1 /* SPDX-License-Identifier: GPL-2.0-or-later */ 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * Definitions for the AF_INET socket handler. 8 * 9 * Version: @(#)sock.h 1.0.4 05/13/93 10 * 11 * Authors: Ross Biro 12 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 13 * Corey Minyard <wf-rch!minyard@relay.EU.net> 14 * Florian La Roche <flla@stud.uni-sb.de> 15 * 16 * Fixes: 17 * Alan Cox : Volatiles in skbuff pointers. See 18 * skbuff comments. May be overdone, 19 * better to prove they can be removed 20 * than the reverse. 21 * Alan Cox : Added a zapped field for tcp to note 22 * a socket is reset and must stay shut up 23 * Alan Cox : New fields for options 24 * Pauline Middelink : identd support 25 * Alan Cox : Eliminate low level recv/recvfrom 26 * David S. Miller : New socket lookup architecture. 27 * Steve Whitehouse: Default routines for sock_ops 28 * Arnaldo C. Melo : removed net_pinfo, tp_pinfo and made 29 * protinfo be just a void pointer, as the 30 * protocol specific parts were moved to 31 * respective headers and ipv4/v6, etc now 32 * use private slabcaches for its socks 33 * Pedro Hortas : New flags field for socket options 34 */ 35 #ifndef _SOCK_H 36 #define _SOCK_H 37 38 #include <linux/hardirq.h> 39 #include <linux/kernel.h> 40 #include <linux/list.h> 41 #include <linux/list_nulls.h> 42 #include <linux/timer.h> 43 #include <linux/cache.h> 44 #include <linux/bitops.h> 45 #include <linux/lockdep.h> 46 #include <linux/netdevice.h> 47 #include <linux/skbuff.h> /* struct sk_buff */ 48 #include <linux/mm.h> 49 #include <linux/security.h> 50 #include <linux/slab.h> 51 #include <linux/uaccess.h> 52 #include <linux/page_counter.h> 53 #include <linux/memcontrol.h> 54 #include <linux/static_key.h> 55 #include <linux/sched.h> 56 #include <linux/wait.h> 57 #include <linux/cgroup-defs.h> 58 #include <linux/rbtree.h> 59 #include <linux/filter.h> 60 #include <linux/rculist_nulls.h> 61 #include <linux/poll.h> 62 63 #include <linux/atomic.h> 64 #include <linux/refcount.h> 65 #include <net/dst.h> 66 #include <net/checksum.h> 67 #include <net/tcp_states.h> 68 #include <linux/net_tstamp.h> 69 #include <net/l3mdev.h> 70 71 /* 72 * This structure really needs to be cleaned up. 73 * Most of it is for TCP, and not used by any of 74 * the other protocols. 75 */ 76 77 /* Define this to get the SOCK_DBG debugging facility. */ 78 #define SOCK_DEBUGGING 79 #ifdef SOCK_DEBUGGING 80 #define SOCK_DEBUG(sk, msg...) do { if ((sk) && sock_flag((sk), SOCK_DBG)) \ 81 printk(KERN_DEBUG msg); } while (0) 82 #else 83 /* Validate arguments and do nothing */ 84 static inline __printf(2, 3) 85 void SOCK_DEBUG(const struct sock *sk, const char *msg, ...) 86 { 87 } 88 #endif 89 90 /* This is the per-socket lock. The spinlock provides a synchronization 91 * between user contexts and software interrupt processing, whereas the 92 * mini-semaphore synchronizes multiple users amongst themselves. 93 */ 94 typedef struct { 95 spinlock_t slock; 96 int owned; 97 wait_queue_head_t wq; 98 /* 99 * We express the mutex-alike socket_lock semantics 100 * to the lock validator by explicitly managing 101 * the slock as a lock variant (in addition to 102 * the slock itself): 103 */ 104 #ifdef CONFIG_DEBUG_LOCK_ALLOC 105 struct lockdep_map dep_map; 106 #endif 107 } socket_lock_t; 108 109 struct sock; 110 struct proto; 111 struct net; 112 113 typedef __u32 __bitwise __portpair; 114 typedef __u64 __bitwise __addrpair; 115 116 /** 117 * struct sock_common - minimal network layer representation of sockets 118 * @skc_daddr: Foreign IPv4 addr 119 * @skc_rcv_saddr: Bound local IPv4 addr 120 * @skc_addrpair: 8-byte-aligned __u64 union of @skc_daddr & @skc_rcv_saddr 121 * @skc_hash: hash value used with various protocol lookup tables 122 * @skc_u16hashes: two u16 hash values used by UDP lookup tables 123 * @skc_dport: placeholder for inet_dport/tw_dport 124 * @skc_num: placeholder for inet_num/tw_num 125 * @skc_portpair: __u32 union of @skc_dport & @skc_num 126 * @skc_family: network address family 127 * @skc_state: Connection state 128 * @skc_reuse: %SO_REUSEADDR setting 129 * @skc_reuseport: %SO_REUSEPORT setting 130 * @skc_ipv6only: socket is IPV6 only 131 * @skc_net_refcnt: socket is using net ref counting 132 * @skc_bound_dev_if: bound device index if != 0 133 * @skc_bind_node: bind hash linkage for various protocol lookup tables 134 * @skc_portaddr_node: second hash linkage for UDP/UDP-Lite protocol 135 * @skc_prot: protocol handlers inside a network family 136 * @skc_net: reference to the network namespace of this socket 137 * @skc_v6_daddr: IPV6 destination address 138 * @skc_v6_rcv_saddr: IPV6 source address 139 * @skc_cookie: socket's cookie value 140 * @skc_node: main hash linkage for various protocol lookup tables 141 * @skc_nulls_node: main hash linkage for TCP/UDP/UDP-Lite protocol 142 * @skc_tx_queue_mapping: tx queue number for this connection 143 * @skc_rx_queue_mapping: rx queue number for this connection 144 * @skc_flags: place holder for sk_flags 145 * %SO_LINGER (l_onoff), %SO_BROADCAST, %SO_KEEPALIVE, 146 * %SO_OOBINLINE settings, %SO_TIMESTAMPING settings 147 * @skc_listener: connection request listener socket (aka rsk_listener) 148 * [union with @skc_flags] 149 * @skc_tw_dr: (aka tw_dr) ptr to &struct inet_timewait_death_row 150 * [union with @skc_flags] 151 * @skc_incoming_cpu: record/match cpu processing incoming packets 152 * @skc_rcv_wnd: (aka rsk_rcv_wnd) TCP receive window size (possibly scaled) 153 * [union with @skc_incoming_cpu] 154 * @skc_tw_rcv_nxt: (aka tw_rcv_nxt) TCP window next expected seq number 155 * [union with @skc_incoming_cpu] 156 * @skc_refcnt: reference count 157 * 158 * This is the minimal network layer representation of sockets, the header 159 * for struct sock and struct inet_timewait_sock. 160 */ 161 struct sock_common { 162 /* skc_daddr and skc_rcv_saddr must be grouped on a 8 bytes aligned 163 * address on 64bit arches : cf INET_MATCH() 164 */ 165 union { 166 __addrpair skc_addrpair; 167 struct { 168 __be32 skc_daddr; 169 __be32 skc_rcv_saddr; 170 }; 171 }; 172 union { 173 unsigned int skc_hash; 174 __u16 skc_u16hashes[2]; 175 }; 176 /* skc_dport && skc_num must be grouped as well */ 177 union { 178 __portpair skc_portpair; 179 struct { 180 __be16 skc_dport; 181 __u16 skc_num; 182 }; 183 }; 184 185 unsigned short skc_family; 186 volatile unsigned char skc_state; 187 unsigned char skc_reuse:4; 188 unsigned char skc_reuseport:1; 189 unsigned char skc_ipv6only:1; 190 unsigned char skc_net_refcnt:1; 191 int skc_bound_dev_if; 192 union { 193 struct hlist_node skc_bind_node; 194 struct hlist_node skc_portaddr_node; 195 }; 196 struct proto *skc_prot; 197 possible_net_t skc_net; 198 199 #if IS_ENABLED(CONFIG_IPV6) 200 struct in6_addr skc_v6_daddr; 201 struct in6_addr skc_v6_rcv_saddr; 202 #endif 203 204 atomic64_t skc_cookie; 205 206 /* following fields are padding to force 207 * offset(struct sock, sk_refcnt) == 128 on 64bit arches 208 * assuming IPV6 is enabled. We use this padding differently 209 * for different kind of 'sockets' 210 */ 211 union { 212 unsigned long skc_flags; 213 struct sock *skc_listener; /* request_sock */ 214 struct inet_timewait_death_row *skc_tw_dr; /* inet_timewait_sock */ 215 }; 216 /* 217 * fields between dontcopy_begin/dontcopy_end 218 * are not copied in sock_copy() 219 */ 220 /* private: */ 221 int skc_dontcopy_begin[0]; 222 /* public: */ 223 union { 224 struct hlist_node skc_node; 225 struct hlist_nulls_node skc_nulls_node; 226 }; 227 unsigned short skc_tx_queue_mapping; 228 #ifdef CONFIG_XPS 229 unsigned short skc_rx_queue_mapping; 230 #endif 231 union { 232 int skc_incoming_cpu; 233 u32 skc_rcv_wnd; 234 u32 skc_tw_rcv_nxt; /* struct tcp_timewait_sock */ 235 }; 236 237 refcount_t skc_refcnt; 238 /* private: */ 239 int skc_dontcopy_end[0]; 240 union { 241 u32 skc_rxhash; 242 u32 skc_window_clamp; 243 u32 skc_tw_snd_nxt; /* struct tcp_timewait_sock */ 244 }; 245 /* public: */ 246 }; 247 248 struct bpf_sk_storage; 249 250 /** 251 * struct sock - network layer representation of sockets 252 * @__sk_common: shared layout with inet_timewait_sock 253 * @sk_shutdown: mask of %SEND_SHUTDOWN and/or %RCV_SHUTDOWN 254 * @sk_userlocks: %SO_SNDBUF and %SO_RCVBUF settings 255 * @sk_lock: synchronizer 256 * @sk_kern_sock: True if sock is using kernel lock classes 257 * @sk_rcvbuf: size of receive buffer in bytes 258 * @sk_wq: sock wait queue and async head 259 * @sk_rx_dst: receive input route used by early demux 260 * @sk_dst_cache: destination cache 261 * @sk_dst_pending_confirm: need to confirm neighbour 262 * @sk_policy: flow policy 263 * @sk_rx_skb_cache: cache copy of recently accessed RX skb 264 * @sk_receive_queue: incoming packets 265 * @sk_wmem_alloc: transmit queue bytes committed 266 * @sk_tsq_flags: TCP Small Queues flags 267 * @sk_write_queue: Packet sending queue 268 * @sk_omem_alloc: "o" is "option" or "other" 269 * @sk_wmem_queued: persistent queue size 270 * @sk_forward_alloc: space allocated forward 271 * @sk_napi_id: id of the last napi context to receive data for sk 272 * @sk_ll_usec: usecs to busypoll when there is no data 273 * @sk_allocation: allocation mode 274 * @sk_pacing_rate: Pacing rate (if supported by transport/packet scheduler) 275 * @sk_pacing_status: Pacing status (requested, handled by sch_fq) 276 * @sk_max_pacing_rate: Maximum pacing rate (%SO_MAX_PACING_RATE) 277 * @sk_sndbuf: size of send buffer in bytes 278 * @__sk_flags_offset: empty field used to determine location of bitfield 279 * @sk_padding: unused element for alignment 280 * @sk_no_check_tx: %SO_NO_CHECK setting, set checksum in TX packets 281 * @sk_no_check_rx: allow zero checksum in RX packets 282 * @sk_route_caps: route capabilities (e.g. %NETIF_F_TSO) 283 * @sk_route_nocaps: forbidden route capabilities (e.g NETIF_F_GSO_MASK) 284 * @sk_route_forced_caps: static, forced route capabilities 285 * (set in tcp_init_sock()) 286 * @sk_gso_type: GSO type (e.g. %SKB_GSO_TCPV4) 287 * @sk_gso_max_size: Maximum GSO segment size to build 288 * @sk_gso_max_segs: Maximum number of GSO segments 289 * @sk_pacing_shift: scaling factor for TCP Small Queues 290 * @sk_lingertime: %SO_LINGER l_linger setting 291 * @sk_backlog: always used with the per-socket spinlock held 292 * @sk_callback_lock: used with the callbacks in the end of this struct 293 * @sk_error_queue: rarely used 294 * @sk_prot_creator: sk_prot of original sock creator (see ipv6_setsockopt, 295 * IPV6_ADDRFORM for instance) 296 * @sk_err: last error 297 * @sk_err_soft: errors that don't cause failure but are the cause of a 298 * persistent failure not just 'timed out' 299 * @sk_drops: raw/udp drops counter 300 * @sk_ack_backlog: current listen backlog 301 * @sk_max_ack_backlog: listen backlog set in listen() 302 * @sk_uid: user id of owner 303 * @sk_priority: %SO_PRIORITY setting 304 * @sk_type: socket type (%SOCK_STREAM, etc) 305 * @sk_protocol: which protocol this socket belongs in this network family 306 * @sk_peer_pid: &struct pid for this socket's peer 307 * @sk_peer_cred: %SO_PEERCRED setting 308 * @sk_rcvlowat: %SO_RCVLOWAT setting 309 * @sk_rcvtimeo: %SO_RCVTIMEO setting 310 * @sk_sndtimeo: %SO_SNDTIMEO setting 311 * @sk_txhash: computed flow hash for use on transmit 312 * @sk_filter: socket filtering instructions 313 * @sk_timer: sock cleanup timer 314 * @sk_stamp: time stamp of last packet received 315 * @sk_stamp_seq: lock for accessing sk_stamp on 32 bit architectures only 316 * @sk_tsflags: SO_TIMESTAMPING socket options 317 * @sk_tskey: counter to disambiguate concurrent tstamp requests 318 * @sk_zckey: counter to order MSG_ZEROCOPY notifications 319 * @sk_socket: Identd and reporting IO signals 320 * @sk_user_data: RPC layer private data 321 * @sk_frag: cached page frag 322 * @sk_peek_off: current peek_offset value 323 * @sk_send_head: front of stuff to transmit 324 * @tcp_rtx_queue: TCP re-transmit queue [union with @sk_send_head] 325 * @sk_tx_skb_cache: cache copy of recently accessed TX skb 326 * @sk_security: used by security modules 327 * @sk_mark: generic packet mark 328 * @sk_cgrp_data: cgroup data for this cgroup 329 * @sk_memcg: this socket's memory cgroup association 330 * @sk_write_pending: a write to stream socket waits to start 331 * @sk_state_change: callback to indicate change in the state of the sock 332 * @sk_data_ready: callback to indicate there is data to be processed 333 * @sk_write_space: callback to indicate there is bf sending space available 334 * @sk_error_report: callback to indicate errors (e.g. %MSG_ERRQUEUE) 335 * @sk_backlog_rcv: callback to process the backlog 336 * @sk_validate_xmit_skb: ptr to an optional validate function 337 * @sk_destruct: called at sock freeing time, i.e. when all refcnt == 0 338 * @sk_reuseport_cb: reuseport group container 339 * @sk_bpf_storage: ptr to cache and control for bpf_sk_storage 340 * @sk_rcu: used during RCU grace period 341 * @sk_clockid: clockid used by time-based scheduling (SO_TXTIME) 342 * @sk_txtime_deadline_mode: set deadline mode for SO_TXTIME 343 * @sk_txtime_report_errors: set report errors mode for SO_TXTIME 344 * @sk_txtime_unused: unused txtime flags 345 */ 346 struct sock { 347 /* 348 * Now struct inet_timewait_sock also uses sock_common, so please just 349 * don't add nothing before this first member (__sk_common) --acme 350 */ 351 struct sock_common __sk_common; 352 #define sk_node __sk_common.skc_node 353 #define sk_nulls_node __sk_common.skc_nulls_node 354 #define sk_refcnt __sk_common.skc_refcnt 355 #define sk_tx_queue_mapping __sk_common.skc_tx_queue_mapping 356 #ifdef CONFIG_XPS 357 #define sk_rx_queue_mapping __sk_common.skc_rx_queue_mapping 358 #endif 359 360 #define sk_dontcopy_begin __sk_common.skc_dontcopy_begin 361 #define sk_dontcopy_end __sk_common.skc_dontcopy_end 362 #define sk_hash __sk_common.skc_hash 363 #define sk_portpair __sk_common.skc_portpair 364 #define sk_num __sk_common.skc_num 365 #define sk_dport __sk_common.skc_dport 366 #define sk_addrpair __sk_common.skc_addrpair 367 #define sk_daddr __sk_common.skc_daddr 368 #define sk_rcv_saddr __sk_common.skc_rcv_saddr 369 #define sk_family __sk_common.skc_family 370 #define sk_state __sk_common.skc_state 371 #define sk_reuse __sk_common.skc_reuse 372 #define sk_reuseport __sk_common.skc_reuseport 373 #define sk_ipv6only __sk_common.skc_ipv6only 374 #define sk_net_refcnt __sk_common.skc_net_refcnt 375 #define sk_bound_dev_if __sk_common.skc_bound_dev_if 376 #define sk_bind_node __sk_common.skc_bind_node 377 #define sk_prot __sk_common.skc_prot 378 #define sk_net __sk_common.skc_net 379 #define sk_v6_daddr __sk_common.skc_v6_daddr 380 #define sk_v6_rcv_saddr __sk_common.skc_v6_rcv_saddr 381 #define sk_cookie __sk_common.skc_cookie 382 #define sk_incoming_cpu __sk_common.skc_incoming_cpu 383 #define sk_flags __sk_common.skc_flags 384 #define sk_rxhash __sk_common.skc_rxhash 385 386 socket_lock_t sk_lock; 387 atomic_t sk_drops; 388 int sk_rcvlowat; 389 struct sk_buff_head sk_error_queue; 390 struct sk_buff *sk_rx_skb_cache; 391 struct sk_buff_head sk_receive_queue; 392 /* 393 * The backlog queue is special, it is always used with 394 * the per-socket spinlock held and requires low latency 395 * access. Therefore we special case it's implementation. 396 * Note : rmem_alloc is in this structure to fill a hole 397 * on 64bit arches, not because its logically part of 398 * backlog. 399 */ 400 struct { 401 atomic_t rmem_alloc; 402 int len; 403 struct sk_buff *head; 404 struct sk_buff *tail; 405 } sk_backlog; 406 #define sk_rmem_alloc sk_backlog.rmem_alloc 407 408 int sk_forward_alloc; 409 #ifdef CONFIG_NET_RX_BUSY_POLL 410 unsigned int sk_ll_usec; 411 /* ===== mostly read cache line ===== */ 412 unsigned int sk_napi_id; 413 #endif 414 int sk_rcvbuf; 415 416 struct sk_filter __rcu *sk_filter; 417 union { 418 struct socket_wq __rcu *sk_wq; 419 /* private: */ 420 struct socket_wq *sk_wq_raw; 421 /* public: */ 422 }; 423 #ifdef CONFIG_XFRM 424 struct xfrm_policy __rcu *sk_policy[2]; 425 #endif 426 struct dst_entry *sk_rx_dst; 427 struct dst_entry __rcu *sk_dst_cache; 428 atomic_t sk_omem_alloc; 429 int sk_sndbuf; 430 431 /* ===== cache line for TX ===== */ 432 int sk_wmem_queued; 433 refcount_t sk_wmem_alloc; 434 unsigned long sk_tsq_flags; 435 union { 436 struct sk_buff *sk_send_head; 437 struct rb_root tcp_rtx_queue; 438 }; 439 struct sk_buff *sk_tx_skb_cache; 440 struct sk_buff_head sk_write_queue; 441 __s32 sk_peek_off; 442 int sk_write_pending; 443 __u32 sk_dst_pending_confirm; 444 u32 sk_pacing_status; /* see enum sk_pacing */ 445 long sk_sndtimeo; 446 struct timer_list sk_timer; 447 __u32 sk_priority; 448 __u32 sk_mark; 449 unsigned long sk_pacing_rate; /* bytes per second */ 450 unsigned long sk_max_pacing_rate; 451 struct page_frag sk_frag; 452 netdev_features_t sk_route_caps; 453 netdev_features_t sk_route_nocaps; 454 netdev_features_t sk_route_forced_caps; 455 int sk_gso_type; 456 unsigned int sk_gso_max_size; 457 gfp_t sk_allocation; 458 __u32 sk_txhash; 459 460 /* 461 * Because of non atomicity rules, all 462 * changes are protected by socket lock. 463 */ 464 u8 sk_padding : 1, 465 sk_kern_sock : 1, 466 sk_no_check_tx : 1, 467 sk_no_check_rx : 1, 468 sk_userlocks : 4; 469 u8 sk_pacing_shift; 470 u16 sk_type; 471 u16 sk_protocol; 472 u16 sk_gso_max_segs; 473 unsigned long sk_lingertime; 474 struct proto *sk_prot_creator; 475 rwlock_t sk_callback_lock; 476 int sk_err, 477 sk_err_soft; 478 u32 sk_ack_backlog; 479 u32 sk_max_ack_backlog; 480 kuid_t sk_uid; 481 struct pid *sk_peer_pid; 482 const struct cred *sk_peer_cred; 483 long sk_rcvtimeo; 484 ktime_t sk_stamp; 485 #if BITS_PER_LONG==32 486 seqlock_t sk_stamp_seq; 487 #endif 488 u16 sk_tsflags; 489 u8 sk_shutdown; 490 u32 sk_tskey; 491 atomic_t sk_zckey; 492 493 u8 sk_clockid; 494 u8 sk_txtime_deadline_mode : 1, 495 sk_txtime_report_errors : 1, 496 sk_txtime_unused : 6; 497 498 struct socket *sk_socket; 499 void *sk_user_data; 500 #ifdef CONFIG_SECURITY 501 void *sk_security; 502 #endif 503 struct sock_cgroup_data sk_cgrp_data; 504 struct mem_cgroup *sk_memcg; 505 void (*sk_state_change)(struct sock *sk); 506 void (*sk_data_ready)(struct sock *sk); 507 void (*sk_write_space)(struct sock *sk); 508 void (*sk_error_report)(struct sock *sk); 509 int (*sk_backlog_rcv)(struct sock *sk, 510 struct sk_buff *skb); 511 #ifdef CONFIG_SOCK_VALIDATE_XMIT 512 struct sk_buff* (*sk_validate_xmit_skb)(struct sock *sk, 513 struct net_device *dev, 514 struct sk_buff *skb); 515 #endif 516 void (*sk_destruct)(struct sock *sk); 517 struct sock_reuseport __rcu *sk_reuseport_cb; 518 #ifdef CONFIG_BPF_SYSCALL 519 struct bpf_sk_storage __rcu *sk_bpf_storage; 520 #endif 521 struct rcu_head sk_rcu; 522 }; 523 524 enum sk_pacing { 525 SK_PACING_NONE = 0, 526 SK_PACING_NEEDED = 1, 527 SK_PACING_FQ = 2, 528 }; 529 530 /* Pointer stored in sk_user_data might not be suitable for copying 531 * when cloning the socket. For instance, it can point to a reference 532 * counted object. sk_user_data bottom bit is set if pointer must not 533 * be copied. 534 */ 535 #define SK_USER_DATA_NOCOPY 1UL 536 #define SK_USER_DATA_PTRMASK ~(SK_USER_DATA_NOCOPY) 537 538 /** 539 * sk_user_data_is_nocopy - Test if sk_user_data pointer must not be copied 540 * @sk: socket 541 */ 542 static inline bool sk_user_data_is_nocopy(const struct sock *sk) 543 { 544 return ((uintptr_t)sk->sk_user_data & SK_USER_DATA_NOCOPY); 545 } 546 547 #define __sk_user_data(sk) ((*((void __rcu **)&(sk)->sk_user_data))) 548 549 #define rcu_dereference_sk_user_data(sk) \ 550 ({ \ 551 void *__tmp = rcu_dereference(__sk_user_data((sk))); \ 552 (void *)((uintptr_t)__tmp & SK_USER_DATA_PTRMASK); \ 553 }) 554 #define rcu_assign_sk_user_data(sk, ptr) \ 555 ({ \ 556 uintptr_t __tmp = (uintptr_t)(ptr); \ 557 WARN_ON_ONCE(__tmp & ~SK_USER_DATA_PTRMASK); \ 558 rcu_assign_pointer(__sk_user_data((sk)), __tmp); \ 559 }) 560 #define rcu_assign_sk_user_data_nocopy(sk, ptr) \ 561 ({ \ 562 uintptr_t __tmp = (uintptr_t)(ptr); \ 563 WARN_ON_ONCE(__tmp & ~SK_USER_DATA_PTRMASK); \ 564 rcu_assign_pointer(__sk_user_data((sk)), \ 565 __tmp | SK_USER_DATA_NOCOPY); \ 566 }) 567 568 /* 569 * SK_CAN_REUSE and SK_NO_REUSE on a socket mean that the socket is OK 570 * or not whether his port will be reused by someone else. SK_FORCE_REUSE 571 * on a socket means that the socket will reuse everybody else's port 572 * without looking at the other's sk_reuse value. 573 */ 574 575 #define SK_NO_REUSE 0 576 #define SK_CAN_REUSE 1 577 #define SK_FORCE_REUSE 2 578 579 int sk_set_peek_off(struct sock *sk, int val); 580 581 static inline int sk_peek_offset(struct sock *sk, int flags) 582 { 583 if (unlikely(flags & MSG_PEEK)) { 584 return READ_ONCE(sk->sk_peek_off); 585 } 586 587 return 0; 588 } 589 590 static inline void sk_peek_offset_bwd(struct sock *sk, int val) 591 { 592 s32 off = READ_ONCE(sk->sk_peek_off); 593 594 if (unlikely(off >= 0)) { 595 off = max_t(s32, off - val, 0); 596 WRITE_ONCE(sk->sk_peek_off, off); 597 } 598 } 599 600 static inline void sk_peek_offset_fwd(struct sock *sk, int val) 601 { 602 sk_peek_offset_bwd(sk, -val); 603 } 604 605 /* 606 * Hashed lists helper routines 607 */ 608 static inline struct sock *sk_entry(const struct hlist_node *node) 609 { 610 return hlist_entry(node, struct sock, sk_node); 611 } 612 613 static inline struct sock *__sk_head(const struct hlist_head *head) 614 { 615 return hlist_entry(head->first, struct sock, sk_node); 616 } 617 618 static inline struct sock *sk_head(const struct hlist_head *head) 619 { 620 return hlist_empty(head) ? NULL : __sk_head(head); 621 } 622 623 static inline struct sock *__sk_nulls_head(const struct hlist_nulls_head *head) 624 { 625 return hlist_nulls_entry(head->first, struct sock, sk_nulls_node); 626 } 627 628 static inline struct sock *sk_nulls_head(const struct hlist_nulls_head *head) 629 { 630 return hlist_nulls_empty(head) ? NULL : __sk_nulls_head(head); 631 } 632 633 static inline struct sock *sk_next(const struct sock *sk) 634 { 635 return hlist_entry_safe(sk->sk_node.next, struct sock, sk_node); 636 } 637 638 static inline struct sock *sk_nulls_next(const struct sock *sk) 639 { 640 return (!is_a_nulls(sk->sk_nulls_node.next)) ? 641 hlist_nulls_entry(sk->sk_nulls_node.next, 642 struct sock, sk_nulls_node) : 643 NULL; 644 } 645 646 static inline bool sk_unhashed(const struct sock *sk) 647 { 648 return hlist_unhashed(&sk->sk_node); 649 } 650 651 static inline bool sk_hashed(const struct sock *sk) 652 { 653 return !sk_unhashed(sk); 654 } 655 656 static inline void sk_node_init(struct hlist_node *node) 657 { 658 node->pprev = NULL; 659 } 660 661 static inline void sk_nulls_node_init(struct hlist_nulls_node *node) 662 { 663 node->pprev = NULL; 664 } 665 666 static inline void __sk_del_node(struct sock *sk) 667 { 668 __hlist_del(&sk->sk_node); 669 } 670 671 /* NB: equivalent to hlist_del_init_rcu */ 672 static inline bool __sk_del_node_init(struct sock *sk) 673 { 674 if (sk_hashed(sk)) { 675 __sk_del_node(sk); 676 sk_node_init(&sk->sk_node); 677 return true; 678 } 679 return false; 680 } 681 682 /* Grab socket reference count. This operation is valid only 683 when sk is ALREADY grabbed f.e. it is found in hash table 684 or a list and the lookup is made under lock preventing hash table 685 modifications. 686 */ 687 688 static __always_inline void sock_hold(struct sock *sk) 689 { 690 refcount_inc(&sk->sk_refcnt); 691 } 692 693 /* Ungrab socket in the context, which assumes that socket refcnt 694 cannot hit zero, f.e. it is true in context of any socketcall. 695 */ 696 static __always_inline void __sock_put(struct sock *sk) 697 { 698 refcount_dec(&sk->sk_refcnt); 699 } 700 701 static inline bool sk_del_node_init(struct sock *sk) 702 { 703 bool rc = __sk_del_node_init(sk); 704 705 if (rc) { 706 /* paranoid for a while -acme */ 707 WARN_ON(refcount_read(&sk->sk_refcnt) == 1); 708 __sock_put(sk); 709 } 710 return rc; 711 } 712 #define sk_del_node_init_rcu(sk) sk_del_node_init(sk) 713 714 static inline bool __sk_nulls_del_node_init_rcu(struct sock *sk) 715 { 716 if (sk_hashed(sk)) { 717 hlist_nulls_del_init_rcu(&sk->sk_nulls_node); 718 return true; 719 } 720 return false; 721 } 722 723 static inline bool sk_nulls_del_node_init_rcu(struct sock *sk) 724 { 725 bool rc = __sk_nulls_del_node_init_rcu(sk); 726 727 if (rc) { 728 /* paranoid for a while -acme */ 729 WARN_ON(refcount_read(&sk->sk_refcnt) == 1); 730 __sock_put(sk); 731 } 732 return rc; 733 } 734 735 static inline void __sk_add_node(struct sock *sk, struct hlist_head *list) 736 { 737 hlist_add_head(&sk->sk_node, list); 738 } 739 740 static inline void sk_add_node(struct sock *sk, struct hlist_head *list) 741 { 742 sock_hold(sk); 743 __sk_add_node(sk, list); 744 } 745 746 static inline void sk_add_node_rcu(struct sock *sk, struct hlist_head *list) 747 { 748 sock_hold(sk); 749 if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport && 750 sk->sk_family == AF_INET6) 751 hlist_add_tail_rcu(&sk->sk_node, list); 752 else 753 hlist_add_head_rcu(&sk->sk_node, list); 754 } 755 756 static inline void sk_add_node_tail_rcu(struct sock *sk, struct hlist_head *list) 757 { 758 sock_hold(sk); 759 hlist_add_tail_rcu(&sk->sk_node, list); 760 } 761 762 static inline void __sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list) 763 { 764 hlist_nulls_add_head_rcu(&sk->sk_nulls_node, list); 765 } 766 767 static inline void __sk_nulls_add_node_tail_rcu(struct sock *sk, struct hlist_nulls_head *list) 768 { 769 hlist_nulls_add_tail_rcu(&sk->sk_nulls_node, list); 770 } 771 772 static inline void sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list) 773 { 774 sock_hold(sk); 775 __sk_nulls_add_node_rcu(sk, list); 776 } 777 778 static inline void __sk_del_bind_node(struct sock *sk) 779 { 780 __hlist_del(&sk->sk_bind_node); 781 } 782 783 static inline void sk_add_bind_node(struct sock *sk, 784 struct hlist_head *list) 785 { 786 hlist_add_head(&sk->sk_bind_node, list); 787 } 788 789 #define sk_for_each(__sk, list) \ 790 hlist_for_each_entry(__sk, list, sk_node) 791 #define sk_for_each_rcu(__sk, list) \ 792 hlist_for_each_entry_rcu(__sk, list, sk_node) 793 #define sk_nulls_for_each(__sk, node, list) \ 794 hlist_nulls_for_each_entry(__sk, node, list, sk_nulls_node) 795 #define sk_nulls_for_each_rcu(__sk, node, list) \ 796 hlist_nulls_for_each_entry_rcu(__sk, node, list, sk_nulls_node) 797 #define sk_for_each_from(__sk) \ 798 hlist_for_each_entry_from(__sk, sk_node) 799 #define sk_nulls_for_each_from(__sk, node) \ 800 if (__sk && ({ node = &(__sk)->sk_nulls_node; 1; })) \ 801 hlist_nulls_for_each_entry_from(__sk, node, sk_nulls_node) 802 #define sk_for_each_safe(__sk, tmp, list) \ 803 hlist_for_each_entry_safe(__sk, tmp, list, sk_node) 804 #define sk_for_each_bound(__sk, list) \ 805 hlist_for_each_entry(__sk, list, sk_bind_node) 806 807 /** 808 * sk_for_each_entry_offset_rcu - iterate over a list at a given struct offset 809 * @tpos: the type * to use as a loop cursor. 810 * @pos: the &struct hlist_node to use as a loop cursor. 811 * @head: the head for your list. 812 * @offset: offset of hlist_node within the struct. 813 * 814 */ 815 #define sk_for_each_entry_offset_rcu(tpos, pos, head, offset) \ 816 for (pos = rcu_dereference(hlist_first_rcu(head)); \ 817 pos != NULL && \ 818 ({ tpos = (typeof(*tpos) *)((void *)pos - offset); 1;}); \ 819 pos = rcu_dereference(hlist_next_rcu(pos))) 820 821 static inline struct user_namespace *sk_user_ns(struct sock *sk) 822 { 823 /* Careful only use this in a context where these parameters 824 * can not change and must all be valid, such as recvmsg from 825 * userspace. 826 */ 827 return sk->sk_socket->file->f_cred->user_ns; 828 } 829 830 /* Sock flags */ 831 enum sock_flags { 832 SOCK_DEAD, 833 SOCK_DONE, 834 SOCK_URGINLINE, 835 SOCK_KEEPOPEN, 836 SOCK_LINGER, 837 SOCK_DESTROY, 838 SOCK_BROADCAST, 839 SOCK_TIMESTAMP, 840 SOCK_ZAPPED, 841 SOCK_USE_WRITE_QUEUE, /* whether to call sk->sk_write_space in sock_wfree */ 842 SOCK_DBG, /* %SO_DEBUG setting */ 843 SOCK_RCVTSTAMP, /* %SO_TIMESTAMP setting */ 844 SOCK_RCVTSTAMPNS, /* %SO_TIMESTAMPNS setting */ 845 SOCK_LOCALROUTE, /* route locally only, %SO_DONTROUTE setting */ 846 SOCK_QUEUE_SHRUNK, /* write queue has been shrunk recently */ 847 SOCK_MEMALLOC, /* VM depends on this socket for swapping */ 848 SOCK_TIMESTAMPING_RX_SOFTWARE, /* %SOF_TIMESTAMPING_RX_SOFTWARE */ 849 SOCK_FASYNC, /* fasync() active */ 850 SOCK_RXQ_OVFL, 851 SOCK_ZEROCOPY, /* buffers from userspace */ 852 SOCK_WIFI_STATUS, /* push wifi status to userspace */ 853 SOCK_NOFCS, /* Tell NIC not to do the Ethernet FCS. 854 * Will use last 4 bytes of packet sent from 855 * user-space instead. 856 */ 857 SOCK_FILTER_LOCKED, /* Filter cannot be changed anymore */ 858 SOCK_SELECT_ERR_QUEUE, /* Wake select on error queue */ 859 SOCK_RCU_FREE, /* wait rcu grace period in sk_destruct() */ 860 SOCK_TXTIME, 861 SOCK_XDP, /* XDP is attached */ 862 SOCK_TSTAMP_NEW, /* Indicates 64 bit timestamps always */ 863 }; 864 865 #define SK_FLAGS_TIMESTAMP ((1UL << SOCK_TIMESTAMP) | (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE)) 866 867 static inline void sock_copy_flags(struct sock *nsk, struct sock *osk) 868 { 869 nsk->sk_flags = osk->sk_flags; 870 } 871 872 static inline void sock_set_flag(struct sock *sk, enum sock_flags flag) 873 { 874 __set_bit(flag, &sk->sk_flags); 875 } 876 877 static inline void sock_reset_flag(struct sock *sk, enum sock_flags flag) 878 { 879 __clear_bit(flag, &sk->sk_flags); 880 } 881 882 static inline bool sock_flag(const struct sock *sk, enum sock_flags flag) 883 { 884 return test_bit(flag, &sk->sk_flags); 885 } 886 887 #ifdef CONFIG_NET 888 DECLARE_STATIC_KEY_FALSE(memalloc_socks_key); 889 static inline int sk_memalloc_socks(void) 890 { 891 return static_branch_unlikely(&memalloc_socks_key); 892 } 893 #else 894 895 static inline int sk_memalloc_socks(void) 896 { 897 return 0; 898 } 899 900 #endif 901 902 static inline gfp_t sk_gfp_mask(const struct sock *sk, gfp_t gfp_mask) 903 { 904 return gfp_mask | (sk->sk_allocation & __GFP_MEMALLOC); 905 } 906 907 static inline void sk_acceptq_removed(struct sock *sk) 908 { 909 WRITE_ONCE(sk->sk_ack_backlog, sk->sk_ack_backlog - 1); 910 } 911 912 static inline void sk_acceptq_added(struct sock *sk) 913 { 914 WRITE_ONCE(sk->sk_ack_backlog, sk->sk_ack_backlog + 1); 915 } 916 917 static inline bool sk_acceptq_is_full(const struct sock *sk) 918 { 919 return READ_ONCE(sk->sk_ack_backlog) > READ_ONCE(sk->sk_max_ack_backlog); 920 } 921 922 /* 923 * Compute minimal free write space needed to queue new packets. 924 */ 925 static inline int sk_stream_min_wspace(const struct sock *sk) 926 { 927 return READ_ONCE(sk->sk_wmem_queued) >> 1; 928 } 929 930 static inline int sk_stream_wspace(const struct sock *sk) 931 { 932 return READ_ONCE(sk->sk_sndbuf) - READ_ONCE(sk->sk_wmem_queued); 933 } 934 935 static inline void sk_wmem_queued_add(struct sock *sk, int val) 936 { 937 WRITE_ONCE(sk->sk_wmem_queued, sk->sk_wmem_queued + val); 938 } 939 940 void sk_stream_write_space(struct sock *sk); 941 942 /* OOB backlog add */ 943 static inline void __sk_add_backlog(struct sock *sk, struct sk_buff *skb) 944 { 945 /* dont let skb dst not refcounted, we are going to leave rcu lock */ 946 skb_dst_force(skb); 947 948 if (!sk->sk_backlog.tail) 949 WRITE_ONCE(sk->sk_backlog.head, skb); 950 else 951 sk->sk_backlog.tail->next = skb; 952 953 WRITE_ONCE(sk->sk_backlog.tail, skb); 954 skb->next = NULL; 955 } 956 957 /* 958 * Take into account size of receive queue and backlog queue 959 * Do not take into account this skb truesize, 960 * to allow even a single big packet to come. 961 */ 962 static inline bool sk_rcvqueues_full(const struct sock *sk, unsigned int limit) 963 { 964 unsigned int qsize = sk->sk_backlog.len + atomic_read(&sk->sk_rmem_alloc); 965 966 return qsize > limit; 967 } 968 969 /* The per-socket spinlock must be held here. */ 970 static inline __must_check int sk_add_backlog(struct sock *sk, struct sk_buff *skb, 971 unsigned int limit) 972 { 973 if (sk_rcvqueues_full(sk, limit)) 974 return -ENOBUFS; 975 976 /* 977 * If the skb was allocated from pfmemalloc reserves, only 978 * allow SOCK_MEMALLOC sockets to use it as this socket is 979 * helping free memory 980 */ 981 if (skb_pfmemalloc(skb) && !sock_flag(sk, SOCK_MEMALLOC)) 982 return -ENOMEM; 983 984 __sk_add_backlog(sk, skb); 985 sk->sk_backlog.len += skb->truesize; 986 return 0; 987 } 988 989 int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb); 990 991 static inline int sk_backlog_rcv(struct sock *sk, struct sk_buff *skb) 992 { 993 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) 994 return __sk_backlog_rcv(sk, skb); 995 996 return sk->sk_backlog_rcv(sk, skb); 997 } 998 999 static inline void sk_incoming_cpu_update(struct sock *sk) 1000 { 1001 int cpu = raw_smp_processor_id(); 1002 1003 if (unlikely(READ_ONCE(sk->sk_incoming_cpu) != cpu)) 1004 WRITE_ONCE(sk->sk_incoming_cpu, cpu); 1005 } 1006 1007 static inline void sock_rps_record_flow_hash(__u32 hash) 1008 { 1009 #ifdef CONFIG_RPS 1010 struct rps_sock_flow_table *sock_flow_table; 1011 1012 rcu_read_lock(); 1013 sock_flow_table = rcu_dereference(rps_sock_flow_table); 1014 rps_record_sock_flow(sock_flow_table, hash); 1015 rcu_read_unlock(); 1016 #endif 1017 } 1018 1019 static inline void sock_rps_record_flow(const struct sock *sk) 1020 { 1021 #ifdef CONFIG_RPS 1022 if (static_branch_unlikely(&rfs_needed)) { 1023 /* Reading sk->sk_rxhash might incur an expensive cache line 1024 * miss. 1025 * 1026 * TCP_ESTABLISHED does cover almost all states where RFS 1027 * might be useful, and is cheaper [1] than testing : 1028 * IPv4: inet_sk(sk)->inet_daddr 1029 * IPv6: ipv6_addr_any(&sk->sk_v6_daddr) 1030 * OR an additional socket flag 1031 * [1] : sk_state and sk_prot are in the same cache line. 1032 */ 1033 if (sk->sk_state == TCP_ESTABLISHED) 1034 sock_rps_record_flow_hash(sk->sk_rxhash); 1035 } 1036 #endif 1037 } 1038 1039 static inline void sock_rps_save_rxhash(struct sock *sk, 1040 const struct sk_buff *skb) 1041 { 1042 #ifdef CONFIG_RPS 1043 if (unlikely(sk->sk_rxhash != skb->hash)) 1044 sk->sk_rxhash = skb->hash; 1045 #endif 1046 } 1047 1048 static inline void sock_rps_reset_rxhash(struct sock *sk) 1049 { 1050 #ifdef CONFIG_RPS 1051 sk->sk_rxhash = 0; 1052 #endif 1053 } 1054 1055 #define sk_wait_event(__sk, __timeo, __condition, __wait) \ 1056 ({ int __rc; \ 1057 release_sock(__sk); \ 1058 __rc = __condition; \ 1059 if (!__rc) { \ 1060 *(__timeo) = wait_woken(__wait, \ 1061 TASK_INTERRUPTIBLE, \ 1062 *(__timeo)); \ 1063 } \ 1064 sched_annotate_sleep(); \ 1065 lock_sock(__sk); \ 1066 __rc = __condition; \ 1067 __rc; \ 1068 }) 1069 1070 int sk_stream_wait_connect(struct sock *sk, long *timeo_p); 1071 int sk_stream_wait_memory(struct sock *sk, long *timeo_p); 1072 void sk_stream_wait_close(struct sock *sk, long timeo_p); 1073 int sk_stream_error(struct sock *sk, int flags, int err); 1074 void sk_stream_kill_queues(struct sock *sk); 1075 void sk_set_memalloc(struct sock *sk); 1076 void sk_clear_memalloc(struct sock *sk); 1077 1078 void __sk_flush_backlog(struct sock *sk); 1079 1080 static inline bool sk_flush_backlog(struct sock *sk) 1081 { 1082 if (unlikely(READ_ONCE(sk->sk_backlog.tail))) { 1083 __sk_flush_backlog(sk); 1084 return true; 1085 } 1086 return false; 1087 } 1088 1089 int sk_wait_data(struct sock *sk, long *timeo, const struct sk_buff *skb); 1090 1091 struct request_sock_ops; 1092 struct timewait_sock_ops; 1093 struct inet_hashinfo; 1094 struct raw_hashinfo; 1095 struct smc_hashinfo; 1096 struct module; 1097 1098 /* 1099 * caches using SLAB_TYPESAFE_BY_RCU should let .next pointer from nulls nodes 1100 * un-modified. Special care is taken when initializing object to zero. 1101 */ 1102 static inline void sk_prot_clear_nulls(struct sock *sk, int size) 1103 { 1104 if (offsetof(struct sock, sk_node.next) != 0) 1105 memset(sk, 0, offsetof(struct sock, sk_node.next)); 1106 memset(&sk->sk_node.pprev, 0, 1107 size - offsetof(struct sock, sk_node.pprev)); 1108 } 1109 1110 /* Networking protocol blocks we attach to sockets. 1111 * socket layer -> transport layer interface 1112 */ 1113 struct proto { 1114 void (*close)(struct sock *sk, 1115 long timeout); 1116 int (*pre_connect)(struct sock *sk, 1117 struct sockaddr *uaddr, 1118 int addr_len); 1119 int (*connect)(struct sock *sk, 1120 struct sockaddr *uaddr, 1121 int addr_len); 1122 int (*disconnect)(struct sock *sk, int flags); 1123 1124 struct sock * (*accept)(struct sock *sk, int flags, int *err, 1125 bool kern); 1126 1127 int (*ioctl)(struct sock *sk, int cmd, 1128 unsigned long arg); 1129 int (*init)(struct sock *sk); 1130 void (*destroy)(struct sock *sk); 1131 void (*shutdown)(struct sock *sk, int how); 1132 int (*setsockopt)(struct sock *sk, int level, 1133 int optname, char __user *optval, 1134 unsigned int optlen); 1135 int (*getsockopt)(struct sock *sk, int level, 1136 int optname, char __user *optval, 1137 int __user *option); 1138 void (*keepalive)(struct sock *sk, int valbool); 1139 #ifdef CONFIG_COMPAT 1140 int (*compat_setsockopt)(struct sock *sk, 1141 int level, 1142 int optname, char __user *optval, 1143 unsigned int optlen); 1144 int (*compat_getsockopt)(struct sock *sk, 1145 int level, 1146 int optname, char __user *optval, 1147 int __user *option); 1148 int (*compat_ioctl)(struct sock *sk, 1149 unsigned int cmd, unsigned long arg); 1150 #endif 1151 int (*sendmsg)(struct sock *sk, struct msghdr *msg, 1152 size_t len); 1153 int (*recvmsg)(struct sock *sk, struct msghdr *msg, 1154 size_t len, int noblock, int flags, 1155 int *addr_len); 1156 int (*sendpage)(struct sock *sk, struct page *page, 1157 int offset, size_t size, int flags); 1158 int (*bind)(struct sock *sk, 1159 struct sockaddr *uaddr, int addr_len); 1160 1161 int (*backlog_rcv) (struct sock *sk, 1162 struct sk_buff *skb); 1163 1164 void (*release_cb)(struct sock *sk); 1165 1166 /* Keeping track of sk's, looking them up, and port selection methods. */ 1167 int (*hash)(struct sock *sk); 1168 void (*unhash)(struct sock *sk); 1169 void (*rehash)(struct sock *sk); 1170 int (*get_port)(struct sock *sk, unsigned short snum); 1171 1172 /* Keeping track of sockets in use */ 1173 #ifdef CONFIG_PROC_FS 1174 unsigned int inuse_idx; 1175 #endif 1176 1177 bool (*stream_memory_free)(const struct sock *sk, int wake); 1178 bool (*stream_memory_read)(const struct sock *sk); 1179 /* Memory pressure */ 1180 void (*enter_memory_pressure)(struct sock *sk); 1181 void (*leave_memory_pressure)(struct sock *sk); 1182 atomic_long_t *memory_allocated; /* Current allocated memory. */ 1183 struct percpu_counter *sockets_allocated; /* Current number of sockets. */ 1184 /* 1185 * Pressure flag: try to collapse. 1186 * Technical note: it is used by multiple contexts non atomically. 1187 * All the __sk_mem_schedule() is of this nature: accounting 1188 * is strict, actions are advisory and have some latency. 1189 */ 1190 unsigned long *memory_pressure; 1191 long *sysctl_mem; 1192 1193 int *sysctl_wmem; 1194 int *sysctl_rmem; 1195 u32 sysctl_wmem_offset; 1196 u32 sysctl_rmem_offset; 1197 1198 int max_header; 1199 bool no_autobind; 1200 1201 struct kmem_cache *slab; 1202 unsigned int obj_size; 1203 slab_flags_t slab_flags; 1204 unsigned int useroffset; /* Usercopy region offset */ 1205 unsigned int usersize; /* Usercopy region size */ 1206 1207 struct percpu_counter *orphan_count; 1208 1209 struct request_sock_ops *rsk_prot; 1210 struct timewait_sock_ops *twsk_prot; 1211 1212 union { 1213 struct inet_hashinfo *hashinfo; 1214 struct udp_table *udp_table; 1215 struct raw_hashinfo *raw_hash; 1216 struct smc_hashinfo *smc_hash; 1217 } h; 1218 1219 struct module *owner; 1220 1221 char name[32]; 1222 1223 struct list_head node; 1224 #ifdef SOCK_REFCNT_DEBUG 1225 atomic_t socks; 1226 #endif 1227 int (*diag_destroy)(struct sock *sk, int err); 1228 } __randomize_layout; 1229 1230 int proto_register(struct proto *prot, int alloc_slab); 1231 void proto_unregister(struct proto *prot); 1232 int sock_load_diag_module(int family, int protocol); 1233 1234 #ifdef SOCK_REFCNT_DEBUG 1235 static inline void sk_refcnt_debug_inc(struct sock *sk) 1236 { 1237 atomic_inc(&sk->sk_prot->socks); 1238 } 1239 1240 static inline void sk_refcnt_debug_dec(struct sock *sk) 1241 { 1242 atomic_dec(&sk->sk_prot->socks); 1243 printk(KERN_DEBUG "%s socket %p released, %d are still alive\n", 1244 sk->sk_prot->name, sk, atomic_read(&sk->sk_prot->socks)); 1245 } 1246 1247 static inline void sk_refcnt_debug_release(const struct sock *sk) 1248 { 1249 if (refcount_read(&sk->sk_refcnt) != 1) 1250 printk(KERN_DEBUG "Destruction of the %s socket %p delayed, refcnt=%d\n", 1251 sk->sk_prot->name, sk, refcount_read(&sk->sk_refcnt)); 1252 } 1253 #else /* SOCK_REFCNT_DEBUG */ 1254 #define sk_refcnt_debug_inc(sk) do { } while (0) 1255 #define sk_refcnt_debug_dec(sk) do { } while (0) 1256 #define sk_refcnt_debug_release(sk) do { } while (0) 1257 #endif /* SOCK_REFCNT_DEBUG */ 1258 1259 static inline bool __sk_stream_memory_free(const struct sock *sk, int wake) 1260 { 1261 if (READ_ONCE(sk->sk_wmem_queued) >= READ_ONCE(sk->sk_sndbuf)) 1262 return false; 1263 1264 return sk->sk_prot->stream_memory_free ? 1265 sk->sk_prot->stream_memory_free(sk, wake) : true; 1266 } 1267 1268 static inline bool sk_stream_memory_free(const struct sock *sk) 1269 { 1270 return __sk_stream_memory_free(sk, 0); 1271 } 1272 1273 static inline bool __sk_stream_is_writeable(const struct sock *sk, int wake) 1274 { 1275 return sk_stream_wspace(sk) >= sk_stream_min_wspace(sk) && 1276 __sk_stream_memory_free(sk, wake); 1277 } 1278 1279 static inline bool sk_stream_is_writeable(const struct sock *sk) 1280 { 1281 return __sk_stream_is_writeable(sk, 0); 1282 } 1283 1284 static inline int sk_under_cgroup_hierarchy(struct sock *sk, 1285 struct cgroup *ancestor) 1286 { 1287 #ifdef CONFIG_SOCK_CGROUP_DATA 1288 return cgroup_is_descendant(sock_cgroup_ptr(&sk->sk_cgrp_data), 1289 ancestor); 1290 #else 1291 return -ENOTSUPP; 1292 #endif 1293 } 1294 1295 static inline bool sk_has_memory_pressure(const struct sock *sk) 1296 { 1297 return sk->sk_prot->memory_pressure != NULL; 1298 } 1299 1300 static inline bool sk_under_memory_pressure(const struct sock *sk) 1301 { 1302 if (!sk->sk_prot->memory_pressure) 1303 return false; 1304 1305 if (mem_cgroup_sockets_enabled && sk->sk_memcg && 1306 mem_cgroup_under_socket_pressure(sk->sk_memcg)) 1307 return true; 1308 1309 return !!*sk->sk_prot->memory_pressure; 1310 } 1311 1312 static inline long 1313 sk_memory_allocated(const struct sock *sk) 1314 { 1315 return atomic_long_read(sk->sk_prot->memory_allocated); 1316 } 1317 1318 static inline long 1319 sk_memory_allocated_add(struct sock *sk, int amt) 1320 { 1321 return atomic_long_add_return(amt, sk->sk_prot->memory_allocated); 1322 } 1323 1324 static inline void 1325 sk_memory_allocated_sub(struct sock *sk, int amt) 1326 { 1327 atomic_long_sub(amt, sk->sk_prot->memory_allocated); 1328 } 1329 1330 static inline void sk_sockets_allocated_dec(struct sock *sk) 1331 { 1332 percpu_counter_dec(sk->sk_prot->sockets_allocated); 1333 } 1334 1335 static inline void sk_sockets_allocated_inc(struct sock *sk) 1336 { 1337 percpu_counter_inc(sk->sk_prot->sockets_allocated); 1338 } 1339 1340 static inline u64 1341 sk_sockets_allocated_read_positive(struct sock *sk) 1342 { 1343 return percpu_counter_read_positive(sk->sk_prot->sockets_allocated); 1344 } 1345 1346 static inline int 1347 proto_sockets_allocated_sum_positive(struct proto *prot) 1348 { 1349 return percpu_counter_sum_positive(prot->sockets_allocated); 1350 } 1351 1352 static inline long 1353 proto_memory_allocated(struct proto *prot) 1354 { 1355 return atomic_long_read(prot->memory_allocated); 1356 } 1357 1358 static inline bool 1359 proto_memory_pressure(struct proto *prot) 1360 { 1361 if (!prot->memory_pressure) 1362 return false; 1363 return !!*prot->memory_pressure; 1364 } 1365 1366 1367 #ifdef CONFIG_PROC_FS 1368 /* Called with local bh disabled */ 1369 void sock_prot_inuse_add(struct net *net, struct proto *prot, int inc); 1370 int sock_prot_inuse_get(struct net *net, struct proto *proto); 1371 int sock_inuse_get(struct net *net); 1372 #else 1373 static inline void sock_prot_inuse_add(struct net *net, struct proto *prot, 1374 int inc) 1375 { 1376 } 1377 #endif 1378 1379 1380 /* With per-bucket locks this operation is not-atomic, so that 1381 * this version is not worse. 1382 */ 1383 static inline int __sk_prot_rehash(struct sock *sk) 1384 { 1385 sk->sk_prot->unhash(sk); 1386 return sk->sk_prot->hash(sk); 1387 } 1388 1389 /* About 10 seconds */ 1390 #define SOCK_DESTROY_TIME (10*HZ) 1391 1392 /* Sockets 0-1023 can't be bound to unless you are superuser */ 1393 #define PROT_SOCK 1024 1394 1395 #define SHUTDOWN_MASK 3 1396 #define RCV_SHUTDOWN 1 1397 #define SEND_SHUTDOWN 2 1398 1399 #define SOCK_SNDBUF_LOCK 1 1400 #define SOCK_RCVBUF_LOCK 2 1401 #define SOCK_BINDADDR_LOCK 4 1402 #define SOCK_BINDPORT_LOCK 8 1403 1404 struct socket_alloc { 1405 struct socket socket; 1406 struct inode vfs_inode; 1407 }; 1408 1409 static inline struct socket *SOCKET_I(struct inode *inode) 1410 { 1411 return &container_of(inode, struct socket_alloc, vfs_inode)->socket; 1412 } 1413 1414 static inline struct inode *SOCK_INODE(struct socket *socket) 1415 { 1416 return &container_of(socket, struct socket_alloc, socket)->vfs_inode; 1417 } 1418 1419 /* 1420 * Functions for memory accounting 1421 */ 1422 int __sk_mem_raise_allocated(struct sock *sk, int size, int amt, int kind); 1423 int __sk_mem_schedule(struct sock *sk, int size, int kind); 1424 void __sk_mem_reduce_allocated(struct sock *sk, int amount); 1425 void __sk_mem_reclaim(struct sock *sk, int amount); 1426 1427 /* We used to have PAGE_SIZE here, but systems with 64KB pages 1428 * do not necessarily have 16x time more memory than 4KB ones. 1429 */ 1430 #define SK_MEM_QUANTUM 4096 1431 #define SK_MEM_QUANTUM_SHIFT ilog2(SK_MEM_QUANTUM) 1432 #define SK_MEM_SEND 0 1433 #define SK_MEM_RECV 1 1434 1435 /* sysctl_mem values are in pages, we convert them in SK_MEM_QUANTUM units */ 1436 static inline long sk_prot_mem_limits(const struct sock *sk, int index) 1437 { 1438 long val = sk->sk_prot->sysctl_mem[index]; 1439 1440 #if PAGE_SIZE > SK_MEM_QUANTUM 1441 val <<= PAGE_SHIFT - SK_MEM_QUANTUM_SHIFT; 1442 #elif PAGE_SIZE < SK_MEM_QUANTUM 1443 val >>= SK_MEM_QUANTUM_SHIFT - PAGE_SHIFT; 1444 #endif 1445 return val; 1446 } 1447 1448 static inline int sk_mem_pages(int amt) 1449 { 1450 return (amt + SK_MEM_QUANTUM - 1) >> SK_MEM_QUANTUM_SHIFT; 1451 } 1452 1453 static inline bool sk_has_account(struct sock *sk) 1454 { 1455 /* return true if protocol supports memory accounting */ 1456 return !!sk->sk_prot->memory_allocated; 1457 } 1458 1459 static inline bool sk_wmem_schedule(struct sock *sk, int size) 1460 { 1461 if (!sk_has_account(sk)) 1462 return true; 1463 return size <= sk->sk_forward_alloc || 1464 __sk_mem_schedule(sk, size, SK_MEM_SEND); 1465 } 1466 1467 static inline bool 1468 sk_rmem_schedule(struct sock *sk, struct sk_buff *skb, int size) 1469 { 1470 if (!sk_has_account(sk)) 1471 return true; 1472 return size<= sk->sk_forward_alloc || 1473 __sk_mem_schedule(sk, size, SK_MEM_RECV) || 1474 skb_pfmemalloc(skb); 1475 } 1476 1477 static inline void sk_mem_reclaim(struct sock *sk) 1478 { 1479 if (!sk_has_account(sk)) 1480 return; 1481 if (sk->sk_forward_alloc >= SK_MEM_QUANTUM) 1482 __sk_mem_reclaim(sk, sk->sk_forward_alloc); 1483 } 1484 1485 static inline void sk_mem_reclaim_partial(struct sock *sk) 1486 { 1487 if (!sk_has_account(sk)) 1488 return; 1489 if (sk->sk_forward_alloc > SK_MEM_QUANTUM) 1490 __sk_mem_reclaim(sk, sk->sk_forward_alloc - 1); 1491 } 1492 1493 static inline void sk_mem_charge(struct sock *sk, int size) 1494 { 1495 if (!sk_has_account(sk)) 1496 return; 1497 sk->sk_forward_alloc -= size; 1498 } 1499 1500 static inline void sk_mem_uncharge(struct sock *sk, int size) 1501 { 1502 if (!sk_has_account(sk)) 1503 return; 1504 sk->sk_forward_alloc += size; 1505 1506 /* Avoid a possible overflow. 1507 * TCP send queues can make this happen, if sk_mem_reclaim() 1508 * is not called and more than 2 GBytes are released at once. 1509 * 1510 * If we reach 2 MBytes, reclaim 1 MBytes right now, there is 1511 * no need to hold that much forward allocation anyway. 1512 */ 1513 if (unlikely(sk->sk_forward_alloc >= 1 << 21)) 1514 __sk_mem_reclaim(sk, 1 << 20); 1515 } 1516 1517 DECLARE_STATIC_KEY_FALSE(tcp_tx_skb_cache_key); 1518 static inline void sk_wmem_free_skb(struct sock *sk, struct sk_buff *skb) 1519 { 1520 sock_set_flag(sk, SOCK_QUEUE_SHRUNK); 1521 sk_wmem_queued_add(sk, -skb->truesize); 1522 sk_mem_uncharge(sk, skb->truesize); 1523 if (static_branch_unlikely(&tcp_tx_skb_cache_key) && 1524 !sk->sk_tx_skb_cache && !skb_cloned(skb)) { 1525 skb_ext_reset(skb); 1526 skb_zcopy_clear(skb, true); 1527 sk->sk_tx_skb_cache = skb; 1528 return; 1529 } 1530 __kfree_skb(skb); 1531 } 1532 1533 static inline void sock_release_ownership(struct sock *sk) 1534 { 1535 if (sk->sk_lock.owned) { 1536 sk->sk_lock.owned = 0; 1537 1538 /* The sk_lock has mutex_unlock() semantics: */ 1539 mutex_release(&sk->sk_lock.dep_map, _RET_IP_); 1540 } 1541 } 1542 1543 /* 1544 * Macro so as to not evaluate some arguments when 1545 * lockdep is not enabled. 1546 * 1547 * Mark both the sk_lock and the sk_lock.slock as a 1548 * per-address-family lock class. 1549 */ 1550 #define sock_lock_init_class_and_name(sk, sname, skey, name, key) \ 1551 do { \ 1552 sk->sk_lock.owned = 0; \ 1553 init_waitqueue_head(&sk->sk_lock.wq); \ 1554 spin_lock_init(&(sk)->sk_lock.slock); \ 1555 debug_check_no_locks_freed((void *)&(sk)->sk_lock, \ 1556 sizeof((sk)->sk_lock)); \ 1557 lockdep_set_class_and_name(&(sk)->sk_lock.slock, \ 1558 (skey), (sname)); \ 1559 lockdep_init_map(&(sk)->sk_lock.dep_map, (name), (key), 0); \ 1560 } while (0) 1561 1562 #ifdef CONFIG_LOCKDEP 1563 static inline bool lockdep_sock_is_held(const struct sock *sk) 1564 { 1565 return lockdep_is_held(&sk->sk_lock) || 1566 lockdep_is_held(&sk->sk_lock.slock); 1567 } 1568 #endif 1569 1570 void lock_sock_nested(struct sock *sk, int subclass); 1571 1572 static inline void lock_sock(struct sock *sk) 1573 { 1574 lock_sock_nested(sk, 0); 1575 } 1576 1577 void __release_sock(struct sock *sk); 1578 void release_sock(struct sock *sk); 1579 1580 /* BH context may only use the following locking interface. */ 1581 #define bh_lock_sock(__sk) spin_lock(&((__sk)->sk_lock.slock)) 1582 #define bh_lock_sock_nested(__sk) \ 1583 spin_lock_nested(&((__sk)->sk_lock.slock), \ 1584 SINGLE_DEPTH_NESTING) 1585 #define bh_unlock_sock(__sk) spin_unlock(&((__sk)->sk_lock.slock)) 1586 1587 bool lock_sock_fast(struct sock *sk); 1588 /** 1589 * unlock_sock_fast - complement of lock_sock_fast 1590 * @sk: socket 1591 * @slow: slow mode 1592 * 1593 * fast unlock socket for user context. 1594 * If slow mode is on, we call regular release_sock() 1595 */ 1596 static inline void unlock_sock_fast(struct sock *sk, bool slow) 1597 { 1598 if (slow) 1599 release_sock(sk); 1600 else 1601 spin_unlock_bh(&sk->sk_lock.slock); 1602 } 1603 1604 /* Used by processes to "lock" a socket state, so that 1605 * interrupts and bottom half handlers won't change it 1606 * from under us. It essentially blocks any incoming 1607 * packets, so that we won't get any new data or any 1608 * packets that change the state of the socket. 1609 * 1610 * While locked, BH processing will add new packets to 1611 * the backlog queue. This queue is processed by the 1612 * owner of the socket lock right before it is released. 1613 * 1614 * Since ~2.3.5 it is also exclusive sleep lock serializing 1615 * accesses from user process context. 1616 */ 1617 1618 static inline void sock_owned_by_me(const struct sock *sk) 1619 { 1620 #ifdef CONFIG_LOCKDEP 1621 WARN_ON_ONCE(!lockdep_sock_is_held(sk) && debug_locks); 1622 #endif 1623 } 1624 1625 static inline bool sock_owned_by_user(const struct sock *sk) 1626 { 1627 sock_owned_by_me(sk); 1628 return sk->sk_lock.owned; 1629 } 1630 1631 static inline bool sock_owned_by_user_nocheck(const struct sock *sk) 1632 { 1633 return sk->sk_lock.owned; 1634 } 1635 1636 /* no reclassification while locks are held */ 1637 static inline bool sock_allow_reclassification(const struct sock *csk) 1638 { 1639 struct sock *sk = (struct sock *)csk; 1640 1641 return !sk->sk_lock.owned && !spin_is_locked(&sk->sk_lock.slock); 1642 } 1643 1644 struct sock *sk_alloc(struct net *net, int family, gfp_t priority, 1645 struct proto *prot, int kern); 1646 void sk_free(struct sock *sk); 1647 void sk_destruct(struct sock *sk); 1648 struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority); 1649 void sk_free_unlock_clone(struct sock *sk); 1650 1651 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force, 1652 gfp_t priority); 1653 void __sock_wfree(struct sk_buff *skb); 1654 void sock_wfree(struct sk_buff *skb); 1655 struct sk_buff *sock_omalloc(struct sock *sk, unsigned long size, 1656 gfp_t priority); 1657 void skb_orphan_partial(struct sk_buff *skb); 1658 void sock_rfree(struct sk_buff *skb); 1659 void sock_efree(struct sk_buff *skb); 1660 #ifdef CONFIG_INET 1661 void sock_edemux(struct sk_buff *skb); 1662 #else 1663 #define sock_edemux sock_efree 1664 #endif 1665 1666 int sock_setsockopt(struct socket *sock, int level, int op, 1667 char __user *optval, unsigned int optlen); 1668 1669 int sock_getsockopt(struct socket *sock, int level, int op, 1670 char __user *optval, int __user *optlen); 1671 int sock_gettstamp(struct socket *sock, void __user *userstamp, 1672 bool timeval, bool time32); 1673 struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size, 1674 int noblock, int *errcode); 1675 struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len, 1676 unsigned long data_len, int noblock, 1677 int *errcode, int max_page_order); 1678 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority); 1679 void sock_kfree_s(struct sock *sk, void *mem, int size); 1680 void sock_kzfree_s(struct sock *sk, void *mem, int size); 1681 void sk_send_sigurg(struct sock *sk); 1682 1683 struct sockcm_cookie { 1684 u64 transmit_time; 1685 u32 mark; 1686 u16 tsflags; 1687 }; 1688 1689 static inline void sockcm_init(struct sockcm_cookie *sockc, 1690 const struct sock *sk) 1691 { 1692 *sockc = (struct sockcm_cookie) { .tsflags = sk->sk_tsflags }; 1693 } 1694 1695 int __sock_cmsg_send(struct sock *sk, struct msghdr *msg, struct cmsghdr *cmsg, 1696 struct sockcm_cookie *sockc); 1697 int sock_cmsg_send(struct sock *sk, struct msghdr *msg, 1698 struct sockcm_cookie *sockc); 1699 1700 /* 1701 * Functions to fill in entries in struct proto_ops when a protocol 1702 * does not implement a particular function. 1703 */ 1704 int sock_no_bind(struct socket *, struct sockaddr *, int); 1705 int sock_no_connect(struct socket *, struct sockaddr *, int, int); 1706 int sock_no_socketpair(struct socket *, struct socket *); 1707 int sock_no_accept(struct socket *, struct socket *, int, bool); 1708 int sock_no_getname(struct socket *, struct sockaddr *, int); 1709 int sock_no_ioctl(struct socket *, unsigned int, unsigned long); 1710 int sock_no_listen(struct socket *, int); 1711 int sock_no_shutdown(struct socket *, int); 1712 int sock_no_getsockopt(struct socket *, int , int, char __user *, int __user *); 1713 int sock_no_setsockopt(struct socket *, int, int, char __user *, unsigned int); 1714 int sock_no_sendmsg(struct socket *, struct msghdr *, size_t); 1715 int sock_no_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t len); 1716 int sock_no_recvmsg(struct socket *, struct msghdr *, size_t, int); 1717 int sock_no_mmap(struct file *file, struct socket *sock, 1718 struct vm_area_struct *vma); 1719 ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset, 1720 size_t size, int flags); 1721 ssize_t sock_no_sendpage_locked(struct sock *sk, struct page *page, 1722 int offset, size_t size, int flags); 1723 1724 /* 1725 * Functions to fill in entries in struct proto_ops when a protocol 1726 * uses the inet style. 1727 */ 1728 int sock_common_getsockopt(struct socket *sock, int level, int optname, 1729 char __user *optval, int __user *optlen); 1730 int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size, 1731 int flags); 1732 int sock_common_setsockopt(struct socket *sock, int level, int optname, 1733 char __user *optval, unsigned int optlen); 1734 int compat_sock_common_getsockopt(struct socket *sock, int level, 1735 int optname, char __user *optval, int __user *optlen); 1736 int compat_sock_common_setsockopt(struct socket *sock, int level, 1737 int optname, char __user *optval, unsigned int optlen); 1738 1739 void sk_common_release(struct sock *sk); 1740 1741 /* 1742 * Default socket callbacks and setup code 1743 */ 1744 1745 /* Initialise core socket variables */ 1746 void sock_init_data(struct socket *sock, struct sock *sk); 1747 1748 /* 1749 * Socket reference counting postulates. 1750 * 1751 * * Each user of socket SHOULD hold a reference count. 1752 * * Each access point to socket (an hash table bucket, reference from a list, 1753 * running timer, skb in flight MUST hold a reference count. 1754 * * When reference count hits 0, it means it will never increase back. 1755 * * When reference count hits 0, it means that no references from 1756 * outside exist to this socket and current process on current CPU 1757 * is last user and may/should destroy this socket. 1758 * * sk_free is called from any context: process, BH, IRQ. When 1759 * it is called, socket has no references from outside -> sk_free 1760 * may release descendant resources allocated by the socket, but 1761 * to the time when it is called, socket is NOT referenced by any 1762 * hash tables, lists etc. 1763 * * Packets, delivered from outside (from network or from another process) 1764 * and enqueued on receive/error queues SHOULD NOT grab reference count, 1765 * when they sit in queue. Otherwise, packets will leak to hole, when 1766 * socket is looked up by one cpu and unhasing is made by another CPU. 1767 * It is true for udp/raw, netlink (leak to receive and error queues), tcp 1768 * (leak to backlog). Packet socket does all the processing inside 1769 * BR_NETPROTO_LOCK, so that it has not this race condition. UNIX sockets 1770 * use separate SMP lock, so that they are prone too. 1771 */ 1772 1773 /* Ungrab socket and destroy it, if it was the last reference. */ 1774 static inline void sock_put(struct sock *sk) 1775 { 1776 if (refcount_dec_and_test(&sk->sk_refcnt)) 1777 sk_free(sk); 1778 } 1779 /* Generic version of sock_put(), dealing with all sockets 1780 * (TCP_TIMEWAIT, TCP_NEW_SYN_RECV, ESTABLISHED...) 1781 */ 1782 void sock_gen_put(struct sock *sk); 1783 1784 int __sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested, 1785 unsigned int trim_cap, bool refcounted); 1786 static inline int sk_receive_skb(struct sock *sk, struct sk_buff *skb, 1787 const int nested) 1788 { 1789 return __sk_receive_skb(sk, skb, nested, 1, true); 1790 } 1791 1792 static inline void sk_tx_queue_set(struct sock *sk, int tx_queue) 1793 { 1794 /* sk_tx_queue_mapping accept only upto a 16-bit value */ 1795 if (WARN_ON_ONCE((unsigned short)tx_queue >= USHRT_MAX)) 1796 return; 1797 sk->sk_tx_queue_mapping = tx_queue; 1798 } 1799 1800 #define NO_QUEUE_MAPPING USHRT_MAX 1801 1802 static inline void sk_tx_queue_clear(struct sock *sk) 1803 { 1804 sk->sk_tx_queue_mapping = NO_QUEUE_MAPPING; 1805 } 1806 1807 static inline int sk_tx_queue_get(const struct sock *sk) 1808 { 1809 if (sk && sk->sk_tx_queue_mapping != NO_QUEUE_MAPPING) 1810 return sk->sk_tx_queue_mapping; 1811 1812 return -1; 1813 } 1814 1815 static inline void sk_rx_queue_set(struct sock *sk, const struct sk_buff *skb) 1816 { 1817 #ifdef CONFIG_XPS 1818 if (skb_rx_queue_recorded(skb)) { 1819 u16 rx_queue = skb_get_rx_queue(skb); 1820 1821 if (WARN_ON_ONCE(rx_queue == NO_QUEUE_MAPPING)) 1822 return; 1823 1824 sk->sk_rx_queue_mapping = rx_queue; 1825 } 1826 #endif 1827 } 1828 1829 static inline void sk_rx_queue_clear(struct sock *sk) 1830 { 1831 #ifdef CONFIG_XPS 1832 sk->sk_rx_queue_mapping = NO_QUEUE_MAPPING; 1833 #endif 1834 } 1835 1836 #ifdef CONFIG_XPS 1837 static inline int sk_rx_queue_get(const struct sock *sk) 1838 { 1839 if (sk && sk->sk_rx_queue_mapping != NO_QUEUE_MAPPING) 1840 return sk->sk_rx_queue_mapping; 1841 1842 return -1; 1843 } 1844 #endif 1845 1846 static inline void sk_set_socket(struct sock *sk, struct socket *sock) 1847 { 1848 sk_tx_queue_clear(sk); 1849 sk->sk_socket = sock; 1850 } 1851 1852 static inline wait_queue_head_t *sk_sleep(struct sock *sk) 1853 { 1854 BUILD_BUG_ON(offsetof(struct socket_wq, wait) != 0); 1855 return &rcu_dereference_raw(sk->sk_wq)->wait; 1856 } 1857 /* Detach socket from process context. 1858 * Announce socket dead, detach it from wait queue and inode. 1859 * Note that parent inode held reference count on this struct sock, 1860 * we do not release it in this function, because protocol 1861 * probably wants some additional cleanups or even continuing 1862 * to work with this socket (TCP). 1863 */ 1864 static inline void sock_orphan(struct sock *sk) 1865 { 1866 write_lock_bh(&sk->sk_callback_lock); 1867 sock_set_flag(sk, SOCK_DEAD); 1868 sk_set_socket(sk, NULL); 1869 sk->sk_wq = NULL; 1870 write_unlock_bh(&sk->sk_callback_lock); 1871 } 1872 1873 static inline void sock_graft(struct sock *sk, struct socket *parent) 1874 { 1875 WARN_ON(parent->sk); 1876 write_lock_bh(&sk->sk_callback_lock); 1877 rcu_assign_pointer(sk->sk_wq, &parent->wq); 1878 parent->sk = sk; 1879 sk_set_socket(sk, parent); 1880 sk->sk_uid = SOCK_INODE(parent)->i_uid; 1881 security_sock_graft(sk, parent); 1882 write_unlock_bh(&sk->sk_callback_lock); 1883 } 1884 1885 kuid_t sock_i_uid(struct sock *sk); 1886 unsigned long sock_i_ino(struct sock *sk); 1887 1888 static inline kuid_t sock_net_uid(const struct net *net, const struct sock *sk) 1889 { 1890 return sk ? sk->sk_uid : make_kuid(net->user_ns, 0); 1891 } 1892 1893 static inline u32 net_tx_rndhash(void) 1894 { 1895 u32 v = prandom_u32(); 1896 1897 return v ?: 1; 1898 } 1899 1900 static inline void sk_set_txhash(struct sock *sk) 1901 { 1902 sk->sk_txhash = net_tx_rndhash(); 1903 } 1904 1905 static inline void sk_rethink_txhash(struct sock *sk) 1906 { 1907 if (sk->sk_txhash) 1908 sk_set_txhash(sk); 1909 } 1910 1911 static inline struct dst_entry * 1912 __sk_dst_get(struct sock *sk) 1913 { 1914 return rcu_dereference_check(sk->sk_dst_cache, 1915 lockdep_sock_is_held(sk)); 1916 } 1917 1918 static inline struct dst_entry * 1919 sk_dst_get(struct sock *sk) 1920 { 1921 struct dst_entry *dst; 1922 1923 rcu_read_lock(); 1924 dst = rcu_dereference(sk->sk_dst_cache); 1925 if (dst && !atomic_inc_not_zero(&dst->__refcnt)) 1926 dst = NULL; 1927 rcu_read_unlock(); 1928 return dst; 1929 } 1930 1931 static inline void dst_negative_advice(struct sock *sk) 1932 { 1933 struct dst_entry *ndst, *dst = __sk_dst_get(sk); 1934 1935 sk_rethink_txhash(sk); 1936 1937 if (dst && dst->ops->negative_advice) { 1938 ndst = dst->ops->negative_advice(dst); 1939 1940 if (ndst != dst) { 1941 rcu_assign_pointer(sk->sk_dst_cache, ndst); 1942 sk_tx_queue_clear(sk); 1943 sk->sk_dst_pending_confirm = 0; 1944 } 1945 } 1946 } 1947 1948 static inline void 1949 __sk_dst_set(struct sock *sk, struct dst_entry *dst) 1950 { 1951 struct dst_entry *old_dst; 1952 1953 sk_tx_queue_clear(sk); 1954 sk->sk_dst_pending_confirm = 0; 1955 old_dst = rcu_dereference_protected(sk->sk_dst_cache, 1956 lockdep_sock_is_held(sk)); 1957 rcu_assign_pointer(sk->sk_dst_cache, dst); 1958 dst_release(old_dst); 1959 } 1960 1961 static inline void 1962 sk_dst_set(struct sock *sk, struct dst_entry *dst) 1963 { 1964 struct dst_entry *old_dst; 1965 1966 sk_tx_queue_clear(sk); 1967 sk->sk_dst_pending_confirm = 0; 1968 old_dst = xchg((__force struct dst_entry **)&sk->sk_dst_cache, dst); 1969 dst_release(old_dst); 1970 } 1971 1972 static inline void 1973 __sk_dst_reset(struct sock *sk) 1974 { 1975 __sk_dst_set(sk, NULL); 1976 } 1977 1978 static inline void 1979 sk_dst_reset(struct sock *sk) 1980 { 1981 sk_dst_set(sk, NULL); 1982 } 1983 1984 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie); 1985 1986 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie); 1987 1988 static inline void sk_dst_confirm(struct sock *sk) 1989 { 1990 if (!READ_ONCE(sk->sk_dst_pending_confirm)) 1991 WRITE_ONCE(sk->sk_dst_pending_confirm, 1); 1992 } 1993 1994 static inline void sock_confirm_neigh(struct sk_buff *skb, struct neighbour *n) 1995 { 1996 if (skb_get_dst_pending_confirm(skb)) { 1997 struct sock *sk = skb->sk; 1998 unsigned long now = jiffies; 1999 2000 /* avoid dirtying neighbour */ 2001 if (READ_ONCE(n->confirmed) != now) 2002 WRITE_ONCE(n->confirmed, now); 2003 if (sk && READ_ONCE(sk->sk_dst_pending_confirm)) 2004 WRITE_ONCE(sk->sk_dst_pending_confirm, 0); 2005 } 2006 } 2007 2008 bool sk_mc_loop(struct sock *sk); 2009 2010 static inline bool sk_can_gso(const struct sock *sk) 2011 { 2012 return net_gso_ok(sk->sk_route_caps, sk->sk_gso_type); 2013 } 2014 2015 void sk_setup_caps(struct sock *sk, struct dst_entry *dst); 2016 2017 static inline void sk_nocaps_add(struct sock *sk, netdev_features_t flags) 2018 { 2019 sk->sk_route_nocaps |= flags; 2020 sk->sk_route_caps &= ~flags; 2021 } 2022 2023 static inline int skb_do_copy_data_nocache(struct sock *sk, struct sk_buff *skb, 2024 struct iov_iter *from, char *to, 2025 int copy, int offset) 2026 { 2027 if (skb->ip_summed == CHECKSUM_NONE) { 2028 __wsum csum = 0; 2029 if (!csum_and_copy_from_iter_full(to, copy, &csum, from)) 2030 return -EFAULT; 2031 skb->csum = csum_block_add(skb->csum, csum, offset); 2032 } else if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY) { 2033 if (!copy_from_iter_full_nocache(to, copy, from)) 2034 return -EFAULT; 2035 } else if (!copy_from_iter_full(to, copy, from)) 2036 return -EFAULT; 2037 2038 return 0; 2039 } 2040 2041 static inline int skb_add_data_nocache(struct sock *sk, struct sk_buff *skb, 2042 struct iov_iter *from, int copy) 2043 { 2044 int err, offset = skb->len; 2045 2046 err = skb_do_copy_data_nocache(sk, skb, from, skb_put(skb, copy), 2047 copy, offset); 2048 if (err) 2049 __skb_trim(skb, offset); 2050 2051 return err; 2052 } 2053 2054 static inline int skb_copy_to_page_nocache(struct sock *sk, struct iov_iter *from, 2055 struct sk_buff *skb, 2056 struct page *page, 2057 int off, int copy) 2058 { 2059 int err; 2060 2061 err = skb_do_copy_data_nocache(sk, skb, from, page_address(page) + off, 2062 copy, skb->len); 2063 if (err) 2064 return err; 2065 2066 skb->len += copy; 2067 skb->data_len += copy; 2068 skb->truesize += copy; 2069 sk_wmem_queued_add(sk, copy); 2070 sk_mem_charge(sk, copy); 2071 return 0; 2072 } 2073 2074 /** 2075 * sk_wmem_alloc_get - returns write allocations 2076 * @sk: socket 2077 * 2078 * Return: sk_wmem_alloc minus initial offset of one 2079 */ 2080 static inline int sk_wmem_alloc_get(const struct sock *sk) 2081 { 2082 return refcount_read(&sk->sk_wmem_alloc) - 1; 2083 } 2084 2085 /** 2086 * sk_rmem_alloc_get - returns read allocations 2087 * @sk: socket 2088 * 2089 * Return: sk_rmem_alloc 2090 */ 2091 static inline int sk_rmem_alloc_get(const struct sock *sk) 2092 { 2093 return atomic_read(&sk->sk_rmem_alloc); 2094 } 2095 2096 /** 2097 * sk_has_allocations - check if allocations are outstanding 2098 * @sk: socket 2099 * 2100 * Return: true if socket has write or read allocations 2101 */ 2102 static inline bool sk_has_allocations(const struct sock *sk) 2103 { 2104 return sk_wmem_alloc_get(sk) || sk_rmem_alloc_get(sk); 2105 } 2106 2107 /** 2108 * skwq_has_sleeper - check if there are any waiting processes 2109 * @wq: struct socket_wq 2110 * 2111 * Return: true if socket_wq has waiting processes 2112 * 2113 * The purpose of the skwq_has_sleeper and sock_poll_wait is to wrap the memory 2114 * barrier call. They were added due to the race found within the tcp code. 2115 * 2116 * Consider following tcp code paths:: 2117 * 2118 * CPU1 CPU2 2119 * sys_select receive packet 2120 * ... ... 2121 * __add_wait_queue update tp->rcv_nxt 2122 * ... ... 2123 * tp->rcv_nxt check sock_def_readable 2124 * ... { 2125 * schedule rcu_read_lock(); 2126 * wq = rcu_dereference(sk->sk_wq); 2127 * if (wq && waitqueue_active(&wq->wait)) 2128 * wake_up_interruptible(&wq->wait) 2129 * ... 2130 * } 2131 * 2132 * The race for tcp fires when the __add_wait_queue changes done by CPU1 stay 2133 * in its cache, and so does the tp->rcv_nxt update on CPU2 side. The CPU1 2134 * could then endup calling schedule and sleep forever if there are no more 2135 * data on the socket. 2136 * 2137 */ 2138 static inline bool skwq_has_sleeper(struct socket_wq *wq) 2139 { 2140 return wq && wq_has_sleeper(&wq->wait); 2141 } 2142 2143 /** 2144 * sock_poll_wait - place memory barrier behind the poll_wait call. 2145 * @filp: file 2146 * @sock: socket to wait on 2147 * @p: poll_table 2148 * 2149 * See the comments in the wq_has_sleeper function. 2150 */ 2151 static inline void sock_poll_wait(struct file *filp, struct socket *sock, 2152 poll_table *p) 2153 { 2154 if (!poll_does_not_wait(p)) { 2155 poll_wait(filp, &sock->wq.wait, p); 2156 /* We need to be sure we are in sync with the 2157 * socket flags modification. 2158 * 2159 * This memory barrier is paired in the wq_has_sleeper. 2160 */ 2161 smp_mb(); 2162 } 2163 } 2164 2165 static inline void skb_set_hash_from_sk(struct sk_buff *skb, struct sock *sk) 2166 { 2167 if (sk->sk_txhash) { 2168 skb->l4_hash = 1; 2169 skb->hash = sk->sk_txhash; 2170 } 2171 } 2172 2173 void skb_set_owner_w(struct sk_buff *skb, struct sock *sk); 2174 2175 /* 2176 * Queue a received datagram if it will fit. Stream and sequenced 2177 * protocols can't normally use this as they need to fit buffers in 2178 * and play with them. 2179 * 2180 * Inlined as it's very short and called for pretty much every 2181 * packet ever received. 2182 */ 2183 static inline void skb_set_owner_r(struct sk_buff *skb, struct sock *sk) 2184 { 2185 skb_orphan(skb); 2186 skb->sk = sk; 2187 skb->destructor = sock_rfree; 2188 atomic_add(skb->truesize, &sk->sk_rmem_alloc); 2189 sk_mem_charge(sk, skb->truesize); 2190 } 2191 2192 void sk_reset_timer(struct sock *sk, struct timer_list *timer, 2193 unsigned long expires); 2194 2195 void sk_stop_timer(struct sock *sk, struct timer_list *timer); 2196 2197 int __sk_queue_drop_skb(struct sock *sk, struct sk_buff_head *sk_queue, 2198 struct sk_buff *skb, unsigned int flags, 2199 void (*destructor)(struct sock *sk, 2200 struct sk_buff *skb)); 2201 int __sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb); 2202 int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb); 2203 2204 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb); 2205 struct sk_buff *sock_dequeue_err_skb(struct sock *sk); 2206 2207 /* 2208 * Recover an error report and clear atomically 2209 */ 2210 2211 static inline int sock_error(struct sock *sk) 2212 { 2213 int err; 2214 if (likely(!sk->sk_err)) 2215 return 0; 2216 err = xchg(&sk->sk_err, 0); 2217 return -err; 2218 } 2219 2220 static inline unsigned long sock_wspace(struct sock *sk) 2221 { 2222 int amt = 0; 2223 2224 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) { 2225 amt = sk->sk_sndbuf - refcount_read(&sk->sk_wmem_alloc); 2226 if (amt < 0) 2227 amt = 0; 2228 } 2229 return amt; 2230 } 2231 2232 /* Note: 2233 * We use sk->sk_wq_raw, from contexts knowing this 2234 * pointer is not NULL and cannot disappear/change. 2235 */ 2236 static inline void sk_set_bit(int nr, struct sock *sk) 2237 { 2238 if ((nr == SOCKWQ_ASYNC_NOSPACE || nr == SOCKWQ_ASYNC_WAITDATA) && 2239 !sock_flag(sk, SOCK_FASYNC)) 2240 return; 2241 2242 set_bit(nr, &sk->sk_wq_raw->flags); 2243 } 2244 2245 static inline void sk_clear_bit(int nr, struct sock *sk) 2246 { 2247 if ((nr == SOCKWQ_ASYNC_NOSPACE || nr == SOCKWQ_ASYNC_WAITDATA) && 2248 !sock_flag(sk, SOCK_FASYNC)) 2249 return; 2250 2251 clear_bit(nr, &sk->sk_wq_raw->flags); 2252 } 2253 2254 static inline void sk_wake_async(const struct sock *sk, int how, int band) 2255 { 2256 if (sock_flag(sk, SOCK_FASYNC)) { 2257 rcu_read_lock(); 2258 sock_wake_async(rcu_dereference(sk->sk_wq), how, band); 2259 rcu_read_unlock(); 2260 } 2261 } 2262 2263 /* Since sk_{r,w}mem_alloc sums skb->truesize, even a small frame might 2264 * need sizeof(sk_buff) + MTU + padding, unless net driver perform copybreak. 2265 * Note: for send buffers, TCP works better if we can build two skbs at 2266 * minimum. 2267 */ 2268 #define TCP_SKB_MIN_TRUESIZE (2048 + SKB_DATA_ALIGN(sizeof(struct sk_buff))) 2269 2270 #define SOCK_MIN_SNDBUF (TCP_SKB_MIN_TRUESIZE * 2) 2271 #define SOCK_MIN_RCVBUF TCP_SKB_MIN_TRUESIZE 2272 2273 static inline void sk_stream_moderate_sndbuf(struct sock *sk) 2274 { 2275 u32 val; 2276 2277 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK) 2278 return; 2279 2280 val = min(sk->sk_sndbuf, sk->sk_wmem_queued >> 1); 2281 2282 WRITE_ONCE(sk->sk_sndbuf, max_t(u32, val, SOCK_MIN_SNDBUF)); 2283 } 2284 2285 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp, 2286 bool force_schedule); 2287 2288 /** 2289 * sk_page_frag - return an appropriate page_frag 2290 * @sk: socket 2291 * 2292 * Use the per task page_frag instead of the per socket one for 2293 * optimization when we know that we're in the normal context and owns 2294 * everything that's associated with %current. 2295 * 2296 * gfpflags_allow_blocking() isn't enough here as direct reclaim may nest 2297 * inside other socket operations and end up recursing into sk_page_frag() 2298 * while it's already in use. 2299 * 2300 * Return: a per task page_frag if context allows that, 2301 * otherwise a per socket one. 2302 */ 2303 static inline struct page_frag *sk_page_frag(struct sock *sk) 2304 { 2305 if (gfpflags_normal_context(sk->sk_allocation)) 2306 return ¤t->task_frag; 2307 2308 return &sk->sk_frag; 2309 } 2310 2311 bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag); 2312 2313 /* 2314 * Default write policy as shown to user space via poll/select/SIGIO 2315 */ 2316 static inline bool sock_writeable(const struct sock *sk) 2317 { 2318 return refcount_read(&sk->sk_wmem_alloc) < (READ_ONCE(sk->sk_sndbuf) >> 1); 2319 } 2320 2321 static inline gfp_t gfp_any(void) 2322 { 2323 return in_softirq() ? GFP_ATOMIC : GFP_KERNEL; 2324 } 2325 2326 static inline long sock_rcvtimeo(const struct sock *sk, bool noblock) 2327 { 2328 return noblock ? 0 : sk->sk_rcvtimeo; 2329 } 2330 2331 static inline long sock_sndtimeo(const struct sock *sk, bool noblock) 2332 { 2333 return noblock ? 0 : sk->sk_sndtimeo; 2334 } 2335 2336 static inline int sock_rcvlowat(const struct sock *sk, int waitall, int len) 2337 { 2338 int v = waitall ? len : min_t(int, READ_ONCE(sk->sk_rcvlowat), len); 2339 2340 return v ?: 1; 2341 } 2342 2343 /* Alas, with timeout socket operations are not restartable. 2344 * Compare this to poll(). 2345 */ 2346 static inline int sock_intr_errno(long timeo) 2347 { 2348 return timeo == MAX_SCHEDULE_TIMEOUT ? -ERESTARTSYS : -EINTR; 2349 } 2350 2351 struct sock_skb_cb { 2352 u32 dropcount; 2353 }; 2354 2355 /* Store sock_skb_cb at the end of skb->cb[] so protocol families 2356 * using skb->cb[] would keep using it directly and utilize its 2357 * alignement guarantee. 2358 */ 2359 #define SOCK_SKB_CB_OFFSET ((sizeof_field(struct sk_buff, cb) - \ 2360 sizeof(struct sock_skb_cb))) 2361 2362 #define SOCK_SKB_CB(__skb) ((struct sock_skb_cb *)((__skb)->cb + \ 2363 SOCK_SKB_CB_OFFSET)) 2364 2365 #define sock_skb_cb_check_size(size) \ 2366 BUILD_BUG_ON((size) > SOCK_SKB_CB_OFFSET) 2367 2368 static inline void 2369 sock_skb_set_dropcount(const struct sock *sk, struct sk_buff *skb) 2370 { 2371 SOCK_SKB_CB(skb)->dropcount = sock_flag(sk, SOCK_RXQ_OVFL) ? 2372 atomic_read(&sk->sk_drops) : 0; 2373 } 2374 2375 static inline void sk_drops_add(struct sock *sk, const struct sk_buff *skb) 2376 { 2377 int segs = max_t(u16, 1, skb_shinfo(skb)->gso_segs); 2378 2379 atomic_add(segs, &sk->sk_drops); 2380 } 2381 2382 static inline ktime_t sock_read_timestamp(struct sock *sk) 2383 { 2384 #if BITS_PER_LONG==32 2385 unsigned int seq; 2386 ktime_t kt; 2387 2388 do { 2389 seq = read_seqbegin(&sk->sk_stamp_seq); 2390 kt = sk->sk_stamp; 2391 } while (read_seqretry(&sk->sk_stamp_seq, seq)); 2392 2393 return kt; 2394 #else 2395 return READ_ONCE(sk->sk_stamp); 2396 #endif 2397 } 2398 2399 static inline void sock_write_timestamp(struct sock *sk, ktime_t kt) 2400 { 2401 #if BITS_PER_LONG==32 2402 write_seqlock(&sk->sk_stamp_seq); 2403 sk->sk_stamp = kt; 2404 write_sequnlock(&sk->sk_stamp_seq); 2405 #else 2406 WRITE_ONCE(sk->sk_stamp, kt); 2407 #endif 2408 } 2409 2410 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk, 2411 struct sk_buff *skb); 2412 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk, 2413 struct sk_buff *skb); 2414 2415 static inline void 2416 sock_recv_timestamp(struct msghdr *msg, struct sock *sk, struct sk_buff *skb) 2417 { 2418 ktime_t kt = skb->tstamp; 2419 struct skb_shared_hwtstamps *hwtstamps = skb_hwtstamps(skb); 2420 2421 /* 2422 * generate control messages if 2423 * - receive time stamping in software requested 2424 * - software time stamp available and wanted 2425 * - hardware time stamps available and wanted 2426 */ 2427 if (sock_flag(sk, SOCK_RCVTSTAMP) || 2428 (sk->sk_tsflags & SOF_TIMESTAMPING_RX_SOFTWARE) || 2429 (kt && sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) || 2430 (hwtstamps->hwtstamp && 2431 (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE))) 2432 __sock_recv_timestamp(msg, sk, skb); 2433 else 2434 sock_write_timestamp(sk, kt); 2435 2436 if (sock_flag(sk, SOCK_WIFI_STATUS) && skb->wifi_acked_valid) 2437 __sock_recv_wifi_status(msg, sk, skb); 2438 } 2439 2440 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk, 2441 struct sk_buff *skb); 2442 2443 #define SK_DEFAULT_STAMP (-1L * NSEC_PER_SEC) 2444 static inline void sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk, 2445 struct sk_buff *skb) 2446 { 2447 #define FLAGS_TS_OR_DROPS ((1UL << SOCK_RXQ_OVFL) | \ 2448 (1UL << SOCK_RCVTSTAMP)) 2449 #define TSFLAGS_ANY (SOF_TIMESTAMPING_SOFTWARE | \ 2450 SOF_TIMESTAMPING_RAW_HARDWARE) 2451 2452 if (sk->sk_flags & FLAGS_TS_OR_DROPS || sk->sk_tsflags & TSFLAGS_ANY) 2453 __sock_recv_ts_and_drops(msg, sk, skb); 2454 else if (unlikely(sock_flag(sk, SOCK_TIMESTAMP))) 2455 sock_write_timestamp(sk, skb->tstamp); 2456 else if (unlikely(sk->sk_stamp == SK_DEFAULT_STAMP)) 2457 sock_write_timestamp(sk, 0); 2458 } 2459 2460 void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags); 2461 2462 /** 2463 * _sock_tx_timestamp - checks whether the outgoing packet is to be time stamped 2464 * @sk: socket sending this packet 2465 * @tsflags: timestamping flags to use 2466 * @tx_flags: completed with instructions for time stamping 2467 * @tskey: filled in with next sk_tskey (not for TCP, which uses seqno) 2468 * 2469 * Note: callers should take care of initial ``*tx_flags`` value (usually 0) 2470 */ 2471 static inline void _sock_tx_timestamp(struct sock *sk, __u16 tsflags, 2472 __u8 *tx_flags, __u32 *tskey) 2473 { 2474 if (unlikely(tsflags)) { 2475 __sock_tx_timestamp(tsflags, tx_flags); 2476 if (tsflags & SOF_TIMESTAMPING_OPT_ID && tskey && 2477 tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK) 2478 *tskey = sk->sk_tskey++; 2479 } 2480 if (unlikely(sock_flag(sk, SOCK_WIFI_STATUS))) 2481 *tx_flags |= SKBTX_WIFI_STATUS; 2482 } 2483 2484 static inline void sock_tx_timestamp(struct sock *sk, __u16 tsflags, 2485 __u8 *tx_flags) 2486 { 2487 _sock_tx_timestamp(sk, tsflags, tx_flags, NULL); 2488 } 2489 2490 static inline void skb_setup_tx_timestamp(struct sk_buff *skb, __u16 tsflags) 2491 { 2492 _sock_tx_timestamp(skb->sk, tsflags, &skb_shinfo(skb)->tx_flags, 2493 &skb_shinfo(skb)->tskey); 2494 } 2495 2496 DECLARE_STATIC_KEY_FALSE(tcp_rx_skb_cache_key); 2497 /** 2498 * sk_eat_skb - Release a skb if it is no longer needed 2499 * @sk: socket to eat this skb from 2500 * @skb: socket buffer to eat 2501 * 2502 * This routine must be called with interrupts disabled or with the socket 2503 * locked so that the sk_buff queue operation is ok. 2504 */ 2505 static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb) 2506 { 2507 __skb_unlink(skb, &sk->sk_receive_queue); 2508 if (static_branch_unlikely(&tcp_rx_skb_cache_key) && 2509 !sk->sk_rx_skb_cache) { 2510 sk->sk_rx_skb_cache = skb; 2511 skb_orphan(skb); 2512 return; 2513 } 2514 __kfree_skb(skb); 2515 } 2516 2517 static inline 2518 struct net *sock_net(const struct sock *sk) 2519 { 2520 return read_pnet(&sk->sk_net); 2521 } 2522 2523 static inline 2524 void sock_net_set(struct sock *sk, struct net *net) 2525 { 2526 write_pnet(&sk->sk_net, net); 2527 } 2528 2529 static inline struct sock *skb_steal_sock(struct sk_buff *skb) 2530 { 2531 if (skb->sk) { 2532 struct sock *sk = skb->sk; 2533 2534 skb->destructor = NULL; 2535 skb->sk = NULL; 2536 return sk; 2537 } 2538 return NULL; 2539 } 2540 2541 /* This helper checks if a socket is a full socket, 2542 * ie _not_ a timewait or request socket. 2543 */ 2544 static inline bool sk_fullsock(const struct sock *sk) 2545 { 2546 return (1 << sk->sk_state) & ~(TCPF_TIME_WAIT | TCPF_NEW_SYN_RECV); 2547 } 2548 2549 /* Checks if this SKB belongs to an HW offloaded socket 2550 * and whether any SW fallbacks are required based on dev. 2551 * Check decrypted mark in case skb_orphan() cleared socket. 2552 */ 2553 static inline struct sk_buff *sk_validate_xmit_skb(struct sk_buff *skb, 2554 struct net_device *dev) 2555 { 2556 #ifdef CONFIG_SOCK_VALIDATE_XMIT 2557 struct sock *sk = skb->sk; 2558 2559 if (sk && sk_fullsock(sk) && sk->sk_validate_xmit_skb) { 2560 skb = sk->sk_validate_xmit_skb(sk, dev, skb); 2561 #ifdef CONFIG_TLS_DEVICE 2562 } else if (unlikely(skb->decrypted)) { 2563 pr_warn_ratelimited("unencrypted skb with no associated socket - dropping\n"); 2564 kfree_skb(skb); 2565 skb = NULL; 2566 #endif 2567 } 2568 #endif 2569 2570 return skb; 2571 } 2572 2573 /* This helper checks if a socket is a LISTEN or NEW_SYN_RECV 2574 * SYNACK messages can be attached to either ones (depending on SYNCOOKIE) 2575 */ 2576 static inline bool sk_listener(const struct sock *sk) 2577 { 2578 return (1 << sk->sk_state) & (TCPF_LISTEN | TCPF_NEW_SYN_RECV); 2579 } 2580 2581 void sock_enable_timestamp(struct sock *sk, enum sock_flags flag); 2582 int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len, int level, 2583 int type); 2584 2585 bool sk_ns_capable(const struct sock *sk, 2586 struct user_namespace *user_ns, int cap); 2587 bool sk_capable(const struct sock *sk, int cap); 2588 bool sk_net_capable(const struct sock *sk, int cap); 2589 2590 void sk_get_meminfo(const struct sock *sk, u32 *meminfo); 2591 2592 /* Take into consideration the size of the struct sk_buff overhead in the 2593 * determination of these values, since that is non-constant across 2594 * platforms. This makes socket queueing behavior and performance 2595 * not depend upon such differences. 2596 */ 2597 #define _SK_MEM_PACKETS 256 2598 #define _SK_MEM_OVERHEAD SKB_TRUESIZE(256) 2599 #define SK_WMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS) 2600 #define SK_RMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS) 2601 2602 extern __u32 sysctl_wmem_max; 2603 extern __u32 sysctl_rmem_max; 2604 2605 extern int sysctl_tstamp_allow_data; 2606 extern int sysctl_optmem_max; 2607 2608 extern __u32 sysctl_wmem_default; 2609 extern __u32 sysctl_rmem_default; 2610 2611 DECLARE_STATIC_KEY_FALSE(net_high_order_alloc_disable_key); 2612 2613 static inline int sk_get_wmem0(const struct sock *sk, const struct proto *proto) 2614 { 2615 /* Does this proto have per netns sysctl_wmem ? */ 2616 if (proto->sysctl_wmem_offset) 2617 return *(int *)((void *)sock_net(sk) + proto->sysctl_wmem_offset); 2618 2619 return *proto->sysctl_wmem; 2620 } 2621 2622 static inline int sk_get_rmem0(const struct sock *sk, const struct proto *proto) 2623 { 2624 /* Does this proto have per netns sysctl_rmem ? */ 2625 if (proto->sysctl_rmem_offset) 2626 return *(int *)((void *)sock_net(sk) + proto->sysctl_rmem_offset); 2627 2628 return *proto->sysctl_rmem; 2629 } 2630 2631 /* Default TCP Small queue budget is ~1 ms of data (1sec >> 10) 2632 * Some wifi drivers need to tweak it to get more chunks. 2633 * They can use this helper from their ndo_start_xmit() 2634 */ 2635 static inline void sk_pacing_shift_update(struct sock *sk, int val) 2636 { 2637 if (!sk || !sk_fullsock(sk) || READ_ONCE(sk->sk_pacing_shift) == val) 2638 return; 2639 WRITE_ONCE(sk->sk_pacing_shift, val); 2640 } 2641 2642 /* if a socket is bound to a device, check that the given device 2643 * index is either the same or that the socket is bound to an L3 2644 * master device and the given device index is also enslaved to 2645 * that L3 master 2646 */ 2647 static inline bool sk_dev_equal_l3scope(struct sock *sk, int dif) 2648 { 2649 int mdif; 2650 2651 if (!sk->sk_bound_dev_if || sk->sk_bound_dev_if == dif) 2652 return true; 2653 2654 mdif = l3mdev_master_ifindex_by_index(sock_net(sk), dif); 2655 if (mdif && mdif == sk->sk_bound_dev_if) 2656 return true; 2657 2658 return false; 2659 } 2660 2661 void sock_def_readable(struct sock *sk); 2662 2663 #endif /* _SOCK_H */ 2664