xref: /linux/include/net/sock.h (revision 895931232d9358e0016f580f26b336c29c9528cc)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Definitions for the AF_INET socket handler.
7  *
8  * Version:	@(#)sock.h	1.0.4	05/13/93
9  *
10  * Authors:	Ross Biro
11  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
13  *		Florian La Roche <flla@stud.uni-sb.de>
14  *
15  * Fixes:
16  *		Alan Cox	:	Volatiles in skbuff pointers. See
17  *					skbuff comments. May be overdone,
18  *					better to prove they can be removed
19  *					than the reverse.
20  *		Alan Cox	:	Added a zapped field for tcp to note
21  *					a socket is reset and must stay shut up
22  *		Alan Cox	:	New fields for options
23  *	Pauline Middelink	:	identd support
24  *		Alan Cox	:	Eliminate low level recv/recvfrom
25  *		David S. Miller	:	New socket lookup architecture.
26  *              Steve Whitehouse:       Default routines for sock_ops
27  *              Arnaldo C. Melo :	removed net_pinfo, tp_pinfo and made
28  *              			protinfo be just a void pointer, as the
29  *              			protocol specific parts were moved to
30  *              			respective headers and ipv4/v6, etc now
31  *              			use private slabcaches for its socks
32  *              Pedro Hortas	:	New flags field for socket options
33  *
34  *
35  *		This program is free software; you can redistribute it and/or
36  *		modify it under the terms of the GNU General Public License
37  *		as published by the Free Software Foundation; either version
38  *		2 of the License, or (at your option) any later version.
39  */
40 #ifndef _SOCK_H
41 #define _SOCK_H
42 
43 #include <linux/hardirq.h>
44 #include <linux/kernel.h>
45 #include <linux/list.h>
46 #include <linux/list_nulls.h>
47 #include <linux/timer.h>
48 #include <linux/cache.h>
49 #include <linux/bitops.h>
50 #include <linux/lockdep.h>
51 #include <linux/netdevice.h>
52 #include <linux/skbuff.h>	/* struct sk_buff */
53 #include <linux/mm.h>
54 #include <linux/security.h>
55 #include <linux/slab.h>
56 #include <linux/uaccess.h>
57 #include <linux/page_counter.h>
58 #include <linux/memcontrol.h>
59 #include <linux/static_key.h>
60 #include <linux/sched.h>
61 #include <linux/wait.h>
62 #include <linux/cgroup-defs.h>
63 
64 #include <linux/filter.h>
65 #include <linux/rculist_nulls.h>
66 #include <linux/poll.h>
67 
68 #include <linux/atomic.h>
69 #include <linux/refcount.h>
70 #include <net/dst.h>
71 #include <net/checksum.h>
72 #include <net/tcp_states.h>
73 #include <linux/net_tstamp.h>
74 #include <net/smc.h>
75 
76 /*
77  * This structure really needs to be cleaned up.
78  * Most of it is for TCP, and not used by any of
79  * the other protocols.
80  */
81 
82 /* Define this to get the SOCK_DBG debugging facility. */
83 #define SOCK_DEBUGGING
84 #ifdef SOCK_DEBUGGING
85 #define SOCK_DEBUG(sk, msg...) do { if ((sk) && sock_flag((sk), SOCK_DBG)) \
86 					printk(KERN_DEBUG msg); } while (0)
87 #else
88 /* Validate arguments and do nothing */
89 static inline __printf(2, 3)
90 void SOCK_DEBUG(const struct sock *sk, const char *msg, ...)
91 {
92 }
93 #endif
94 
95 /* This is the per-socket lock.  The spinlock provides a synchronization
96  * between user contexts and software interrupt processing, whereas the
97  * mini-semaphore synchronizes multiple users amongst themselves.
98  */
99 typedef struct {
100 	spinlock_t		slock;
101 	int			owned;
102 	wait_queue_head_t	wq;
103 	/*
104 	 * We express the mutex-alike socket_lock semantics
105 	 * to the lock validator by explicitly managing
106 	 * the slock as a lock variant (in addition to
107 	 * the slock itself):
108 	 */
109 #ifdef CONFIG_DEBUG_LOCK_ALLOC
110 	struct lockdep_map dep_map;
111 #endif
112 } socket_lock_t;
113 
114 struct sock;
115 struct proto;
116 struct net;
117 
118 typedef __u32 __bitwise __portpair;
119 typedef __u64 __bitwise __addrpair;
120 
121 /**
122  *	struct sock_common - minimal network layer representation of sockets
123  *	@skc_daddr: Foreign IPv4 addr
124  *	@skc_rcv_saddr: Bound local IPv4 addr
125  *	@skc_hash: hash value used with various protocol lookup tables
126  *	@skc_u16hashes: two u16 hash values used by UDP lookup tables
127  *	@skc_dport: placeholder for inet_dport/tw_dport
128  *	@skc_num: placeholder for inet_num/tw_num
129  *	@skc_family: network address family
130  *	@skc_state: Connection state
131  *	@skc_reuse: %SO_REUSEADDR setting
132  *	@skc_reuseport: %SO_REUSEPORT setting
133  *	@skc_bound_dev_if: bound device index if != 0
134  *	@skc_bind_node: bind hash linkage for various protocol lookup tables
135  *	@skc_portaddr_node: second hash linkage for UDP/UDP-Lite protocol
136  *	@skc_prot: protocol handlers inside a network family
137  *	@skc_net: reference to the network namespace of this socket
138  *	@skc_node: main hash linkage for various protocol lookup tables
139  *	@skc_nulls_node: main hash linkage for TCP/UDP/UDP-Lite protocol
140  *	@skc_tx_queue_mapping: tx queue number for this connection
141  *	@skc_flags: place holder for sk_flags
142  *		%SO_LINGER (l_onoff), %SO_BROADCAST, %SO_KEEPALIVE,
143  *		%SO_OOBINLINE settings, %SO_TIMESTAMPING settings
144  *	@skc_incoming_cpu: record/match cpu processing incoming packets
145  *	@skc_refcnt: reference count
146  *
147  *	This is the minimal network layer representation of sockets, the header
148  *	for struct sock and struct inet_timewait_sock.
149  */
150 struct sock_common {
151 	/* skc_daddr and skc_rcv_saddr must be grouped on a 8 bytes aligned
152 	 * address on 64bit arches : cf INET_MATCH()
153 	 */
154 	union {
155 		__addrpair	skc_addrpair;
156 		struct {
157 			__be32	skc_daddr;
158 			__be32	skc_rcv_saddr;
159 		};
160 	};
161 	union  {
162 		unsigned int	skc_hash;
163 		__u16		skc_u16hashes[2];
164 	};
165 	/* skc_dport && skc_num must be grouped as well */
166 	union {
167 		__portpair	skc_portpair;
168 		struct {
169 			__be16	skc_dport;
170 			__u16	skc_num;
171 		};
172 	};
173 
174 	unsigned short		skc_family;
175 	volatile unsigned char	skc_state;
176 	unsigned char		skc_reuse:4;
177 	unsigned char		skc_reuseport:1;
178 	unsigned char		skc_ipv6only:1;
179 	unsigned char		skc_net_refcnt:1;
180 	int			skc_bound_dev_if;
181 	union {
182 		struct hlist_node	skc_bind_node;
183 		struct hlist_node	skc_portaddr_node;
184 	};
185 	struct proto		*skc_prot;
186 	possible_net_t		skc_net;
187 
188 #if IS_ENABLED(CONFIG_IPV6)
189 	struct in6_addr		skc_v6_daddr;
190 	struct in6_addr		skc_v6_rcv_saddr;
191 #endif
192 
193 	atomic64_t		skc_cookie;
194 
195 	/* following fields are padding to force
196 	 * offset(struct sock, sk_refcnt) == 128 on 64bit arches
197 	 * assuming IPV6 is enabled. We use this padding differently
198 	 * for different kind of 'sockets'
199 	 */
200 	union {
201 		unsigned long	skc_flags;
202 		struct sock	*skc_listener; /* request_sock */
203 		struct inet_timewait_death_row *skc_tw_dr; /* inet_timewait_sock */
204 	};
205 	/*
206 	 * fields between dontcopy_begin/dontcopy_end
207 	 * are not copied in sock_copy()
208 	 */
209 	/* private: */
210 	int			skc_dontcopy_begin[0];
211 	/* public: */
212 	union {
213 		struct hlist_node	skc_node;
214 		struct hlist_nulls_node skc_nulls_node;
215 	};
216 	int			skc_tx_queue_mapping;
217 	union {
218 		int		skc_incoming_cpu;
219 		u32		skc_rcv_wnd;
220 		u32		skc_tw_rcv_nxt; /* struct tcp_timewait_sock  */
221 	};
222 
223 	refcount_t		skc_refcnt;
224 	/* private: */
225 	int                     skc_dontcopy_end[0];
226 	union {
227 		u32		skc_rxhash;
228 		u32		skc_window_clamp;
229 		u32		skc_tw_snd_nxt; /* struct tcp_timewait_sock */
230 	};
231 	/* public: */
232 };
233 
234 /**
235   *	struct sock - network layer representation of sockets
236   *	@__sk_common: shared layout with inet_timewait_sock
237   *	@sk_shutdown: mask of %SEND_SHUTDOWN and/or %RCV_SHUTDOWN
238   *	@sk_userlocks: %SO_SNDBUF and %SO_RCVBUF settings
239   *	@sk_lock:	synchronizer
240   *	@sk_kern_sock: True if sock is using kernel lock classes
241   *	@sk_rcvbuf: size of receive buffer in bytes
242   *	@sk_wq: sock wait queue and async head
243   *	@sk_rx_dst: receive input route used by early demux
244   *	@sk_dst_cache: destination cache
245   *	@sk_dst_pending_confirm: need to confirm neighbour
246   *	@sk_policy: flow policy
247   *	@sk_receive_queue: incoming packets
248   *	@sk_wmem_alloc: transmit queue bytes committed
249   *	@sk_write_queue: Packet sending queue
250   *	@sk_omem_alloc: "o" is "option" or "other"
251   *	@sk_wmem_queued: persistent queue size
252   *	@sk_forward_alloc: space allocated forward
253   *	@sk_napi_id: id of the last napi context to receive data for sk
254   *	@sk_ll_usec: usecs to busypoll when there is no data
255   *	@sk_allocation: allocation mode
256   *	@sk_pacing_rate: Pacing rate (if supported by transport/packet scheduler)
257   *	@sk_pacing_status: Pacing status (requested, handled by sch_fq)
258   *	@sk_max_pacing_rate: Maximum pacing rate (%SO_MAX_PACING_RATE)
259   *	@sk_sndbuf: size of send buffer in bytes
260   *	@sk_padding: unused element for alignment
261   *	@sk_no_check_tx: %SO_NO_CHECK setting, set checksum in TX packets
262   *	@sk_no_check_rx: allow zero checksum in RX packets
263   *	@sk_route_caps: route capabilities (e.g. %NETIF_F_TSO)
264   *	@sk_route_nocaps: forbidden route capabilities (e.g NETIF_F_GSO_MASK)
265   *	@sk_gso_type: GSO type (e.g. %SKB_GSO_TCPV4)
266   *	@sk_gso_max_size: Maximum GSO segment size to build
267   *	@sk_gso_max_segs: Maximum number of GSO segments
268   *	@sk_lingertime: %SO_LINGER l_linger setting
269   *	@sk_backlog: always used with the per-socket spinlock held
270   *	@sk_callback_lock: used with the callbacks in the end of this struct
271   *	@sk_error_queue: rarely used
272   *	@sk_prot_creator: sk_prot of original sock creator (see ipv6_setsockopt,
273   *			  IPV6_ADDRFORM for instance)
274   *	@sk_err: last error
275   *	@sk_err_soft: errors that don't cause failure but are the cause of a
276   *		      persistent failure not just 'timed out'
277   *	@sk_drops: raw/udp drops counter
278   *	@sk_ack_backlog: current listen backlog
279   *	@sk_max_ack_backlog: listen backlog set in listen()
280   *	@sk_priority: %SO_PRIORITY setting
281   *	@sk_type: socket type (%SOCK_STREAM, etc)
282   *	@sk_protocol: which protocol this socket belongs in this network family
283   *	@sk_peer_pid: &struct pid for this socket's peer
284   *	@sk_peer_cred: %SO_PEERCRED setting
285   *	@sk_rcvlowat: %SO_RCVLOWAT setting
286   *	@sk_rcvtimeo: %SO_RCVTIMEO setting
287   *	@sk_sndtimeo: %SO_SNDTIMEO setting
288   *	@sk_txhash: computed flow hash for use on transmit
289   *	@sk_filter: socket filtering instructions
290   *	@sk_timer: sock cleanup timer
291   *	@sk_stamp: time stamp of last packet received
292   *	@sk_tsflags: SO_TIMESTAMPING socket options
293   *	@sk_tskey: counter to disambiguate concurrent tstamp requests
294   *	@sk_socket: Identd and reporting IO signals
295   *	@sk_user_data: RPC layer private data
296   *	@sk_frag: cached page frag
297   *	@sk_peek_off: current peek_offset value
298   *	@sk_send_head: front of stuff to transmit
299   *	@sk_security: used by security modules
300   *	@sk_mark: generic packet mark
301   *	@sk_cgrp_data: cgroup data for this cgroup
302   *	@sk_memcg: this socket's memory cgroup association
303   *	@sk_write_pending: a write to stream socket waits to start
304   *	@sk_state_change: callback to indicate change in the state of the sock
305   *	@sk_data_ready: callback to indicate there is data to be processed
306   *	@sk_write_space: callback to indicate there is bf sending space available
307   *	@sk_error_report: callback to indicate errors (e.g. %MSG_ERRQUEUE)
308   *	@sk_backlog_rcv: callback to process the backlog
309   *	@sk_destruct: called at sock freeing time, i.e. when all refcnt == 0
310   *	@sk_reuseport_cb: reuseport group container
311   *	@sk_rcu: used during RCU grace period
312   */
313 struct sock {
314 	/*
315 	 * Now struct inet_timewait_sock also uses sock_common, so please just
316 	 * don't add nothing before this first member (__sk_common) --acme
317 	 */
318 	struct sock_common	__sk_common;
319 #define sk_node			__sk_common.skc_node
320 #define sk_nulls_node		__sk_common.skc_nulls_node
321 #define sk_refcnt		__sk_common.skc_refcnt
322 #define sk_tx_queue_mapping	__sk_common.skc_tx_queue_mapping
323 
324 #define sk_dontcopy_begin	__sk_common.skc_dontcopy_begin
325 #define sk_dontcopy_end		__sk_common.skc_dontcopy_end
326 #define sk_hash			__sk_common.skc_hash
327 #define sk_portpair		__sk_common.skc_portpair
328 #define sk_num			__sk_common.skc_num
329 #define sk_dport		__sk_common.skc_dport
330 #define sk_addrpair		__sk_common.skc_addrpair
331 #define sk_daddr		__sk_common.skc_daddr
332 #define sk_rcv_saddr		__sk_common.skc_rcv_saddr
333 #define sk_family		__sk_common.skc_family
334 #define sk_state		__sk_common.skc_state
335 #define sk_reuse		__sk_common.skc_reuse
336 #define sk_reuseport		__sk_common.skc_reuseport
337 #define sk_ipv6only		__sk_common.skc_ipv6only
338 #define sk_net_refcnt		__sk_common.skc_net_refcnt
339 #define sk_bound_dev_if		__sk_common.skc_bound_dev_if
340 #define sk_bind_node		__sk_common.skc_bind_node
341 #define sk_prot			__sk_common.skc_prot
342 #define sk_net			__sk_common.skc_net
343 #define sk_v6_daddr		__sk_common.skc_v6_daddr
344 #define sk_v6_rcv_saddr	__sk_common.skc_v6_rcv_saddr
345 #define sk_cookie		__sk_common.skc_cookie
346 #define sk_incoming_cpu		__sk_common.skc_incoming_cpu
347 #define sk_flags		__sk_common.skc_flags
348 #define sk_rxhash		__sk_common.skc_rxhash
349 
350 	socket_lock_t		sk_lock;
351 	atomic_t		sk_drops;
352 	int			sk_rcvlowat;
353 	struct sk_buff_head	sk_error_queue;
354 	struct sk_buff_head	sk_receive_queue;
355 	/*
356 	 * The backlog queue is special, it is always used with
357 	 * the per-socket spinlock held and requires low latency
358 	 * access. Therefore we special case it's implementation.
359 	 * Note : rmem_alloc is in this structure to fill a hole
360 	 * on 64bit arches, not because its logically part of
361 	 * backlog.
362 	 */
363 	struct {
364 		atomic_t	rmem_alloc;
365 		int		len;
366 		struct sk_buff	*head;
367 		struct sk_buff	*tail;
368 	} sk_backlog;
369 #define sk_rmem_alloc sk_backlog.rmem_alloc
370 
371 	int			sk_forward_alloc;
372 #ifdef CONFIG_NET_RX_BUSY_POLL
373 	unsigned int		sk_ll_usec;
374 	/* ===== mostly read cache line ===== */
375 	unsigned int		sk_napi_id;
376 #endif
377 	int			sk_rcvbuf;
378 
379 	struct sk_filter __rcu	*sk_filter;
380 	union {
381 		struct socket_wq __rcu	*sk_wq;
382 		struct socket_wq	*sk_wq_raw;
383 	};
384 #ifdef CONFIG_XFRM
385 	struct xfrm_policy __rcu *sk_policy[2];
386 #endif
387 	struct dst_entry	*sk_rx_dst;
388 	struct dst_entry __rcu	*sk_dst_cache;
389 	atomic_t		sk_omem_alloc;
390 	int			sk_sndbuf;
391 
392 	/* ===== cache line for TX ===== */
393 	int			sk_wmem_queued;
394 	refcount_t		sk_wmem_alloc;
395 	unsigned long		sk_tsq_flags;
396 	struct sk_buff		*sk_send_head;
397 	struct sk_buff_head	sk_write_queue;
398 	__s32			sk_peek_off;
399 	int			sk_write_pending;
400 	__u32			sk_dst_pending_confirm;
401 	u32			sk_pacing_status; /* see enum sk_pacing */
402 	long			sk_sndtimeo;
403 	struct timer_list	sk_timer;
404 	__u32			sk_priority;
405 	__u32			sk_mark;
406 	u32			sk_pacing_rate; /* bytes per second */
407 	u32			sk_max_pacing_rate;
408 	struct page_frag	sk_frag;
409 	netdev_features_t	sk_route_caps;
410 	netdev_features_t	sk_route_nocaps;
411 	int			sk_gso_type;
412 	unsigned int		sk_gso_max_size;
413 	gfp_t			sk_allocation;
414 	__u32			sk_txhash;
415 
416 	/*
417 	 * Because of non atomicity rules, all
418 	 * changes are protected by socket lock.
419 	 */
420 	unsigned int		__sk_flags_offset[0];
421 #ifdef __BIG_ENDIAN_BITFIELD
422 #define SK_FL_PROTO_SHIFT  16
423 #define SK_FL_PROTO_MASK   0x00ff0000
424 
425 #define SK_FL_TYPE_SHIFT   0
426 #define SK_FL_TYPE_MASK    0x0000ffff
427 #else
428 #define SK_FL_PROTO_SHIFT  8
429 #define SK_FL_PROTO_MASK   0x0000ff00
430 
431 #define SK_FL_TYPE_SHIFT   16
432 #define SK_FL_TYPE_MASK    0xffff0000
433 #endif
434 
435 	kmemcheck_bitfield_begin(flags);
436 	unsigned int		sk_padding : 1,
437 				sk_kern_sock : 1,
438 				sk_no_check_tx : 1,
439 				sk_no_check_rx : 1,
440 				sk_userlocks : 4,
441 				sk_protocol  : 8,
442 				sk_type      : 16;
443 #define SK_PROTOCOL_MAX U8_MAX
444 	kmemcheck_bitfield_end(flags);
445 
446 	u16			sk_gso_max_segs;
447 	unsigned long	        sk_lingertime;
448 	struct proto		*sk_prot_creator;
449 	rwlock_t		sk_callback_lock;
450 	int			sk_err,
451 				sk_err_soft;
452 	u32			sk_ack_backlog;
453 	u32			sk_max_ack_backlog;
454 	kuid_t			sk_uid;
455 	struct pid		*sk_peer_pid;
456 	const struct cred	*sk_peer_cred;
457 	long			sk_rcvtimeo;
458 	ktime_t			sk_stamp;
459 	u16			sk_tsflags;
460 	u8			sk_shutdown;
461 	u32			sk_tskey;
462 	struct socket		*sk_socket;
463 	void			*sk_user_data;
464 #ifdef CONFIG_SECURITY
465 	void			*sk_security;
466 #endif
467 	struct sock_cgroup_data	sk_cgrp_data;
468 	struct mem_cgroup	*sk_memcg;
469 	void			(*sk_state_change)(struct sock *sk);
470 	void			(*sk_data_ready)(struct sock *sk);
471 	void			(*sk_write_space)(struct sock *sk);
472 	void			(*sk_error_report)(struct sock *sk);
473 	int			(*sk_backlog_rcv)(struct sock *sk,
474 						  struct sk_buff *skb);
475 	void                    (*sk_destruct)(struct sock *sk);
476 	struct sock_reuseport __rcu	*sk_reuseport_cb;
477 	struct rcu_head		sk_rcu;
478 };
479 
480 enum sk_pacing {
481 	SK_PACING_NONE		= 0,
482 	SK_PACING_NEEDED	= 1,
483 	SK_PACING_FQ		= 2,
484 };
485 
486 #define __sk_user_data(sk) ((*((void __rcu **)&(sk)->sk_user_data)))
487 
488 #define rcu_dereference_sk_user_data(sk)	rcu_dereference(__sk_user_data((sk)))
489 #define rcu_assign_sk_user_data(sk, ptr)	rcu_assign_pointer(__sk_user_data((sk)), ptr)
490 
491 /*
492  * SK_CAN_REUSE and SK_NO_REUSE on a socket mean that the socket is OK
493  * or not whether his port will be reused by someone else. SK_FORCE_REUSE
494  * on a socket means that the socket will reuse everybody else's port
495  * without looking at the other's sk_reuse value.
496  */
497 
498 #define SK_NO_REUSE	0
499 #define SK_CAN_REUSE	1
500 #define SK_FORCE_REUSE	2
501 
502 int sk_set_peek_off(struct sock *sk, int val);
503 
504 static inline int sk_peek_offset(struct sock *sk, int flags)
505 {
506 	if (unlikely(flags & MSG_PEEK)) {
507 		s32 off = READ_ONCE(sk->sk_peek_off);
508 		if (off >= 0)
509 			return off;
510 	}
511 
512 	return 0;
513 }
514 
515 static inline void sk_peek_offset_bwd(struct sock *sk, int val)
516 {
517 	s32 off = READ_ONCE(sk->sk_peek_off);
518 
519 	if (unlikely(off >= 0)) {
520 		off = max_t(s32, off - val, 0);
521 		WRITE_ONCE(sk->sk_peek_off, off);
522 	}
523 }
524 
525 static inline void sk_peek_offset_fwd(struct sock *sk, int val)
526 {
527 	sk_peek_offset_bwd(sk, -val);
528 }
529 
530 /*
531  * Hashed lists helper routines
532  */
533 static inline struct sock *sk_entry(const struct hlist_node *node)
534 {
535 	return hlist_entry(node, struct sock, sk_node);
536 }
537 
538 static inline struct sock *__sk_head(const struct hlist_head *head)
539 {
540 	return hlist_entry(head->first, struct sock, sk_node);
541 }
542 
543 static inline struct sock *sk_head(const struct hlist_head *head)
544 {
545 	return hlist_empty(head) ? NULL : __sk_head(head);
546 }
547 
548 static inline struct sock *__sk_nulls_head(const struct hlist_nulls_head *head)
549 {
550 	return hlist_nulls_entry(head->first, struct sock, sk_nulls_node);
551 }
552 
553 static inline struct sock *sk_nulls_head(const struct hlist_nulls_head *head)
554 {
555 	return hlist_nulls_empty(head) ? NULL : __sk_nulls_head(head);
556 }
557 
558 static inline struct sock *sk_next(const struct sock *sk)
559 {
560 	return hlist_entry_safe(sk->sk_node.next, struct sock, sk_node);
561 }
562 
563 static inline struct sock *sk_nulls_next(const struct sock *sk)
564 {
565 	return (!is_a_nulls(sk->sk_nulls_node.next)) ?
566 		hlist_nulls_entry(sk->sk_nulls_node.next,
567 				  struct sock, sk_nulls_node) :
568 		NULL;
569 }
570 
571 static inline bool sk_unhashed(const struct sock *sk)
572 {
573 	return hlist_unhashed(&sk->sk_node);
574 }
575 
576 static inline bool sk_hashed(const struct sock *sk)
577 {
578 	return !sk_unhashed(sk);
579 }
580 
581 static inline void sk_node_init(struct hlist_node *node)
582 {
583 	node->pprev = NULL;
584 }
585 
586 static inline void sk_nulls_node_init(struct hlist_nulls_node *node)
587 {
588 	node->pprev = NULL;
589 }
590 
591 static inline void __sk_del_node(struct sock *sk)
592 {
593 	__hlist_del(&sk->sk_node);
594 }
595 
596 /* NB: equivalent to hlist_del_init_rcu */
597 static inline bool __sk_del_node_init(struct sock *sk)
598 {
599 	if (sk_hashed(sk)) {
600 		__sk_del_node(sk);
601 		sk_node_init(&sk->sk_node);
602 		return true;
603 	}
604 	return false;
605 }
606 
607 /* Grab socket reference count. This operation is valid only
608    when sk is ALREADY grabbed f.e. it is found in hash table
609    or a list and the lookup is made under lock preventing hash table
610    modifications.
611  */
612 
613 static __always_inline void sock_hold(struct sock *sk)
614 {
615 	refcount_inc(&sk->sk_refcnt);
616 }
617 
618 /* Ungrab socket in the context, which assumes that socket refcnt
619    cannot hit zero, f.e. it is true in context of any socketcall.
620  */
621 static __always_inline void __sock_put(struct sock *sk)
622 {
623 	refcount_dec(&sk->sk_refcnt);
624 }
625 
626 static inline bool sk_del_node_init(struct sock *sk)
627 {
628 	bool rc = __sk_del_node_init(sk);
629 
630 	if (rc) {
631 		/* paranoid for a while -acme */
632 		WARN_ON(refcount_read(&sk->sk_refcnt) == 1);
633 		__sock_put(sk);
634 	}
635 	return rc;
636 }
637 #define sk_del_node_init_rcu(sk)	sk_del_node_init(sk)
638 
639 static inline bool __sk_nulls_del_node_init_rcu(struct sock *sk)
640 {
641 	if (sk_hashed(sk)) {
642 		hlist_nulls_del_init_rcu(&sk->sk_nulls_node);
643 		return true;
644 	}
645 	return false;
646 }
647 
648 static inline bool sk_nulls_del_node_init_rcu(struct sock *sk)
649 {
650 	bool rc = __sk_nulls_del_node_init_rcu(sk);
651 
652 	if (rc) {
653 		/* paranoid for a while -acme */
654 		WARN_ON(refcount_read(&sk->sk_refcnt) == 1);
655 		__sock_put(sk);
656 	}
657 	return rc;
658 }
659 
660 static inline void __sk_add_node(struct sock *sk, struct hlist_head *list)
661 {
662 	hlist_add_head(&sk->sk_node, list);
663 }
664 
665 static inline void sk_add_node(struct sock *sk, struct hlist_head *list)
666 {
667 	sock_hold(sk);
668 	__sk_add_node(sk, list);
669 }
670 
671 static inline void sk_add_node_rcu(struct sock *sk, struct hlist_head *list)
672 {
673 	sock_hold(sk);
674 	if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport &&
675 	    sk->sk_family == AF_INET6)
676 		hlist_add_tail_rcu(&sk->sk_node, list);
677 	else
678 		hlist_add_head_rcu(&sk->sk_node, list);
679 }
680 
681 static inline void __sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
682 {
683 	if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport &&
684 	    sk->sk_family == AF_INET6)
685 		hlist_nulls_add_tail_rcu(&sk->sk_nulls_node, list);
686 	else
687 		hlist_nulls_add_head_rcu(&sk->sk_nulls_node, list);
688 }
689 
690 static inline void sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
691 {
692 	sock_hold(sk);
693 	__sk_nulls_add_node_rcu(sk, list);
694 }
695 
696 static inline void __sk_del_bind_node(struct sock *sk)
697 {
698 	__hlist_del(&sk->sk_bind_node);
699 }
700 
701 static inline void sk_add_bind_node(struct sock *sk,
702 					struct hlist_head *list)
703 {
704 	hlist_add_head(&sk->sk_bind_node, list);
705 }
706 
707 #define sk_for_each(__sk, list) \
708 	hlist_for_each_entry(__sk, list, sk_node)
709 #define sk_for_each_rcu(__sk, list) \
710 	hlist_for_each_entry_rcu(__sk, list, sk_node)
711 #define sk_nulls_for_each(__sk, node, list) \
712 	hlist_nulls_for_each_entry(__sk, node, list, sk_nulls_node)
713 #define sk_nulls_for_each_rcu(__sk, node, list) \
714 	hlist_nulls_for_each_entry_rcu(__sk, node, list, sk_nulls_node)
715 #define sk_for_each_from(__sk) \
716 	hlist_for_each_entry_from(__sk, sk_node)
717 #define sk_nulls_for_each_from(__sk, node) \
718 	if (__sk && ({ node = &(__sk)->sk_nulls_node; 1; })) \
719 		hlist_nulls_for_each_entry_from(__sk, node, sk_nulls_node)
720 #define sk_for_each_safe(__sk, tmp, list) \
721 	hlist_for_each_entry_safe(__sk, tmp, list, sk_node)
722 #define sk_for_each_bound(__sk, list) \
723 	hlist_for_each_entry(__sk, list, sk_bind_node)
724 
725 /**
726  * sk_for_each_entry_offset_rcu - iterate over a list at a given struct offset
727  * @tpos:	the type * to use as a loop cursor.
728  * @pos:	the &struct hlist_node to use as a loop cursor.
729  * @head:	the head for your list.
730  * @offset:	offset of hlist_node within the struct.
731  *
732  */
733 #define sk_for_each_entry_offset_rcu(tpos, pos, head, offset)		       \
734 	for (pos = rcu_dereference((head)->first);			       \
735 	     pos != NULL &&						       \
736 		({ tpos = (typeof(*tpos) *)((void *)pos - offset); 1;});       \
737 	     pos = rcu_dereference(pos->next))
738 
739 static inline struct user_namespace *sk_user_ns(struct sock *sk)
740 {
741 	/* Careful only use this in a context where these parameters
742 	 * can not change and must all be valid, such as recvmsg from
743 	 * userspace.
744 	 */
745 	return sk->sk_socket->file->f_cred->user_ns;
746 }
747 
748 /* Sock flags */
749 enum sock_flags {
750 	SOCK_DEAD,
751 	SOCK_DONE,
752 	SOCK_URGINLINE,
753 	SOCK_KEEPOPEN,
754 	SOCK_LINGER,
755 	SOCK_DESTROY,
756 	SOCK_BROADCAST,
757 	SOCK_TIMESTAMP,
758 	SOCK_ZAPPED,
759 	SOCK_USE_WRITE_QUEUE, /* whether to call sk->sk_write_space in sock_wfree */
760 	SOCK_DBG, /* %SO_DEBUG setting */
761 	SOCK_RCVTSTAMP, /* %SO_TIMESTAMP setting */
762 	SOCK_RCVTSTAMPNS, /* %SO_TIMESTAMPNS setting */
763 	SOCK_LOCALROUTE, /* route locally only, %SO_DONTROUTE setting */
764 	SOCK_QUEUE_SHRUNK, /* write queue has been shrunk recently */
765 	SOCK_MEMALLOC, /* VM depends on this socket for swapping */
766 	SOCK_TIMESTAMPING_RX_SOFTWARE,  /* %SOF_TIMESTAMPING_RX_SOFTWARE */
767 	SOCK_FASYNC, /* fasync() active */
768 	SOCK_RXQ_OVFL,
769 	SOCK_ZEROCOPY, /* buffers from userspace */
770 	SOCK_WIFI_STATUS, /* push wifi status to userspace */
771 	SOCK_NOFCS, /* Tell NIC not to do the Ethernet FCS.
772 		     * Will use last 4 bytes of packet sent from
773 		     * user-space instead.
774 		     */
775 	SOCK_FILTER_LOCKED, /* Filter cannot be changed anymore */
776 	SOCK_SELECT_ERR_QUEUE, /* Wake select on error queue */
777 	SOCK_RCU_FREE, /* wait rcu grace period in sk_destruct() */
778 };
779 
780 #define SK_FLAGS_TIMESTAMP ((1UL << SOCK_TIMESTAMP) | (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE))
781 
782 static inline void sock_copy_flags(struct sock *nsk, struct sock *osk)
783 {
784 	nsk->sk_flags = osk->sk_flags;
785 }
786 
787 static inline void sock_set_flag(struct sock *sk, enum sock_flags flag)
788 {
789 	__set_bit(flag, &sk->sk_flags);
790 }
791 
792 static inline void sock_reset_flag(struct sock *sk, enum sock_flags flag)
793 {
794 	__clear_bit(flag, &sk->sk_flags);
795 }
796 
797 static inline bool sock_flag(const struct sock *sk, enum sock_flags flag)
798 {
799 	return test_bit(flag, &sk->sk_flags);
800 }
801 
802 #ifdef CONFIG_NET
803 extern struct static_key memalloc_socks;
804 static inline int sk_memalloc_socks(void)
805 {
806 	return static_key_false(&memalloc_socks);
807 }
808 #else
809 
810 static inline int sk_memalloc_socks(void)
811 {
812 	return 0;
813 }
814 
815 #endif
816 
817 static inline gfp_t sk_gfp_mask(const struct sock *sk, gfp_t gfp_mask)
818 {
819 	return gfp_mask | (sk->sk_allocation & __GFP_MEMALLOC);
820 }
821 
822 static inline void sk_acceptq_removed(struct sock *sk)
823 {
824 	sk->sk_ack_backlog--;
825 }
826 
827 static inline void sk_acceptq_added(struct sock *sk)
828 {
829 	sk->sk_ack_backlog++;
830 }
831 
832 static inline bool sk_acceptq_is_full(const struct sock *sk)
833 {
834 	return sk->sk_ack_backlog > sk->sk_max_ack_backlog;
835 }
836 
837 /*
838  * Compute minimal free write space needed to queue new packets.
839  */
840 static inline int sk_stream_min_wspace(const struct sock *sk)
841 {
842 	return sk->sk_wmem_queued >> 1;
843 }
844 
845 static inline int sk_stream_wspace(const struct sock *sk)
846 {
847 	return sk->sk_sndbuf - sk->sk_wmem_queued;
848 }
849 
850 void sk_stream_write_space(struct sock *sk);
851 
852 /* OOB backlog add */
853 static inline void __sk_add_backlog(struct sock *sk, struct sk_buff *skb)
854 {
855 	/* dont let skb dst not refcounted, we are going to leave rcu lock */
856 	skb_dst_force_safe(skb);
857 
858 	if (!sk->sk_backlog.tail)
859 		sk->sk_backlog.head = skb;
860 	else
861 		sk->sk_backlog.tail->next = skb;
862 
863 	sk->sk_backlog.tail = skb;
864 	skb->next = NULL;
865 }
866 
867 /*
868  * Take into account size of receive queue and backlog queue
869  * Do not take into account this skb truesize,
870  * to allow even a single big packet to come.
871  */
872 static inline bool sk_rcvqueues_full(const struct sock *sk, unsigned int limit)
873 {
874 	unsigned int qsize = sk->sk_backlog.len + atomic_read(&sk->sk_rmem_alloc);
875 
876 	return qsize > limit;
877 }
878 
879 /* The per-socket spinlock must be held here. */
880 static inline __must_check int sk_add_backlog(struct sock *sk, struct sk_buff *skb,
881 					      unsigned int limit)
882 {
883 	if (sk_rcvqueues_full(sk, limit))
884 		return -ENOBUFS;
885 
886 	/*
887 	 * If the skb was allocated from pfmemalloc reserves, only
888 	 * allow SOCK_MEMALLOC sockets to use it as this socket is
889 	 * helping free memory
890 	 */
891 	if (skb_pfmemalloc(skb) && !sock_flag(sk, SOCK_MEMALLOC))
892 		return -ENOMEM;
893 
894 	__sk_add_backlog(sk, skb);
895 	sk->sk_backlog.len += skb->truesize;
896 	return 0;
897 }
898 
899 int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb);
900 
901 static inline int sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
902 {
903 	if (sk_memalloc_socks() && skb_pfmemalloc(skb))
904 		return __sk_backlog_rcv(sk, skb);
905 
906 	return sk->sk_backlog_rcv(sk, skb);
907 }
908 
909 static inline void sk_incoming_cpu_update(struct sock *sk)
910 {
911 	int cpu = raw_smp_processor_id();
912 
913 	if (unlikely(sk->sk_incoming_cpu != cpu))
914 		sk->sk_incoming_cpu = cpu;
915 }
916 
917 static inline void sock_rps_record_flow_hash(__u32 hash)
918 {
919 #ifdef CONFIG_RPS
920 	struct rps_sock_flow_table *sock_flow_table;
921 
922 	rcu_read_lock();
923 	sock_flow_table = rcu_dereference(rps_sock_flow_table);
924 	rps_record_sock_flow(sock_flow_table, hash);
925 	rcu_read_unlock();
926 #endif
927 }
928 
929 static inline void sock_rps_record_flow(const struct sock *sk)
930 {
931 #ifdef CONFIG_RPS
932 	if (static_key_false(&rfs_needed)) {
933 		/* Reading sk->sk_rxhash might incur an expensive cache line
934 		 * miss.
935 		 *
936 		 * TCP_ESTABLISHED does cover almost all states where RFS
937 		 * might be useful, and is cheaper [1] than testing :
938 		 *	IPv4: inet_sk(sk)->inet_daddr
939 		 * 	IPv6: ipv6_addr_any(&sk->sk_v6_daddr)
940 		 * OR	an additional socket flag
941 		 * [1] : sk_state and sk_prot are in the same cache line.
942 		 */
943 		if (sk->sk_state == TCP_ESTABLISHED)
944 			sock_rps_record_flow_hash(sk->sk_rxhash);
945 	}
946 #endif
947 }
948 
949 static inline void sock_rps_save_rxhash(struct sock *sk,
950 					const struct sk_buff *skb)
951 {
952 #ifdef CONFIG_RPS
953 	if (unlikely(sk->sk_rxhash != skb->hash))
954 		sk->sk_rxhash = skb->hash;
955 #endif
956 }
957 
958 static inline void sock_rps_reset_rxhash(struct sock *sk)
959 {
960 #ifdef CONFIG_RPS
961 	sk->sk_rxhash = 0;
962 #endif
963 }
964 
965 #define sk_wait_event(__sk, __timeo, __condition, __wait)		\
966 	({	int __rc;						\
967 		release_sock(__sk);					\
968 		__rc = __condition;					\
969 		if (!__rc) {						\
970 			*(__timeo) = wait_woken(__wait,			\
971 						TASK_INTERRUPTIBLE,	\
972 						*(__timeo));		\
973 		}							\
974 		sched_annotate_sleep();					\
975 		lock_sock(__sk);					\
976 		__rc = __condition;					\
977 		__rc;							\
978 	})
979 
980 int sk_stream_wait_connect(struct sock *sk, long *timeo_p);
981 int sk_stream_wait_memory(struct sock *sk, long *timeo_p);
982 void sk_stream_wait_close(struct sock *sk, long timeo_p);
983 int sk_stream_error(struct sock *sk, int flags, int err);
984 void sk_stream_kill_queues(struct sock *sk);
985 void sk_set_memalloc(struct sock *sk);
986 void sk_clear_memalloc(struct sock *sk);
987 
988 void __sk_flush_backlog(struct sock *sk);
989 
990 static inline bool sk_flush_backlog(struct sock *sk)
991 {
992 	if (unlikely(READ_ONCE(sk->sk_backlog.tail))) {
993 		__sk_flush_backlog(sk);
994 		return true;
995 	}
996 	return false;
997 }
998 
999 int sk_wait_data(struct sock *sk, long *timeo, const struct sk_buff *skb);
1000 
1001 struct request_sock_ops;
1002 struct timewait_sock_ops;
1003 struct inet_hashinfo;
1004 struct raw_hashinfo;
1005 struct smc_hashinfo;
1006 struct module;
1007 
1008 /*
1009  * caches using SLAB_TYPESAFE_BY_RCU should let .next pointer from nulls nodes
1010  * un-modified. Special care is taken when initializing object to zero.
1011  */
1012 static inline void sk_prot_clear_nulls(struct sock *sk, int size)
1013 {
1014 	if (offsetof(struct sock, sk_node.next) != 0)
1015 		memset(sk, 0, offsetof(struct sock, sk_node.next));
1016 	memset(&sk->sk_node.pprev, 0,
1017 	       size - offsetof(struct sock, sk_node.pprev));
1018 }
1019 
1020 /* Networking protocol blocks we attach to sockets.
1021  * socket layer -> transport layer interface
1022  */
1023 struct proto {
1024 	void			(*close)(struct sock *sk,
1025 					long timeout);
1026 	int			(*connect)(struct sock *sk,
1027 					struct sockaddr *uaddr,
1028 					int addr_len);
1029 	int			(*disconnect)(struct sock *sk, int flags);
1030 
1031 	struct sock *		(*accept)(struct sock *sk, int flags, int *err,
1032 					  bool kern);
1033 
1034 	int			(*ioctl)(struct sock *sk, int cmd,
1035 					 unsigned long arg);
1036 	int			(*init)(struct sock *sk);
1037 	void			(*destroy)(struct sock *sk);
1038 	void			(*shutdown)(struct sock *sk, int how);
1039 	int			(*setsockopt)(struct sock *sk, int level,
1040 					int optname, char __user *optval,
1041 					unsigned int optlen);
1042 	int			(*getsockopt)(struct sock *sk, int level,
1043 					int optname, char __user *optval,
1044 					int __user *option);
1045 	void			(*keepalive)(struct sock *sk, int valbool);
1046 #ifdef CONFIG_COMPAT
1047 	int			(*compat_setsockopt)(struct sock *sk,
1048 					int level,
1049 					int optname, char __user *optval,
1050 					unsigned int optlen);
1051 	int			(*compat_getsockopt)(struct sock *sk,
1052 					int level,
1053 					int optname, char __user *optval,
1054 					int __user *option);
1055 	int			(*compat_ioctl)(struct sock *sk,
1056 					unsigned int cmd, unsigned long arg);
1057 #endif
1058 	int			(*sendmsg)(struct sock *sk, struct msghdr *msg,
1059 					   size_t len);
1060 	int			(*recvmsg)(struct sock *sk, struct msghdr *msg,
1061 					   size_t len, int noblock, int flags,
1062 					   int *addr_len);
1063 	int			(*sendpage)(struct sock *sk, struct page *page,
1064 					int offset, size_t size, int flags);
1065 	int			(*bind)(struct sock *sk,
1066 					struct sockaddr *uaddr, int addr_len);
1067 
1068 	int			(*backlog_rcv) (struct sock *sk,
1069 						struct sk_buff *skb);
1070 
1071 	void		(*release_cb)(struct sock *sk);
1072 
1073 	/* Keeping track of sk's, looking them up, and port selection methods. */
1074 	int			(*hash)(struct sock *sk);
1075 	void			(*unhash)(struct sock *sk);
1076 	void			(*rehash)(struct sock *sk);
1077 	int			(*get_port)(struct sock *sk, unsigned short snum);
1078 
1079 	/* Keeping track of sockets in use */
1080 #ifdef CONFIG_PROC_FS
1081 	unsigned int		inuse_idx;
1082 #endif
1083 
1084 	bool			(*stream_memory_free)(const struct sock *sk);
1085 	/* Memory pressure */
1086 	void			(*enter_memory_pressure)(struct sock *sk);
1087 	void			(*leave_memory_pressure)(struct sock *sk);
1088 	atomic_long_t		*memory_allocated;	/* Current allocated memory. */
1089 	struct percpu_counter	*sockets_allocated;	/* Current number of sockets. */
1090 	/*
1091 	 * Pressure flag: try to collapse.
1092 	 * Technical note: it is used by multiple contexts non atomically.
1093 	 * All the __sk_mem_schedule() is of this nature: accounting
1094 	 * is strict, actions are advisory and have some latency.
1095 	 */
1096 	unsigned long		*memory_pressure;
1097 	long			*sysctl_mem;
1098 	int			*sysctl_wmem;
1099 	int			*sysctl_rmem;
1100 	int			max_header;
1101 	bool			no_autobind;
1102 
1103 	struct kmem_cache	*slab;
1104 	unsigned int		obj_size;
1105 	int			slab_flags;
1106 
1107 	struct percpu_counter	*orphan_count;
1108 
1109 	struct request_sock_ops	*rsk_prot;
1110 	struct timewait_sock_ops *twsk_prot;
1111 
1112 	union {
1113 		struct inet_hashinfo	*hashinfo;
1114 		struct udp_table	*udp_table;
1115 		struct raw_hashinfo	*raw_hash;
1116 		struct smc_hashinfo	*smc_hash;
1117 	} h;
1118 
1119 	struct module		*owner;
1120 
1121 	char			name[32];
1122 
1123 	struct list_head	node;
1124 #ifdef SOCK_REFCNT_DEBUG
1125 	atomic_t		socks;
1126 #endif
1127 	int			(*diag_destroy)(struct sock *sk, int err);
1128 };
1129 
1130 int proto_register(struct proto *prot, int alloc_slab);
1131 void proto_unregister(struct proto *prot);
1132 
1133 #ifdef SOCK_REFCNT_DEBUG
1134 static inline void sk_refcnt_debug_inc(struct sock *sk)
1135 {
1136 	atomic_inc(&sk->sk_prot->socks);
1137 }
1138 
1139 static inline void sk_refcnt_debug_dec(struct sock *sk)
1140 {
1141 	atomic_dec(&sk->sk_prot->socks);
1142 	printk(KERN_DEBUG "%s socket %p released, %d are still alive\n",
1143 	       sk->sk_prot->name, sk, atomic_read(&sk->sk_prot->socks));
1144 }
1145 
1146 static inline void sk_refcnt_debug_release(const struct sock *sk)
1147 {
1148 	if (refcount_read(&sk->sk_refcnt) != 1)
1149 		printk(KERN_DEBUG "Destruction of the %s socket %p delayed, refcnt=%d\n",
1150 		       sk->sk_prot->name, sk, refcount_read(&sk->sk_refcnt));
1151 }
1152 #else /* SOCK_REFCNT_DEBUG */
1153 #define sk_refcnt_debug_inc(sk) do { } while (0)
1154 #define sk_refcnt_debug_dec(sk) do { } while (0)
1155 #define sk_refcnt_debug_release(sk) do { } while (0)
1156 #endif /* SOCK_REFCNT_DEBUG */
1157 
1158 static inline bool sk_stream_memory_free(const struct sock *sk)
1159 {
1160 	if (sk->sk_wmem_queued >= sk->sk_sndbuf)
1161 		return false;
1162 
1163 	return sk->sk_prot->stream_memory_free ?
1164 		sk->sk_prot->stream_memory_free(sk) : true;
1165 }
1166 
1167 static inline bool sk_stream_is_writeable(const struct sock *sk)
1168 {
1169 	return sk_stream_wspace(sk) >= sk_stream_min_wspace(sk) &&
1170 	       sk_stream_memory_free(sk);
1171 }
1172 
1173 static inline int sk_under_cgroup_hierarchy(struct sock *sk,
1174 					    struct cgroup *ancestor)
1175 {
1176 #ifdef CONFIG_SOCK_CGROUP_DATA
1177 	return cgroup_is_descendant(sock_cgroup_ptr(&sk->sk_cgrp_data),
1178 				    ancestor);
1179 #else
1180 	return -ENOTSUPP;
1181 #endif
1182 }
1183 
1184 static inline bool sk_has_memory_pressure(const struct sock *sk)
1185 {
1186 	return sk->sk_prot->memory_pressure != NULL;
1187 }
1188 
1189 static inline bool sk_under_memory_pressure(const struct sock *sk)
1190 {
1191 	if (!sk->sk_prot->memory_pressure)
1192 		return false;
1193 
1194 	if (mem_cgroup_sockets_enabled && sk->sk_memcg &&
1195 	    mem_cgroup_under_socket_pressure(sk->sk_memcg))
1196 		return true;
1197 
1198 	return !!*sk->sk_prot->memory_pressure;
1199 }
1200 
1201 static inline long
1202 sk_memory_allocated(const struct sock *sk)
1203 {
1204 	return atomic_long_read(sk->sk_prot->memory_allocated);
1205 }
1206 
1207 static inline long
1208 sk_memory_allocated_add(struct sock *sk, int amt)
1209 {
1210 	return atomic_long_add_return(amt, sk->sk_prot->memory_allocated);
1211 }
1212 
1213 static inline void
1214 sk_memory_allocated_sub(struct sock *sk, int amt)
1215 {
1216 	atomic_long_sub(amt, sk->sk_prot->memory_allocated);
1217 }
1218 
1219 static inline void sk_sockets_allocated_dec(struct sock *sk)
1220 {
1221 	percpu_counter_dec(sk->sk_prot->sockets_allocated);
1222 }
1223 
1224 static inline void sk_sockets_allocated_inc(struct sock *sk)
1225 {
1226 	percpu_counter_inc(sk->sk_prot->sockets_allocated);
1227 }
1228 
1229 static inline int
1230 sk_sockets_allocated_read_positive(struct sock *sk)
1231 {
1232 	return percpu_counter_read_positive(sk->sk_prot->sockets_allocated);
1233 }
1234 
1235 static inline int
1236 proto_sockets_allocated_sum_positive(struct proto *prot)
1237 {
1238 	return percpu_counter_sum_positive(prot->sockets_allocated);
1239 }
1240 
1241 static inline long
1242 proto_memory_allocated(struct proto *prot)
1243 {
1244 	return atomic_long_read(prot->memory_allocated);
1245 }
1246 
1247 static inline bool
1248 proto_memory_pressure(struct proto *prot)
1249 {
1250 	if (!prot->memory_pressure)
1251 		return false;
1252 	return !!*prot->memory_pressure;
1253 }
1254 
1255 
1256 #ifdef CONFIG_PROC_FS
1257 /* Called with local bh disabled */
1258 void sock_prot_inuse_add(struct net *net, struct proto *prot, int inc);
1259 int sock_prot_inuse_get(struct net *net, struct proto *proto);
1260 #else
1261 static inline void sock_prot_inuse_add(struct net *net, struct proto *prot,
1262 		int inc)
1263 {
1264 }
1265 #endif
1266 
1267 
1268 /* With per-bucket locks this operation is not-atomic, so that
1269  * this version is not worse.
1270  */
1271 static inline int __sk_prot_rehash(struct sock *sk)
1272 {
1273 	sk->sk_prot->unhash(sk);
1274 	return sk->sk_prot->hash(sk);
1275 }
1276 
1277 /* About 10 seconds */
1278 #define SOCK_DESTROY_TIME (10*HZ)
1279 
1280 /* Sockets 0-1023 can't be bound to unless you are superuser */
1281 #define PROT_SOCK	1024
1282 
1283 #define SHUTDOWN_MASK	3
1284 #define RCV_SHUTDOWN	1
1285 #define SEND_SHUTDOWN	2
1286 
1287 #define SOCK_SNDBUF_LOCK	1
1288 #define SOCK_RCVBUF_LOCK	2
1289 #define SOCK_BINDADDR_LOCK	4
1290 #define SOCK_BINDPORT_LOCK	8
1291 
1292 struct socket_alloc {
1293 	struct socket socket;
1294 	struct inode vfs_inode;
1295 };
1296 
1297 static inline struct socket *SOCKET_I(struct inode *inode)
1298 {
1299 	return &container_of(inode, struct socket_alloc, vfs_inode)->socket;
1300 }
1301 
1302 static inline struct inode *SOCK_INODE(struct socket *socket)
1303 {
1304 	return &container_of(socket, struct socket_alloc, socket)->vfs_inode;
1305 }
1306 
1307 /*
1308  * Functions for memory accounting
1309  */
1310 int __sk_mem_raise_allocated(struct sock *sk, int size, int amt, int kind);
1311 int __sk_mem_schedule(struct sock *sk, int size, int kind);
1312 void __sk_mem_reduce_allocated(struct sock *sk, int amount);
1313 void __sk_mem_reclaim(struct sock *sk, int amount);
1314 
1315 /* We used to have PAGE_SIZE here, but systems with 64KB pages
1316  * do not necessarily have 16x time more memory than 4KB ones.
1317  */
1318 #define SK_MEM_QUANTUM 4096
1319 #define SK_MEM_QUANTUM_SHIFT ilog2(SK_MEM_QUANTUM)
1320 #define SK_MEM_SEND	0
1321 #define SK_MEM_RECV	1
1322 
1323 /* sysctl_mem values are in pages, we convert them in SK_MEM_QUANTUM units */
1324 static inline long sk_prot_mem_limits(const struct sock *sk, int index)
1325 {
1326 	long val = sk->sk_prot->sysctl_mem[index];
1327 
1328 #if PAGE_SIZE > SK_MEM_QUANTUM
1329 	val <<= PAGE_SHIFT - SK_MEM_QUANTUM_SHIFT;
1330 #elif PAGE_SIZE < SK_MEM_QUANTUM
1331 	val >>= SK_MEM_QUANTUM_SHIFT - PAGE_SHIFT;
1332 #endif
1333 	return val;
1334 }
1335 
1336 static inline int sk_mem_pages(int amt)
1337 {
1338 	return (amt + SK_MEM_QUANTUM - 1) >> SK_MEM_QUANTUM_SHIFT;
1339 }
1340 
1341 static inline bool sk_has_account(struct sock *sk)
1342 {
1343 	/* return true if protocol supports memory accounting */
1344 	return !!sk->sk_prot->memory_allocated;
1345 }
1346 
1347 static inline bool sk_wmem_schedule(struct sock *sk, int size)
1348 {
1349 	if (!sk_has_account(sk))
1350 		return true;
1351 	return size <= sk->sk_forward_alloc ||
1352 		__sk_mem_schedule(sk, size, SK_MEM_SEND);
1353 }
1354 
1355 static inline bool
1356 sk_rmem_schedule(struct sock *sk, struct sk_buff *skb, int size)
1357 {
1358 	if (!sk_has_account(sk))
1359 		return true;
1360 	return size<= sk->sk_forward_alloc ||
1361 		__sk_mem_schedule(sk, size, SK_MEM_RECV) ||
1362 		skb_pfmemalloc(skb);
1363 }
1364 
1365 static inline void sk_mem_reclaim(struct sock *sk)
1366 {
1367 	if (!sk_has_account(sk))
1368 		return;
1369 	if (sk->sk_forward_alloc >= SK_MEM_QUANTUM)
1370 		__sk_mem_reclaim(sk, sk->sk_forward_alloc);
1371 }
1372 
1373 static inline void sk_mem_reclaim_partial(struct sock *sk)
1374 {
1375 	if (!sk_has_account(sk))
1376 		return;
1377 	if (sk->sk_forward_alloc > SK_MEM_QUANTUM)
1378 		__sk_mem_reclaim(sk, sk->sk_forward_alloc - 1);
1379 }
1380 
1381 static inline void sk_mem_charge(struct sock *sk, int size)
1382 {
1383 	if (!sk_has_account(sk))
1384 		return;
1385 	sk->sk_forward_alloc -= size;
1386 }
1387 
1388 static inline void sk_mem_uncharge(struct sock *sk, int size)
1389 {
1390 	if (!sk_has_account(sk))
1391 		return;
1392 	sk->sk_forward_alloc += size;
1393 
1394 	/* Avoid a possible overflow.
1395 	 * TCP send queues can make this happen, if sk_mem_reclaim()
1396 	 * is not called and more than 2 GBytes are released at once.
1397 	 *
1398 	 * If we reach 2 MBytes, reclaim 1 MBytes right now, there is
1399 	 * no need to hold that much forward allocation anyway.
1400 	 */
1401 	if (unlikely(sk->sk_forward_alloc >= 1 << 21))
1402 		__sk_mem_reclaim(sk, 1 << 20);
1403 }
1404 
1405 static inline void sk_wmem_free_skb(struct sock *sk, struct sk_buff *skb)
1406 {
1407 	sock_set_flag(sk, SOCK_QUEUE_SHRUNK);
1408 	sk->sk_wmem_queued -= skb->truesize;
1409 	sk_mem_uncharge(sk, skb->truesize);
1410 	__kfree_skb(skb);
1411 }
1412 
1413 static inline void sock_release_ownership(struct sock *sk)
1414 {
1415 	if (sk->sk_lock.owned) {
1416 		sk->sk_lock.owned = 0;
1417 
1418 		/* The sk_lock has mutex_unlock() semantics: */
1419 		mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
1420 	}
1421 }
1422 
1423 /*
1424  * Macro so as to not evaluate some arguments when
1425  * lockdep is not enabled.
1426  *
1427  * Mark both the sk_lock and the sk_lock.slock as a
1428  * per-address-family lock class.
1429  */
1430 #define sock_lock_init_class_and_name(sk, sname, skey, name, key)	\
1431 do {									\
1432 	sk->sk_lock.owned = 0;						\
1433 	init_waitqueue_head(&sk->sk_lock.wq);				\
1434 	spin_lock_init(&(sk)->sk_lock.slock);				\
1435 	debug_check_no_locks_freed((void *)&(sk)->sk_lock,		\
1436 			sizeof((sk)->sk_lock));				\
1437 	lockdep_set_class_and_name(&(sk)->sk_lock.slock,		\
1438 				(skey), (sname));				\
1439 	lockdep_init_map(&(sk)->sk_lock.dep_map, (name), (key), 0);	\
1440 } while (0)
1441 
1442 #ifdef CONFIG_LOCKDEP
1443 static inline bool lockdep_sock_is_held(const struct sock *csk)
1444 {
1445 	struct sock *sk = (struct sock *)csk;
1446 
1447 	return lockdep_is_held(&sk->sk_lock) ||
1448 	       lockdep_is_held(&sk->sk_lock.slock);
1449 }
1450 #endif
1451 
1452 void lock_sock_nested(struct sock *sk, int subclass);
1453 
1454 static inline void lock_sock(struct sock *sk)
1455 {
1456 	lock_sock_nested(sk, 0);
1457 }
1458 
1459 void release_sock(struct sock *sk);
1460 
1461 /* BH context may only use the following locking interface. */
1462 #define bh_lock_sock(__sk)	spin_lock(&((__sk)->sk_lock.slock))
1463 #define bh_lock_sock_nested(__sk) \
1464 				spin_lock_nested(&((__sk)->sk_lock.slock), \
1465 				SINGLE_DEPTH_NESTING)
1466 #define bh_unlock_sock(__sk)	spin_unlock(&((__sk)->sk_lock.slock))
1467 
1468 bool lock_sock_fast(struct sock *sk);
1469 /**
1470  * unlock_sock_fast - complement of lock_sock_fast
1471  * @sk: socket
1472  * @slow: slow mode
1473  *
1474  * fast unlock socket for user context.
1475  * If slow mode is on, we call regular release_sock()
1476  */
1477 static inline void unlock_sock_fast(struct sock *sk, bool slow)
1478 {
1479 	if (slow)
1480 		release_sock(sk);
1481 	else
1482 		spin_unlock_bh(&sk->sk_lock.slock);
1483 }
1484 
1485 /* Used by processes to "lock" a socket state, so that
1486  * interrupts and bottom half handlers won't change it
1487  * from under us. It essentially blocks any incoming
1488  * packets, so that we won't get any new data or any
1489  * packets that change the state of the socket.
1490  *
1491  * While locked, BH processing will add new packets to
1492  * the backlog queue.  This queue is processed by the
1493  * owner of the socket lock right before it is released.
1494  *
1495  * Since ~2.3.5 it is also exclusive sleep lock serializing
1496  * accesses from user process context.
1497  */
1498 
1499 static inline void sock_owned_by_me(const struct sock *sk)
1500 {
1501 #ifdef CONFIG_LOCKDEP
1502 	WARN_ON_ONCE(!lockdep_sock_is_held(sk) && debug_locks);
1503 #endif
1504 }
1505 
1506 static inline bool sock_owned_by_user(const struct sock *sk)
1507 {
1508 	sock_owned_by_me(sk);
1509 	return sk->sk_lock.owned;
1510 }
1511 
1512 /* no reclassification while locks are held */
1513 static inline bool sock_allow_reclassification(const struct sock *csk)
1514 {
1515 	struct sock *sk = (struct sock *)csk;
1516 
1517 	return !sk->sk_lock.owned && !spin_is_locked(&sk->sk_lock.slock);
1518 }
1519 
1520 struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
1521 		      struct proto *prot, int kern);
1522 void sk_free(struct sock *sk);
1523 void sk_destruct(struct sock *sk);
1524 struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority);
1525 void sk_free_unlock_clone(struct sock *sk);
1526 
1527 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
1528 			     gfp_t priority);
1529 void __sock_wfree(struct sk_buff *skb);
1530 void sock_wfree(struct sk_buff *skb);
1531 void skb_orphan_partial(struct sk_buff *skb);
1532 void sock_rfree(struct sk_buff *skb);
1533 void sock_efree(struct sk_buff *skb);
1534 #ifdef CONFIG_INET
1535 void sock_edemux(struct sk_buff *skb);
1536 #else
1537 #define sock_edemux sock_efree
1538 #endif
1539 
1540 int sock_setsockopt(struct socket *sock, int level, int op,
1541 		    char __user *optval, unsigned int optlen);
1542 
1543 int sock_getsockopt(struct socket *sock, int level, int op,
1544 		    char __user *optval, int __user *optlen);
1545 struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
1546 				    int noblock, int *errcode);
1547 struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
1548 				     unsigned long data_len, int noblock,
1549 				     int *errcode, int max_page_order);
1550 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority);
1551 void sock_kfree_s(struct sock *sk, void *mem, int size);
1552 void sock_kzfree_s(struct sock *sk, void *mem, int size);
1553 void sk_send_sigurg(struct sock *sk);
1554 
1555 struct sockcm_cookie {
1556 	u32 mark;
1557 	u16 tsflags;
1558 };
1559 
1560 int __sock_cmsg_send(struct sock *sk, struct msghdr *msg, struct cmsghdr *cmsg,
1561 		     struct sockcm_cookie *sockc);
1562 int sock_cmsg_send(struct sock *sk, struct msghdr *msg,
1563 		   struct sockcm_cookie *sockc);
1564 
1565 /*
1566  * Functions to fill in entries in struct proto_ops when a protocol
1567  * does not implement a particular function.
1568  */
1569 int sock_no_bind(struct socket *, struct sockaddr *, int);
1570 int sock_no_connect(struct socket *, struct sockaddr *, int, int);
1571 int sock_no_socketpair(struct socket *, struct socket *);
1572 int sock_no_accept(struct socket *, struct socket *, int, bool);
1573 int sock_no_getname(struct socket *, struct sockaddr *, int *, int);
1574 unsigned int sock_no_poll(struct file *, struct socket *,
1575 			  struct poll_table_struct *);
1576 int sock_no_ioctl(struct socket *, unsigned int, unsigned long);
1577 int sock_no_listen(struct socket *, int);
1578 int sock_no_shutdown(struct socket *, int);
1579 int sock_no_getsockopt(struct socket *, int , int, char __user *, int __user *);
1580 int sock_no_setsockopt(struct socket *, int, int, char __user *, unsigned int);
1581 int sock_no_sendmsg(struct socket *, struct msghdr *, size_t);
1582 int sock_no_recvmsg(struct socket *, struct msghdr *, size_t, int);
1583 int sock_no_mmap(struct file *file, struct socket *sock,
1584 		 struct vm_area_struct *vma);
1585 ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset,
1586 			 size_t size, int flags);
1587 
1588 /*
1589  * Functions to fill in entries in struct proto_ops when a protocol
1590  * uses the inet style.
1591  */
1592 int sock_common_getsockopt(struct socket *sock, int level, int optname,
1593 				  char __user *optval, int __user *optlen);
1594 int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
1595 			int flags);
1596 int sock_common_setsockopt(struct socket *sock, int level, int optname,
1597 				  char __user *optval, unsigned int optlen);
1598 int compat_sock_common_getsockopt(struct socket *sock, int level,
1599 		int optname, char __user *optval, int __user *optlen);
1600 int compat_sock_common_setsockopt(struct socket *sock, int level,
1601 		int optname, char __user *optval, unsigned int optlen);
1602 
1603 void sk_common_release(struct sock *sk);
1604 
1605 /*
1606  *	Default socket callbacks and setup code
1607  */
1608 
1609 /* Initialise core socket variables */
1610 void sock_init_data(struct socket *sock, struct sock *sk);
1611 
1612 /*
1613  * Socket reference counting postulates.
1614  *
1615  * * Each user of socket SHOULD hold a reference count.
1616  * * Each access point to socket (an hash table bucket, reference from a list,
1617  *   running timer, skb in flight MUST hold a reference count.
1618  * * When reference count hits 0, it means it will never increase back.
1619  * * When reference count hits 0, it means that no references from
1620  *   outside exist to this socket and current process on current CPU
1621  *   is last user and may/should destroy this socket.
1622  * * sk_free is called from any context: process, BH, IRQ. When
1623  *   it is called, socket has no references from outside -> sk_free
1624  *   may release descendant resources allocated by the socket, but
1625  *   to the time when it is called, socket is NOT referenced by any
1626  *   hash tables, lists etc.
1627  * * Packets, delivered from outside (from network or from another process)
1628  *   and enqueued on receive/error queues SHOULD NOT grab reference count,
1629  *   when they sit in queue. Otherwise, packets will leak to hole, when
1630  *   socket is looked up by one cpu and unhasing is made by another CPU.
1631  *   It is true for udp/raw, netlink (leak to receive and error queues), tcp
1632  *   (leak to backlog). Packet socket does all the processing inside
1633  *   BR_NETPROTO_LOCK, so that it has not this race condition. UNIX sockets
1634  *   use separate SMP lock, so that they are prone too.
1635  */
1636 
1637 /* Ungrab socket and destroy it, if it was the last reference. */
1638 static inline void sock_put(struct sock *sk)
1639 {
1640 	if (refcount_dec_and_test(&sk->sk_refcnt))
1641 		sk_free(sk);
1642 }
1643 /* Generic version of sock_put(), dealing with all sockets
1644  * (TCP_TIMEWAIT, TCP_NEW_SYN_RECV, ESTABLISHED...)
1645  */
1646 void sock_gen_put(struct sock *sk);
1647 
1648 int __sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested,
1649 		     unsigned int trim_cap, bool refcounted);
1650 static inline int sk_receive_skb(struct sock *sk, struct sk_buff *skb,
1651 				 const int nested)
1652 {
1653 	return __sk_receive_skb(sk, skb, nested, 1, true);
1654 }
1655 
1656 static inline void sk_tx_queue_set(struct sock *sk, int tx_queue)
1657 {
1658 	sk->sk_tx_queue_mapping = tx_queue;
1659 }
1660 
1661 static inline void sk_tx_queue_clear(struct sock *sk)
1662 {
1663 	sk->sk_tx_queue_mapping = -1;
1664 }
1665 
1666 static inline int sk_tx_queue_get(const struct sock *sk)
1667 {
1668 	return sk ? sk->sk_tx_queue_mapping : -1;
1669 }
1670 
1671 static inline void sk_set_socket(struct sock *sk, struct socket *sock)
1672 {
1673 	sk_tx_queue_clear(sk);
1674 	sk->sk_socket = sock;
1675 }
1676 
1677 static inline wait_queue_head_t *sk_sleep(struct sock *sk)
1678 {
1679 	BUILD_BUG_ON(offsetof(struct socket_wq, wait) != 0);
1680 	return &rcu_dereference_raw(sk->sk_wq)->wait;
1681 }
1682 /* Detach socket from process context.
1683  * Announce socket dead, detach it from wait queue and inode.
1684  * Note that parent inode held reference count on this struct sock,
1685  * we do not release it in this function, because protocol
1686  * probably wants some additional cleanups or even continuing
1687  * to work with this socket (TCP).
1688  */
1689 static inline void sock_orphan(struct sock *sk)
1690 {
1691 	write_lock_bh(&sk->sk_callback_lock);
1692 	sock_set_flag(sk, SOCK_DEAD);
1693 	sk_set_socket(sk, NULL);
1694 	sk->sk_wq  = NULL;
1695 	write_unlock_bh(&sk->sk_callback_lock);
1696 }
1697 
1698 static inline void sock_graft(struct sock *sk, struct socket *parent)
1699 {
1700 	WARN_ON(parent->sk);
1701 	write_lock_bh(&sk->sk_callback_lock);
1702 	sk->sk_wq = parent->wq;
1703 	parent->sk = sk;
1704 	sk_set_socket(sk, parent);
1705 	sk->sk_uid = SOCK_INODE(parent)->i_uid;
1706 	security_sock_graft(sk, parent);
1707 	write_unlock_bh(&sk->sk_callback_lock);
1708 }
1709 
1710 kuid_t sock_i_uid(struct sock *sk);
1711 unsigned long sock_i_ino(struct sock *sk);
1712 
1713 static inline kuid_t sock_net_uid(const struct net *net, const struct sock *sk)
1714 {
1715 	return sk ? sk->sk_uid : make_kuid(net->user_ns, 0);
1716 }
1717 
1718 static inline u32 net_tx_rndhash(void)
1719 {
1720 	u32 v = prandom_u32();
1721 
1722 	return v ?: 1;
1723 }
1724 
1725 static inline void sk_set_txhash(struct sock *sk)
1726 {
1727 	sk->sk_txhash = net_tx_rndhash();
1728 }
1729 
1730 static inline void sk_rethink_txhash(struct sock *sk)
1731 {
1732 	if (sk->sk_txhash)
1733 		sk_set_txhash(sk);
1734 }
1735 
1736 static inline struct dst_entry *
1737 __sk_dst_get(struct sock *sk)
1738 {
1739 	return rcu_dereference_check(sk->sk_dst_cache,
1740 				     lockdep_sock_is_held(sk));
1741 }
1742 
1743 static inline struct dst_entry *
1744 sk_dst_get(struct sock *sk)
1745 {
1746 	struct dst_entry *dst;
1747 
1748 	rcu_read_lock();
1749 	dst = rcu_dereference(sk->sk_dst_cache);
1750 	if (dst && !atomic_inc_not_zero(&dst->__refcnt))
1751 		dst = NULL;
1752 	rcu_read_unlock();
1753 	return dst;
1754 }
1755 
1756 static inline void dst_negative_advice(struct sock *sk)
1757 {
1758 	struct dst_entry *ndst, *dst = __sk_dst_get(sk);
1759 
1760 	sk_rethink_txhash(sk);
1761 
1762 	if (dst && dst->ops->negative_advice) {
1763 		ndst = dst->ops->negative_advice(dst);
1764 
1765 		if (ndst != dst) {
1766 			rcu_assign_pointer(sk->sk_dst_cache, ndst);
1767 			sk_tx_queue_clear(sk);
1768 			sk->sk_dst_pending_confirm = 0;
1769 		}
1770 	}
1771 }
1772 
1773 static inline void
1774 __sk_dst_set(struct sock *sk, struct dst_entry *dst)
1775 {
1776 	struct dst_entry *old_dst;
1777 
1778 	sk_tx_queue_clear(sk);
1779 	sk->sk_dst_pending_confirm = 0;
1780 	old_dst = rcu_dereference_protected(sk->sk_dst_cache,
1781 					    lockdep_sock_is_held(sk));
1782 	rcu_assign_pointer(sk->sk_dst_cache, dst);
1783 	dst_release(old_dst);
1784 }
1785 
1786 static inline void
1787 sk_dst_set(struct sock *sk, struct dst_entry *dst)
1788 {
1789 	struct dst_entry *old_dst;
1790 
1791 	sk_tx_queue_clear(sk);
1792 	sk->sk_dst_pending_confirm = 0;
1793 	old_dst = xchg((__force struct dst_entry **)&sk->sk_dst_cache, dst);
1794 	dst_release(old_dst);
1795 }
1796 
1797 static inline void
1798 __sk_dst_reset(struct sock *sk)
1799 {
1800 	__sk_dst_set(sk, NULL);
1801 }
1802 
1803 static inline void
1804 sk_dst_reset(struct sock *sk)
1805 {
1806 	sk_dst_set(sk, NULL);
1807 }
1808 
1809 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie);
1810 
1811 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie);
1812 
1813 static inline void sk_dst_confirm(struct sock *sk)
1814 {
1815 	if (!sk->sk_dst_pending_confirm)
1816 		sk->sk_dst_pending_confirm = 1;
1817 }
1818 
1819 static inline void sock_confirm_neigh(struct sk_buff *skb, struct neighbour *n)
1820 {
1821 	if (skb_get_dst_pending_confirm(skb)) {
1822 		struct sock *sk = skb->sk;
1823 		unsigned long now = jiffies;
1824 
1825 		/* avoid dirtying neighbour */
1826 		if (n->confirmed != now)
1827 			n->confirmed = now;
1828 		if (sk && sk->sk_dst_pending_confirm)
1829 			sk->sk_dst_pending_confirm = 0;
1830 	}
1831 }
1832 
1833 bool sk_mc_loop(struct sock *sk);
1834 
1835 static inline bool sk_can_gso(const struct sock *sk)
1836 {
1837 	return net_gso_ok(sk->sk_route_caps, sk->sk_gso_type);
1838 }
1839 
1840 void sk_setup_caps(struct sock *sk, struct dst_entry *dst);
1841 
1842 static inline void sk_nocaps_add(struct sock *sk, netdev_features_t flags)
1843 {
1844 	sk->sk_route_nocaps |= flags;
1845 	sk->sk_route_caps &= ~flags;
1846 }
1847 
1848 static inline bool sk_check_csum_caps(struct sock *sk)
1849 {
1850 	return (sk->sk_route_caps & NETIF_F_HW_CSUM) ||
1851 	       (sk->sk_family == PF_INET &&
1852 		(sk->sk_route_caps & NETIF_F_IP_CSUM)) ||
1853 	       (sk->sk_family == PF_INET6 &&
1854 		(sk->sk_route_caps & NETIF_F_IPV6_CSUM));
1855 }
1856 
1857 static inline int skb_do_copy_data_nocache(struct sock *sk, struct sk_buff *skb,
1858 					   struct iov_iter *from, char *to,
1859 					   int copy, int offset)
1860 {
1861 	if (skb->ip_summed == CHECKSUM_NONE) {
1862 		__wsum csum = 0;
1863 		if (!csum_and_copy_from_iter_full(to, copy, &csum, from))
1864 			return -EFAULT;
1865 		skb->csum = csum_block_add(skb->csum, csum, offset);
1866 	} else if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY) {
1867 		if (!copy_from_iter_full_nocache(to, copy, from))
1868 			return -EFAULT;
1869 	} else if (!copy_from_iter_full(to, copy, from))
1870 		return -EFAULT;
1871 
1872 	return 0;
1873 }
1874 
1875 static inline int skb_add_data_nocache(struct sock *sk, struct sk_buff *skb,
1876 				       struct iov_iter *from, int copy)
1877 {
1878 	int err, offset = skb->len;
1879 
1880 	err = skb_do_copy_data_nocache(sk, skb, from, skb_put(skb, copy),
1881 				       copy, offset);
1882 	if (err)
1883 		__skb_trim(skb, offset);
1884 
1885 	return err;
1886 }
1887 
1888 static inline int skb_copy_to_page_nocache(struct sock *sk, struct iov_iter *from,
1889 					   struct sk_buff *skb,
1890 					   struct page *page,
1891 					   int off, int copy)
1892 {
1893 	int err;
1894 
1895 	err = skb_do_copy_data_nocache(sk, skb, from, page_address(page) + off,
1896 				       copy, skb->len);
1897 	if (err)
1898 		return err;
1899 
1900 	skb->len	     += copy;
1901 	skb->data_len	     += copy;
1902 	skb->truesize	     += copy;
1903 	sk->sk_wmem_queued   += copy;
1904 	sk_mem_charge(sk, copy);
1905 	return 0;
1906 }
1907 
1908 /**
1909  * sk_wmem_alloc_get - returns write allocations
1910  * @sk: socket
1911  *
1912  * Returns sk_wmem_alloc minus initial offset of one
1913  */
1914 static inline int sk_wmem_alloc_get(const struct sock *sk)
1915 {
1916 	return refcount_read(&sk->sk_wmem_alloc) - 1;
1917 }
1918 
1919 /**
1920  * sk_rmem_alloc_get - returns read allocations
1921  * @sk: socket
1922  *
1923  * Returns sk_rmem_alloc
1924  */
1925 static inline int sk_rmem_alloc_get(const struct sock *sk)
1926 {
1927 	return atomic_read(&sk->sk_rmem_alloc);
1928 }
1929 
1930 /**
1931  * sk_has_allocations - check if allocations are outstanding
1932  * @sk: socket
1933  *
1934  * Returns true if socket has write or read allocations
1935  */
1936 static inline bool sk_has_allocations(const struct sock *sk)
1937 {
1938 	return sk_wmem_alloc_get(sk) || sk_rmem_alloc_get(sk);
1939 }
1940 
1941 /**
1942  * skwq_has_sleeper - check if there are any waiting processes
1943  * @wq: struct socket_wq
1944  *
1945  * Returns true if socket_wq has waiting processes
1946  *
1947  * The purpose of the skwq_has_sleeper and sock_poll_wait is to wrap the memory
1948  * barrier call. They were added due to the race found within the tcp code.
1949  *
1950  * Consider following tcp code paths::
1951  *
1952  *   CPU1                CPU2
1953  *   sys_select          receive packet
1954  *   ...                 ...
1955  *   __add_wait_queue    update tp->rcv_nxt
1956  *   ...                 ...
1957  *   tp->rcv_nxt check   sock_def_readable
1958  *   ...                 {
1959  *   schedule               rcu_read_lock();
1960  *                          wq = rcu_dereference(sk->sk_wq);
1961  *                          if (wq && waitqueue_active(&wq->wait))
1962  *                              wake_up_interruptible(&wq->wait)
1963  *                          ...
1964  *                       }
1965  *
1966  * The race for tcp fires when the __add_wait_queue changes done by CPU1 stay
1967  * in its cache, and so does the tp->rcv_nxt update on CPU2 side.  The CPU1
1968  * could then endup calling schedule and sleep forever if there are no more
1969  * data on the socket.
1970  *
1971  */
1972 static inline bool skwq_has_sleeper(struct socket_wq *wq)
1973 {
1974 	return wq && wq_has_sleeper(&wq->wait);
1975 }
1976 
1977 /**
1978  * sock_poll_wait - place memory barrier behind the poll_wait call.
1979  * @filp:           file
1980  * @wait_address:   socket wait queue
1981  * @p:              poll_table
1982  *
1983  * See the comments in the wq_has_sleeper function.
1984  */
1985 static inline void sock_poll_wait(struct file *filp,
1986 		wait_queue_head_t *wait_address, poll_table *p)
1987 {
1988 	if (!poll_does_not_wait(p) && wait_address) {
1989 		poll_wait(filp, wait_address, p);
1990 		/* We need to be sure we are in sync with the
1991 		 * socket flags modification.
1992 		 *
1993 		 * This memory barrier is paired in the wq_has_sleeper.
1994 		 */
1995 		smp_mb();
1996 	}
1997 }
1998 
1999 static inline void skb_set_hash_from_sk(struct sk_buff *skb, struct sock *sk)
2000 {
2001 	if (sk->sk_txhash) {
2002 		skb->l4_hash = 1;
2003 		skb->hash = sk->sk_txhash;
2004 	}
2005 }
2006 
2007 void skb_set_owner_w(struct sk_buff *skb, struct sock *sk);
2008 
2009 /*
2010  *	Queue a received datagram if it will fit. Stream and sequenced
2011  *	protocols can't normally use this as they need to fit buffers in
2012  *	and play with them.
2013  *
2014  *	Inlined as it's very short and called for pretty much every
2015  *	packet ever received.
2016  */
2017 static inline void skb_set_owner_r(struct sk_buff *skb, struct sock *sk)
2018 {
2019 	skb_orphan(skb);
2020 	skb->sk = sk;
2021 	skb->destructor = sock_rfree;
2022 	atomic_add(skb->truesize, &sk->sk_rmem_alloc);
2023 	sk_mem_charge(sk, skb->truesize);
2024 }
2025 
2026 void sk_reset_timer(struct sock *sk, struct timer_list *timer,
2027 		    unsigned long expires);
2028 
2029 void sk_stop_timer(struct sock *sk, struct timer_list *timer);
2030 
2031 int __sk_queue_drop_skb(struct sock *sk, struct sk_buff_head *sk_queue,
2032 			struct sk_buff *skb, unsigned int flags,
2033 			void (*destructor)(struct sock *sk,
2034 					   struct sk_buff *skb));
2035 int __sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
2036 int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
2037 
2038 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb);
2039 struct sk_buff *sock_dequeue_err_skb(struct sock *sk);
2040 
2041 /*
2042  *	Recover an error report and clear atomically
2043  */
2044 
2045 static inline int sock_error(struct sock *sk)
2046 {
2047 	int err;
2048 	if (likely(!sk->sk_err))
2049 		return 0;
2050 	err = xchg(&sk->sk_err, 0);
2051 	return -err;
2052 }
2053 
2054 static inline unsigned long sock_wspace(struct sock *sk)
2055 {
2056 	int amt = 0;
2057 
2058 	if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
2059 		amt = sk->sk_sndbuf - refcount_read(&sk->sk_wmem_alloc);
2060 		if (amt < 0)
2061 			amt = 0;
2062 	}
2063 	return amt;
2064 }
2065 
2066 /* Note:
2067  *  We use sk->sk_wq_raw, from contexts knowing this
2068  *  pointer is not NULL and cannot disappear/change.
2069  */
2070 static inline void sk_set_bit(int nr, struct sock *sk)
2071 {
2072 	if ((nr == SOCKWQ_ASYNC_NOSPACE || nr == SOCKWQ_ASYNC_WAITDATA) &&
2073 	    !sock_flag(sk, SOCK_FASYNC))
2074 		return;
2075 
2076 	set_bit(nr, &sk->sk_wq_raw->flags);
2077 }
2078 
2079 static inline void sk_clear_bit(int nr, struct sock *sk)
2080 {
2081 	if ((nr == SOCKWQ_ASYNC_NOSPACE || nr == SOCKWQ_ASYNC_WAITDATA) &&
2082 	    !sock_flag(sk, SOCK_FASYNC))
2083 		return;
2084 
2085 	clear_bit(nr, &sk->sk_wq_raw->flags);
2086 }
2087 
2088 static inline void sk_wake_async(const struct sock *sk, int how, int band)
2089 {
2090 	if (sock_flag(sk, SOCK_FASYNC)) {
2091 		rcu_read_lock();
2092 		sock_wake_async(rcu_dereference(sk->sk_wq), how, band);
2093 		rcu_read_unlock();
2094 	}
2095 }
2096 
2097 /* Since sk_{r,w}mem_alloc sums skb->truesize, even a small frame might
2098  * need sizeof(sk_buff) + MTU + padding, unless net driver perform copybreak.
2099  * Note: for send buffers, TCP works better if we can build two skbs at
2100  * minimum.
2101  */
2102 #define TCP_SKB_MIN_TRUESIZE	(2048 + SKB_DATA_ALIGN(sizeof(struct sk_buff)))
2103 
2104 #define SOCK_MIN_SNDBUF		(TCP_SKB_MIN_TRUESIZE * 2)
2105 #define SOCK_MIN_RCVBUF		 TCP_SKB_MIN_TRUESIZE
2106 
2107 static inline void sk_stream_moderate_sndbuf(struct sock *sk)
2108 {
2109 	if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK)) {
2110 		sk->sk_sndbuf = min(sk->sk_sndbuf, sk->sk_wmem_queued >> 1);
2111 		sk->sk_sndbuf = max_t(u32, sk->sk_sndbuf, SOCK_MIN_SNDBUF);
2112 	}
2113 }
2114 
2115 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp,
2116 				    bool force_schedule);
2117 
2118 /**
2119  * sk_page_frag - return an appropriate page_frag
2120  * @sk: socket
2121  *
2122  * If socket allocation mode allows current thread to sleep, it means its
2123  * safe to use the per task page_frag instead of the per socket one.
2124  */
2125 static inline struct page_frag *sk_page_frag(struct sock *sk)
2126 {
2127 	if (gfpflags_allow_blocking(sk->sk_allocation))
2128 		return &current->task_frag;
2129 
2130 	return &sk->sk_frag;
2131 }
2132 
2133 bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag);
2134 
2135 /*
2136  *	Default write policy as shown to user space via poll/select/SIGIO
2137  */
2138 static inline bool sock_writeable(const struct sock *sk)
2139 {
2140 	return refcount_read(&sk->sk_wmem_alloc) < (sk->sk_sndbuf >> 1);
2141 }
2142 
2143 static inline gfp_t gfp_any(void)
2144 {
2145 	return in_softirq() ? GFP_ATOMIC : GFP_KERNEL;
2146 }
2147 
2148 static inline long sock_rcvtimeo(const struct sock *sk, bool noblock)
2149 {
2150 	return noblock ? 0 : sk->sk_rcvtimeo;
2151 }
2152 
2153 static inline long sock_sndtimeo(const struct sock *sk, bool noblock)
2154 {
2155 	return noblock ? 0 : sk->sk_sndtimeo;
2156 }
2157 
2158 static inline int sock_rcvlowat(const struct sock *sk, int waitall, int len)
2159 {
2160 	return (waitall ? len : min_t(int, sk->sk_rcvlowat, len)) ? : 1;
2161 }
2162 
2163 /* Alas, with timeout socket operations are not restartable.
2164  * Compare this to poll().
2165  */
2166 static inline int sock_intr_errno(long timeo)
2167 {
2168 	return timeo == MAX_SCHEDULE_TIMEOUT ? -ERESTARTSYS : -EINTR;
2169 }
2170 
2171 struct sock_skb_cb {
2172 	u32 dropcount;
2173 };
2174 
2175 /* Store sock_skb_cb at the end of skb->cb[] so protocol families
2176  * using skb->cb[] would keep using it directly and utilize its
2177  * alignement guarantee.
2178  */
2179 #define SOCK_SKB_CB_OFFSET ((FIELD_SIZEOF(struct sk_buff, cb) - \
2180 			    sizeof(struct sock_skb_cb)))
2181 
2182 #define SOCK_SKB_CB(__skb) ((struct sock_skb_cb *)((__skb)->cb + \
2183 			    SOCK_SKB_CB_OFFSET))
2184 
2185 #define sock_skb_cb_check_size(size) \
2186 	BUILD_BUG_ON((size) > SOCK_SKB_CB_OFFSET)
2187 
2188 static inline void
2189 sock_skb_set_dropcount(const struct sock *sk, struct sk_buff *skb)
2190 {
2191 	SOCK_SKB_CB(skb)->dropcount = sock_flag(sk, SOCK_RXQ_OVFL) ?
2192 						atomic_read(&sk->sk_drops) : 0;
2193 }
2194 
2195 static inline void sk_drops_add(struct sock *sk, const struct sk_buff *skb)
2196 {
2197 	int segs = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
2198 
2199 	atomic_add(segs, &sk->sk_drops);
2200 }
2201 
2202 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
2203 			   struct sk_buff *skb);
2204 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
2205 			     struct sk_buff *skb);
2206 
2207 static inline void
2208 sock_recv_timestamp(struct msghdr *msg, struct sock *sk, struct sk_buff *skb)
2209 {
2210 	ktime_t kt = skb->tstamp;
2211 	struct skb_shared_hwtstamps *hwtstamps = skb_hwtstamps(skb);
2212 
2213 	/*
2214 	 * generate control messages if
2215 	 * - receive time stamping in software requested
2216 	 * - software time stamp available and wanted
2217 	 * - hardware time stamps available and wanted
2218 	 */
2219 	if (sock_flag(sk, SOCK_RCVTSTAMP) ||
2220 	    (sk->sk_tsflags & SOF_TIMESTAMPING_RX_SOFTWARE) ||
2221 	    (kt && sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) ||
2222 	    (hwtstamps->hwtstamp &&
2223 	     (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE)))
2224 		__sock_recv_timestamp(msg, sk, skb);
2225 	else
2226 		sk->sk_stamp = kt;
2227 
2228 	if (sock_flag(sk, SOCK_WIFI_STATUS) && skb->wifi_acked_valid)
2229 		__sock_recv_wifi_status(msg, sk, skb);
2230 }
2231 
2232 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
2233 			      struct sk_buff *skb);
2234 
2235 #define SK_DEFAULT_STAMP (-1L * NSEC_PER_SEC)
2236 static inline void sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
2237 					  struct sk_buff *skb)
2238 {
2239 #define FLAGS_TS_OR_DROPS ((1UL << SOCK_RXQ_OVFL)			| \
2240 			   (1UL << SOCK_RCVTSTAMP))
2241 #define TSFLAGS_ANY	  (SOF_TIMESTAMPING_SOFTWARE			| \
2242 			   SOF_TIMESTAMPING_RAW_HARDWARE)
2243 
2244 	if (sk->sk_flags & FLAGS_TS_OR_DROPS || sk->sk_tsflags & TSFLAGS_ANY)
2245 		__sock_recv_ts_and_drops(msg, sk, skb);
2246 	else if (unlikely(sock_flag(sk, SOCK_TIMESTAMP)))
2247 		sk->sk_stamp = skb->tstamp;
2248 	else if (unlikely(sk->sk_stamp == SK_DEFAULT_STAMP))
2249 		sk->sk_stamp = 0;
2250 }
2251 
2252 void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags);
2253 
2254 /**
2255  * sock_tx_timestamp - checks whether the outgoing packet is to be time stamped
2256  * @sk:		socket sending this packet
2257  * @tsflags:	timestamping flags to use
2258  * @tx_flags:	completed with instructions for time stamping
2259  *
2260  * Note: callers should take care of initial ``*tx_flags`` value (usually 0)
2261  */
2262 static inline void sock_tx_timestamp(const struct sock *sk, __u16 tsflags,
2263 				     __u8 *tx_flags)
2264 {
2265 	if (unlikely(tsflags))
2266 		__sock_tx_timestamp(tsflags, tx_flags);
2267 	if (unlikely(sock_flag(sk, SOCK_WIFI_STATUS)))
2268 		*tx_flags |= SKBTX_WIFI_STATUS;
2269 }
2270 
2271 /**
2272  * sk_eat_skb - Release a skb if it is no longer needed
2273  * @sk: socket to eat this skb from
2274  * @skb: socket buffer to eat
2275  *
2276  * This routine must be called with interrupts disabled or with the socket
2277  * locked so that the sk_buff queue operation is ok.
2278 */
2279 static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb)
2280 {
2281 	__skb_unlink(skb, &sk->sk_receive_queue);
2282 	__kfree_skb(skb);
2283 }
2284 
2285 static inline
2286 struct net *sock_net(const struct sock *sk)
2287 {
2288 	return read_pnet(&sk->sk_net);
2289 }
2290 
2291 static inline
2292 void sock_net_set(struct sock *sk, struct net *net)
2293 {
2294 	write_pnet(&sk->sk_net, net);
2295 }
2296 
2297 static inline struct sock *skb_steal_sock(struct sk_buff *skb)
2298 {
2299 	if (skb->sk) {
2300 		struct sock *sk = skb->sk;
2301 
2302 		skb->destructor = NULL;
2303 		skb->sk = NULL;
2304 		return sk;
2305 	}
2306 	return NULL;
2307 }
2308 
2309 /* This helper checks if a socket is a full socket,
2310  * ie _not_ a timewait or request socket.
2311  */
2312 static inline bool sk_fullsock(const struct sock *sk)
2313 {
2314 	return (1 << sk->sk_state) & ~(TCPF_TIME_WAIT | TCPF_NEW_SYN_RECV);
2315 }
2316 
2317 /* This helper checks if a socket is a LISTEN or NEW_SYN_RECV
2318  * SYNACK messages can be attached to either ones (depending on SYNCOOKIE)
2319  */
2320 static inline bool sk_listener(const struct sock *sk)
2321 {
2322 	return (1 << sk->sk_state) & (TCPF_LISTEN | TCPF_NEW_SYN_RECV);
2323 }
2324 
2325 /**
2326  * sk_state_load - read sk->sk_state for lockless contexts
2327  * @sk: socket pointer
2328  *
2329  * Paired with sk_state_store(). Used in places we do not hold socket lock :
2330  * tcp_diag_get_info(), tcp_get_info(), tcp_poll(), get_tcp4_sock() ...
2331  */
2332 static inline int sk_state_load(const struct sock *sk)
2333 {
2334 	return smp_load_acquire(&sk->sk_state);
2335 }
2336 
2337 /**
2338  * sk_state_store - update sk->sk_state
2339  * @sk: socket pointer
2340  * @newstate: new state
2341  *
2342  * Paired with sk_state_load(). Should be used in contexts where
2343  * state change might impact lockless readers.
2344  */
2345 static inline void sk_state_store(struct sock *sk, int newstate)
2346 {
2347 	smp_store_release(&sk->sk_state, newstate);
2348 }
2349 
2350 void sock_enable_timestamp(struct sock *sk, int flag);
2351 int sock_get_timestamp(struct sock *, struct timeval __user *);
2352 int sock_get_timestampns(struct sock *, struct timespec __user *);
2353 int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len, int level,
2354 		       int type);
2355 
2356 bool sk_ns_capable(const struct sock *sk,
2357 		   struct user_namespace *user_ns, int cap);
2358 bool sk_capable(const struct sock *sk, int cap);
2359 bool sk_net_capable(const struct sock *sk, int cap);
2360 
2361 void sk_get_meminfo(const struct sock *sk, u32 *meminfo);
2362 
2363 extern __u32 sysctl_wmem_max;
2364 extern __u32 sysctl_rmem_max;
2365 
2366 extern int sysctl_tstamp_allow_data;
2367 extern int sysctl_optmem_max;
2368 
2369 extern __u32 sysctl_wmem_default;
2370 extern __u32 sysctl_rmem_default;
2371 
2372 #endif	/* _SOCK_H */
2373