xref: /linux/include/net/sock.h (revision 913df4453f85f1fe79b35ecf3c9a0c0b707d22a2)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Definitions for the AF_INET socket handler.
7  *
8  * Version:	@(#)sock.h	1.0.4	05/13/93
9  *
10  * Authors:	Ross Biro
11  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
13  *		Florian La Roche <flla@stud.uni-sb.de>
14  *
15  * Fixes:
16  *		Alan Cox	:	Volatiles in skbuff pointers. See
17  *					skbuff comments. May be overdone,
18  *					better to prove they can be removed
19  *					than the reverse.
20  *		Alan Cox	:	Added a zapped field for tcp to note
21  *					a socket is reset and must stay shut up
22  *		Alan Cox	:	New fields for options
23  *	Pauline Middelink	:	identd support
24  *		Alan Cox	:	Eliminate low level recv/recvfrom
25  *		David S. Miller	:	New socket lookup architecture.
26  *              Steve Whitehouse:       Default routines for sock_ops
27  *              Arnaldo C. Melo :	removed net_pinfo, tp_pinfo and made
28  *              			protinfo be just a void pointer, as the
29  *              			protocol specific parts were moved to
30  *              			respective headers and ipv4/v6, etc now
31  *              			use private slabcaches for its socks
32  *              Pedro Hortas	:	New flags field for socket options
33  *
34  *
35  *		This program is free software; you can redistribute it and/or
36  *		modify it under the terms of the GNU General Public License
37  *		as published by the Free Software Foundation; either version
38  *		2 of the License, or (at your option) any later version.
39  */
40 #ifndef _SOCK_H
41 #define _SOCK_H
42 
43 #include <linux/kernel.h>
44 #include <linux/list.h>
45 #include <linux/list_nulls.h>
46 #include <linux/timer.h>
47 #include <linux/cache.h>
48 #include <linux/module.h>
49 #include <linux/lockdep.h>
50 #include <linux/netdevice.h>
51 #include <linux/skbuff.h>	/* struct sk_buff */
52 #include <linux/mm.h>
53 #include <linux/security.h>
54 
55 #include <linux/filter.h>
56 #include <linux/rculist_nulls.h>
57 #include <linux/poll.h>
58 
59 #include <asm/atomic.h>
60 #include <net/dst.h>
61 #include <net/checksum.h>
62 
63 /*
64  * This structure really needs to be cleaned up.
65  * Most of it is for TCP, and not used by any of
66  * the other protocols.
67  */
68 
69 /* Define this to get the SOCK_DBG debugging facility. */
70 #define SOCK_DEBUGGING
71 #ifdef SOCK_DEBUGGING
72 #define SOCK_DEBUG(sk, msg...) do { if ((sk) && sock_flag((sk), SOCK_DBG)) \
73 					printk(KERN_DEBUG msg); } while (0)
74 #else
75 /* Validate arguments and do nothing */
76 static void inline int __attribute__ ((format (printf, 2, 3)))
77 SOCK_DEBUG(struct sock *sk, const char *msg, ...)
78 {
79 }
80 #endif
81 
82 /* This is the per-socket lock.  The spinlock provides a synchronization
83  * between user contexts and software interrupt processing, whereas the
84  * mini-semaphore synchronizes multiple users amongst themselves.
85  */
86 typedef struct {
87 	spinlock_t		slock;
88 	int			owned;
89 	wait_queue_head_t	wq;
90 	/*
91 	 * We express the mutex-alike socket_lock semantics
92 	 * to the lock validator by explicitly managing
93 	 * the slock as a lock variant (in addition to
94 	 * the slock itself):
95 	 */
96 #ifdef CONFIG_DEBUG_LOCK_ALLOC
97 	struct lockdep_map dep_map;
98 #endif
99 } socket_lock_t;
100 
101 struct sock;
102 struct proto;
103 struct net;
104 
105 /**
106  *	struct sock_common - minimal network layer representation of sockets
107  *	@skc_node: main hash linkage for various protocol lookup tables
108  *	@skc_nulls_node: main hash linkage for UDP/UDP-Lite protocol
109  *	@skc_refcnt: reference count
110  *	@skc_hash: hash value used with various protocol lookup tables
111  *	@skc_family: network address family
112  *	@skc_state: Connection state
113  *	@skc_reuse: %SO_REUSEADDR setting
114  *	@skc_bound_dev_if: bound device index if != 0
115  *	@skc_bind_node: bind hash linkage for various protocol lookup tables
116  *	@skc_prot: protocol handlers inside a network family
117  *	@skc_net: reference to the network namespace of this socket
118  *
119  *	This is the minimal network layer representation of sockets, the header
120  *	for struct sock and struct inet_timewait_sock.
121  */
122 struct sock_common {
123 	/*
124 	 * first fields are not copied in sock_copy()
125 	 */
126 	union {
127 		struct hlist_node	skc_node;
128 		struct hlist_nulls_node skc_nulls_node;
129 	};
130 	atomic_t		skc_refcnt;
131 
132 	unsigned int		skc_hash;
133 	unsigned short		skc_family;
134 	volatile unsigned char	skc_state;
135 	unsigned char		skc_reuse;
136 	int			skc_bound_dev_if;
137 	struct hlist_node	skc_bind_node;
138 	struct proto		*skc_prot;
139 #ifdef CONFIG_NET_NS
140 	struct net	 	*skc_net;
141 #endif
142 };
143 
144 /**
145   *	struct sock - network layer representation of sockets
146   *	@__sk_common: shared layout with inet_timewait_sock
147   *	@sk_shutdown: mask of %SEND_SHUTDOWN and/or %RCV_SHUTDOWN
148   *	@sk_userlocks: %SO_SNDBUF and %SO_RCVBUF settings
149   *	@sk_lock:	synchronizer
150   *	@sk_rcvbuf: size of receive buffer in bytes
151   *	@sk_sleep: sock wait queue
152   *	@sk_dst_cache: destination cache
153   *	@sk_dst_lock: destination cache lock
154   *	@sk_policy: flow policy
155   *	@sk_rmem_alloc: receive queue bytes committed
156   *	@sk_receive_queue: incoming packets
157   *	@sk_wmem_alloc: transmit queue bytes committed
158   *	@sk_write_queue: Packet sending queue
159   *	@sk_async_wait_queue: DMA copied packets
160   *	@sk_omem_alloc: "o" is "option" or "other"
161   *	@sk_wmem_queued: persistent queue size
162   *	@sk_forward_alloc: space allocated forward
163   *	@sk_allocation: allocation mode
164   *	@sk_sndbuf: size of send buffer in bytes
165   *	@sk_flags: %SO_LINGER (l_onoff), %SO_BROADCAST, %SO_KEEPALIVE,
166   *		   %SO_OOBINLINE settings, %SO_TIMESTAMPING settings
167   *	@sk_no_check: %SO_NO_CHECK setting, wether or not checkup packets
168   *	@sk_route_caps: route capabilities (e.g. %NETIF_F_TSO)
169   *	@sk_gso_type: GSO type (e.g. %SKB_GSO_TCPV4)
170   *	@sk_gso_max_size: Maximum GSO segment size to build
171   *	@sk_lingertime: %SO_LINGER l_linger setting
172   *	@sk_backlog: always used with the per-socket spinlock held
173   *	@sk_callback_lock: used with the callbacks in the end of this struct
174   *	@sk_error_queue: rarely used
175   *	@sk_prot_creator: sk_prot of original sock creator (see ipv6_setsockopt,
176   *			  IPV6_ADDRFORM for instance)
177   *	@sk_err: last error
178   *	@sk_err_soft: errors that don't cause failure but are the cause of a
179   *		      persistent failure not just 'timed out'
180   *	@sk_drops: raw/udp drops counter
181   *	@sk_ack_backlog: current listen backlog
182   *	@sk_max_ack_backlog: listen backlog set in listen()
183   *	@sk_priority: %SO_PRIORITY setting
184   *	@sk_type: socket type (%SOCK_STREAM, etc)
185   *	@sk_protocol: which protocol this socket belongs in this network family
186   *	@sk_peercred: %SO_PEERCRED setting
187   *	@sk_rcvlowat: %SO_RCVLOWAT setting
188   *	@sk_rcvtimeo: %SO_RCVTIMEO setting
189   *	@sk_sndtimeo: %SO_SNDTIMEO setting
190   *	@sk_filter: socket filtering instructions
191   *	@sk_protinfo: private area, net family specific, when not using slab
192   *	@sk_timer: sock cleanup timer
193   *	@sk_stamp: time stamp of last packet received
194   *	@sk_socket: Identd and reporting IO signals
195   *	@sk_user_data: RPC layer private data
196   *	@sk_sndmsg_page: cached page for sendmsg
197   *	@sk_sndmsg_off: cached offset for sendmsg
198   *	@sk_send_head: front of stuff to transmit
199   *	@sk_security: used by security modules
200   *	@sk_mark: generic packet mark
201   *	@sk_write_pending: a write to stream socket waits to start
202   *	@sk_state_change: callback to indicate change in the state of the sock
203   *	@sk_data_ready: callback to indicate there is data to be processed
204   *	@sk_write_space: callback to indicate there is bf sending space available
205   *	@sk_error_report: callback to indicate errors (e.g. %MSG_ERRQUEUE)
206   *	@sk_backlog_rcv: callback to process the backlog
207   *	@sk_destruct: called at sock freeing time, i.e. when all refcnt == 0
208  */
209 struct sock {
210 	/*
211 	 * Now struct inet_timewait_sock also uses sock_common, so please just
212 	 * don't add nothing before this first member (__sk_common) --acme
213 	 */
214 	struct sock_common	__sk_common;
215 #define sk_node			__sk_common.skc_node
216 #define sk_nulls_node		__sk_common.skc_nulls_node
217 #define sk_refcnt		__sk_common.skc_refcnt
218 
219 #define sk_copy_start		__sk_common.skc_hash
220 #define sk_hash			__sk_common.skc_hash
221 #define sk_family		__sk_common.skc_family
222 #define sk_state		__sk_common.skc_state
223 #define sk_reuse		__sk_common.skc_reuse
224 #define sk_bound_dev_if		__sk_common.skc_bound_dev_if
225 #define sk_bind_node		__sk_common.skc_bind_node
226 #define sk_prot			__sk_common.skc_prot
227 #define sk_net			__sk_common.skc_net
228 	kmemcheck_bitfield_begin(flags);
229 	unsigned char		sk_shutdown : 2,
230 				sk_no_check : 2,
231 				sk_userlocks : 4;
232 	kmemcheck_bitfield_end(flags);
233 	unsigned char		sk_protocol;
234 	unsigned short		sk_type;
235 	int			sk_rcvbuf;
236 	socket_lock_t		sk_lock;
237 	/*
238 	 * The backlog queue is special, it is always used with
239 	 * the per-socket spinlock held and requires low latency
240 	 * access. Therefore we special case it's implementation.
241 	 */
242 	struct {
243 		struct sk_buff *head;
244 		struct sk_buff *tail;
245 	} sk_backlog;
246 	wait_queue_head_t	*sk_sleep;
247 	struct dst_entry	*sk_dst_cache;
248 #ifdef CONFIG_XFRM
249 	struct xfrm_policy	*sk_policy[2];
250 #endif
251 	rwlock_t		sk_dst_lock;
252 	atomic_t		sk_rmem_alloc;
253 	atomic_t		sk_wmem_alloc;
254 	atomic_t		sk_omem_alloc;
255 	int			sk_sndbuf;
256 	struct sk_buff_head	sk_receive_queue;
257 	struct sk_buff_head	sk_write_queue;
258 #ifdef CONFIG_NET_DMA
259 	struct sk_buff_head	sk_async_wait_queue;
260 #endif
261 	int			sk_wmem_queued;
262 	int			sk_forward_alloc;
263 	gfp_t			sk_allocation;
264 	int			sk_route_caps;
265 	int			sk_gso_type;
266 	unsigned int		sk_gso_max_size;
267 	int			sk_rcvlowat;
268 	unsigned long 		sk_flags;
269 	unsigned long	        sk_lingertime;
270 	struct sk_buff_head	sk_error_queue;
271 	struct proto		*sk_prot_creator;
272 	rwlock_t		sk_callback_lock;
273 	int			sk_err,
274 				sk_err_soft;
275 	atomic_t		sk_drops;
276 	unsigned short		sk_ack_backlog;
277 	unsigned short		sk_max_ack_backlog;
278 	__u32			sk_priority;
279 	struct ucred		sk_peercred;
280 	long			sk_rcvtimeo;
281 	long			sk_sndtimeo;
282 	struct sk_filter      	*sk_filter;
283 	void			*sk_protinfo;
284 	struct timer_list	sk_timer;
285 	ktime_t			sk_stamp;
286 	struct socket		*sk_socket;
287 	void			*sk_user_data;
288 	struct page		*sk_sndmsg_page;
289 	struct sk_buff		*sk_send_head;
290 	__u32			sk_sndmsg_off;
291 	int			sk_write_pending;
292 #ifdef CONFIG_SECURITY
293 	void			*sk_security;
294 #endif
295 	__u32			sk_mark;
296 	/* XXX 4 bytes hole on 64 bit */
297 	void			(*sk_state_change)(struct sock *sk);
298 	void			(*sk_data_ready)(struct sock *sk, int bytes);
299 	void			(*sk_write_space)(struct sock *sk);
300 	void			(*sk_error_report)(struct sock *sk);
301   	int			(*sk_backlog_rcv)(struct sock *sk,
302 						  struct sk_buff *skb);
303 	void                    (*sk_destruct)(struct sock *sk);
304 };
305 
306 /*
307  * Hashed lists helper routines
308  */
309 static inline struct sock *__sk_head(const struct hlist_head *head)
310 {
311 	return hlist_entry(head->first, struct sock, sk_node);
312 }
313 
314 static inline struct sock *sk_head(const struct hlist_head *head)
315 {
316 	return hlist_empty(head) ? NULL : __sk_head(head);
317 }
318 
319 static inline struct sock *__sk_nulls_head(const struct hlist_nulls_head *head)
320 {
321 	return hlist_nulls_entry(head->first, struct sock, sk_nulls_node);
322 }
323 
324 static inline struct sock *sk_nulls_head(const struct hlist_nulls_head *head)
325 {
326 	return hlist_nulls_empty(head) ? NULL : __sk_nulls_head(head);
327 }
328 
329 static inline struct sock *sk_next(const struct sock *sk)
330 {
331 	return sk->sk_node.next ?
332 		hlist_entry(sk->sk_node.next, struct sock, sk_node) : NULL;
333 }
334 
335 static inline struct sock *sk_nulls_next(const struct sock *sk)
336 {
337 	return (!is_a_nulls(sk->sk_nulls_node.next)) ?
338 		hlist_nulls_entry(sk->sk_nulls_node.next,
339 				  struct sock, sk_nulls_node) :
340 		NULL;
341 }
342 
343 static inline int sk_unhashed(const struct sock *sk)
344 {
345 	return hlist_unhashed(&sk->sk_node);
346 }
347 
348 static inline int sk_hashed(const struct sock *sk)
349 {
350 	return !sk_unhashed(sk);
351 }
352 
353 static __inline__ void sk_node_init(struct hlist_node *node)
354 {
355 	node->pprev = NULL;
356 }
357 
358 static __inline__ void sk_nulls_node_init(struct hlist_nulls_node *node)
359 {
360 	node->pprev = NULL;
361 }
362 
363 static __inline__ void __sk_del_node(struct sock *sk)
364 {
365 	__hlist_del(&sk->sk_node);
366 }
367 
368 static __inline__ int __sk_del_node_init(struct sock *sk)
369 {
370 	if (sk_hashed(sk)) {
371 		__sk_del_node(sk);
372 		sk_node_init(&sk->sk_node);
373 		return 1;
374 	}
375 	return 0;
376 }
377 
378 /* Grab socket reference count. This operation is valid only
379    when sk is ALREADY grabbed f.e. it is found in hash table
380    or a list and the lookup is made under lock preventing hash table
381    modifications.
382  */
383 
384 static inline void sock_hold(struct sock *sk)
385 {
386 	atomic_inc(&sk->sk_refcnt);
387 }
388 
389 /* Ungrab socket in the context, which assumes that socket refcnt
390    cannot hit zero, f.e. it is true in context of any socketcall.
391  */
392 static inline void __sock_put(struct sock *sk)
393 {
394 	atomic_dec(&sk->sk_refcnt);
395 }
396 
397 static __inline__ int sk_del_node_init(struct sock *sk)
398 {
399 	int rc = __sk_del_node_init(sk);
400 
401 	if (rc) {
402 		/* paranoid for a while -acme */
403 		WARN_ON(atomic_read(&sk->sk_refcnt) == 1);
404 		__sock_put(sk);
405 	}
406 	return rc;
407 }
408 
409 static __inline__ int __sk_nulls_del_node_init_rcu(struct sock *sk)
410 {
411 	if (sk_hashed(sk)) {
412 		hlist_nulls_del_init_rcu(&sk->sk_nulls_node);
413 		return 1;
414 	}
415 	return 0;
416 }
417 
418 static __inline__ int sk_nulls_del_node_init_rcu(struct sock *sk)
419 {
420 	int rc = __sk_nulls_del_node_init_rcu(sk);
421 
422 	if (rc) {
423 		/* paranoid for a while -acme */
424 		WARN_ON(atomic_read(&sk->sk_refcnt) == 1);
425 		__sock_put(sk);
426 	}
427 	return rc;
428 }
429 
430 static __inline__ void __sk_add_node(struct sock *sk, struct hlist_head *list)
431 {
432 	hlist_add_head(&sk->sk_node, list);
433 }
434 
435 static __inline__ void sk_add_node(struct sock *sk, struct hlist_head *list)
436 {
437 	sock_hold(sk);
438 	__sk_add_node(sk, list);
439 }
440 
441 static __inline__ void __sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
442 {
443 	hlist_nulls_add_head_rcu(&sk->sk_nulls_node, list);
444 }
445 
446 static __inline__ void sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
447 {
448 	sock_hold(sk);
449 	__sk_nulls_add_node_rcu(sk, list);
450 }
451 
452 static __inline__ void __sk_del_bind_node(struct sock *sk)
453 {
454 	__hlist_del(&sk->sk_bind_node);
455 }
456 
457 static __inline__ void sk_add_bind_node(struct sock *sk,
458 					struct hlist_head *list)
459 {
460 	hlist_add_head(&sk->sk_bind_node, list);
461 }
462 
463 #define sk_for_each(__sk, node, list) \
464 	hlist_for_each_entry(__sk, node, list, sk_node)
465 #define sk_nulls_for_each(__sk, node, list) \
466 	hlist_nulls_for_each_entry(__sk, node, list, sk_nulls_node)
467 #define sk_nulls_for_each_rcu(__sk, node, list) \
468 	hlist_nulls_for_each_entry_rcu(__sk, node, list, sk_nulls_node)
469 #define sk_for_each_from(__sk, node) \
470 	if (__sk && ({ node = &(__sk)->sk_node; 1; })) \
471 		hlist_for_each_entry_from(__sk, node, sk_node)
472 #define sk_nulls_for_each_from(__sk, node) \
473 	if (__sk && ({ node = &(__sk)->sk_nulls_node; 1; })) \
474 		hlist_nulls_for_each_entry_from(__sk, node, sk_nulls_node)
475 #define sk_for_each_continue(__sk, node) \
476 	if (__sk && ({ node = &(__sk)->sk_node; 1; })) \
477 		hlist_for_each_entry_continue(__sk, node, sk_node)
478 #define sk_for_each_safe(__sk, node, tmp, list) \
479 	hlist_for_each_entry_safe(__sk, node, tmp, list, sk_node)
480 #define sk_for_each_bound(__sk, node, list) \
481 	hlist_for_each_entry(__sk, node, list, sk_bind_node)
482 
483 /* Sock flags */
484 enum sock_flags {
485 	SOCK_DEAD,
486 	SOCK_DONE,
487 	SOCK_URGINLINE,
488 	SOCK_KEEPOPEN,
489 	SOCK_LINGER,
490 	SOCK_DESTROY,
491 	SOCK_BROADCAST,
492 	SOCK_TIMESTAMP,
493 	SOCK_ZAPPED,
494 	SOCK_USE_WRITE_QUEUE, /* whether to call sk->sk_write_space in sock_wfree */
495 	SOCK_DBG, /* %SO_DEBUG setting */
496 	SOCK_RCVTSTAMP, /* %SO_TIMESTAMP setting */
497 	SOCK_RCVTSTAMPNS, /* %SO_TIMESTAMPNS setting */
498 	SOCK_LOCALROUTE, /* route locally only, %SO_DONTROUTE setting */
499 	SOCK_QUEUE_SHRUNK, /* write queue has been shrunk recently */
500 	SOCK_TIMESTAMPING_TX_HARDWARE,  /* %SOF_TIMESTAMPING_TX_HARDWARE */
501 	SOCK_TIMESTAMPING_TX_SOFTWARE,  /* %SOF_TIMESTAMPING_TX_SOFTWARE */
502 	SOCK_TIMESTAMPING_RX_HARDWARE,  /* %SOF_TIMESTAMPING_RX_HARDWARE */
503 	SOCK_TIMESTAMPING_RX_SOFTWARE,  /* %SOF_TIMESTAMPING_RX_SOFTWARE */
504 	SOCK_TIMESTAMPING_SOFTWARE,     /* %SOF_TIMESTAMPING_SOFTWARE */
505 	SOCK_TIMESTAMPING_RAW_HARDWARE, /* %SOF_TIMESTAMPING_RAW_HARDWARE */
506 	SOCK_TIMESTAMPING_SYS_HARDWARE, /* %SOF_TIMESTAMPING_SYS_HARDWARE */
507 };
508 
509 static inline void sock_copy_flags(struct sock *nsk, struct sock *osk)
510 {
511 	nsk->sk_flags = osk->sk_flags;
512 }
513 
514 static inline void sock_set_flag(struct sock *sk, enum sock_flags flag)
515 {
516 	__set_bit(flag, &sk->sk_flags);
517 }
518 
519 static inline void sock_reset_flag(struct sock *sk, enum sock_flags flag)
520 {
521 	__clear_bit(flag, &sk->sk_flags);
522 }
523 
524 static inline int sock_flag(struct sock *sk, enum sock_flags flag)
525 {
526 	return test_bit(flag, &sk->sk_flags);
527 }
528 
529 static inline void sk_acceptq_removed(struct sock *sk)
530 {
531 	sk->sk_ack_backlog--;
532 }
533 
534 static inline void sk_acceptq_added(struct sock *sk)
535 {
536 	sk->sk_ack_backlog++;
537 }
538 
539 static inline int sk_acceptq_is_full(struct sock *sk)
540 {
541 	return sk->sk_ack_backlog > sk->sk_max_ack_backlog;
542 }
543 
544 /*
545  * Compute minimal free write space needed to queue new packets.
546  */
547 static inline int sk_stream_min_wspace(struct sock *sk)
548 {
549 	return sk->sk_wmem_queued >> 1;
550 }
551 
552 static inline int sk_stream_wspace(struct sock *sk)
553 {
554 	return sk->sk_sndbuf - sk->sk_wmem_queued;
555 }
556 
557 extern void sk_stream_write_space(struct sock *sk);
558 
559 static inline int sk_stream_memory_free(struct sock *sk)
560 {
561 	return sk->sk_wmem_queued < sk->sk_sndbuf;
562 }
563 
564 /* The per-socket spinlock must be held here. */
565 static inline void sk_add_backlog(struct sock *sk, struct sk_buff *skb)
566 {
567 	if (!sk->sk_backlog.tail) {
568 		sk->sk_backlog.head = sk->sk_backlog.tail = skb;
569 	} else {
570 		sk->sk_backlog.tail->next = skb;
571 		sk->sk_backlog.tail = skb;
572 	}
573 	skb->next = NULL;
574 }
575 
576 static inline int sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
577 {
578 	return sk->sk_backlog_rcv(sk, skb);
579 }
580 
581 #define sk_wait_event(__sk, __timeo, __condition)			\
582 	({	int __rc;						\
583 		release_sock(__sk);					\
584 		__rc = __condition;					\
585 		if (!__rc) {						\
586 			*(__timeo) = schedule_timeout(*(__timeo));	\
587 		}							\
588 		lock_sock(__sk);					\
589 		__rc = __condition;					\
590 		__rc;							\
591 	})
592 
593 extern int sk_stream_wait_connect(struct sock *sk, long *timeo_p);
594 extern int sk_stream_wait_memory(struct sock *sk, long *timeo_p);
595 extern void sk_stream_wait_close(struct sock *sk, long timeo_p);
596 extern int sk_stream_error(struct sock *sk, int flags, int err);
597 extern void sk_stream_kill_queues(struct sock *sk);
598 
599 extern int sk_wait_data(struct sock *sk, long *timeo);
600 
601 struct request_sock_ops;
602 struct timewait_sock_ops;
603 struct inet_hashinfo;
604 struct raw_hashinfo;
605 
606 /* Networking protocol blocks we attach to sockets.
607  * socket layer -> transport layer interface
608  * transport -> network interface is defined by struct inet_proto
609  */
610 struct proto {
611 	void			(*close)(struct sock *sk,
612 					long timeout);
613 	int			(*connect)(struct sock *sk,
614 				        struct sockaddr *uaddr,
615 					int addr_len);
616 	int			(*disconnect)(struct sock *sk, int flags);
617 
618 	struct sock *		(*accept) (struct sock *sk, int flags, int *err);
619 
620 	int			(*ioctl)(struct sock *sk, int cmd,
621 					 unsigned long arg);
622 	int			(*init)(struct sock *sk);
623 	void			(*destroy)(struct sock *sk);
624 	void			(*shutdown)(struct sock *sk, int how);
625 	int			(*setsockopt)(struct sock *sk, int level,
626 					int optname, char __user *optval,
627 					unsigned int optlen);
628 	int			(*getsockopt)(struct sock *sk, int level,
629 					int optname, char __user *optval,
630 					int __user *option);
631 #ifdef CONFIG_COMPAT
632 	int			(*compat_setsockopt)(struct sock *sk,
633 					int level,
634 					int optname, char __user *optval,
635 					unsigned int optlen);
636 	int			(*compat_getsockopt)(struct sock *sk,
637 					int level,
638 					int optname, char __user *optval,
639 					int __user *option);
640 #endif
641 	int			(*sendmsg)(struct kiocb *iocb, struct sock *sk,
642 					   struct msghdr *msg, size_t len);
643 	int			(*recvmsg)(struct kiocb *iocb, struct sock *sk,
644 					   struct msghdr *msg,
645 					size_t len, int noblock, int flags,
646 					int *addr_len);
647 	int			(*sendpage)(struct sock *sk, struct page *page,
648 					int offset, size_t size, int flags);
649 	int			(*bind)(struct sock *sk,
650 					struct sockaddr *uaddr, int addr_len);
651 
652 	int			(*backlog_rcv) (struct sock *sk,
653 						struct sk_buff *skb);
654 
655 	/* Keeping track of sk's, looking them up, and port selection methods. */
656 	void			(*hash)(struct sock *sk);
657 	void			(*unhash)(struct sock *sk);
658 	int			(*get_port)(struct sock *sk, unsigned short snum);
659 
660 	/* Keeping track of sockets in use */
661 #ifdef CONFIG_PROC_FS
662 	unsigned int		inuse_idx;
663 #endif
664 
665 	/* Memory pressure */
666 	void			(*enter_memory_pressure)(struct sock *sk);
667 	atomic_t		*memory_allocated;	/* Current allocated memory. */
668 	struct percpu_counter	*sockets_allocated;	/* Current number of sockets. */
669 	/*
670 	 * Pressure flag: try to collapse.
671 	 * Technical note: it is used by multiple contexts non atomically.
672 	 * All the __sk_mem_schedule() is of this nature: accounting
673 	 * is strict, actions are advisory and have some latency.
674 	 */
675 	int			*memory_pressure;
676 	int			*sysctl_mem;
677 	int			*sysctl_wmem;
678 	int			*sysctl_rmem;
679 	int			max_header;
680 
681 	struct kmem_cache	*slab;
682 	unsigned int		obj_size;
683 	int			slab_flags;
684 
685 	struct percpu_counter	*orphan_count;
686 
687 	struct request_sock_ops	*rsk_prot;
688 	struct timewait_sock_ops *twsk_prot;
689 
690 	union {
691 		struct inet_hashinfo	*hashinfo;
692 		struct udp_table	*udp_table;
693 		struct raw_hashinfo	*raw_hash;
694 	} h;
695 
696 	struct module		*owner;
697 
698 	char			name[32];
699 
700 	struct list_head	node;
701 #ifdef SOCK_REFCNT_DEBUG
702 	atomic_t		socks;
703 #endif
704 };
705 
706 extern int proto_register(struct proto *prot, int alloc_slab);
707 extern void proto_unregister(struct proto *prot);
708 
709 #ifdef SOCK_REFCNT_DEBUG
710 static inline void sk_refcnt_debug_inc(struct sock *sk)
711 {
712 	atomic_inc(&sk->sk_prot->socks);
713 }
714 
715 static inline void sk_refcnt_debug_dec(struct sock *sk)
716 {
717 	atomic_dec(&sk->sk_prot->socks);
718 	printk(KERN_DEBUG "%s socket %p released, %d are still alive\n",
719 	       sk->sk_prot->name, sk, atomic_read(&sk->sk_prot->socks));
720 }
721 
722 static inline void sk_refcnt_debug_release(const struct sock *sk)
723 {
724 	if (atomic_read(&sk->sk_refcnt) != 1)
725 		printk(KERN_DEBUG "Destruction of the %s socket %p delayed, refcnt=%d\n",
726 		       sk->sk_prot->name, sk, atomic_read(&sk->sk_refcnt));
727 }
728 #else /* SOCK_REFCNT_DEBUG */
729 #define sk_refcnt_debug_inc(sk) do { } while (0)
730 #define sk_refcnt_debug_dec(sk) do { } while (0)
731 #define sk_refcnt_debug_release(sk) do { } while (0)
732 #endif /* SOCK_REFCNT_DEBUG */
733 
734 
735 #ifdef CONFIG_PROC_FS
736 /* Called with local bh disabled */
737 extern void sock_prot_inuse_add(struct net *net, struct proto *prot, int inc);
738 extern int sock_prot_inuse_get(struct net *net, struct proto *proto);
739 #else
740 static void inline sock_prot_inuse_add(struct net *net, struct proto *prot,
741 		int inc)
742 {
743 }
744 #endif
745 
746 
747 /* With per-bucket locks this operation is not-atomic, so that
748  * this version is not worse.
749  */
750 static inline void __sk_prot_rehash(struct sock *sk)
751 {
752 	sk->sk_prot->unhash(sk);
753 	sk->sk_prot->hash(sk);
754 }
755 
756 /* About 10 seconds */
757 #define SOCK_DESTROY_TIME (10*HZ)
758 
759 /* Sockets 0-1023 can't be bound to unless you are superuser */
760 #define PROT_SOCK	1024
761 
762 #define SHUTDOWN_MASK	3
763 #define RCV_SHUTDOWN	1
764 #define SEND_SHUTDOWN	2
765 
766 #define SOCK_SNDBUF_LOCK	1
767 #define SOCK_RCVBUF_LOCK	2
768 #define SOCK_BINDADDR_LOCK	4
769 #define SOCK_BINDPORT_LOCK	8
770 
771 /* sock_iocb: used to kick off async processing of socket ios */
772 struct sock_iocb {
773 	struct list_head	list;
774 
775 	int			flags;
776 	int			size;
777 	struct socket		*sock;
778 	struct sock		*sk;
779 	struct scm_cookie	*scm;
780 	struct msghdr		*msg, async_msg;
781 	struct kiocb		*kiocb;
782 };
783 
784 static inline struct sock_iocb *kiocb_to_siocb(struct kiocb *iocb)
785 {
786 	return (struct sock_iocb *)iocb->private;
787 }
788 
789 static inline struct kiocb *siocb_to_kiocb(struct sock_iocb *si)
790 {
791 	return si->kiocb;
792 }
793 
794 struct socket_alloc {
795 	struct socket socket;
796 	struct inode vfs_inode;
797 };
798 
799 static inline struct socket *SOCKET_I(struct inode *inode)
800 {
801 	return &container_of(inode, struct socket_alloc, vfs_inode)->socket;
802 }
803 
804 static inline struct inode *SOCK_INODE(struct socket *socket)
805 {
806 	return &container_of(socket, struct socket_alloc, socket)->vfs_inode;
807 }
808 
809 /*
810  * Functions for memory accounting
811  */
812 extern int __sk_mem_schedule(struct sock *sk, int size, int kind);
813 extern void __sk_mem_reclaim(struct sock *sk);
814 
815 #define SK_MEM_QUANTUM ((int)PAGE_SIZE)
816 #define SK_MEM_QUANTUM_SHIFT ilog2(SK_MEM_QUANTUM)
817 #define SK_MEM_SEND	0
818 #define SK_MEM_RECV	1
819 
820 static inline int sk_mem_pages(int amt)
821 {
822 	return (amt + SK_MEM_QUANTUM - 1) >> SK_MEM_QUANTUM_SHIFT;
823 }
824 
825 static inline int sk_has_account(struct sock *sk)
826 {
827 	/* return true if protocol supports memory accounting */
828 	return !!sk->sk_prot->memory_allocated;
829 }
830 
831 static inline int sk_wmem_schedule(struct sock *sk, int size)
832 {
833 	if (!sk_has_account(sk))
834 		return 1;
835 	return size <= sk->sk_forward_alloc ||
836 		__sk_mem_schedule(sk, size, SK_MEM_SEND);
837 }
838 
839 static inline int sk_rmem_schedule(struct sock *sk, int size)
840 {
841 	if (!sk_has_account(sk))
842 		return 1;
843 	return size <= sk->sk_forward_alloc ||
844 		__sk_mem_schedule(sk, size, SK_MEM_RECV);
845 }
846 
847 static inline void sk_mem_reclaim(struct sock *sk)
848 {
849 	if (!sk_has_account(sk))
850 		return;
851 	if (sk->sk_forward_alloc >= SK_MEM_QUANTUM)
852 		__sk_mem_reclaim(sk);
853 }
854 
855 static inline void sk_mem_reclaim_partial(struct sock *sk)
856 {
857 	if (!sk_has_account(sk))
858 		return;
859 	if (sk->sk_forward_alloc > SK_MEM_QUANTUM)
860 		__sk_mem_reclaim(sk);
861 }
862 
863 static inline void sk_mem_charge(struct sock *sk, int size)
864 {
865 	if (!sk_has_account(sk))
866 		return;
867 	sk->sk_forward_alloc -= size;
868 }
869 
870 static inline void sk_mem_uncharge(struct sock *sk, int size)
871 {
872 	if (!sk_has_account(sk))
873 		return;
874 	sk->sk_forward_alloc += size;
875 }
876 
877 static inline void sk_wmem_free_skb(struct sock *sk, struct sk_buff *skb)
878 {
879 	sock_set_flag(sk, SOCK_QUEUE_SHRUNK);
880 	sk->sk_wmem_queued -= skb->truesize;
881 	sk_mem_uncharge(sk, skb->truesize);
882 	__kfree_skb(skb);
883 }
884 
885 /* Used by processes to "lock" a socket state, so that
886  * interrupts and bottom half handlers won't change it
887  * from under us. It essentially blocks any incoming
888  * packets, so that we won't get any new data or any
889  * packets that change the state of the socket.
890  *
891  * While locked, BH processing will add new packets to
892  * the backlog queue.  This queue is processed by the
893  * owner of the socket lock right before it is released.
894  *
895  * Since ~2.3.5 it is also exclusive sleep lock serializing
896  * accesses from user process context.
897  */
898 #define sock_owned_by_user(sk)	((sk)->sk_lock.owned)
899 
900 /*
901  * Macro so as to not evaluate some arguments when
902  * lockdep is not enabled.
903  *
904  * Mark both the sk_lock and the sk_lock.slock as a
905  * per-address-family lock class.
906  */
907 #define sock_lock_init_class_and_name(sk, sname, skey, name, key) 	\
908 do {									\
909 	sk->sk_lock.owned = 0;						\
910 	init_waitqueue_head(&sk->sk_lock.wq);				\
911 	spin_lock_init(&(sk)->sk_lock.slock);				\
912 	debug_check_no_locks_freed((void *)&(sk)->sk_lock,		\
913 			sizeof((sk)->sk_lock));				\
914 	lockdep_set_class_and_name(&(sk)->sk_lock.slock,		\
915 		       	(skey), (sname));				\
916 	lockdep_init_map(&(sk)->sk_lock.dep_map, (name), (key), 0);	\
917 } while (0)
918 
919 extern void lock_sock_nested(struct sock *sk, int subclass);
920 
921 static inline void lock_sock(struct sock *sk)
922 {
923 	lock_sock_nested(sk, 0);
924 }
925 
926 extern void release_sock(struct sock *sk);
927 
928 /* BH context may only use the following locking interface. */
929 #define bh_lock_sock(__sk)	spin_lock(&((__sk)->sk_lock.slock))
930 #define bh_lock_sock_nested(__sk) \
931 				spin_lock_nested(&((__sk)->sk_lock.slock), \
932 				SINGLE_DEPTH_NESTING)
933 #define bh_unlock_sock(__sk)	spin_unlock(&((__sk)->sk_lock.slock))
934 
935 extern struct sock		*sk_alloc(struct net *net, int family,
936 					  gfp_t priority,
937 					  struct proto *prot);
938 extern void			sk_free(struct sock *sk);
939 extern void			sk_release_kernel(struct sock *sk);
940 extern struct sock		*sk_clone(const struct sock *sk,
941 					  const gfp_t priority);
942 
943 extern struct sk_buff		*sock_wmalloc(struct sock *sk,
944 					      unsigned long size, int force,
945 					      gfp_t priority);
946 extern struct sk_buff		*sock_rmalloc(struct sock *sk,
947 					      unsigned long size, int force,
948 					      gfp_t priority);
949 extern void			sock_wfree(struct sk_buff *skb);
950 extern void			sock_rfree(struct sk_buff *skb);
951 
952 extern int			sock_setsockopt(struct socket *sock, int level,
953 						int op, char __user *optval,
954 						unsigned int optlen);
955 
956 extern int			sock_getsockopt(struct socket *sock, int level,
957 						int op, char __user *optval,
958 						int __user *optlen);
959 extern struct sk_buff 		*sock_alloc_send_skb(struct sock *sk,
960 						     unsigned long size,
961 						     int noblock,
962 						     int *errcode);
963 extern struct sk_buff 		*sock_alloc_send_pskb(struct sock *sk,
964 						      unsigned long header_len,
965 						      unsigned long data_len,
966 						      int noblock,
967 						      int *errcode);
968 extern void *sock_kmalloc(struct sock *sk, int size,
969 			  gfp_t priority);
970 extern void sock_kfree_s(struct sock *sk, void *mem, int size);
971 extern void sk_send_sigurg(struct sock *sk);
972 
973 /*
974  * Functions to fill in entries in struct proto_ops when a protocol
975  * does not implement a particular function.
976  */
977 extern int                      sock_no_bind(struct socket *,
978 					     struct sockaddr *, int);
979 extern int                      sock_no_connect(struct socket *,
980 						struct sockaddr *, int, int);
981 extern int                      sock_no_socketpair(struct socket *,
982 						   struct socket *);
983 extern int                      sock_no_accept(struct socket *,
984 					       struct socket *, int);
985 extern int                      sock_no_getname(struct socket *,
986 						struct sockaddr *, int *, int);
987 extern unsigned int             sock_no_poll(struct file *, struct socket *,
988 					     struct poll_table_struct *);
989 extern int                      sock_no_ioctl(struct socket *, unsigned int,
990 					      unsigned long);
991 extern int			sock_no_listen(struct socket *, int);
992 extern int                      sock_no_shutdown(struct socket *, int);
993 extern int			sock_no_getsockopt(struct socket *, int , int,
994 						   char __user *, int __user *);
995 extern int			sock_no_setsockopt(struct socket *, int, int,
996 						   char __user *, unsigned int);
997 extern int                      sock_no_sendmsg(struct kiocb *, struct socket *,
998 						struct msghdr *, size_t);
999 extern int                      sock_no_recvmsg(struct kiocb *, struct socket *,
1000 						struct msghdr *, size_t, int);
1001 extern int			sock_no_mmap(struct file *file,
1002 					     struct socket *sock,
1003 					     struct vm_area_struct *vma);
1004 extern ssize_t			sock_no_sendpage(struct socket *sock,
1005 						struct page *page,
1006 						int offset, size_t size,
1007 						int flags);
1008 
1009 /*
1010  * Functions to fill in entries in struct proto_ops when a protocol
1011  * uses the inet style.
1012  */
1013 extern int sock_common_getsockopt(struct socket *sock, int level, int optname,
1014 				  char __user *optval, int __user *optlen);
1015 extern int sock_common_recvmsg(struct kiocb *iocb, struct socket *sock,
1016 			       struct msghdr *msg, size_t size, int flags);
1017 extern int sock_common_setsockopt(struct socket *sock, int level, int optname,
1018 				  char __user *optval, unsigned int optlen);
1019 extern int compat_sock_common_getsockopt(struct socket *sock, int level,
1020 		int optname, char __user *optval, int __user *optlen);
1021 extern int compat_sock_common_setsockopt(struct socket *sock, int level,
1022 		int optname, char __user *optval, unsigned int optlen);
1023 
1024 extern void sk_common_release(struct sock *sk);
1025 
1026 /*
1027  *	Default socket callbacks and setup code
1028  */
1029 
1030 /* Initialise core socket variables */
1031 extern void sock_init_data(struct socket *sock, struct sock *sk);
1032 
1033 /**
1034  *	sk_filter_release: Release a socket filter
1035  *	@fp: filter to remove
1036  *
1037  *	Remove a filter from a socket and release its resources.
1038  */
1039 
1040 static inline void sk_filter_release(struct sk_filter *fp)
1041 {
1042 	if (atomic_dec_and_test(&fp->refcnt))
1043 		kfree(fp);
1044 }
1045 
1046 static inline void sk_filter_uncharge(struct sock *sk, struct sk_filter *fp)
1047 {
1048 	unsigned int size = sk_filter_len(fp);
1049 
1050 	atomic_sub(size, &sk->sk_omem_alloc);
1051 	sk_filter_release(fp);
1052 }
1053 
1054 static inline void sk_filter_charge(struct sock *sk, struct sk_filter *fp)
1055 {
1056 	atomic_inc(&fp->refcnt);
1057 	atomic_add(sk_filter_len(fp), &sk->sk_omem_alloc);
1058 }
1059 
1060 /*
1061  * Socket reference counting postulates.
1062  *
1063  * * Each user of socket SHOULD hold a reference count.
1064  * * Each access point to socket (an hash table bucket, reference from a list,
1065  *   running timer, skb in flight MUST hold a reference count.
1066  * * When reference count hits 0, it means it will never increase back.
1067  * * When reference count hits 0, it means that no references from
1068  *   outside exist to this socket and current process on current CPU
1069  *   is last user and may/should destroy this socket.
1070  * * sk_free is called from any context: process, BH, IRQ. When
1071  *   it is called, socket has no references from outside -> sk_free
1072  *   may release descendant resources allocated by the socket, but
1073  *   to the time when it is called, socket is NOT referenced by any
1074  *   hash tables, lists etc.
1075  * * Packets, delivered from outside (from network or from another process)
1076  *   and enqueued on receive/error queues SHOULD NOT grab reference count,
1077  *   when they sit in queue. Otherwise, packets will leak to hole, when
1078  *   socket is looked up by one cpu and unhasing is made by another CPU.
1079  *   It is true for udp/raw, netlink (leak to receive and error queues), tcp
1080  *   (leak to backlog). Packet socket does all the processing inside
1081  *   BR_NETPROTO_LOCK, so that it has not this race condition. UNIX sockets
1082  *   use separate SMP lock, so that they are prone too.
1083  */
1084 
1085 /* Ungrab socket and destroy it, if it was the last reference. */
1086 static inline void sock_put(struct sock *sk)
1087 {
1088 	if (atomic_dec_and_test(&sk->sk_refcnt))
1089 		sk_free(sk);
1090 }
1091 
1092 extern int sk_receive_skb(struct sock *sk, struct sk_buff *skb,
1093 			  const int nested);
1094 
1095 static inline void sk_set_socket(struct sock *sk, struct socket *sock)
1096 {
1097 	sk->sk_socket = sock;
1098 }
1099 
1100 /* Detach socket from process context.
1101  * Announce socket dead, detach it from wait queue and inode.
1102  * Note that parent inode held reference count on this struct sock,
1103  * we do not release it in this function, because protocol
1104  * probably wants some additional cleanups or even continuing
1105  * to work with this socket (TCP).
1106  */
1107 static inline void sock_orphan(struct sock *sk)
1108 {
1109 	write_lock_bh(&sk->sk_callback_lock);
1110 	sock_set_flag(sk, SOCK_DEAD);
1111 	sk_set_socket(sk, NULL);
1112 	sk->sk_sleep  = NULL;
1113 	write_unlock_bh(&sk->sk_callback_lock);
1114 }
1115 
1116 static inline void sock_graft(struct sock *sk, struct socket *parent)
1117 {
1118 	write_lock_bh(&sk->sk_callback_lock);
1119 	sk->sk_sleep = &parent->wait;
1120 	parent->sk = sk;
1121 	sk_set_socket(sk, parent);
1122 	security_sock_graft(sk, parent);
1123 	write_unlock_bh(&sk->sk_callback_lock);
1124 }
1125 
1126 extern int sock_i_uid(struct sock *sk);
1127 extern unsigned long sock_i_ino(struct sock *sk);
1128 
1129 static inline struct dst_entry *
1130 __sk_dst_get(struct sock *sk)
1131 {
1132 	return sk->sk_dst_cache;
1133 }
1134 
1135 static inline struct dst_entry *
1136 sk_dst_get(struct sock *sk)
1137 {
1138 	struct dst_entry *dst;
1139 
1140 	read_lock(&sk->sk_dst_lock);
1141 	dst = sk->sk_dst_cache;
1142 	if (dst)
1143 		dst_hold(dst);
1144 	read_unlock(&sk->sk_dst_lock);
1145 	return dst;
1146 }
1147 
1148 static inline void
1149 __sk_dst_set(struct sock *sk, struct dst_entry *dst)
1150 {
1151 	struct dst_entry *old_dst;
1152 
1153 	old_dst = sk->sk_dst_cache;
1154 	sk->sk_dst_cache = dst;
1155 	dst_release(old_dst);
1156 }
1157 
1158 static inline void
1159 sk_dst_set(struct sock *sk, struct dst_entry *dst)
1160 {
1161 	write_lock(&sk->sk_dst_lock);
1162 	__sk_dst_set(sk, dst);
1163 	write_unlock(&sk->sk_dst_lock);
1164 }
1165 
1166 static inline void
1167 __sk_dst_reset(struct sock *sk)
1168 {
1169 	struct dst_entry *old_dst;
1170 
1171 	old_dst = sk->sk_dst_cache;
1172 	sk->sk_dst_cache = NULL;
1173 	dst_release(old_dst);
1174 }
1175 
1176 static inline void
1177 sk_dst_reset(struct sock *sk)
1178 {
1179 	write_lock(&sk->sk_dst_lock);
1180 	__sk_dst_reset(sk);
1181 	write_unlock(&sk->sk_dst_lock);
1182 }
1183 
1184 extern struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie);
1185 
1186 extern struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie);
1187 
1188 static inline int sk_can_gso(const struct sock *sk)
1189 {
1190 	return net_gso_ok(sk->sk_route_caps, sk->sk_gso_type);
1191 }
1192 
1193 extern void sk_setup_caps(struct sock *sk, struct dst_entry *dst);
1194 
1195 static inline int skb_copy_to_page(struct sock *sk, char __user *from,
1196 				   struct sk_buff *skb, struct page *page,
1197 				   int off, int copy)
1198 {
1199 	if (skb->ip_summed == CHECKSUM_NONE) {
1200 		int err = 0;
1201 		__wsum csum = csum_and_copy_from_user(from,
1202 						     page_address(page) + off,
1203 							    copy, 0, &err);
1204 		if (err)
1205 			return err;
1206 		skb->csum = csum_block_add(skb->csum, csum, skb->len);
1207 	} else if (copy_from_user(page_address(page) + off, from, copy))
1208 		return -EFAULT;
1209 
1210 	skb->len	     += copy;
1211 	skb->data_len	     += copy;
1212 	skb->truesize	     += copy;
1213 	sk->sk_wmem_queued   += copy;
1214 	sk_mem_charge(sk, copy);
1215 	return 0;
1216 }
1217 
1218 /**
1219  * sk_wmem_alloc_get - returns write allocations
1220  * @sk: socket
1221  *
1222  * Returns sk_wmem_alloc minus initial offset of one
1223  */
1224 static inline int sk_wmem_alloc_get(const struct sock *sk)
1225 {
1226 	return atomic_read(&sk->sk_wmem_alloc) - 1;
1227 }
1228 
1229 /**
1230  * sk_rmem_alloc_get - returns read allocations
1231  * @sk: socket
1232  *
1233  * Returns sk_rmem_alloc
1234  */
1235 static inline int sk_rmem_alloc_get(const struct sock *sk)
1236 {
1237 	return atomic_read(&sk->sk_rmem_alloc);
1238 }
1239 
1240 /**
1241  * sk_has_allocations - check if allocations are outstanding
1242  * @sk: socket
1243  *
1244  * Returns true if socket has write or read allocations
1245  */
1246 static inline int sk_has_allocations(const struct sock *sk)
1247 {
1248 	return sk_wmem_alloc_get(sk) || sk_rmem_alloc_get(sk);
1249 }
1250 
1251 /**
1252  * sk_has_sleeper - check if there are any waiting processes
1253  * @sk: socket
1254  *
1255  * Returns true if socket has waiting processes
1256  *
1257  * The purpose of the sk_has_sleeper and sock_poll_wait is to wrap the memory
1258  * barrier call. They were added due to the race found within the tcp code.
1259  *
1260  * Consider following tcp code paths:
1261  *
1262  * CPU1                  CPU2
1263  *
1264  * sys_select            receive packet
1265  *   ...                 ...
1266  *   __add_wait_queue    update tp->rcv_nxt
1267  *   ...                 ...
1268  *   tp->rcv_nxt check   sock_def_readable
1269  *   ...                 {
1270  *   schedule               ...
1271  *                          if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
1272  *                              wake_up_interruptible(sk->sk_sleep)
1273  *                          ...
1274  *                       }
1275  *
1276  * The race for tcp fires when the __add_wait_queue changes done by CPU1 stay
1277  * in its cache, and so does the tp->rcv_nxt update on CPU2 side.  The CPU1
1278  * could then endup calling schedule and sleep forever if there are no more
1279  * data on the socket.
1280  *
1281  * The sk_has_sleeper is always called right after a call to read_lock, so we
1282  * can use smp_mb__after_lock barrier.
1283  */
1284 static inline int sk_has_sleeper(struct sock *sk)
1285 {
1286 	/*
1287 	 * We need to be sure we are in sync with the
1288 	 * add_wait_queue modifications to the wait queue.
1289 	 *
1290 	 * This memory barrier is paired in the sock_poll_wait.
1291 	 */
1292 	smp_mb__after_lock();
1293 	return sk->sk_sleep && waitqueue_active(sk->sk_sleep);
1294 }
1295 
1296 /**
1297  * sock_poll_wait - place memory barrier behind the poll_wait call.
1298  * @filp:           file
1299  * @wait_address:   socket wait queue
1300  * @p:              poll_table
1301  *
1302  * See the comments in the sk_has_sleeper function.
1303  */
1304 static inline void sock_poll_wait(struct file *filp,
1305 		wait_queue_head_t *wait_address, poll_table *p)
1306 {
1307 	if (p && wait_address) {
1308 		poll_wait(filp, wait_address, p);
1309 		/*
1310 		 * We need to be sure we are in sync with the
1311 		 * socket flags modification.
1312 		 *
1313 		 * This memory barrier is paired in the sk_has_sleeper.
1314 		*/
1315 		smp_mb();
1316 	}
1317 }
1318 
1319 /*
1320  * 	Queue a received datagram if it will fit. Stream and sequenced
1321  *	protocols can't normally use this as they need to fit buffers in
1322  *	and play with them.
1323  *
1324  * 	Inlined as it's very short and called for pretty much every
1325  *	packet ever received.
1326  */
1327 
1328 static inline void skb_set_owner_w(struct sk_buff *skb, struct sock *sk)
1329 {
1330 	skb_orphan(skb);
1331 	skb->sk = sk;
1332 	skb->destructor = sock_wfree;
1333 	/*
1334 	 * We used to take a refcount on sk, but following operation
1335 	 * is enough to guarantee sk_free() wont free this sock until
1336 	 * all in-flight packets are completed
1337 	 */
1338 	atomic_add(skb->truesize, &sk->sk_wmem_alloc);
1339 }
1340 
1341 static inline void skb_set_owner_r(struct sk_buff *skb, struct sock *sk)
1342 {
1343 	skb_orphan(skb);
1344 	skb->sk = sk;
1345 	skb->destructor = sock_rfree;
1346 	atomic_add(skb->truesize, &sk->sk_rmem_alloc);
1347 	sk_mem_charge(sk, skb->truesize);
1348 }
1349 
1350 extern void sk_reset_timer(struct sock *sk, struct timer_list* timer,
1351 			   unsigned long expires);
1352 
1353 extern void sk_stop_timer(struct sock *sk, struct timer_list* timer);
1354 
1355 extern int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
1356 
1357 static inline int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb)
1358 {
1359 	/* Cast skb->rcvbuf to unsigned... It's pointless, but reduces
1360 	   number of warnings when compiling with -W --ANK
1361 	 */
1362 	if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
1363 	    (unsigned)sk->sk_rcvbuf)
1364 		return -ENOMEM;
1365 	skb_set_owner_r(skb, sk);
1366 	skb_queue_tail(&sk->sk_error_queue, skb);
1367 	if (!sock_flag(sk, SOCK_DEAD))
1368 		sk->sk_data_ready(sk, skb->len);
1369 	return 0;
1370 }
1371 
1372 /*
1373  *	Recover an error report and clear atomically
1374  */
1375 
1376 static inline int sock_error(struct sock *sk)
1377 {
1378 	int err;
1379 	if (likely(!sk->sk_err))
1380 		return 0;
1381 	err = xchg(&sk->sk_err, 0);
1382 	return -err;
1383 }
1384 
1385 static inline unsigned long sock_wspace(struct sock *sk)
1386 {
1387 	int amt = 0;
1388 
1389 	if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
1390 		amt = sk->sk_sndbuf - atomic_read(&sk->sk_wmem_alloc);
1391 		if (amt < 0)
1392 			amt = 0;
1393 	}
1394 	return amt;
1395 }
1396 
1397 static inline void sk_wake_async(struct sock *sk, int how, int band)
1398 {
1399 	if (sk->sk_socket && sk->sk_socket->fasync_list)
1400 		sock_wake_async(sk->sk_socket, how, band);
1401 }
1402 
1403 #define SOCK_MIN_SNDBUF 2048
1404 #define SOCK_MIN_RCVBUF 256
1405 
1406 static inline void sk_stream_moderate_sndbuf(struct sock *sk)
1407 {
1408 	if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK)) {
1409 		sk->sk_sndbuf = min(sk->sk_sndbuf, sk->sk_wmem_queued >> 1);
1410 		sk->sk_sndbuf = max(sk->sk_sndbuf, SOCK_MIN_SNDBUF);
1411 	}
1412 }
1413 
1414 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp);
1415 
1416 static inline struct page *sk_stream_alloc_page(struct sock *sk)
1417 {
1418 	struct page *page = NULL;
1419 
1420 	page = alloc_pages(sk->sk_allocation, 0);
1421 	if (!page) {
1422 		sk->sk_prot->enter_memory_pressure(sk);
1423 		sk_stream_moderate_sndbuf(sk);
1424 	}
1425 	return page;
1426 }
1427 
1428 /*
1429  *	Default write policy as shown to user space via poll/select/SIGIO
1430  */
1431 static inline int sock_writeable(const struct sock *sk)
1432 {
1433 	return atomic_read(&sk->sk_wmem_alloc) < (sk->sk_sndbuf >> 1);
1434 }
1435 
1436 static inline gfp_t gfp_any(void)
1437 {
1438 	return in_softirq() ? GFP_ATOMIC : GFP_KERNEL;
1439 }
1440 
1441 static inline long sock_rcvtimeo(const struct sock *sk, int noblock)
1442 {
1443 	return noblock ? 0 : sk->sk_rcvtimeo;
1444 }
1445 
1446 static inline long sock_sndtimeo(const struct sock *sk, int noblock)
1447 {
1448 	return noblock ? 0 : sk->sk_sndtimeo;
1449 }
1450 
1451 static inline int sock_rcvlowat(const struct sock *sk, int waitall, int len)
1452 {
1453 	return (waitall ? len : min_t(int, sk->sk_rcvlowat, len)) ? : 1;
1454 }
1455 
1456 /* Alas, with timeout socket operations are not restartable.
1457  * Compare this to poll().
1458  */
1459 static inline int sock_intr_errno(long timeo)
1460 {
1461 	return timeo == MAX_SCHEDULE_TIMEOUT ? -ERESTARTSYS : -EINTR;
1462 }
1463 
1464 extern void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
1465 	struct sk_buff *skb);
1466 
1467 static __inline__ void
1468 sock_recv_timestamp(struct msghdr *msg, struct sock *sk, struct sk_buff *skb)
1469 {
1470 	ktime_t kt = skb->tstamp;
1471 	struct skb_shared_hwtstamps *hwtstamps = skb_hwtstamps(skb);
1472 
1473 	/*
1474 	 * generate control messages if
1475 	 * - receive time stamping in software requested (SOCK_RCVTSTAMP
1476 	 *   or SOCK_TIMESTAMPING_RX_SOFTWARE)
1477 	 * - software time stamp available and wanted
1478 	 *   (SOCK_TIMESTAMPING_SOFTWARE)
1479 	 * - hardware time stamps available and wanted
1480 	 *   (SOCK_TIMESTAMPING_SYS_HARDWARE or
1481 	 *   SOCK_TIMESTAMPING_RAW_HARDWARE)
1482 	 */
1483 	if (sock_flag(sk, SOCK_RCVTSTAMP) ||
1484 	    sock_flag(sk, SOCK_TIMESTAMPING_RX_SOFTWARE) ||
1485 	    (kt.tv64 && sock_flag(sk, SOCK_TIMESTAMPING_SOFTWARE)) ||
1486 	    (hwtstamps->hwtstamp.tv64 &&
1487 	     sock_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE)) ||
1488 	    (hwtstamps->syststamp.tv64 &&
1489 	     sock_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE)))
1490 		__sock_recv_timestamp(msg, sk, skb);
1491 	else
1492 		sk->sk_stamp = kt;
1493 }
1494 
1495 /**
1496  * sock_tx_timestamp - checks whether the outgoing packet is to be time stamped
1497  * @msg:	outgoing packet
1498  * @sk:		socket sending this packet
1499  * @shtx:	filled with instructions for time stamping
1500  *
1501  * Currently only depends on SOCK_TIMESTAMPING* flags. Returns error code if
1502  * parameters are invalid.
1503  */
1504 extern int sock_tx_timestamp(struct msghdr *msg,
1505 			     struct sock *sk,
1506 			     union skb_shared_tx *shtx);
1507 
1508 
1509 /**
1510  * sk_eat_skb - Release a skb if it is no longer needed
1511  * @sk: socket to eat this skb from
1512  * @skb: socket buffer to eat
1513  * @copied_early: flag indicating whether DMA operations copied this data early
1514  *
1515  * This routine must be called with interrupts disabled or with the socket
1516  * locked so that the sk_buff queue operation is ok.
1517 */
1518 #ifdef CONFIG_NET_DMA
1519 static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb, int copied_early)
1520 {
1521 	__skb_unlink(skb, &sk->sk_receive_queue);
1522 	if (!copied_early)
1523 		__kfree_skb(skb);
1524 	else
1525 		__skb_queue_tail(&sk->sk_async_wait_queue, skb);
1526 }
1527 #else
1528 static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb, int copied_early)
1529 {
1530 	__skb_unlink(skb, &sk->sk_receive_queue);
1531 	__kfree_skb(skb);
1532 }
1533 #endif
1534 
1535 static inline
1536 struct net *sock_net(const struct sock *sk)
1537 {
1538 #ifdef CONFIG_NET_NS
1539 	return sk->sk_net;
1540 #else
1541 	return &init_net;
1542 #endif
1543 }
1544 
1545 static inline
1546 void sock_net_set(struct sock *sk, struct net *net)
1547 {
1548 #ifdef CONFIG_NET_NS
1549 	sk->sk_net = net;
1550 #endif
1551 }
1552 
1553 /*
1554  * Kernel sockets, f.e. rtnl or icmp_socket, are a part of a namespace.
1555  * They should not hold a referrence to a namespace in order to allow
1556  * to stop it.
1557  * Sockets after sk_change_net should be released using sk_release_kernel
1558  */
1559 static inline void sk_change_net(struct sock *sk, struct net *net)
1560 {
1561 	put_net(sock_net(sk));
1562 	sock_net_set(sk, hold_net(net));
1563 }
1564 
1565 static inline struct sock *skb_steal_sock(struct sk_buff *skb)
1566 {
1567 	if (unlikely(skb->sk)) {
1568 		struct sock *sk = skb->sk;
1569 
1570 		skb->destructor = NULL;
1571 		skb->sk = NULL;
1572 		return sk;
1573 	}
1574 	return NULL;
1575 }
1576 
1577 extern void sock_enable_timestamp(struct sock *sk, int flag);
1578 extern int sock_get_timestamp(struct sock *, struct timeval __user *);
1579 extern int sock_get_timestampns(struct sock *, struct timespec __user *);
1580 
1581 /*
1582  *	Enable debug/info messages
1583  */
1584 extern int net_msg_warn;
1585 #define NETDEBUG(fmt, args...) \
1586 	do { if (net_msg_warn) printk(fmt,##args); } while (0)
1587 
1588 #define LIMIT_NETDEBUG(fmt, args...) \
1589 	do { if (net_msg_warn && net_ratelimit()) printk(fmt,##args); } while(0)
1590 
1591 extern __u32 sysctl_wmem_max;
1592 extern __u32 sysctl_rmem_max;
1593 
1594 extern void sk_init(void);
1595 
1596 extern int sysctl_optmem_max;
1597 
1598 extern __u32 sysctl_wmem_default;
1599 extern __u32 sysctl_rmem_default;
1600 
1601 #endif	/* _SOCK_H */
1602