int			size;
805 	struct socket		*sock;
806 	struct sock		*sk;
807 	struct scm_cookie	*scm;
808 	struct msghdr		*msg, async_msg;
809 	struct kiocb		*kiocb;
810 };
811 
812 static inline struct sock_iocb *kiocb_to_siocb(struct kiocb *iocb)
813 {
814 	return (struct sock_iocb *)iocb->private;
815 }
816 
817 static inline struct kiocb *siocb_to_kiocb(struct sock_iocb *si)
818 {
819 	return si->kiocb;
820 }
821 
822 struct socket_alloc {
823 	struct socket socket;
824 	struct inode vfs_inode;
825 };
826 
827 static inline struct socket *SOCKET_I(struct inode *inode)
828 {
829 	return &container_of(inode, struct socket_alloc, vfs_inode)->socket;
830 }
831 
832 static inline struct inode *SOCK_INODE(struct socket *socket)
833 {
834 	return &container_of(socket, struct socket_alloc, socket)->vfs_inode;
835 }
836 
837 /*
838  * Functions for memory accounting
839  */
840 extern int __sk_mem_schedule(struct sock *sk, int size, int kind);
841 extern void __sk_mem_reclaim(struct sock *sk);
842 
843 #define SK_MEM_QUANTUM ((int)PAGE_SIZE)
844 #define SK_MEM_QUANTUM_SHIFT ilog2(SK_MEM_QUANTUM)
845 #define SK_MEM_SEND	0
846 #define SK_MEM_RECV	1
847 
848 static inline int sk_mem_pages(int amt)
849 {
850 	return (amt + SK_MEM_QUANTUM - 1) >> SK_MEM_QUANTUM_SHIFT;
851 }
852 
853 static inline int sk_has_account(struct sock *sk)
854 {
855 	/* return true if protocol supports memory accounting */
856 	return !!sk->sk_prot->memory_allocated;
857 }
858 
859 static inline int sk_wmem_schedule(struct sock *sk, int size)
860 {
861 	if (!sk_has_account(sk))
862 		return 1;
863 	return size <= sk->sk_forward_alloc ||
864 		__sk_mem_schedule(sk, size, SK_MEM_SEND);
865 }
866 
867 static inline int sk_rmem_schedule(struct sock *sk, int size)
868 {
869 	if (!sk_has_account(sk))
870 		return 1;
871 	return size <= sk->sk_forward_alloc ||
872 		__sk_mem_schedule(sk, size, SK_MEM_RECV);
873 }
874 
875 static inline void sk_mem_reclaim(struct sock *sk)
876 {
877 	if (!sk_has_account(sk))
878 		return;
879 	if (sk->sk_forward_alloc >= SK_MEM_QUANTUM)
880 		__sk_mem_reclaim(sk);
881 }
882 
883 static inline void sk_mem_reclaim_partial(struct sock *sk)
884 {
885 	if (!sk_has_account(sk))
886 		return;
887 	if (sk->sk_forward_alloc > SK_MEM_QUANTUM)
888 		__sk_mem_reclaim(sk);
889 }
890 
891 static inline void sk_mem_charge(struct sock *sk, int size)
892 {
893 	if (!sk_has_account(sk))
894 		return;
895 	sk->sk_forward_alloc -= size;
896 }
897 
898 static inline void sk_mem_uncharge(struct sock *sk, int size)
899 {
900 	if (!sk_has_account(sk))
901 		return;
902 	sk->sk_forward_alloc += size;
903 }
904 
905 static inline void sk_wmem_free_skb(struct sock *sk, struct sk_buff *skb)
906 {
907 	sock_set_flag(sk, SOCK_QUEUE_SHRUNK);
908 	sk->sk_wmem_queued -= skb->truesize;
909 	sk_mem_uncharge(sk, skb->truesize);
910 	__kfree_skb(skb);
911 }
912 
913 /* Used by processes to "lock" a socket state, so that
914  * interrupts and bottom half handlers won't change it
915  * from under us. It essentially blocks any incoming
916  * packets, so that we won't get any new data or any
917  * packets that change the state of the socket.
918  *
919  * While locked, BH processing will add new packets to
920  * the backlog queue.  This queue is processed by the
921  * owner of the socket lock right before it is released.
922  *
923  * Since ~2.3.5 it is also exclusive sleep lock serializing
924  * accesses from user process context.
925  */
926 #define sock_owned_by_user(sk)	((sk)->sk_lock.owned)
927 
928 /*
929  * Macro so as to not evaluate some arguments when
930  * lockdep is not enabled.
931  *
932  * Mark both the sk_lock and the sk_lock.slock as a
933  * per-address-family lock class.
934  */
935 #define sock_lock_init_class_and_name(sk, sname, skey, name, key) 	\
936 do {									\
937 	sk->sk_lock.owned = 0;						\
938 	init_waitqueue_head(&sk->sk_lock.wq);				\
939 	spin_lock_init(&(sk)->sk_lock.slock);				\
940 	debug_check_no_locks_freed((void *)&(sk)->sk_lock,		\
941 			sizeof((sk)->sk_lock));				\
942 	lockdep_set_class_and_name(&(sk)->sk_lock.slock,		\
943 		       	(skey), (sname));				\
944 	lockdep_init_map(&(sk)->sk_lock.dep_map, (name), (key), 0);	\
945 } while (0)
946 
947 extern void lock_sock_nested(struct sock *sk, int subclass);
948 
949 static inline void lock_sock(struct sock *sk)
950 {
951 	lock_sock_nested(sk, 0);
952 }
953 
954 extern void release_sock(struct sock *sk);
955 
956 /* BH context may only use the following locking interface. */
957 #define bh_lock_sock(__sk)	spin_lock(&((__sk)->sk_lock.slock))
958 #define bh_lock_sock_nested(__sk) \
959 				spin_lock_nested(&((__sk)->sk_lock.slock), \
960 				SINGLE_DEPTH_NESTING)
961 #define bh_unlock_sock(__sk)	spin_unlock(&((__sk)->sk_lock.slock))
962 
963 extern struct sock		*sk_alloc(struct net *net, int family,
964 					  gfp_t priority,
965 					  struct proto *prot);
966 extern void			sk_free(struct sock *sk);
967 extern void			sk_release_kernel(struct sock *sk);
968 extern struct sock		*sk_clone(const struct sock *sk,
969 					  const gfp_t priority);
970 
971 extern struct sk_buff		*sock_wmalloc(struct sock *sk,
972 					      unsigned long size, int force,
973 					      gfp_t priority);
974 extern struct sk_buff		*sock_rmalloc(struct sock *sk,
975 					      unsigned long size, int force,
976 					      gfp_t priority);
977 extern void			sock_wfree(struct sk_buff *skb);
978 extern void			sock_rfree(struct sk_buff *skb);
979 
980 extern int			sock_setsockopt(struct socket *sock, int level,
981 						int op, char __user *optval,
982 						unsigned int optlen);
983 
984 extern int			sock_getsockopt(struct socket *sock, int level,
985 						int op, char __user *optval,
986 						int __user *optlen);
987 extern struct sk_buff 		*sock_alloc_send_skb(struct sock *sk,
988 						     unsigned long size,
989 						     int noblock,
990 						     int *errcode);
991 extern struct sk_buff 		*sock_alloc_send_pskb(struct sock *sk,
992 						      unsigned long header_len,
993 						      unsigned long data_len,
994 						      int noblock,
995 						      int *errcode);
996 extern void *sock_kmalloc(struct sock *sk, int size,
997 			  gfp_t priority);
998 extern void sock_kfree_s(struct sock *sk, void *mem, int size);
999 extern void sk_send_sigurg(struct sock *sk);
1000 
1001 /*
1002  * Functions to fill in entries in struct proto_ops when a protocol
1003  * does not implement a particular function.
1004  */
1005 extern int                      sock_no_bind(struct socket *,
1006 					     struct sockaddr *, int);
1007 extern int                      sock_no_connect(struct socket *,
1008 						struct sockaddr *, int, int);
1009 extern int                      sock_no_socketpair(struct socket *,
1010 						   struct socket *);
1011 extern int                      sock_no_accept(struct socket *,
1012 					       struct socket *, int);
1013 extern int                      sock_no_getname(struct socket *,
1014 						struct sockaddr *, int *, int);
1015 extern unsigned int             sock_no_poll(struct file *, struct socket *,
1016 					     struct poll_table_struct *);
1017 extern int                      sock_no_ioctl(struct socket *, unsigned int,
1018 					      unsigned long);
1019 extern int			sock_no_listen(struct socket *, int);
1020 extern int                      sock_no_shutdown(struct socket *, int);
1021 extern int			sock_no_getsockopt(struct socket *, int , int,
1022 						   char __user *, int __user *);
1023 extern int			sock_no_setsockopt(struct socket *, int, int,
1024 						   char __user *, unsigned int);
1025 extern int                      sock_no_sendmsg(struct kiocb *, struct socket *,
1026 						struct msghdr *, size_t);
1027 extern int                      sock_no_recvmsg(struct kiocb *, struct socket *,
1028 						struct msghdr *, size_t, int);
1029 extern int			sock_no_mmap(struct file *file,
1030 					     struct socket *sock,
1031 					     struct vm_area_struct *vma);
1032 extern ssize_t			sock_no_sendpage(struct socket *sock,
1033 						struct page *page,
1034 						int offset, size_t size,
1035 						int flags);
1036 
1037 /*
1038  * Functions to fill in entries in struct proto_ops when a protocol
1039  * uses the inet style.
1040  */
1041 extern int sock_common_getsockopt(struct socket *sock, int level, int optname,
1042 				  char __user *optval, int __user *optlen);
1043 extern int sock_common_recvmsg(struct kiocb *iocb, struct socket *sock,
1044 			       struct msghdr *msg, size_t size, int flags);
1045 extern int sock_common_setsockopt(struct socket *sock, int level, int optname,
1046 				  char __user *optval, unsigned int optlen);
1047 extern int compat_sock_common_getsockopt(struct socket *sock, int level,
1048 		int optname, char __user *optval, int __user *optlen);
1049 extern int compat_sock_common_setsockopt(struct socket *sock, int level,
1050 		int optname, char __user *optval, unsigned int optlen);
1051 
1052 extern void sk_common_release(struct sock *sk);
1053 
1054 /*
1055  *	Default socket callbacks and setup code
1056  */
1057 
1058 /* Initialise core socket variables */
1059 extern void sock_init_data(struct socket *sock, struct sock *sk);
1060 
1061 /**
1062  *	sk_filter_release - release a socket filter
1063  *	@fp: filter to remove
1064  *
1065  *	Remove a filter from a socket and release its resources.
1066  */
1067 
1068 static inline void sk_filter_release(struct sk_filter *fp)
1069 {
1070 	if (atomic_dec_and_test(&fp->refcnt))
1071 		kfree(fp);
1072 }
1073 
1074 static inline void sk_filter_uncharge(struct sock *sk, struct sk_filter *fp)
1075 {
1076 	unsigned int size = sk_filter_len(fp);
1077 
1078 	atomic_sub(size, &sk->sk_omem_alloc);
1079 	sk_filter_release(fp);
1080 }
1081 
1082 static inline void sk_filter_charge(struct sock *sk, struct sk_filter *fp)
1083 {
1084 	atomic_inc(&fp->refcnt);
1085 	atomic_add(sk_filter_len(fp), &sk->sk_omem_alloc);
1086 }
1087 
1088 /*
1089  * Socket reference counting postulates.
1090  *
1091  * * Each user of socket SHOULD hold a reference count.
1092  * * Each access point to socket (an hash table bucket, reference from a list,
1093  *   running timer, skb in flight MUST hold a reference count.
1094  * * When reference count hits 0, it means it will never increase back.
1095  * * When reference count hits 0, it means that no references from
1096  *   outside exist to this socket and current process on current CPU
1097  *   is last user and may/should destroy this socket.
1098  * * sk_free is called from any context: process, BH, IRQ. When
1099  *   it is called, socket has no references from outside -> sk_free
1100  *   may release descendant resources allocated by the socket, but
1101  *   to the time when it is called, socket is NOT referenced by any
1102  *   hash tables, lists etc.
1103  * * Packets, delivered from outside (from network or from another process)
1104  *   and enqueued on receive/error queues SHOULD NOT grab reference count,
1105  *   when they sit in queue. Otherwise, packets will leak to hole, when
1106  *   socket is looked up by one cpu and unhasing is made by another CPU.
1107  *   It is true for udp/raw, netlink (leak to receive and error queues), tcp
1108  *   (leak to backlog). Packet socket does all the processing inside
1109  *   BR_NETPROTO_LOCK, so that it has not this race condition. UNIX sockets
1110  *   use separate SMP lock, so that they are prone too.
1111  */
1112 
1113 /* Ungrab socket and destroy it, if it was the last reference. */
1114 static inline void sock_put(struct sock *sk)
1115 {
1116 	if (atomic_dec_and_test(&sk->sk_refcnt))
1117 		sk_free(sk);
1118 }
1119 
1120 extern int sk_receive_skb(struct sock *sk, struct sk_buff *skb,
1121 			  const int nested);
1122 
1123 static inline void sk_tx_queue_set(struct sock *sk, int tx_queue)
1124 {
1125 	sk->sk_tx_queue_mapping = tx_queue;
1126 }
1127 
1128 static inline void sk_tx_queue_clear(struct sock *sk)
1129 {
1130 	sk->sk_tx_queue_mapping = -1;
1131 }
1132 
1133 static inline int sk_tx_queue_get(const struct sock *sk)
1134 {
1135 	return sk->sk_tx_queue_mapping;
1136 }
1137 
1138 static inline bool sk_tx_queue_recorded(const struct sock *sk)
1139 {
1140 	return (sk && sk->sk_tx_queue_mapping >= 0);
1141 }
1142 
1143 static inline void sk_set_socket(struct sock *sk, struct socket *sock)
1144 {
1145 	sk_tx_queue_clear(sk);
1146 	sk->sk_socket = sock;
1147 }
1148 
1149 /* Detach socket from process context.
1150  * Announce socket dead, detach it from wait queue and inode.
1151  * Note that parent inode held reference count on this struct sock,
1152  * we do not release it in this function, because protocol
1153  * probably wants some additional cleanups or even continuing
1154  * to work with this socket (TCP).
1155  */
1156 static inline void sock_orphan(struct sock *sk)
1157 {
1158 	write_lock_bh(&sk->sk_callback_lock);
1159 	sock_set_flag(sk, SOCK_DEAD);
1160 	sk_set_socket(sk, NULL);
1161 	sk->sk_sleep  = NULL;
1162 	write_unlock_bh(&sk->sk_callback_lock);
1163 }
1164 
1165 static inline void sock_graft(struct sock *sk, struct socket *parent)
1166 {
1167 	write_lock_bh(&sk->sk_callback_lock);
1168 	sk->sk_sleep = &parent->wait;
1169 	parent->sk = sk;
1170 	sk_set_socket(sk, parent);
1171 	security_sock_graft(sk, parent);
1172 	write_unlock_bh(&sk->sk_callback_lock);
1173 }
1174 
1175 extern int sock_i_uid(struct sock *sk);
1176 extern unsigned long sock_i_ino(struct sock *sk);
1177 
1178 static inline struct dst_entry *
1179 __sk_dst_get(struct sock *sk)
1180 {
1181 	return sk->sk_dst_cache;
1182 }
1183 
1184 static inline struct dst_entry *
1185 sk_dst_get(struct sock *sk)
1186 {
1187 	struct dst_entry *dst;
1188 
1189 	read_lock(&sk->sk_dst_lock);
1190 	dst = sk->sk_dst_cache;
1191 	if (dst)
1192 		dst_hold(dst);
1193 	read_unlock(&sk->sk_dst_lock);
1194 	return dst;
1195 }
1196 
1197 static inline void
1198 __sk_dst_set(struct sock *sk, struct dst_entry *dst)
1199 {
1200 	struct dst_entry *old_dst;
1201 
1202 	sk_tx_queue_clear(sk);
1203 	old_dst = sk->sk_dst_cache;
1204 	sk->sk_dst_cache = dst;
1205 	dst_release(old_dst);
1206 }
1207 
1208 static inline void
1209 sk_dst_set(struct sock *sk, struct dst_entry *dst)
1210 {
1211 	write_lock(&sk->sk_dst_lock);
1212 	__sk_dst_set(sk, dst);
1213 	write_unlock(&sk->sk_dst_lock);
1214 }
1215 
1216 static inline void
1217 __sk_dst_reset(struct sock *sk)
1218 {
1219 	struct dst_entry *old_dst;
1220 
1221 	sk_tx_queue_clear(sk);
1222 	old_dst = sk->sk_dst_cache;
1223 	sk->sk_dst_cache = NULL;
1224 	dst_release(old_dst);
1225 }
1226 
1227 static inline void
1228 sk_dst_reset(struct sock *sk)
1229 {
1230 	write_lock(&sk->sk_dst_lock);
1231 	__sk_dst_reset(sk);
1232 	write_unlock(&sk->sk_dst_lock);
1233 }
1234 
1235 extern struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie);
1236 
1237 extern struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie);
1238 
1239 static inline int sk_can_gso(const struct sock *sk)
1240 {
1241 	return net_gso_ok(sk->sk_route_caps, sk->sk_gso_type);
1242 }
1243 
1244 extern void sk_setup_caps(struct sock *sk, struct dst_entry *dst);
1245 
1246 static inline int skb_copy_to_page(struct sock *sk, char __user *from,
1247 				   struct sk_buff *skb, struct page *page,
1248 				   int off, int copy)
1249 {
1250 	if (skb->ip_summed == CHECKSUM_NONE) {
1251 		int err = 0;
1252 		__wsum csum = csum_and_copy_from_user(from,
1253 						     page_address(page) + off,
1254 							    copy, 0, &err);
1255 		if (err)
1256 			return err;
1257 		skb->csum = csum_block_add(skb->csum, csum, skb->len);
1258 	} else if (copy_from_user(page_address(page) + off, from, copy))
1259 		return -EFAULT;
1260 
1261 	skb->len	     += copy;
1262 	skb->data_len	     += copy;
1263 	skb->truesize	     += copy;
1264 	sk->sk_wmem_queued   += copy;
1265 	sk_mem_charge(sk, copy);
1266 	return 0;
1267 }
1268 
1269 /**
1270  * sk_wmem_alloc_get - returns write allocations
1271  * @sk: socket
1272  *
1273  * Returns sk_wmem_alloc minus initial offset of one
1274  */
1275 static inline int sk_wmem_alloc_get(const struct sock *sk)
1276 {
1277 	return atomic_read(&sk->sk_wmem_alloc) - 1;
1278 }
1279 
1280 /**
1281  * sk_rmem_alloc_get - returns read allocations
1282  * @sk: socket
1283  *
1284  * Returns sk_rmem_alloc
1285  */
1286 static inline int sk_rmem_alloc_get(const struct sock *sk)
1287 {
1288 	return atomic_read(&sk->sk_rmem_alloc);
1289 }
1290 
1291 /**
1292  * sk_has_allocations - check if allocations are outstanding
1293  * @sk: socket
1294  *
1295  * Returns true if socket has write or read allocations
1296  */
1297 static inline int sk_has_allocations(const struct sock *sk)
1298 {
1299 	return sk_wmem_alloc_get(sk) || sk_rmem_alloc_get(sk);
1300 }
1301 
1302 /**
1303  * sk_has_sleeper - check if there are any waiting processes
1304  * @sk: socket
1305  *
1306  * Returns true if socket has waiting processes
1307  *
1308  * The purpose of the sk_has_sleeper and sock_poll_wait is to wrap the memory
1309  * barrier call. They were added due to the race found within the tcp code.
1310  *
1311  * Consider following tcp code paths:
1312  *
1313  * CPU1                  CPU2
1314  *
1315  * sys_select            receive packet
1316  *   ...                 ...
1317  *   __add_wait_queue    update tp->rcv_nxt
1318  *   ...                 ...
1319  *   tp->rcv_nxt check   sock_def_readable
1320  *   ...                 {
1321  *   schedule               ...
1322  *                          if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
1323  *                              wake_up_interruptible(sk->sk_sleep)
1324  *                          ...
1325  *                       }
1326  *
1327  * The race for tcp fires when the __add_wait_queue changes done by CPU1 stay
1328  * in its cache, and so does the tp->rcv_nxt update on CPU2 side.  The CPU1
1329  * could then endup calling schedule and sleep forever if there are no more
1330  * data on the socket.
1331  *
1332  * The sk_has_sleeper is always called right after a call to read_lock, so we
1333  * can use smp_mb__after_lock barrier.
1334  */
1335 static inline int sk_has_sleeper(struct sock *sk)
1336 {
1337 	/*
1338 	 * We need to be sure we are in sync with the
1339 	 * add_wait_queue modifications to the wait queue.
1340 	 *
1341 	 * This memory barrier is paired in the sock_poll_wait.
1342 	 */
1343 	smp_mb__after_lock();
1344 	return sk->sk_sleep && waitqueue_active(sk->sk_sleep);
1345 }
1346 
1347 /**
1348  * sock_poll_wait - place memory barrier behind the poll_wait call.
1349  * @filp:           file
1350  * @wait_address:   socket wait queue
1351  * @p:              poll_table
1352  *
1353  * See the comments in the sk_has_sleeper function.
1354  */
1355 static inline void sock_poll_wait(struct file *filp,
1356 		wait_queue_head_t *wait_address, poll_table *p)
1357 {
1358 	if (p && wait_address) {
1359 		poll_wait(filp, wait_address, p);
1360 		/*
1361 		 * We need to be sure we are in sync with the
1362 		 * socket flags modification.
1363 		 *
1364 		 * This memory barrier is paired in the sk_has_sleeper.
1365 		*/
1366 		smp_mb();
1367 	}
1368 }
1369 
1370 /*
1371  * 	Queue a received datagram if it will fit. Stream and sequenced
1372  *	protocols can't normally use this as they need to fit buffers in
1373  *	and play with them.
1374  *
1375  * 	Inlined as it's very short and called for pretty much every
1376  *	packet ever received.
1377  */
1378 
1379 static inline void skb_set_owner_w(struct sk_buff *skb, struct sock *sk)
1380 {
1381 	skb_orphan(skb);
1382 	skb->sk = sk;
1383 	skb->destructor = sock_wfree;
1384 	/*
1385 	 * We used to take a refcount on sk, but following operation
1386 	 * is enough to guarantee sk_free() wont free this sock until
1387 	 * all in-flight packets are completed
1388 	 */
1389 	atomic_add(skb->truesize, &sk->sk_wmem_alloc);
1390 }
1391 
1392 static inline void skb_set_owner_r(struct sk_buff *skb, struct sock *sk)
1393 {
1394 	skb_orphan(skb);
1395 	skb->sk = sk;
1396 	skb->destructor = sock_rfree;
1397 	atomic_add(skb->truesize, &sk->sk_rmem_alloc);
1398 	sk_mem_charge(sk, skb->truesize);
1399 }
1400 
1401 extern void sk_reset_timer(struct sock *sk, struct timer_list* timer,
1402 			   unsigned long expires);
1403 
1404 extern void sk_stop_timer(struct sock *sk, struct timer_list* timer);
1405 
1406 extern int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
1407 
1408 static inline int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb)
1409 {
1410 	/* Cast skb->rcvbuf to unsigned... It's pointless, but reduces
1411 	   number of warnings when compiling with -W --ANK
1412 	 */
1413 	if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
1414 	    (unsigned)sk->sk_rcvbuf)
1415 		return -ENOMEM;
1416 	skb_set_owner_r(skb, sk);
1417 	skb_queue_tail(&sk->sk_error_queue, skb);
1418 	if (!sock_flag(sk, SOCK_DEAD))
1419 		sk->sk_data_ready(sk, skb->len);
1420 	return 0;
1421 }
1422 
1423 /*
1424  *	Recover an error report and clear atomically
1425  */
1426 
1427 static inline int sock_error(struct sock *sk)
1428 {
1429 	int err;
1430 	if (likely(!sk->sk_err))
1431 		return 0;
1432 	err = xchg(&sk->sk_err, 0);
1433 	return -err;
1434 }
1435 
1436 static inline unsigned long sock_wspace(struct sock *sk)
1437 {
1438 	int amt = 0;
1439 
1440 	if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
1441 		amt = sk->sk_sndbuf - atomic_read(&sk->sk_wmem_alloc);
1442 		if (amt < 0)
1443 			amt = 0;
1444 	}
1445 	return amt;
1446 }
1447 
1448 static inline void sk_wake_async(struct sock *sk, int how, int band)
1449 {
1450 	if (sock_flag(sk, SOCK_FASYNC))
1451 		sock_wake_async(sk->sk_socket, how, band);
1452 }
1453 
1454 #define SOCK_MIN_SNDBUF 2048
1455 #define SOCK_MIN_RCVBUF 256
1456 
1457 static inline void sk_stream_moderate_sndbuf(struct sock *sk)
1458 {
1459 	if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK)) {
1460 		sk->sk_sndbuf = min(sk->sk_sndbuf, sk->sk_wmem_queued >> 1);
1461 		sk->sk_sndbuf = max(sk->sk_sndbuf, SOCK_MIN_SNDBUF);
1462 	}
1463 }
1464 
1465 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp);
1466 
1467 static inline struct page *sk_stream_alloc_page(struct sock *sk)
1468 {
1469 	struct page *page = NULL;
1470 
1471 	page = alloc_pages(sk->sk_allocation, 0);
1472 	if (!page) {
1473 		sk->sk_prot->enter_memory_pressure(sk);
1474 		sk_stream_moderate_sndbuf(sk);
1475 	}
1476 	return page;
1477 }
1478 
1479 /*
1480  *	Default write policy as shown to user space via poll/select/SIGIO
1481  */
1482 static inline int sock_writeable(const struct sock *sk)
1483 {
1484 	return atomic_read(&sk->sk_wmem_alloc) < (sk->sk_sndbuf >> 1);
1485 }
1486 
1487 static inline gfp_t gfp_any(void)
1488 {
1489 	return in_softirq() ? GFP_ATOMIC : GFP_KERNEL;
1490 }
1491 
1492 static inline long sock_rcvtimeo(const struct sock *sk, int noblock)
1493 {
1494 	return noblock ? 0 : sk->sk_rcvtimeo;
1495 }
1496 
1497 static inline long sock_sndtimeo(const struct sock *sk, int noblock)
1498 {
1499 	return noblock ? 0 : sk->sk_sndtimeo;
1500 }
1501 
1502 static inline int sock_rcvlowat(const struct sock *sk, int waitall, int len)
1503 {
1504 	return (waitall ? len : min_t(int, sk->sk_rcvlowat, len)) ? : 1;
1505 }
1506 
1507 /* Alas, with timeout socket operations are not restartable.
1508  * Compare this to poll().
1509  */
1510 static inline int sock_intr_errno(long timeo)
1511 {
1512 	return timeo == MAX_SCHEDULE_TIMEOUT ? -ERESTARTSYS : -EINTR;
1513 }
1514 
1515 extern void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
1516 	struct sk_buff *skb);
1517 
1518 static __inline__ void
1519 sock_recv_timestamp(struct msghdr *msg, struct sock *sk, struct sk_buff *skb)
1520 {
1521 	ktime_t kt = skb->tstamp;
1522 	struct skb_shared_hwtstamps *hwtstamps = skb_hwtstamps(skb);
1523 
1524 	/*
1525 	 * generate control messages if
1526 	 * - receive time stamping in software requested (SOCK_RCVTSTAMP
1527 	 *   or SOCK_TIMESTAMPING_RX_SOFTWARE)
1528 	 * - software time stamp available and wanted
1529 	 *   (SOCK_TIMESTAMPING_SOFTWARE)
1530 	 * - hardware time stamps available and wanted
1531 	 *   (SOCK_TIMESTAMPING_SYS_HARDWARE or
1532 	 *   SOCK_TIMESTAMPING_RAW_HARDWARE)
1533 	 */
1534 	if (sock_flag(sk, SOCK_RCVTSTAMP) ||
1535 	    sock_flag(sk, SOCK_TIMESTAMPING_RX_SOFTWARE) ||
1536 	    (kt.tv64 && sock_flag(sk, SOCK_TIMESTAMPING_SOFTWARE)) ||
1537 	    (hwtstamps->hwtstamp.tv64 &&
1538 	     sock_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE)) ||
1539 	    (hwtstamps->syststamp.tv64 &&
1540 	     sock_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE)))
1541 		__sock_recv_timestamp(msg, sk, skb);
1542 	else
1543 		sk->sk_stamp = kt;
1544 }
1545 
1546 extern void sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk, struct sk_buff *skb);
1547 
1548 /**
1549  * sock_tx_timestamp - checks whether the outgoing packet is to be time stamped
1550  * @msg:	outgoing packet
1551  * @sk:		socket sending this packet
1552  * @shtx:	filled with instructions for time stamping
1553  *
1554  * Currently only depends on SOCK_TIMESTAMPING* flags. Returns error code if
1555  * parameters are invalid.
1556  */
1557 extern int sock_tx_timestamp(struct msghdr *msg,
1558 			     struct sock *sk,
1559 			     union skb_shared_tx *shtx);
1560 
1561 
1562 /**
1563  * sk_eat_skb - Release a skb if it is no longer needed
1564  * @sk: socket to eat this skb from
1565  * @skb: socket buffer to eat
1566  * @copied_early: flag indicating whether DMA operations copied this data early
1567  *
1568  * This routine must be called with interrupts disabled or with the socket
1569  * locked so that the sk_buff queue operation is ok.
1570 */
1571 #ifdef CONFIG_NET_DMA
1572 static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb, int copied_early)
1573 {
1574 	__skb_unlink(skb, &sk->sk_receive_queue);
1575 	if (!copied_early)
1576 		__kfree_skb(skb);
1577 	else
1578 		__skb_queue_tail(&sk->sk_async_wait_queue, skb);
1579 }
1580 #else
1581 static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb, int copied_early)
1582 {
1583 	__skb_unlink(skb, &sk->sk_receive_queue);
1584 	__kfree_skb(skb);
1585 }
1586 #endif
1587 
1588 static inline
1589 struct net *sock_net(const struct sock *sk)
1590 {
1591 #ifdef CONFIG_NET_NS
1592 	return sk->sk_net;
1593 #else
1594 	return &init_net;
1595 #endif
1596 }
1597 
1598 static inline
1599 void sock_net_set(struct sock *sk, struct net *net)
1600 {
1601 #ifdef CONFIG_NET_NS
1602 	sk->sk_net = net;
1603 #endif
1604 }
1605 
1606 /*
1607  * Kernel sockets, f.e. rtnl or icmp_socket, are a part of a namespace.
1608  * They should not hold a referrence to a namespace in order to allow
1609  * to stop it.
1610  * Sockets after sk_change_net should be released using sk_release_kernel
1611  */
1612 static inline void sk_change_net(struct sock *sk, struct net *net)
1613 {
1614 	put_net(sock_net(sk));
1615 	sock_net_set(sk, hold_net(net));
1616 }
1617 
1618 static inline struct sock *skb_steal_sock(struct sk_buff *skb)
1619 {
1620 	if (unlikely(skb->sk)) {
1621 		struct sock *sk = skb->sk;
1622 
1623 		skb->destructor = NULL;
1624 		skb->sk = NULL;
1625 		return sk;
1626 	}
1627 	return NULL;
1628 }
1629 
1630 extern void sock_enable_timestamp(struct sock *sk, int flag);
1631 extern int sock_get_timestamp(struct sock *, struct timeval __user *);
1632 extern int sock_get_timestampns(struct sock *, struct timespec __user *);
1633 
1634 /*
1635  *	Enable debug/info messages
1636  */
1637 extern int net_msg_warn;
1638 #define NETDEBUG(fmt, args...) \
1639 	do { if (net_msg_warn) printk(fmt,##args); } while (0)
1640 
1641 #define LIMIT_NETDEBUG(fmt, args...) \
1642 	do { if (net_msg_warn && net_ratelimit()) printk(fmt,##args); } while(0)
1643 
1644 extern __u32 sysctl_wmem_max;
1645 extern __u32 sysctl_rmem_max;
1646 
1647 extern void sk_init(void);
1648 
1649 extern int sysctl_optmem_max;
1650 
1651 extern __u32 sysctl_wmem_default;
1652 extern __u32 sysctl_rmem_default;
1653 
1654 #endif	/* _SOCK_H */
1655