xref: /linux/include/net/sock.h (revision 93a3545d812ae7cfe4426374e00a7d8f64ac02e0)
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Definitions for the AF_INET socket handler.
8  *
9  * Version:	@(#)sock.h	1.0.4	05/13/93
10  *
11  * Authors:	Ross Biro
12  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
13  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
14  *		Florian La Roche <flla@stud.uni-sb.de>
15  *
16  * Fixes:
17  *		Alan Cox	:	Volatiles in skbuff pointers. See
18  *					skbuff comments. May be overdone,
19  *					better to prove they can be removed
20  *					than the reverse.
21  *		Alan Cox	:	Added a zapped field for tcp to note
22  *					a socket is reset and must stay shut up
23  *		Alan Cox	:	New fields for options
24  *	Pauline Middelink	:	identd support
25  *		Alan Cox	:	Eliminate low level recv/recvfrom
26  *		David S. Miller	:	New socket lookup architecture.
27  *              Steve Whitehouse:       Default routines for sock_ops
28  *              Arnaldo C. Melo :	removed net_pinfo, tp_pinfo and made
29  *              			protinfo be just a void pointer, as the
30  *              			protocol specific parts were moved to
31  *              			respective headers and ipv4/v6, etc now
32  *              			use private slabcaches for its socks
33  *              Pedro Hortas	:	New flags field for socket options
34  */
35 #ifndef _SOCK_H
36 #define _SOCK_H
37 
38 #include <linux/hardirq.h>
39 #include <linux/kernel.h>
40 #include <linux/list.h>
41 #include <linux/list_nulls.h>
42 #include <linux/timer.h>
43 #include <linux/cache.h>
44 #include <linux/bitops.h>
45 #include <linux/lockdep.h>
46 #include <linux/netdevice.h>
47 #include <linux/skbuff.h>	/* struct sk_buff */
48 #include <linux/mm.h>
49 #include <linux/security.h>
50 #include <linux/slab.h>
51 #include <linux/uaccess.h>
52 #include <linux/page_counter.h>
53 #include <linux/memcontrol.h>
54 #include <linux/static_key.h>
55 #include <linux/sched.h>
56 #include <linux/wait.h>
57 #include <linux/cgroup-defs.h>
58 #include <linux/rbtree.h>
59 #include <linux/filter.h>
60 #include <linux/rculist_nulls.h>
61 #include <linux/poll.h>
62 
63 #include <linux/atomic.h>
64 #include <linux/refcount.h>
65 #include <net/dst.h>
66 #include <net/checksum.h>
67 #include <net/tcp_states.h>
68 #include <linux/net_tstamp.h>
69 #include <net/l3mdev.h>
70 
71 /*
72  * This structure really needs to be cleaned up.
73  * Most of it is for TCP, and not used by any of
74  * the other protocols.
75  */
76 
77 /* Define this to get the SOCK_DBG debugging facility. */
78 #define SOCK_DEBUGGING
79 #ifdef SOCK_DEBUGGING
80 #define SOCK_DEBUG(sk, msg...) do { if ((sk) && sock_flag((sk), SOCK_DBG)) \
81 					printk(KERN_DEBUG msg); } while (0)
82 #else
83 /* Validate arguments and do nothing */
84 static inline __printf(2, 3)
85 void SOCK_DEBUG(const struct sock *sk, const char *msg, ...)
86 {
87 }
88 #endif
89 
90 /* This is the per-socket lock.  The spinlock provides a synchronization
91  * between user contexts and software interrupt processing, whereas the
92  * mini-semaphore synchronizes multiple users amongst themselves.
93  */
94 typedef struct {
95 	spinlock_t		slock;
96 	int			owned;
97 	wait_queue_head_t	wq;
98 	/*
99 	 * We express the mutex-alike socket_lock semantics
100 	 * to the lock validator by explicitly managing
101 	 * the slock as a lock variant (in addition to
102 	 * the slock itself):
103 	 */
104 #ifdef CONFIG_DEBUG_LOCK_ALLOC
105 	struct lockdep_map dep_map;
106 #endif
107 } socket_lock_t;
108 
109 struct sock;
110 struct proto;
111 struct net;
112 
113 typedef __u32 __bitwise __portpair;
114 typedef __u64 __bitwise __addrpair;
115 
116 /**
117  *	struct sock_common - minimal network layer representation of sockets
118  *	@skc_daddr: Foreign IPv4 addr
119  *	@skc_rcv_saddr: Bound local IPv4 addr
120  *	@skc_addrpair: 8-byte-aligned __u64 union of @skc_daddr & @skc_rcv_saddr
121  *	@skc_hash: hash value used with various protocol lookup tables
122  *	@skc_u16hashes: two u16 hash values used by UDP lookup tables
123  *	@skc_dport: placeholder for inet_dport/tw_dport
124  *	@skc_num: placeholder for inet_num/tw_num
125  *	@skc_portpair: __u32 union of @skc_dport & @skc_num
126  *	@skc_family: network address family
127  *	@skc_state: Connection state
128  *	@skc_reuse: %SO_REUSEADDR setting
129  *	@skc_reuseport: %SO_REUSEPORT setting
130  *	@skc_ipv6only: socket is IPV6 only
131  *	@skc_net_refcnt: socket is using net ref counting
132  *	@skc_bound_dev_if: bound device index if != 0
133  *	@skc_bind_node: bind hash linkage for various protocol lookup tables
134  *	@skc_portaddr_node: second hash linkage for UDP/UDP-Lite protocol
135  *	@skc_prot: protocol handlers inside a network family
136  *	@skc_net: reference to the network namespace of this socket
137  *	@skc_v6_daddr: IPV6 destination address
138  *	@skc_v6_rcv_saddr: IPV6 source address
139  *	@skc_cookie: socket's cookie value
140  *	@skc_node: main hash linkage for various protocol lookup tables
141  *	@skc_nulls_node: main hash linkage for TCP/UDP/UDP-Lite protocol
142  *	@skc_tx_queue_mapping: tx queue number for this connection
143  *	@skc_rx_queue_mapping: rx queue number for this connection
144  *	@skc_flags: place holder for sk_flags
145  *		%SO_LINGER (l_onoff), %SO_BROADCAST, %SO_KEEPALIVE,
146  *		%SO_OOBINLINE settings, %SO_TIMESTAMPING settings
147  *	@skc_listener: connection request listener socket (aka rsk_listener)
148  *		[union with @skc_flags]
149  *	@skc_tw_dr: (aka tw_dr) ptr to &struct inet_timewait_death_row
150  *		[union with @skc_flags]
151  *	@skc_incoming_cpu: record/match cpu processing incoming packets
152  *	@skc_rcv_wnd: (aka rsk_rcv_wnd) TCP receive window size (possibly scaled)
153  *		[union with @skc_incoming_cpu]
154  *	@skc_tw_rcv_nxt: (aka tw_rcv_nxt) TCP window next expected seq number
155  *		[union with @skc_incoming_cpu]
156  *	@skc_refcnt: reference count
157  *
158  *	This is the minimal network layer representation of sockets, the header
159  *	for struct sock and struct inet_timewait_sock.
160  */
161 struct sock_common {
162 	/* skc_daddr and skc_rcv_saddr must be grouped on a 8 bytes aligned
163 	 * address on 64bit arches : cf INET_MATCH()
164 	 */
165 	union {
166 		__addrpair	skc_addrpair;
167 		struct {
168 			__be32	skc_daddr;
169 			__be32	skc_rcv_saddr;
170 		};
171 	};
172 	union  {
173 		unsigned int	skc_hash;
174 		__u16		skc_u16hashes[2];
175 	};
176 	/* skc_dport && skc_num must be grouped as well */
177 	union {
178 		__portpair	skc_portpair;
179 		struct {
180 			__be16	skc_dport;
181 			__u16	skc_num;
182 		};
183 	};
184 
185 	unsigned short		skc_family;
186 	volatile unsigned char	skc_state;
187 	unsigned char		skc_reuse:4;
188 	unsigned char		skc_reuseport:1;
189 	unsigned char		skc_ipv6only:1;
190 	unsigned char		skc_net_refcnt:1;
191 	int			skc_bound_dev_if;
192 	union {
193 		struct hlist_node	skc_bind_node;
194 		struct hlist_node	skc_portaddr_node;
195 	};
196 	struct proto		*skc_prot;
197 	possible_net_t		skc_net;
198 
199 #if IS_ENABLED(CONFIG_IPV6)
200 	struct in6_addr		skc_v6_daddr;
201 	struct in6_addr		skc_v6_rcv_saddr;
202 #endif
203 
204 	atomic64_t		skc_cookie;
205 
206 	/* following fields are padding to force
207 	 * offset(struct sock, sk_refcnt) == 128 on 64bit arches
208 	 * assuming IPV6 is enabled. We use this padding differently
209 	 * for different kind of 'sockets'
210 	 */
211 	union {
212 		unsigned long	skc_flags;
213 		struct sock	*skc_listener; /* request_sock */
214 		struct inet_timewait_death_row *skc_tw_dr; /* inet_timewait_sock */
215 	};
216 	/*
217 	 * fields between dontcopy_begin/dontcopy_end
218 	 * are not copied in sock_copy()
219 	 */
220 	/* private: */
221 	int			skc_dontcopy_begin[0];
222 	/* public: */
223 	union {
224 		struct hlist_node	skc_node;
225 		struct hlist_nulls_node skc_nulls_node;
226 	};
227 	unsigned short		skc_tx_queue_mapping;
228 #ifdef CONFIG_XPS
229 	unsigned short		skc_rx_queue_mapping;
230 #endif
231 	union {
232 		int		skc_incoming_cpu;
233 		u32		skc_rcv_wnd;
234 		u32		skc_tw_rcv_nxt; /* struct tcp_timewait_sock  */
235 	};
236 
237 	refcount_t		skc_refcnt;
238 	/* private: */
239 	int                     skc_dontcopy_end[0];
240 	union {
241 		u32		skc_rxhash;
242 		u32		skc_window_clamp;
243 		u32		skc_tw_snd_nxt; /* struct tcp_timewait_sock */
244 	};
245 	/* public: */
246 };
247 
248 struct bpf_sk_storage;
249 
250 /**
251   *	struct sock - network layer representation of sockets
252   *	@__sk_common: shared layout with inet_timewait_sock
253   *	@sk_shutdown: mask of %SEND_SHUTDOWN and/or %RCV_SHUTDOWN
254   *	@sk_userlocks: %SO_SNDBUF and %SO_RCVBUF settings
255   *	@sk_lock:	synchronizer
256   *	@sk_kern_sock: True if sock is using kernel lock classes
257   *	@sk_rcvbuf: size of receive buffer in bytes
258   *	@sk_wq: sock wait queue and async head
259   *	@sk_rx_dst: receive input route used by early demux
260   *	@sk_dst_cache: destination cache
261   *	@sk_dst_pending_confirm: need to confirm neighbour
262   *	@sk_policy: flow policy
263   *	@sk_rx_skb_cache: cache copy of recently accessed RX skb
264   *	@sk_receive_queue: incoming packets
265   *	@sk_wmem_alloc: transmit queue bytes committed
266   *	@sk_tsq_flags: TCP Small Queues flags
267   *	@sk_write_queue: Packet sending queue
268   *	@sk_omem_alloc: "o" is "option" or "other"
269   *	@sk_wmem_queued: persistent queue size
270   *	@sk_forward_alloc: space allocated forward
271   *	@sk_napi_id: id of the last napi context to receive data for sk
272   *	@sk_ll_usec: usecs to busypoll when there is no data
273   *	@sk_allocation: allocation mode
274   *	@sk_pacing_rate: Pacing rate (if supported by transport/packet scheduler)
275   *	@sk_pacing_status: Pacing status (requested, handled by sch_fq)
276   *	@sk_max_pacing_rate: Maximum pacing rate (%SO_MAX_PACING_RATE)
277   *	@sk_sndbuf: size of send buffer in bytes
278   *	@__sk_flags_offset: empty field used to determine location of bitfield
279   *	@sk_padding: unused element for alignment
280   *	@sk_no_check_tx: %SO_NO_CHECK setting, set checksum in TX packets
281   *	@sk_no_check_rx: allow zero checksum in RX packets
282   *	@sk_route_caps: route capabilities (e.g. %NETIF_F_TSO)
283   *	@sk_route_nocaps: forbidden route capabilities (e.g NETIF_F_GSO_MASK)
284   *	@sk_route_forced_caps: static, forced route capabilities
285   *		(set in tcp_init_sock())
286   *	@sk_gso_type: GSO type (e.g. %SKB_GSO_TCPV4)
287   *	@sk_gso_max_size: Maximum GSO segment size to build
288   *	@sk_gso_max_segs: Maximum number of GSO segments
289   *	@sk_pacing_shift: scaling factor for TCP Small Queues
290   *	@sk_lingertime: %SO_LINGER l_linger setting
291   *	@sk_backlog: always used with the per-socket spinlock held
292   *	@sk_callback_lock: used with the callbacks in the end of this struct
293   *	@sk_error_queue: rarely used
294   *	@sk_prot_creator: sk_prot of original sock creator (see ipv6_setsockopt,
295   *			  IPV6_ADDRFORM for instance)
296   *	@sk_err: last error
297   *	@sk_err_soft: errors that don't cause failure but are the cause of a
298   *		      persistent failure not just 'timed out'
299   *	@sk_drops: raw/udp drops counter
300   *	@sk_ack_backlog: current listen backlog
301   *	@sk_max_ack_backlog: listen backlog set in listen()
302   *	@sk_uid: user id of owner
303   *	@sk_priority: %SO_PRIORITY setting
304   *	@sk_type: socket type (%SOCK_STREAM, etc)
305   *	@sk_protocol: which protocol this socket belongs in this network family
306   *	@sk_peer_pid: &struct pid for this socket's peer
307   *	@sk_peer_cred: %SO_PEERCRED setting
308   *	@sk_rcvlowat: %SO_RCVLOWAT setting
309   *	@sk_rcvtimeo: %SO_RCVTIMEO setting
310   *	@sk_sndtimeo: %SO_SNDTIMEO setting
311   *	@sk_txhash: computed flow hash for use on transmit
312   *	@sk_filter: socket filtering instructions
313   *	@sk_timer: sock cleanup timer
314   *	@sk_stamp: time stamp of last packet received
315   *	@sk_stamp_seq: lock for accessing sk_stamp on 32 bit architectures only
316   *	@sk_tsflags: SO_TIMESTAMPING socket options
317   *	@sk_tskey: counter to disambiguate concurrent tstamp requests
318   *	@sk_zckey: counter to order MSG_ZEROCOPY notifications
319   *	@sk_socket: Identd and reporting IO signals
320   *	@sk_user_data: RPC layer private data
321   *	@sk_frag: cached page frag
322   *	@sk_peek_off: current peek_offset value
323   *	@sk_send_head: front of stuff to transmit
324   *	@tcp_rtx_queue: TCP re-transmit queue [union with @sk_send_head]
325   *	@sk_tx_skb_cache: cache copy of recently accessed TX skb
326   *	@sk_security: used by security modules
327   *	@sk_mark: generic packet mark
328   *	@sk_cgrp_data: cgroup data for this cgroup
329   *	@sk_memcg: this socket's memory cgroup association
330   *	@sk_write_pending: a write to stream socket waits to start
331   *	@sk_state_change: callback to indicate change in the state of the sock
332   *	@sk_data_ready: callback to indicate there is data to be processed
333   *	@sk_write_space: callback to indicate there is bf sending space available
334   *	@sk_error_report: callback to indicate errors (e.g. %MSG_ERRQUEUE)
335   *	@sk_backlog_rcv: callback to process the backlog
336   *	@sk_validate_xmit_skb: ptr to an optional validate function
337   *	@sk_destruct: called at sock freeing time, i.e. when all refcnt == 0
338   *	@sk_reuseport_cb: reuseport group container
339   *	@sk_bpf_storage: ptr to cache and control for bpf_sk_storage
340   *	@sk_rcu: used during RCU grace period
341   *	@sk_clockid: clockid used by time-based scheduling (SO_TXTIME)
342   *	@sk_txtime_deadline_mode: set deadline mode for SO_TXTIME
343   *	@sk_txtime_report_errors: set report errors mode for SO_TXTIME
344   *	@sk_txtime_unused: unused txtime flags
345   */
346 struct sock {
347 	/*
348 	 * Now struct inet_timewait_sock also uses sock_common, so please just
349 	 * don't add nothing before this first member (__sk_common) --acme
350 	 */
351 	struct sock_common	__sk_common;
352 #define sk_node			__sk_common.skc_node
353 #define sk_nulls_node		__sk_common.skc_nulls_node
354 #define sk_refcnt		__sk_common.skc_refcnt
355 #define sk_tx_queue_mapping	__sk_common.skc_tx_queue_mapping
356 #ifdef CONFIG_XPS
357 #define sk_rx_queue_mapping	__sk_common.skc_rx_queue_mapping
358 #endif
359 
360 #define sk_dontcopy_begin	__sk_common.skc_dontcopy_begin
361 #define sk_dontcopy_end		__sk_common.skc_dontcopy_end
362 #define sk_hash			__sk_common.skc_hash
363 #define sk_portpair		__sk_common.skc_portpair
364 #define sk_num			__sk_common.skc_num
365 #define sk_dport		__sk_common.skc_dport
366 #define sk_addrpair		__sk_common.skc_addrpair
367 #define sk_daddr		__sk_common.skc_daddr
368 #define sk_rcv_saddr		__sk_common.skc_rcv_saddr
369 #define sk_family		__sk_common.skc_family
370 #define sk_state		__sk_common.skc_state
371 #define sk_reuse		__sk_common.skc_reuse
372 #define sk_reuseport		__sk_common.skc_reuseport
373 #define sk_ipv6only		__sk_common.skc_ipv6only
374 #define sk_net_refcnt		__sk_common.skc_net_refcnt
375 #define sk_bound_dev_if		__sk_common.skc_bound_dev_if
376 #define sk_bind_node		__sk_common.skc_bind_node
377 #define sk_prot			__sk_common.skc_prot
378 #define sk_net			__sk_common.skc_net
379 #define sk_v6_daddr		__sk_common.skc_v6_daddr
380 #define sk_v6_rcv_saddr	__sk_common.skc_v6_rcv_saddr
381 #define sk_cookie		__sk_common.skc_cookie
382 #define sk_incoming_cpu		__sk_common.skc_incoming_cpu
383 #define sk_flags		__sk_common.skc_flags
384 #define sk_rxhash		__sk_common.skc_rxhash
385 
386 	socket_lock_t		sk_lock;
387 	atomic_t		sk_drops;
388 	int			sk_rcvlowat;
389 	struct sk_buff_head	sk_error_queue;
390 	struct sk_buff		*sk_rx_skb_cache;
391 	struct sk_buff_head	sk_receive_queue;
392 	/*
393 	 * The backlog queue is special, it is always used with
394 	 * the per-socket spinlock held and requires low latency
395 	 * access. Therefore we special case it's implementation.
396 	 * Note : rmem_alloc is in this structure to fill a hole
397 	 * on 64bit arches, not because its logically part of
398 	 * backlog.
399 	 */
400 	struct {
401 		atomic_t	rmem_alloc;
402 		int		len;
403 		struct sk_buff	*head;
404 		struct sk_buff	*tail;
405 	} sk_backlog;
406 #define sk_rmem_alloc sk_backlog.rmem_alloc
407 
408 	int			sk_forward_alloc;
409 #ifdef CONFIG_NET_RX_BUSY_POLL
410 	unsigned int		sk_ll_usec;
411 	/* ===== mostly read cache line ===== */
412 	unsigned int		sk_napi_id;
413 #endif
414 	int			sk_rcvbuf;
415 
416 	struct sk_filter __rcu	*sk_filter;
417 	union {
418 		struct socket_wq __rcu	*sk_wq;
419 		/* private: */
420 		struct socket_wq	*sk_wq_raw;
421 		/* public: */
422 	};
423 #ifdef CONFIG_XFRM
424 	struct xfrm_policy __rcu *sk_policy[2];
425 #endif
426 	struct dst_entry	*sk_rx_dst;
427 	struct dst_entry __rcu	*sk_dst_cache;
428 	atomic_t		sk_omem_alloc;
429 	int			sk_sndbuf;
430 
431 	/* ===== cache line for TX ===== */
432 	int			sk_wmem_queued;
433 	refcount_t		sk_wmem_alloc;
434 	unsigned long		sk_tsq_flags;
435 	union {
436 		struct sk_buff	*sk_send_head;
437 		struct rb_root	tcp_rtx_queue;
438 	};
439 	struct sk_buff		*sk_tx_skb_cache;
440 	struct sk_buff_head	sk_write_queue;
441 	__s32			sk_peek_off;
442 	int			sk_write_pending;
443 	__u32			sk_dst_pending_confirm;
444 	u32			sk_pacing_status; /* see enum sk_pacing */
445 	long			sk_sndtimeo;
446 	struct timer_list	sk_timer;
447 	__u32			sk_priority;
448 	__u32			sk_mark;
449 	unsigned long		sk_pacing_rate; /* bytes per second */
450 	unsigned long		sk_max_pacing_rate;
451 	struct page_frag	sk_frag;
452 	netdev_features_t	sk_route_caps;
453 	netdev_features_t	sk_route_nocaps;
454 	netdev_features_t	sk_route_forced_caps;
455 	int			sk_gso_type;
456 	unsigned int		sk_gso_max_size;
457 	gfp_t			sk_allocation;
458 	__u32			sk_txhash;
459 
460 	/*
461 	 * Because of non atomicity rules, all
462 	 * changes are protected by socket lock.
463 	 */
464 	u8			sk_padding : 1,
465 				sk_kern_sock : 1,
466 				sk_no_check_tx : 1,
467 				sk_no_check_rx : 1,
468 				sk_userlocks : 4;
469 	u8			sk_pacing_shift;
470 	u16			sk_type;
471 	u16			sk_protocol;
472 	u16			sk_gso_max_segs;
473 	unsigned long	        sk_lingertime;
474 	struct proto		*sk_prot_creator;
475 	rwlock_t		sk_callback_lock;
476 	int			sk_err,
477 				sk_err_soft;
478 	u32			sk_ack_backlog;
479 	u32			sk_max_ack_backlog;
480 	kuid_t			sk_uid;
481 	struct pid		*sk_peer_pid;
482 	const struct cred	*sk_peer_cred;
483 	long			sk_rcvtimeo;
484 	ktime_t			sk_stamp;
485 #if BITS_PER_LONG==32
486 	seqlock_t		sk_stamp_seq;
487 #endif
488 	u16			sk_tsflags;
489 	u8			sk_shutdown;
490 	u32			sk_tskey;
491 	atomic_t		sk_zckey;
492 
493 	u8			sk_clockid;
494 	u8			sk_txtime_deadline_mode : 1,
495 				sk_txtime_report_errors : 1,
496 				sk_txtime_unused : 6;
497 
498 	struct socket		*sk_socket;
499 	void			*sk_user_data;
500 #ifdef CONFIG_SECURITY
501 	void			*sk_security;
502 #endif
503 	struct sock_cgroup_data	sk_cgrp_data;
504 	struct mem_cgroup	*sk_memcg;
505 	void			(*sk_state_change)(struct sock *sk);
506 	void			(*sk_data_ready)(struct sock *sk);
507 	void			(*sk_write_space)(struct sock *sk);
508 	void			(*sk_error_report)(struct sock *sk);
509 	int			(*sk_backlog_rcv)(struct sock *sk,
510 						  struct sk_buff *skb);
511 #ifdef CONFIG_SOCK_VALIDATE_XMIT
512 	struct sk_buff*		(*sk_validate_xmit_skb)(struct sock *sk,
513 							struct net_device *dev,
514 							struct sk_buff *skb);
515 #endif
516 	void                    (*sk_destruct)(struct sock *sk);
517 	struct sock_reuseport __rcu	*sk_reuseport_cb;
518 #ifdef CONFIG_BPF_SYSCALL
519 	struct bpf_sk_storage __rcu	*sk_bpf_storage;
520 #endif
521 	struct rcu_head		sk_rcu;
522 };
523 
524 enum sk_pacing {
525 	SK_PACING_NONE		= 0,
526 	SK_PACING_NEEDED	= 1,
527 	SK_PACING_FQ		= 2,
528 };
529 
530 /* Pointer stored in sk_user_data might not be suitable for copying
531  * when cloning the socket. For instance, it can point to a reference
532  * counted object. sk_user_data bottom bit is set if pointer must not
533  * be copied.
534  */
535 #define SK_USER_DATA_NOCOPY	1UL
536 #define SK_USER_DATA_BPF	2UL	/* Managed by BPF */
537 #define SK_USER_DATA_PTRMASK	~(SK_USER_DATA_NOCOPY | SK_USER_DATA_BPF)
538 
539 /**
540  * sk_user_data_is_nocopy - Test if sk_user_data pointer must not be copied
541  * @sk: socket
542  */
543 static inline bool sk_user_data_is_nocopy(const struct sock *sk)
544 {
545 	return ((uintptr_t)sk->sk_user_data & SK_USER_DATA_NOCOPY);
546 }
547 
548 #define __sk_user_data(sk) ((*((void __rcu **)&(sk)->sk_user_data)))
549 
550 #define rcu_dereference_sk_user_data(sk)				\
551 ({									\
552 	void *__tmp = rcu_dereference(__sk_user_data((sk)));		\
553 	(void *)((uintptr_t)__tmp & SK_USER_DATA_PTRMASK);		\
554 })
555 #define rcu_assign_sk_user_data(sk, ptr)				\
556 ({									\
557 	uintptr_t __tmp = (uintptr_t)(ptr);				\
558 	WARN_ON_ONCE(__tmp & ~SK_USER_DATA_PTRMASK);			\
559 	rcu_assign_pointer(__sk_user_data((sk)), __tmp);		\
560 })
561 #define rcu_assign_sk_user_data_nocopy(sk, ptr)				\
562 ({									\
563 	uintptr_t __tmp = (uintptr_t)(ptr);				\
564 	WARN_ON_ONCE(__tmp & ~SK_USER_DATA_PTRMASK);			\
565 	rcu_assign_pointer(__sk_user_data((sk)),			\
566 			   __tmp | SK_USER_DATA_NOCOPY);		\
567 })
568 
569 /*
570  * SK_CAN_REUSE and SK_NO_REUSE on a socket mean that the socket is OK
571  * or not whether his port will be reused by someone else. SK_FORCE_REUSE
572  * on a socket means that the socket will reuse everybody else's port
573  * without looking at the other's sk_reuse value.
574  */
575 
576 #define SK_NO_REUSE	0
577 #define SK_CAN_REUSE	1
578 #define SK_FORCE_REUSE	2
579 
580 int sk_set_peek_off(struct sock *sk, int val);
581 
582 static inline int sk_peek_offset(struct sock *sk, int flags)
583 {
584 	if (unlikely(flags & MSG_PEEK)) {
585 		return READ_ONCE(sk->sk_peek_off);
586 	}
587 
588 	return 0;
589 }
590 
591 static inline void sk_peek_offset_bwd(struct sock *sk, int val)
592 {
593 	s32 off = READ_ONCE(sk->sk_peek_off);
594 
595 	if (unlikely(off >= 0)) {
596 		off = max_t(s32, off - val, 0);
597 		WRITE_ONCE(sk->sk_peek_off, off);
598 	}
599 }
600 
601 static inline void sk_peek_offset_fwd(struct sock *sk, int val)
602 {
603 	sk_peek_offset_bwd(sk, -val);
604 }
605 
606 /*
607  * Hashed lists helper routines
608  */
609 static inline struct sock *sk_entry(const struct hlist_node *node)
610 {
611 	return hlist_entry(node, struct sock, sk_node);
612 }
613 
614 static inline struct sock *__sk_head(const struct hlist_head *head)
615 {
616 	return hlist_entry(head->first, struct sock, sk_node);
617 }
618 
619 static inline struct sock *sk_head(const struct hlist_head *head)
620 {
621 	return hlist_empty(head) ? NULL : __sk_head(head);
622 }
623 
624 static inline struct sock *__sk_nulls_head(const struct hlist_nulls_head *head)
625 {
626 	return hlist_nulls_entry(head->first, struct sock, sk_nulls_node);
627 }
628 
629 static inline struct sock *sk_nulls_head(const struct hlist_nulls_head *head)
630 {
631 	return hlist_nulls_empty(head) ? NULL : __sk_nulls_head(head);
632 }
633 
634 static inline struct sock *sk_next(const struct sock *sk)
635 {
636 	return hlist_entry_safe(sk->sk_node.next, struct sock, sk_node);
637 }
638 
639 static inline struct sock *sk_nulls_next(const struct sock *sk)
640 {
641 	return (!is_a_nulls(sk->sk_nulls_node.next)) ?
642 		hlist_nulls_entry(sk->sk_nulls_node.next,
643 				  struct sock, sk_nulls_node) :
644 		NULL;
645 }
646 
647 static inline bool sk_unhashed(const struct sock *sk)
648 {
649 	return hlist_unhashed(&sk->sk_node);
650 }
651 
652 static inline bool sk_hashed(const struct sock *sk)
653 {
654 	return !sk_unhashed(sk);
655 }
656 
657 static inline void sk_node_init(struct hlist_node *node)
658 {
659 	node->pprev = NULL;
660 }
661 
662 static inline void sk_nulls_node_init(struct hlist_nulls_node *node)
663 {
664 	node->pprev = NULL;
665 }
666 
667 static inline void __sk_del_node(struct sock *sk)
668 {
669 	__hlist_del(&sk->sk_node);
670 }
671 
672 /* NB: equivalent to hlist_del_init_rcu */
673 static inline bool __sk_del_node_init(struct sock *sk)
674 {
675 	if (sk_hashed(sk)) {
676 		__sk_del_node(sk);
677 		sk_node_init(&sk->sk_node);
678 		return true;
679 	}
680 	return false;
681 }
682 
683 /* Grab socket reference count. This operation is valid only
684    when sk is ALREADY grabbed f.e. it is found in hash table
685    or a list and the lookup is made under lock preventing hash table
686    modifications.
687  */
688 
689 static __always_inline void sock_hold(struct sock *sk)
690 {
691 	refcount_inc(&sk->sk_refcnt);
692 }
693 
694 /* Ungrab socket in the context, which assumes that socket refcnt
695    cannot hit zero, f.e. it is true in context of any socketcall.
696  */
697 static __always_inline void __sock_put(struct sock *sk)
698 {
699 	refcount_dec(&sk->sk_refcnt);
700 }
701 
702 static inline bool sk_del_node_init(struct sock *sk)
703 {
704 	bool rc = __sk_del_node_init(sk);
705 
706 	if (rc) {
707 		/* paranoid for a while -acme */
708 		WARN_ON(refcount_read(&sk->sk_refcnt) == 1);
709 		__sock_put(sk);
710 	}
711 	return rc;
712 }
713 #define sk_del_node_init_rcu(sk)	sk_del_node_init(sk)
714 
715 static inline bool __sk_nulls_del_node_init_rcu(struct sock *sk)
716 {
717 	if (sk_hashed(sk)) {
718 		hlist_nulls_del_init_rcu(&sk->sk_nulls_node);
719 		return true;
720 	}
721 	return false;
722 }
723 
724 static inline bool sk_nulls_del_node_init_rcu(struct sock *sk)
725 {
726 	bool rc = __sk_nulls_del_node_init_rcu(sk);
727 
728 	if (rc) {
729 		/* paranoid for a while -acme */
730 		WARN_ON(refcount_read(&sk->sk_refcnt) == 1);
731 		__sock_put(sk);
732 	}
733 	return rc;
734 }
735 
736 static inline void __sk_add_node(struct sock *sk, struct hlist_head *list)
737 {
738 	hlist_add_head(&sk->sk_node, list);
739 }
740 
741 static inline void sk_add_node(struct sock *sk, struct hlist_head *list)
742 {
743 	sock_hold(sk);
744 	__sk_add_node(sk, list);
745 }
746 
747 static inline void sk_add_node_rcu(struct sock *sk, struct hlist_head *list)
748 {
749 	sock_hold(sk);
750 	if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport &&
751 	    sk->sk_family == AF_INET6)
752 		hlist_add_tail_rcu(&sk->sk_node, list);
753 	else
754 		hlist_add_head_rcu(&sk->sk_node, list);
755 }
756 
757 static inline void sk_add_node_tail_rcu(struct sock *sk, struct hlist_head *list)
758 {
759 	sock_hold(sk);
760 	hlist_add_tail_rcu(&sk->sk_node, list);
761 }
762 
763 static inline void __sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
764 {
765 	hlist_nulls_add_head_rcu(&sk->sk_nulls_node, list);
766 }
767 
768 static inline void __sk_nulls_add_node_tail_rcu(struct sock *sk, struct hlist_nulls_head *list)
769 {
770 	hlist_nulls_add_tail_rcu(&sk->sk_nulls_node, list);
771 }
772 
773 static inline void sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
774 {
775 	sock_hold(sk);
776 	__sk_nulls_add_node_rcu(sk, list);
777 }
778 
779 static inline void __sk_del_bind_node(struct sock *sk)
780 {
781 	__hlist_del(&sk->sk_bind_node);
782 }
783 
784 static inline void sk_add_bind_node(struct sock *sk,
785 					struct hlist_head *list)
786 {
787 	hlist_add_head(&sk->sk_bind_node, list);
788 }
789 
790 #define sk_for_each(__sk, list) \
791 	hlist_for_each_entry(__sk, list, sk_node)
792 #define sk_for_each_rcu(__sk, list) \
793 	hlist_for_each_entry_rcu(__sk, list, sk_node)
794 #define sk_nulls_for_each(__sk, node, list) \
795 	hlist_nulls_for_each_entry(__sk, node, list, sk_nulls_node)
796 #define sk_nulls_for_each_rcu(__sk, node, list) \
797 	hlist_nulls_for_each_entry_rcu(__sk, node, list, sk_nulls_node)
798 #define sk_for_each_from(__sk) \
799 	hlist_for_each_entry_from(__sk, sk_node)
800 #define sk_nulls_for_each_from(__sk, node) \
801 	if (__sk && ({ node = &(__sk)->sk_nulls_node; 1; })) \
802 		hlist_nulls_for_each_entry_from(__sk, node, sk_nulls_node)
803 #define sk_for_each_safe(__sk, tmp, list) \
804 	hlist_for_each_entry_safe(__sk, tmp, list, sk_node)
805 #define sk_for_each_bound(__sk, list) \
806 	hlist_for_each_entry(__sk, list, sk_bind_node)
807 
808 /**
809  * sk_for_each_entry_offset_rcu - iterate over a list at a given struct offset
810  * @tpos:	the type * to use as a loop cursor.
811  * @pos:	the &struct hlist_node to use as a loop cursor.
812  * @head:	the head for your list.
813  * @offset:	offset of hlist_node within the struct.
814  *
815  */
816 #define sk_for_each_entry_offset_rcu(tpos, pos, head, offset)		       \
817 	for (pos = rcu_dereference(hlist_first_rcu(head));		       \
818 	     pos != NULL &&						       \
819 		({ tpos = (typeof(*tpos) *)((void *)pos - offset); 1;});       \
820 	     pos = rcu_dereference(hlist_next_rcu(pos)))
821 
822 static inline struct user_namespace *sk_user_ns(struct sock *sk)
823 {
824 	/* Careful only use this in a context where these parameters
825 	 * can not change and must all be valid, such as recvmsg from
826 	 * userspace.
827 	 */
828 	return sk->sk_socket->file->f_cred->user_ns;
829 }
830 
831 /* Sock flags */
832 enum sock_flags {
833 	SOCK_DEAD,
834 	SOCK_DONE,
835 	SOCK_URGINLINE,
836 	SOCK_KEEPOPEN,
837 	SOCK_LINGER,
838 	SOCK_DESTROY,
839 	SOCK_BROADCAST,
840 	SOCK_TIMESTAMP,
841 	SOCK_ZAPPED,
842 	SOCK_USE_WRITE_QUEUE, /* whether to call sk->sk_write_space in sock_wfree */
843 	SOCK_DBG, /* %SO_DEBUG setting */
844 	SOCK_RCVTSTAMP, /* %SO_TIMESTAMP setting */
845 	SOCK_RCVTSTAMPNS, /* %SO_TIMESTAMPNS setting */
846 	SOCK_LOCALROUTE, /* route locally only, %SO_DONTROUTE setting */
847 	SOCK_QUEUE_SHRUNK, /* write queue has been shrunk recently */
848 	SOCK_MEMALLOC, /* VM depends on this socket for swapping */
849 	SOCK_TIMESTAMPING_RX_SOFTWARE,  /* %SOF_TIMESTAMPING_RX_SOFTWARE */
850 	SOCK_FASYNC, /* fasync() active */
851 	SOCK_RXQ_OVFL,
852 	SOCK_ZEROCOPY, /* buffers from userspace */
853 	SOCK_WIFI_STATUS, /* push wifi status to userspace */
854 	SOCK_NOFCS, /* Tell NIC not to do the Ethernet FCS.
855 		     * Will use last 4 bytes of packet sent from
856 		     * user-space instead.
857 		     */
858 	SOCK_FILTER_LOCKED, /* Filter cannot be changed anymore */
859 	SOCK_SELECT_ERR_QUEUE, /* Wake select on error queue */
860 	SOCK_RCU_FREE, /* wait rcu grace period in sk_destruct() */
861 	SOCK_TXTIME,
862 	SOCK_XDP, /* XDP is attached */
863 	SOCK_TSTAMP_NEW, /* Indicates 64 bit timestamps always */
864 };
865 
866 #define SK_FLAGS_TIMESTAMP ((1UL << SOCK_TIMESTAMP) | (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE))
867 
868 static inline void sock_copy_flags(struct sock *nsk, struct sock *osk)
869 {
870 	nsk->sk_flags = osk->sk_flags;
871 }
872 
873 static inline void sock_set_flag(struct sock *sk, enum sock_flags flag)
874 {
875 	__set_bit(flag, &sk->sk_flags);
876 }
877 
878 static inline void sock_reset_flag(struct sock *sk, enum sock_flags flag)
879 {
880 	__clear_bit(flag, &sk->sk_flags);
881 }
882 
883 static inline void sock_valbool_flag(struct sock *sk, enum sock_flags bit,
884 				     int valbool)
885 {
886 	if (valbool)
887 		sock_set_flag(sk, bit);
888 	else
889 		sock_reset_flag(sk, bit);
890 }
891 
892 static inline bool sock_flag(const struct sock *sk, enum sock_flags flag)
893 {
894 	return test_bit(flag, &sk->sk_flags);
895 }
896 
897 #ifdef CONFIG_NET
898 DECLARE_STATIC_KEY_FALSE(memalloc_socks_key);
899 static inline int sk_memalloc_socks(void)
900 {
901 	return static_branch_unlikely(&memalloc_socks_key);
902 }
903 #else
904 
905 static inline int sk_memalloc_socks(void)
906 {
907 	return 0;
908 }
909 
910 #endif
911 
912 static inline gfp_t sk_gfp_mask(const struct sock *sk, gfp_t gfp_mask)
913 {
914 	return gfp_mask | (sk->sk_allocation & __GFP_MEMALLOC);
915 }
916 
917 static inline void sk_acceptq_removed(struct sock *sk)
918 {
919 	WRITE_ONCE(sk->sk_ack_backlog, sk->sk_ack_backlog - 1);
920 }
921 
922 static inline void sk_acceptq_added(struct sock *sk)
923 {
924 	WRITE_ONCE(sk->sk_ack_backlog, sk->sk_ack_backlog + 1);
925 }
926 
927 static inline bool sk_acceptq_is_full(const struct sock *sk)
928 {
929 	return READ_ONCE(sk->sk_ack_backlog) > READ_ONCE(sk->sk_max_ack_backlog);
930 }
931 
932 /*
933  * Compute minimal free write space needed to queue new packets.
934  */
935 static inline int sk_stream_min_wspace(const struct sock *sk)
936 {
937 	return READ_ONCE(sk->sk_wmem_queued) >> 1;
938 }
939 
940 static inline int sk_stream_wspace(const struct sock *sk)
941 {
942 	return READ_ONCE(sk->sk_sndbuf) - READ_ONCE(sk->sk_wmem_queued);
943 }
944 
945 static inline void sk_wmem_queued_add(struct sock *sk, int val)
946 {
947 	WRITE_ONCE(sk->sk_wmem_queued, sk->sk_wmem_queued + val);
948 }
949 
950 void sk_stream_write_space(struct sock *sk);
951 
952 /* OOB backlog add */
953 static inline void __sk_add_backlog(struct sock *sk, struct sk_buff *skb)
954 {
955 	/* dont let skb dst not refcounted, we are going to leave rcu lock */
956 	skb_dst_force(skb);
957 
958 	if (!sk->sk_backlog.tail)
959 		WRITE_ONCE(sk->sk_backlog.head, skb);
960 	else
961 		sk->sk_backlog.tail->next = skb;
962 
963 	WRITE_ONCE(sk->sk_backlog.tail, skb);
964 	skb->next = NULL;
965 }
966 
967 /*
968  * Take into account size of receive queue and backlog queue
969  * Do not take into account this skb truesize,
970  * to allow even a single big packet to come.
971  */
972 static inline bool sk_rcvqueues_full(const struct sock *sk, unsigned int limit)
973 {
974 	unsigned int qsize = sk->sk_backlog.len + atomic_read(&sk->sk_rmem_alloc);
975 
976 	return qsize > limit;
977 }
978 
979 /* The per-socket spinlock must be held here. */
980 static inline __must_check int sk_add_backlog(struct sock *sk, struct sk_buff *skb,
981 					      unsigned int limit)
982 {
983 	if (sk_rcvqueues_full(sk, limit))
984 		return -ENOBUFS;
985 
986 	/*
987 	 * If the skb was allocated from pfmemalloc reserves, only
988 	 * allow SOCK_MEMALLOC sockets to use it as this socket is
989 	 * helping free memory
990 	 */
991 	if (skb_pfmemalloc(skb) && !sock_flag(sk, SOCK_MEMALLOC))
992 		return -ENOMEM;
993 
994 	__sk_add_backlog(sk, skb);
995 	sk->sk_backlog.len += skb->truesize;
996 	return 0;
997 }
998 
999 int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb);
1000 
1001 static inline int sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
1002 {
1003 	if (sk_memalloc_socks() && skb_pfmemalloc(skb))
1004 		return __sk_backlog_rcv(sk, skb);
1005 
1006 	return sk->sk_backlog_rcv(sk, skb);
1007 }
1008 
1009 static inline void sk_incoming_cpu_update(struct sock *sk)
1010 {
1011 	int cpu = raw_smp_processor_id();
1012 
1013 	if (unlikely(READ_ONCE(sk->sk_incoming_cpu) != cpu))
1014 		WRITE_ONCE(sk->sk_incoming_cpu, cpu);
1015 }
1016 
1017 static inline void sock_rps_record_flow_hash(__u32 hash)
1018 {
1019 #ifdef CONFIG_RPS
1020 	struct rps_sock_flow_table *sock_flow_table;
1021 
1022 	rcu_read_lock();
1023 	sock_flow_table = rcu_dereference(rps_sock_flow_table);
1024 	rps_record_sock_flow(sock_flow_table, hash);
1025 	rcu_read_unlock();
1026 #endif
1027 }
1028 
1029 static inline void sock_rps_record_flow(const struct sock *sk)
1030 {
1031 #ifdef CONFIG_RPS
1032 	if (static_branch_unlikely(&rfs_needed)) {
1033 		/* Reading sk->sk_rxhash might incur an expensive cache line
1034 		 * miss.
1035 		 *
1036 		 * TCP_ESTABLISHED does cover almost all states where RFS
1037 		 * might be useful, and is cheaper [1] than testing :
1038 		 *	IPv4: inet_sk(sk)->inet_daddr
1039 		 * 	IPv6: ipv6_addr_any(&sk->sk_v6_daddr)
1040 		 * OR	an additional socket flag
1041 		 * [1] : sk_state and sk_prot are in the same cache line.
1042 		 */
1043 		if (sk->sk_state == TCP_ESTABLISHED)
1044 			sock_rps_record_flow_hash(sk->sk_rxhash);
1045 	}
1046 #endif
1047 }
1048 
1049 static inline void sock_rps_save_rxhash(struct sock *sk,
1050 					const struct sk_buff *skb)
1051 {
1052 #ifdef CONFIG_RPS
1053 	if (unlikely(sk->sk_rxhash != skb->hash))
1054 		sk->sk_rxhash = skb->hash;
1055 #endif
1056 }
1057 
1058 static inline void sock_rps_reset_rxhash(struct sock *sk)
1059 {
1060 #ifdef CONFIG_RPS
1061 	sk->sk_rxhash = 0;
1062 #endif
1063 }
1064 
1065 #define sk_wait_event(__sk, __timeo, __condition, __wait)		\
1066 	({	int __rc;						\
1067 		release_sock(__sk);					\
1068 		__rc = __condition;					\
1069 		if (!__rc) {						\
1070 			*(__timeo) = wait_woken(__wait,			\
1071 						TASK_INTERRUPTIBLE,	\
1072 						*(__timeo));		\
1073 		}							\
1074 		sched_annotate_sleep();					\
1075 		lock_sock(__sk);					\
1076 		__rc = __condition;					\
1077 		__rc;							\
1078 	})
1079 
1080 int sk_stream_wait_connect(struct sock *sk, long *timeo_p);
1081 int sk_stream_wait_memory(struct sock *sk, long *timeo_p);
1082 void sk_stream_wait_close(struct sock *sk, long timeo_p);
1083 int sk_stream_error(struct sock *sk, int flags, int err);
1084 void sk_stream_kill_queues(struct sock *sk);
1085 void sk_set_memalloc(struct sock *sk);
1086 void sk_clear_memalloc(struct sock *sk);
1087 
1088 void __sk_flush_backlog(struct sock *sk);
1089 
1090 static inline bool sk_flush_backlog(struct sock *sk)
1091 {
1092 	if (unlikely(READ_ONCE(sk->sk_backlog.tail))) {
1093 		__sk_flush_backlog(sk);
1094 		return true;
1095 	}
1096 	return false;
1097 }
1098 
1099 int sk_wait_data(struct sock *sk, long *timeo, const struct sk_buff *skb);
1100 
1101 struct request_sock_ops;
1102 struct timewait_sock_ops;
1103 struct inet_hashinfo;
1104 struct raw_hashinfo;
1105 struct smc_hashinfo;
1106 struct module;
1107 
1108 /*
1109  * caches using SLAB_TYPESAFE_BY_RCU should let .next pointer from nulls nodes
1110  * un-modified. Special care is taken when initializing object to zero.
1111  */
1112 static inline void sk_prot_clear_nulls(struct sock *sk, int size)
1113 {
1114 	if (offsetof(struct sock, sk_node.next) != 0)
1115 		memset(sk, 0, offsetof(struct sock, sk_node.next));
1116 	memset(&sk->sk_node.pprev, 0,
1117 	       size - offsetof(struct sock, sk_node.pprev));
1118 }
1119 
1120 /* Networking protocol blocks we attach to sockets.
1121  * socket layer -> transport layer interface
1122  */
1123 struct proto {
1124 	void			(*close)(struct sock *sk,
1125 					long timeout);
1126 	int			(*pre_connect)(struct sock *sk,
1127 					struct sockaddr *uaddr,
1128 					int addr_len);
1129 	int			(*connect)(struct sock *sk,
1130 					struct sockaddr *uaddr,
1131 					int addr_len);
1132 	int			(*disconnect)(struct sock *sk, int flags);
1133 
1134 	struct sock *		(*accept)(struct sock *sk, int flags, int *err,
1135 					  bool kern);
1136 
1137 	int			(*ioctl)(struct sock *sk, int cmd,
1138 					 unsigned long arg);
1139 	int			(*init)(struct sock *sk);
1140 	void			(*destroy)(struct sock *sk);
1141 	void			(*shutdown)(struct sock *sk, int how);
1142 	int			(*setsockopt)(struct sock *sk, int level,
1143 					int optname, char __user *optval,
1144 					unsigned int optlen);
1145 	int			(*getsockopt)(struct sock *sk, int level,
1146 					int optname, char __user *optval,
1147 					int __user *option);
1148 	void			(*keepalive)(struct sock *sk, int valbool);
1149 #ifdef CONFIG_COMPAT
1150 	int			(*compat_setsockopt)(struct sock *sk,
1151 					int level,
1152 					int optname, char __user *optval,
1153 					unsigned int optlen);
1154 	int			(*compat_getsockopt)(struct sock *sk,
1155 					int level,
1156 					int optname, char __user *optval,
1157 					int __user *option);
1158 	int			(*compat_ioctl)(struct sock *sk,
1159 					unsigned int cmd, unsigned long arg);
1160 #endif
1161 	int			(*sendmsg)(struct sock *sk, struct msghdr *msg,
1162 					   size_t len);
1163 	int			(*recvmsg)(struct sock *sk, struct msghdr *msg,
1164 					   size_t len, int noblock, int flags,
1165 					   int *addr_len);
1166 	int			(*sendpage)(struct sock *sk, struct page *page,
1167 					int offset, size_t size, int flags);
1168 	int			(*bind)(struct sock *sk,
1169 					struct sockaddr *addr, int addr_len);
1170 	int			(*bind_add)(struct sock *sk,
1171 					struct sockaddr *addr, int addr_len);
1172 
1173 	int			(*backlog_rcv) (struct sock *sk,
1174 						struct sk_buff *skb);
1175 
1176 	void		(*release_cb)(struct sock *sk);
1177 
1178 	/* Keeping track of sk's, looking them up, and port selection methods. */
1179 	int			(*hash)(struct sock *sk);
1180 	void			(*unhash)(struct sock *sk);
1181 	void			(*rehash)(struct sock *sk);
1182 	int			(*get_port)(struct sock *sk, unsigned short snum);
1183 
1184 	/* Keeping track of sockets in use */
1185 #ifdef CONFIG_PROC_FS
1186 	unsigned int		inuse_idx;
1187 #endif
1188 
1189 	bool			(*stream_memory_free)(const struct sock *sk, int wake);
1190 	bool			(*stream_memory_read)(const struct sock *sk);
1191 	/* Memory pressure */
1192 	void			(*enter_memory_pressure)(struct sock *sk);
1193 	void			(*leave_memory_pressure)(struct sock *sk);
1194 	atomic_long_t		*memory_allocated;	/* Current allocated memory. */
1195 	struct percpu_counter	*sockets_allocated;	/* Current number of sockets. */
1196 	/*
1197 	 * Pressure flag: try to collapse.
1198 	 * Technical note: it is used by multiple contexts non atomically.
1199 	 * All the __sk_mem_schedule() is of this nature: accounting
1200 	 * is strict, actions are advisory and have some latency.
1201 	 */
1202 	unsigned long		*memory_pressure;
1203 	long			*sysctl_mem;
1204 
1205 	int			*sysctl_wmem;
1206 	int			*sysctl_rmem;
1207 	u32			sysctl_wmem_offset;
1208 	u32			sysctl_rmem_offset;
1209 
1210 	int			max_header;
1211 	bool			no_autobind;
1212 
1213 	struct kmem_cache	*slab;
1214 	unsigned int		obj_size;
1215 	slab_flags_t		slab_flags;
1216 	unsigned int		useroffset;	/* Usercopy region offset */
1217 	unsigned int		usersize;	/* Usercopy region size */
1218 
1219 	struct percpu_counter	*orphan_count;
1220 
1221 	struct request_sock_ops	*rsk_prot;
1222 	struct timewait_sock_ops *twsk_prot;
1223 
1224 	union {
1225 		struct inet_hashinfo	*hashinfo;
1226 		struct udp_table	*udp_table;
1227 		struct raw_hashinfo	*raw_hash;
1228 		struct smc_hashinfo	*smc_hash;
1229 	} h;
1230 
1231 	struct module		*owner;
1232 
1233 	char			name[32];
1234 
1235 	struct list_head	node;
1236 #ifdef SOCK_REFCNT_DEBUG
1237 	atomic_t		socks;
1238 #endif
1239 	int			(*diag_destroy)(struct sock *sk, int err);
1240 } __randomize_layout;
1241 
1242 int proto_register(struct proto *prot, int alloc_slab);
1243 void proto_unregister(struct proto *prot);
1244 int sock_load_diag_module(int family, int protocol);
1245 
1246 #ifdef SOCK_REFCNT_DEBUG
1247 static inline void sk_refcnt_debug_inc(struct sock *sk)
1248 {
1249 	atomic_inc(&sk->sk_prot->socks);
1250 }
1251 
1252 static inline void sk_refcnt_debug_dec(struct sock *sk)
1253 {
1254 	atomic_dec(&sk->sk_prot->socks);
1255 	printk(KERN_DEBUG "%s socket %p released, %d are still alive\n",
1256 	       sk->sk_prot->name, sk, atomic_read(&sk->sk_prot->socks));
1257 }
1258 
1259 static inline void sk_refcnt_debug_release(const struct sock *sk)
1260 {
1261 	if (refcount_read(&sk->sk_refcnt) != 1)
1262 		printk(KERN_DEBUG "Destruction of the %s socket %p delayed, refcnt=%d\n",
1263 		       sk->sk_prot->name, sk, refcount_read(&sk->sk_refcnt));
1264 }
1265 #else /* SOCK_REFCNT_DEBUG */
1266 #define sk_refcnt_debug_inc(sk) do { } while (0)
1267 #define sk_refcnt_debug_dec(sk) do { } while (0)
1268 #define sk_refcnt_debug_release(sk) do { } while (0)
1269 #endif /* SOCK_REFCNT_DEBUG */
1270 
1271 static inline bool __sk_stream_memory_free(const struct sock *sk, int wake)
1272 {
1273 	if (READ_ONCE(sk->sk_wmem_queued) >= READ_ONCE(sk->sk_sndbuf))
1274 		return false;
1275 
1276 	return sk->sk_prot->stream_memory_free ?
1277 		sk->sk_prot->stream_memory_free(sk, wake) : true;
1278 }
1279 
1280 static inline bool sk_stream_memory_free(const struct sock *sk)
1281 {
1282 	return __sk_stream_memory_free(sk, 0);
1283 }
1284 
1285 static inline bool __sk_stream_is_writeable(const struct sock *sk, int wake)
1286 {
1287 	return sk_stream_wspace(sk) >= sk_stream_min_wspace(sk) &&
1288 	       __sk_stream_memory_free(sk, wake);
1289 }
1290 
1291 static inline bool sk_stream_is_writeable(const struct sock *sk)
1292 {
1293 	return __sk_stream_is_writeable(sk, 0);
1294 }
1295 
1296 static inline int sk_under_cgroup_hierarchy(struct sock *sk,
1297 					    struct cgroup *ancestor)
1298 {
1299 #ifdef CONFIG_SOCK_CGROUP_DATA
1300 	return cgroup_is_descendant(sock_cgroup_ptr(&sk->sk_cgrp_data),
1301 				    ancestor);
1302 #else
1303 	return -ENOTSUPP;
1304 #endif
1305 }
1306 
1307 static inline bool sk_has_memory_pressure(const struct sock *sk)
1308 {
1309 	return sk->sk_prot->memory_pressure != NULL;
1310 }
1311 
1312 static inline bool sk_under_memory_pressure(const struct sock *sk)
1313 {
1314 	if (!sk->sk_prot->memory_pressure)
1315 		return false;
1316 
1317 	if (mem_cgroup_sockets_enabled && sk->sk_memcg &&
1318 	    mem_cgroup_under_socket_pressure(sk->sk_memcg))
1319 		return true;
1320 
1321 	return !!*sk->sk_prot->memory_pressure;
1322 }
1323 
1324 static inline long
1325 sk_memory_allocated(const struct sock *sk)
1326 {
1327 	return atomic_long_read(sk->sk_prot->memory_allocated);
1328 }
1329 
1330 static inline long
1331 sk_memory_allocated_add(struct sock *sk, int amt)
1332 {
1333 	return atomic_long_add_return(amt, sk->sk_prot->memory_allocated);
1334 }
1335 
1336 static inline void
1337 sk_memory_allocated_sub(struct sock *sk, int amt)
1338 {
1339 	atomic_long_sub(amt, sk->sk_prot->memory_allocated);
1340 }
1341 
1342 static inline void sk_sockets_allocated_dec(struct sock *sk)
1343 {
1344 	percpu_counter_dec(sk->sk_prot->sockets_allocated);
1345 }
1346 
1347 static inline void sk_sockets_allocated_inc(struct sock *sk)
1348 {
1349 	percpu_counter_inc(sk->sk_prot->sockets_allocated);
1350 }
1351 
1352 static inline u64
1353 sk_sockets_allocated_read_positive(struct sock *sk)
1354 {
1355 	return percpu_counter_read_positive(sk->sk_prot->sockets_allocated);
1356 }
1357 
1358 static inline int
1359 proto_sockets_allocated_sum_positive(struct proto *prot)
1360 {
1361 	return percpu_counter_sum_positive(prot->sockets_allocated);
1362 }
1363 
1364 static inline long
1365 proto_memory_allocated(struct proto *prot)
1366 {
1367 	return atomic_long_read(prot->memory_allocated);
1368 }
1369 
1370 static inline bool
1371 proto_memory_pressure(struct proto *prot)
1372 {
1373 	if (!prot->memory_pressure)
1374 		return false;
1375 	return !!*prot->memory_pressure;
1376 }
1377 
1378 
1379 #ifdef CONFIG_PROC_FS
1380 /* Called with local bh disabled */
1381 void sock_prot_inuse_add(struct net *net, struct proto *prot, int inc);
1382 int sock_prot_inuse_get(struct net *net, struct proto *proto);
1383 int sock_inuse_get(struct net *net);
1384 #else
1385 static inline void sock_prot_inuse_add(struct net *net, struct proto *prot,
1386 		int inc)
1387 {
1388 }
1389 #endif
1390 
1391 
1392 /* With per-bucket locks this operation is not-atomic, so that
1393  * this version is not worse.
1394  */
1395 static inline int __sk_prot_rehash(struct sock *sk)
1396 {
1397 	sk->sk_prot->unhash(sk);
1398 	return sk->sk_prot->hash(sk);
1399 }
1400 
1401 /* About 10 seconds */
1402 #define SOCK_DESTROY_TIME (10*HZ)
1403 
1404 /* Sockets 0-1023 can't be bound to unless you are superuser */
1405 #define PROT_SOCK	1024
1406 
1407 #define SHUTDOWN_MASK	3
1408 #define RCV_SHUTDOWN	1
1409 #define SEND_SHUTDOWN	2
1410 
1411 #define SOCK_SNDBUF_LOCK	1
1412 #define SOCK_RCVBUF_LOCK	2
1413 #define SOCK_BINDADDR_LOCK	4
1414 #define SOCK_BINDPORT_LOCK	8
1415 
1416 struct socket_alloc {
1417 	struct socket socket;
1418 	struct inode vfs_inode;
1419 };
1420 
1421 static inline struct socket *SOCKET_I(struct inode *inode)
1422 {
1423 	return &container_of(inode, struct socket_alloc, vfs_inode)->socket;
1424 }
1425 
1426 static inline struct inode *SOCK_INODE(struct socket *socket)
1427 {
1428 	return &container_of(socket, struct socket_alloc, socket)->vfs_inode;
1429 }
1430 
1431 /*
1432  * Functions for memory accounting
1433  */
1434 int __sk_mem_raise_allocated(struct sock *sk, int size, int amt, int kind);
1435 int __sk_mem_schedule(struct sock *sk, int size, int kind);
1436 void __sk_mem_reduce_allocated(struct sock *sk, int amount);
1437 void __sk_mem_reclaim(struct sock *sk, int amount);
1438 
1439 /* We used to have PAGE_SIZE here, but systems with 64KB pages
1440  * do not necessarily have 16x time more memory than 4KB ones.
1441  */
1442 #define SK_MEM_QUANTUM 4096
1443 #define SK_MEM_QUANTUM_SHIFT ilog2(SK_MEM_QUANTUM)
1444 #define SK_MEM_SEND	0
1445 #define SK_MEM_RECV	1
1446 
1447 /* sysctl_mem values are in pages, we convert them in SK_MEM_QUANTUM units */
1448 static inline long sk_prot_mem_limits(const struct sock *sk, int index)
1449 {
1450 	long val = sk->sk_prot->sysctl_mem[index];
1451 
1452 #if PAGE_SIZE > SK_MEM_QUANTUM
1453 	val <<= PAGE_SHIFT - SK_MEM_QUANTUM_SHIFT;
1454 #elif PAGE_SIZE < SK_MEM_QUANTUM
1455 	val >>= SK_MEM_QUANTUM_SHIFT - PAGE_SHIFT;
1456 #endif
1457 	return val;
1458 }
1459 
1460 static inline int sk_mem_pages(int amt)
1461 {
1462 	return (amt + SK_MEM_QUANTUM - 1) >> SK_MEM_QUANTUM_SHIFT;
1463 }
1464 
1465 static inline bool sk_has_account(struct sock *sk)
1466 {
1467 	/* return true if protocol supports memory accounting */
1468 	return !!sk->sk_prot->memory_allocated;
1469 }
1470 
1471 static inline bool sk_wmem_schedule(struct sock *sk, int size)
1472 {
1473 	if (!sk_has_account(sk))
1474 		return true;
1475 	return size <= sk->sk_forward_alloc ||
1476 		__sk_mem_schedule(sk, size, SK_MEM_SEND);
1477 }
1478 
1479 static inline bool
1480 sk_rmem_schedule(struct sock *sk, struct sk_buff *skb, int size)
1481 {
1482 	if (!sk_has_account(sk))
1483 		return true;
1484 	return size<= sk->sk_forward_alloc ||
1485 		__sk_mem_schedule(sk, size, SK_MEM_RECV) ||
1486 		skb_pfmemalloc(skb);
1487 }
1488 
1489 static inline void sk_mem_reclaim(struct sock *sk)
1490 {
1491 	if (!sk_has_account(sk))
1492 		return;
1493 	if (sk->sk_forward_alloc >= SK_MEM_QUANTUM)
1494 		__sk_mem_reclaim(sk, sk->sk_forward_alloc);
1495 }
1496 
1497 static inline void sk_mem_reclaim_partial(struct sock *sk)
1498 {
1499 	if (!sk_has_account(sk))
1500 		return;
1501 	if (sk->sk_forward_alloc > SK_MEM_QUANTUM)
1502 		__sk_mem_reclaim(sk, sk->sk_forward_alloc - 1);
1503 }
1504 
1505 static inline void sk_mem_charge(struct sock *sk, int size)
1506 {
1507 	if (!sk_has_account(sk))
1508 		return;
1509 	sk->sk_forward_alloc -= size;
1510 }
1511 
1512 static inline void sk_mem_uncharge(struct sock *sk, int size)
1513 {
1514 	if (!sk_has_account(sk))
1515 		return;
1516 	sk->sk_forward_alloc += size;
1517 
1518 	/* Avoid a possible overflow.
1519 	 * TCP send queues can make this happen, if sk_mem_reclaim()
1520 	 * is not called and more than 2 GBytes are released at once.
1521 	 *
1522 	 * If we reach 2 MBytes, reclaim 1 MBytes right now, there is
1523 	 * no need to hold that much forward allocation anyway.
1524 	 */
1525 	if (unlikely(sk->sk_forward_alloc >= 1 << 21))
1526 		__sk_mem_reclaim(sk, 1 << 20);
1527 }
1528 
1529 DECLARE_STATIC_KEY_FALSE(tcp_tx_skb_cache_key);
1530 static inline void sk_wmem_free_skb(struct sock *sk, struct sk_buff *skb)
1531 {
1532 	sock_set_flag(sk, SOCK_QUEUE_SHRUNK);
1533 	sk_wmem_queued_add(sk, -skb->truesize);
1534 	sk_mem_uncharge(sk, skb->truesize);
1535 	if (static_branch_unlikely(&tcp_tx_skb_cache_key) &&
1536 	    !sk->sk_tx_skb_cache && !skb_cloned(skb)) {
1537 		skb_ext_reset(skb);
1538 		skb_zcopy_clear(skb, true);
1539 		sk->sk_tx_skb_cache = skb;
1540 		return;
1541 	}
1542 	__kfree_skb(skb);
1543 }
1544 
1545 static inline void sock_release_ownership(struct sock *sk)
1546 {
1547 	if (sk->sk_lock.owned) {
1548 		sk->sk_lock.owned = 0;
1549 
1550 		/* The sk_lock has mutex_unlock() semantics: */
1551 		mutex_release(&sk->sk_lock.dep_map, _RET_IP_);
1552 	}
1553 }
1554 
1555 /*
1556  * Macro so as to not evaluate some arguments when
1557  * lockdep is not enabled.
1558  *
1559  * Mark both the sk_lock and the sk_lock.slock as a
1560  * per-address-family lock class.
1561  */
1562 #define sock_lock_init_class_and_name(sk, sname, skey, name, key)	\
1563 do {									\
1564 	sk->sk_lock.owned = 0;						\
1565 	init_waitqueue_head(&sk->sk_lock.wq);				\
1566 	spin_lock_init(&(sk)->sk_lock.slock);				\
1567 	debug_check_no_locks_freed((void *)&(sk)->sk_lock,		\
1568 			sizeof((sk)->sk_lock));				\
1569 	lockdep_set_class_and_name(&(sk)->sk_lock.slock,		\
1570 				(skey), (sname));				\
1571 	lockdep_init_map(&(sk)->sk_lock.dep_map, (name), (key), 0);	\
1572 } while (0)
1573 
1574 #ifdef CONFIG_LOCKDEP
1575 static inline bool lockdep_sock_is_held(const struct sock *sk)
1576 {
1577 	return lockdep_is_held(&sk->sk_lock) ||
1578 	       lockdep_is_held(&sk->sk_lock.slock);
1579 }
1580 #endif
1581 
1582 void lock_sock_nested(struct sock *sk, int subclass);
1583 
1584 static inline void lock_sock(struct sock *sk)
1585 {
1586 	lock_sock_nested(sk, 0);
1587 }
1588 
1589 void __release_sock(struct sock *sk);
1590 void release_sock(struct sock *sk);
1591 
1592 /* BH context may only use the following locking interface. */
1593 #define bh_lock_sock(__sk)	spin_lock(&((__sk)->sk_lock.slock))
1594 #define bh_lock_sock_nested(__sk) \
1595 				spin_lock_nested(&((__sk)->sk_lock.slock), \
1596 				SINGLE_DEPTH_NESTING)
1597 #define bh_unlock_sock(__sk)	spin_unlock(&((__sk)->sk_lock.slock))
1598 
1599 bool lock_sock_fast(struct sock *sk);
1600 /**
1601  * unlock_sock_fast - complement of lock_sock_fast
1602  * @sk: socket
1603  * @slow: slow mode
1604  *
1605  * fast unlock socket for user context.
1606  * If slow mode is on, we call regular release_sock()
1607  */
1608 static inline void unlock_sock_fast(struct sock *sk, bool slow)
1609 {
1610 	if (slow)
1611 		release_sock(sk);
1612 	else
1613 		spin_unlock_bh(&sk->sk_lock.slock);
1614 }
1615 
1616 /* Used by processes to "lock" a socket state, so that
1617  * interrupts and bottom half handlers won't change it
1618  * from under us. It essentially blocks any incoming
1619  * packets, so that we won't get any new data or any
1620  * packets that change the state of the socket.
1621  *
1622  * While locked, BH processing will add new packets to
1623  * the backlog queue.  This queue is processed by the
1624  * owner of the socket lock right before it is released.
1625  *
1626  * Since ~2.3.5 it is also exclusive sleep lock serializing
1627  * accesses from user process context.
1628  */
1629 
1630 static inline void sock_owned_by_me(const struct sock *sk)
1631 {
1632 #ifdef CONFIG_LOCKDEP
1633 	WARN_ON_ONCE(!lockdep_sock_is_held(sk) && debug_locks);
1634 #endif
1635 }
1636 
1637 static inline bool sock_owned_by_user(const struct sock *sk)
1638 {
1639 	sock_owned_by_me(sk);
1640 	return sk->sk_lock.owned;
1641 }
1642 
1643 static inline bool sock_owned_by_user_nocheck(const struct sock *sk)
1644 {
1645 	return sk->sk_lock.owned;
1646 }
1647 
1648 /* no reclassification while locks are held */
1649 static inline bool sock_allow_reclassification(const struct sock *csk)
1650 {
1651 	struct sock *sk = (struct sock *)csk;
1652 
1653 	return !sk->sk_lock.owned && !spin_is_locked(&sk->sk_lock.slock);
1654 }
1655 
1656 struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
1657 		      struct proto *prot, int kern);
1658 void sk_free(struct sock *sk);
1659 void sk_destruct(struct sock *sk);
1660 struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority);
1661 void sk_free_unlock_clone(struct sock *sk);
1662 
1663 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
1664 			     gfp_t priority);
1665 void __sock_wfree(struct sk_buff *skb);
1666 void sock_wfree(struct sk_buff *skb);
1667 struct sk_buff *sock_omalloc(struct sock *sk, unsigned long size,
1668 			     gfp_t priority);
1669 void skb_orphan_partial(struct sk_buff *skb);
1670 void sock_rfree(struct sk_buff *skb);
1671 void sock_efree(struct sk_buff *skb);
1672 #ifdef CONFIG_INET
1673 void sock_edemux(struct sk_buff *skb);
1674 void sock_pfree(struct sk_buff *skb);
1675 #else
1676 #define sock_edemux sock_efree
1677 #endif
1678 
1679 int sock_setsockopt(struct socket *sock, int level, int op,
1680 		    char __user *optval, unsigned int optlen);
1681 
1682 int sock_getsockopt(struct socket *sock, int level, int op,
1683 		    char __user *optval, int __user *optlen);
1684 int sock_gettstamp(struct socket *sock, void __user *userstamp,
1685 		   bool timeval, bool time32);
1686 struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
1687 				    int noblock, int *errcode);
1688 struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
1689 				     unsigned long data_len, int noblock,
1690 				     int *errcode, int max_page_order);
1691 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority);
1692 void sock_kfree_s(struct sock *sk, void *mem, int size);
1693 void sock_kzfree_s(struct sock *sk, void *mem, int size);
1694 void sk_send_sigurg(struct sock *sk);
1695 
1696 struct sockcm_cookie {
1697 	u64 transmit_time;
1698 	u32 mark;
1699 	u16 tsflags;
1700 };
1701 
1702 static inline void sockcm_init(struct sockcm_cookie *sockc,
1703 			       const struct sock *sk)
1704 {
1705 	*sockc = (struct sockcm_cookie) { .tsflags = sk->sk_tsflags };
1706 }
1707 
1708 int __sock_cmsg_send(struct sock *sk, struct msghdr *msg, struct cmsghdr *cmsg,
1709 		     struct sockcm_cookie *sockc);
1710 int sock_cmsg_send(struct sock *sk, struct msghdr *msg,
1711 		   struct sockcm_cookie *sockc);
1712 
1713 /*
1714  * Functions to fill in entries in struct proto_ops when a protocol
1715  * does not implement a particular function.
1716  */
1717 int sock_no_bind(struct socket *, struct sockaddr *, int);
1718 int sock_no_connect(struct socket *, struct sockaddr *, int, int);
1719 int sock_no_socketpair(struct socket *, struct socket *);
1720 int sock_no_accept(struct socket *, struct socket *, int, bool);
1721 int sock_no_getname(struct socket *, struct sockaddr *, int);
1722 int sock_no_ioctl(struct socket *, unsigned int, unsigned long);
1723 int sock_no_listen(struct socket *, int);
1724 int sock_no_shutdown(struct socket *, int);
1725 int sock_no_getsockopt(struct socket *, int , int, char __user *, int __user *);
1726 int sock_no_setsockopt(struct socket *, int, int, char __user *, unsigned int);
1727 int sock_no_sendmsg(struct socket *, struct msghdr *, size_t);
1728 int sock_no_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t len);
1729 int sock_no_recvmsg(struct socket *, struct msghdr *, size_t, int);
1730 int sock_no_mmap(struct file *file, struct socket *sock,
1731 		 struct vm_area_struct *vma);
1732 ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset,
1733 			 size_t size, int flags);
1734 ssize_t sock_no_sendpage_locked(struct sock *sk, struct page *page,
1735 				int offset, size_t size, int flags);
1736 
1737 /*
1738  * Functions to fill in entries in struct proto_ops when a protocol
1739  * uses the inet style.
1740  */
1741 int sock_common_getsockopt(struct socket *sock, int level, int optname,
1742 				  char __user *optval, int __user *optlen);
1743 int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
1744 			int flags);
1745 int sock_common_setsockopt(struct socket *sock, int level, int optname,
1746 				  char __user *optval, unsigned int optlen);
1747 int compat_sock_common_getsockopt(struct socket *sock, int level,
1748 		int optname, char __user *optval, int __user *optlen);
1749 int compat_sock_common_setsockopt(struct socket *sock, int level,
1750 		int optname, char __user *optval, unsigned int optlen);
1751 
1752 void sk_common_release(struct sock *sk);
1753 
1754 /*
1755  *	Default socket callbacks and setup code
1756  */
1757 
1758 /* Initialise core socket variables */
1759 void sock_init_data(struct socket *sock, struct sock *sk);
1760 
1761 /*
1762  * Socket reference counting postulates.
1763  *
1764  * * Each user of socket SHOULD hold a reference count.
1765  * * Each access point to socket (an hash table bucket, reference from a list,
1766  *   running timer, skb in flight MUST hold a reference count.
1767  * * When reference count hits 0, it means it will never increase back.
1768  * * When reference count hits 0, it means that no references from
1769  *   outside exist to this socket and current process on current CPU
1770  *   is last user and may/should destroy this socket.
1771  * * sk_free is called from any context: process, BH, IRQ. When
1772  *   it is called, socket has no references from outside -> sk_free
1773  *   may release descendant resources allocated by the socket, but
1774  *   to the time when it is called, socket is NOT referenced by any
1775  *   hash tables, lists etc.
1776  * * Packets, delivered from outside (from network or from another process)
1777  *   and enqueued on receive/error queues SHOULD NOT grab reference count,
1778  *   when they sit in queue. Otherwise, packets will leak to hole, when
1779  *   socket is looked up by one cpu and unhasing is made by another CPU.
1780  *   It is true for udp/raw, netlink (leak to receive and error queues), tcp
1781  *   (leak to backlog). Packet socket does all the processing inside
1782  *   BR_NETPROTO_LOCK, so that it has not this race condition. UNIX sockets
1783  *   use separate SMP lock, so that they are prone too.
1784  */
1785 
1786 /* Ungrab socket and destroy it, if it was the last reference. */
1787 static inline void sock_put(struct sock *sk)
1788 {
1789 	if (refcount_dec_and_test(&sk->sk_refcnt))
1790 		sk_free(sk);
1791 }
1792 /* Generic version of sock_put(), dealing with all sockets
1793  * (TCP_TIMEWAIT, TCP_NEW_SYN_RECV, ESTABLISHED...)
1794  */
1795 void sock_gen_put(struct sock *sk);
1796 
1797 int __sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested,
1798 		     unsigned int trim_cap, bool refcounted);
1799 static inline int sk_receive_skb(struct sock *sk, struct sk_buff *skb,
1800 				 const int nested)
1801 {
1802 	return __sk_receive_skb(sk, skb, nested, 1, true);
1803 }
1804 
1805 static inline void sk_tx_queue_set(struct sock *sk, int tx_queue)
1806 {
1807 	/* sk_tx_queue_mapping accept only upto a 16-bit value */
1808 	if (WARN_ON_ONCE((unsigned short)tx_queue >= USHRT_MAX))
1809 		return;
1810 	sk->sk_tx_queue_mapping = tx_queue;
1811 }
1812 
1813 #define NO_QUEUE_MAPPING	USHRT_MAX
1814 
1815 static inline void sk_tx_queue_clear(struct sock *sk)
1816 {
1817 	sk->sk_tx_queue_mapping = NO_QUEUE_MAPPING;
1818 }
1819 
1820 static inline int sk_tx_queue_get(const struct sock *sk)
1821 {
1822 	if (sk && sk->sk_tx_queue_mapping != NO_QUEUE_MAPPING)
1823 		return sk->sk_tx_queue_mapping;
1824 
1825 	return -1;
1826 }
1827 
1828 static inline void sk_rx_queue_set(struct sock *sk, const struct sk_buff *skb)
1829 {
1830 #ifdef CONFIG_XPS
1831 	if (skb_rx_queue_recorded(skb)) {
1832 		u16 rx_queue = skb_get_rx_queue(skb);
1833 
1834 		if (WARN_ON_ONCE(rx_queue == NO_QUEUE_MAPPING))
1835 			return;
1836 
1837 		sk->sk_rx_queue_mapping = rx_queue;
1838 	}
1839 #endif
1840 }
1841 
1842 static inline void sk_rx_queue_clear(struct sock *sk)
1843 {
1844 #ifdef CONFIG_XPS
1845 	sk->sk_rx_queue_mapping = NO_QUEUE_MAPPING;
1846 #endif
1847 }
1848 
1849 #ifdef CONFIG_XPS
1850 static inline int sk_rx_queue_get(const struct sock *sk)
1851 {
1852 	if (sk && sk->sk_rx_queue_mapping != NO_QUEUE_MAPPING)
1853 		return sk->sk_rx_queue_mapping;
1854 
1855 	return -1;
1856 }
1857 #endif
1858 
1859 static inline void sk_set_socket(struct sock *sk, struct socket *sock)
1860 {
1861 	sk->sk_socket = sock;
1862 }
1863 
1864 static inline wait_queue_head_t *sk_sleep(struct sock *sk)
1865 {
1866 	BUILD_BUG_ON(offsetof(struct socket_wq, wait) != 0);
1867 	return &rcu_dereference_raw(sk->sk_wq)->wait;
1868 }
1869 /* Detach socket from process context.
1870  * Announce socket dead, detach it from wait queue and inode.
1871  * Note that parent inode held reference count on this struct sock,
1872  * we do not release it in this function, because protocol
1873  * probably wants some additional cleanups or even continuing
1874  * to work with this socket (TCP).
1875  */
1876 static inline void sock_orphan(struct sock *sk)
1877 {
1878 	write_lock_bh(&sk->sk_callback_lock);
1879 	sock_set_flag(sk, SOCK_DEAD);
1880 	sk_set_socket(sk, NULL);
1881 	sk->sk_wq  = NULL;
1882 	write_unlock_bh(&sk->sk_callback_lock);
1883 }
1884 
1885 static inline void sock_graft(struct sock *sk, struct socket *parent)
1886 {
1887 	WARN_ON(parent->sk);
1888 	write_lock_bh(&sk->sk_callback_lock);
1889 	rcu_assign_pointer(sk->sk_wq, &parent->wq);
1890 	parent->sk = sk;
1891 	sk_set_socket(sk, parent);
1892 	sk->sk_uid = SOCK_INODE(parent)->i_uid;
1893 	security_sock_graft(sk, parent);
1894 	write_unlock_bh(&sk->sk_callback_lock);
1895 }
1896 
1897 kuid_t sock_i_uid(struct sock *sk);
1898 unsigned long sock_i_ino(struct sock *sk);
1899 
1900 static inline kuid_t sock_net_uid(const struct net *net, const struct sock *sk)
1901 {
1902 	return sk ? sk->sk_uid : make_kuid(net->user_ns, 0);
1903 }
1904 
1905 static inline u32 net_tx_rndhash(void)
1906 {
1907 	u32 v = prandom_u32();
1908 
1909 	return v ?: 1;
1910 }
1911 
1912 static inline void sk_set_txhash(struct sock *sk)
1913 {
1914 	sk->sk_txhash = net_tx_rndhash();
1915 }
1916 
1917 static inline void sk_rethink_txhash(struct sock *sk)
1918 {
1919 	if (sk->sk_txhash)
1920 		sk_set_txhash(sk);
1921 }
1922 
1923 static inline struct dst_entry *
1924 __sk_dst_get(struct sock *sk)
1925 {
1926 	return rcu_dereference_check(sk->sk_dst_cache,
1927 				     lockdep_sock_is_held(sk));
1928 }
1929 
1930 static inline struct dst_entry *
1931 sk_dst_get(struct sock *sk)
1932 {
1933 	struct dst_entry *dst;
1934 
1935 	rcu_read_lock();
1936 	dst = rcu_dereference(sk->sk_dst_cache);
1937 	if (dst && !atomic_inc_not_zero(&dst->__refcnt))
1938 		dst = NULL;
1939 	rcu_read_unlock();
1940 	return dst;
1941 }
1942 
1943 static inline void dst_negative_advice(struct sock *sk)
1944 {
1945 	struct dst_entry *ndst, *dst = __sk_dst_get(sk);
1946 
1947 	sk_rethink_txhash(sk);
1948 
1949 	if (dst && dst->ops->negative_advice) {
1950 		ndst = dst->ops->negative_advice(dst);
1951 
1952 		if (ndst != dst) {
1953 			rcu_assign_pointer(sk->sk_dst_cache, ndst);
1954 			sk_tx_queue_clear(sk);
1955 			sk->sk_dst_pending_confirm = 0;
1956 		}
1957 	}
1958 }
1959 
1960 static inline void
1961 __sk_dst_set(struct sock *sk, struct dst_entry *dst)
1962 {
1963 	struct dst_entry *old_dst;
1964 
1965 	sk_tx_queue_clear(sk);
1966 	sk->sk_dst_pending_confirm = 0;
1967 	old_dst = rcu_dereference_protected(sk->sk_dst_cache,
1968 					    lockdep_sock_is_held(sk));
1969 	rcu_assign_pointer(sk->sk_dst_cache, dst);
1970 	dst_release(old_dst);
1971 }
1972 
1973 static inline void
1974 sk_dst_set(struct sock *sk, struct dst_entry *dst)
1975 {
1976 	struct dst_entry *old_dst;
1977 
1978 	sk_tx_queue_clear(sk);
1979 	sk->sk_dst_pending_confirm = 0;
1980 	old_dst = xchg((__force struct dst_entry **)&sk->sk_dst_cache, dst);
1981 	dst_release(old_dst);
1982 }
1983 
1984 static inline void
1985 __sk_dst_reset(struct sock *sk)
1986 {
1987 	__sk_dst_set(sk, NULL);
1988 }
1989 
1990 static inline void
1991 sk_dst_reset(struct sock *sk)
1992 {
1993 	sk_dst_set(sk, NULL);
1994 }
1995 
1996 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie);
1997 
1998 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie);
1999 
2000 static inline void sk_dst_confirm(struct sock *sk)
2001 {
2002 	if (!READ_ONCE(sk->sk_dst_pending_confirm))
2003 		WRITE_ONCE(sk->sk_dst_pending_confirm, 1);
2004 }
2005 
2006 static inline void sock_confirm_neigh(struct sk_buff *skb, struct neighbour *n)
2007 {
2008 	if (skb_get_dst_pending_confirm(skb)) {
2009 		struct sock *sk = skb->sk;
2010 		unsigned long now = jiffies;
2011 
2012 		/* avoid dirtying neighbour */
2013 		if (READ_ONCE(n->confirmed) != now)
2014 			WRITE_ONCE(n->confirmed, now);
2015 		if (sk && READ_ONCE(sk->sk_dst_pending_confirm))
2016 			WRITE_ONCE(sk->sk_dst_pending_confirm, 0);
2017 	}
2018 }
2019 
2020 bool sk_mc_loop(struct sock *sk);
2021 
2022 static inline bool sk_can_gso(const struct sock *sk)
2023 {
2024 	return net_gso_ok(sk->sk_route_caps, sk->sk_gso_type);
2025 }
2026 
2027 void sk_setup_caps(struct sock *sk, struct dst_entry *dst);
2028 
2029 static inline void sk_nocaps_add(struct sock *sk, netdev_features_t flags)
2030 {
2031 	sk->sk_route_nocaps |= flags;
2032 	sk->sk_route_caps &= ~flags;
2033 }
2034 
2035 static inline int skb_do_copy_data_nocache(struct sock *sk, struct sk_buff *skb,
2036 					   struct iov_iter *from, char *to,
2037 					   int copy, int offset)
2038 {
2039 	if (skb->ip_summed == CHECKSUM_NONE) {
2040 		__wsum csum = 0;
2041 		if (!csum_and_copy_from_iter_full(to, copy, &csum, from))
2042 			return -EFAULT;
2043 		skb->csum = csum_block_add(skb->csum, csum, offset);
2044 	} else if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY) {
2045 		if (!copy_from_iter_full_nocache(to, copy, from))
2046 			return -EFAULT;
2047 	} else if (!copy_from_iter_full(to, copy, from))
2048 		return -EFAULT;
2049 
2050 	return 0;
2051 }
2052 
2053 static inline int skb_add_data_nocache(struct sock *sk, struct sk_buff *skb,
2054 				       struct iov_iter *from, int copy)
2055 {
2056 	int err, offset = skb->len;
2057 
2058 	err = skb_do_copy_data_nocache(sk, skb, from, skb_put(skb, copy),
2059 				       copy, offset);
2060 	if (err)
2061 		__skb_trim(skb, offset);
2062 
2063 	return err;
2064 }
2065 
2066 static inline int skb_copy_to_page_nocache(struct sock *sk, struct iov_iter *from,
2067 					   struct sk_buff *skb,
2068 					   struct page *page,
2069 					   int off, int copy)
2070 {
2071 	int err;
2072 
2073 	err = skb_do_copy_data_nocache(sk, skb, from, page_address(page) + off,
2074 				       copy, skb->len);
2075 	if (err)
2076 		return err;
2077 
2078 	skb->len	     += copy;
2079 	skb->data_len	     += copy;
2080 	skb->truesize	     += copy;
2081 	sk_wmem_queued_add(sk, copy);
2082 	sk_mem_charge(sk, copy);
2083 	return 0;
2084 }
2085 
2086 /**
2087  * sk_wmem_alloc_get - returns write allocations
2088  * @sk: socket
2089  *
2090  * Return: sk_wmem_alloc minus initial offset of one
2091  */
2092 static inline int sk_wmem_alloc_get(const struct sock *sk)
2093 {
2094 	return refcount_read(&sk->sk_wmem_alloc) - 1;
2095 }
2096 
2097 /**
2098  * sk_rmem_alloc_get - returns read allocations
2099  * @sk: socket
2100  *
2101  * Return: sk_rmem_alloc
2102  */
2103 static inline int sk_rmem_alloc_get(const struct sock *sk)
2104 {
2105 	return atomic_read(&sk->sk_rmem_alloc);
2106 }
2107 
2108 /**
2109  * sk_has_allocations - check if allocations are outstanding
2110  * @sk: socket
2111  *
2112  * Return: true if socket has write or read allocations
2113  */
2114 static inline bool sk_has_allocations(const struct sock *sk)
2115 {
2116 	return sk_wmem_alloc_get(sk) || sk_rmem_alloc_get(sk);
2117 }
2118 
2119 /**
2120  * skwq_has_sleeper - check if there are any waiting processes
2121  * @wq: struct socket_wq
2122  *
2123  * Return: true if socket_wq has waiting processes
2124  *
2125  * The purpose of the skwq_has_sleeper and sock_poll_wait is to wrap the memory
2126  * barrier call. They were added due to the race found within the tcp code.
2127  *
2128  * Consider following tcp code paths::
2129  *
2130  *   CPU1                CPU2
2131  *   sys_select          receive packet
2132  *   ...                 ...
2133  *   __add_wait_queue    update tp->rcv_nxt
2134  *   ...                 ...
2135  *   tp->rcv_nxt check   sock_def_readable
2136  *   ...                 {
2137  *   schedule               rcu_read_lock();
2138  *                          wq = rcu_dereference(sk->sk_wq);
2139  *                          if (wq && waitqueue_active(&wq->wait))
2140  *                              wake_up_interruptible(&wq->wait)
2141  *                          ...
2142  *                       }
2143  *
2144  * The race for tcp fires when the __add_wait_queue changes done by CPU1 stay
2145  * in its cache, and so does the tp->rcv_nxt update on CPU2 side.  The CPU1
2146  * could then endup calling schedule and sleep forever if there are no more
2147  * data on the socket.
2148  *
2149  */
2150 static inline bool skwq_has_sleeper(struct socket_wq *wq)
2151 {
2152 	return wq && wq_has_sleeper(&wq->wait);
2153 }
2154 
2155 /**
2156  * sock_poll_wait - place memory barrier behind the poll_wait call.
2157  * @filp:           file
2158  * @sock:           socket to wait on
2159  * @p:              poll_table
2160  *
2161  * See the comments in the wq_has_sleeper function.
2162  */
2163 static inline void sock_poll_wait(struct file *filp, struct socket *sock,
2164 				  poll_table *p)
2165 {
2166 	if (!poll_does_not_wait(p)) {
2167 		poll_wait(filp, &sock->wq.wait, p);
2168 		/* We need to be sure we are in sync with the
2169 		 * socket flags modification.
2170 		 *
2171 		 * This memory barrier is paired in the wq_has_sleeper.
2172 		 */
2173 		smp_mb();
2174 	}
2175 }
2176 
2177 static inline void skb_set_hash_from_sk(struct sk_buff *skb, struct sock *sk)
2178 {
2179 	if (sk->sk_txhash) {
2180 		skb->l4_hash = 1;
2181 		skb->hash = sk->sk_txhash;
2182 	}
2183 }
2184 
2185 void skb_set_owner_w(struct sk_buff *skb, struct sock *sk);
2186 
2187 /*
2188  *	Queue a received datagram if it will fit. Stream and sequenced
2189  *	protocols can't normally use this as they need to fit buffers in
2190  *	and play with them.
2191  *
2192  *	Inlined as it's very short and called for pretty much every
2193  *	packet ever received.
2194  */
2195 static inline void skb_set_owner_r(struct sk_buff *skb, struct sock *sk)
2196 {
2197 	skb_orphan(skb);
2198 	skb->sk = sk;
2199 	skb->destructor = sock_rfree;
2200 	atomic_add(skb->truesize, &sk->sk_rmem_alloc);
2201 	sk_mem_charge(sk, skb->truesize);
2202 }
2203 
2204 void sk_reset_timer(struct sock *sk, struct timer_list *timer,
2205 		    unsigned long expires);
2206 
2207 void sk_stop_timer(struct sock *sk, struct timer_list *timer);
2208 
2209 int __sk_queue_drop_skb(struct sock *sk, struct sk_buff_head *sk_queue,
2210 			struct sk_buff *skb, unsigned int flags,
2211 			void (*destructor)(struct sock *sk,
2212 					   struct sk_buff *skb));
2213 int __sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
2214 int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
2215 
2216 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb);
2217 struct sk_buff *sock_dequeue_err_skb(struct sock *sk);
2218 
2219 /*
2220  *	Recover an error report and clear atomically
2221  */
2222 
2223 static inline int sock_error(struct sock *sk)
2224 {
2225 	int err;
2226 	if (likely(!sk->sk_err))
2227 		return 0;
2228 	err = xchg(&sk->sk_err, 0);
2229 	return -err;
2230 }
2231 
2232 static inline unsigned long sock_wspace(struct sock *sk)
2233 {
2234 	int amt = 0;
2235 
2236 	if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
2237 		amt = sk->sk_sndbuf - refcount_read(&sk->sk_wmem_alloc);
2238 		if (amt < 0)
2239 			amt = 0;
2240 	}
2241 	return amt;
2242 }
2243 
2244 /* Note:
2245  *  We use sk->sk_wq_raw, from contexts knowing this
2246  *  pointer is not NULL and cannot disappear/change.
2247  */
2248 static inline void sk_set_bit(int nr, struct sock *sk)
2249 {
2250 	if ((nr == SOCKWQ_ASYNC_NOSPACE || nr == SOCKWQ_ASYNC_WAITDATA) &&
2251 	    !sock_flag(sk, SOCK_FASYNC))
2252 		return;
2253 
2254 	set_bit(nr, &sk->sk_wq_raw->flags);
2255 }
2256 
2257 static inline void sk_clear_bit(int nr, struct sock *sk)
2258 {
2259 	if ((nr == SOCKWQ_ASYNC_NOSPACE || nr == SOCKWQ_ASYNC_WAITDATA) &&
2260 	    !sock_flag(sk, SOCK_FASYNC))
2261 		return;
2262 
2263 	clear_bit(nr, &sk->sk_wq_raw->flags);
2264 }
2265 
2266 static inline void sk_wake_async(const struct sock *sk, int how, int band)
2267 {
2268 	if (sock_flag(sk, SOCK_FASYNC)) {
2269 		rcu_read_lock();
2270 		sock_wake_async(rcu_dereference(sk->sk_wq), how, band);
2271 		rcu_read_unlock();
2272 	}
2273 }
2274 
2275 /* Since sk_{r,w}mem_alloc sums skb->truesize, even a small frame might
2276  * need sizeof(sk_buff) + MTU + padding, unless net driver perform copybreak.
2277  * Note: for send buffers, TCP works better if we can build two skbs at
2278  * minimum.
2279  */
2280 #define TCP_SKB_MIN_TRUESIZE	(2048 + SKB_DATA_ALIGN(sizeof(struct sk_buff)))
2281 
2282 #define SOCK_MIN_SNDBUF		(TCP_SKB_MIN_TRUESIZE * 2)
2283 #define SOCK_MIN_RCVBUF		 TCP_SKB_MIN_TRUESIZE
2284 
2285 static inline void sk_stream_moderate_sndbuf(struct sock *sk)
2286 {
2287 	u32 val;
2288 
2289 	if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
2290 		return;
2291 
2292 	val = min(sk->sk_sndbuf, sk->sk_wmem_queued >> 1);
2293 
2294 	WRITE_ONCE(sk->sk_sndbuf, max_t(u32, val, SOCK_MIN_SNDBUF));
2295 }
2296 
2297 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp,
2298 				    bool force_schedule);
2299 
2300 /**
2301  * sk_page_frag - return an appropriate page_frag
2302  * @sk: socket
2303  *
2304  * Use the per task page_frag instead of the per socket one for
2305  * optimization when we know that we're in the normal context and owns
2306  * everything that's associated with %current.
2307  *
2308  * gfpflags_allow_blocking() isn't enough here as direct reclaim may nest
2309  * inside other socket operations and end up recursing into sk_page_frag()
2310  * while it's already in use.
2311  *
2312  * Return: a per task page_frag if context allows that,
2313  * otherwise a per socket one.
2314  */
2315 static inline struct page_frag *sk_page_frag(struct sock *sk)
2316 {
2317 	if (gfpflags_normal_context(sk->sk_allocation))
2318 		return &current->task_frag;
2319 
2320 	return &sk->sk_frag;
2321 }
2322 
2323 bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag);
2324 
2325 /*
2326  *	Default write policy as shown to user space via poll/select/SIGIO
2327  */
2328 static inline bool sock_writeable(const struct sock *sk)
2329 {
2330 	return refcount_read(&sk->sk_wmem_alloc) < (READ_ONCE(sk->sk_sndbuf) >> 1);
2331 }
2332 
2333 static inline gfp_t gfp_any(void)
2334 {
2335 	return in_softirq() ? GFP_ATOMIC : GFP_KERNEL;
2336 }
2337 
2338 static inline long sock_rcvtimeo(const struct sock *sk, bool noblock)
2339 {
2340 	return noblock ? 0 : sk->sk_rcvtimeo;
2341 }
2342 
2343 static inline long sock_sndtimeo(const struct sock *sk, bool noblock)
2344 {
2345 	return noblock ? 0 : sk->sk_sndtimeo;
2346 }
2347 
2348 static inline int sock_rcvlowat(const struct sock *sk, int waitall, int len)
2349 {
2350 	int v = waitall ? len : min_t(int, READ_ONCE(sk->sk_rcvlowat), len);
2351 
2352 	return v ?: 1;
2353 }
2354 
2355 /* Alas, with timeout socket operations are not restartable.
2356  * Compare this to poll().
2357  */
2358 static inline int sock_intr_errno(long timeo)
2359 {
2360 	return timeo == MAX_SCHEDULE_TIMEOUT ? -ERESTARTSYS : -EINTR;
2361 }
2362 
2363 struct sock_skb_cb {
2364 	u32 dropcount;
2365 };
2366 
2367 /* Store sock_skb_cb at the end of skb->cb[] so protocol families
2368  * using skb->cb[] would keep using it directly and utilize its
2369  * alignement guarantee.
2370  */
2371 #define SOCK_SKB_CB_OFFSET ((sizeof_field(struct sk_buff, cb) - \
2372 			    sizeof(struct sock_skb_cb)))
2373 
2374 #define SOCK_SKB_CB(__skb) ((struct sock_skb_cb *)((__skb)->cb + \
2375 			    SOCK_SKB_CB_OFFSET))
2376 
2377 #define sock_skb_cb_check_size(size) \
2378 	BUILD_BUG_ON((size) > SOCK_SKB_CB_OFFSET)
2379 
2380 static inline void
2381 sock_skb_set_dropcount(const struct sock *sk, struct sk_buff *skb)
2382 {
2383 	SOCK_SKB_CB(skb)->dropcount = sock_flag(sk, SOCK_RXQ_OVFL) ?
2384 						atomic_read(&sk->sk_drops) : 0;
2385 }
2386 
2387 static inline void sk_drops_add(struct sock *sk, const struct sk_buff *skb)
2388 {
2389 	int segs = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
2390 
2391 	atomic_add(segs, &sk->sk_drops);
2392 }
2393 
2394 static inline ktime_t sock_read_timestamp(struct sock *sk)
2395 {
2396 #if BITS_PER_LONG==32
2397 	unsigned int seq;
2398 	ktime_t kt;
2399 
2400 	do {
2401 		seq = read_seqbegin(&sk->sk_stamp_seq);
2402 		kt = sk->sk_stamp;
2403 	} while (read_seqretry(&sk->sk_stamp_seq, seq));
2404 
2405 	return kt;
2406 #else
2407 	return READ_ONCE(sk->sk_stamp);
2408 #endif
2409 }
2410 
2411 static inline void sock_write_timestamp(struct sock *sk, ktime_t kt)
2412 {
2413 #if BITS_PER_LONG==32
2414 	write_seqlock(&sk->sk_stamp_seq);
2415 	sk->sk_stamp = kt;
2416 	write_sequnlock(&sk->sk_stamp_seq);
2417 #else
2418 	WRITE_ONCE(sk->sk_stamp, kt);
2419 #endif
2420 }
2421 
2422 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
2423 			   struct sk_buff *skb);
2424 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
2425 			     struct sk_buff *skb);
2426 
2427 static inline void
2428 sock_recv_timestamp(struct msghdr *msg, struct sock *sk, struct sk_buff *skb)
2429 {
2430 	ktime_t kt = skb->tstamp;
2431 	struct skb_shared_hwtstamps *hwtstamps = skb_hwtstamps(skb);
2432 
2433 	/*
2434 	 * generate control messages if
2435 	 * - receive time stamping in software requested
2436 	 * - software time stamp available and wanted
2437 	 * - hardware time stamps available and wanted
2438 	 */
2439 	if (sock_flag(sk, SOCK_RCVTSTAMP) ||
2440 	    (sk->sk_tsflags & SOF_TIMESTAMPING_RX_SOFTWARE) ||
2441 	    (kt && sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) ||
2442 	    (hwtstamps->hwtstamp &&
2443 	     (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE)))
2444 		__sock_recv_timestamp(msg, sk, skb);
2445 	else
2446 		sock_write_timestamp(sk, kt);
2447 
2448 	if (sock_flag(sk, SOCK_WIFI_STATUS) && skb->wifi_acked_valid)
2449 		__sock_recv_wifi_status(msg, sk, skb);
2450 }
2451 
2452 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
2453 			      struct sk_buff *skb);
2454 
2455 #define SK_DEFAULT_STAMP (-1L * NSEC_PER_SEC)
2456 static inline void sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
2457 					  struct sk_buff *skb)
2458 {
2459 #define FLAGS_TS_OR_DROPS ((1UL << SOCK_RXQ_OVFL)			| \
2460 			   (1UL << SOCK_RCVTSTAMP))
2461 #define TSFLAGS_ANY	  (SOF_TIMESTAMPING_SOFTWARE			| \
2462 			   SOF_TIMESTAMPING_RAW_HARDWARE)
2463 
2464 	if (sk->sk_flags & FLAGS_TS_OR_DROPS || sk->sk_tsflags & TSFLAGS_ANY)
2465 		__sock_recv_ts_and_drops(msg, sk, skb);
2466 	else if (unlikely(sock_flag(sk, SOCK_TIMESTAMP)))
2467 		sock_write_timestamp(sk, skb->tstamp);
2468 	else if (unlikely(sk->sk_stamp == SK_DEFAULT_STAMP))
2469 		sock_write_timestamp(sk, 0);
2470 }
2471 
2472 void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags);
2473 
2474 /**
2475  * _sock_tx_timestamp - checks whether the outgoing packet is to be time stamped
2476  * @sk:		socket sending this packet
2477  * @tsflags:	timestamping flags to use
2478  * @tx_flags:	completed with instructions for time stamping
2479  * @tskey:      filled in with next sk_tskey (not for TCP, which uses seqno)
2480  *
2481  * Note: callers should take care of initial ``*tx_flags`` value (usually 0)
2482  */
2483 static inline void _sock_tx_timestamp(struct sock *sk, __u16 tsflags,
2484 				      __u8 *tx_flags, __u32 *tskey)
2485 {
2486 	if (unlikely(tsflags)) {
2487 		__sock_tx_timestamp(tsflags, tx_flags);
2488 		if (tsflags & SOF_TIMESTAMPING_OPT_ID && tskey &&
2489 		    tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK)
2490 			*tskey = sk->sk_tskey++;
2491 	}
2492 	if (unlikely(sock_flag(sk, SOCK_WIFI_STATUS)))
2493 		*tx_flags |= SKBTX_WIFI_STATUS;
2494 }
2495 
2496 static inline void sock_tx_timestamp(struct sock *sk, __u16 tsflags,
2497 				     __u8 *tx_flags)
2498 {
2499 	_sock_tx_timestamp(sk, tsflags, tx_flags, NULL);
2500 }
2501 
2502 static inline void skb_setup_tx_timestamp(struct sk_buff *skb, __u16 tsflags)
2503 {
2504 	_sock_tx_timestamp(skb->sk, tsflags, &skb_shinfo(skb)->tx_flags,
2505 			   &skb_shinfo(skb)->tskey);
2506 }
2507 
2508 DECLARE_STATIC_KEY_FALSE(tcp_rx_skb_cache_key);
2509 /**
2510  * sk_eat_skb - Release a skb if it is no longer needed
2511  * @sk: socket to eat this skb from
2512  * @skb: socket buffer to eat
2513  *
2514  * This routine must be called with interrupts disabled or with the socket
2515  * locked so that the sk_buff queue operation is ok.
2516 */
2517 static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb)
2518 {
2519 	__skb_unlink(skb, &sk->sk_receive_queue);
2520 	if (static_branch_unlikely(&tcp_rx_skb_cache_key) &&
2521 	    !sk->sk_rx_skb_cache) {
2522 		sk->sk_rx_skb_cache = skb;
2523 		skb_orphan(skb);
2524 		return;
2525 	}
2526 	__kfree_skb(skb);
2527 }
2528 
2529 static inline
2530 struct net *sock_net(const struct sock *sk)
2531 {
2532 	return read_pnet(&sk->sk_net);
2533 }
2534 
2535 static inline
2536 void sock_net_set(struct sock *sk, struct net *net)
2537 {
2538 	write_pnet(&sk->sk_net, net);
2539 }
2540 
2541 static inline bool
2542 skb_sk_is_prefetched(struct sk_buff *skb)
2543 {
2544 #ifdef CONFIG_INET
2545 	return skb->destructor == sock_pfree;
2546 #else
2547 	return false;
2548 #endif /* CONFIG_INET */
2549 }
2550 
2551 /* This helper checks if a socket is a full socket,
2552  * ie _not_ a timewait or request socket.
2553  */
2554 static inline bool sk_fullsock(const struct sock *sk)
2555 {
2556 	return (1 << sk->sk_state) & ~(TCPF_TIME_WAIT | TCPF_NEW_SYN_RECV);
2557 }
2558 
2559 static inline bool
2560 sk_is_refcounted(struct sock *sk)
2561 {
2562 	/* Only full sockets have sk->sk_flags. */
2563 	return !sk_fullsock(sk) || !sock_flag(sk, SOCK_RCU_FREE);
2564 }
2565 
2566 /**
2567  * skb_steal_sock - steal a socket from an sk_buff
2568  * @skb: sk_buff to steal the socket from
2569  * @refcounted: is set to true if the socket is reference-counted
2570  */
2571 static inline struct sock *
2572 skb_steal_sock(struct sk_buff *skb, bool *refcounted)
2573 {
2574 	if (skb->sk) {
2575 		struct sock *sk = skb->sk;
2576 
2577 		*refcounted = true;
2578 		if (skb_sk_is_prefetched(skb))
2579 			*refcounted = sk_is_refcounted(sk);
2580 		skb->destructor = NULL;
2581 		skb->sk = NULL;
2582 		return sk;
2583 	}
2584 	*refcounted = false;
2585 	return NULL;
2586 }
2587 
2588 /* Checks if this SKB belongs to an HW offloaded socket
2589  * and whether any SW fallbacks are required based on dev.
2590  * Check decrypted mark in case skb_orphan() cleared socket.
2591  */
2592 static inline struct sk_buff *sk_validate_xmit_skb(struct sk_buff *skb,
2593 						   struct net_device *dev)
2594 {
2595 #ifdef CONFIG_SOCK_VALIDATE_XMIT
2596 	struct sock *sk = skb->sk;
2597 
2598 	if (sk && sk_fullsock(sk) && sk->sk_validate_xmit_skb) {
2599 		skb = sk->sk_validate_xmit_skb(sk, dev, skb);
2600 #ifdef CONFIG_TLS_DEVICE
2601 	} else if (unlikely(skb->decrypted)) {
2602 		pr_warn_ratelimited("unencrypted skb with no associated socket - dropping\n");
2603 		kfree_skb(skb);
2604 		skb = NULL;
2605 #endif
2606 	}
2607 #endif
2608 
2609 	return skb;
2610 }
2611 
2612 /* This helper checks if a socket is a LISTEN or NEW_SYN_RECV
2613  * SYNACK messages can be attached to either ones (depending on SYNCOOKIE)
2614  */
2615 static inline bool sk_listener(const struct sock *sk)
2616 {
2617 	return (1 << sk->sk_state) & (TCPF_LISTEN | TCPF_NEW_SYN_RECV);
2618 }
2619 
2620 void sock_enable_timestamp(struct sock *sk, enum sock_flags flag);
2621 int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len, int level,
2622 		       int type);
2623 
2624 bool sk_ns_capable(const struct sock *sk,
2625 		   struct user_namespace *user_ns, int cap);
2626 bool sk_capable(const struct sock *sk, int cap);
2627 bool sk_net_capable(const struct sock *sk, int cap);
2628 
2629 void sk_get_meminfo(const struct sock *sk, u32 *meminfo);
2630 
2631 /* Take into consideration the size of the struct sk_buff overhead in the
2632  * determination of these values, since that is non-constant across
2633  * platforms.  This makes socket queueing behavior and performance
2634  * not depend upon such differences.
2635  */
2636 #define _SK_MEM_PACKETS		256
2637 #define _SK_MEM_OVERHEAD	SKB_TRUESIZE(256)
2638 #define SK_WMEM_MAX		(_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
2639 #define SK_RMEM_MAX		(_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
2640 
2641 extern __u32 sysctl_wmem_max;
2642 extern __u32 sysctl_rmem_max;
2643 
2644 extern int sysctl_tstamp_allow_data;
2645 extern int sysctl_optmem_max;
2646 
2647 extern __u32 sysctl_wmem_default;
2648 extern __u32 sysctl_rmem_default;
2649 
2650 DECLARE_STATIC_KEY_FALSE(net_high_order_alloc_disable_key);
2651 
2652 static inline int sk_get_wmem0(const struct sock *sk, const struct proto *proto)
2653 {
2654 	/* Does this proto have per netns sysctl_wmem ? */
2655 	if (proto->sysctl_wmem_offset)
2656 		return *(int *)((void *)sock_net(sk) + proto->sysctl_wmem_offset);
2657 
2658 	return *proto->sysctl_wmem;
2659 }
2660 
2661 static inline int sk_get_rmem0(const struct sock *sk, const struct proto *proto)
2662 {
2663 	/* Does this proto have per netns sysctl_rmem ? */
2664 	if (proto->sysctl_rmem_offset)
2665 		return *(int *)((void *)sock_net(sk) + proto->sysctl_rmem_offset);
2666 
2667 	return *proto->sysctl_rmem;
2668 }
2669 
2670 /* Default TCP Small queue budget is ~1 ms of data (1sec >> 10)
2671  * Some wifi drivers need to tweak it to get more chunks.
2672  * They can use this helper from their ndo_start_xmit()
2673  */
2674 static inline void sk_pacing_shift_update(struct sock *sk, int val)
2675 {
2676 	if (!sk || !sk_fullsock(sk) || READ_ONCE(sk->sk_pacing_shift) == val)
2677 		return;
2678 	WRITE_ONCE(sk->sk_pacing_shift, val);
2679 }
2680 
2681 /* if a socket is bound to a device, check that the given device
2682  * index is either the same or that the socket is bound to an L3
2683  * master device and the given device index is also enslaved to
2684  * that L3 master
2685  */
2686 static inline bool sk_dev_equal_l3scope(struct sock *sk, int dif)
2687 {
2688 	int mdif;
2689 
2690 	if (!sk->sk_bound_dev_if || sk->sk_bound_dev_if == dif)
2691 		return true;
2692 
2693 	mdif = l3mdev_master_ifindex_by_index(sock_net(sk), dif);
2694 	if (mdif && mdif == sk->sk_bound_dev_if)
2695 		return true;
2696 
2697 	return false;
2698 }
2699 
2700 void sock_def_readable(struct sock *sk);
2701 
2702 int sock_bindtoindex(struct sock *sk, int ifindex, bool lock_sk);
2703 void sock_enable_timestamps(struct sock *sk);
2704 void sock_no_linger(struct sock *sk);
2705 void sock_set_keepalive(struct sock *sk);
2706 void sock_set_priority(struct sock *sk, u32 priority);
2707 void sock_set_rcvbuf(struct sock *sk, int val);
2708 void sock_set_reuseaddr(struct sock *sk);
2709 void sock_set_reuseport(struct sock *sk);
2710 void sock_set_sndtimeo(struct sock *sk, s64 secs);
2711 
2712 int sock_bind_add(struct sock *sk, struct sockaddr *addr, int addr_len);
2713 
2714 #endif	/* _SOCK_H */
2715