1 /* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * Definitions for the AF_INET socket handler. 7 * 8 * Version: @(#)sock.h 1.0.4 05/13/93 9 * 10 * Authors: Ross Biro 11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 12 * Corey Minyard <wf-rch!minyard@relay.EU.net> 13 * Florian La Roche <flla@stud.uni-sb.de> 14 * 15 * Fixes: 16 * Alan Cox : Volatiles in skbuff pointers. See 17 * skbuff comments. May be overdone, 18 * better to prove they can be removed 19 * than the reverse. 20 * Alan Cox : Added a zapped field for tcp to note 21 * a socket is reset and must stay shut up 22 * Alan Cox : New fields for options 23 * Pauline Middelink : identd support 24 * Alan Cox : Eliminate low level recv/recvfrom 25 * David S. Miller : New socket lookup architecture. 26 * Steve Whitehouse: Default routines for sock_ops 27 * Arnaldo C. Melo : removed net_pinfo, tp_pinfo and made 28 * protinfo be just a void pointer, as the 29 * protocol specific parts were moved to 30 * respective headers and ipv4/v6, etc now 31 * use private slabcaches for its socks 32 * Pedro Hortas : New flags field for socket options 33 * 34 * 35 * This program is free software; you can redistribute it and/or 36 * modify it under the terms of the GNU General Public License 37 * as published by the Free Software Foundation; either version 38 * 2 of the License, or (at your option) any later version. 39 */ 40 #ifndef _SOCK_H 41 #define _SOCK_H 42 43 #include <linux/config.h> 44 #include <linux/list.h> 45 #include <linux/timer.h> 46 #include <linux/cache.h> 47 #include <linux/module.h> 48 #include <linux/netdevice.h> 49 #include <linux/skbuff.h> /* struct sk_buff */ 50 #include <linux/security.h> 51 52 #include <linux/filter.h> 53 54 #include <asm/atomic.h> 55 #include <net/dst.h> 56 #include <net/checksum.h> 57 58 /* 59 * This structure really needs to be cleaned up. 60 * Most of it is for TCP, and not used by any of 61 * the other protocols. 62 */ 63 64 /* Define this to get the SOCK_DBG debugging facility. */ 65 #define SOCK_DEBUGGING 66 #ifdef SOCK_DEBUGGING 67 #define SOCK_DEBUG(sk, msg...) do { if ((sk) && sock_flag((sk), SOCK_DBG)) \ 68 printk(KERN_DEBUG msg); } while (0) 69 #else 70 #define SOCK_DEBUG(sk, msg...) do { } while (0) 71 #endif 72 73 /* This is the per-socket lock. The spinlock provides a synchronization 74 * between user contexts and software interrupt processing, whereas the 75 * mini-semaphore synchronizes multiple users amongst themselves. 76 */ 77 struct sock_iocb; 78 typedef struct { 79 spinlock_t slock; 80 struct sock_iocb *owner; 81 wait_queue_head_t wq; 82 } socket_lock_t; 83 84 #define sock_lock_init(__sk) \ 85 do { spin_lock_init(&((__sk)->sk_lock.slock)); \ 86 (__sk)->sk_lock.owner = NULL; \ 87 init_waitqueue_head(&((__sk)->sk_lock.wq)); \ 88 } while(0) 89 90 struct sock; 91 struct proto; 92 93 /** 94 * struct sock_common - minimal network layer representation of sockets 95 * @skc_family: network address family 96 * @skc_state: Connection state 97 * @skc_reuse: %SO_REUSEADDR setting 98 * @skc_bound_dev_if: bound device index if != 0 99 * @skc_node: main hash linkage for various protocol lookup tables 100 * @skc_bind_node: bind hash linkage for various protocol lookup tables 101 * @skc_refcnt: reference count 102 * @skc_hash: hash value used with various protocol lookup tables 103 * @skc_prot: protocol handlers inside a network family 104 * 105 * This is the minimal network layer representation of sockets, the header 106 * for struct sock and struct inet_timewait_sock. 107 */ 108 struct sock_common { 109 unsigned short skc_family; 110 volatile unsigned char skc_state; 111 unsigned char skc_reuse; 112 int skc_bound_dev_if; 113 struct hlist_node skc_node; 114 struct hlist_node skc_bind_node; 115 atomic_t skc_refcnt; 116 unsigned int skc_hash; 117 struct proto *skc_prot; 118 }; 119 120 /** 121 * struct sock - network layer representation of sockets 122 * @__sk_common: shared layout with inet_timewait_sock 123 * @sk_shutdown: mask of %SEND_SHUTDOWN and/or %RCV_SHUTDOWN 124 * @sk_userlocks: %SO_SNDBUF and %SO_RCVBUF settings 125 * @sk_lock: synchronizer 126 * @sk_rcvbuf: size of receive buffer in bytes 127 * @sk_sleep: sock wait queue 128 * @sk_dst_cache: destination cache 129 * @sk_dst_lock: destination cache lock 130 * @sk_policy: flow policy 131 * @sk_rmem_alloc: receive queue bytes committed 132 * @sk_receive_queue: incoming packets 133 * @sk_wmem_alloc: transmit queue bytes committed 134 * @sk_write_queue: Packet sending queue 135 * @sk_omem_alloc: "o" is "option" or "other" 136 * @sk_wmem_queued: persistent queue size 137 * @sk_forward_alloc: space allocated forward 138 * @sk_allocation: allocation mode 139 * @sk_sndbuf: size of send buffer in bytes 140 * @sk_flags: %SO_LINGER (l_onoff), %SO_BROADCAST, %SO_KEEPALIVE, %SO_OOBINLINE settings 141 * @sk_no_check: %SO_NO_CHECK setting, wether or not checkup packets 142 * @sk_route_caps: route capabilities (e.g. %NETIF_F_TSO) 143 * @sk_lingertime: %SO_LINGER l_linger setting 144 * @sk_backlog: always used with the per-socket spinlock held 145 * @sk_callback_lock: used with the callbacks in the end of this struct 146 * @sk_error_queue: rarely used 147 * @sk_prot_creator: sk_prot of original sock creator (see ipv6_setsockopt, IPV6_ADDRFORM for instance) 148 * @sk_err: last error 149 * @sk_err_soft: errors that don't cause failure but are the cause of a persistent failure not just 'timed out' 150 * @sk_ack_backlog: current listen backlog 151 * @sk_max_ack_backlog: listen backlog set in listen() 152 * @sk_priority: %SO_PRIORITY setting 153 * @sk_type: socket type (%SOCK_STREAM, etc) 154 * @sk_protocol: which protocol this socket belongs in this network family 155 * @sk_peercred: %SO_PEERCRED setting 156 * @sk_rcvlowat: %SO_RCVLOWAT setting 157 * @sk_rcvtimeo: %SO_RCVTIMEO setting 158 * @sk_sndtimeo: %SO_SNDTIMEO setting 159 * @sk_filter: socket filtering instructions 160 * @sk_protinfo: private area, net family specific, when not using slab 161 * @sk_timer: sock cleanup timer 162 * @sk_stamp: time stamp of last packet received 163 * @sk_socket: Identd and reporting IO signals 164 * @sk_user_data: RPC layer private data 165 * @sk_sndmsg_page: cached page for sendmsg 166 * @sk_sndmsg_off: cached offset for sendmsg 167 * @sk_send_head: front of stuff to transmit 168 * @sk_security: used by security modules 169 * @sk_write_pending: a write to stream socket waits to start 170 * @sk_state_change: callback to indicate change in the state of the sock 171 * @sk_data_ready: callback to indicate there is data to be processed 172 * @sk_write_space: callback to indicate there is bf sending space available 173 * @sk_error_report: callback to indicate errors (e.g. %MSG_ERRQUEUE) 174 * @sk_backlog_rcv: callback to process the backlog 175 * @sk_destruct: called at sock freeing time, i.e. when all refcnt == 0 176 */ 177 struct sock { 178 /* 179 * Now struct inet_timewait_sock also uses sock_common, so please just 180 * don't add nothing before this first member (__sk_common) --acme 181 */ 182 struct sock_common __sk_common; 183 #define sk_family __sk_common.skc_family 184 #define sk_state __sk_common.skc_state 185 #define sk_reuse __sk_common.skc_reuse 186 #define sk_bound_dev_if __sk_common.skc_bound_dev_if 187 #define sk_node __sk_common.skc_node 188 #define sk_bind_node __sk_common.skc_bind_node 189 #define sk_refcnt __sk_common.skc_refcnt 190 #define sk_hash __sk_common.skc_hash 191 #define sk_prot __sk_common.skc_prot 192 unsigned char sk_shutdown : 2, 193 sk_no_check : 2, 194 sk_userlocks : 4; 195 unsigned char sk_protocol; 196 unsigned short sk_type; 197 int sk_rcvbuf; 198 socket_lock_t sk_lock; 199 wait_queue_head_t *sk_sleep; 200 struct dst_entry *sk_dst_cache; 201 struct xfrm_policy *sk_policy[2]; 202 rwlock_t sk_dst_lock; 203 atomic_t sk_rmem_alloc; 204 atomic_t sk_wmem_alloc; 205 atomic_t sk_omem_alloc; 206 struct sk_buff_head sk_receive_queue; 207 struct sk_buff_head sk_write_queue; 208 int sk_wmem_queued; 209 int sk_forward_alloc; 210 gfp_t sk_allocation; 211 int sk_sndbuf; 212 int sk_route_caps; 213 int sk_rcvlowat; 214 unsigned long sk_flags; 215 unsigned long sk_lingertime; 216 /* 217 * The backlog queue is special, it is always used with 218 * the per-socket spinlock held and requires low latency 219 * access. Therefore we special case it's implementation. 220 */ 221 struct { 222 struct sk_buff *head; 223 struct sk_buff *tail; 224 } sk_backlog; 225 struct sk_buff_head sk_error_queue; 226 struct proto *sk_prot_creator; 227 rwlock_t sk_callback_lock; 228 int sk_err, 229 sk_err_soft; 230 unsigned short sk_ack_backlog; 231 unsigned short sk_max_ack_backlog; 232 __u32 sk_priority; 233 struct ucred sk_peercred; 234 long sk_rcvtimeo; 235 long sk_sndtimeo; 236 struct sk_filter *sk_filter; 237 void *sk_protinfo; 238 struct timer_list sk_timer; 239 struct timeval sk_stamp; 240 struct socket *sk_socket; 241 void *sk_user_data; 242 struct page *sk_sndmsg_page; 243 struct sk_buff *sk_send_head; 244 __u32 sk_sndmsg_off; 245 int sk_write_pending; 246 void *sk_security; 247 void (*sk_state_change)(struct sock *sk); 248 void (*sk_data_ready)(struct sock *sk, int bytes); 249 void (*sk_write_space)(struct sock *sk); 250 void (*sk_error_report)(struct sock *sk); 251 int (*sk_backlog_rcv)(struct sock *sk, 252 struct sk_buff *skb); 253 void (*sk_destruct)(struct sock *sk); 254 }; 255 256 /* 257 * Hashed lists helper routines 258 */ 259 static inline struct sock *__sk_head(const struct hlist_head *head) 260 { 261 return hlist_entry(head->first, struct sock, sk_node); 262 } 263 264 static inline struct sock *sk_head(const struct hlist_head *head) 265 { 266 return hlist_empty(head) ? NULL : __sk_head(head); 267 } 268 269 static inline struct sock *sk_next(const struct sock *sk) 270 { 271 return sk->sk_node.next ? 272 hlist_entry(sk->sk_node.next, struct sock, sk_node) : NULL; 273 } 274 275 static inline int sk_unhashed(const struct sock *sk) 276 { 277 return hlist_unhashed(&sk->sk_node); 278 } 279 280 static inline int sk_hashed(const struct sock *sk) 281 { 282 return !sk_unhashed(sk); 283 } 284 285 static __inline__ void sk_node_init(struct hlist_node *node) 286 { 287 node->pprev = NULL; 288 } 289 290 static __inline__ void __sk_del_node(struct sock *sk) 291 { 292 __hlist_del(&sk->sk_node); 293 } 294 295 static __inline__ int __sk_del_node_init(struct sock *sk) 296 { 297 if (sk_hashed(sk)) { 298 __sk_del_node(sk); 299 sk_node_init(&sk->sk_node); 300 return 1; 301 } 302 return 0; 303 } 304 305 /* Grab socket reference count. This operation is valid only 306 when sk is ALREADY grabbed f.e. it is found in hash table 307 or a list and the lookup is made under lock preventing hash table 308 modifications. 309 */ 310 311 static inline void sock_hold(struct sock *sk) 312 { 313 atomic_inc(&sk->sk_refcnt); 314 } 315 316 /* Ungrab socket in the context, which assumes that socket refcnt 317 cannot hit zero, f.e. it is true in context of any socketcall. 318 */ 319 static inline void __sock_put(struct sock *sk) 320 { 321 atomic_dec(&sk->sk_refcnt); 322 } 323 324 static __inline__ int sk_del_node_init(struct sock *sk) 325 { 326 int rc = __sk_del_node_init(sk); 327 328 if (rc) { 329 /* paranoid for a while -acme */ 330 WARN_ON(atomic_read(&sk->sk_refcnt) == 1); 331 __sock_put(sk); 332 } 333 return rc; 334 } 335 336 static __inline__ void __sk_add_node(struct sock *sk, struct hlist_head *list) 337 { 338 hlist_add_head(&sk->sk_node, list); 339 } 340 341 static __inline__ void sk_add_node(struct sock *sk, struct hlist_head *list) 342 { 343 sock_hold(sk); 344 __sk_add_node(sk, list); 345 } 346 347 static __inline__ void __sk_del_bind_node(struct sock *sk) 348 { 349 __hlist_del(&sk->sk_bind_node); 350 } 351 352 static __inline__ void sk_add_bind_node(struct sock *sk, 353 struct hlist_head *list) 354 { 355 hlist_add_head(&sk->sk_bind_node, list); 356 } 357 358 #define sk_for_each(__sk, node, list) \ 359 hlist_for_each_entry(__sk, node, list, sk_node) 360 #define sk_for_each_from(__sk, node) \ 361 if (__sk && ({ node = &(__sk)->sk_node; 1; })) \ 362 hlist_for_each_entry_from(__sk, node, sk_node) 363 #define sk_for_each_continue(__sk, node) \ 364 if (__sk && ({ node = &(__sk)->sk_node; 1; })) \ 365 hlist_for_each_entry_continue(__sk, node, sk_node) 366 #define sk_for_each_safe(__sk, node, tmp, list) \ 367 hlist_for_each_entry_safe(__sk, node, tmp, list, sk_node) 368 #define sk_for_each_bound(__sk, node, list) \ 369 hlist_for_each_entry(__sk, node, list, sk_bind_node) 370 371 /* Sock flags */ 372 enum sock_flags { 373 SOCK_DEAD, 374 SOCK_DONE, 375 SOCK_URGINLINE, 376 SOCK_KEEPOPEN, 377 SOCK_LINGER, 378 SOCK_DESTROY, 379 SOCK_BROADCAST, 380 SOCK_TIMESTAMP, 381 SOCK_ZAPPED, 382 SOCK_USE_WRITE_QUEUE, /* whether to call sk->sk_write_space in sock_wfree */ 383 SOCK_DBG, /* %SO_DEBUG setting */ 384 SOCK_RCVTSTAMP, /* %SO_TIMESTAMP setting */ 385 SOCK_NO_LARGESEND, /* whether to sent large segments or not */ 386 SOCK_LOCALROUTE, /* route locally only, %SO_DONTROUTE setting */ 387 SOCK_QUEUE_SHRUNK, /* write queue has been shrunk recently */ 388 }; 389 390 static inline void sock_copy_flags(struct sock *nsk, struct sock *osk) 391 { 392 nsk->sk_flags = osk->sk_flags; 393 } 394 395 static inline void sock_set_flag(struct sock *sk, enum sock_flags flag) 396 { 397 __set_bit(flag, &sk->sk_flags); 398 } 399 400 static inline void sock_reset_flag(struct sock *sk, enum sock_flags flag) 401 { 402 __clear_bit(flag, &sk->sk_flags); 403 } 404 405 static inline int sock_flag(struct sock *sk, enum sock_flags flag) 406 { 407 return test_bit(flag, &sk->sk_flags); 408 } 409 410 static inline void sk_acceptq_removed(struct sock *sk) 411 { 412 sk->sk_ack_backlog--; 413 } 414 415 static inline void sk_acceptq_added(struct sock *sk) 416 { 417 sk->sk_ack_backlog++; 418 } 419 420 static inline int sk_acceptq_is_full(struct sock *sk) 421 { 422 return sk->sk_ack_backlog > sk->sk_max_ack_backlog; 423 } 424 425 /* 426 * Compute minimal free write space needed to queue new packets. 427 */ 428 static inline int sk_stream_min_wspace(struct sock *sk) 429 { 430 return sk->sk_wmem_queued / 2; 431 } 432 433 static inline int sk_stream_wspace(struct sock *sk) 434 { 435 return sk->sk_sndbuf - sk->sk_wmem_queued; 436 } 437 438 extern void sk_stream_write_space(struct sock *sk); 439 440 static inline int sk_stream_memory_free(struct sock *sk) 441 { 442 return sk->sk_wmem_queued < sk->sk_sndbuf; 443 } 444 445 extern void sk_stream_rfree(struct sk_buff *skb); 446 447 static inline void sk_stream_set_owner_r(struct sk_buff *skb, struct sock *sk) 448 { 449 skb->sk = sk; 450 skb->destructor = sk_stream_rfree; 451 atomic_add(skb->truesize, &sk->sk_rmem_alloc); 452 sk->sk_forward_alloc -= skb->truesize; 453 } 454 455 static inline void sk_stream_free_skb(struct sock *sk, struct sk_buff *skb) 456 { 457 skb_truesize_check(skb); 458 sock_set_flag(sk, SOCK_QUEUE_SHRUNK); 459 sk->sk_wmem_queued -= skb->truesize; 460 sk->sk_forward_alloc += skb->truesize; 461 __kfree_skb(skb); 462 } 463 464 /* The per-socket spinlock must be held here. */ 465 static inline void sk_add_backlog(struct sock *sk, struct sk_buff *skb) 466 { 467 if (!sk->sk_backlog.tail) { 468 sk->sk_backlog.head = sk->sk_backlog.tail = skb; 469 } else { 470 sk->sk_backlog.tail->next = skb; 471 sk->sk_backlog.tail = skb; 472 } 473 skb->next = NULL; 474 } 475 476 #define sk_wait_event(__sk, __timeo, __condition) \ 477 ({ int rc; \ 478 release_sock(__sk); \ 479 rc = __condition; \ 480 if (!rc) { \ 481 *(__timeo) = schedule_timeout(*(__timeo)); \ 482 } \ 483 lock_sock(__sk); \ 484 rc = __condition; \ 485 rc; \ 486 }) 487 488 extern int sk_stream_wait_connect(struct sock *sk, long *timeo_p); 489 extern int sk_stream_wait_memory(struct sock *sk, long *timeo_p); 490 extern void sk_stream_wait_close(struct sock *sk, long timeo_p); 491 extern int sk_stream_error(struct sock *sk, int flags, int err); 492 extern void sk_stream_kill_queues(struct sock *sk); 493 494 extern int sk_wait_data(struct sock *sk, long *timeo); 495 496 struct request_sock_ops; 497 struct timewait_sock_ops; 498 499 /* Networking protocol blocks we attach to sockets. 500 * socket layer -> transport layer interface 501 * transport -> network interface is defined by struct inet_proto 502 */ 503 struct proto { 504 void (*close)(struct sock *sk, 505 long timeout); 506 int (*connect)(struct sock *sk, 507 struct sockaddr *uaddr, 508 int addr_len); 509 int (*disconnect)(struct sock *sk, int flags); 510 511 struct sock * (*accept) (struct sock *sk, int flags, int *err); 512 513 int (*ioctl)(struct sock *sk, int cmd, 514 unsigned long arg); 515 int (*init)(struct sock *sk); 516 int (*destroy)(struct sock *sk); 517 void (*shutdown)(struct sock *sk, int how); 518 int (*setsockopt)(struct sock *sk, int level, 519 int optname, char __user *optval, 520 int optlen); 521 int (*getsockopt)(struct sock *sk, int level, 522 int optname, char __user *optval, 523 int __user *option); 524 int (*compat_setsockopt)(struct sock *sk, 525 int level, 526 int optname, char __user *optval, 527 int optlen); 528 int (*compat_getsockopt)(struct sock *sk, 529 int level, 530 int optname, char __user *optval, 531 int __user *option); 532 int (*sendmsg)(struct kiocb *iocb, struct sock *sk, 533 struct msghdr *msg, size_t len); 534 int (*recvmsg)(struct kiocb *iocb, struct sock *sk, 535 struct msghdr *msg, 536 size_t len, int noblock, int flags, 537 int *addr_len); 538 int (*sendpage)(struct sock *sk, struct page *page, 539 int offset, size_t size, int flags); 540 int (*bind)(struct sock *sk, 541 struct sockaddr *uaddr, int addr_len); 542 543 int (*backlog_rcv) (struct sock *sk, 544 struct sk_buff *skb); 545 546 /* Keeping track of sk's, looking them up, and port selection methods. */ 547 void (*hash)(struct sock *sk); 548 void (*unhash)(struct sock *sk); 549 int (*get_port)(struct sock *sk, unsigned short snum); 550 551 /* Memory pressure */ 552 void (*enter_memory_pressure)(void); 553 atomic_t *memory_allocated; /* Current allocated memory. */ 554 atomic_t *sockets_allocated; /* Current number of sockets. */ 555 /* 556 * Pressure flag: try to collapse. 557 * Technical note: it is used by multiple contexts non atomically. 558 * All the sk_stream_mem_schedule() is of this nature: accounting 559 * is strict, actions are advisory and have some latency. 560 */ 561 int *memory_pressure; 562 int *sysctl_mem; 563 int *sysctl_wmem; 564 int *sysctl_rmem; 565 int max_header; 566 567 kmem_cache_t *slab; 568 unsigned int obj_size; 569 570 atomic_t *orphan_count; 571 572 struct request_sock_ops *rsk_prot; 573 struct timewait_sock_ops *twsk_prot; 574 575 struct module *owner; 576 577 char name[32]; 578 579 struct list_head node; 580 #ifdef SOCK_REFCNT_DEBUG 581 atomic_t socks; 582 #endif 583 struct { 584 int inuse; 585 u8 __pad[SMP_CACHE_BYTES - sizeof(int)]; 586 } stats[NR_CPUS]; 587 }; 588 589 extern int proto_register(struct proto *prot, int alloc_slab); 590 extern void proto_unregister(struct proto *prot); 591 592 #ifdef SOCK_REFCNT_DEBUG 593 static inline void sk_refcnt_debug_inc(struct sock *sk) 594 { 595 atomic_inc(&sk->sk_prot->socks); 596 } 597 598 static inline void sk_refcnt_debug_dec(struct sock *sk) 599 { 600 atomic_dec(&sk->sk_prot->socks); 601 printk(KERN_DEBUG "%s socket %p released, %d are still alive\n", 602 sk->sk_prot->name, sk, atomic_read(&sk->sk_prot->socks)); 603 } 604 605 static inline void sk_refcnt_debug_release(const struct sock *sk) 606 { 607 if (atomic_read(&sk->sk_refcnt) != 1) 608 printk(KERN_DEBUG "Destruction of the %s socket %p delayed, refcnt=%d\n", 609 sk->sk_prot->name, sk, atomic_read(&sk->sk_refcnt)); 610 } 611 #else /* SOCK_REFCNT_DEBUG */ 612 #define sk_refcnt_debug_inc(sk) do { } while (0) 613 #define sk_refcnt_debug_dec(sk) do { } while (0) 614 #define sk_refcnt_debug_release(sk) do { } while (0) 615 #endif /* SOCK_REFCNT_DEBUG */ 616 617 /* Called with local bh disabled */ 618 static __inline__ void sock_prot_inc_use(struct proto *prot) 619 { 620 prot->stats[smp_processor_id()].inuse++; 621 } 622 623 static __inline__ void sock_prot_dec_use(struct proto *prot) 624 { 625 prot->stats[smp_processor_id()].inuse--; 626 } 627 628 /* With per-bucket locks this operation is not-atomic, so that 629 * this version is not worse. 630 */ 631 static inline void __sk_prot_rehash(struct sock *sk) 632 { 633 sk->sk_prot->unhash(sk); 634 sk->sk_prot->hash(sk); 635 } 636 637 /* About 10 seconds */ 638 #define SOCK_DESTROY_TIME (10*HZ) 639 640 /* Sockets 0-1023 can't be bound to unless you are superuser */ 641 #define PROT_SOCK 1024 642 643 #define SHUTDOWN_MASK 3 644 #define RCV_SHUTDOWN 1 645 #define SEND_SHUTDOWN 2 646 647 #define SOCK_SNDBUF_LOCK 1 648 #define SOCK_RCVBUF_LOCK 2 649 #define SOCK_BINDADDR_LOCK 4 650 #define SOCK_BINDPORT_LOCK 8 651 652 /* sock_iocb: used to kick off async processing of socket ios */ 653 struct sock_iocb { 654 struct list_head list; 655 656 int flags; 657 int size; 658 struct socket *sock; 659 struct sock *sk; 660 struct scm_cookie *scm; 661 struct msghdr *msg, async_msg; 662 struct iovec async_iov; 663 struct kiocb *kiocb; 664 }; 665 666 static inline struct sock_iocb *kiocb_to_siocb(struct kiocb *iocb) 667 { 668 return (struct sock_iocb *)iocb->private; 669 } 670 671 static inline struct kiocb *siocb_to_kiocb(struct sock_iocb *si) 672 { 673 return si->kiocb; 674 } 675 676 struct socket_alloc { 677 struct socket socket; 678 struct inode vfs_inode; 679 }; 680 681 static inline struct socket *SOCKET_I(struct inode *inode) 682 { 683 return &container_of(inode, struct socket_alloc, vfs_inode)->socket; 684 } 685 686 static inline struct inode *SOCK_INODE(struct socket *socket) 687 { 688 return &container_of(socket, struct socket_alloc, socket)->vfs_inode; 689 } 690 691 extern void __sk_stream_mem_reclaim(struct sock *sk); 692 extern int sk_stream_mem_schedule(struct sock *sk, int size, int kind); 693 694 #define SK_STREAM_MEM_QUANTUM ((int)PAGE_SIZE) 695 696 static inline int sk_stream_pages(int amt) 697 { 698 return (amt + SK_STREAM_MEM_QUANTUM - 1) / SK_STREAM_MEM_QUANTUM; 699 } 700 701 static inline void sk_stream_mem_reclaim(struct sock *sk) 702 { 703 if (sk->sk_forward_alloc >= SK_STREAM_MEM_QUANTUM) 704 __sk_stream_mem_reclaim(sk); 705 } 706 707 static inline void sk_stream_writequeue_purge(struct sock *sk) 708 { 709 struct sk_buff *skb; 710 711 while ((skb = __skb_dequeue(&sk->sk_write_queue)) != NULL) 712 sk_stream_free_skb(sk, skb); 713 sk_stream_mem_reclaim(sk); 714 } 715 716 static inline int sk_stream_rmem_schedule(struct sock *sk, struct sk_buff *skb) 717 { 718 return (int)skb->truesize <= sk->sk_forward_alloc || 719 sk_stream_mem_schedule(sk, skb->truesize, 1); 720 } 721 722 static inline int sk_stream_wmem_schedule(struct sock *sk, int size) 723 { 724 return size <= sk->sk_forward_alloc || 725 sk_stream_mem_schedule(sk, size, 0); 726 } 727 728 /* Used by processes to "lock" a socket state, so that 729 * interrupts and bottom half handlers won't change it 730 * from under us. It essentially blocks any incoming 731 * packets, so that we won't get any new data or any 732 * packets that change the state of the socket. 733 * 734 * While locked, BH processing will add new packets to 735 * the backlog queue. This queue is processed by the 736 * owner of the socket lock right before it is released. 737 * 738 * Since ~2.3.5 it is also exclusive sleep lock serializing 739 * accesses from user process context. 740 */ 741 #define sock_owned_by_user(sk) ((sk)->sk_lock.owner) 742 743 extern void FASTCALL(lock_sock(struct sock *sk)); 744 extern void FASTCALL(release_sock(struct sock *sk)); 745 746 /* BH context may only use the following locking interface. */ 747 #define bh_lock_sock(__sk) spin_lock(&((__sk)->sk_lock.slock)) 748 #define bh_unlock_sock(__sk) spin_unlock(&((__sk)->sk_lock.slock)) 749 750 extern struct sock *sk_alloc(int family, 751 gfp_t priority, 752 struct proto *prot, int zero_it); 753 extern void sk_free(struct sock *sk); 754 extern struct sock *sk_clone(const struct sock *sk, 755 const gfp_t priority); 756 757 extern struct sk_buff *sock_wmalloc(struct sock *sk, 758 unsigned long size, int force, 759 gfp_t priority); 760 extern struct sk_buff *sock_rmalloc(struct sock *sk, 761 unsigned long size, int force, 762 gfp_t priority); 763 extern void sock_wfree(struct sk_buff *skb); 764 extern void sock_rfree(struct sk_buff *skb); 765 766 extern int sock_setsockopt(struct socket *sock, int level, 767 int op, char __user *optval, 768 int optlen); 769 770 extern int sock_getsockopt(struct socket *sock, int level, 771 int op, char __user *optval, 772 int __user *optlen); 773 extern struct sk_buff *sock_alloc_send_skb(struct sock *sk, 774 unsigned long size, 775 int noblock, 776 int *errcode); 777 extern void *sock_kmalloc(struct sock *sk, int size, 778 gfp_t priority); 779 extern void sock_kfree_s(struct sock *sk, void *mem, int size); 780 extern void sk_send_sigurg(struct sock *sk); 781 782 /* 783 * Functions to fill in entries in struct proto_ops when a protocol 784 * does not implement a particular function. 785 */ 786 extern int sock_no_bind(struct socket *, 787 struct sockaddr *, int); 788 extern int sock_no_connect(struct socket *, 789 struct sockaddr *, int, int); 790 extern int sock_no_socketpair(struct socket *, 791 struct socket *); 792 extern int sock_no_accept(struct socket *, 793 struct socket *, int); 794 extern int sock_no_getname(struct socket *, 795 struct sockaddr *, int *, int); 796 extern unsigned int sock_no_poll(struct file *, struct socket *, 797 struct poll_table_struct *); 798 extern int sock_no_ioctl(struct socket *, unsigned int, 799 unsigned long); 800 extern int sock_no_listen(struct socket *, int); 801 extern int sock_no_shutdown(struct socket *, int); 802 extern int sock_no_getsockopt(struct socket *, int , int, 803 char __user *, int __user *); 804 extern int sock_no_setsockopt(struct socket *, int, int, 805 char __user *, int); 806 extern int sock_no_sendmsg(struct kiocb *, struct socket *, 807 struct msghdr *, size_t); 808 extern int sock_no_recvmsg(struct kiocb *, struct socket *, 809 struct msghdr *, size_t, int); 810 extern int sock_no_mmap(struct file *file, 811 struct socket *sock, 812 struct vm_area_struct *vma); 813 extern ssize_t sock_no_sendpage(struct socket *sock, 814 struct page *page, 815 int offset, size_t size, 816 int flags); 817 818 /* 819 * Functions to fill in entries in struct proto_ops when a protocol 820 * uses the inet style. 821 */ 822 extern int sock_common_getsockopt(struct socket *sock, int level, int optname, 823 char __user *optval, int __user *optlen); 824 extern int sock_common_recvmsg(struct kiocb *iocb, struct socket *sock, 825 struct msghdr *msg, size_t size, int flags); 826 extern int sock_common_setsockopt(struct socket *sock, int level, int optname, 827 char __user *optval, int optlen); 828 extern int compat_sock_common_getsockopt(struct socket *sock, int level, 829 int optname, char __user *optval, int __user *optlen); 830 extern int compat_sock_common_setsockopt(struct socket *sock, int level, 831 int optname, char __user *optval, int optlen); 832 833 extern void sk_common_release(struct sock *sk); 834 835 /* 836 * Default socket callbacks and setup code 837 */ 838 839 /* Initialise core socket variables */ 840 extern void sock_init_data(struct socket *sock, struct sock *sk); 841 842 /** 843 * sk_filter - run a packet through a socket filter 844 * @sk: sock associated with &sk_buff 845 * @skb: buffer to filter 846 * @needlock: set to 1 if the sock is not locked by caller. 847 * 848 * Run the filter code and then cut skb->data to correct size returned by 849 * sk_run_filter. If pkt_len is 0 we toss packet. If skb->len is smaller 850 * than pkt_len we keep whole skb->data. This is the socket level 851 * wrapper to sk_run_filter. It returns 0 if the packet should 852 * be accepted or -EPERM if the packet should be tossed. 853 * 854 */ 855 856 static inline int sk_filter(struct sock *sk, struct sk_buff *skb, int needlock) 857 { 858 int err; 859 860 err = security_sock_rcv_skb(sk, skb); 861 if (err) 862 return err; 863 864 if (sk->sk_filter) { 865 struct sk_filter *filter; 866 867 if (needlock) 868 bh_lock_sock(sk); 869 870 filter = sk->sk_filter; 871 if (filter) { 872 unsigned int pkt_len = sk_run_filter(skb, filter->insns, 873 filter->len); 874 if (!pkt_len) 875 err = -EPERM; 876 else 877 skb_trim(skb, pkt_len); 878 } 879 880 if (needlock) 881 bh_unlock_sock(sk); 882 } 883 return err; 884 } 885 886 /** 887 * sk_filter_release: Release a socket filter 888 * @sk: socket 889 * @fp: filter to remove 890 * 891 * Remove a filter from a socket and release its resources. 892 */ 893 894 static inline void sk_filter_release(struct sock *sk, struct sk_filter *fp) 895 { 896 unsigned int size = sk_filter_len(fp); 897 898 atomic_sub(size, &sk->sk_omem_alloc); 899 900 if (atomic_dec_and_test(&fp->refcnt)) 901 kfree(fp); 902 } 903 904 static inline void sk_filter_charge(struct sock *sk, struct sk_filter *fp) 905 { 906 atomic_inc(&fp->refcnt); 907 atomic_add(sk_filter_len(fp), &sk->sk_omem_alloc); 908 } 909 910 /* 911 * Socket reference counting postulates. 912 * 913 * * Each user of socket SHOULD hold a reference count. 914 * * Each access point to socket (an hash table bucket, reference from a list, 915 * running timer, skb in flight MUST hold a reference count. 916 * * When reference count hits 0, it means it will never increase back. 917 * * When reference count hits 0, it means that no references from 918 * outside exist to this socket and current process on current CPU 919 * is last user and may/should destroy this socket. 920 * * sk_free is called from any context: process, BH, IRQ. When 921 * it is called, socket has no references from outside -> sk_free 922 * may release descendant resources allocated by the socket, but 923 * to the time when it is called, socket is NOT referenced by any 924 * hash tables, lists etc. 925 * * Packets, delivered from outside (from network or from another process) 926 * and enqueued on receive/error queues SHOULD NOT grab reference count, 927 * when they sit in queue. Otherwise, packets will leak to hole, when 928 * socket is looked up by one cpu and unhasing is made by another CPU. 929 * It is true for udp/raw, netlink (leak to receive and error queues), tcp 930 * (leak to backlog). Packet socket does all the processing inside 931 * BR_NETPROTO_LOCK, so that it has not this race condition. UNIX sockets 932 * use separate SMP lock, so that they are prone too. 933 */ 934 935 /* Ungrab socket and destroy it, if it was the last reference. */ 936 static inline void sock_put(struct sock *sk) 937 { 938 if (atomic_dec_and_test(&sk->sk_refcnt)) 939 sk_free(sk); 940 } 941 942 extern int sk_receive_skb(struct sock *sk, struct sk_buff *skb); 943 944 /* Detach socket from process context. 945 * Announce socket dead, detach it from wait queue and inode. 946 * Note that parent inode held reference count on this struct sock, 947 * we do not release it in this function, because protocol 948 * probably wants some additional cleanups or even continuing 949 * to work with this socket (TCP). 950 */ 951 static inline void sock_orphan(struct sock *sk) 952 { 953 write_lock_bh(&sk->sk_callback_lock); 954 sock_set_flag(sk, SOCK_DEAD); 955 sk->sk_socket = NULL; 956 sk->sk_sleep = NULL; 957 write_unlock_bh(&sk->sk_callback_lock); 958 } 959 960 static inline void sock_graft(struct sock *sk, struct socket *parent) 961 { 962 write_lock_bh(&sk->sk_callback_lock); 963 sk->sk_sleep = &parent->wait; 964 parent->sk = sk; 965 sk->sk_socket = parent; 966 write_unlock_bh(&sk->sk_callback_lock); 967 } 968 969 extern int sock_i_uid(struct sock *sk); 970 extern unsigned long sock_i_ino(struct sock *sk); 971 972 static inline struct dst_entry * 973 __sk_dst_get(struct sock *sk) 974 { 975 return sk->sk_dst_cache; 976 } 977 978 static inline struct dst_entry * 979 sk_dst_get(struct sock *sk) 980 { 981 struct dst_entry *dst; 982 983 read_lock(&sk->sk_dst_lock); 984 dst = sk->sk_dst_cache; 985 if (dst) 986 dst_hold(dst); 987 read_unlock(&sk->sk_dst_lock); 988 return dst; 989 } 990 991 static inline void 992 __sk_dst_set(struct sock *sk, struct dst_entry *dst) 993 { 994 struct dst_entry *old_dst; 995 996 old_dst = sk->sk_dst_cache; 997 sk->sk_dst_cache = dst; 998 dst_release(old_dst); 999 } 1000 1001 static inline void 1002 sk_dst_set(struct sock *sk, struct dst_entry *dst) 1003 { 1004 write_lock(&sk->sk_dst_lock); 1005 __sk_dst_set(sk, dst); 1006 write_unlock(&sk->sk_dst_lock); 1007 } 1008 1009 static inline void 1010 __sk_dst_reset(struct sock *sk) 1011 { 1012 struct dst_entry *old_dst; 1013 1014 old_dst = sk->sk_dst_cache; 1015 sk->sk_dst_cache = NULL; 1016 dst_release(old_dst); 1017 } 1018 1019 static inline void 1020 sk_dst_reset(struct sock *sk) 1021 { 1022 write_lock(&sk->sk_dst_lock); 1023 __sk_dst_reset(sk); 1024 write_unlock(&sk->sk_dst_lock); 1025 } 1026 1027 extern struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie); 1028 1029 extern struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie); 1030 1031 static inline void sk_setup_caps(struct sock *sk, struct dst_entry *dst) 1032 { 1033 __sk_dst_set(sk, dst); 1034 sk->sk_route_caps = dst->dev->features; 1035 if (sk->sk_route_caps & NETIF_F_TSO) { 1036 if (sock_flag(sk, SOCK_NO_LARGESEND) || dst->header_len) 1037 sk->sk_route_caps &= ~NETIF_F_TSO; 1038 } 1039 } 1040 1041 static inline void sk_charge_skb(struct sock *sk, struct sk_buff *skb) 1042 { 1043 sk->sk_wmem_queued += skb->truesize; 1044 sk->sk_forward_alloc -= skb->truesize; 1045 } 1046 1047 static inline int skb_copy_to_page(struct sock *sk, char __user *from, 1048 struct sk_buff *skb, struct page *page, 1049 int off, int copy) 1050 { 1051 if (skb->ip_summed == CHECKSUM_NONE) { 1052 int err = 0; 1053 unsigned int csum = csum_and_copy_from_user(from, 1054 page_address(page) + off, 1055 copy, 0, &err); 1056 if (err) 1057 return err; 1058 skb->csum = csum_block_add(skb->csum, csum, skb->len); 1059 } else if (copy_from_user(page_address(page) + off, from, copy)) 1060 return -EFAULT; 1061 1062 skb->len += copy; 1063 skb->data_len += copy; 1064 skb->truesize += copy; 1065 sk->sk_wmem_queued += copy; 1066 sk->sk_forward_alloc -= copy; 1067 return 0; 1068 } 1069 1070 /* 1071 * Queue a received datagram if it will fit. Stream and sequenced 1072 * protocols can't normally use this as they need to fit buffers in 1073 * and play with them. 1074 * 1075 * Inlined as it's very short and called for pretty much every 1076 * packet ever received. 1077 */ 1078 1079 static inline void skb_set_owner_w(struct sk_buff *skb, struct sock *sk) 1080 { 1081 sock_hold(sk); 1082 skb->sk = sk; 1083 skb->destructor = sock_wfree; 1084 atomic_add(skb->truesize, &sk->sk_wmem_alloc); 1085 } 1086 1087 static inline void skb_set_owner_r(struct sk_buff *skb, struct sock *sk) 1088 { 1089 skb->sk = sk; 1090 skb->destructor = sock_rfree; 1091 atomic_add(skb->truesize, &sk->sk_rmem_alloc); 1092 } 1093 1094 extern void sk_reset_timer(struct sock *sk, struct timer_list* timer, 1095 unsigned long expires); 1096 1097 extern void sk_stop_timer(struct sock *sk, struct timer_list* timer); 1098 1099 extern int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb); 1100 1101 static inline int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb) 1102 { 1103 /* Cast skb->rcvbuf to unsigned... It's pointless, but reduces 1104 number of warnings when compiling with -W --ANK 1105 */ 1106 if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >= 1107 (unsigned)sk->sk_rcvbuf) 1108 return -ENOMEM; 1109 skb_set_owner_r(skb, sk); 1110 skb_queue_tail(&sk->sk_error_queue, skb); 1111 if (!sock_flag(sk, SOCK_DEAD)) 1112 sk->sk_data_ready(sk, skb->len); 1113 return 0; 1114 } 1115 1116 /* 1117 * Recover an error report and clear atomically 1118 */ 1119 1120 static inline int sock_error(struct sock *sk) 1121 { 1122 int err; 1123 if (likely(!sk->sk_err)) 1124 return 0; 1125 err = xchg(&sk->sk_err, 0); 1126 return -err; 1127 } 1128 1129 static inline unsigned long sock_wspace(struct sock *sk) 1130 { 1131 int amt = 0; 1132 1133 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) { 1134 amt = sk->sk_sndbuf - atomic_read(&sk->sk_wmem_alloc); 1135 if (amt < 0) 1136 amt = 0; 1137 } 1138 return amt; 1139 } 1140 1141 static inline void sk_wake_async(struct sock *sk, int how, int band) 1142 { 1143 if (sk->sk_socket && sk->sk_socket->fasync_list) 1144 sock_wake_async(sk->sk_socket, how, band); 1145 } 1146 1147 #define SOCK_MIN_SNDBUF 2048 1148 #define SOCK_MIN_RCVBUF 256 1149 1150 static inline void sk_stream_moderate_sndbuf(struct sock *sk) 1151 { 1152 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK)) { 1153 sk->sk_sndbuf = min(sk->sk_sndbuf, sk->sk_wmem_queued / 2); 1154 sk->sk_sndbuf = max(sk->sk_sndbuf, SOCK_MIN_SNDBUF); 1155 } 1156 } 1157 1158 static inline struct sk_buff *sk_stream_alloc_pskb(struct sock *sk, 1159 int size, int mem, 1160 gfp_t gfp) 1161 { 1162 struct sk_buff *skb; 1163 int hdr_len; 1164 1165 hdr_len = SKB_DATA_ALIGN(sk->sk_prot->max_header); 1166 skb = alloc_skb_fclone(size + hdr_len, gfp); 1167 if (skb) { 1168 skb->truesize += mem; 1169 if (sk_stream_wmem_schedule(sk, skb->truesize)) { 1170 skb_reserve(skb, hdr_len); 1171 return skb; 1172 } 1173 __kfree_skb(skb); 1174 } else { 1175 sk->sk_prot->enter_memory_pressure(); 1176 sk_stream_moderate_sndbuf(sk); 1177 } 1178 return NULL; 1179 } 1180 1181 static inline struct sk_buff *sk_stream_alloc_skb(struct sock *sk, 1182 int size, 1183 gfp_t gfp) 1184 { 1185 return sk_stream_alloc_pskb(sk, size, 0, gfp); 1186 } 1187 1188 static inline struct page *sk_stream_alloc_page(struct sock *sk) 1189 { 1190 struct page *page = NULL; 1191 1192 page = alloc_pages(sk->sk_allocation, 0); 1193 if (!page) { 1194 sk->sk_prot->enter_memory_pressure(); 1195 sk_stream_moderate_sndbuf(sk); 1196 } 1197 return page; 1198 } 1199 1200 #define sk_stream_for_retrans_queue(skb, sk) \ 1201 for (skb = (sk)->sk_write_queue.next; \ 1202 (skb != (sk)->sk_send_head) && \ 1203 (skb != (struct sk_buff *)&(sk)->sk_write_queue); \ 1204 skb = skb->next) 1205 1206 /*from STCP for fast SACK Process*/ 1207 #define sk_stream_for_retrans_queue_from(skb, sk) \ 1208 for (; (skb != (sk)->sk_send_head) && \ 1209 (skb != (struct sk_buff *)&(sk)->sk_write_queue); \ 1210 skb = skb->next) 1211 1212 /* 1213 * Default write policy as shown to user space via poll/select/SIGIO 1214 */ 1215 static inline int sock_writeable(const struct sock *sk) 1216 { 1217 return atomic_read(&sk->sk_wmem_alloc) < (sk->sk_sndbuf / 2); 1218 } 1219 1220 static inline gfp_t gfp_any(void) 1221 { 1222 return in_softirq() ? GFP_ATOMIC : GFP_KERNEL; 1223 } 1224 1225 static inline long sock_rcvtimeo(const struct sock *sk, int noblock) 1226 { 1227 return noblock ? 0 : sk->sk_rcvtimeo; 1228 } 1229 1230 static inline long sock_sndtimeo(const struct sock *sk, int noblock) 1231 { 1232 return noblock ? 0 : sk->sk_sndtimeo; 1233 } 1234 1235 static inline int sock_rcvlowat(const struct sock *sk, int waitall, int len) 1236 { 1237 return (waitall ? len : min_t(int, sk->sk_rcvlowat, len)) ? : 1; 1238 } 1239 1240 /* Alas, with timeout socket operations are not restartable. 1241 * Compare this to poll(). 1242 */ 1243 static inline int sock_intr_errno(long timeo) 1244 { 1245 return timeo == MAX_SCHEDULE_TIMEOUT ? -ERESTARTSYS : -EINTR; 1246 } 1247 1248 static __inline__ void 1249 sock_recv_timestamp(struct msghdr *msg, struct sock *sk, struct sk_buff *skb) 1250 { 1251 struct timeval stamp; 1252 1253 skb_get_timestamp(skb, &stamp); 1254 if (sock_flag(sk, SOCK_RCVTSTAMP)) { 1255 /* Race occurred between timestamp enabling and packet 1256 receiving. Fill in the current time for now. */ 1257 if (stamp.tv_sec == 0) 1258 do_gettimeofday(&stamp); 1259 skb_set_timestamp(skb, &stamp); 1260 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP, sizeof(struct timeval), 1261 &stamp); 1262 } else 1263 sk->sk_stamp = stamp; 1264 } 1265 1266 /** 1267 * sk_eat_skb - Release a skb if it is no longer needed 1268 * @sk: socket to eat this skb from 1269 * @skb: socket buffer to eat 1270 * 1271 * This routine must be called with interrupts disabled or with the socket 1272 * locked so that the sk_buff queue operation is ok. 1273 */ 1274 static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb) 1275 { 1276 __skb_unlink(skb, &sk->sk_receive_queue); 1277 __kfree_skb(skb); 1278 } 1279 1280 extern void sock_enable_timestamp(struct sock *sk); 1281 extern int sock_get_timestamp(struct sock *, struct timeval __user *); 1282 1283 /* 1284 * Enable debug/info messages 1285 */ 1286 1287 #ifdef CONFIG_NETDEBUG 1288 #define NETDEBUG(fmt, args...) printk(fmt,##args) 1289 #define LIMIT_NETDEBUG(fmt, args...) do { if (net_ratelimit()) printk(fmt,##args); } while(0) 1290 #else 1291 #define NETDEBUG(fmt, args...) do { } while (0) 1292 #define LIMIT_NETDEBUG(fmt, args...) do { } while(0) 1293 #endif 1294 1295 /* 1296 * Macros for sleeping on a socket. Use them like this: 1297 * 1298 * SOCK_SLEEP_PRE(sk) 1299 * if (condition) 1300 * schedule(); 1301 * SOCK_SLEEP_POST(sk) 1302 * 1303 * N.B. These are now obsolete and were, afaik, only ever used in DECnet 1304 * and when the last use of them in DECnet has gone, I'm intending to 1305 * remove them. 1306 */ 1307 1308 #define SOCK_SLEEP_PRE(sk) { struct task_struct *tsk = current; \ 1309 DECLARE_WAITQUEUE(wait, tsk); \ 1310 tsk->state = TASK_INTERRUPTIBLE; \ 1311 add_wait_queue((sk)->sk_sleep, &wait); \ 1312 release_sock(sk); 1313 1314 #define SOCK_SLEEP_POST(sk) tsk->state = TASK_RUNNING; \ 1315 remove_wait_queue((sk)->sk_sleep, &wait); \ 1316 lock_sock(sk); \ 1317 } 1318 1319 static inline void sock_valbool_flag(struct sock *sk, int bit, int valbool) 1320 { 1321 if (valbool) 1322 sock_set_flag(sk, bit); 1323 else 1324 sock_reset_flag(sk, bit); 1325 } 1326 1327 extern __u32 sysctl_wmem_max; 1328 extern __u32 sysctl_rmem_max; 1329 1330 #ifdef CONFIG_NET 1331 int siocdevprivate_ioctl(unsigned int fd, unsigned int cmd, unsigned long arg); 1332 #else 1333 static inline int siocdevprivate_ioctl(unsigned int fd, unsigned int cmd, unsigned long arg) 1334 { 1335 return -ENODEV; 1336 } 1337 #endif 1338 1339 extern void sk_init(void); 1340 1341 #ifdef CONFIG_SYSCTL 1342 extern struct ctl_table core_table[]; 1343 #endif 1344 1345 extern int sysctl_optmem_max; 1346 1347 extern __u32 sysctl_wmem_default; 1348 extern __u32 sysctl_rmem_default; 1349 1350 #endif /* _SOCK_H */ 1351