1 /* SPDX-License-Identifier: GPL-2.0-or-later */ 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * Definitions for the AF_INET socket handler. 8 * 9 * Version: @(#)sock.h 1.0.4 05/13/93 10 * 11 * Authors: Ross Biro 12 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 13 * Corey Minyard <wf-rch!minyard@relay.EU.net> 14 * Florian La Roche <flla@stud.uni-sb.de> 15 * 16 * Fixes: 17 * Alan Cox : Volatiles in skbuff pointers. See 18 * skbuff comments. May be overdone, 19 * better to prove they can be removed 20 * than the reverse. 21 * Alan Cox : Added a zapped field for tcp to note 22 * a socket is reset and must stay shut up 23 * Alan Cox : New fields for options 24 * Pauline Middelink : identd support 25 * Alan Cox : Eliminate low level recv/recvfrom 26 * David S. Miller : New socket lookup architecture. 27 * Steve Whitehouse: Default routines for sock_ops 28 * Arnaldo C. Melo : removed net_pinfo, tp_pinfo and made 29 * protinfo be just a void pointer, as the 30 * protocol specific parts were moved to 31 * respective headers and ipv4/v6, etc now 32 * use private slabcaches for its socks 33 * Pedro Hortas : New flags field for socket options 34 */ 35 #ifndef _SOCK_H 36 #define _SOCK_H 37 38 #include <linux/hardirq.h> 39 #include <linux/kernel.h> 40 #include <linux/list.h> 41 #include <linux/list_nulls.h> 42 #include <linux/timer.h> 43 #include <linux/cache.h> 44 #include <linux/bitops.h> 45 #include <linux/lockdep.h> 46 #include <linux/netdevice.h> 47 #include <linux/skbuff.h> /* struct sk_buff */ 48 #include <linux/mm.h> 49 #include <linux/security.h> 50 #include <linux/slab.h> 51 #include <linux/uaccess.h> 52 #include <linux/page_counter.h> 53 #include <linux/memcontrol.h> 54 #include <linux/static_key.h> 55 #include <linux/sched.h> 56 #include <linux/wait.h> 57 #include <linux/cgroup-defs.h> 58 #include <linux/rbtree.h> 59 #include <linux/filter.h> 60 #include <linux/rculist_nulls.h> 61 #include <linux/poll.h> 62 63 #include <linux/atomic.h> 64 #include <linux/refcount.h> 65 #include <net/dst.h> 66 #include <net/checksum.h> 67 #include <net/tcp_states.h> 68 #include <linux/net_tstamp.h> 69 #include <net/l3mdev.h> 70 71 /* 72 * This structure really needs to be cleaned up. 73 * Most of it is for TCP, and not used by any of 74 * the other protocols. 75 */ 76 77 /* Define this to get the SOCK_DBG debugging facility. */ 78 #define SOCK_DEBUGGING 79 #ifdef SOCK_DEBUGGING 80 #define SOCK_DEBUG(sk, msg...) do { if ((sk) && sock_flag((sk), SOCK_DBG)) \ 81 printk(KERN_DEBUG msg); } while (0) 82 #else 83 /* Validate arguments and do nothing */ 84 static inline __printf(2, 3) 85 void SOCK_DEBUG(const struct sock *sk, const char *msg, ...) 86 { 87 } 88 #endif 89 90 /* This is the per-socket lock. The spinlock provides a synchronization 91 * between user contexts and software interrupt processing, whereas the 92 * mini-semaphore synchronizes multiple users amongst themselves. 93 */ 94 typedef struct { 95 spinlock_t slock; 96 int owned; 97 wait_queue_head_t wq; 98 /* 99 * We express the mutex-alike socket_lock semantics 100 * to the lock validator by explicitly managing 101 * the slock as a lock variant (in addition to 102 * the slock itself): 103 */ 104 #ifdef CONFIG_DEBUG_LOCK_ALLOC 105 struct lockdep_map dep_map; 106 #endif 107 } socket_lock_t; 108 109 struct sock; 110 struct proto; 111 struct net; 112 113 typedef __u32 __bitwise __portpair; 114 typedef __u64 __bitwise __addrpair; 115 116 /** 117 * struct sock_common - minimal network layer representation of sockets 118 * @skc_daddr: Foreign IPv4 addr 119 * @skc_rcv_saddr: Bound local IPv4 addr 120 * @skc_addrpair: 8-byte-aligned __u64 union of @skc_daddr & @skc_rcv_saddr 121 * @skc_hash: hash value used with various protocol lookup tables 122 * @skc_u16hashes: two u16 hash values used by UDP lookup tables 123 * @skc_dport: placeholder for inet_dport/tw_dport 124 * @skc_num: placeholder for inet_num/tw_num 125 * @skc_portpair: __u32 union of @skc_dport & @skc_num 126 * @skc_family: network address family 127 * @skc_state: Connection state 128 * @skc_reuse: %SO_REUSEADDR setting 129 * @skc_reuseport: %SO_REUSEPORT setting 130 * @skc_ipv6only: socket is IPV6 only 131 * @skc_net_refcnt: socket is using net ref counting 132 * @skc_bound_dev_if: bound device index if != 0 133 * @skc_bind_node: bind hash linkage for various protocol lookup tables 134 * @skc_portaddr_node: second hash linkage for UDP/UDP-Lite protocol 135 * @skc_prot: protocol handlers inside a network family 136 * @skc_net: reference to the network namespace of this socket 137 * @skc_v6_daddr: IPV6 destination address 138 * @skc_v6_rcv_saddr: IPV6 source address 139 * @skc_cookie: socket's cookie value 140 * @skc_node: main hash linkage for various protocol lookup tables 141 * @skc_nulls_node: main hash linkage for TCP/UDP/UDP-Lite protocol 142 * @skc_tx_queue_mapping: tx queue number for this connection 143 * @skc_rx_queue_mapping: rx queue number for this connection 144 * @skc_flags: place holder for sk_flags 145 * %SO_LINGER (l_onoff), %SO_BROADCAST, %SO_KEEPALIVE, 146 * %SO_OOBINLINE settings, %SO_TIMESTAMPING settings 147 * @skc_listener: connection request listener socket (aka rsk_listener) 148 * [union with @skc_flags] 149 * @skc_tw_dr: (aka tw_dr) ptr to &struct inet_timewait_death_row 150 * [union with @skc_flags] 151 * @skc_incoming_cpu: record/match cpu processing incoming packets 152 * @skc_rcv_wnd: (aka rsk_rcv_wnd) TCP receive window size (possibly scaled) 153 * [union with @skc_incoming_cpu] 154 * @skc_tw_rcv_nxt: (aka tw_rcv_nxt) TCP window next expected seq number 155 * [union with @skc_incoming_cpu] 156 * @skc_refcnt: reference count 157 * 158 * This is the minimal network layer representation of sockets, the header 159 * for struct sock and struct inet_timewait_sock. 160 */ 161 struct sock_common { 162 /* skc_daddr and skc_rcv_saddr must be grouped on a 8 bytes aligned 163 * address on 64bit arches : cf INET_MATCH() 164 */ 165 union { 166 __addrpair skc_addrpair; 167 struct { 168 __be32 skc_daddr; 169 __be32 skc_rcv_saddr; 170 }; 171 }; 172 union { 173 unsigned int skc_hash; 174 __u16 skc_u16hashes[2]; 175 }; 176 /* skc_dport && skc_num must be grouped as well */ 177 union { 178 __portpair skc_portpair; 179 struct { 180 __be16 skc_dport; 181 __u16 skc_num; 182 }; 183 }; 184 185 unsigned short skc_family; 186 volatile unsigned char skc_state; 187 unsigned char skc_reuse:4; 188 unsigned char skc_reuseport:1; 189 unsigned char skc_ipv6only:1; 190 unsigned char skc_net_refcnt:1; 191 int skc_bound_dev_if; 192 union { 193 struct hlist_node skc_bind_node; 194 struct hlist_node skc_portaddr_node; 195 }; 196 struct proto *skc_prot; 197 possible_net_t skc_net; 198 199 #if IS_ENABLED(CONFIG_IPV6) 200 struct in6_addr skc_v6_daddr; 201 struct in6_addr skc_v6_rcv_saddr; 202 #endif 203 204 atomic64_t skc_cookie; 205 206 /* following fields are padding to force 207 * offset(struct sock, sk_refcnt) == 128 on 64bit arches 208 * assuming IPV6 is enabled. We use this padding differently 209 * for different kind of 'sockets' 210 */ 211 union { 212 unsigned long skc_flags; 213 struct sock *skc_listener; /* request_sock */ 214 struct inet_timewait_death_row *skc_tw_dr; /* inet_timewait_sock */ 215 }; 216 /* 217 * fields between dontcopy_begin/dontcopy_end 218 * are not copied in sock_copy() 219 */ 220 /* private: */ 221 int skc_dontcopy_begin[0]; 222 /* public: */ 223 union { 224 struct hlist_node skc_node; 225 struct hlist_nulls_node skc_nulls_node; 226 }; 227 unsigned short skc_tx_queue_mapping; 228 #ifdef CONFIG_XPS 229 unsigned short skc_rx_queue_mapping; 230 #endif 231 union { 232 int skc_incoming_cpu; 233 u32 skc_rcv_wnd; 234 u32 skc_tw_rcv_nxt; /* struct tcp_timewait_sock */ 235 }; 236 237 refcount_t skc_refcnt; 238 /* private: */ 239 int skc_dontcopy_end[0]; 240 union { 241 u32 skc_rxhash; 242 u32 skc_window_clamp; 243 u32 skc_tw_snd_nxt; /* struct tcp_timewait_sock */ 244 }; 245 /* public: */ 246 }; 247 248 struct bpf_sk_storage; 249 250 /** 251 * struct sock - network layer representation of sockets 252 * @__sk_common: shared layout with inet_timewait_sock 253 * @sk_shutdown: mask of %SEND_SHUTDOWN and/or %RCV_SHUTDOWN 254 * @sk_userlocks: %SO_SNDBUF and %SO_RCVBUF settings 255 * @sk_lock: synchronizer 256 * @sk_kern_sock: True if sock is using kernel lock classes 257 * @sk_rcvbuf: size of receive buffer in bytes 258 * @sk_wq: sock wait queue and async head 259 * @sk_rx_dst: receive input route used by early demux 260 * @sk_dst_cache: destination cache 261 * @sk_dst_pending_confirm: need to confirm neighbour 262 * @sk_policy: flow policy 263 * @sk_rx_skb_cache: cache copy of recently accessed RX skb 264 * @sk_receive_queue: incoming packets 265 * @sk_wmem_alloc: transmit queue bytes committed 266 * @sk_tsq_flags: TCP Small Queues flags 267 * @sk_write_queue: Packet sending queue 268 * @sk_omem_alloc: "o" is "option" or "other" 269 * @sk_wmem_queued: persistent queue size 270 * @sk_forward_alloc: space allocated forward 271 * @sk_napi_id: id of the last napi context to receive data for sk 272 * @sk_ll_usec: usecs to busypoll when there is no data 273 * @sk_allocation: allocation mode 274 * @sk_pacing_rate: Pacing rate (if supported by transport/packet scheduler) 275 * @sk_pacing_status: Pacing status (requested, handled by sch_fq) 276 * @sk_max_pacing_rate: Maximum pacing rate (%SO_MAX_PACING_RATE) 277 * @sk_sndbuf: size of send buffer in bytes 278 * @__sk_flags_offset: empty field used to determine location of bitfield 279 * @sk_padding: unused element for alignment 280 * @sk_no_check_tx: %SO_NO_CHECK setting, set checksum in TX packets 281 * @sk_no_check_rx: allow zero checksum in RX packets 282 * @sk_route_caps: route capabilities (e.g. %NETIF_F_TSO) 283 * @sk_route_nocaps: forbidden route capabilities (e.g NETIF_F_GSO_MASK) 284 * @sk_route_forced_caps: static, forced route capabilities 285 * (set in tcp_init_sock()) 286 * @sk_gso_type: GSO type (e.g. %SKB_GSO_TCPV4) 287 * @sk_gso_max_size: Maximum GSO segment size to build 288 * @sk_gso_max_segs: Maximum number of GSO segments 289 * @sk_pacing_shift: scaling factor for TCP Small Queues 290 * @sk_lingertime: %SO_LINGER l_linger setting 291 * @sk_backlog: always used with the per-socket spinlock held 292 * @sk_callback_lock: used with the callbacks in the end of this struct 293 * @sk_error_queue: rarely used 294 * @sk_prot_creator: sk_prot of original sock creator (see ipv6_setsockopt, 295 * IPV6_ADDRFORM for instance) 296 * @sk_err: last error 297 * @sk_err_soft: errors that don't cause failure but are the cause of a 298 * persistent failure not just 'timed out' 299 * @sk_drops: raw/udp drops counter 300 * @sk_ack_backlog: current listen backlog 301 * @sk_max_ack_backlog: listen backlog set in listen() 302 * @sk_uid: user id of owner 303 * @sk_priority: %SO_PRIORITY setting 304 * @sk_type: socket type (%SOCK_STREAM, etc) 305 * @sk_protocol: which protocol this socket belongs in this network family 306 * @sk_peer_pid: &struct pid for this socket's peer 307 * @sk_peer_cred: %SO_PEERCRED setting 308 * @sk_rcvlowat: %SO_RCVLOWAT setting 309 * @sk_rcvtimeo: %SO_RCVTIMEO setting 310 * @sk_sndtimeo: %SO_SNDTIMEO setting 311 * @sk_txhash: computed flow hash for use on transmit 312 * @sk_filter: socket filtering instructions 313 * @sk_timer: sock cleanup timer 314 * @sk_stamp: time stamp of last packet received 315 * @sk_stamp_seq: lock for accessing sk_stamp on 32 bit architectures only 316 * @sk_tsflags: SO_TIMESTAMPING socket options 317 * @sk_tskey: counter to disambiguate concurrent tstamp requests 318 * @sk_zckey: counter to order MSG_ZEROCOPY notifications 319 * @sk_socket: Identd and reporting IO signals 320 * @sk_user_data: RPC layer private data 321 * @sk_frag: cached page frag 322 * @sk_peek_off: current peek_offset value 323 * @sk_send_head: front of stuff to transmit 324 * @tcp_rtx_queue: TCP re-transmit queue [union with @sk_send_head] 325 * @sk_tx_skb_cache: cache copy of recently accessed TX skb 326 * @sk_security: used by security modules 327 * @sk_mark: generic packet mark 328 * @sk_cgrp_data: cgroup data for this cgroup 329 * @sk_memcg: this socket's memory cgroup association 330 * @sk_write_pending: a write to stream socket waits to start 331 * @sk_state_change: callback to indicate change in the state of the sock 332 * @sk_data_ready: callback to indicate there is data to be processed 333 * @sk_write_space: callback to indicate there is bf sending space available 334 * @sk_error_report: callback to indicate errors (e.g. %MSG_ERRQUEUE) 335 * @sk_backlog_rcv: callback to process the backlog 336 * @sk_validate_xmit_skb: ptr to an optional validate function 337 * @sk_destruct: called at sock freeing time, i.e. when all refcnt == 0 338 * @sk_reuseport_cb: reuseport group container 339 * @sk_bpf_storage: ptr to cache and control for bpf_sk_storage 340 * @sk_rcu: used during RCU grace period 341 * @sk_clockid: clockid used by time-based scheduling (SO_TXTIME) 342 * @sk_txtime_deadline_mode: set deadline mode for SO_TXTIME 343 * @sk_txtime_report_errors: set report errors mode for SO_TXTIME 344 * @sk_txtime_unused: unused txtime flags 345 */ 346 struct sock { 347 /* 348 * Now struct inet_timewait_sock also uses sock_common, so please just 349 * don't add nothing before this first member (__sk_common) --acme 350 */ 351 struct sock_common __sk_common; 352 #define sk_node __sk_common.skc_node 353 #define sk_nulls_node __sk_common.skc_nulls_node 354 #define sk_refcnt __sk_common.skc_refcnt 355 #define sk_tx_queue_mapping __sk_common.skc_tx_queue_mapping 356 #ifdef CONFIG_XPS 357 #define sk_rx_queue_mapping __sk_common.skc_rx_queue_mapping 358 #endif 359 360 #define sk_dontcopy_begin __sk_common.skc_dontcopy_begin 361 #define sk_dontcopy_end __sk_common.skc_dontcopy_end 362 #define sk_hash __sk_common.skc_hash 363 #define sk_portpair __sk_common.skc_portpair 364 #define sk_num __sk_common.skc_num 365 #define sk_dport __sk_common.skc_dport 366 #define sk_addrpair __sk_common.skc_addrpair 367 #define sk_daddr __sk_common.skc_daddr 368 #define sk_rcv_saddr __sk_common.skc_rcv_saddr 369 #define sk_family __sk_common.skc_family 370 #define sk_state __sk_common.skc_state 371 #define sk_reuse __sk_common.skc_reuse 372 #define sk_reuseport __sk_common.skc_reuseport 373 #define sk_ipv6only __sk_common.skc_ipv6only 374 #define sk_net_refcnt __sk_common.skc_net_refcnt 375 #define sk_bound_dev_if __sk_common.skc_bound_dev_if 376 #define sk_bind_node __sk_common.skc_bind_node 377 #define sk_prot __sk_common.skc_prot 378 #define sk_net __sk_common.skc_net 379 #define sk_v6_daddr __sk_common.skc_v6_daddr 380 #define sk_v6_rcv_saddr __sk_common.skc_v6_rcv_saddr 381 #define sk_cookie __sk_common.skc_cookie 382 #define sk_incoming_cpu __sk_common.skc_incoming_cpu 383 #define sk_flags __sk_common.skc_flags 384 #define sk_rxhash __sk_common.skc_rxhash 385 386 socket_lock_t sk_lock; 387 atomic_t sk_drops; 388 int sk_rcvlowat; 389 struct sk_buff_head sk_error_queue; 390 struct sk_buff *sk_rx_skb_cache; 391 struct sk_buff_head sk_receive_queue; 392 /* 393 * The backlog queue is special, it is always used with 394 * the per-socket spinlock held and requires low latency 395 * access. Therefore we special case it's implementation. 396 * Note : rmem_alloc is in this structure to fill a hole 397 * on 64bit arches, not because its logically part of 398 * backlog. 399 */ 400 struct { 401 atomic_t rmem_alloc; 402 int len; 403 struct sk_buff *head; 404 struct sk_buff *tail; 405 } sk_backlog; 406 #define sk_rmem_alloc sk_backlog.rmem_alloc 407 408 int sk_forward_alloc; 409 #ifdef CONFIG_NET_RX_BUSY_POLL 410 unsigned int sk_ll_usec; 411 /* ===== mostly read cache line ===== */ 412 unsigned int sk_napi_id; 413 #endif 414 int sk_rcvbuf; 415 416 struct sk_filter __rcu *sk_filter; 417 union { 418 struct socket_wq __rcu *sk_wq; 419 /* private: */ 420 struct socket_wq *sk_wq_raw; 421 /* public: */ 422 }; 423 #ifdef CONFIG_XFRM 424 struct xfrm_policy __rcu *sk_policy[2]; 425 #endif 426 struct dst_entry *sk_rx_dst; 427 struct dst_entry __rcu *sk_dst_cache; 428 atomic_t sk_omem_alloc; 429 int sk_sndbuf; 430 431 /* ===== cache line for TX ===== */ 432 int sk_wmem_queued; 433 refcount_t sk_wmem_alloc; 434 unsigned long sk_tsq_flags; 435 union { 436 struct sk_buff *sk_send_head; 437 struct rb_root tcp_rtx_queue; 438 }; 439 struct sk_buff *sk_tx_skb_cache; 440 struct sk_buff_head sk_write_queue; 441 __s32 sk_peek_off; 442 int sk_write_pending; 443 __u32 sk_dst_pending_confirm; 444 u32 sk_pacing_status; /* see enum sk_pacing */ 445 long sk_sndtimeo; 446 struct timer_list sk_timer; 447 __u32 sk_priority; 448 __u32 sk_mark; 449 unsigned long sk_pacing_rate; /* bytes per second */ 450 unsigned long sk_max_pacing_rate; 451 struct page_frag sk_frag; 452 netdev_features_t sk_route_caps; 453 netdev_features_t sk_route_nocaps; 454 netdev_features_t sk_route_forced_caps; 455 int sk_gso_type; 456 unsigned int sk_gso_max_size; 457 gfp_t sk_allocation; 458 __u32 sk_txhash; 459 460 /* 461 * Because of non atomicity rules, all 462 * changes are protected by socket lock. 463 */ 464 u8 sk_padding : 1, 465 sk_kern_sock : 1, 466 sk_no_check_tx : 1, 467 sk_no_check_rx : 1, 468 sk_userlocks : 4; 469 u8 sk_pacing_shift; 470 u16 sk_type; 471 u16 sk_protocol; 472 u16 sk_gso_max_segs; 473 unsigned long sk_lingertime; 474 struct proto *sk_prot_creator; 475 rwlock_t sk_callback_lock; 476 int sk_err, 477 sk_err_soft; 478 u32 sk_ack_backlog; 479 u32 sk_max_ack_backlog; 480 kuid_t sk_uid; 481 struct pid *sk_peer_pid; 482 const struct cred *sk_peer_cred; 483 long sk_rcvtimeo; 484 ktime_t sk_stamp; 485 #if BITS_PER_LONG==32 486 seqlock_t sk_stamp_seq; 487 #endif 488 u16 sk_tsflags; 489 u8 sk_shutdown; 490 u32 sk_tskey; 491 atomic_t sk_zckey; 492 493 u8 sk_clockid; 494 u8 sk_txtime_deadline_mode : 1, 495 sk_txtime_report_errors : 1, 496 sk_txtime_unused : 6; 497 498 struct socket *sk_socket; 499 void *sk_user_data; 500 #ifdef CONFIG_SECURITY 501 void *sk_security; 502 #endif 503 struct sock_cgroup_data sk_cgrp_data; 504 struct mem_cgroup *sk_memcg; 505 void (*sk_state_change)(struct sock *sk); 506 void (*sk_data_ready)(struct sock *sk); 507 void (*sk_write_space)(struct sock *sk); 508 void (*sk_error_report)(struct sock *sk); 509 int (*sk_backlog_rcv)(struct sock *sk, 510 struct sk_buff *skb); 511 #ifdef CONFIG_SOCK_VALIDATE_XMIT 512 struct sk_buff* (*sk_validate_xmit_skb)(struct sock *sk, 513 struct net_device *dev, 514 struct sk_buff *skb); 515 #endif 516 void (*sk_destruct)(struct sock *sk); 517 struct sock_reuseport __rcu *sk_reuseport_cb; 518 #ifdef CONFIG_BPF_SYSCALL 519 struct bpf_sk_storage __rcu *sk_bpf_storage; 520 #endif 521 struct rcu_head sk_rcu; 522 }; 523 524 enum sk_pacing { 525 SK_PACING_NONE = 0, 526 SK_PACING_NEEDED = 1, 527 SK_PACING_FQ = 2, 528 }; 529 530 /* Pointer stored in sk_user_data might not be suitable for copying 531 * when cloning the socket. For instance, it can point to a reference 532 * counted object. sk_user_data bottom bit is set if pointer must not 533 * be copied. 534 */ 535 #define SK_USER_DATA_NOCOPY 1UL 536 #define SK_USER_DATA_BPF 2UL /* Managed by BPF */ 537 #define SK_USER_DATA_PTRMASK ~(SK_USER_DATA_NOCOPY | SK_USER_DATA_BPF) 538 539 /** 540 * sk_user_data_is_nocopy - Test if sk_user_data pointer must not be copied 541 * @sk: socket 542 */ 543 static inline bool sk_user_data_is_nocopy(const struct sock *sk) 544 { 545 return ((uintptr_t)sk->sk_user_data & SK_USER_DATA_NOCOPY); 546 } 547 548 #define __sk_user_data(sk) ((*((void __rcu **)&(sk)->sk_user_data))) 549 550 #define rcu_dereference_sk_user_data(sk) \ 551 ({ \ 552 void *__tmp = rcu_dereference(__sk_user_data((sk))); \ 553 (void *)((uintptr_t)__tmp & SK_USER_DATA_PTRMASK); \ 554 }) 555 #define rcu_assign_sk_user_data(sk, ptr) \ 556 ({ \ 557 uintptr_t __tmp = (uintptr_t)(ptr); \ 558 WARN_ON_ONCE(__tmp & ~SK_USER_DATA_PTRMASK); \ 559 rcu_assign_pointer(__sk_user_data((sk)), __tmp); \ 560 }) 561 #define rcu_assign_sk_user_data_nocopy(sk, ptr) \ 562 ({ \ 563 uintptr_t __tmp = (uintptr_t)(ptr); \ 564 WARN_ON_ONCE(__tmp & ~SK_USER_DATA_PTRMASK); \ 565 rcu_assign_pointer(__sk_user_data((sk)), \ 566 __tmp | SK_USER_DATA_NOCOPY); \ 567 }) 568 569 /* 570 * SK_CAN_REUSE and SK_NO_REUSE on a socket mean that the socket is OK 571 * or not whether his port will be reused by someone else. SK_FORCE_REUSE 572 * on a socket means that the socket will reuse everybody else's port 573 * without looking at the other's sk_reuse value. 574 */ 575 576 #define SK_NO_REUSE 0 577 #define SK_CAN_REUSE 1 578 #define SK_FORCE_REUSE 2 579 580 int sk_set_peek_off(struct sock *sk, int val); 581 582 static inline int sk_peek_offset(struct sock *sk, int flags) 583 { 584 if (unlikely(flags & MSG_PEEK)) { 585 return READ_ONCE(sk->sk_peek_off); 586 } 587 588 return 0; 589 } 590 591 static inline void sk_peek_offset_bwd(struct sock *sk, int val) 592 { 593 s32 off = READ_ONCE(sk->sk_peek_off); 594 595 if (unlikely(off >= 0)) { 596 off = max_t(s32, off - val, 0); 597 WRITE_ONCE(sk->sk_peek_off, off); 598 } 599 } 600 601 static inline void sk_peek_offset_fwd(struct sock *sk, int val) 602 { 603 sk_peek_offset_bwd(sk, -val); 604 } 605 606 /* 607 * Hashed lists helper routines 608 */ 609 static inline struct sock *sk_entry(const struct hlist_node *node) 610 { 611 return hlist_entry(node, struct sock, sk_node); 612 } 613 614 static inline struct sock *__sk_head(const struct hlist_head *head) 615 { 616 return hlist_entry(head->first, struct sock, sk_node); 617 } 618 619 static inline struct sock *sk_head(const struct hlist_head *head) 620 { 621 return hlist_empty(head) ? NULL : __sk_head(head); 622 } 623 624 static inline struct sock *__sk_nulls_head(const struct hlist_nulls_head *head) 625 { 626 return hlist_nulls_entry(head->first, struct sock, sk_nulls_node); 627 } 628 629 static inline struct sock *sk_nulls_head(const struct hlist_nulls_head *head) 630 { 631 return hlist_nulls_empty(head) ? NULL : __sk_nulls_head(head); 632 } 633 634 static inline struct sock *sk_next(const struct sock *sk) 635 { 636 return hlist_entry_safe(sk->sk_node.next, struct sock, sk_node); 637 } 638 639 static inline struct sock *sk_nulls_next(const struct sock *sk) 640 { 641 return (!is_a_nulls(sk->sk_nulls_node.next)) ? 642 hlist_nulls_entry(sk->sk_nulls_node.next, 643 struct sock, sk_nulls_node) : 644 NULL; 645 } 646 647 static inline bool sk_unhashed(const struct sock *sk) 648 { 649 return hlist_unhashed(&sk->sk_node); 650 } 651 652 static inline bool sk_hashed(const struct sock *sk) 653 { 654 return !sk_unhashed(sk); 655 } 656 657 static inline void sk_node_init(struct hlist_node *node) 658 { 659 node->pprev = NULL; 660 } 661 662 static inline void sk_nulls_node_init(struct hlist_nulls_node *node) 663 { 664 node->pprev = NULL; 665 } 666 667 static inline void __sk_del_node(struct sock *sk) 668 { 669 __hlist_del(&sk->sk_node); 670 } 671 672 /* NB: equivalent to hlist_del_init_rcu */ 673 static inline bool __sk_del_node_init(struct sock *sk) 674 { 675 if (sk_hashed(sk)) { 676 __sk_del_node(sk); 677 sk_node_init(&sk->sk_node); 678 return true; 679 } 680 return false; 681 } 682 683 /* Grab socket reference count. This operation is valid only 684 when sk is ALREADY grabbed f.e. it is found in hash table 685 or a list and the lookup is made under lock preventing hash table 686 modifications. 687 */ 688 689 static __always_inline void sock_hold(struct sock *sk) 690 { 691 refcount_inc(&sk->sk_refcnt); 692 } 693 694 /* Ungrab socket in the context, which assumes that socket refcnt 695 cannot hit zero, f.e. it is true in context of any socketcall. 696 */ 697 static __always_inline void __sock_put(struct sock *sk) 698 { 699 refcount_dec(&sk->sk_refcnt); 700 } 701 702 static inline bool sk_del_node_init(struct sock *sk) 703 { 704 bool rc = __sk_del_node_init(sk); 705 706 if (rc) { 707 /* paranoid for a while -acme */ 708 WARN_ON(refcount_read(&sk->sk_refcnt) == 1); 709 __sock_put(sk); 710 } 711 return rc; 712 } 713 #define sk_del_node_init_rcu(sk) sk_del_node_init(sk) 714 715 static inline bool __sk_nulls_del_node_init_rcu(struct sock *sk) 716 { 717 if (sk_hashed(sk)) { 718 hlist_nulls_del_init_rcu(&sk->sk_nulls_node); 719 return true; 720 } 721 return false; 722 } 723 724 static inline bool sk_nulls_del_node_init_rcu(struct sock *sk) 725 { 726 bool rc = __sk_nulls_del_node_init_rcu(sk); 727 728 if (rc) { 729 /* paranoid for a while -acme */ 730 WARN_ON(refcount_read(&sk->sk_refcnt) == 1); 731 __sock_put(sk); 732 } 733 return rc; 734 } 735 736 static inline void __sk_add_node(struct sock *sk, struct hlist_head *list) 737 { 738 hlist_add_head(&sk->sk_node, list); 739 } 740 741 static inline void sk_add_node(struct sock *sk, struct hlist_head *list) 742 { 743 sock_hold(sk); 744 __sk_add_node(sk, list); 745 } 746 747 static inline void sk_add_node_rcu(struct sock *sk, struct hlist_head *list) 748 { 749 sock_hold(sk); 750 if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport && 751 sk->sk_family == AF_INET6) 752 hlist_add_tail_rcu(&sk->sk_node, list); 753 else 754 hlist_add_head_rcu(&sk->sk_node, list); 755 } 756 757 static inline void sk_add_node_tail_rcu(struct sock *sk, struct hlist_head *list) 758 { 759 sock_hold(sk); 760 hlist_add_tail_rcu(&sk->sk_node, list); 761 } 762 763 static inline void __sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list) 764 { 765 hlist_nulls_add_head_rcu(&sk->sk_nulls_node, list); 766 } 767 768 static inline void __sk_nulls_add_node_tail_rcu(struct sock *sk, struct hlist_nulls_head *list) 769 { 770 hlist_nulls_add_tail_rcu(&sk->sk_nulls_node, list); 771 } 772 773 static inline void sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list) 774 { 775 sock_hold(sk); 776 __sk_nulls_add_node_rcu(sk, list); 777 } 778 779 static inline void __sk_del_bind_node(struct sock *sk) 780 { 781 __hlist_del(&sk->sk_bind_node); 782 } 783 784 static inline void sk_add_bind_node(struct sock *sk, 785 struct hlist_head *list) 786 { 787 hlist_add_head(&sk->sk_bind_node, list); 788 } 789 790 #define sk_for_each(__sk, list) \ 791 hlist_for_each_entry(__sk, list, sk_node) 792 #define sk_for_each_rcu(__sk, list) \ 793 hlist_for_each_entry_rcu(__sk, list, sk_node) 794 #define sk_nulls_for_each(__sk, node, list) \ 795 hlist_nulls_for_each_entry(__sk, node, list, sk_nulls_node) 796 #define sk_nulls_for_each_rcu(__sk, node, list) \ 797 hlist_nulls_for_each_entry_rcu(__sk, node, list, sk_nulls_node) 798 #define sk_for_each_from(__sk) \ 799 hlist_for_each_entry_from(__sk, sk_node) 800 #define sk_nulls_for_each_from(__sk, node) \ 801 if (__sk && ({ node = &(__sk)->sk_nulls_node; 1; })) \ 802 hlist_nulls_for_each_entry_from(__sk, node, sk_nulls_node) 803 #define sk_for_each_safe(__sk, tmp, list) \ 804 hlist_for_each_entry_safe(__sk, tmp, list, sk_node) 805 #define sk_for_each_bound(__sk, list) \ 806 hlist_for_each_entry(__sk, list, sk_bind_node) 807 808 /** 809 * sk_for_each_entry_offset_rcu - iterate over a list at a given struct offset 810 * @tpos: the type * to use as a loop cursor. 811 * @pos: the &struct hlist_node to use as a loop cursor. 812 * @head: the head for your list. 813 * @offset: offset of hlist_node within the struct. 814 * 815 */ 816 #define sk_for_each_entry_offset_rcu(tpos, pos, head, offset) \ 817 for (pos = rcu_dereference(hlist_first_rcu(head)); \ 818 pos != NULL && \ 819 ({ tpos = (typeof(*tpos) *)((void *)pos - offset); 1;}); \ 820 pos = rcu_dereference(hlist_next_rcu(pos))) 821 822 static inline struct user_namespace *sk_user_ns(struct sock *sk) 823 { 824 /* Careful only use this in a context where these parameters 825 * can not change and must all be valid, such as recvmsg from 826 * userspace. 827 */ 828 return sk->sk_socket->file->f_cred->user_ns; 829 } 830 831 /* Sock flags */ 832 enum sock_flags { 833 SOCK_DEAD, 834 SOCK_DONE, 835 SOCK_URGINLINE, 836 SOCK_KEEPOPEN, 837 SOCK_LINGER, 838 SOCK_DESTROY, 839 SOCK_BROADCAST, 840 SOCK_TIMESTAMP, 841 SOCK_ZAPPED, 842 SOCK_USE_WRITE_QUEUE, /* whether to call sk->sk_write_space in sock_wfree */ 843 SOCK_DBG, /* %SO_DEBUG setting */ 844 SOCK_RCVTSTAMP, /* %SO_TIMESTAMP setting */ 845 SOCK_RCVTSTAMPNS, /* %SO_TIMESTAMPNS setting */ 846 SOCK_LOCALROUTE, /* route locally only, %SO_DONTROUTE setting */ 847 SOCK_QUEUE_SHRUNK, /* write queue has been shrunk recently */ 848 SOCK_MEMALLOC, /* VM depends on this socket for swapping */ 849 SOCK_TIMESTAMPING_RX_SOFTWARE, /* %SOF_TIMESTAMPING_RX_SOFTWARE */ 850 SOCK_FASYNC, /* fasync() active */ 851 SOCK_RXQ_OVFL, 852 SOCK_ZEROCOPY, /* buffers from userspace */ 853 SOCK_WIFI_STATUS, /* push wifi status to userspace */ 854 SOCK_NOFCS, /* Tell NIC not to do the Ethernet FCS. 855 * Will use last 4 bytes of packet sent from 856 * user-space instead. 857 */ 858 SOCK_FILTER_LOCKED, /* Filter cannot be changed anymore */ 859 SOCK_SELECT_ERR_QUEUE, /* Wake select on error queue */ 860 SOCK_RCU_FREE, /* wait rcu grace period in sk_destruct() */ 861 SOCK_TXTIME, 862 SOCK_XDP, /* XDP is attached */ 863 SOCK_TSTAMP_NEW, /* Indicates 64 bit timestamps always */ 864 }; 865 866 #define SK_FLAGS_TIMESTAMP ((1UL << SOCK_TIMESTAMP) | (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE)) 867 868 static inline void sock_copy_flags(struct sock *nsk, struct sock *osk) 869 { 870 nsk->sk_flags = osk->sk_flags; 871 } 872 873 static inline void sock_set_flag(struct sock *sk, enum sock_flags flag) 874 { 875 __set_bit(flag, &sk->sk_flags); 876 } 877 878 static inline void sock_reset_flag(struct sock *sk, enum sock_flags flag) 879 { 880 __clear_bit(flag, &sk->sk_flags); 881 } 882 883 static inline void sock_valbool_flag(struct sock *sk, enum sock_flags bit, 884 int valbool) 885 { 886 if (valbool) 887 sock_set_flag(sk, bit); 888 else 889 sock_reset_flag(sk, bit); 890 } 891 892 static inline bool sock_flag(const struct sock *sk, enum sock_flags flag) 893 { 894 return test_bit(flag, &sk->sk_flags); 895 } 896 897 #ifdef CONFIG_NET 898 DECLARE_STATIC_KEY_FALSE(memalloc_socks_key); 899 static inline int sk_memalloc_socks(void) 900 { 901 return static_branch_unlikely(&memalloc_socks_key); 902 } 903 #else 904 905 static inline int sk_memalloc_socks(void) 906 { 907 return 0; 908 } 909 910 #endif 911 912 static inline gfp_t sk_gfp_mask(const struct sock *sk, gfp_t gfp_mask) 913 { 914 return gfp_mask | (sk->sk_allocation & __GFP_MEMALLOC); 915 } 916 917 static inline void sk_acceptq_removed(struct sock *sk) 918 { 919 WRITE_ONCE(sk->sk_ack_backlog, sk->sk_ack_backlog - 1); 920 } 921 922 static inline void sk_acceptq_added(struct sock *sk) 923 { 924 WRITE_ONCE(sk->sk_ack_backlog, sk->sk_ack_backlog + 1); 925 } 926 927 static inline bool sk_acceptq_is_full(const struct sock *sk) 928 { 929 return READ_ONCE(sk->sk_ack_backlog) > READ_ONCE(sk->sk_max_ack_backlog); 930 } 931 932 /* 933 * Compute minimal free write space needed to queue new packets. 934 */ 935 static inline int sk_stream_min_wspace(const struct sock *sk) 936 { 937 return READ_ONCE(sk->sk_wmem_queued) >> 1; 938 } 939 940 static inline int sk_stream_wspace(const struct sock *sk) 941 { 942 return READ_ONCE(sk->sk_sndbuf) - READ_ONCE(sk->sk_wmem_queued); 943 } 944 945 static inline void sk_wmem_queued_add(struct sock *sk, int val) 946 { 947 WRITE_ONCE(sk->sk_wmem_queued, sk->sk_wmem_queued + val); 948 } 949 950 void sk_stream_write_space(struct sock *sk); 951 952 /* OOB backlog add */ 953 static inline void __sk_add_backlog(struct sock *sk, struct sk_buff *skb) 954 { 955 /* dont let skb dst not refcounted, we are going to leave rcu lock */ 956 skb_dst_force(skb); 957 958 if (!sk->sk_backlog.tail) 959 WRITE_ONCE(sk->sk_backlog.head, skb); 960 else 961 sk->sk_backlog.tail->next = skb; 962 963 WRITE_ONCE(sk->sk_backlog.tail, skb); 964 skb->next = NULL; 965 } 966 967 /* 968 * Take into account size of receive queue and backlog queue 969 * Do not take into account this skb truesize, 970 * to allow even a single big packet to come. 971 */ 972 static inline bool sk_rcvqueues_full(const struct sock *sk, unsigned int limit) 973 { 974 unsigned int qsize = sk->sk_backlog.len + atomic_read(&sk->sk_rmem_alloc); 975 976 return qsize > limit; 977 } 978 979 /* The per-socket spinlock must be held here. */ 980 static inline __must_check int sk_add_backlog(struct sock *sk, struct sk_buff *skb, 981 unsigned int limit) 982 { 983 if (sk_rcvqueues_full(sk, limit)) 984 return -ENOBUFS; 985 986 /* 987 * If the skb was allocated from pfmemalloc reserves, only 988 * allow SOCK_MEMALLOC sockets to use it as this socket is 989 * helping free memory 990 */ 991 if (skb_pfmemalloc(skb) && !sock_flag(sk, SOCK_MEMALLOC)) 992 return -ENOMEM; 993 994 __sk_add_backlog(sk, skb); 995 sk->sk_backlog.len += skb->truesize; 996 return 0; 997 } 998 999 int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb); 1000 1001 static inline int sk_backlog_rcv(struct sock *sk, struct sk_buff *skb) 1002 { 1003 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) 1004 return __sk_backlog_rcv(sk, skb); 1005 1006 return sk->sk_backlog_rcv(sk, skb); 1007 } 1008 1009 static inline void sk_incoming_cpu_update(struct sock *sk) 1010 { 1011 int cpu = raw_smp_processor_id(); 1012 1013 if (unlikely(READ_ONCE(sk->sk_incoming_cpu) != cpu)) 1014 WRITE_ONCE(sk->sk_incoming_cpu, cpu); 1015 } 1016 1017 static inline void sock_rps_record_flow_hash(__u32 hash) 1018 { 1019 #ifdef CONFIG_RPS 1020 struct rps_sock_flow_table *sock_flow_table; 1021 1022 rcu_read_lock(); 1023 sock_flow_table = rcu_dereference(rps_sock_flow_table); 1024 rps_record_sock_flow(sock_flow_table, hash); 1025 rcu_read_unlock(); 1026 #endif 1027 } 1028 1029 static inline void sock_rps_record_flow(const struct sock *sk) 1030 { 1031 #ifdef CONFIG_RPS 1032 if (static_branch_unlikely(&rfs_needed)) { 1033 /* Reading sk->sk_rxhash might incur an expensive cache line 1034 * miss. 1035 * 1036 * TCP_ESTABLISHED does cover almost all states where RFS 1037 * might be useful, and is cheaper [1] than testing : 1038 * IPv4: inet_sk(sk)->inet_daddr 1039 * IPv6: ipv6_addr_any(&sk->sk_v6_daddr) 1040 * OR an additional socket flag 1041 * [1] : sk_state and sk_prot are in the same cache line. 1042 */ 1043 if (sk->sk_state == TCP_ESTABLISHED) 1044 sock_rps_record_flow_hash(sk->sk_rxhash); 1045 } 1046 #endif 1047 } 1048 1049 static inline void sock_rps_save_rxhash(struct sock *sk, 1050 const struct sk_buff *skb) 1051 { 1052 #ifdef CONFIG_RPS 1053 if (unlikely(sk->sk_rxhash != skb->hash)) 1054 sk->sk_rxhash = skb->hash; 1055 #endif 1056 } 1057 1058 static inline void sock_rps_reset_rxhash(struct sock *sk) 1059 { 1060 #ifdef CONFIG_RPS 1061 sk->sk_rxhash = 0; 1062 #endif 1063 } 1064 1065 #define sk_wait_event(__sk, __timeo, __condition, __wait) \ 1066 ({ int __rc; \ 1067 release_sock(__sk); \ 1068 __rc = __condition; \ 1069 if (!__rc) { \ 1070 *(__timeo) = wait_woken(__wait, \ 1071 TASK_INTERRUPTIBLE, \ 1072 *(__timeo)); \ 1073 } \ 1074 sched_annotate_sleep(); \ 1075 lock_sock(__sk); \ 1076 __rc = __condition; \ 1077 __rc; \ 1078 }) 1079 1080 int sk_stream_wait_connect(struct sock *sk, long *timeo_p); 1081 int sk_stream_wait_memory(struct sock *sk, long *timeo_p); 1082 void sk_stream_wait_close(struct sock *sk, long timeo_p); 1083 int sk_stream_error(struct sock *sk, int flags, int err); 1084 void sk_stream_kill_queues(struct sock *sk); 1085 void sk_set_memalloc(struct sock *sk); 1086 void sk_clear_memalloc(struct sock *sk); 1087 1088 void __sk_flush_backlog(struct sock *sk); 1089 1090 static inline bool sk_flush_backlog(struct sock *sk) 1091 { 1092 if (unlikely(READ_ONCE(sk->sk_backlog.tail))) { 1093 __sk_flush_backlog(sk); 1094 return true; 1095 } 1096 return false; 1097 } 1098 1099 int sk_wait_data(struct sock *sk, long *timeo, const struct sk_buff *skb); 1100 1101 struct request_sock_ops; 1102 struct timewait_sock_ops; 1103 struct inet_hashinfo; 1104 struct raw_hashinfo; 1105 struct smc_hashinfo; 1106 struct module; 1107 1108 /* 1109 * caches using SLAB_TYPESAFE_BY_RCU should let .next pointer from nulls nodes 1110 * un-modified. Special care is taken when initializing object to zero. 1111 */ 1112 static inline void sk_prot_clear_nulls(struct sock *sk, int size) 1113 { 1114 if (offsetof(struct sock, sk_node.next) != 0) 1115 memset(sk, 0, offsetof(struct sock, sk_node.next)); 1116 memset(&sk->sk_node.pprev, 0, 1117 size - offsetof(struct sock, sk_node.pprev)); 1118 } 1119 1120 /* Networking protocol blocks we attach to sockets. 1121 * socket layer -> transport layer interface 1122 */ 1123 struct proto { 1124 void (*close)(struct sock *sk, 1125 long timeout); 1126 int (*pre_connect)(struct sock *sk, 1127 struct sockaddr *uaddr, 1128 int addr_len); 1129 int (*connect)(struct sock *sk, 1130 struct sockaddr *uaddr, 1131 int addr_len); 1132 int (*disconnect)(struct sock *sk, int flags); 1133 1134 struct sock * (*accept)(struct sock *sk, int flags, int *err, 1135 bool kern); 1136 1137 int (*ioctl)(struct sock *sk, int cmd, 1138 unsigned long arg); 1139 int (*init)(struct sock *sk); 1140 void (*destroy)(struct sock *sk); 1141 void (*shutdown)(struct sock *sk, int how); 1142 int (*setsockopt)(struct sock *sk, int level, 1143 int optname, char __user *optval, 1144 unsigned int optlen); 1145 int (*getsockopt)(struct sock *sk, int level, 1146 int optname, char __user *optval, 1147 int __user *option); 1148 void (*keepalive)(struct sock *sk, int valbool); 1149 #ifdef CONFIG_COMPAT 1150 int (*compat_setsockopt)(struct sock *sk, 1151 int level, 1152 int optname, char __user *optval, 1153 unsigned int optlen); 1154 int (*compat_getsockopt)(struct sock *sk, 1155 int level, 1156 int optname, char __user *optval, 1157 int __user *option); 1158 int (*compat_ioctl)(struct sock *sk, 1159 unsigned int cmd, unsigned long arg); 1160 #endif 1161 int (*sendmsg)(struct sock *sk, struct msghdr *msg, 1162 size_t len); 1163 int (*recvmsg)(struct sock *sk, struct msghdr *msg, 1164 size_t len, int noblock, int flags, 1165 int *addr_len); 1166 int (*sendpage)(struct sock *sk, struct page *page, 1167 int offset, size_t size, int flags); 1168 int (*bind)(struct sock *sk, 1169 struct sockaddr *addr, int addr_len); 1170 int (*bind_add)(struct sock *sk, 1171 struct sockaddr *addr, int addr_len); 1172 1173 int (*backlog_rcv) (struct sock *sk, 1174 struct sk_buff *skb); 1175 1176 void (*release_cb)(struct sock *sk); 1177 1178 /* Keeping track of sk's, looking them up, and port selection methods. */ 1179 int (*hash)(struct sock *sk); 1180 void (*unhash)(struct sock *sk); 1181 void (*rehash)(struct sock *sk); 1182 int (*get_port)(struct sock *sk, unsigned short snum); 1183 1184 /* Keeping track of sockets in use */ 1185 #ifdef CONFIG_PROC_FS 1186 unsigned int inuse_idx; 1187 #endif 1188 1189 bool (*stream_memory_free)(const struct sock *sk, int wake); 1190 bool (*stream_memory_read)(const struct sock *sk); 1191 /* Memory pressure */ 1192 void (*enter_memory_pressure)(struct sock *sk); 1193 void (*leave_memory_pressure)(struct sock *sk); 1194 atomic_long_t *memory_allocated; /* Current allocated memory. */ 1195 struct percpu_counter *sockets_allocated; /* Current number of sockets. */ 1196 /* 1197 * Pressure flag: try to collapse. 1198 * Technical note: it is used by multiple contexts non atomically. 1199 * All the __sk_mem_schedule() is of this nature: accounting 1200 * is strict, actions are advisory and have some latency. 1201 */ 1202 unsigned long *memory_pressure; 1203 long *sysctl_mem; 1204 1205 int *sysctl_wmem; 1206 int *sysctl_rmem; 1207 u32 sysctl_wmem_offset; 1208 u32 sysctl_rmem_offset; 1209 1210 int max_header; 1211 bool no_autobind; 1212 1213 struct kmem_cache *slab; 1214 unsigned int obj_size; 1215 slab_flags_t slab_flags; 1216 unsigned int useroffset; /* Usercopy region offset */ 1217 unsigned int usersize; /* Usercopy region size */ 1218 1219 struct percpu_counter *orphan_count; 1220 1221 struct request_sock_ops *rsk_prot; 1222 struct timewait_sock_ops *twsk_prot; 1223 1224 union { 1225 struct inet_hashinfo *hashinfo; 1226 struct udp_table *udp_table; 1227 struct raw_hashinfo *raw_hash; 1228 struct smc_hashinfo *smc_hash; 1229 } h; 1230 1231 struct module *owner; 1232 1233 char name[32]; 1234 1235 struct list_head node; 1236 #ifdef SOCK_REFCNT_DEBUG 1237 atomic_t socks; 1238 #endif 1239 int (*diag_destroy)(struct sock *sk, int err); 1240 } __randomize_layout; 1241 1242 int proto_register(struct proto *prot, int alloc_slab); 1243 void proto_unregister(struct proto *prot); 1244 int sock_load_diag_module(int family, int protocol); 1245 1246 #ifdef SOCK_REFCNT_DEBUG 1247 static inline void sk_refcnt_debug_inc(struct sock *sk) 1248 { 1249 atomic_inc(&sk->sk_prot->socks); 1250 } 1251 1252 static inline void sk_refcnt_debug_dec(struct sock *sk) 1253 { 1254 atomic_dec(&sk->sk_prot->socks); 1255 printk(KERN_DEBUG "%s socket %p released, %d are still alive\n", 1256 sk->sk_prot->name, sk, atomic_read(&sk->sk_prot->socks)); 1257 } 1258 1259 static inline void sk_refcnt_debug_release(const struct sock *sk) 1260 { 1261 if (refcount_read(&sk->sk_refcnt) != 1) 1262 printk(KERN_DEBUG "Destruction of the %s socket %p delayed, refcnt=%d\n", 1263 sk->sk_prot->name, sk, refcount_read(&sk->sk_refcnt)); 1264 } 1265 #else /* SOCK_REFCNT_DEBUG */ 1266 #define sk_refcnt_debug_inc(sk) do { } while (0) 1267 #define sk_refcnt_debug_dec(sk) do { } while (0) 1268 #define sk_refcnt_debug_release(sk) do { } while (0) 1269 #endif /* SOCK_REFCNT_DEBUG */ 1270 1271 static inline bool __sk_stream_memory_free(const struct sock *sk, int wake) 1272 { 1273 if (READ_ONCE(sk->sk_wmem_queued) >= READ_ONCE(sk->sk_sndbuf)) 1274 return false; 1275 1276 return sk->sk_prot->stream_memory_free ? 1277 sk->sk_prot->stream_memory_free(sk, wake) : true; 1278 } 1279 1280 static inline bool sk_stream_memory_free(const struct sock *sk) 1281 { 1282 return __sk_stream_memory_free(sk, 0); 1283 } 1284 1285 static inline bool __sk_stream_is_writeable(const struct sock *sk, int wake) 1286 { 1287 return sk_stream_wspace(sk) >= sk_stream_min_wspace(sk) && 1288 __sk_stream_memory_free(sk, wake); 1289 } 1290 1291 static inline bool sk_stream_is_writeable(const struct sock *sk) 1292 { 1293 return __sk_stream_is_writeable(sk, 0); 1294 } 1295 1296 static inline int sk_under_cgroup_hierarchy(struct sock *sk, 1297 struct cgroup *ancestor) 1298 { 1299 #ifdef CONFIG_SOCK_CGROUP_DATA 1300 return cgroup_is_descendant(sock_cgroup_ptr(&sk->sk_cgrp_data), 1301 ancestor); 1302 #else 1303 return -ENOTSUPP; 1304 #endif 1305 } 1306 1307 static inline bool sk_has_memory_pressure(const struct sock *sk) 1308 { 1309 return sk->sk_prot->memory_pressure != NULL; 1310 } 1311 1312 static inline bool sk_under_memory_pressure(const struct sock *sk) 1313 { 1314 if (!sk->sk_prot->memory_pressure) 1315 return false; 1316 1317 if (mem_cgroup_sockets_enabled && sk->sk_memcg && 1318 mem_cgroup_under_socket_pressure(sk->sk_memcg)) 1319 return true; 1320 1321 return !!*sk->sk_prot->memory_pressure; 1322 } 1323 1324 static inline long 1325 sk_memory_allocated(const struct sock *sk) 1326 { 1327 return atomic_long_read(sk->sk_prot->memory_allocated); 1328 } 1329 1330 static inline long 1331 sk_memory_allocated_add(struct sock *sk, int amt) 1332 { 1333 return atomic_long_add_return(amt, sk->sk_prot->memory_allocated); 1334 } 1335 1336 static inline void 1337 sk_memory_allocated_sub(struct sock *sk, int amt) 1338 { 1339 atomic_long_sub(amt, sk->sk_prot->memory_allocated); 1340 } 1341 1342 static inline void sk_sockets_allocated_dec(struct sock *sk) 1343 { 1344 percpu_counter_dec(sk->sk_prot->sockets_allocated); 1345 } 1346 1347 static inline void sk_sockets_allocated_inc(struct sock *sk) 1348 { 1349 percpu_counter_inc(sk->sk_prot->sockets_allocated); 1350 } 1351 1352 static inline u64 1353 sk_sockets_allocated_read_positive(struct sock *sk) 1354 { 1355 return percpu_counter_read_positive(sk->sk_prot->sockets_allocated); 1356 } 1357 1358 static inline int 1359 proto_sockets_allocated_sum_positive(struct proto *prot) 1360 { 1361 return percpu_counter_sum_positive(prot->sockets_allocated); 1362 } 1363 1364 static inline long 1365 proto_memory_allocated(struct proto *prot) 1366 { 1367 return atomic_long_read(prot->memory_allocated); 1368 } 1369 1370 static inline bool 1371 proto_memory_pressure(struct proto *prot) 1372 { 1373 if (!prot->memory_pressure) 1374 return false; 1375 return !!*prot->memory_pressure; 1376 } 1377 1378 1379 #ifdef CONFIG_PROC_FS 1380 /* Called with local bh disabled */ 1381 void sock_prot_inuse_add(struct net *net, struct proto *prot, int inc); 1382 int sock_prot_inuse_get(struct net *net, struct proto *proto); 1383 int sock_inuse_get(struct net *net); 1384 #else 1385 static inline void sock_prot_inuse_add(struct net *net, struct proto *prot, 1386 int inc) 1387 { 1388 } 1389 #endif 1390 1391 1392 /* With per-bucket locks this operation is not-atomic, so that 1393 * this version is not worse. 1394 */ 1395 static inline int __sk_prot_rehash(struct sock *sk) 1396 { 1397 sk->sk_prot->unhash(sk); 1398 return sk->sk_prot->hash(sk); 1399 } 1400 1401 /* About 10 seconds */ 1402 #define SOCK_DESTROY_TIME (10*HZ) 1403 1404 /* Sockets 0-1023 can't be bound to unless you are superuser */ 1405 #define PROT_SOCK 1024 1406 1407 #define SHUTDOWN_MASK 3 1408 #define RCV_SHUTDOWN 1 1409 #define SEND_SHUTDOWN 2 1410 1411 #define SOCK_SNDBUF_LOCK 1 1412 #define SOCK_RCVBUF_LOCK 2 1413 #define SOCK_BINDADDR_LOCK 4 1414 #define SOCK_BINDPORT_LOCK 8 1415 1416 struct socket_alloc { 1417 struct socket socket; 1418 struct inode vfs_inode; 1419 }; 1420 1421 static inline struct socket *SOCKET_I(struct inode *inode) 1422 { 1423 return &container_of(inode, struct socket_alloc, vfs_inode)->socket; 1424 } 1425 1426 static inline struct inode *SOCK_INODE(struct socket *socket) 1427 { 1428 return &container_of(socket, struct socket_alloc, socket)->vfs_inode; 1429 } 1430 1431 /* 1432 * Functions for memory accounting 1433 */ 1434 int __sk_mem_raise_allocated(struct sock *sk, int size, int amt, int kind); 1435 int __sk_mem_schedule(struct sock *sk, int size, int kind); 1436 void __sk_mem_reduce_allocated(struct sock *sk, int amount); 1437 void __sk_mem_reclaim(struct sock *sk, int amount); 1438 1439 /* We used to have PAGE_SIZE here, but systems with 64KB pages 1440 * do not necessarily have 16x time more memory than 4KB ones. 1441 */ 1442 #define SK_MEM_QUANTUM 4096 1443 #define SK_MEM_QUANTUM_SHIFT ilog2(SK_MEM_QUANTUM) 1444 #define SK_MEM_SEND 0 1445 #define SK_MEM_RECV 1 1446 1447 /* sysctl_mem values are in pages, we convert them in SK_MEM_QUANTUM units */ 1448 static inline long sk_prot_mem_limits(const struct sock *sk, int index) 1449 { 1450 long val = sk->sk_prot->sysctl_mem[index]; 1451 1452 #if PAGE_SIZE > SK_MEM_QUANTUM 1453 val <<= PAGE_SHIFT - SK_MEM_QUANTUM_SHIFT; 1454 #elif PAGE_SIZE < SK_MEM_QUANTUM 1455 val >>= SK_MEM_QUANTUM_SHIFT - PAGE_SHIFT; 1456 #endif 1457 return val; 1458 } 1459 1460 static inline int sk_mem_pages(int amt) 1461 { 1462 return (amt + SK_MEM_QUANTUM - 1) >> SK_MEM_QUANTUM_SHIFT; 1463 } 1464 1465 static inline bool sk_has_account(struct sock *sk) 1466 { 1467 /* return true if protocol supports memory accounting */ 1468 return !!sk->sk_prot->memory_allocated; 1469 } 1470 1471 static inline bool sk_wmem_schedule(struct sock *sk, int size) 1472 { 1473 if (!sk_has_account(sk)) 1474 return true; 1475 return size <= sk->sk_forward_alloc || 1476 __sk_mem_schedule(sk, size, SK_MEM_SEND); 1477 } 1478 1479 static inline bool 1480 sk_rmem_schedule(struct sock *sk, struct sk_buff *skb, int size) 1481 { 1482 if (!sk_has_account(sk)) 1483 return true; 1484 return size<= sk->sk_forward_alloc || 1485 __sk_mem_schedule(sk, size, SK_MEM_RECV) || 1486 skb_pfmemalloc(skb); 1487 } 1488 1489 static inline void sk_mem_reclaim(struct sock *sk) 1490 { 1491 if (!sk_has_account(sk)) 1492 return; 1493 if (sk->sk_forward_alloc >= SK_MEM_QUANTUM) 1494 __sk_mem_reclaim(sk, sk->sk_forward_alloc); 1495 } 1496 1497 static inline void sk_mem_reclaim_partial(struct sock *sk) 1498 { 1499 if (!sk_has_account(sk)) 1500 return; 1501 if (sk->sk_forward_alloc > SK_MEM_QUANTUM) 1502 __sk_mem_reclaim(sk, sk->sk_forward_alloc - 1); 1503 } 1504 1505 static inline void sk_mem_charge(struct sock *sk, int size) 1506 { 1507 if (!sk_has_account(sk)) 1508 return; 1509 sk->sk_forward_alloc -= size; 1510 } 1511 1512 static inline void sk_mem_uncharge(struct sock *sk, int size) 1513 { 1514 if (!sk_has_account(sk)) 1515 return; 1516 sk->sk_forward_alloc += size; 1517 1518 /* Avoid a possible overflow. 1519 * TCP send queues can make this happen, if sk_mem_reclaim() 1520 * is not called and more than 2 GBytes are released at once. 1521 * 1522 * If we reach 2 MBytes, reclaim 1 MBytes right now, there is 1523 * no need to hold that much forward allocation anyway. 1524 */ 1525 if (unlikely(sk->sk_forward_alloc >= 1 << 21)) 1526 __sk_mem_reclaim(sk, 1 << 20); 1527 } 1528 1529 DECLARE_STATIC_KEY_FALSE(tcp_tx_skb_cache_key); 1530 static inline void sk_wmem_free_skb(struct sock *sk, struct sk_buff *skb) 1531 { 1532 sock_set_flag(sk, SOCK_QUEUE_SHRUNK); 1533 sk_wmem_queued_add(sk, -skb->truesize); 1534 sk_mem_uncharge(sk, skb->truesize); 1535 if (static_branch_unlikely(&tcp_tx_skb_cache_key) && 1536 !sk->sk_tx_skb_cache && !skb_cloned(skb)) { 1537 skb_ext_reset(skb); 1538 skb_zcopy_clear(skb, true); 1539 sk->sk_tx_skb_cache = skb; 1540 return; 1541 } 1542 __kfree_skb(skb); 1543 } 1544 1545 static inline void sock_release_ownership(struct sock *sk) 1546 { 1547 if (sk->sk_lock.owned) { 1548 sk->sk_lock.owned = 0; 1549 1550 /* The sk_lock has mutex_unlock() semantics: */ 1551 mutex_release(&sk->sk_lock.dep_map, _RET_IP_); 1552 } 1553 } 1554 1555 /* 1556 * Macro so as to not evaluate some arguments when 1557 * lockdep is not enabled. 1558 * 1559 * Mark both the sk_lock and the sk_lock.slock as a 1560 * per-address-family lock class. 1561 */ 1562 #define sock_lock_init_class_and_name(sk, sname, skey, name, key) \ 1563 do { \ 1564 sk->sk_lock.owned = 0; \ 1565 init_waitqueue_head(&sk->sk_lock.wq); \ 1566 spin_lock_init(&(sk)->sk_lock.slock); \ 1567 debug_check_no_locks_freed((void *)&(sk)->sk_lock, \ 1568 sizeof((sk)->sk_lock)); \ 1569 lockdep_set_class_and_name(&(sk)->sk_lock.slock, \ 1570 (skey), (sname)); \ 1571 lockdep_init_map(&(sk)->sk_lock.dep_map, (name), (key), 0); \ 1572 } while (0) 1573 1574 #ifdef CONFIG_LOCKDEP 1575 static inline bool lockdep_sock_is_held(const struct sock *sk) 1576 { 1577 return lockdep_is_held(&sk->sk_lock) || 1578 lockdep_is_held(&sk->sk_lock.slock); 1579 } 1580 #endif 1581 1582 void lock_sock_nested(struct sock *sk, int subclass); 1583 1584 static inline void lock_sock(struct sock *sk) 1585 { 1586 lock_sock_nested(sk, 0); 1587 } 1588 1589 void __release_sock(struct sock *sk); 1590 void release_sock(struct sock *sk); 1591 1592 /* BH context may only use the following locking interface. */ 1593 #define bh_lock_sock(__sk) spin_lock(&((__sk)->sk_lock.slock)) 1594 #define bh_lock_sock_nested(__sk) \ 1595 spin_lock_nested(&((__sk)->sk_lock.slock), \ 1596 SINGLE_DEPTH_NESTING) 1597 #define bh_unlock_sock(__sk) spin_unlock(&((__sk)->sk_lock.slock)) 1598 1599 bool lock_sock_fast(struct sock *sk); 1600 /** 1601 * unlock_sock_fast - complement of lock_sock_fast 1602 * @sk: socket 1603 * @slow: slow mode 1604 * 1605 * fast unlock socket for user context. 1606 * If slow mode is on, we call regular release_sock() 1607 */ 1608 static inline void unlock_sock_fast(struct sock *sk, bool slow) 1609 { 1610 if (slow) 1611 release_sock(sk); 1612 else 1613 spin_unlock_bh(&sk->sk_lock.slock); 1614 } 1615 1616 /* Used by processes to "lock" a socket state, so that 1617 * interrupts and bottom half handlers won't change it 1618 * from under us. It essentially blocks any incoming 1619 * packets, so that we won't get any new data or any 1620 * packets that change the state of the socket. 1621 * 1622 * While locked, BH processing will add new packets to 1623 * the backlog queue. This queue is processed by the 1624 * owner of the socket lock right before it is released. 1625 * 1626 * Since ~2.3.5 it is also exclusive sleep lock serializing 1627 * accesses from user process context. 1628 */ 1629 1630 static inline void sock_owned_by_me(const struct sock *sk) 1631 { 1632 #ifdef CONFIG_LOCKDEP 1633 WARN_ON_ONCE(!lockdep_sock_is_held(sk) && debug_locks); 1634 #endif 1635 } 1636 1637 static inline bool sock_owned_by_user(const struct sock *sk) 1638 { 1639 sock_owned_by_me(sk); 1640 return sk->sk_lock.owned; 1641 } 1642 1643 static inline bool sock_owned_by_user_nocheck(const struct sock *sk) 1644 { 1645 return sk->sk_lock.owned; 1646 } 1647 1648 /* no reclassification while locks are held */ 1649 static inline bool sock_allow_reclassification(const struct sock *csk) 1650 { 1651 struct sock *sk = (struct sock *)csk; 1652 1653 return !sk->sk_lock.owned && !spin_is_locked(&sk->sk_lock.slock); 1654 } 1655 1656 struct sock *sk_alloc(struct net *net, int family, gfp_t priority, 1657 struct proto *prot, int kern); 1658 void sk_free(struct sock *sk); 1659 void sk_destruct(struct sock *sk); 1660 struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority); 1661 void sk_free_unlock_clone(struct sock *sk); 1662 1663 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force, 1664 gfp_t priority); 1665 void __sock_wfree(struct sk_buff *skb); 1666 void sock_wfree(struct sk_buff *skb); 1667 struct sk_buff *sock_omalloc(struct sock *sk, unsigned long size, 1668 gfp_t priority); 1669 void skb_orphan_partial(struct sk_buff *skb); 1670 void sock_rfree(struct sk_buff *skb); 1671 void sock_efree(struct sk_buff *skb); 1672 #ifdef CONFIG_INET 1673 void sock_edemux(struct sk_buff *skb); 1674 void sock_pfree(struct sk_buff *skb); 1675 #else 1676 #define sock_edemux sock_efree 1677 #endif 1678 1679 int sock_setsockopt(struct socket *sock, int level, int op, 1680 char __user *optval, unsigned int optlen); 1681 1682 int sock_getsockopt(struct socket *sock, int level, int op, 1683 char __user *optval, int __user *optlen); 1684 int sock_gettstamp(struct socket *sock, void __user *userstamp, 1685 bool timeval, bool time32); 1686 struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size, 1687 int noblock, int *errcode); 1688 struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len, 1689 unsigned long data_len, int noblock, 1690 int *errcode, int max_page_order); 1691 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority); 1692 void sock_kfree_s(struct sock *sk, void *mem, int size); 1693 void sock_kzfree_s(struct sock *sk, void *mem, int size); 1694 void sk_send_sigurg(struct sock *sk); 1695 1696 struct sockcm_cookie { 1697 u64 transmit_time; 1698 u32 mark; 1699 u16 tsflags; 1700 }; 1701 1702 static inline void sockcm_init(struct sockcm_cookie *sockc, 1703 const struct sock *sk) 1704 { 1705 *sockc = (struct sockcm_cookie) { .tsflags = sk->sk_tsflags }; 1706 } 1707 1708 int __sock_cmsg_send(struct sock *sk, struct msghdr *msg, struct cmsghdr *cmsg, 1709 struct sockcm_cookie *sockc); 1710 int sock_cmsg_send(struct sock *sk, struct msghdr *msg, 1711 struct sockcm_cookie *sockc); 1712 1713 /* 1714 * Functions to fill in entries in struct proto_ops when a protocol 1715 * does not implement a particular function. 1716 */ 1717 int sock_no_bind(struct socket *, struct sockaddr *, int); 1718 int sock_no_connect(struct socket *, struct sockaddr *, int, int); 1719 int sock_no_socketpair(struct socket *, struct socket *); 1720 int sock_no_accept(struct socket *, struct socket *, int, bool); 1721 int sock_no_getname(struct socket *, struct sockaddr *, int); 1722 int sock_no_ioctl(struct socket *, unsigned int, unsigned long); 1723 int sock_no_listen(struct socket *, int); 1724 int sock_no_shutdown(struct socket *, int); 1725 int sock_no_getsockopt(struct socket *, int , int, char __user *, int __user *); 1726 int sock_no_setsockopt(struct socket *, int, int, char __user *, unsigned int); 1727 int sock_no_sendmsg(struct socket *, struct msghdr *, size_t); 1728 int sock_no_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t len); 1729 int sock_no_recvmsg(struct socket *, struct msghdr *, size_t, int); 1730 int sock_no_mmap(struct file *file, struct socket *sock, 1731 struct vm_area_struct *vma); 1732 ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset, 1733 size_t size, int flags); 1734 ssize_t sock_no_sendpage_locked(struct sock *sk, struct page *page, 1735 int offset, size_t size, int flags); 1736 1737 /* 1738 * Functions to fill in entries in struct proto_ops when a protocol 1739 * uses the inet style. 1740 */ 1741 int sock_common_getsockopt(struct socket *sock, int level, int optname, 1742 char __user *optval, int __user *optlen); 1743 int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size, 1744 int flags); 1745 int sock_common_setsockopt(struct socket *sock, int level, int optname, 1746 char __user *optval, unsigned int optlen); 1747 int compat_sock_common_getsockopt(struct socket *sock, int level, 1748 int optname, char __user *optval, int __user *optlen); 1749 int compat_sock_common_setsockopt(struct socket *sock, int level, 1750 int optname, char __user *optval, unsigned int optlen); 1751 1752 void sk_common_release(struct sock *sk); 1753 1754 /* 1755 * Default socket callbacks and setup code 1756 */ 1757 1758 /* Initialise core socket variables */ 1759 void sock_init_data(struct socket *sock, struct sock *sk); 1760 1761 /* 1762 * Socket reference counting postulates. 1763 * 1764 * * Each user of socket SHOULD hold a reference count. 1765 * * Each access point to socket (an hash table bucket, reference from a list, 1766 * running timer, skb in flight MUST hold a reference count. 1767 * * When reference count hits 0, it means it will never increase back. 1768 * * When reference count hits 0, it means that no references from 1769 * outside exist to this socket and current process on current CPU 1770 * is last user and may/should destroy this socket. 1771 * * sk_free is called from any context: process, BH, IRQ. When 1772 * it is called, socket has no references from outside -> sk_free 1773 * may release descendant resources allocated by the socket, but 1774 * to the time when it is called, socket is NOT referenced by any 1775 * hash tables, lists etc. 1776 * * Packets, delivered from outside (from network or from another process) 1777 * and enqueued on receive/error queues SHOULD NOT grab reference count, 1778 * when they sit in queue. Otherwise, packets will leak to hole, when 1779 * socket is looked up by one cpu and unhasing is made by another CPU. 1780 * It is true for udp/raw, netlink (leak to receive and error queues), tcp 1781 * (leak to backlog). Packet socket does all the processing inside 1782 * BR_NETPROTO_LOCK, so that it has not this race condition. UNIX sockets 1783 * use separate SMP lock, so that they are prone too. 1784 */ 1785 1786 /* Ungrab socket and destroy it, if it was the last reference. */ 1787 static inline void sock_put(struct sock *sk) 1788 { 1789 if (refcount_dec_and_test(&sk->sk_refcnt)) 1790 sk_free(sk); 1791 } 1792 /* Generic version of sock_put(), dealing with all sockets 1793 * (TCP_TIMEWAIT, TCP_NEW_SYN_RECV, ESTABLISHED...) 1794 */ 1795 void sock_gen_put(struct sock *sk); 1796 1797 int __sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested, 1798 unsigned int trim_cap, bool refcounted); 1799 static inline int sk_receive_skb(struct sock *sk, struct sk_buff *skb, 1800 const int nested) 1801 { 1802 return __sk_receive_skb(sk, skb, nested, 1, true); 1803 } 1804 1805 static inline void sk_tx_queue_set(struct sock *sk, int tx_queue) 1806 { 1807 /* sk_tx_queue_mapping accept only upto a 16-bit value */ 1808 if (WARN_ON_ONCE((unsigned short)tx_queue >= USHRT_MAX)) 1809 return; 1810 sk->sk_tx_queue_mapping = tx_queue; 1811 } 1812 1813 #define NO_QUEUE_MAPPING USHRT_MAX 1814 1815 static inline void sk_tx_queue_clear(struct sock *sk) 1816 { 1817 sk->sk_tx_queue_mapping = NO_QUEUE_MAPPING; 1818 } 1819 1820 static inline int sk_tx_queue_get(const struct sock *sk) 1821 { 1822 if (sk && sk->sk_tx_queue_mapping != NO_QUEUE_MAPPING) 1823 return sk->sk_tx_queue_mapping; 1824 1825 return -1; 1826 } 1827 1828 static inline void sk_rx_queue_set(struct sock *sk, const struct sk_buff *skb) 1829 { 1830 #ifdef CONFIG_XPS 1831 if (skb_rx_queue_recorded(skb)) { 1832 u16 rx_queue = skb_get_rx_queue(skb); 1833 1834 if (WARN_ON_ONCE(rx_queue == NO_QUEUE_MAPPING)) 1835 return; 1836 1837 sk->sk_rx_queue_mapping = rx_queue; 1838 } 1839 #endif 1840 } 1841 1842 static inline void sk_rx_queue_clear(struct sock *sk) 1843 { 1844 #ifdef CONFIG_XPS 1845 sk->sk_rx_queue_mapping = NO_QUEUE_MAPPING; 1846 #endif 1847 } 1848 1849 #ifdef CONFIG_XPS 1850 static inline int sk_rx_queue_get(const struct sock *sk) 1851 { 1852 if (sk && sk->sk_rx_queue_mapping != NO_QUEUE_MAPPING) 1853 return sk->sk_rx_queue_mapping; 1854 1855 return -1; 1856 } 1857 #endif 1858 1859 static inline void sk_set_socket(struct sock *sk, struct socket *sock) 1860 { 1861 sk->sk_socket = sock; 1862 } 1863 1864 static inline wait_queue_head_t *sk_sleep(struct sock *sk) 1865 { 1866 BUILD_BUG_ON(offsetof(struct socket_wq, wait) != 0); 1867 return &rcu_dereference_raw(sk->sk_wq)->wait; 1868 } 1869 /* Detach socket from process context. 1870 * Announce socket dead, detach it from wait queue and inode. 1871 * Note that parent inode held reference count on this struct sock, 1872 * we do not release it in this function, because protocol 1873 * probably wants some additional cleanups or even continuing 1874 * to work with this socket (TCP). 1875 */ 1876 static inline void sock_orphan(struct sock *sk) 1877 { 1878 write_lock_bh(&sk->sk_callback_lock); 1879 sock_set_flag(sk, SOCK_DEAD); 1880 sk_set_socket(sk, NULL); 1881 sk->sk_wq = NULL; 1882 write_unlock_bh(&sk->sk_callback_lock); 1883 } 1884 1885 static inline void sock_graft(struct sock *sk, struct socket *parent) 1886 { 1887 WARN_ON(parent->sk); 1888 write_lock_bh(&sk->sk_callback_lock); 1889 rcu_assign_pointer(sk->sk_wq, &parent->wq); 1890 parent->sk = sk; 1891 sk_set_socket(sk, parent); 1892 sk->sk_uid = SOCK_INODE(parent)->i_uid; 1893 security_sock_graft(sk, parent); 1894 write_unlock_bh(&sk->sk_callback_lock); 1895 } 1896 1897 kuid_t sock_i_uid(struct sock *sk); 1898 unsigned long sock_i_ino(struct sock *sk); 1899 1900 static inline kuid_t sock_net_uid(const struct net *net, const struct sock *sk) 1901 { 1902 return sk ? sk->sk_uid : make_kuid(net->user_ns, 0); 1903 } 1904 1905 static inline u32 net_tx_rndhash(void) 1906 { 1907 u32 v = prandom_u32(); 1908 1909 return v ?: 1; 1910 } 1911 1912 static inline void sk_set_txhash(struct sock *sk) 1913 { 1914 sk->sk_txhash = net_tx_rndhash(); 1915 } 1916 1917 static inline void sk_rethink_txhash(struct sock *sk) 1918 { 1919 if (sk->sk_txhash) 1920 sk_set_txhash(sk); 1921 } 1922 1923 static inline struct dst_entry * 1924 __sk_dst_get(struct sock *sk) 1925 { 1926 return rcu_dereference_check(sk->sk_dst_cache, 1927 lockdep_sock_is_held(sk)); 1928 } 1929 1930 static inline struct dst_entry * 1931 sk_dst_get(struct sock *sk) 1932 { 1933 struct dst_entry *dst; 1934 1935 rcu_read_lock(); 1936 dst = rcu_dereference(sk->sk_dst_cache); 1937 if (dst && !atomic_inc_not_zero(&dst->__refcnt)) 1938 dst = NULL; 1939 rcu_read_unlock(); 1940 return dst; 1941 } 1942 1943 static inline void dst_negative_advice(struct sock *sk) 1944 { 1945 struct dst_entry *ndst, *dst = __sk_dst_get(sk); 1946 1947 sk_rethink_txhash(sk); 1948 1949 if (dst && dst->ops->negative_advice) { 1950 ndst = dst->ops->negative_advice(dst); 1951 1952 if (ndst != dst) { 1953 rcu_assign_pointer(sk->sk_dst_cache, ndst); 1954 sk_tx_queue_clear(sk); 1955 sk->sk_dst_pending_confirm = 0; 1956 } 1957 } 1958 } 1959 1960 static inline void 1961 __sk_dst_set(struct sock *sk, struct dst_entry *dst) 1962 { 1963 struct dst_entry *old_dst; 1964 1965 sk_tx_queue_clear(sk); 1966 sk->sk_dst_pending_confirm = 0; 1967 old_dst = rcu_dereference_protected(sk->sk_dst_cache, 1968 lockdep_sock_is_held(sk)); 1969 rcu_assign_pointer(sk->sk_dst_cache, dst); 1970 dst_release(old_dst); 1971 } 1972 1973 static inline void 1974 sk_dst_set(struct sock *sk, struct dst_entry *dst) 1975 { 1976 struct dst_entry *old_dst; 1977 1978 sk_tx_queue_clear(sk); 1979 sk->sk_dst_pending_confirm = 0; 1980 old_dst = xchg((__force struct dst_entry **)&sk->sk_dst_cache, dst); 1981 dst_release(old_dst); 1982 } 1983 1984 static inline void 1985 __sk_dst_reset(struct sock *sk) 1986 { 1987 __sk_dst_set(sk, NULL); 1988 } 1989 1990 static inline void 1991 sk_dst_reset(struct sock *sk) 1992 { 1993 sk_dst_set(sk, NULL); 1994 } 1995 1996 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie); 1997 1998 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie); 1999 2000 static inline void sk_dst_confirm(struct sock *sk) 2001 { 2002 if (!READ_ONCE(sk->sk_dst_pending_confirm)) 2003 WRITE_ONCE(sk->sk_dst_pending_confirm, 1); 2004 } 2005 2006 static inline void sock_confirm_neigh(struct sk_buff *skb, struct neighbour *n) 2007 { 2008 if (skb_get_dst_pending_confirm(skb)) { 2009 struct sock *sk = skb->sk; 2010 unsigned long now = jiffies; 2011 2012 /* avoid dirtying neighbour */ 2013 if (READ_ONCE(n->confirmed) != now) 2014 WRITE_ONCE(n->confirmed, now); 2015 if (sk && READ_ONCE(sk->sk_dst_pending_confirm)) 2016 WRITE_ONCE(sk->sk_dst_pending_confirm, 0); 2017 } 2018 } 2019 2020 bool sk_mc_loop(struct sock *sk); 2021 2022 static inline bool sk_can_gso(const struct sock *sk) 2023 { 2024 return net_gso_ok(sk->sk_route_caps, sk->sk_gso_type); 2025 } 2026 2027 void sk_setup_caps(struct sock *sk, struct dst_entry *dst); 2028 2029 static inline void sk_nocaps_add(struct sock *sk, netdev_features_t flags) 2030 { 2031 sk->sk_route_nocaps |= flags; 2032 sk->sk_route_caps &= ~flags; 2033 } 2034 2035 static inline int skb_do_copy_data_nocache(struct sock *sk, struct sk_buff *skb, 2036 struct iov_iter *from, char *to, 2037 int copy, int offset) 2038 { 2039 if (skb->ip_summed == CHECKSUM_NONE) { 2040 __wsum csum = 0; 2041 if (!csum_and_copy_from_iter_full(to, copy, &csum, from)) 2042 return -EFAULT; 2043 skb->csum = csum_block_add(skb->csum, csum, offset); 2044 } else if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY) { 2045 if (!copy_from_iter_full_nocache(to, copy, from)) 2046 return -EFAULT; 2047 } else if (!copy_from_iter_full(to, copy, from)) 2048 return -EFAULT; 2049 2050 return 0; 2051 } 2052 2053 static inline int skb_add_data_nocache(struct sock *sk, struct sk_buff *skb, 2054 struct iov_iter *from, int copy) 2055 { 2056 int err, offset = skb->len; 2057 2058 err = skb_do_copy_data_nocache(sk, skb, from, skb_put(skb, copy), 2059 copy, offset); 2060 if (err) 2061 __skb_trim(skb, offset); 2062 2063 return err; 2064 } 2065 2066 static inline int skb_copy_to_page_nocache(struct sock *sk, struct iov_iter *from, 2067 struct sk_buff *skb, 2068 struct page *page, 2069 int off, int copy) 2070 { 2071 int err; 2072 2073 err = skb_do_copy_data_nocache(sk, skb, from, page_address(page) + off, 2074 copy, skb->len); 2075 if (err) 2076 return err; 2077 2078 skb->len += copy; 2079 skb->data_len += copy; 2080 skb->truesize += copy; 2081 sk_wmem_queued_add(sk, copy); 2082 sk_mem_charge(sk, copy); 2083 return 0; 2084 } 2085 2086 /** 2087 * sk_wmem_alloc_get - returns write allocations 2088 * @sk: socket 2089 * 2090 * Return: sk_wmem_alloc minus initial offset of one 2091 */ 2092 static inline int sk_wmem_alloc_get(const struct sock *sk) 2093 { 2094 return refcount_read(&sk->sk_wmem_alloc) - 1; 2095 } 2096 2097 /** 2098 * sk_rmem_alloc_get - returns read allocations 2099 * @sk: socket 2100 * 2101 * Return: sk_rmem_alloc 2102 */ 2103 static inline int sk_rmem_alloc_get(const struct sock *sk) 2104 { 2105 return atomic_read(&sk->sk_rmem_alloc); 2106 } 2107 2108 /** 2109 * sk_has_allocations - check if allocations are outstanding 2110 * @sk: socket 2111 * 2112 * Return: true if socket has write or read allocations 2113 */ 2114 static inline bool sk_has_allocations(const struct sock *sk) 2115 { 2116 return sk_wmem_alloc_get(sk) || sk_rmem_alloc_get(sk); 2117 } 2118 2119 /** 2120 * skwq_has_sleeper - check if there are any waiting processes 2121 * @wq: struct socket_wq 2122 * 2123 * Return: true if socket_wq has waiting processes 2124 * 2125 * The purpose of the skwq_has_sleeper and sock_poll_wait is to wrap the memory 2126 * barrier call. They were added due to the race found within the tcp code. 2127 * 2128 * Consider following tcp code paths:: 2129 * 2130 * CPU1 CPU2 2131 * sys_select receive packet 2132 * ... ... 2133 * __add_wait_queue update tp->rcv_nxt 2134 * ... ... 2135 * tp->rcv_nxt check sock_def_readable 2136 * ... { 2137 * schedule rcu_read_lock(); 2138 * wq = rcu_dereference(sk->sk_wq); 2139 * if (wq && waitqueue_active(&wq->wait)) 2140 * wake_up_interruptible(&wq->wait) 2141 * ... 2142 * } 2143 * 2144 * The race for tcp fires when the __add_wait_queue changes done by CPU1 stay 2145 * in its cache, and so does the tp->rcv_nxt update on CPU2 side. The CPU1 2146 * could then endup calling schedule and sleep forever if there are no more 2147 * data on the socket. 2148 * 2149 */ 2150 static inline bool skwq_has_sleeper(struct socket_wq *wq) 2151 { 2152 return wq && wq_has_sleeper(&wq->wait); 2153 } 2154 2155 /** 2156 * sock_poll_wait - place memory barrier behind the poll_wait call. 2157 * @filp: file 2158 * @sock: socket to wait on 2159 * @p: poll_table 2160 * 2161 * See the comments in the wq_has_sleeper function. 2162 */ 2163 static inline void sock_poll_wait(struct file *filp, struct socket *sock, 2164 poll_table *p) 2165 { 2166 if (!poll_does_not_wait(p)) { 2167 poll_wait(filp, &sock->wq.wait, p); 2168 /* We need to be sure we are in sync with the 2169 * socket flags modification. 2170 * 2171 * This memory barrier is paired in the wq_has_sleeper. 2172 */ 2173 smp_mb(); 2174 } 2175 } 2176 2177 static inline void skb_set_hash_from_sk(struct sk_buff *skb, struct sock *sk) 2178 { 2179 if (sk->sk_txhash) { 2180 skb->l4_hash = 1; 2181 skb->hash = sk->sk_txhash; 2182 } 2183 } 2184 2185 void skb_set_owner_w(struct sk_buff *skb, struct sock *sk); 2186 2187 /* 2188 * Queue a received datagram if it will fit. Stream and sequenced 2189 * protocols can't normally use this as they need to fit buffers in 2190 * and play with them. 2191 * 2192 * Inlined as it's very short and called for pretty much every 2193 * packet ever received. 2194 */ 2195 static inline void skb_set_owner_r(struct sk_buff *skb, struct sock *sk) 2196 { 2197 skb_orphan(skb); 2198 skb->sk = sk; 2199 skb->destructor = sock_rfree; 2200 atomic_add(skb->truesize, &sk->sk_rmem_alloc); 2201 sk_mem_charge(sk, skb->truesize); 2202 } 2203 2204 void sk_reset_timer(struct sock *sk, struct timer_list *timer, 2205 unsigned long expires); 2206 2207 void sk_stop_timer(struct sock *sk, struct timer_list *timer); 2208 2209 int __sk_queue_drop_skb(struct sock *sk, struct sk_buff_head *sk_queue, 2210 struct sk_buff *skb, unsigned int flags, 2211 void (*destructor)(struct sock *sk, 2212 struct sk_buff *skb)); 2213 int __sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb); 2214 int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb); 2215 2216 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb); 2217 struct sk_buff *sock_dequeue_err_skb(struct sock *sk); 2218 2219 /* 2220 * Recover an error report and clear atomically 2221 */ 2222 2223 static inline int sock_error(struct sock *sk) 2224 { 2225 int err; 2226 if (likely(!sk->sk_err)) 2227 return 0; 2228 err = xchg(&sk->sk_err, 0); 2229 return -err; 2230 } 2231 2232 static inline unsigned long sock_wspace(struct sock *sk) 2233 { 2234 int amt = 0; 2235 2236 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) { 2237 amt = sk->sk_sndbuf - refcount_read(&sk->sk_wmem_alloc); 2238 if (amt < 0) 2239 amt = 0; 2240 } 2241 return amt; 2242 } 2243 2244 /* Note: 2245 * We use sk->sk_wq_raw, from contexts knowing this 2246 * pointer is not NULL and cannot disappear/change. 2247 */ 2248 static inline void sk_set_bit(int nr, struct sock *sk) 2249 { 2250 if ((nr == SOCKWQ_ASYNC_NOSPACE || nr == SOCKWQ_ASYNC_WAITDATA) && 2251 !sock_flag(sk, SOCK_FASYNC)) 2252 return; 2253 2254 set_bit(nr, &sk->sk_wq_raw->flags); 2255 } 2256 2257 static inline void sk_clear_bit(int nr, struct sock *sk) 2258 { 2259 if ((nr == SOCKWQ_ASYNC_NOSPACE || nr == SOCKWQ_ASYNC_WAITDATA) && 2260 !sock_flag(sk, SOCK_FASYNC)) 2261 return; 2262 2263 clear_bit(nr, &sk->sk_wq_raw->flags); 2264 } 2265 2266 static inline void sk_wake_async(const struct sock *sk, int how, int band) 2267 { 2268 if (sock_flag(sk, SOCK_FASYNC)) { 2269 rcu_read_lock(); 2270 sock_wake_async(rcu_dereference(sk->sk_wq), how, band); 2271 rcu_read_unlock(); 2272 } 2273 } 2274 2275 /* Since sk_{r,w}mem_alloc sums skb->truesize, even a small frame might 2276 * need sizeof(sk_buff) + MTU + padding, unless net driver perform copybreak. 2277 * Note: for send buffers, TCP works better if we can build two skbs at 2278 * minimum. 2279 */ 2280 #define TCP_SKB_MIN_TRUESIZE (2048 + SKB_DATA_ALIGN(sizeof(struct sk_buff))) 2281 2282 #define SOCK_MIN_SNDBUF (TCP_SKB_MIN_TRUESIZE * 2) 2283 #define SOCK_MIN_RCVBUF TCP_SKB_MIN_TRUESIZE 2284 2285 static inline void sk_stream_moderate_sndbuf(struct sock *sk) 2286 { 2287 u32 val; 2288 2289 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK) 2290 return; 2291 2292 val = min(sk->sk_sndbuf, sk->sk_wmem_queued >> 1); 2293 2294 WRITE_ONCE(sk->sk_sndbuf, max_t(u32, val, SOCK_MIN_SNDBUF)); 2295 } 2296 2297 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp, 2298 bool force_schedule); 2299 2300 /** 2301 * sk_page_frag - return an appropriate page_frag 2302 * @sk: socket 2303 * 2304 * Use the per task page_frag instead of the per socket one for 2305 * optimization when we know that we're in the normal context and owns 2306 * everything that's associated with %current. 2307 * 2308 * gfpflags_allow_blocking() isn't enough here as direct reclaim may nest 2309 * inside other socket operations and end up recursing into sk_page_frag() 2310 * while it's already in use. 2311 * 2312 * Return: a per task page_frag if context allows that, 2313 * otherwise a per socket one. 2314 */ 2315 static inline struct page_frag *sk_page_frag(struct sock *sk) 2316 { 2317 if (gfpflags_normal_context(sk->sk_allocation)) 2318 return ¤t->task_frag; 2319 2320 return &sk->sk_frag; 2321 } 2322 2323 bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag); 2324 2325 /* 2326 * Default write policy as shown to user space via poll/select/SIGIO 2327 */ 2328 static inline bool sock_writeable(const struct sock *sk) 2329 { 2330 return refcount_read(&sk->sk_wmem_alloc) < (READ_ONCE(sk->sk_sndbuf) >> 1); 2331 } 2332 2333 static inline gfp_t gfp_any(void) 2334 { 2335 return in_softirq() ? GFP_ATOMIC : GFP_KERNEL; 2336 } 2337 2338 static inline long sock_rcvtimeo(const struct sock *sk, bool noblock) 2339 { 2340 return noblock ? 0 : sk->sk_rcvtimeo; 2341 } 2342 2343 static inline long sock_sndtimeo(const struct sock *sk, bool noblock) 2344 { 2345 return noblock ? 0 : sk->sk_sndtimeo; 2346 } 2347 2348 static inline int sock_rcvlowat(const struct sock *sk, int waitall, int len) 2349 { 2350 int v = waitall ? len : min_t(int, READ_ONCE(sk->sk_rcvlowat), len); 2351 2352 return v ?: 1; 2353 } 2354 2355 /* Alas, with timeout socket operations are not restartable. 2356 * Compare this to poll(). 2357 */ 2358 static inline int sock_intr_errno(long timeo) 2359 { 2360 return timeo == MAX_SCHEDULE_TIMEOUT ? -ERESTARTSYS : -EINTR; 2361 } 2362 2363 struct sock_skb_cb { 2364 u32 dropcount; 2365 }; 2366 2367 /* Store sock_skb_cb at the end of skb->cb[] so protocol families 2368 * using skb->cb[] would keep using it directly and utilize its 2369 * alignement guarantee. 2370 */ 2371 #define SOCK_SKB_CB_OFFSET ((sizeof_field(struct sk_buff, cb) - \ 2372 sizeof(struct sock_skb_cb))) 2373 2374 #define SOCK_SKB_CB(__skb) ((struct sock_skb_cb *)((__skb)->cb + \ 2375 SOCK_SKB_CB_OFFSET)) 2376 2377 #define sock_skb_cb_check_size(size) \ 2378 BUILD_BUG_ON((size) > SOCK_SKB_CB_OFFSET) 2379 2380 static inline void 2381 sock_skb_set_dropcount(const struct sock *sk, struct sk_buff *skb) 2382 { 2383 SOCK_SKB_CB(skb)->dropcount = sock_flag(sk, SOCK_RXQ_OVFL) ? 2384 atomic_read(&sk->sk_drops) : 0; 2385 } 2386 2387 static inline void sk_drops_add(struct sock *sk, const struct sk_buff *skb) 2388 { 2389 int segs = max_t(u16, 1, skb_shinfo(skb)->gso_segs); 2390 2391 atomic_add(segs, &sk->sk_drops); 2392 } 2393 2394 static inline ktime_t sock_read_timestamp(struct sock *sk) 2395 { 2396 #if BITS_PER_LONG==32 2397 unsigned int seq; 2398 ktime_t kt; 2399 2400 do { 2401 seq = read_seqbegin(&sk->sk_stamp_seq); 2402 kt = sk->sk_stamp; 2403 } while (read_seqretry(&sk->sk_stamp_seq, seq)); 2404 2405 return kt; 2406 #else 2407 return READ_ONCE(sk->sk_stamp); 2408 #endif 2409 } 2410 2411 static inline void sock_write_timestamp(struct sock *sk, ktime_t kt) 2412 { 2413 #if BITS_PER_LONG==32 2414 write_seqlock(&sk->sk_stamp_seq); 2415 sk->sk_stamp = kt; 2416 write_sequnlock(&sk->sk_stamp_seq); 2417 #else 2418 WRITE_ONCE(sk->sk_stamp, kt); 2419 #endif 2420 } 2421 2422 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk, 2423 struct sk_buff *skb); 2424 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk, 2425 struct sk_buff *skb); 2426 2427 static inline void 2428 sock_recv_timestamp(struct msghdr *msg, struct sock *sk, struct sk_buff *skb) 2429 { 2430 ktime_t kt = skb->tstamp; 2431 struct skb_shared_hwtstamps *hwtstamps = skb_hwtstamps(skb); 2432 2433 /* 2434 * generate control messages if 2435 * - receive time stamping in software requested 2436 * - software time stamp available and wanted 2437 * - hardware time stamps available and wanted 2438 */ 2439 if (sock_flag(sk, SOCK_RCVTSTAMP) || 2440 (sk->sk_tsflags & SOF_TIMESTAMPING_RX_SOFTWARE) || 2441 (kt && sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) || 2442 (hwtstamps->hwtstamp && 2443 (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE))) 2444 __sock_recv_timestamp(msg, sk, skb); 2445 else 2446 sock_write_timestamp(sk, kt); 2447 2448 if (sock_flag(sk, SOCK_WIFI_STATUS) && skb->wifi_acked_valid) 2449 __sock_recv_wifi_status(msg, sk, skb); 2450 } 2451 2452 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk, 2453 struct sk_buff *skb); 2454 2455 #define SK_DEFAULT_STAMP (-1L * NSEC_PER_SEC) 2456 static inline void sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk, 2457 struct sk_buff *skb) 2458 { 2459 #define FLAGS_TS_OR_DROPS ((1UL << SOCK_RXQ_OVFL) | \ 2460 (1UL << SOCK_RCVTSTAMP)) 2461 #define TSFLAGS_ANY (SOF_TIMESTAMPING_SOFTWARE | \ 2462 SOF_TIMESTAMPING_RAW_HARDWARE) 2463 2464 if (sk->sk_flags & FLAGS_TS_OR_DROPS || sk->sk_tsflags & TSFLAGS_ANY) 2465 __sock_recv_ts_and_drops(msg, sk, skb); 2466 else if (unlikely(sock_flag(sk, SOCK_TIMESTAMP))) 2467 sock_write_timestamp(sk, skb->tstamp); 2468 else if (unlikely(sk->sk_stamp == SK_DEFAULT_STAMP)) 2469 sock_write_timestamp(sk, 0); 2470 } 2471 2472 void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags); 2473 2474 /** 2475 * _sock_tx_timestamp - checks whether the outgoing packet is to be time stamped 2476 * @sk: socket sending this packet 2477 * @tsflags: timestamping flags to use 2478 * @tx_flags: completed with instructions for time stamping 2479 * @tskey: filled in with next sk_tskey (not for TCP, which uses seqno) 2480 * 2481 * Note: callers should take care of initial ``*tx_flags`` value (usually 0) 2482 */ 2483 static inline void _sock_tx_timestamp(struct sock *sk, __u16 tsflags, 2484 __u8 *tx_flags, __u32 *tskey) 2485 { 2486 if (unlikely(tsflags)) { 2487 __sock_tx_timestamp(tsflags, tx_flags); 2488 if (tsflags & SOF_TIMESTAMPING_OPT_ID && tskey && 2489 tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK) 2490 *tskey = sk->sk_tskey++; 2491 } 2492 if (unlikely(sock_flag(sk, SOCK_WIFI_STATUS))) 2493 *tx_flags |= SKBTX_WIFI_STATUS; 2494 } 2495 2496 static inline void sock_tx_timestamp(struct sock *sk, __u16 tsflags, 2497 __u8 *tx_flags) 2498 { 2499 _sock_tx_timestamp(sk, tsflags, tx_flags, NULL); 2500 } 2501 2502 static inline void skb_setup_tx_timestamp(struct sk_buff *skb, __u16 tsflags) 2503 { 2504 _sock_tx_timestamp(skb->sk, tsflags, &skb_shinfo(skb)->tx_flags, 2505 &skb_shinfo(skb)->tskey); 2506 } 2507 2508 DECLARE_STATIC_KEY_FALSE(tcp_rx_skb_cache_key); 2509 /** 2510 * sk_eat_skb - Release a skb if it is no longer needed 2511 * @sk: socket to eat this skb from 2512 * @skb: socket buffer to eat 2513 * 2514 * This routine must be called with interrupts disabled or with the socket 2515 * locked so that the sk_buff queue operation is ok. 2516 */ 2517 static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb) 2518 { 2519 __skb_unlink(skb, &sk->sk_receive_queue); 2520 if (static_branch_unlikely(&tcp_rx_skb_cache_key) && 2521 !sk->sk_rx_skb_cache) { 2522 sk->sk_rx_skb_cache = skb; 2523 skb_orphan(skb); 2524 return; 2525 } 2526 __kfree_skb(skb); 2527 } 2528 2529 static inline 2530 struct net *sock_net(const struct sock *sk) 2531 { 2532 return read_pnet(&sk->sk_net); 2533 } 2534 2535 static inline 2536 void sock_net_set(struct sock *sk, struct net *net) 2537 { 2538 write_pnet(&sk->sk_net, net); 2539 } 2540 2541 static inline bool 2542 skb_sk_is_prefetched(struct sk_buff *skb) 2543 { 2544 #ifdef CONFIG_INET 2545 return skb->destructor == sock_pfree; 2546 #else 2547 return false; 2548 #endif /* CONFIG_INET */ 2549 } 2550 2551 /* This helper checks if a socket is a full socket, 2552 * ie _not_ a timewait or request socket. 2553 */ 2554 static inline bool sk_fullsock(const struct sock *sk) 2555 { 2556 return (1 << sk->sk_state) & ~(TCPF_TIME_WAIT | TCPF_NEW_SYN_RECV); 2557 } 2558 2559 static inline bool 2560 sk_is_refcounted(struct sock *sk) 2561 { 2562 /* Only full sockets have sk->sk_flags. */ 2563 return !sk_fullsock(sk) || !sock_flag(sk, SOCK_RCU_FREE); 2564 } 2565 2566 /** 2567 * skb_steal_sock - steal a socket from an sk_buff 2568 * @skb: sk_buff to steal the socket from 2569 * @refcounted: is set to true if the socket is reference-counted 2570 */ 2571 static inline struct sock * 2572 skb_steal_sock(struct sk_buff *skb, bool *refcounted) 2573 { 2574 if (skb->sk) { 2575 struct sock *sk = skb->sk; 2576 2577 *refcounted = true; 2578 if (skb_sk_is_prefetched(skb)) 2579 *refcounted = sk_is_refcounted(sk); 2580 skb->destructor = NULL; 2581 skb->sk = NULL; 2582 return sk; 2583 } 2584 *refcounted = false; 2585 return NULL; 2586 } 2587 2588 /* Checks if this SKB belongs to an HW offloaded socket 2589 * and whether any SW fallbacks are required based on dev. 2590 * Check decrypted mark in case skb_orphan() cleared socket. 2591 */ 2592 static inline struct sk_buff *sk_validate_xmit_skb(struct sk_buff *skb, 2593 struct net_device *dev) 2594 { 2595 #ifdef CONFIG_SOCK_VALIDATE_XMIT 2596 struct sock *sk = skb->sk; 2597 2598 if (sk && sk_fullsock(sk) && sk->sk_validate_xmit_skb) { 2599 skb = sk->sk_validate_xmit_skb(sk, dev, skb); 2600 #ifdef CONFIG_TLS_DEVICE 2601 } else if (unlikely(skb->decrypted)) { 2602 pr_warn_ratelimited("unencrypted skb with no associated socket - dropping\n"); 2603 kfree_skb(skb); 2604 skb = NULL; 2605 #endif 2606 } 2607 #endif 2608 2609 return skb; 2610 } 2611 2612 /* This helper checks if a socket is a LISTEN or NEW_SYN_RECV 2613 * SYNACK messages can be attached to either ones (depending on SYNCOOKIE) 2614 */ 2615 static inline bool sk_listener(const struct sock *sk) 2616 { 2617 return (1 << sk->sk_state) & (TCPF_LISTEN | TCPF_NEW_SYN_RECV); 2618 } 2619 2620 void sock_enable_timestamp(struct sock *sk, enum sock_flags flag); 2621 int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len, int level, 2622 int type); 2623 2624 bool sk_ns_capable(const struct sock *sk, 2625 struct user_namespace *user_ns, int cap); 2626 bool sk_capable(const struct sock *sk, int cap); 2627 bool sk_net_capable(const struct sock *sk, int cap); 2628 2629 void sk_get_meminfo(const struct sock *sk, u32 *meminfo); 2630 2631 /* Take into consideration the size of the struct sk_buff overhead in the 2632 * determination of these values, since that is non-constant across 2633 * platforms. This makes socket queueing behavior and performance 2634 * not depend upon such differences. 2635 */ 2636 #define _SK_MEM_PACKETS 256 2637 #define _SK_MEM_OVERHEAD SKB_TRUESIZE(256) 2638 #define SK_WMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS) 2639 #define SK_RMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS) 2640 2641 extern __u32 sysctl_wmem_max; 2642 extern __u32 sysctl_rmem_max; 2643 2644 extern int sysctl_tstamp_allow_data; 2645 extern int sysctl_optmem_max; 2646 2647 extern __u32 sysctl_wmem_default; 2648 extern __u32 sysctl_rmem_default; 2649 2650 DECLARE_STATIC_KEY_FALSE(net_high_order_alloc_disable_key); 2651 2652 static inline int sk_get_wmem0(const struct sock *sk, const struct proto *proto) 2653 { 2654 /* Does this proto have per netns sysctl_wmem ? */ 2655 if (proto->sysctl_wmem_offset) 2656 return *(int *)((void *)sock_net(sk) + proto->sysctl_wmem_offset); 2657 2658 return *proto->sysctl_wmem; 2659 } 2660 2661 static inline int sk_get_rmem0(const struct sock *sk, const struct proto *proto) 2662 { 2663 /* Does this proto have per netns sysctl_rmem ? */ 2664 if (proto->sysctl_rmem_offset) 2665 return *(int *)((void *)sock_net(sk) + proto->sysctl_rmem_offset); 2666 2667 return *proto->sysctl_rmem; 2668 } 2669 2670 /* Default TCP Small queue budget is ~1 ms of data (1sec >> 10) 2671 * Some wifi drivers need to tweak it to get more chunks. 2672 * They can use this helper from their ndo_start_xmit() 2673 */ 2674 static inline void sk_pacing_shift_update(struct sock *sk, int val) 2675 { 2676 if (!sk || !sk_fullsock(sk) || READ_ONCE(sk->sk_pacing_shift) == val) 2677 return; 2678 WRITE_ONCE(sk->sk_pacing_shift, val); 2679 } 2680 2681 /* if a socket is bound to a device, check that the given device 2682 * index is either the same or that the socket is bound to an L3 2683 * master device and the given device index is also enslaved to 2684 * that L3 master 2685 */ 2686 static inline bool sk_dev_equal_l3scope(struct sock *sk, int dif) 2687 { 2688 int mdif; 2689 2690 if (!sk->sk_bound_dev_if || sk->sk_bound_dev_if == dif) 2691 return true; 2692 2693 mdif = l3mdev_master_ifindex_by_index(sock_net(sk), dif); 2694 if (mdif && mdif == sk->sk_bound_dev_if) 2695 return true; 2696 2697 return false; 2698 } 2699 2700 void sock_def_readable(struct sock *sk); 2701 2702 int sock_bindtoindex(struct sock *sk, int ifindex, bool lock_sk); 2703 void sock_enable_timestamps(struct sock *sk); 2704 void sock_no_linger(struct sock *sk); 2705 void sock_set_keepalive(struct sock *sk); 2706 void sock_set_priority(struct sock *sk, u32 priority); 2707 void sock_set_rcvbuf(struct sock *sk, int val); 2708 void sock_set_reuseaddr(struct sock *sk); 2709 void sock_set_reuseport(struct sock *sk); 2710 void sock_set_sndtimeo(struct sock *sk, s64 secs); 2711 2712 int sock_bind_add(struct sock *sk, struct sockaddr *addr, int addr_len); 2713 2714 #endif /* _SOCK_H */ 2715