xref: /linux/include/net/sock.h (revision a0285236ab93fdfdd1008afaa04561d142d6c276)
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Definitions for the AF_INET socket handler.
8  *
9  * Version:	@(#)sock.h	1.0.4	05/13/93
10  *
11  * Authors:	Ross Biro
12  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
13  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
14  *		Florian La Roche <flla@stud.uni-sb.de>
15  *
16  * Fixes:
17  *		Alan Cox	:	Volatiles in skbuff pointers. See
18  *					skbuff comments. May be overdone,
19  *					better to prove they can be removed
20  *					than the reverse.
21  *		Alan Cox	:	Added a zapped field for tcp to note
22  *					a socket is reset and must stay shut up
23  *		Alan Cox	:	New fields for options
24  *	Pauline Middelink	:	identd support
25  *		Alan Cox	:	Eliminate low level recv/recvfrom
26  *		David S. Miller	:	New socket lookup architecture.
27  *              Steve Whitehouse:       Default routines for sock_ops
28  *              Arnaldo C. Melo :	removed net_pinfo, tp_pinfo and made
29  *              			protinfo be just a void pointer, as the
30  *              			protocol specific parts were moved to
31  *              			respective headers and ipv4/v6, etc now
32  *              			use private slabcaches for its socks
33  *              Pedro Hortas	:	New flags field for socket options
34  */
35 #ifndef _SOCK_H
36 #define _SOCK_H
37 
38 #include <linux/hardirq.h>
39 #include <linux/kernel.h>
40 #include <linux/list.h>
41 #include <linux/list_nulls.h>
42 #include <linux/timer.h>
43 #include <linux/cache.h>
44 #include <linux/bitops.h>
45 #include <linux/lockdep.h>
46 #include <linux/netdevice.h>
47 #include <linux/skbuff.h>	/* struct sk_buff */
48 #include <linux/mm.h>
49 #include <linux/security.h>
50 #include <linux/slab.h>
51 #include <linux/uaccess.h>
52 #include <linux/page_counter.h>
53 #include <linux/memcontrol.h>
54 #include <linux/static_key.h>
55 #include <linux/sched.h>
56 #include <linux/wait.h>
57 #include <linux/cgroup-defs.h>
58 #include <linux/rbtree.h>
59 #include <linux/rculist_nulls.h>
60 #include <linux/poll.h>
61 #include <linux/sockptr.h>
62 #include <linux/indirect_call_wrapper.h>
63 #include <linux/atomic.h>
64 #include <linux/refcount.h>
65 #include <linux/llist.h>
66 #include <net/dst.h>
67 #include <net/checksum.h>
68 #include <net/tcp_states.h>
69 #include <linux/net_tstamp.h>
70 #include <net/l3mdev.h>
71 #include <uapi/linux/socket.h>
72 
73 /*
74  * This structure really needs to be cleaned up.
75  * Most of it is for TCP, and not used by any of
76  * the other protocols.
77  */
78 
79 /* This is the per-socket lock.  The spinlock provides a synchronization
80  * between user contexts and software interrupt processing, whereas the
81  * mini-semaphore synchronizes multiple users amongst themselves.
82  */
83 typedef struct {
84 	spinlock_t		slock;
85 	int			owned;
86 	wait_queue_head_t	wq;
87 	/*
88 	 * We express the mutex-alike socket_lock semantics
89 	 * to the lock validator by explicitly managing
90 	 * the slock as a lock variant (in addition to
91 	 * the slock itself):
92 	 */
93 #ifdef CONFIG_DEBUG_LOCK_ALLOC
94 	struct lockdep_map dep_map;
95 #endif
96 } socket_lock_t;
97 
98 struct sock;
99 struct proto;
100 struct net;
101 
102 typedef __u32 __bitwise __portpair;
103 typedef __u64 __bitwise __addrpair;
104 
105 /**
106  *	struct sock_common - minimal network layer representation of sockets
107  *	@skc_daddr: Foreign IPv4 addr
108  *	@skc_rcv_saddr: Bound local IPv4 addr
109  *	@skc_addrpair: 8-byte-aligned __u64 union of @skc_daddr & @skc_rcv_saddr
110  *	@skc_hash: hash value used with various protocol lookup tables
111  *	@skc_u16hashes: two u16 hash values used by UDP lookup tables
112  *	@skc_dport: placeholder for inet_dport/tw_dport
113  *	@skc_num: placeholder for inet_num/tw_num
114  *	@skc_portpair: __u32 union of @skc_dport & @skc_num
115  *	@skc_family: network address family
116  *	@skc_state: Connection state
117  *	@skc_reuse: %SO_REUSEADDR setting
118  *	@skc_reuseport: %SO_REUSEPORT setting
119  *	@skc_ipv6only: socket is IPV6 only
120  *	@skc_net_refcnt: socket is using net ref counting
121  *	@skc_bound_dev_if: bound device index if != 0
122  *	@skc_bind_node: bind hash linkage for various protocol lookup tables
123  *	@skc_portaddr_node: second hash linkage for UDP/UDP-Lite protocol
124  *	@skc_prot: protocol handlers inside a network family
125  *	@skc_net: reference to the network namespace of this socket
126  *	@skc_v6_daddr: IPV6 destination address
127  *	@skc_v6_rcv_saddr: IPV6 source address
128  *	@skc_cookie: socket's cookie value
129  *	@skc_node: main hash linkage for various protocol lookup tables
130  *	@skc_nulls_node: main hash linkage for TCP/UDP/UDP-Lite protocol
131  *	@skc_tx_queue_mapping: tx queue number for this connection
132  *	@skc_rx_queue_mapping: rx queue number for this connection
133  *	@skc_flags: place holder for sk_flags
134  *		%SO_LINGER (l_onoff), %SO_BROADCAST, %SO_KEEPALIVE,
135  *		%SO_OOBINLINE settings, %SO_TIMESTAMPING settings
136  *	@skc_listener: connection request listener socket (aka rsk_listener)
137  *		[union with @skc_flags]
138  *	@skc_tw_dr: (aka tw_dr) ptr to &struct inet_timewait_death_row
139  *		[union with @skc_flags]
140  *	@skc_incoming_cpu: record/match cpu processing incoming packets
141  *	@skc_rcv_wnd: (aka rsk_rcv_wnd) TCP receive window size (possibly scaled)
142  *		[union with @skc_incoming_cpu]
143  *	@skc_tw_rcv_nxt: (aka tw_rcv_nxt) TCP window next expected seq number
144  *		[union with @skc_incoming_cpu]
145  *	@skc_refcnt: reference count
146  *
147  *	This is the minimal network layer representation of sockets, the header
148  *	for struct sock and struct inet_timewait_sock.
149  */
150 struct sock_common {
151 	union {
152 		__addrpair	skc_addrpair;
153 		struct {
154 			__be32	skc_daddr;
155 			__be32	skc_rcv_saddr;
156 		};
157 	};
158 	union  {
159 		unsigned int	skc_hash;
160 		__u16		skc_u16hashes[2];
161 	};
162 	/* skc_dport && skc_num must be grouped as well */
163 	union {
164 		__portpair	skc_portpair;
165 		struct {
166 			__be16	skc_dport;
167 			__u16	skc_num;
168 		};
169 	};
170 
171 	unsigned short		skc_family;
172 	volatile unsigned char	skc_state;
173 	unsigned char		skc_reuse:4;
174 	unsigned char		skc_reuseport:1;
175 	unsigned char		skc_ipv6only:1;
176 	unsigned char		skc_net_refcnt:1;
177 	int			skc_bound_dev_if;
178 	union {
179 		struct hlist_node	skc_bind_node;
180 		struct hlist_node	skc_portaddr_node;
181 	};
182 	struct proto		*skc_prot;
183 	possible_net_t		skc_net;
184 
185 #if IS_ENABLED(CONFIG_IPV6)
186 	struct in6_addr		skc_v6_daddr;
187 	struct in6_addr		skc_v6_rcv_saddr;
188 #endif
189 
190 	atomic64_t		skc_cookie;
191 
192 	/* following fields are padding to force
193 	 * offset(struct sock, sk_refcnt) == 128 on 64bit arches
194 	 * assuming IPV6 is enabled. We use this padding differently
195 	 * for different kind of 'sockets'
196 	 */
197 	union {
198 		unsigned long	skc_flags;
199 		struct sock	*skc_listener; /* request_sock */
200 		struct inet_timewait_death_row *skc_tw_dr; /* inet_timewait_sock */
201 	};
202 	/*
203 	 * fields between dontcopy_begin/dontcopy_end
204 	 * are not copied in sock_copy()
205 	 */
206 	/* private: */
207 	int			skc_dontcopy_begin[0];
208 	/* public: */
209 	union {
210 		struct hlist_node	skc_node;
211 		struct hlist_nulls_node skc_nulls_node;
212 	};
213 	unsigned short		skc_tx_queue_mapping;
214 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
215 	unsigned short		skc_rx_queue_mapping;
216 #endif
217 	union {
218 		int		skc_incoming_cpu;
219 		u32		skc_rcv_wnd;
220 		u32		skc_tw_rcv_nxt; /* struct tcp_timewait_sock  */
221 	};
222 
223 	refcount_t		skc_refcnt;
224 	/* private: */
225 	int                     skc_dontcopy_end[0];
226 	union {
227 		u32		skc_rxhash;
228 		u32		skc_window_clamp;
229 		u32		skc_tw_snd_nxt; /* struct tcp_timewait_sock */
230 	};
231 	/* public: */
232 };
233 
234 struct bpf_local_storage;
235 struct sk_filter;
236 
237 /**
238   *	struct sock - network layer representation of sockets
239   *	@__sk_common: shared layout with inet_timewait_sock
240   *	@sk_shutdown: mask of %SEND_SHUTDOWN and/or %RCV_SHUTDOWN
241   *	@sk_userlocks: %SO_SNDBUF and %SO_RCVBUF settings
242   *	@sk_lock:	synchronizer
243   *	@sk_kern_sock: True if sock is using kernel lock classes
244   *	@sk_rcvbuf: size of receive buffer in bytes
245   *	@sk_wq: sock wait queue and async head
246   *	@sk_rx_dst: receive input route used by early demux
247   *	@sk_rx_dst_ifindex: ifindex for @sk_rx_dst
248   *	@sk_rx_dst_cookie: cookie for @sk_rx_dst
249   *	@sk_dst_cache: destination cache
250   *	@sk_dst_pending_confirm: need to confirm neighbour
251   *	@sk_policy: flow policy
252   *	@sk_receive_queue: incoming packets
253   *	@sk_wmem_alloc: transmit queue bytes committed
254   *	@sk_tsq_flags: TCP Small Queues flags
255   *	@sk_write_queue: Packet sending queue
256   *	@sk_omem_alloc: "o" is "option" or "other"
257   *	@sk_wmem_queued: persistent queue size
258   *	@sk_forward_alloc: space allocated forward
259   *	@sk_reserved_mem: space reserved and non-reclaimable for the socket
260   *	@sk_napi_id: id of the last napi context to receive data for sk
261   *	@sk_ll_usec: usecs to busypoll when there is no data
262   *	@sk_allocation: allocation mode
263   *	@sk_pacing_rate: Pacing rate (if supported by transport/packet scheduler)
264   *	@sk_pacing_status: Pacing status (requested, handled by sch_fq)
265   *	@sk_max_pacing_rate: Maximum pacing rate (%SO_MAX_PACING_RATE)
266   *	@sk_sndbuf: size of send buffer in bytes
267   *	@sk_no_check_tx: %SO_NO_CHECK setting, set checksum in TX packets
268   *	@sk_no_check_rx: allow zero checksum in RX packets
269   *	@sk_route_caps: route capabilities (e.g. %NETIF_F_TSO)
270   *	@sk_gso_disabled: if set, NETIF_F_GSO_MASK is forbidden.
271   *	@sk_gso_type: GSO type (e.g. %SKB_GSO_TCPV4)
272   *	@sk_gso_max_size: Maximum GSO segment size to build
273   *	@sk_gso_max_segs: Maximum number of GSO segments
274   *	@sk_pacing_shift: scaling factor for TCP Small Queues
275   *	@sk_lingertime: %SO_LINGER l_linger setting
276   *	@sk_backlog: always used with the per-socket spinlock held
277   *	@sk_callback_lock: used with the callbacks in the end of this struct
278   *	@sk_error_queue: rarely used
279   *	@sk_prot_creator: sk_prot of original sock creator (see ipv6_setsockopt,
280   *			  IPV6_ADDRFORM for instance)
281   *	@sk_err: last error
282   *	@sk_err_soft: errors that don't cause failure but are the cause of a
283   *		      persistent failure not just 'timed out'
284   *	@sk_drops: raw/udp drops counter
285   *	@sk_ack_backlog: current listen backlog
286   *	@sk_max_ack_backlog: listen backlog set in listen()
287   *	@sk_uid: user id of owner
288   *	@sk_prefer_busy_poll: prefer busypolling over softirq processing
289   *	@sk_busy_poll_budget: napi processing budget when busypolling
290   *	@sk_priority: %SO_PRIORITY setting
291   *	@sk_type: socket type (%SOCK_STREAM, etc)
292   *	@sk_protocol: which protocol this socket belongs in this network family
293   *	@sk_peer_lock: lock protecting @sk_peer_pid and @sk_peer_cred
294   *	@sk_peer_pid: &struct pid for this socket's peer
295   *	@sk_peer_cred: %SO_PEERCRED setting
296   *	@sk_rcvlowat: %SO_RCVLOWAT setting
297   *	@sk_rcvtimeo: %SO_RCVTIMEO setting
298   *	@sk_sndtimeo: %SO_SNDTIMEO setting
299   *	@sk_txhash: computed flow hash for use on transmit
300   *	@sk_txrehash: enable TX hash rethink
301   *	@sk_filter: socket filtering instructions
302   *	@sk_timer: sock cleanup timer
303   *	@sk_stamp: time stamp of last packet received
304   *	@sk_stamp_seq: lock for accessing sk_stamp on 32 bit architectures only
305   *	@sk_tsflags: SO_TIMESTAMPING flags
306   *	@sk_bpf_cb_flags: used in bpf_setsockopt()
307   *	@sk_use_task_frag: allow sk_page_frag() to use current->task_frag.
308   *			   Sockets that can be used under memory reclaim should
309   *			   set this to false.
310   *	@sk_bind_phc: SO_TIMESTAMPING bind PHC index of PTP virtual clock
311   *	              for timestamping
312   *	@sk_tskey: counter to disambiguate concurrent tstamp requests
313   *	@sk_zckey: counter to order MSG_ZEROCOPY notifications
314   *	@sk_socket: Identd and reporting IO signals
315   *	@sk_user_data: RPC layer private data. Write-protected by @sk_callback_lock.
316   *	@sk_frag: cached page frag
317   *	@sk_peek_off: current peek_offset value
318   *	@sk_send_head: front of stuff to transmit
319   *	@tcp_rtx_queue: TCP re-transmit queue [union with @sk_send_head]
320   *	@sk_security: used by security modules
321   *	@sk_mark: generic packet mark
322   *	@sk_cgrp_data: cgroup data for this cgroup
323   *	@sk_memcg: this socket's memory cgroup association
324   *	@sk_write_pending: a write to stream socket waits to start
325   *	@sk_disconnects: number of disconnect operations performed on this sock
326   *	@sk_state_change: callback to indicate change in the state of the sock
327   *	@sk_data_ready: callback to indicate there is data to be processed
328   *	@sk_write_space: callback to indicate there is bf sending space available
329   *	@sk_error_report: callback to indicate errors (e.g. %MSG_ERRQUEUE)
330   *	@sk_backlog_rcv: callback to process the backlog
331   *	@sk_validate_xmit_skb: ptr to an optional validate function
332   *	@sk_destruct: called at sock freeing time, i.e. when all refcnt == 0
333   *	@sk_reuseport_cb: reuseport group container
334   *	@sk_bpf_storage: ptr to cache and control for bpf_sk_storage
335   *	@sk_rcu: used during RCU grace period
336   *	@sk_clockid: clockid used by time-based scheduling (SO_TXTIME)
337   *	@sk_txtime_deadline_mode: set deadline mode for SO_TXTIME
338   *	@sk_txtime_report_errors: set report errors mode for SO_TXTIME
339   *	@sk_txtime_unused: unused txtime flags
340   *	@ns_tracker: tracker for netns reference
341   *	@sk_user_frags: xarray of pages the user is holding a reference on.
342   *	@sk_owner: reference to the real owner of the socket that calls
343   *		   sock_lock_init_class_and_name().
344   */
345 struct sock {
346 	/*
347 	 * Now struct inet_timewait_sock also uses sock_common, so please just
348 	 * don't add nothing before this first member (__sk_common) --acme
349 	 */
350 	struct sock_common	__sk_common;
351 #define sk_node			__sk_common.skc_node
352 #define sk_nulls_node		__sk_common.skc_nulls_node
353 #define sk_refcnt		__sk_common.skc_refcnt
354 #define sk_tx_queue_mapping	__sk_common.skc_tx_queue_mapping
355 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
356 #define sk_rx_queue_mapping	__sk_common.skc_rx_queue_mapping
357 #endif
358 
359 #define sk_dontcopy_begin	__sk_common.skc_dontcopy_begin
360 #define sk_dontcopy_end		__sk_common.skc_dontcopy_end
361 #define sk_hash			__sk_common.skc_hash
362 #define sk_portpair		__sk_common.skc_portpair
363 #define sk_num			__sk_common.skc_num
364 #define sk_dport		__sk_common.skc_dport
365 #define sk_addrpair		__sk_common.skc_addrpair
366 #define sk_daddr		__sk_common.skc_daddr
367 #define sk_rcv_saddr		__sk_common.skc_rcv_saddr
368 #define sk_family		__sk_common.skc_family
369 #define sk_state		__sk_common.skc_state
370 #define sk_reuse		__sk_common.skc_reuse
371 #define sk_reuseport		__sk_common.skc_reuseport
372 #define sk_ipv6only		__sk_common.skc_ipv6only
373 #define sk_net_refcnt		__sk_common.skc_net_refcnt
374 #define sk_bound_dev_if		__sk_common.skc_bound_dev_if
375 #define sk_bind_node		__sk_common.skc_bind_node
376 #define sk_prot			__sk_common.skc_prot
377 #define sk_net			__sk_common.skc_net
378 #define sk_v6_daddr		__sk_common.skc_v6_daddr
379 #define sk_v6_rcv_saddr	__sk_common.skc_v6_rcv_saddr
380 #define sk_cookie		__sk_common.skc_cookie
381 #define sk_incoming_cpu		__sk_common.skc_incoming_cpu
382 #define sk_flags		__sk_common.skc_flags
383 #define sk_rxhash		__sk_common.skc_rxhash
384 
385 	__cacheline_group_begin(sock_write_rx);
386 
387 	atomic_t		sk_drops;
388 	__s32			sk_peek_off;
389 	struct sk_buff_head	sk_error_queue;
390 	struct sk_buff_head	sk_receive_queue;
391 	/*
392 	 * The backlog queue is special, it is always used with
393 	 * the per-socket spinlock held and requires low latency
394 	 * access. Therefore we special case it's implementation.
395 	 * Note : rmem_alloc is in this structure to fill a hole
396 	 * on 64bit arches, not because its logically part of
397 	 * backlog.
398 	 */
399 	struct {
400 		atomic_t	rmem_alloc;
401 		int		len;
402 		struct sk_buff	*head;
403 		struct sk_buff	*tail;
404 	} sk_backlog;
405 #define sk_rmem_alloc sk_backlog.rmem_alloc
406 
407 	__cacheline_group_end(sock_write_rx);
408 
409 	__cacheline_group_begin(sock_read_rx);
410 	/* early demux fields */
411 	struct dst_entry __rcu	*sk_rx_dst;
412 	int			sk_rx_dst_ifindex;
413 	u32			sk_rx_dst_cookie;
414 
415 #ifdef CONFIG_NET_RX_BUSY_POLL
416 	unsigned int		sk_ll_usec;
417 	unsigned int		sk_napi_id;
418 	u16			sk_busy_poll_budget;
419 	u8			sk_prefer_busy_poll;
420 #endif
421 	u8			sk_userlocks;
422 	int			sk_rcvbuf;
423 
424 	struct sk_filter __rcu	*sk_filter;
425 	union {
426 		struct socket_wq __rcu	*sk_wq;
427 		/* private: */
428 		struct socket_wq	*sk_wq_raw;
429 		/* public: */
430 	};
431 
432 	void			(*sk_data_ready)(struct sock *sk);
433 	long			sk_rcvtimeo;
434 	int			sk_rcvlowat;
435 	__cacheline_group_end(sock_read_rx);
436 
437 	__cacheline_group_begin(sock_read_rxtx);
438 	int			sk_err;
439 	struct socket		*sk_socket;
440 	struct mem_cgroup	*sk_memcg;
441 #ifdef CONFIG_XFRM
442 	struct xfrm_policy __rcu *sk_policy[2];
443 #endif
444 	__cacheline_group_end(sock_read_rxtx);
445 
446 	__cacheline_group_begin(sock_write_rxtx);
447 	socket_lock_t		sk_lock;
448 	u32			sk_reserved_mem;
449 	int			sk_forward_alloc;
450 	u32			sk_tsflags;
451 	__cacheline_group_end(sock_write_rxtx);
452 
453 	__cacheline_group_begin(sock_write_tx);
454 	int			sk_write_pending;
455 	atomic_t		sk_omem_alloc;
456 	int			sk_sndbuf;
457 
458 	int			sk_wmem_queued;
459 	refcount_t		sk_wmem_alloc;
460 	unsigned long		sk_tsq_flags;
461 	union {
462 		struct sk_buff	*sk_send_head;
463 		struct rb_root	tcp_rtx_queue;
464 	};
465 	struct sk_buff_head	sk_write_queue;
466 	u32			sk_dst_pending_confirm;
467 	u32			sk_pacing_status; /* see enum sk_pacing */
468 	struct page_frag	sk_frag;
469 	struct timer_list	sk_timer;
470 
471 	unsigned long		sk_pacing_rate; /* bytes per second */
472 	atomic_t		sk_zckey;
473 	atomic_t		sk_tskey;
474 	__cacheline_group_end(sock_write_tx);
475 
476 	__cacheline_group_begin(sock_read_tx);
477 	unsigned long		sk_max_pacing_rate;
478 	long			sk_sndtimeo;
479 	u32			sk_priority;
480 	u32			sk_mark;
481 	struct dst_entry __rcu	*sk_dst_cache;
482 	netdev_features_t	sk_route_caps;
483 #ifdef CONFIG_SOCK_VALIDATE_XMIT
484 	struct sk_buff*		(*sk_validate_xmit_skb)(struct sock *sk,
485 							struct net_device *dev,
486 							struct sk_buff *skb);
487 #endif
488 	u16			sk_gso_type;
489 	u16			sk_gso_max_segs;
490 	unsigned int		sk_gso_max_size;
491 	gfp_t			sk_allocation;
492 	u32			sk_txhash;
493 	u8			sk_pacing_shift;
494 	bool			sk_use_task_frag;
495 	__cacheline_group_end(sock_read_tx);
496 
497 	/*
498 	 * Because of non atomicity rules, all
499 	 * changes are protected by socket lock.
500 	 */
501 	u8			sk_gso_disabled : 1,
502 				sk_kern_sock : 1,
503 				sk_no_check_tx : 1,
504 				sk_no_check_rx : 1;
505 	u8			sk_shutdown;
506 	u16			sk_type;
507 	u16			sk_protocol;
508 	unsigned long	        sk_lingertime;
509 	struct proto		*sk_prot_creator;
510 	rwlock_t		sk_callback_lock;
511 	int			sk_err_soft;
512 	u32			sk_ack_backlog;
513 	u32			sk_max_ack_backlog;
514 	kuid_t			sk_uid;
515 	spinlock_t		sk_peer_lock;
516 	int			sk_bind_phc;
517 	struct pid		*sk_peer_pid;
518 	const struct cred	*sk_peer_cred;
519 
520 	ktime_t			sk_stamp;
521 #if BITS_PER_LONG==32
522 	seqlock_t		sk_stamp_seq;
523 #endif
524 	int			sk_disconnects;
525 
526 	u8			sk_txrehash;
527 	u8			sk_clockid;
528 	u8			sk_txtime_deadline_mode : 1,
529 				sk_txtime_report_errors : 1,
530 				sk_txtime_unused : 6;
531 #define SK_BPF_CB_FLAG_TEST(SK, FLAG) ((SK)->sk_bpf_cb_flags & (FLAG))
532 	u8			sk_bpf_cb_flags;
533 
534 	void			*sk_user_data;
535 #ifdef CONFIG_SECURITY
536 	void			*sk_security;
537 #endif
538 	struct sock_cgroup_data	sk_cgrp_data;
539 	void			(*sk_state_change)(struct sock *sk);
540 	void			(*sk_write_space)(struct sock *sk);
541 	void			(*sk_error_report)(struct sock *sk);
542 	int			(*sk_backlog_rcv)(struct sock *sk,
543 						  struct sk_buff *skb);
544 	void                    (*sk_destruct)(struct sock *sk);
545 	struct sock_reuseport __rcu	*sk_reuseport_cb;
546 #ifdef CONFIG_BPF_SYSCALL
547 	struct bpf_local_storage __rcu	*sk_bpf_storage;
548 #endif
549 	struct rcu_head		sk_rcu;
550 	netns_tracker		ns_tracker;
551 	struct xarray		sk_user_frags;
552 
553 #if IS_ENABLED(CONFIG_PROVE_LOCKING) && IS_ENABLED(CONFIG_MODULES)
554 	struct module		*sk_owner;
555 #endif
556 };
557 
558 struct sock_bh_locked {
559 	struct sock *sock;
560 	local_lock_t bh_lock;
561 };
562 
563 enum sk_pacing {
564 	SK_PACING_NONE		= 0,
565 	SK_PACING_NEEDED	= 1,
566 	SK_PACING_FQ		= 2,
567 };
568 
569 /* flag bits in sk_user_data
570  *
571  * - SK_USER_DATA_NOCOPY:      Pointer stored in sk_user_data might
572  *   not be suitable for copying when cloning the socket. For instance,
573  *   it can point to a reference counted object. sk_user_data bottom
574  *   bit is set if pointer must not be copied.
575  *
576  * - SK_USER_DATA_BPF:         Mark whether sk_user_data field is
577  *   managed/owned by a BPF reuseport array. This bit should be set
578  *   when sk_user_data's sk is added to the bpf's reuseport_array.
579  *
580  * - SK_USER_DATA_PSOCK:       Mark whether pointer stored in
581  *   sk_user_data points to psock type. This bit should be set
582  *   when sk_user_data is assigned to a psock object.
583  */
584 #define SK_USER_DATA_NOCOPY	1UL
585 #define SK_USER_DATA_BPF	2UL
586 #define SK_USER_DATA_PSOCK	4UL
587 #define SK_USER_DATA_PTRMASK	~(SK_USER_DATA_NOCOPY | SK_USER_DATA_BPF |\
588 				  SK_USER_DATA_PSOCK)
589 
590 /**
591  * sk_user_data_is_nocopy - Test if sk_user_data pointer must not be copied
592  * @sk: socket
593  */
594 static inline bool sk_user_data_is_nocopy(const struct sock *sk)
595 {
596 	return ((uintptr_t)sk->sk_user_data & SK_USER_DATA_NOCOPY);
597 }
598 
599 #define __sk_user_data(sk) ((*((void __rcu **)&(sk)->sk_user_data)))
600 
601 /**
602  * __locked_read_sk_user_data_with_flags - return the pointer
603  * only if argument flags all has been set in sk_user_data. Otherwise
604  * return NULL
605  *
606  * @sk: socket
607  * @flags: flag bits
608  *
609  * The caller must be holding sk->sk_callback_lock.
610  */
611 static inline void *
612 __locked_read_sk_user_data_with_flags(const struct sock *sk,
613 				      uintptr_t flags)
614 {
615 	uintptr_t sk_user_data =
616 		(uintptr_t)rcu_dereference_check(__sk_user_data(sk),
617 						 lockdep_is_held(&sk->sk_callback_lock));
618 
619 	WARN_ON_ONCE(flags & SK_USER_DATA_PTRMASK);
620 
621 	if ((sk_user_data & flags) == flags)
622 		return (void *)(sk_user_data & SK_USER_DATA_PTRMASK);
623 	return NULL;
624 }
625 
626 /**
627  * __rcu_dereference_sk_user_data_with_flags - return the pointer
628  * only if argument flags all has been set in sk_user_data. Otherwise
629  * return NULL
630  *
631  * @sk: socket
632  * @flags: flag bits
633  */
634 static inline void *
635 __rcu_dereference_sk_user_data_with_flags(const struct sock *sk,
636 					  uintptr_t flags)
637 {
638 	uintptr_t sk_user_data = (uintptr_t)rcu_dereference(__sk_user_data(sk));
639 
640 	WARN_ON_ONCE(flags & SK_USER_DATA_PTRMASK);
641 
642 	if ((sk_user_data & flags) == flags)
643 		return (void *)(sk_user_data & SK_USER_DATA_PTRMASK);
644 	return NULL;
645 }
646 
647 #define rcu_dereference_sk_user_data(sk)				\
648 	__rcu_dereference_sk_user_data_with_flags(sk, 0)
649 #define __rcu_assign_sk_user_data_with_flags(sk, ptr, flags)		\
650 ({									\
651 	uintptr_t __tmp1 = (uintptr_t)(ptr),				\
652 		  __tmp2 = (uintptr_t)(flags);				\
653 	WARN_ON_ONCE(__tmp1 & ~SK_USER_DATA_PTRMASK);			\
654 	WARN_ON_ONCE(__tmp2 & SK_USER_DATA_PTRMASK);			\
655 	rcu_assign_pointer(__sk_user_data((sk)),			\
656 			   __tmp1 | __tmp2);				\
657 })
658 #define rcu_assign_sk_user_data(sk, ptr)				\
659 	__rcu_assign_sk_user_data_with_flags(sk, ptr, 0)
660 
661 static inline
662 struct net *sock_net(const struct sock *sk)
663 {
664 	return read_pnet(&sk->sk_net);
665 }
666 
667 static inline
668 void sock_net_set(struct sock *sk, struct net *net)
669 {
670 	write_pnet(&sk->sk_net, net);
671 }
672 
673 /*
674  * SK_CAN_REUSE and SK_NO_REUSE on a socket mean that the socket is OK
675  * or not whether his port will be reused by someone else. SK_FORCE_REUSE
676  * on a socket means that the socket will reuse everybody else's port
677  * without looking at the other's sk_reuse value.
678  */
679 
680 #define SK_NO_REUSE	0
681 #define SK_CAN_REUSE	1
682 #define SK_FORCE_REUSE	2
683 
684 int sk_set_peek_off(struct sock *sk, int val);
685 
686 static inline int sk_peek_offset(const struct sock *sk, int flags)
687 {
688 	if (unlikely(flags & MSG_PEEK)) {
689 		return READ_ONCE(sk->sk_peek_off);
690 	}
691 
692 	return 0;
693 }
694 
695 static inline void sk_peek_offset_bwd(struct sock *sk, int val)
696 {
697 	s32 off = READ_ONCE(sk->sk_peek_off);
698 
699 	if (unlikely(off >= 0)) {
700 		off = max_t(s32, off - val, 0);
701 		WRITE_ONCE(sk->sk_peek_off, off);
702 	}
703 }
704 
705 static inline void sk_peek_offset_fwd(struct sock *sk, int val)
706 {
707 	sk_peek_offset_bwd(sk, -val);
708 }
709 
710 /*
711  * Hashed lists helper routines
712  */
713 static inline struct sock *sk_entry(const struct hlist_node *node)
714 {
715 	return hlist_entry(node, struct sock, sk_node);
716 }
717 
718 static inline struct sock *__sk_head(const struct hlist_head *head)
719 {
720 	return hlist_entry(head->first, struct sock, sk_node);
721 }
722 
723 static inline struct sock *sk_head(const struct hlist_head *head)
724 {
725 	return hlist_empty(head) ? NULL : __sk_head(head);
726 }
727 
728 static inline struct sock *__sk_nulls_head(const struct hlist_nulls_head *head)
729 {
730 	return hlist_nulls_entry(head->first, struct sock, sk_nulls_node);
731 }
732 
733 static inline struct sock *sk_nulls_head(const struct hlist_nulls_head *head)
734 {
735 	return hlist_nulls_empty(head) ? NULL : __sk_nulls_head(head);
736 }
737 
738 static inline struct sock *sk_next(const struct sock *sk)
739 {
740 	return hlist_entry_safe(sk->sk_node.next, struct sock, sk_node);
741 }
742 
743 static inline struct sock *sk_nulls_next(const struct sock *sk)
744 {
745 	return (!is_a_nulls(sk->sk_nulls_node.next)) ?
746 		hlist_nulls_entry(sk->sk_nulls_node.next,
747 				  struct sock, sk_nulls_node) :
748 		NULL;
749 }
750 
751 static inline bool sk_unhashed(const struct sock *sk)
752 {
753 	return hlist_unhashed(&sk->sk_node);
754 }
755 
756 static inline bool sk_hashed(const struct sock *sk)
757 {
758 	return !sk_unhashed(sk);
759 }
760 
761 static inline void sk_node_init(struct hlist_node *node)
762 {
763 	node->pprev = NULL;
764 }
765 
766 static inline void __sk_del_node(struct sock *sk)
767 {
768 	__hlist_del(&sk->sk_node);
769 }
770 
771 /* NB: equivalent to hlist_del_init_rcu */
772 static inline bool __sk_del_node_init(struct sock *sk)
773 {
774 	if (sk_hashed(sk)) {
775 		__sk_del_node(sk);
776 		sk_node_init(&sk->sk_node);
777 		return true;
778 	}
779 	return false;
780 }
781 
782 /* Grab socket reference count. This operation is valid only
783    when sk is ALREADY grabbed f.e. it is found in hash table
784    or a list and the lookup is made under lock preventing hash table
785    modifications.
786  */
787 
788 static __always_inline void sock_hold(struct sock *sk)
789 {
790 	refcount_inc(&sk->sk_refcnt);
791 }
792 
793 /* Ungrab socket in the context, which assumes that socket refcnt
794    cannot hit zero, f.e. it is true in context of any socketcall.
795  */
796 static __always_inline void __sock_put(struct sock *sk)
797 {
798 	refcount_dec(&sk->sk_refcnt);
799 }
800 
801 static inline bool sk_del_node_init(struct sock *sk)
802 {
803 	bool rc = __sk_del_node_init(sk);
804 
805 	if (rc) {
806 		/* paranoid for a while -acme */
807 		WARN_ON(refcount_read(&sk->sk_refcnt) == 1);
808 		__sock_put(sk);
809 	}
810 	return rc;
811 }
812 #define sk_del_node_init_rcu(sk)	sk_del_node_init(sk)
813 
814 static inline bool __sk_nulls_del_node_init_rcu(struct sock *sk)
815 {
816 	if (sk_hashed(sk)) {
817 		hlist_nulls_del_init_rcu(&sk->sk_nulls_node);
818 		return true;
819 	}
820 	return false;
821 }
822 
823 static inline bool sk_nulls_del_node_init_rcu(struct sock *sk)
824 {
825 	bool rc = __sk_nulls_del_node_init_rcu(sk);
826 
827 	if (rc) {
828 		/* paranoid for a while -acme */
829 		WARN_ON(refcount_read(&sk->sk_refcnt) == 1);
830 		__sock_put(sk);
831 	}
832 	return rc;
833 }
834 
835 static inline void __sk_add_node(struct sock *sk, struct hlist_head *list)
836 {
837 	hlist_add_head(&sk->sk_node, list);
838 }
839 
840 static inline void sk_add_node(struct sock *sk, struct hlist_head *list)
841 {
842 	sock_hold(sk);
843 	__sk_add_node(sk, list);
844 }
845 
846 static inline void sk_add_node_rcu(struct sock *sk, struct hlist_head *list)
847 {
848 	sock_hold(sk);
849 	if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport &&
850 	    sk->sk_family == AF_INET6)
851 		hlist_add_tail_rcu(&sk->sk_node, list);
852 	else
853 		hlist_add_head_rcu(&sk->sk_node, list);
854 }
855 
856 static inline void sk_add_node_tail_rcu(struct sock *sk, struct hlist_head *list)
857 {
858 	sock_hold(sk);
859 	hlist_add_tail_rcu(&sk->sk_node, list);
860 }
861 
862 static inline void __sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
863 {
864 	hlist_nulls_add_head_rcu(&sk->sk_nulls_node, list);
865 }
866 
867 static inline void __sk_nulls_add_node_tail_rcu(struct sock *sk, struct hlist_nulls_head *list)
868 {
869 	hlist_nulls_add_tail_rcu(&sk->sk_nulls_node, list);
870 }
871 
872 static inline void sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
873 {
874 	sock_hold(sk);
875 	__sk_nulls_add_node_rcu(sk, list);
876 }
877 
878 static inline void __sk_del_bind_node(struct sock *sk)
879 {
880 	__hlist_del(&sk->sk_bind_node);
881 }
882 
883 static inline void sk_add_bind_node(struct sock *sk,
884 					struct hlist_head *list)
885 {
886 	hlist_add_head(&sk->sk_bind_node, list);
887 }
888 
889 #define sk_for_each(__sk, list) \
890 	hlist_for_each_entry(__sk, list, sk_node)
891 #define sk_for_each_rcu(__sk, list) \
892 	hlist_for_each_entry_rcu(__sk, list, sk_node)
893 #define sk_nulls_for_each(__sk, node, list) \
894 	hlist_nulls_for_each_entry(__sk, node, list, sk_nulls_node)
895 #define sk_nulls_for_each_rcu(__sk, node, list) \
896 	hlist_nulls_for_each_entry_rcu(__sk, node, list, sk_nulls_node)
897 #define sk_for_each_from(__sk) \
898 	hlist_for_each_entry_from(__sk, sk_node)
899 #define sk_nulls_for_each_from(__sk, node) \
900 	if (__sk && ({ node = &(__sk)->sk_nulls_node; 1; })) \
901 		hlist_nulls_for_each_entry_from(__sk, node, sk_nulls_node)
902 #define sk_for_each_safe(__sk, tmp, list) \
903 	hlist_for_each_entry_safe(__sk, tmp, list, sk_node)
904 #define sk_for_each_bound(__sk, list) \
905 	hlist_for_each_entry(__sk, list, sk_bind_node)
906 #define sk_for_each_bound_safe(__sk, tmp, list) \
907 	hlist_for_each_entry_safe(__sk, tmp, list, sk_bind_node)
908 
909 /**
910  * sk_for_each_entry_offset_rcu - iterate over a list at a given struct offset
911  * @tpos:	the type * to use as a loop cursor.
912  * @pos:	the &struct hlist_node to use as a loop cursor.
913  * @head:	the head for your list.
914  * @offset:	offset of hlist_node within the struct.
915  *
916  */
917 #define sk_for_each_entry_offset_rcu(tpos, pos, head, offset)		       \
918 	for (pos = rcu_dereference(hlist_first_rcu(head));		       \
919 	     pos != NULL &&						       \
920 		({ tpos = (typeof(*tpos) *)((void *)pos - offset); 1;});       \
921 	     pos = rcu_dereference(hlist_next_rcu(pos)))
922 
923 static inline struct user_namespace *sk_user_ns(const struct sock *sk)
924 {
925 	/* Careful only use this in a context where these parameters
926 	 * can not change and must all be valid, such as recvmsg from
927 	 * userspace.
928 	 */
929 	return sk->sk_socket->file->f_cred->user_ns;
930 }
931 
932 /* Sock flags */
933 enum sock_flags {
934 	SOCK_DEAD,
935 	SOCK_DONE,
936 	SOCK_URGINLINE,
937 	SOCK_KEEPOPEN,
938 	SOCK_LINGER,
939 	SOCK_DESTROY,
940 	SOCK_BROADCAST,
941 	SOCK_TIMESTAMP,
942 	SOCK_ZAPPED,
943 	SOCK_USE_WRITE_QUEUE, /* whether to call sk->sk_write_space in sock_wfree */
944 	SOCK_DBG, /* %SO_DEBUG setting */
945 	SOCK_RCVTSTAMP, /* %SO_TIMESTAMP setting */
946 	SOCK_RCVTSTAMPNS, /* %SO_TIMESTAMPNS setting */
947 	SOCK_LOCALROUTE, /* route locally only, %SO_DONTROUTE setting */
948 	SOCK_MEMALLOC, /* VM depends on this socket for swapping */
949 	SOCK_TIMESTAMPING_RX_SOFTWARE,  /* %SOF_TIMESTAMPING_RX_SOFTWARE */
950 	SOCK_FASYNC, /* fasync() active */
951 	SOCK_RXQ_OVFL,
952 	SOCK_ZEROCOPY, /* buffers from userspace */
953 	SOCK_WIFI_STATUS, /* push wifi status to userspace */
954 	SOCK_NOFCS, /* Tell NIC not to do the Ethernet FCS.
955 		     * Will use last 4 bytes of packet sent from
956 		     * user-space instead.
957 		     */
958 	SOCK_FILTER_LOCKED, /* Filter cannot be changed anymore */
959 	SOCK_SELECT_ERR_QUEUE, /* Wake select on error queue */
960 	SOCK_RCU_FREE, /* wait rcu grace period in sk_destruct() */
961 	SOCK_TXTIME,
962 	SOCK_XDP, /* XDP is attached */
963 	SOCK_TSTAMP_NEW, /* Indicates 64 bit timestamps always */
964 	SOCK_RCVMARK, /* Receive SO_MARK  ancillary data with packet */
965 	SOCK_RCVPRIORITY, /* Receive SO_PRIORITY ancillary data with packet */
966 	SOCK_TIMESTAMPING_ANY, /* Copy of sk_tsflags & TSFLAGS_ANY */
967 };
968 
969 #define SK_FLAGS_TIMESTAMP ((1UL << SOCK_TIMESTAMP) | (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE))
970 /*
971  * The highest bit of sk_tsflags is reserved for kernel-internal
972  * SOCKCM_FLAG_TS_OPT_ID. There is a check in core/sock.c to control that
973  * SOF_TIMESTAMPING* values do not reach this reserved area
974  */
975 #define SOCKCM_FLAG_TS_OPT_ID	BIT(31)
976 
977 static inline void sock_copy_flags(struct sock *nsk, const struct sock *osk)
978 {
979 	nsk->sk_flags = osk->sk_flags;
980 }
981 
982 static inline void sock_set_flag(struct sock *sk, enum sock_flags flag)
983 {
984 	__set_bit(flag, &sk->sk_flags);
985 }
986 
987 static inline void sock_reset_flag(struct sock *sk, enum sock_flags flag)
988 {
989 	__clear_bit(flag, &sk->sk_flags);
990 }
991 
992 static inline void sock_valbool_flag(struct sock *sk, enum sock_flags bit,
993 				     int valbool)
994 {
995 	if (valbool)
996 		sock_set_flag(sk, bit);
997 	else
998 		sock_reset_flag(sk, bit);
999 }
1000 
1001 static inline bool sock_flag(const struct sock *sk, enum sock_flags flag)
1002 {
1003 	return test_bit(flag, &sk->sk_flags);
1004 }
1005 
1006 #ifdef CONFIG_NET
1007 DECLARE_STATIC_KEY_FALSE(memalloc_socks_key);
1008 static inline int sk_memalloc_socks(void)
1009 {
1010 	return static_branch_unlikely(&memalloc_socks_key);
1011 }
1012 
1013 void __receive_sock(struct file *file);
1014 #else
1015 
1016 static inline int sk_memalloc_socks(void)
1017 {
1018 	return 0;
1019 }
1020 
1021 static inline void __receive_sock(struct file *file)
1022 { }
1023 #endif
1024 
1025 static inline gfp_t sk_gfp_mask(const struct sock *sk, gfp_t gfp_mask)
1026 {
1027 	return gfp_mask | (sk->sk_allocation & __GFP_MEMALLOC);
1028 }
1029 
1030 static inline void sk_acceptq_removed(struct sock *sk)
1031 {
1032 	WRITE_ONCE(sk->sk_ack_backlog, sk->sk_ack_backlog - 1);
1033 }
1034 
1035 static inline void sk_acceptq_added(struct sock *sk)
1036 {
1037 	WRITE_ONCE(sk->sk_ack_backlog, sk->sk_ack_backlog + 1);
1038 }
1039 
1040 /* Note: If you think the test should be:
1041  *	return READ_ONCE(sk->sk_ack_backlog) >= READ_ONCE(sk->sk_max_ack_backlog);
1042  * Then please take a look at commit 64a146513f8f ("[NET]: Revert incorrect accept queue backlog changes.")
1043  */
1044 static inline bool sk_acceptq_is_full(const struct sock *sk)
1045 {
1046 	return READ_ONCE(sk->sk_ack_backlog) > READ_ONCE(sk->sk_max_ack_backlog);
1047 }
1048 
1049 /*
1050  * Compute minimal free write space needed to queue new packets.
1051  */
1052 static inline int sk_stream_min_wspace(const struct sock *sk)
1053 {
1054 	return READ_ONCE(sk->sk_wmem_queued) >> 1;
1055 }
1056 
1057 static inline int sk_stream_wspace(const struct sock *sk)
1058 {
1059 	return READ_ONCE(sk->sk_sndbuf) - READ_ONCE(sk->sk_wmem_queued);
1060 }
1061 
1062 static inline void sk_wmem_queued_add(struct sock *sk, int val)
1063 {
1064 	WRITE_ONCE(sk->sk_wmem_queued, sk->sk_wmem_queued + val);
1065 }
1066 
1067 static inline void sk_forward_alloc_add(struct sock *sk, int val)
1068 {
1069 	/* Paired with lockless reads of sk->sk_forward_alloc */
1070 	WRITE_ONCE(sk->sk_forward_alloc, sk->sk_forward_alloc + val);
1071 }
1072 
1073 void sk_stream_write_space(struct sock *sk);
1074 
1075 /* OOB backlog add */
1076 static inline void __sk_add_backlog(struct sock *sk, struct sk_buff *skb)
1077 {
1078 	/* dont let skb dst not refcounted, we are going to leave rcu lock */
1079 	skb_dst_force(skb);
1080 
1081 	if (!sk->sk_backlog.tail)
1082 		WRITE_ONCE(sk->sk_backlog.head, skb);
1083 	else
1084 		sk->sk_backlog.tail->next = skb;
1085 
1086 	WRITE_ONCE(sk->sk_backlog.tail, skb);
1087 	skb->next = NULL;
1088 }
1089 
1090 /*
1091  * Take into account size of receive queue and backlog queue
1092  * Do not take into account this skb truesize,
1093  * to allow even a single big packet to come.
1094  */
1095 static inline bool sk_rcvqueues_full(const struct sock *sk, unsigned int limit)
1096 {
1097 	unsigned int qsize = sk->sk_backlog.len + atomic_read(&sk->sk_rmem_alloc);
1098 
1099 	return qsize > limit;
1100 }
1101 
1102 /* The per-socket spinlock must be held here. */
1103 static inline __must_check int sk_add_backlog(struct sock *sk, struct sk_buff *skb,
1104 					      unsigned int limit)
1105 {
1106 	if (sk_rcvqueues_full(sk, limit))
1107 		return -ENOBUFS;
1108 
1109 	/*
1110 	 * If the skb was allocated from pfmemalloc reserves, only
1111 	 * allow SOCK_MEMALLOC sockets to use it as this socket is
1112 	 * helping free memory
1113 	 */
1114 	if (skb_pfmemalloc(skb) && !sock_flag(sk, SOCK_MEMALLOC))
1115 		return -ENOMEM;
1116 
1117 	__sk_add_backlog(sk, skb);
1118 	sk->sk_backlog.len += skb->truesize;
1119 	return 0;
1120 }
1121 
1122 int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb);
1123 
1124 INDIRECT_CALLABLE_DECLARE(int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb));
1125 INDIRECT_CALLABLE_DECLARE(int tcp_v6_do_rcv(struct sock *sk, struct sk_buff *skb));
1126 
1127 static inline int sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
1128 {
1129 	if (sk_memalloc_socks() && skb_pfmemalloc(skb))
1130 		return __sk_backlog_rcv(sk, skb);
1131 
1132 	return INDIRECT_CALL_INET(sk->sk_backlog_rcv,
1133 				  tcp_v6_do_rcv,
1134 				  tcp_v4_do_rcv,
1135 				  sk, skb);
1136 }
1137 
1138 static inline void sk_incoming_cpu_update(struct sock *sk)
1139 {
1140 	int cpu = raw_smp_processor_id();
1141 
1142 	if (unlikely(READ_ONCE(sk->sk_incoming_cpu) != cpu))
1143 		WRITE_ONCE(sk->sk_incoming_cpu, cpu);
1144 }
1145 
1146 
1147 static inline void sock_rps_save_rxhash(struct sock *sk,
1148 					const struct sk_buff *skb)
1149 {
1150 #ifdef CONFIG_RPS
1151 	/* The following WRITE_ONCE() is paired with the READ_ONCE()
1152 	 * here, and another one in sock_rps_record_flow().
1153 	 */
1154 	if (unlikely(READ_ONCE(sk->sk_rxhash) != skb->hash))
1155 		WRITE_ONCE(sk->sk_rxhash, skb->hash);
1156 #endif
1157 }
1158 
1159 static inline void sock_rps_reset_rxhash(struct sock *sk)
1160 {
1161 #ifdef CONFIG_RPS
1162 	/* Paired with READ_ONCE() in sock_rps_record_flow() */
1163 	WRITE_ONCE(sk->sk_rxhash, 0);
1164 #endif
1165 }
1166 
1167 #define sk_wait_event(__sk, __timeo, __condition, __wait)		\
1168 	({	int __rc, __dis = __sk->sk_disconnects;			\
1169 		release_sock(__sk);					\
1170 		__rc = __condition;					\
1171 		if (!__rc) {						\
1172 			*(__timeo) = wait_woken(__wait,			\
1173 						TASK_INTERRUPTIBLE,	\
1174 						*(__timeo));		\
1175 		}							\
1176 		sched_annotate_sleep();					\
1177 		lock_sock(__sk);					\
1178 		__rc = __dis == __sk->sk_disconnects ? __condition : -EPIPE; \
1179 		__rc;							\
1180 	})
1181 
1182 int sk_stream_wait_connect(struct sock *sk, long *timeo_p);
1183 int sk_stream_wait_memory(struct sock *sk, long *timeo_p);
1184 void sk_stream_wait_close(struct sock *sk, long timeo_p);
1185 int sk_stream_error(struct sock *sk, int flags, int err);
1186 void sk_stream_kill_queues(struct sock *sk);
1187 void sk_set_memalloc(struct sock *sk);
1188 void sk_clear_memalloc(struct sock *sk);
1189 
1190 void __sk_flush_backlog(struct sock *sk);
1191 
1192 static inline bool sk_flush_backlog(struct sock *sk)
1193 {
1194 	if (unlikely(READ_ONCE(sk->sk_backlog.tail))) {
1195 		__sk_flush_backlog(sk);
1196 		return true;
1197 	}
1198 	return false;
1199 }
1200 
1201 int sk_wait_data(struct sock *sk, long *timeo, const struct sk_buff *skb);
1202 
1203 struct request_sock_ops;
1204 struct timewait_sock_ops;
1205 struct inet_hashinfo;
1206 struct raw_hashinfo;
1207 struct smc_hashinfo;
1208 struct module;
1209 struct sk_psock;
1210 
1211 /*
1212  * caches using SLAB_TYPESAFE_BY_RCU should let .next pointer from nulls nodes
1213  * un-modified. Special care is taken when initializing object to zero.
1214  */
1215 static inline void sk_prot_clear_nulls(struct sock *sk, int size)
1216 {
1217 	if (offsetof(struct sock, sk_node.next) != 0)
1218 		memset(sk, 0, offsetof(struct sock, sk_node.next));
1219 	memset(&sk->sk_node.pprev, 0,
1220 	       size - offsetof(struct sock, sk_node.pprev));
1221 }
1222 
1223 struct proto_accept_arg {
1224 	int flags;
1225 	int err;
1226 	int is_empty;
1227 	bool kern;
1228 };
1229 
1230 /* Networking protocol blocks we attach to sockets.
1231  * socket layer -> transport layer interface
1232  */
1233 struct proto {
1234 	void			(*close)(struct sock *sk,
1235 					long timeout);
1236 	int			(*pre_connect)(struct sock *sk,
1237 					struct sockaddr *uaddr,
1238 					int addr_len);
1239 	int			(*connect)(struct sock *sk,
1240 					struct sockaddr *uaddr,
1241 					int addr_len);
1242 	int			(*disconnect)(struct sock *sk, int flags);
1243 
1244 	struct sock *		(*accept)(struct sock *sk,
1245 					  struct proto_accept_arg *arg);
1246 
1247 	int			(*ioctl)(struct sock *sk, int cmd,
1248 					 int *karg);
1249 	int			(*init)(struct sock *sk);
1250 	void			(*destroy)(struct sock *sk);
1251 	void			(*shutdown)(struct sock *sk, int how);
1252 	int			(*setsockopt)(struct sock *sk, int level,
1253 					int optname, sockptr_t optval,
1254 					unsigned int optlen);
1255 	int			(*getsockopt)(struct sock *sk, int level,
1256 					int optname, char __user *optval,
1257 					int __user *option);
1258 	void			(*keepalive)(struct sock *sk, int valbool);
1259 #ifdef CONFIG_COMPAT
1260 	int			(*compat_ioctl)(struct sock *sk,
1261 					unsigned int cmd, unsigned long arg);
1262 #endif
1263 	int			(*sendmsg)(struct sock *sk, struct msghdr *msg,
1264 					   size_t len);
1265 	int			(*recvmsg)(struct sock *sk, struct msghdr *msg,
1266 					   size_t len, int flags, int *addr_len);
1267 	void			(*splice_eof)(struct socket *sock);
1268 	int			(*bind)(struct sock *sk,
1269 					struct sockaddr *addr, int addr_len);
1270 	int			(*bind_add)(struct sock *sk,
1271 					struct sockaddr *addr, int addr_len);
1272 
1273 	int			(*backlog_rcv) (struct sock *sk,
1274 						struct sk_buff *skb);
1275 	bool			(*bpf_bypass_getsockopt)(int level,
1276 							 int optname);
1277 
1278 	void		(*release_cb)(struct sock *sk);
1279 
1280 	/* Keeping track of sk's, looking them up, and port selection methods. */
1281 	int			(*hash)(struct sock *sk);
1282 	void			(*unhash)(struct sock *sk);
1283 	void			(*rehash)(struct sock *sk);
1284 	int			(*get_port)(struct sock *sk, unsigned short snum);
1285 	void			(*put_port)(struct sock *sk);
1286 #ifdef CONFIG_BPF_SYSCALL
1287 	int			(*psock_update_sk_prot)(struct sock *sk,
1288 							struct sk_psock *psock,
1289 							bool restore);
1290 #endif
1291 
1292 	/* Keeping track of sockets in use */
1293 #ifdef CONFIG_PROC_FS
1294 	unsigned int		inuse_idx;
1295 #endif
1296 
1297 	bool			(*stream_memory_free)(const struct sock *sk, int wake);
1298 	bool			(*sock_is_readable)(struct sock *sk);
1299 	/* Memory pressure */
1300 	void			(*enter_memory_pressure)(struct sock *sk);
1301 	void			(*leave_memory_pressure)(struct sock *sk);
1302 	atomic_long_t		*memory_allocated;	/* Current allocated memory. */
1303 	int  __percpu		*per_cpu_fw_alloc;
1304 	struct percpu_counter	*sockets_allocated;	/* Current number of sockets. */
1305 
1306 	/*
1307 	 * Pressure flag: try to collapse.
1308 	 * Technical note: it is used by multiple contexts non atomically.
1309 	 * Make sure to use READ_ONCE()/WRITE_ONCE() for all reads/writes.
1310 	 * All the __sk_mem_schedule() is of this nature: accounting
1311 	 * is strict, actions are advisory and have some latency.
1312 	 */
1313 	unsigned long		*memory_pressure;
1314 	long			*sysctl_mem;
1315 
1316 	int			*sysctl_wmem;
1317 	int			*sysctl_rmem;
1318 	u32			sysctl_wmem_offset;
1319 	u32			sysctl_rmem_offset;
1320 
1321 	int			max_header;
1322 	bool			no_autobind;
1323 
1324 	struct kmem_cache	*slab;
1325 	unsigned int		obj_size;
1326 	unsigned int		ipv6_pinfo_offset;
1327 	slab_flags_t		slab_flags;
1328 	unsigned int		useroffset;	/* Usercopy region offset */
1329 	unsigned int		usersize;	/* Usercopy region size */
1330 
1331 	unsigned int __percpu	*orphan_count;
1332 
1333 	struct request_sock_ops	*rsk_prot;
1334 	struct timewait_sock_ops *twsk_prot;
1335 
1336 	union {
1337 		struct inet_hashinfo	*hashinfo;
1338 		struct udp_table	*udp_table;
1339 		struct raw_hashinfo	*raw_hash;
1340 		struct smc_hashinfo	*smc_hash;
1341 	} h;
1342 
1343 	struct module		*owner;
1344 
1345 	char			name[32];
1346 
1347 	struct list_head	node;
1348 	int			(*diag_destroy)(struct sock *sk, int err);
1349 } __randomize_layout;
1350 
1351 int proto_register(struct proto *prot, int alloc_slab);
1352 void proto_unregister(struct proto *prot);
1353 int sock_load_diag_module(int family, int protocol);
1354 
1355 INDIRECT_CALLABLE_DECLARE(bool tcp_stream_memory_free(const struct sock *sk, int wake));
1356 
1357 static inline bool __sk_stream_memory_free(const struct sock *sk, int wake)
1358 {
1359 	if (READ_ONCE(sk->sk_wmem_queued) >= READ_ONCE(sk->sk_sndbuf))
1360 		return false;
1361 
1362 	return sk->sk_prot->stream_memory_free ?
1363 		INDIRECT_CALL_INET_1(sk->sk_prot->stream_memory_free,
1364 				     tcp_stream_memory_free, sk, wake) : true;
1365 }
1366 
1367 static inline bool sk_stream_memory_free(const struct sock *sk)
1368 {
1369 	return __sk_stream_memory_free(sk, 0);
1370 }
1371 
1372 static inline bool __sk_stream_is_writeable(const struct sock *sk, int wake)
1373 {
1374 	return sk_stream_wspace(sk) >= sk_stream_min_wspace(sk) &&
1375 	       __sk_stream_memory_free(sk, wake);
1376 }
1377 
1378 static inline bool sk_stream_is_writeable(const struct sock *sk)
1379 {
1380 	return __sk_stream_is_writeable(sk, 0);
1381 }
1382 
1383 static inline int sk_under_cgroup_hierarchy(struct sock *sk,
1384 					    struct cgroup *ancestor)
1385 {
1386 #ifdef CONFIG_SOCK_CGROUP_DATA
1387 	return cgroup_is_descendant(sock_cgroup_ptr(&sk->sk_cgrp_data),
1388 				    ancestor);
1389 #else
1390 	return -ENOTSUPP;
1391 #endif
1392 }
1393 
1394 #define SK_ALLOC_PERCPU_COUNTER_BATCH 16
1395 
1396 static inline void sk_sockets_allocated_dec(struct sock *sk)
1397 {
1398 	percpu_counter_add_batch(sk->sk_prot->sockets_allocated, -1,
1399 				 SK_ALLOC_PERCPU_COUNTER_BATCH);
1400 }
1401 
1402 static inline void sk_sockets_allocated_inc(struct sock *sk)
1403 {
1404 	percpu_counter_add_batch(sk->sk_prot->sockets_allocated, 1,
1405 				 SK_ALLOC_PERCPU_COUNTER_BATCH);
1406 }
1407 
1408 static inline u64
1409 sk_sockets_allocated_read_positive(struct sock *sk)
1410 {
1411 	return percpu_counter_read_positive(sk->sk_prot->sockets_allocated);
1412 }
1413 
1414 static inline int
1415 proto_sockets_allocated_sum_positive(struct proto *prot)
1416 {
1417 	return percpu_counter_sum_positive(prot->sockets_allocated);
1418 }
1419 
1420 #ifdef CONFIG_PROC_FS
1421 #define PROTO_INUSE_NR	64	/* should be enough for the first time */
1422 struct prot_inuse {
1423 	int all;
1424 	int val[PROTO_INUSE_NR];
1425 };
1426 
1427 static inline void sock_prot_inuse_add(const struct net *net,
1428 				       const struct proto *prot, int val)
1429 {
1430 	this_cpu_add(net->core.prot_inuse->val[prot->inuse_idx], val);
1431 }
1432 
1433 static inline void sock_inuse_add(const struct net *net, int val)
1434 {
1435 	this_cpu_add(net->core.prot_inuse->all, val);
1436 }
1437 
1438 int sock_prot_inuse_get(struct net *net, struct proto *proto);
1439 int sock_inuse_get(struct net *net);
1440 #else
1441 static inline void sock_prot_inuse_add(const struct net *net,
1442 				       const struct proto *prot, int val)
1443 {
1444 }
1445 
1446 static inline void sock_inuse_add(const struct net *net, int val)
1447 {
1448 }
1449 #endif
1450 
1451 
1452 /* With per-bucket locks this operation is not-atomic, so that
1453  * this version is not worse.
1454  */
1455 static inline int __sk_prot_rehash(struct sock *sk)
1456 {
1457 	sk->sk_prot->unhash(sk);
1458 	return sk->sk_prot->hash(sk);
1459 }
1460 
1461 /* About 10 seconds */
1462 #define SOCK_DESTROY_TIME (10*HZ)
1463 
1464 /* Sockets 0-1023 can't be bound to unless you are superuser */
1465 #define PROT_SOCK	1024
1466 
1467 #define SHUTDOWN_MASK	3
1468 #define RCV_SHUTDOWN	1
1469 #define SEND_SHUTDOWN	2
1470 
1471 #define SOCK_BINDADDR_LOCK	4
1472 #define SOCK_BINDPORT_LOCK	8
1473 
1474 struct socket_alloc {
1475 	struct socket socket;
1476 	struct inode vfs_inode;
1477 };
1478 
1479 static inline struct socket *SOCKET_I(struct inode *inode)
1480 {
1481 	return &container_of(inode, struct socket_alloc, vfs_inode)->socket;
1482 }
1483 
1484 static inline struct inode *SOCK_INODE(struct socket *socket)
1485 {
1486 	return &container_of(socket, struct socket_alloc, socket)->vfs_inode;
1487 }
1488 
1489 /*
1490  * Functions for memory accounting
1491  */
1492 int __sk_mem_raise_allocated(struct sock *sk, int size, int amt, int kind);
1493 int __sk_mem_schedule(struct sock *sk, int size, int kind);
1494 void __sk_mem_reduce_allocated(struct sock *sk, int amount);
1495 void __sk_mem_reclaim(struct sock *sk, int amount);
1496 
1497 #define SK_MEM_SEND	0
1498 #define SK_MEM_RECV	1
1499 
1500 /* sysctl_mem values are in pages */
1501 static inline long sk_prot_mem_limits(const struct sock *sk, int index)
1502 {
1503 	return READ_ONCE(sk->sk_prot->sysctl_mem[index]);
1504 }
1505 
1506 static inline int sk_mem_pages(int amt)
1507 {
1508 	return (amt + PAGE_SIZE - 1) >> PAGE_SHIFT;
1509 }
1510 
1511 static inline bool sk_has_account(struct sock *sk)
1512 {
1513 	/* return true if protocol supports memory accounting */
1514 	return !!sk->sk_prot->memory_allocated;
1515 }
1516 
1517 static inline bool sk_wmem_schedule(struct sock *sk, int size)
1518 {
1519 	int delta;
1520 
1521 	if (!sk_has_account(sk))
1522 		return true;
1523 	delta = size - sk->sk_forward_alloc;
1524 	return delta <= 0 || __sk_mem_schedule(sk, delta, SK_MEM_SEND);
1525 }
1526 
1527 static inline bool
1528 __sk_rmem_schedule(struct sock *sk, int size, bool pfmemalloc)
1529 {
1530 	int delta;
1531 
1532 	if (!sk_has_account(sk))
1533 		return true;
1534 	delta = size - sk->sk_forward_alloc;
1535 	return delta <= 0 || __sk_mem_schedule(sk, delta, SK_MEM_RECV) ||
1536 	       pfmemalloc;
1537 }
1538 
1539 static inline bool
1540 sk_rmem_schedule(struct sock *sk, struct sk_buff *skb, int size)
1541 {
1542 	return __sk_rmem_schedule(sk, size, skb_pfmemalloc(skb));
1543 }
1544 
1545 static inline int sk_unused_reserved_mem(const struct sock *sk)
1546 {
1547 	int unused_mem;
1548 
1549 	if (likely(!sk->sk_reserved_mem))
1550 		return 0;
1551 
1552 	unused_mem = sk->sk_reserved_mem - sk->sk_wmem_queued -
1553 			atomic_read(&sk->sk_rmem_alloc);
1554 
1555 	return unused_mem > 0 ? unused_mem : 0;
1556 }
1557 
1558 static inline void sk_mem_reclaim(struct sock *sk)
1559 {
1560 	int reclaimable;
1561 
1562 	if (!sk_has_account(sk))
1563 		return;
1564 
1565 	reclaimable = sk->sk_forward_alloc - sk_unused_reserved_mem(sk);
1566 
1567 	if (reclaimable >= (int)PAGE_SIZE)
1568 		__sk_mem_reclaim(sk, reclaimable);
1569 }
1570 
1571 static inline void sk_mem_reclaim_final(struct sock *sk)
1572 {
1573 	sk->sk_reserved_mem = 0;
1574 	sk_mem_reclaim(sk);
1575 }
1576 
1577 static inline void sk_mem_charge(struct sock *sk, int size)
1578 {
1579 	if (!sk_has_account(sk))
1580 		return;
1581 	sk_forward_alloc_add(sk, -size);
1582 }
1583 
1584 static inline void sk_mem_uncharge(struct sock *sk, int size)
1585 {
1586 	if (!sk_has_account(sk))
1587 		return;
1588 	sk_forward_alloc_add(sk, size);
1589 	sk_mem_reclaim(sk);
1590 }
1591 
1592 #if IS_ENABLED(CONFIG_PROVE_LOCKING) && IS_ENABLED(CONFIG_MODULES)
1593 static inline void sk_owner_set(struct sock *sk, struct module *owner)
1594 {
1595 	__module_get(owner);
1596 	sk->sk_owner = owner;
1597 }
1598 
1599 static inline void sk_owner_clear(struct sock *sk)
1600 {
1601 	sk->sk_owner = NULL;
1602 }
1603 
1604 static inline void sk_owner_put(struct sock *sk)
1605 {
1606 	module_put(sk->sk_owner);
1607 }
1608 #else
1609 static inline void sk_owner_set(struct sock *sk, struct module *owner)
1610 {
1611 }
1612 
1613 static inline void sk_owner_clear(struct sock *sk)
1614 {
1615 }
1616 
1617 static inline void sk_owner_put(struct sock *sk)
1618 {
1619 }
1620 #endif
1621 /*
1622  * Macro so as to not evaluate some arguments when
1623  * lockdep is not enabled.
1624  *
1625  * Mark both the sk_lock and the sk_lock.slock as a
1626  * per-address-family lock class.
1627  */
1628 #define sock_lock_init_class_and_name(sk, sname, skey, name, key)	\
1629 do {									\
1630 	sk_owner_set(sk, THIS_MODULE);					\
1631 	sk->sk_lock.owned = 0;						\
1632 	init_waitqueue_head(&sk->sk_lock.wq);				\
1633 	spin_lock_init(&(sk)->sk_lock.slock);				\
1634 	debug_check_no_locks_freed((void *)&(sk)->sk_lock,		\
1635 				   sizeof((sk)->sk_lock));		\
1636 	lockdep_set_class_and_name(&(sk)->sk_lock.slock,		\
1637 				   (skey), (sname));			\
1638 	lockdep_init_map(&(sk)->sk_lock.dep_map, (name), (key), 0);	\
1639 } while (0)
1640 
1641 static inline bool lockdep_sock_is_held(const struct sock *sk)
1642 {
1643 	return lockdep_is_held(&sk->sk_lock) ||
1644 	       lockdep_is_held(&sk->sk_lock.slock);
1645 }
1646 
1647 void lock_sock_nested(struct sock *sk, int subclass);
1648 
1649 static inline void lock_sock(struct sock *sk)
1650 {
1651 	lock_sock_nested(sk, 0);
1652 }
1653 
1654 void __lock_sock(struct sock *sk);
1655 void __release_sock(struct sock *sk);
1656 void release_sock(struct sock *sk);
1657 
1658 /* BH context may only use the following locking interface. */
1659 #define bh_lock_sock(__sk)	spin_lock(&((__sk)->sk_lock.slock))
1660 #define bh_lock_sock_nested(__sk) \
1661 				spin_lock_nested(&((__sk)->sk_lock.slock), \
1662 				SINGLE_DEPTH_NESTING)
1663 #define bh_unlock_sock(__sk)	spin_unlock(&((__sk)->sk_lock.slock))
1664 
1665 bool __lock_sock_fast(struct sock *sk) __acquires(&sk->sk_lock.slock);
1666 
1667 /**
1668  * lock_sock_fast - fast version of lock_sock
1669  * @sk: socket
1670  *
1671  * This version should be used for very small section, where process won't block
1672  * return false if fast path is taken:
1673  *
1674  *   sk_lock.slock locked, owned = 0, BH disabled
1675  *
1676  * return true if slow path is taken:
1677  *
1678  *   sk_lock.slock unlocked, owned = 1, BH enabled
1679  */
1680 static inline bool lock_sock_fast(struct sock *sk)
1681 {
1682 	/* The sk_lock has mutex_lock() semantics here. */
1683 	mutex_acquire(&sk->sk_lock.dep_map, 0, 0, _RET_IP_);
1684 
1685 	return __lock_sock_fast(sk);
1686 }
1687 
1688 /* fast socket lock variant for caller already holding a [different] socket lock */
1689 static inline bool lock_sock_fast_nested(struct sock *sk)
1690 {
1691 	mutex_acquire(&sk->sk_lock.dep_map, SINGLE_DEPTH_NESTING, 0, _RET_IP_);
1692 
1693 	return __lock_sock_fast(sk);
1694 }
1695 
1696 /**
1697  * unlock_sock_fast - complement of lock_sock_fast
1698  * @sk: socket
1699  * @slow: slow mode
1700  *
1701  * fast unlock socket for user context.
1702  * If slow mode is on, we call regular release_sock()
1703  */
1704 static inline void unlock_sock_fast(struct sock *sk, bool slow)
1705 	__releases(&sk->sk_lock.slock)
1706 {
1707 	if (slow) {
1708 		release_sock(sk);
1709 		__release(&sk->sk_lock.slock);
1710 	} else {
1711 		mutex_release(&sk->sk_lock.dep_map, _RET_IP_);
1712 		spin_unlock_bh(&sk->sk_lock.slock);
1713 	}
1714 }
1715 
1716 void sockopt_lock_sock(struct sock *sk);
1717 void sockopt_release_sock(struct sock *sk);
1718 bool sockopt_ns_capable(struct user_namespace *ns, int cap);
1719 bool sockopt_capable(int cap);
1720 
1721 /* Used by processes to "lock" a socket state, so that
1722  * interrupts and bottom half handlers won't change it
1723  * from under us. It essentially blocks any incoming
1724  * packets, so that we won't get any new data or any
1725  * packets that change the state of the socket.
1726  *
1727  * While locked, BH processing will add new packets to
1728  * the backlog queue.  This queue is processed by the
1729  * owner of the socket lock right before it is released.
1730  *
1731  * Since ~2.3.5 it is also exclusive sleep lock serializing
1732  * accesses from user process context.
1733  */
1734 
1735 static inline void sock_owned_by_me(const struct sock *sk)
1736 {
1737 #ifdef CONFIG_LOCKDEP
1738 	WARN_ON_ONCE(!lockdep_sock_is_held(sk) && debug_locks);
1739 #endif
1740 }
1741 
1742 static inline void sock_not_owned_by_me(const struct sock *sk)
1743 {
1744 #ifdef CONFIG_LOCKDEP
1745 	WARN_ON_ONCE(lockdep_sock_is_held(sk) && debug_locks);
1746 #endif
1747 }
1748 
1749 static inline bool sock_owned_by_user(const struct sock *sk)
1750 {
1751 	sock_owned_by_me(sk);
1752 	return sk->sk_lock.owned;
1753 }
1754 
1755 static inline bool sock_owned_by_user_nocheck(const struct sock *sk)
1756 {
1757 	return sk->sk_lock.owned;
1758 }
1759 
1760 static inline void sock_release_ownership(struct sock *sk)
1761 {
1762 	DEBUG_NET_WARN_ON_ONCE(!sock_owned_by_user_nocheck(sk));
1763 	sk->sk_lock.owned = 0;
1764 
1765 	/* The sk_lock has mutex_unlock() semantics: */
1766 	mutex_release(&sk->sk_lock.dep_map, _RET_IP_);
1767 }
1768 
1769 /* no reclassification while locks are held */
1770 static inline bool sock_allow_reclassification(const struct sock *csk)
1771 {
1772 	struct sock *sk = (struct sock *)csk;
1773 
1774 	return !sock_owned_by_user_nocheck(sk) &&
1775 		!spin_is_locked(&sk->sk_lock.slock);
1776 }
1777 
1778 struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
1779 		      struct proto *prot, int kern);
1780 void sk_free(struct sock *sk);
1781 void sk_net_refcnt_upgrade(struct sock *sk);
1782 void sk_destruct(struct sock *sk);
1783 struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority);
1784 
1785 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
1786 			     gfp_t priority);
1787 void __sock_wfree(struct sk_buff *skb);
1788 void sock_wfree(struct sk_buff *skb);
1789 struct sk_buff *sock_omalloc(struct sock *sk, unsigned long size,
1790 			     gfp_t priority);
1791 void skb_orphan_partial(struct sk_buff *skb);
1792 void sock_rfree(struct sk_buff *skb);
1793 void sock_efree(struct sk_buff *skb);
1794 #ifdef CONFIG_INET
1795 void sock_edemux(struct sk_buff *skb);
1796 void sock_pfree(struct sk_buff *skb);
1797 
1798 static inline void skb_set_owner_edemux(struct sk_buff *skb, struct sock *sk)
1799 {
1800 	skb_orphan(skb);
1801 	if (refcount_inc_not_zero(&sk->sk_refcnt)) {
1802 		skb->sk = sk;
1803 		skb->destructor = sock_edemux;
1804 	}
1805 }
1806 #else
1807 #define sock_edemux sock_efree
1808 #endif
1809 
1810 int sk_setsockopt(struct sock *sk, int level, int optname,
1811 		  sockptr_t optval, unsigned int optlen);
1812 int sock_setsockopt(struct socket *sock, int level, int op,
1813 		    sockptr_t optval, unsigned int optlen);
1814 int do_sock_setsockopt(struct socket *sock, bool compat, int level,
1815 		       int optname, sockptr_t optval, int optlen);
1816 int do_sock_getsockopt(struct socket *sock, bool compat, int level,
1817 		       int optname, sockptr_t optval, sockptr_t optlen);
1818 
1819 int sk_getsockopt(struct sock *sk, int level, int optname,
1820 		  sockptr_t optval, sockptr_t optlen);
1821 int sock_gettstamp(struct socket *sock, void __user *userstamp,
1822 		   bool timeval, bool time32);
1823 struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
1824 				     unsigned long data_len, int noblock,
1825 				     int *errcode, int max_page_order);
1826 
1827 static inline struct sk_buff *sock_alloc_send_skb(struct sock *sk,
1828 						  unsigned long size,
1829 						  int noblock, int *errcode)
1830 {
1831 	return sock_alloc_send_pskb(sk, size, 0, noblock, errcode, 0);
1832 }
1833 
1834 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority);
1835 void *sock_kmemdup(struct sock *sk, const void *src,
1836 		   int size, gfp_t priority);
1837 void sock_kfree_s(struct sock *sk, void *mem, int size);
1838 void sock_kzfree_s(struct sock *sk, void *mem, int size);
1839 void sk_send_sigurg(struct sock *sk);
1840 
1841 static inline void sock_replace_proto(struct sock *sk, struct proto *proto)
1842 {
1843 	if (sk->sk_socket)
1844 		clear_bit(SOCK_SUPPORT_ZC, &sk->sk_socket->flags);
1845 	WRITE_ONCE(sk->sk_prot, proto);
1846 }
1847 
1848 struct sockcm_cookie {
1849 	u64 transmit_time;
1850 	u32 mark;
1851 	u32 tsflags;
1852 	u32 ts_opt_id;
1853 	u32 priority;
1854 };
1855 
1856 static inline void sockcm_init(struct sockcm_cookie *sockc,
1857 			       const struct sock *sk)
1858 {
1859 	*sockc = (struct sockcm_cookie) {
1860 		.mark = READ_ONCE(sk->sk_mark),
1861 		.tsflags = READ_ONCE(sk->sk_tsflags),
1862 		.priority = READ_ONCE(sk->sk_priority),
1863 	};
1864 }
1865 
1866 int __sock_cmsg_send(struct sock *sk, struct cmsghdr *cmsg,
1867 		     struct sockcm_cookie *sockc);
1868 int sock_cmsg_send(struct sock *sk, struct msghdr *msg,
1869 		   struct sockcm_cookie *sockc);
1870 
1871 /*
1872  * Functions to fill in entries in struct proto_ops when a protocol
1873  * does not implement a particular function.
1874  */
1875 int sock_no_bind(struct socket *, struct sockaddr *, int);
1876 int sock_no_connect(struct socket *, struct sockaddr *, int, int);
1877 int sock_no_socketpair(struct socket *, struct socket *);
1878 int sock_no_accept(struct socket *, struct socket *, struct proto_accept_arg *);
1879 int sock_no_getname(struct socket *, struct sockaddr *, int);
1880 int sock_no_ioctl(struct socket *, unsigned int, unsigned long);
1881 int sock_no_listen(struct socket *, int);
1882 int sock_no_shutdown(struct socket *, int);
1883 int sock_no_sendmsg(struct socket *, struct msghdr *, size_t);
1884 int sock_no_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t len);
1885 int sock_no_recvmsg(struct socket *, struct msghdr *, size_t, int);
1886 int sock_no_mmap(struct file *file, struct socket *sock,
1887 		 struct vm_area_struct *vma);
1888 
1889 /*
1890  * Functions to fill in entries in struct proto_ops when a protocol
1891  * uses the inet style.
1892  */
1893 int sock_common_getsockopt(struct socket *sock, int level, int optname,
1894 				  char __user *optval, int __user *optlen);
1895 int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
1896 			int flags);
1897 int sock_common_setsockopt(struct socket *sock, int level, int optname,
1898 			   sockptr_t optval, unsigned int optlen);
1899 
1900 void sk_common_release(struct sock *sk);
1901 
1902 /*
1903  *	Default socket callbacks and setup code
1904  */
1905 
1906 /* Initialise core socket variables using an explicit uid. */
1907 void sock_init_data_uid(struct socket *sock, struct sock *sk, kuid_t uid);
1908 
1909 /* Initialise core socket variables.
1910  * Assumes struct socket *sock is embedded in a struct socket_alloc.
1911  */
1912 void sock_init_data(struct socket *sock, struct sock *sk);
1913 
1914 /*
1915  * Socket reference counting postulates.
1916  *
1917  * * Each user of socket SHOULD hold a reference count.
1918  * * Each access point to socket (an hash table bucket, reference from a list,
1919  *   running timer, skb in flight MUST hold a reference count.
1920  * * When reference count hits 0, it means it will never increase back.
1921  * * When reference count hits 0, it means that no references from
1922  *   outside exist to this socket and current process on current CPU
1923  *   is last user and may/should destroy this socket.
1924  * * sk_free is called from any context: process, BH, IRQ. When
1925  *   it is called, socket has no references from outside -> sk_free
1926  *   may release descendant resources allocated by the socket, but
1927  *   to the time when it is called, socket is NOT referenced by any
1928  *   hash tables, lists etc.
1929  * * Packets, delivered from outside (from network or from another process)
1930  *   and enqueued on receive/error queues SHOULD NOT grab reference count,
1931  *   when they sit in queue. Otherwise, packets will leak to hole, when
1932  *   socket is looked up by one cpu and unhasing is made by another CPU.
1933  *   It is true for udp/raw, netlink (leak to receive and error queues), tcp
1934  *   (leak to backlog). Packet socket does all the processing inside
1935  *   BR_NETPROTO_LOCK, so that it has not this race condition. UNIX sockets
1936  *   use separate SMP lock, so that they are prone too.
1937  */
1938 
1939 /* Ungrab socket and destroy it, if it was the last reference. */
1940 static inline void sock_put(struct sock *sk)
1941 {
1942 	if (refcount_dec_and_test(&sk->sk_refcnt))
1943 		sk_free(sk);
1944 }
1945 /* Generic version of sock_put(), dealing with all sockets
1946  * (TCP_TIMEWAIT, TCP_NEW_SYN_RECV, ESTABLISHED...)
1947  */
1948 void sock_gen_put(struct sock *sk);
1949 
1950 int __sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested,
1951 		     unsigned int trim_cap, bool refcounted);
1952 static inline int sk_receive_skb(struct sock *sk, struct sk_buff *skb,
1953 				 const int nested)
1954 {
1955 	return __sk_receive_skb(sk, skb, nested, 1, true);
1956 }
1957 
1958 static inline void sk_tx_queue_set(struct sock *sk, int tx_queue)
1959 {
1960 	/* sk_tx_queue_mapping accept only upto a 16-bit value */
1961 	if (WARN_ON_ONCE((unsigned short)tx_queue >= USHRT_MAX))
1962 		return;
1963 	/* Paired with READ_ONCE() in sk_tx_queue_get() and
1964 	 * other WRITE_ONCE() because socket lock might be not held.
1965 	 */
1966 	WRITE_ONCE(sk->sk_tx_queue_mapping, tx_queue);
1967 }
1968 
1969 #define NO_QUEUE_MAPPING	USHRT_MAX
1970 
1971 static inline void sk_tx_queue_clear(struct sock *sk)
1972 {
1973 	/* Paired with READ_ONCE() in sk_tx_queue_get() and
1974 	 * other WRITE_ONCE() because socket lock might be not held.
1975 	 */
1976 	WRITE_ONCE(sk->sk_tx_queue_mapping, NO_QUEUE_MAPPING);
1977 }
1978 
1979 static inline int sk_tx_queue_get(const struct sock *sk)
1980 {
1981 	if (sk) {
1982 		/* Paired with WRITE_ONCE() in sk_tx_queue_clear()
1983 		 * and sk_tx_queue_set().
1984 		 */
1985 		int val = READ_ONCE(sk->sk_tx_queue_mapping);
1986 
1987 		if (val != NO_QUEUE_MAPPING)
1988 			return val;
1989 	}
1990 	return -1;
1991 }
1992 
1993 static inline void __sk_rx_queue_set(struct sock *sk,
1994 				     const struct sk_buff *skb,
1995 				     bool force_set)
1996 {
1997 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
1998 	if (skb_rx_queue_recorded(skb)) {
1999 		u16 rx_queue = skb_get_rx_queue(skb);
2000 
2001 		if (force_set ||
2002 		    unlikely(READ_ONCE(sk->sk_rx_queue_mapping) != rx_queue))
2003 			WRITE_ONCE(sk->sk_rx_queue_mapping, rx_queue);
2004 	}
2005 #endif
2006 }
2007 
2008 static inline void sk_rx_queue_set(struct sock *sk, const struct sk_buff *skb)
2009 {
2010 	__sk_rx_queue_set(sk, skb, true);
2011 }
2012 
2013 static inline void sk_rx_queue_update(struct sock *sk, const struct sk_buff *skb)
2014 {
2015 	__sk_rx_queue_set(sk, skb, false);
2016 }
2017 
2018 static inline void sk_rx_queue_clear(struct sock *sk)
2019 {
2020 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
2021 	WRITE_ONCE(sk->sk_rx_queue_mapping, NO_QUEUE_MAPPING);
2022 #endif
2023 }
2024 
2025 static inline int sk_rx_queue_get(const struct sock *sk)
2026 {
2027 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
2028 	if (sk) {
2029 		int res = READ_ONCE(sk->sk_rx_queue_mapping);
2030 
2031 		if (res != NO_QUEUE_MAPPING)
2032 			return res;
2033 	}
2034 #endif
2035 
2036 	return -1;
2037 }
2038 
2039 static inline void sk_set_socket(struct sock *sk, struct socket *sock)
2040 {
2041 	sk->sk_socket = sock;
2042 }
2043 
2044 static inline wait_queue_head_t *sk_sleep(struct sock *sk)
2045 {
2046 	BUILD_BUG_ON(offsetof(struct socket_wq, wait) != 0);
2047 	return &rcu_dereference_raw(sk->sk_wq)->wait;
2048 }
2049 /* Detach socket from process context.
2050  * Announce socket dead, detach it from wait queue and inode.
2051  * Note that parent inode held reference count on this struct sock,
2052  * we do not release it in this function, because protocol
2053  * probably wants some additional cleanups or even continuing
2054  * to work with this socket (TCP).
2055  */
2056 static inline void sock_orphan(struct sock *sk)
2057 {
2058 	write_lock_bh(&sk->sk_callback_lock);
2059 	sock_set_flag(sk, SOCK_DEAD);
2060 	sk_set_socket(sk, NULL);
2061 	sk->sk_wq  = NULL;
2062 	write_unlock_bh(&sk->sk_callback_lock);
2063 }
2064 
2065 static inline void sock_graft(struct sock *sk, struct socket *parent)
2066 {
2067 	WARN_ON(parent->sk);
2068 	write_lock_bh(&sk->sk_callback_lock);
2069 	rcu_assign_pointer(sk->sk_wq, &parent->wq);
2070 	parent->sk = sk;
2071 	sk_set_socket(sk, parent);
2072 	sk->sk_uid = SOCK_INODE(parent)->i_uid;
2073 	security_sock_graft(sk, parent);
2074 	write_unlock_bh(&sk->sk_callback_lock);
2075 }
2076 
2077 kuid_t sock_i_uid(struct sock *sk);
2078 unsigned long __sock_i_ino(struct sock *sk);
2079 unsigned long sock_i_ino(struct sock *sk);
2080 
2081 static inline kuid_t sock_net_uid(const struct net *net, const struct sock *sk)
2082 {
2083 	return sk ? sk->sk_uid : make_kuid(net->user_ns, 0);
2084 }
2085 
2086 static inline u32 net_tx_rndhash(void)
2087 {
2088 	u32 v = get_random_u32();
2089 
2090 	return v ?: 1;
2091 }
2092 
2093 static inline void sk_set_txhash(struct sock *sk)
2094 {
2095 	/* This pairs with READ_ONCE() in skb_set_hash_from_sk() */
2096 	WRITE_ONCE(sk->sk_txhash, net_tx_rndhash());
2097 }
2098 
2099 static inline bool sk_rethink_txhash(struct sock *sk)
2100 {
2101 	if (sk->sk_txhash && sk->sk_txrehash == SOCK_TXREHASH_ENABLED) {
2102 		sk_set_txhash(sk);
2103 		return true;
2104 	}
2105 	return false;
2106 }
2107 
2108 static inline struct dst_entry *
2109 __sk_dst_get(const struct sock *sk)
2110 {
2111 	return rcu_dereference_check(sk->sk_dst_cache,
2112 				     lockdep_sock_is_held(sk));
2113 }
2114 
2115 static inline struct dst_entry *
2116 sk_dst_get(const struct sock *sk)
2117 {
2118 	struct dst_entry *dst;
2119 
2120 	rcu_read_lock();
2121 	dst = rcu_dereference(sk->sk_dst_cache);
2122 	if (dst && !rcuref_get(&dst->__rcuref))
2123 		dst = NULL;
2124 	rcu_read_unlock();
2125 	return dst;
2126 }
2127 
2128 static inline void __dst_negative_advice(struct sock *sk)
2129 {
2130 	struct dst_entry *dst = __sk_dst_get(sk);
2131 
2132 	if (dst && dst->ops->negative_advice)
2133 		dst->ops->negative_advice(sk, dst);
2134 }
2135 
2136 static inline void dst_negative_advice(struct sock *sk)
2137 {
2138 	sk_rethink_txhash(sk);
2139 	__dst_negative_advice(sk);
2140 }
2141 
2142 static inline void
2143 __sk_dst_set(struct sock *sk, struct dst_entry *dst)
2144 {
2145 	struct dst_entry *old_dst;
2146 
2147 	sk_tx_queue_clear(sk);
2148 	WRITE_ONCE(sk->sk_dst_pending_confirm, 0);
2149 	old_dst = rcu_dereference_protected(sk->sk_dst_cache,
2150 					    lockdep_sock_is_held(sk));
2151 	rcu_assign_pointer(sk->sk_dst_cache, dst);
2152 	dst_release(old_dst);
2153 }
2154 
2155 static inline void
2156 sk_dst_set(struct sock *sk, struct dst_entry *dst)
2157 {
2158 	struct dst_entry *old_dst;
2159 
2160 	sk_tx_queue_clear(sk);
2161 	WRITE_ONCE(sk->sk_dst_pending_confirm, 0);
2162 	old_dst = unrcu_pointer(xchg(&sk->sk_dst_cache, RCU_INITIALIZER(dst)));
2163 	dst_release(old_dst);
2164 }
2165 
2166 static inline void
2167 __sk_dst_reset(struct sock *sk)
2168 {
2169 	__sk_dst_set(sk, NULL);
2170 }
2171 
2172 static inline void
2173 sk_dst_reset(struct sock *sk)
2174 {
2175 	sk_dst_set(sk, NULL);
2176 }
2177 
2178 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie);
2179 
2180 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie);
2181 
2182 static inline void sk_dst_confirm(struct sock *sk)
2183 {
2184 	if (!READ_ONCE(sk->sk_dst_pending_confirm))
2185 		WRITE_ONCE(sk->sk_dst_pending_confirm, 1);
2186 }
2187 
2188 static inline void sock_confirm_neigh(struct sk_buff *skb, struct neighbour *n)
2189 {
2190 	if (skb_get_dst_pending_confirm(skb)) {
2191 		struct sock *sk = skb->sk;
2192 
2193 		if (sk && READ_ONCE(sk->sk_dst_pending_confirm))
2194 			WRITE_ONCE(sk->sk_dst_pending_confirm, 0);
2195 		neigh_confirm(n);
2196 	}
2197 }
2198 
2199 bool sk_mc_loop(const struct sock *sk);
2200 
2201 static inline bool sk_can_gso(const struct sock *sk)
2202 {
2203 	return net_gso_ok(sk->sk_route_caps, sk->sk_gso_type);
2204 }
2205 
2206 void sk_setup_caps(struct sock *sk, struct dst_entry *dst);
2207 
2208 static inline void sk_gso_disable(struct sock *sk)
2209 {
2210 	sk->sk_gso_disabled = 1;
2211 	sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
2212 }
2213 
2214 static inline int skb_do_copy_data_nocache(struct sock *sk, struct sk_buff *skb,
2215 					   struct iov_iter *from, char *to,
2216 					   int copy, int offset)
2217 {
2218 	if (skb->ip_summed == CHECKSUM_NONE) {
2219 		__wsum csum = 0;
2220 		if (!csum_and_copy_from_iter_full(to, copy, &csum, from))
2221 			return -EFAULT;
2222 		skb->csum = csum_block_add(skb->csum, csum, offset);
2223 	} else if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY) {
2224 		if (!copy_from_iter_full_nocache(to, copy, from))
2225 			return -EFAULT;
2226 	} else if (!copy_from_iter_full(to, copy, from))
2227 		return -EFAULT;
2228 
2229 	return 0;
2230 }
2231 
2232 static inline int skb_add_data_nocache(struct sock *sk, struct sk_buff *skb,
2233 				       struct iov_iter *from, int copy)
2234 {
2235 	int err, offset = skb->len;
2236 
2237 	err = skb_do_copy_data_nocache(sk, skb, from, skb_put(skb, copy),
2238 				       copy, offset);
2239 	if (err)
2240 		__skb_trim(skb, offset);
2241 
2242 	return err;
2243 }
2244 
2245 static inline int skb_copy_to_page_nocache(struct sock *sk, struct iov_iter *from,
2246 					   struct sk_buff *skb,
2247 					   struct page *page,
2248 					   int off, int copy)
2249 {
2250 	int err;
2251 
2252 	err = skb_do_copy_data_nocache(sk, skb, from, page_address(page) + off,
2253 				       copy, skb->len);
2254 	if (err)
2255 		return err;
2256 
2257 	skb_len_add(skb, copy);
2258 	sk_wmem_queued_add(sk, copy);
2259 	sk_mem_charge(sk, copy);
2260 	return 0;
2261 }
2262 
2263 /**
2264  * sk_wmem_alloc_get - returns write allocations
2265  * @sk: socket
2266  *
2267  * Return: sk_wmem_alloc minus initial offset of one
2268  */
2269 static inline int sk_wmem_alloc_get(const struct sock *sk)
2270 {
2271 	return refcount_read(&sk->sk_wmem_alloc) - 1;
2272 }
2273 
2274 /**
2275  * sk_rmem_alloc_get - returns read allocations
2276  * @sk: socket
2277  *
2278  * Return: sk_rmem_alloc
2279  */
2280 static inline int sk_rmem_alloc_get(const struct sock *sk)
2281 {
2282 	return atomic_read(&sk->sk_rmem_alloc);
2283 }
2284 
2285 /**
2286  * sk_has_allocations - check if allocations are outstanding
2287  * @sk: socket
2288  *
2289  * Return: true if socket has write or read allocations
2290  */
2291 static inline bool sk_has_allocations(const struct sock *sk)
2292 {
2293 	return sk_wmem_alloc_get(sk) || sk_rmem_alloc_get(sk);
2294 }
2295 
2296 /**
2297  * skwq_has_sleeper - check if there are any waiting processes
2298  * @wq: struct socket_wq
2299  *
2300  * Return: true if socket_wq has waiting processes
2301  *
2302  * The purpose of the skwq_has_sleeper and sock_poll_wait is to wrap the memory
2303  * barrier call. They were added due to the race found within the tcp code.
2304  *
2305  * Consider following tcp code paths::
2306  *
2307  *   CPU1                CPU2
2308  *   sys_select          receive packet
2309  *   ...                 ...
2310  *   __add_wait_queue    update tp->rcv_nxt
2311  *   ...                 ...
2312  *   tp->rcv_nxt check   sock_def_readable
2313  *   ...                 {
2314  *   schedule               rcu_read_lock();
2315  *                          wq = rcu_dereference(sk->sk_wq);
2316  *                          if (wq && waitqueue_active(&wq->wait))
2317  *                              wake_up_interruptible(&wq->wait)
2318  *                          ...
2319  *                       }
2320  *
2321  * The race for tcp fires when the __add_wait_queue changes done by CPU1 stay
2322  * in its cache, and so does the tp->rcv_nxt update on CPU2 side.  The CPU1
2323  * could then endup calling schedule and sleep forever if there are no more
2324  * data on the socket.
2325  *
2326  */
2327 static inline bool skwq_has_sleeper(struct socket_wq *wq)
2328 {
2329 	return wq && wq_has_sleeper(&wq->wait);
2330 }
2331 
2332 /**
2333  * sock_poll_wait - wrapper for the poll_wait call.
2334  * @filp:           file
2335  * @sock:           socket to wait on
2336  * @p:              poll_table
2337  *
2338  * See the comments in the wq_has_sleeper function.
2339  */
2340 static inline void sock_poll_wait(struct file *filp, struct socket *sock,
2341 				  poll_table *p)
2342 {
2343 	/* Provides a barrier we need to be sure we are in sync
2344 	 * with the socket flags modification.
2345 	 *
2346 	 * This memory barrier is paired in the wq_has_sleeper.
2347 	 */
2348 	poll_wait(filp, &sock->wq.wait, p);
2349 }
2350 
2351 static inline void skb_set_hash_from_sk(struct sk_buff *skb, struct sock *sk)
2352 {
2353 	/* This pairs with WRITE_ONCE() in sk_set_txhash() */
2354 	u32 txhash = READ_ONCE(sk->sk_txhash);
2355 
2356 	if (txhash) {
2357 		skb->l4_hash = 1;
2358 		skb->hash = txhash;
2359 	}
2360 }
2361 
2362 void skb_set_owner_w(struct sk_buff *skb, struct sock *sk);
2363 
2364 /*
2365  *	Queue a received datagram if it will fit. Stream and sequenced
2366  *	protocols can't normally use this as they need to fit buffers in
2367  *	and play with them.
2368  *
2369  *	Inlined as it's very short and called for pretty much every
2370  *	packet ever received.
2371  */
2372 static inline void skb_set_owner_r(struct sk_buff *skb, struct sock *sk)
2373 {
2374 	skb_orphan(skb);
2375 	skb->sk = sk;
2376 	skb->destructor = sock_rfree;
2377 	atomic_add(skb->truesize, &sk->sk_rmem_alloc);
2378 	sk_mem_charge(sk, skb->truesize);
2379 }
2380 
2381 static inline __must_check bool skb_set_owner_sk_safe(struct sk_buff *skb, struct sock *sk)
2382 {
2383 	if (sk && refcount_inc_not_zero(&sk->sk_refcnt)) {
2384 		skb_orphan(skb);
2385 		skb->destructor = sock_efree;
2386 		skb->sk = sk;
2387 		return true;
2388 	}
2389 	return false;
2390 }
2391 
2392 static inline struct sk_buff *skb_clone_and_charge_r(struct sk_buff *skb, struct sock *sk)
2393 {
2394 	skb = skb_clone(skb, sk_gfp_mask(sk, GFP_ATOMIC));
2395 	if (skb) {
2396 		if (sk_rmem_schedule(sk, skb, skb->truesize)) {
2397 			skb_set_owner_r(skb, sk);
2398 			return skb;
2399 		}
2400 		__kfree_skb(skb);
2401 	}
2402 	return NULL;
2403 }
2404 
2405 static inline void skb_prepare_for_gro(struct sk_buff *skb)
2406 {
2407 	if (skb->destructor != sock_wfree) {
2408 		skb_orphan(skb);
2409 		return;
2410 	}
2411 	skb->slow_gro = 1;
2412 }
2413 
2414 void sk_reset_timer(struct sock *sk, struct timer_list *timer,
2415 		    unsigned long expires);
2416 
2417 void sk_stop_timer(struct sock *sk, struct timer_list *timer);
2418 
2419 void sk_stop_timer_sync(struct sock *sk, struct timer_list *timer);
2420 
2421 int __sk_queue_drop_skb(struct sock *sk, struct sk_buff_head *sk_queue,
2422 			struct sk_buff *skb, unsigned int flags,
2423 			void (*destructor)(struct sock *sk,
2424 					   struct sk_buff *skb));
2425 int __sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
2426 
2427 int sock_queue_rcv_skb_reason(struct sock *sk, struct sk_buff *skb,
2428 			      enum skb_drop_reason *reason);
2429 
2430 static inline int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
2431 {
2432 	return sock_queue_rcv_skb_reason(sk, skb, NULL);
2433 }
2434 
2435 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb);
2436 struct sk_buff *sock_dequeue_err_skb(struct sock *sk);
2437 
2438 /*
2439  *	Recover an error report and clear atomically
2440  */
2441 
2442 static inline int sock_error(struct sock *sk)
2443 {
2444 	int err;
2445 
2446 	/* Avoid an atomic operation for the common case.
2447 	 * This is racy since another cpu/thread can change sk_err under us.
2448 	 */
2449 	if (likely(data_race(!sk->sk_err)))
2450 		return 0;
2451 
2452 	err = xchg(&sk->sk_err, 0);
2453 	return -err;
2454 }
2455 
2456 void sk_error_report(struct sock *sk);
2457 
2458 static inline unsigned long sock_wspace(struct sock *sk)
2459 {
2460 	int amt = 0;
2461 
2462 	if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
2463 		amt = sk->sk_sndbuf - refcount_read(&sk->sk_wmem_alloc);
2464 		if (amt < 0)
2465 			amt = 0;
2466 	}
2467 	return amt;
2468 }
2469 
2470 /* Note:
2471  *  We use sk->sk_wq_raw, from contexts knowing this
2472  *  pointer is not NULL and cannot disappear/change.
2473  */
2474 static inline void sk_set_bit(int nr, struct sock *sk)
2475 {
2476 	if ((nr == SOCKWQ_ASYNC_NOSPACE || nr == SOCKWQ_ASYNC_WAITDATA) &&
2477 	    !sock_flag(sk, SOCK_FASYNC))
2478 		return;
2479 
2480 	set_bit(nr, &sk->sk_wq_raw->flags);
2481 }
2482 
2483 static inline void sk_clear_bit(int nr, struct sock *sk)
2484 {
2485 	if ((nr == SOCKWQ_ASYNC_NOSPACE || nr == SOCKWQ_ASYNC_WAITDATA) &&
2486 	    !sock_flag(sk, SOCK_FASYNC))
2487 		return;
2488 
2489 	clear_bit(nr, &sk->sk_wq_raw->flags);
2490 }
2491 
2492 static inline void sk_wake_async(const struct sock *sk, int how, int band)
2493 {
2494 	if (sock_flag(sk, SOCK_FASYNC)) {
2495 		rcu_read_lock();
2496 		sock_wake_async(rcu_dereference(sk->sk_wq), how, band);
2497 		rcu_read_unlock();
2498 	}
2499 }
2500 
2501 static inline void sk_wake_async_rcu(const struct sock *sk, int how, int band)
2502 {
2503 	if (unlikely(sock_flag(sk, SOCK_FASYNC)))
2504 		sock_wake_async(rcu_dereference(sk->sk_wq), how, band);
2505 }
2506 
2507 /* Since sk_{r,w}mem_alloc sums skb->truesize, even a small frame might
2508  * need sizeof(sk_buff) + MTU + padding, unless net driver perform copybreak.
2509  * Note: for send buffers, TCP works better if we can build two skbs at
2510  * minimum.
2511  */
2512 #define TCP_SKB_MIN_TRUESIZE	(2048 + SKB_DATA_ALIGN(sizeof(struct sk_buff)))
2513 
2514 #define SOCK_MIN_SNDBUF		(TCP_SKB_MIN_TRUESIZE * 2)
2515 #define SOCK_MIN_RCVBUF		 TCP_SKB_MIN_TRUESIZE
2516 
2517 static inline void sk_stream_moderate_sndbuf(struct sock *sk)
2518 {
2519 	u32 val;
2520 
2521 	if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
2522 		return;
2523 
2524 	val = min(sk->sk_sndbuf, sk->sk_wmem_queued >> 1);
2525 	val = max_t(u32, val, sk_unused_reserved_mem(sk));
2526 
2527 	WRITE_ONCE(sk->sk_sndbuf, max_t(u32, val, SOCK_MIN_SNDBUF));
2528 }
2529 
2530 /**
2531  * sk_page_frag - return an appropriate page_frag
2532  * @sk: socket
2533  *
2534  * Use the per task page_frag instead of the per socket one for
2535  * optimization when we know that we're in process context and own
2536  * everything that's associated with %current.
2537  *
2538  * Both direct reclaim and page faults can nest inside other
2539  * socket operations and end up recursing into sk_page_frag()
2540  * while it's already in use: explicitly avoid task page_frag
2541  * when users disable sk_use_task_frag.
2542  *
2543  * Return: a per task page_frag if context allows that,
2544  * otherwise a per socket one.
2545  */
2546 static inline struct page_frag *sk_page_frag(struct sock *sk)
2547 {
2548 	if (sk->sk_use_task_frag)
2549 		return &current->task_frag;
2550 
2551 	return &sk->sk_frag;
2552 }
2553 
2554 bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag);
2555 
2556 /*
2557  *	Default write policy as shown to user space via poll/select/SIGIO
2558  */
2559 static inline bool sock_writeable(const struct sock *sk)
2560 {
2561 	return refcount_read(&sk->sk_wmem_alloc) < (READ_ONCE(sk->sk_sndbuf) >> 1);
2562 }
2563 
2564 static inline gfp_t gfp_any(void)
2565 {
2566 	return in_softirq() ? GFP_ATOMIC : GFP_KERNEL;
2567 }
2568 
2569 static inline gfp_t gfp_memcg_charge(void)
2570 {
2571 	return in_softirq() ? GFP_ATOMIC : GFP_KERNEL;
2572 }
2573 
2574 static inline long sock_rcvtimeo(const struct sock *sk, bool noblock)
2575 {
2576 	return noblock ? 0 : sk->sk_rcvtimeo;
2577 }
2578 
2579 static inline long sock_sndtimeo(const struct sock *sk, bool noblock)
2580 {
2581 	return noblock ? 0 : sk->sk_sndtimeo;
2582 }
2583 
2584 static inline int sock_rcvlowat(const struct sock *sk, int waitall, int len)
2585 {
2586 	int v = waitall ? len : min_t(int, READ_ONCE(sk->sk_rcvlowat), len);
2587 
2588 	return v ?: 1;
2589 }
2590 
2591 /* Alas, with timeout socket operations are not restartable.
2592  * Compare this to poll().
2593  */
2594 static inline int sock_intr_errno(long timeo)
2595 {
2596 	return timeo == MAX_SCHEDULE_TIMEOUT ? -ERESTARTSYS : -EINTR;
2597 }
2598 
2599 struct sock_skb_cb {
2600 	u32 dropcount;
2601 };
2602 
2603 /* Store sock_skb_cb at the end of skb->cb[] so protocol families
2604  * using skb->cb[] would keep using it directly and utilize its
2605  * alignment guarantee.
2606  */
2607 #define SOCK_SKB_CB_OFFSET ((sizeof_field(struct sk_buff, cb) - \
2608 			    sizeof(struct sock_skb_cb)))
2609 
2610 #define SOCK_SKB_CB(__skb) ((struct sock_skb_cb *)((__skb)->cb + \
2611 			    SOCK_SKB_CB_OFFSET))
2612 
2613 #define sock_skb_cb_check_size(size) \
2614 	BUILD_BUG_ON((size) > SOCK_SKB_CB_OFFSET)
2615 
2616 static inline void
2617 sock_skb_set_dropcount(const struct sock *sk, struct sk_buff *skb)
2618 {
2619 	SOCK_SKB_CB(skb)->dropcount = sock_flag(sk, SOCK_RXQ_OVFL) ?
2620 						atomic_read(&sk->sk_drops) : 0;
2621 }
2622 
2623 static inline void sk_drops_add(struct sock *sk, const struct sk_buff *skb)
2624 {
2625 	int segs = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
2626 
2627 	atomic_add(segs, &sk->sk_drops);
2628 }
2629 
2630 static inline ktime_t sock_read_timestamp(struct sock *sk)
2631 {
2632 #if BITS_PER_LONG==32
2633 	unsigned int seq;
2634 	ktime_t kt;
2635 
2636 	do {
2637 		seq = read_seqbegin(&sk->sk_stamp_seq);
2638 		kt = sk->sk_stamp;
2639 	} while (read_seqretry(&sk->sk_stamp_seq, seq));
2640 
2641 	return kt;
2642 #else
2643 	return READ_ONCE(sk->sk_stamp);
2644 #endif
2645 }
2646 
2647 static inline void sock_write_timestamp(struct sock *sk, ktime_t kt)
2648 {
2649 #if BITS_PER_LONG==32
2650 	write_seqlock(&sk->sk_stamp_seq);
2651 	sk->sk_stamp = kt;
2652 	write_sequnlock(&sk->sk_stamp_seq);
2653 #else
2654 	WRITE_ONCE(sk->sk_stamp, kt);
2655 #endif
2656 }
2657 
2658 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
2659 			   struct sk_buff *skb);
2660 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
2661 			     struct sk_buff *skb);
2662 
2663 static inline void
2664 sock_recv_timestamp(struct msghdr *msg, struct sock *sk, struct sk_buff *skb)
2665 {
2666 	struct skb_shared_hwtstamps *hwtstamps = skb_hwtstamps(skb);
2667 	u32 tsflags = READ_ONCE(sk->sk_tsflags);
2668 	ktime_t kt = skb->tstamp;
2669 	/*
2670 	 * generate control messages if
2671 	 * - receive time stamping in software requested
2672 	 * - software time stamp available and wanted
2673 	 * - hardware time stamps available and wanted
2674 	 */
2675 	if (sock_flag(sk, SOCK_RCVTSTAMP) ||
2676 	    (tsflags & SOF_TIMESTAMPING_RX_SOFTWARE) ||
2677 	    (kt && tsflags & SOF_TIMESTAMPING_SOFTWARE) ||
2678 	    (hwtstamps->hwtstamp &&
2679 	     (tsflags & SOF_TIMESTAMPING_RAW_HARDWARE)))
2680 		__sock_recv_timestamp(msg, sk, skb);
2681 	else
2682 		sock_write_timestamp(sk, kt);
2683 
2684 	if (sock_flag(sk, SOCK_WIFI_STATUS) && skb_wifi_acked_valid(skb))
2685 		__sock_recv_wifi_status(msg, sk, skb);
2686 }
2687 
2688 void __sock_recv_cmsgs(struct msghdr *msg, struct sock *sk,
2689 		       struct sk_buff *skb);
2690 
2691 #define SK_DEFAULT_STAMP (-1L * NSEC_PER_SEC)
2692 static inline void sock_recv_cmsgs(struct msghdr *msg, struct sock *sk,
2693 				   struct sk_buff *skb)
2694 {
2695 #define FLAGS_RECV_CMSGS ((1UL << SOCK_RXQ_OVFL)			| \
2696 			   (1UL << SOCK_RCVTSTAMP)			| \
2697 			   (1UL << SOCK_RCVMARK)			| \
2698 			   (1UL << SOCK_RCVPRIORITY)			| \
2699 			   (1UL << SOCK_TIMESTAMPING_ANY))
2700 #define TSFLAGS_ANY	  (SOF_TIMESTAMPING_SOFTWARE			| \
2701 			   SOF_TIMESTAMPING_RAW_HARDWARE)
2702 
2703 	if (READ_ONCE(sk->sk_flags) & FLAGS_RECV_CMSGS)
2704 		__sock_recv_cmsgs(msg, sk, skb);
2705 	else if (unlikely(sock_flag(sk, SOCK_TIMESTAMP)))
2706 		sock_write_timestamp(sk, skb->tstamp);
2707 	else if (unlikely(sock_read_timestamp(sk) == SK_DEFAULT_STAMP))
2708 		sock_write_timestamp(sk, 0);
2709 }
2710 
2711 void __sock_tx_timestamp(__u32 tsflags, __u8 *tx_flags);
2712 
2713 /**
2714  * _sock_tx_timestamp - checks whether the outgoing packet is to be time stamped
2715  * @sk:		socket sending this packet
2716  * @sockc:	pointer to socket cmsg cookie to get timestamping info
2717  * @tx_flags:	completed with instructions for time stamping
2718  * @tskey:      filled in with next sk_tskey (not for TCP, which uses seqno)
2719  *
2720  * Note: callers should take care of initial ``*tx_flags`` value (usually 0)
2721  */
2722 static inline void _sock_tx_timestamp(struct sock *sk,
2723 				      const struct sockcm_cookie *sockc,
2724 				      __u8 *tx_flags, __u32 *tskey)
2725 {
2726 	__u32 tsflags = sockc->tsflags;
2727 
2728 	if (unlikely(tsflags)) {
2729 		__sock_tx_timestamp(tsflags, tx_flags);
2730 		if (tsflags & SOF_TIMESTAMPING_OPT_ID && tskey &&
2731 		    tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK) {
2732 			if (tsflags & SOCKCM_FLAG_TS_OPT_ID)
2733 				*tskey = sockc->ts_opt_id;
2734 			else
2735 				*tskey = atomic_inc_return(&sk->sk_tskey) - 1;
2736 		}
2737 	}
2738 	if (unlikely(sock_flag(sk, SOCK_WIFI_STATUS)))
2739 		*tx_flags |= SKBTX_WIFI_STATUS;
2740 }
2741 
2742 static inline void sock_tx_timestamp(struct sock *sk,
2743 				     const struct sockcm_cookie *sockc,
2744 				     __u8 *tx_flags)
2745 {
2746 	_sock_tx_timestamp(sk, sockc, tx_flags, NULL);
2747 }
2748 
2749 static inline void skb_setup_tx_timestamp(struct sk_buff *skb,
2750 					  const struct sockcm_cookie *sockc)
2751 {
2752 	_sock_tx_timestamp(skb->sk, sockc, &skb_shinfo(skb)->tx_flags,
2753 			   &skb_shinfo(skb)->tskey);
2754 }
2755 
2756 static inline bool sk_is_inet(const struct sock *sk)
2757 {
2758 	int family = READ_ONCE(sk->sk_family);
2759 
2760 	return family == AF_INET || family == AF_INET6;
2761 }
2762 
2763 static inline bool sk_is_tcp(const struct sock *sk)
2764 {
2765 	return sk_is_inet(sk) &&
2766 	       sk->sk_type == SOCK_STREAM &&
2767 	       sk->sk_protocol == IPPROTO_TCP;
2768 }
2769 
2770 static inline bool sk_is_udp(const struct sock *sk)
2771 {
2772 	return sk_is_inet(sk) &&
2773 	       sk->sk_type == SOCK_DGRAM &&
2774 	       sk->sk_protocol == IPPROTO_UDP;
2775 }
2776 
2777 static inline bool sk_is_stream_unix(const struct sock *sk)
2778 {
2779 	return sk->sk_family == AF_UNIX && sk->sk_type == SOCK_STREAM;
2780 }
2781 
2782 static inline bool sk_is_vsock(const struct sock *sk)
2783 {
2784 	return sk->sk_family == AF_VSOCK;
2785 }
2786 
2787 /**
2788  * sk_eat_skb - Release a skb if it is no longer needed
2789  * @sk: socket to eat this skb from
2790  * @skb: socket buffer to eat
2791  *
2792  * This routine must be called with interrupts disabled or with the socket
2793  * locked so that the sk_buff queue operation is ok.
2794 */
2795 static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb)
2796 {
2797 	__skb_unlink(skb, &sk->sk_receive_queue);
2798 	__kfree_skb(skb);
2799 }
2800 
2801 static inline bool
2802 skb_sk_is_prefetched(struct sk_buff *skb)
2803 {
2804 #ifdef CONFIG_INET
2805 	return skb->destructor == sock_pfree;
2806 #else
2807 	return false;
2808 #endif /* CONFIG_INET */
2809 }
2810 
2811 /* This helper checks if a socket is a full socket,
2812  * ie _not_ a timewait or request socket.
2813  */
2814 static inline bool sk_fullsock(const struct sock *sk)
2815 {
2816 	return (1 << sk->sk_state) & ~(TCPF_TIME_WAIT | TCPF_NEW_SYN_RECV);
2817 }
2818 
2819 static inline bool
2820 sk_is_refcounted(struct sock *sk)
2821 {
2822 	/* Only full sockets have sk->sk_flags. */
2823 	return !sk_fullsock(sk) || !sock_flag(sk, SOCK_RCU_FREE);
2824 }
2825 
2826 /* Checks if this SKB belongs to an HW offloaded socket
2827  * and whether any SW fallbacks are required based on dev.
2828  * Check decrypted mark in case skb_orphan() cleared socket.
2829  */
2830 static inline struct sk_buff *sk_validate_xmit_skb(struct sk_buff *skb,
2831 						   struct net_device *dev)
2832 {
2833 #ifdef CONFIG_SOCK_VALIDATE_XMIT
2834 	struct sock *sk = skb->sk;
2835 
2836 	if (sk && sk_fullsock(sk) && sk->sk_validate_xmit_skb) {
2837 		skb = sk->sk_validate_xmit_skb(sk, dev, skb);
2838 	} else if (unlikely(skb_is_decrypted(skb))) {
2839 		pr_warn_ratelimited("unencrypted skb with no associated socket - dropping\n");
2840 		kfree_skb(skb);
2841 		skb = NULL;
2842 	}
2843 #endif
2844 
2845 	return skb;
2846 }
2847 
2848 /* This helper checks if a socket is a LISTEN or NEW_SYN_RECV
2849  * SYNACK messages can be attached to either ones (depending on SYNCOOKIE)
2850  */
2851 static inline bool sk_listener(const struct sock *sk)
2852 {
2853 	return (1 << sk->sk_state) & (TCPF_LISTEN | TCPF_NEW_SYN_RECV);
2854 }
2855 
2856 /* This helper checks if a socket is a LISTEN or NEW_SYN_RECV or TIME_WAIT
2857  * TCP SYNACK messages can be attached to LISTEN or NEW_SYN_RECV (depending on SYNCOOKIE)
2858  * TCP RST and ACK can be attached to TIME_WAIT.
2859  */
2860 static inline bool sk_listener_or_tw(const struct sock *sk)
2861 {
2862 	return (1 << READ_ONCE(sk->sk_state)) &
2863 	       (TCPF_LISTEN | TCPF_NEW_SYN_RECV | TCPF_TIME_WAIT);
2864 }
2865 
2866 void sock_enable_timestamp(struct sock *sk, enum sock_flags flag);
2867 int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len, int level,
2868 		       int type);
2869 
2870 bool sk_ns_capable(const struct sock *sk,
2871 		   struct user_namespace *user_ns, int cap);
2872 bool sk_capable(const struct sock *sk, int cap);
2873 bool sk_net_capable(const struct sock *sk, int cap);
2874 
2875 void sk_get_meminfo(const struct sock *sk, u32 *meminfo);
2876 
2877 /* Take into consideration the size of the struct sk_buff overhead in the
2878  * determination of these values, since that is non-constant across
2879  * platforms.  This makes socket queueing behavior and performance
2880  * not depend upon such differences.
2881  */
2882 #define _SK_MEM_PACKETS		256
2883 #define _SK_MEM_OVERHEAD	SKB_TRUESIZE(256)
2884 #define SK_WMEM_MAX		(_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
2885 #define SK_RMEM_MAX		(_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
2886 
2887 extern __u32 sysctl_wmem_max;
2888 extern __u32 sysctl_rmem_max;
2889 
2890 extern __u32 sysctl_wmem_default;
2891 extern __u32 sysctl_rmem_default;
2892 
2893 #define SKB_FRAG_PAGE_ORDER	get_order(32768)
2894 DECLARE_STATIC_KEY_FALSE(net_high_order_alloc_disable_key);
2895 
2896 static inline int sk_get_wmem0(const struct sock *sk, const struct proto *proto)
2897 {
2898 	/* Does this proto have per netns sysctl_wmem ? */
2899 	if (proto->sysctl_wmem_offset)
2900 		return READ_ONCE(*(int *)((void *)sock_net(sk) + proto->sysctl_wmem_offset));
2901 
2902 	return READ_ONCE(*proto->sysctl_wmem);
2903 }
2904 
2905 static inline int sk_get_rmem0(const struct sock *sk, const struct proto *proto)
2906 {
2907 	/* Does this proto have per netns sysctl_rmem ? */
2908 	if (proto->sysctl_rmem_offset)
2909 		return READ_ONCE(*(int *)((void *)sock_net(sk) + proto->sysctl_rmem_offset));
2910 
2911 	return READ_ONCE(*proto->sysctl_rmem);
2912 }
2913 
2914 /* Default TCP Small queue budget is ~1 ms of data (1sec >> 10)
2915  * Some wifi drivers need to tweak it to get more chunks.
2916  * They can use this helper from their ndo_start_xmit()
2917  */
2918 static inline void sk_pacing_shift_update(struct sock *sk, int val)
2919 {
2920 	if (!sk || !sk_fullsock(sk) || READ_ONCE(sk->sk_pacing_shift) == val)
2921 		return;
2922 	WRITE_ONCE(sk->sk_pacing_shift, val);
2923 }
2924 
2925 /* if a socket is bound to a device, check that the given device
2926  * index is either the same or that the socket is bound to an L3
2927  * master device and the given device index is also enslaved to
2928  * that L3 master
2929  */
2930 static inline bool sk_dev_equal_l3scope(struct sock *sk, int dif)
2931 {
2932 	int bound_dev_if = READ_ONCE(sk->sk_bound_dev_if);
2933 	int mdif;
2934 
2935 	if (!bound_dev_if || bound_dev_if == dif)
2936 		return true;
2937 
2938 	mdif = l3mdev_master_ifindex_by_index(sock_net(sk), dif);
2939 	if (mdif && mdif == bound_dev_if)
2940 		return true;
2941 
2942 	return false;
2943 }
2944 
2945 void sock_def_readable(struct sock *sk);
2946 
2947 int sock_bindtoindex(struct sock *sk, int ifindex, bool lock_sk);
2948 void sock_set_timestamp(struct sock *sk, int optname, bool valbool);
2949 int sock_set_timestamping(struct sock *sk, int optname,
2950 			  struct so_timestamping timestamping);
2951 
2952 void sock_enable_timestamps(struct sock *sk);
2953 #if defined(CONFIG_CGROUP_BPF)
2954 void bpf_skops_tx_timestamping(struct sock *sk, struct sk_buff *skb, int op);
2955 #else
2956 static inline void bpf_skops_tx_timestamping(struct sock *sk, struct sk_buff *skb, int op)
2957 {
2958 }
2959 #endif
2960 void sock_no_linger(struct sock *sk);
2961 void sock_set_keepalive(struct sock *sk);
2962 void sock_set_priority(struct sock *sk, u32 priority);
2963 void sock_set_rcvbuf(struct sock *sk, int val);
2964 void sock_set_mark(struct sock *sk, u32 val);
2965 void sock_set_reuseaddr(struct sock *sk);
2966 void sock_set_reuseport(struct sock *sk);
2967 void sock_set_sndtimeo(struct sock *sk, s64 secs);
2968 
2969 int sock_bind_add(struct sock *sk, struct sockaddr *addr, int addr_len);
2970 
2971 int sock_get_timeout(long timeo, void *optval, bool old_timeval);
2972 int sock_copy_user_timeval(struct __kernel_sock_timeval *tv,
2973 			   sockptr_t optval, int optlen, bool old_timeval);
2974 
2975 int sock_ioctl_inout(struct sock *sk, unsigned int cmd,
2976 		     void __user *arg, void *karg, size_t size);
2977 int sk_ioctl(struct sock *sk, unsigned int cmd, void __user *arg);
2978 static inline bool sk_is_readable(struct sock *sk)
2979 {
2980 	if (sk->sk_prot->sock_is_readable)
2981 		return sk->sk_prot->sock_is_readable(sk);
2982 	return false;
2983 }
2984 #endif	/* _SOCK_H */
2985