1 /* SPDX-License-Identifier: GPL-2.0-or-later */ 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * Definitions for the AF_INET socket handler. 8 * 9 * Version: @(#)sock.h 1.0.4 05/13/93 10 * 11 * Authors: Ross Biro 12 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 13 * Corey Minyard <wf-rch!minyard@relay.EU.net> 14 * Florian La Roche <flla@stud.uni-sb.de> 15 * 16 * Fixes: 17 * Alan Cox : Volatiles in skbuff pointers. See 18 * skbuff comments. May be overdone, 19 * better to prove they can be removed 20 * than the reverse. 21 * Alan Cox : Added a zapped field for tcp to note 22 * a socket is reset and must stay shut up 23 * Alan Cox : New fields for options 24 * Pauline Middelink : identd support 25 * Alan Cox : Eliminate low level recv/recvfrom 26 * David S. Miller : New socket lookup architecture. 27 * Steve Whitehouse: Default routines for sock_ops 28 * Arnaldo C. Melo : removed net_pinfo, tp_pinfo and made 29 * protinfo be just a void pointer, as the 30 * protocol specific parts were moved to 31 * respective headers and ipv4/v6, etc now 32 * use private slabcaches for its socks 33 * Pedro Hortas : New flags field for socket options 34 */ 35 #ifndef _SOCK_H 36 #define _SOCK_H 37 38 #include <linux/hardirq.h> 39 #include <linux/kernel.h> 40 #include <linux/list.h> 41 #include <linux/list_nulls.h> 42 #include <linux/timer.h> 43 #include <linux/cache.h> 44 #include <linux/bitops.h> 45 #include <linux/lockdep.h> 46 #include <linux/netdevice.h> 47 #include <linux/skbuff.h> /* struct sk_buff */ 48 #include <linux/mm.h> 49 #include <linux/security.h> 50 #include <linux/slab.h> 51 #include <linux/uaccess.h> 52 #include <linux/page_counter.h> 53 #include <linux/memcontrol.h> 54 #include <linux/static_key.h> 55 #include <linux/sched.h> 56 #include <linux/wait.h> 57 #include <linux/cgroup-defs.h> 58 #include <linux/rbtree.h> 59 #include <linux/rculist_nulls.h> 60 #include <linux/poll.h> 61 #include <linux/sockptr.h> 62 #include <linux/indirect_call_wrapper.h> 63 #include <linux/atomic.h> 64 #include <linux/refcount.h> 65 #include <linux/llist.h> 66 #include <net/dst.h> 67 #include <net/checksum.h> 68 #include <net/tcp_states.h> 69 #include <linux/net_tstamp.h> 70 #include <net/l3mdev.h> 71 #include <uapi/linux/socket.h> 72 73 /* 74 * This structure really needs to be cleaned up. 75 * Most of it is for TCP, and not used by any of 76 * the other protocols. 77 */ 78 79 /* This is the per-socket lock. The spinlock provides a synchronization 80 * between user contexts and software interrupt processing, whereas the 81 * mini-semaphore synchronizes multiple users amongst themselves. 82 */ 83 typedef struct { 84 spinlock_t slock; 85 int owned; 86 wait_queue_head_t wq; 87 /* 88 * We express the mutex-alike socket_lock semantics 89 * to the lock validator by explicitly managing 90 * the slock as a lock variant (in addition to 91 * the slock itself): 92 */ 93 #ifdef CONFIG_DEBUG_LOCK_ALLOC 94 struct lockdep_map dep_map; 95 #endif 96 } socket_lock_t; 97 98 struct sock; 99 struct proto; 100 struct net; 101 102 typedef __u32 __bitwise __portpair; 103 typedef __u64 __bitwise __addrpair; 104 105 /** 106 * struct sock_common - minimal network layer representation of sockets 107 * @skc_daddr: Foreign IPv4 addr 108 * @skc_rcv_saddr: Bound local IPv4 addr 109 * @skc_addrpair: 8-byte-aligned __u64 union of @skc_daddr & @skc_rcv_saddr 110 * @skc_hash: hash value used with various protocol lookup tables 111 * @skc_u16hashes: two u16 hash values used by UDP lookup tables 112 * @skc_dport: placeholder for inet_dport/tw_dport 113 * @skc_num: placeholder for inet_num/tw_num 114 * @skc_portpair: __u32 union of @skc_dport & @skc_num 115 * @skc_family: network address family 116 * @skc_state: Connection state 117 * @skc_reuse: %SO_REUSEADDR setting 118 * @skc_reuseport: %SO_REUSEPORT setting 119 * @skc_ipv6only: socket is IPV6 only 120 * @skc_net_refcnt: socket is using net ref counting 121 * @skc_bypass_prot_mem: bypass the per-protocol memory accounting for skb 122 * @skc_bound_dev_if: bound device index if != 0 123 * @skc_bind_node: bind hash linkage for various protocol lookup tables 124 * @skc_portaddr_node: second hash linkage for UDP/UDP-Lite protocol 125 * @skc_prot: protocol handlers inside a network family 126 * @skc_net: reference to the network namespace of this socket 127 * @skc_v6_daddr: IPV6 destination address 128 * @skc_v6_rcv_saddr: IPV6 source address 129 * @skc_cookie: socket's cookie value 130 * @skc_node: main hash linkage for various protocol lookup tables 131 * @skc_nulls_node: main hash linkage for TCP/UDP/UDP-Lite protocol 132 * @skc_tx_queue_mapping: tx queue number for this connection 133 * @skc_rx_queue_mapping: rx queue number for this connection 134 * @skc_flags: place holder for sk_flags 135 * %SO_LINGER (l_onoff), %SO_BROADCAST, %SO_KEEPALIVE, 136 * %SO_OOBINLINE settings, %SO_TIMESTAMPING settings 137 * @skc_listener: connection request listener socket (aka rsk_listener) 138 * [union with @skc_flags] 139 * @skc_tw_dr: (aka tw_dr) ptr to &struct inet_timewait_death_row 140 * [union with @skc_flags] 141 * @skc_incoming_cpu: record/match cpu processing incoming packets 142 * @skc_rcv_wnd: (aka rsk_rcv_wnd) TCP receive window size (possibly scaled) 143 * [union with @skc_incoming_cpu] 144 * @skc_tw_rcv_nxt: (aka tw_rcv_nxt) TCP window next expected seq number 145 * [union with @skc_incoming_cpu] 146 * @skc_refcnt: reference count 147 * 148 * This is the minimal network layer representation of sockets, the header 149 * for struct sock and struct inet_timewait_sock. 150 */ 151 struct sock_common { 152 union { 153 __addrpair skc_addrpair; 154 struct { 155 __be32 skc_daddr; 156 __be32 skc_rcv_saddr; 157 }; 158 }; 159 union { 160 unsigned int skc_hash; 161 __u16 skc_u16hashes[2]; 162 }; 163 /* skc_dport && skc_num must be grouped as well */ 164 union { 165 __portpair skc_portpair; 166 struct { 167 __be16 skc_dport; 168 __u16 skc_num; 169 }; 170 }; 171 172 unsigned short skc_family; 173 volatile unsigned char skc_state; 174 unsigned char skc_reuse:4; 175 unsigned char skc_reuseport:1; 176 unsigned char skc_ipv6only:1; 177 unsigned char skc_net_refcnt:1; 178 unsigned char skc_bypass_prot_mem:1; 179 int skc_bound_dev_if; 180 union { 181 struct hlist_node skc_bind_node; 182 struct hlist_node skc_portaddr_node; 183 }; 184 struct proto *skc_prot; 185 possible_net_t skc_net; 186 187 #if IS_ENABLED(CONFIG_IPV6) 188 struct in6_addr skc_v6_daddr; 189 struct in6_addr skc_v6_rcv_saddr; 190 #endif 191 192 atomic64_t skc_cookie; 193 194 /* following fields are padding to force 195 * offset(struct sock, sk_refcnt) == 128 on 64bit arches 196 * assuming IPV6 is enabled. We use this padding differently 197 * for different kind of 'sockets' 198 */ 199 union { 200 unsigned long skc_flags; 201 struct sock *skc_listener; /* request_sock */ 202 struct inet_timewait_death_row *skc_tw_dr; /* inet_timewait_sock */ 203 }; 204 /* 205 * fields between dontcopy_begin/dontcopy_end 206 * are not copied in sock_copy() 207 */ 208 /* private: */ 209 int skc_dontcopy_begin[0]; 210 /* public: */ 211 union { 212 struct hlist_node skc_node; 213 struct hlist_nulls_node skc_nulls_node; 214 }; 215 unsigned short skc_tx_queue_mapping; 216 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING 217 unsigned short skc_rx_queue_mapping; 218 #endif 219 union { 220 int skc_incoming_cpu; 221 u32 skc_rcv_wnd; 222 u32 skc_tw_rcv_nxt; /* struct tcp_timewait_sock */ 223 }; 224 225 refcount_t skc_refcnt; 226 /* private: */ 227 int skc_dontcopy_end[0]; 228 union { 229 u32 skc_rxhash; 230 u32 skc_window_clamp; 231 u32 skc_tw_snd_nxt; /* struct tcp_timewait_sock */ 232 }; 233 /* public: */ 234 }; 235 236 struct bpf_local_storage; 237 struct sk_filter; 238 239 /** 240 * struct sock - network layer representation of sockets 241 * @__sk_common: shared layout with inet_timewait_sock 242 * @sk_shutdown: mask of %SEND_SHUTDOWN and/or %RCV_SHUTDOWN 243 * @sk_userlocks: %SO_SNDBUF and %SO_RCVBUF settings 244 * @sk_lock: synchronizer 245 * @sk_kern_sock: True if sock is using kernel lock classes 246 * @sk_rcvbuf: size of receive buffer in bytes 247 * @sk_wq: sock wait queue and async head 248 * @sk_rx_dst: receive input route used by early demux 249 * @sk_rx_dst_ifindex: ifindex for @sk_rx_dst 250 * @sk_rx_dst_cookie: cookie for @sk_rx_dst 251 * @sk_dst_cache: destination cache 252 * @sk_dst_pending_confirm: need to confirm neighbour 253 * @sk_policy: flow policy 254 * @psp_assoc: PSP association, if socket is PSP-secured 255 * @sk_receive_queue: incoming packets 256 * @sk_wmem_alloc: transmit queue bytes committed 257 * @sk_tsq_flags: TCP Small Queues flags 258 * @sk_write_queue: Packet sending queue 259 * @sk_omem_alloc: "o" is "option" or "other" 260 * @sk_wmem_queued: persistent queue size 261 * @sk_forward_alloc: space allocated forward 262 * @sk_reserved_mem: space reserved and non-reclaimable for the socket 263 * @sk_napi_id: id of the last napi context to receive data for sk 264 * @sk_ll_usec: usecs to busypoll when there is no data 265 * @sk_allocation: allocation mode 266 * @sk_pacing_rate: Pacing rate (if supported by transport/packet scheduler) 267 * @sk_pacing_status: Pacing status (requested, handled by sch_fq) 268 * @sk_max_pacing_rate: Maximum pacing rate (%SO_MAX_PACING_RATE) 269 * @sk_sndbuf: size of send buffer in bytes 270 * @sk_no_check_tx: %SO_NO_CHECK setting, set checksum in TX packets 271 * @sk_no_check_rx: allow zero checksum in RX packets 272 * @sk_route_caps: route capabilities (e.g. %NETIF_F_TSO) 273 * @sk_gso_disabled: if set, NETIF_F_GSO_MASK is forbidden. 274 * @sk_gso_type: GSO type (e.g. %SKB_GSO_TCPV4) 275 * @sk_gso_max_size: Maximum GSO segment size to build 276 * @sk_gso_max_segs: Maximum number of GSO segments 277 * @sk_pacing_shift: scaling factor for TCP Small Queues 278 * @sk_lingertime: %SO_LINGER l_linger setting 279 * @sk_backlog: always used with the per-socket spinlock held 280 * @sk_callback_lock: used with the callbacks in the end of this struct 281 * @sk_error_queue: rarely used 282 * @sk_prot_creator: sk_prot of original sock creator (see ipv6_setsockopt, 283 * IPV6_ADDRFORM for instance) 284 * @sk_err: last error 285 * @sk_err_soft: errors that don't cause failure but are the cause of a 286 * persistent failure not just 'timed out' 287 * @sk_drops: raw/udp drops counter 288 * @sk_drop_counters: optional pointer to numa_drop_counters 289 * @sk_ack_backlog: current listen backlog 290 * @sk_max_ack_backlog: listen backlog set in listen() 291 * @sk_uid: user id of owner 292 * @sk_ino: inode number (zero if orphaned) 293 * @sk_prefer_busy_poll: prefer busypolling over softirq processing 294 * @sk_busy_poll_budget: napi processing budget when busypolling 295 * @sk_priority: %SO_PRIORITY setting 296 * @sk_type: socket type (%SOCK_STREAM, etc) 297 * @sk_protocol: which protocol this socket belongs in this network family 298 * @sk_peer_lock: lock protecting @sk_peer_pid and @sk_peer_cred 299 * @sk_peer_pid: &struct pid for this socket's peer 300 * @sk_peer_cred: %SO_PEERCRED setting 301 * @sk_rcvlowat: %SO_RCVLOWAT setting 302 * @sk_rcvtimeo: %SO_RCVTIMEO setting 303 * @sk_sndtimeo: %SO_SNDTIMEO setting 304 * @sk_txhash: computed flow hash for use on transmit 305 * @sk_txrehash: enable TX hash rethink 306 * @sk_filter: socket filtering instructions 307 * @sk_timer: sock cleanup timer 308 * @tcp_retransmit_timer: tcp retransmit timer 309 * @mptcp_retransmit_timer: mptcp retransmit timer 310 * @sk_stamp: time stamp of last packet received 311 * @sk_stamp_seq: lock for accessing sk_stamp on 32 bit architectures only 312 * @sk_tsflags: SO_TIMESTAMPING flags 313 * @sk_bpf_cb_flags: used in bpf_setsockopt() 314 * @sk_use_task_frag: allow sk_page_frag() to use current->task_frag. 315 * Sockets that can be used under memory reclaim should 316 * set this to false. 317 * @sk_bind_phc: SO_TIMESTAMPING bind PHC index of PTP virtual clock 318 * for timestamping 319 * @sk_tskey: counter to disambiguate concurrent tstamp requests 320 * @sk_tx_queue_mapping_jiffies: time in jiffies of last @sk_tx_queue_mapping refresh. 321 * @sk_zckey: counter to order MSG_ZEROCOPY notifications 322 * @sk_socket: Identd and reporting IO signals 323 * @sk_user_data: RPC layer private data. Write-protected by @sk_callback_lock. 324 * @sk_frag: cached page frag 325 * @sk_peek_off: current peek_offset value 326 * @sk_send_head: front of stuff to transmit 327 * @tcp_rtx_queue: TCP re-transmit queue [union with @sk_send_head] 328 * @sk_security: used by security modules 329 * @sk_mark: generic packet mark 330 * @sk_cgrp_data: cgroup data for this cgroup 331 * @sk_memcg: this socket's memory cgroup association 332 * @sk_write_pending: a write to stream socket waits to start 333 * @sk_disconnects: number of disconnect operations performed on this sock 334 * @sk_state_change: callback to indicate change in the state of the sock 335 * @sk_data_ready: callback to indicate there is data to be processed 336 * @sk_write_space: callback to indicate there is bf sending space available 337 * @sk_error_report: callback to indicate errors (e.g. %MSG_ERRQUEUE) 338 * @sk_backlog_rcv: callback to process the backlog 339 * @sk_validate_xmit_skb: ptr to an optional validate function 340 * @sk_destruct: called at sock freeing time, i.e. when all refcnt == 0 341 * @sk_reuseport_cb: reuseport group container 342 * @sk_bpf_storage: ptr to cache and control for bpf_sk_storage 343 * @sk_rcu: used during RCU grace period 344 * @sk_clockid: clockid used by time-based scheduling (SO_TXTIME) 345 * @sk_txtime_deadline_mode: set deadline mode for SO_TXTIME 346 * @sk_txtime_report_errors: set report errors mode for SO_TXTIME 347 * @sk_txtime_unused: unused txtime flags 348 * @sk_scm_recv_flags: all flags used by scm_recv() 349 * @sk_scm_credentials: flagged by SO_PASSCRED to recv SCM_CREDENTIALS 350 * @sk_scm_security: flagged by SO_PASSSEC to recv SCM_SECURITY 351 * @sk_scm_pidfd: flagged by SO_PASSPIDFD to recv SCM_PIDFD 352 * @sk_scm_rights: flagged by SO_PASSRIGHTS to recv SCM_RIGHTS 353 * @sk_scm_unused: unused flags for scm_recv() 354 * @ns_tracker: tracker for netns reference 355 * @sk_user_frags: xarray of pages the user is holding a reference on. 356 * @sk_owner: reference to the real owner of the socket that calls 357 * sock_lock_init_class_and_name(). 358 */ 359 struct sock { 360 /* 361 * Now struct inet_timewait_sock also uses sock_common, so please just 362 * don't add nothing before this first member (__sk_common) --acme 363 */ 364 struct sock_common __sk_common; 365 #define sk_node __sk_common.skc_node 366 #define sk_nulls_node __sk_common.skc_nulls_node 367 #define sk_refcnt __sk_common.skc_refcnt 368 #define sk_tx_queue_mapping __sk_common.skc_tx_queue_mapping 369 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING 370 #define sk_rx_queue_mapping __sk_common.skc_rx_queue_mapping 371 #endif 372 373 #define sk_dontcopy_begin __sk_common.skc_dontcopy_begin 374 #define sk_dontcopy_end __sk_common.skc_dontcopy_end 375 #define sk_hash __sk_common.skc_hash 376 #define sk_portpair __sk_common.skc_portpair 377 #define sk_num __sk_common.skc_num 378 #define sk_dport __sk_common.skc_dport 379 #define sk_addrpair __sk_common.skc_addrpair 380 #define sk_daddr __sk_common.skc_daddr 381 #define sk_rcv_saddr __sk_common.skc_rcv_saddr 382 #define sk_family __sk_common.skc_family 383 #define sk_state __sk_common.skc_state 384 #define sk_reuse __sk_common.skc_reuse 385 #define sk_reuseport __sk_common.skc_reuseport 386 #define sk_ipv6only __sk_common.skc_ipv6only 387 #define sk_net_refcnt __sk_common.skc_net_refcnt 388 #define sk_bypass_prot_mem __sk_common.skc_bypass_prot_mem 389 #define sk_bound_dev_if __sk_common.skc_bound_dev_if 390 #define sk_bind_node __sk_common.skc_bind_node 391 #define sk_prot __sk_common.skc_prot 392 #define sk_net __sk_common.skc_net 393 #define sk_v6_daddr __sk_common.skc_v6_daddr 394 #define sk_v6_rcv_saddr __sk_common.skc_v6_rcv_saddr 395 #define sk_cookie __sk_common.skc_cookie 396 #define sk_incoming_cpu __sk_common.skc_incoming_cpu 397 #define sk_flags __sk_common.skc_flags 398 #define sk_rxhash __sk_common.skc_rxhash 399 400 __cacheline_group_begin(sock_write_rx); 401 402 atomic_t sk_drops; 403 __s32 sk_peek_off; 404 struct sk_buff_head sk_error_queue; 405 struct sk_buff_head sk_receive_queue; 406 /* 407 * The backlog queue is special, it is always used with 408 * the per-socket spinlock held and requires low latency 409 * access. Therefore we special case it's implementation. 410 * Note : rmem_alloc is in this structure to fill a hole 411 * on 64bit arches, not because its logically part of 412 * backlog. 413 */ 414 struct { 415 atomic_t rmem_alloc; 416 int len; 417 struct sk_buff *head; 418 struct sk_buff *tail; 419 } sk_backlog; 420 #define sk_rmem_alloc sk_backlog.rmem_alloc 421 422 __cacheline_group_end(sock_write_rx); 423 424 __cacheline_group_begin(sock_read_rx); 425 /* early demux fields */ 426 struct dst_entry __rcu *sk_rx_dst; 427 int sk_rx_dst_ifindex; 428 u32 sk_rx_dst_cookie; 429 430 #ifdef CONFIG_NET_RX_BUSY_POLL 431 unsigned int sk_ll_usec; 432 unsigned int sk_napi_id; 433 u16 sk_busy_poll_budget; 434 u8 sk_prefer_busy_poll; 435 #endif 436 u8 sk_userlocks; 437 int sk_rcvbuf; 438 439 struct sk_filter __rcu *sk_filter; 440 union { 441 struct socket_wq __rcu *sk_wq; 442 /* private: */ 443 struct socket_wq *sk_wq_raw; 444 /* public: */ 445 }; 446 447 void (*sk_data_ready)(struct sock *sk); 448 long sk_rcvtimeo; 449 int sk_rcvlowat; 450 __cacheline_group_end(sock_read_rx); 451 452 __cacheline_group_begin(sock_read_rxtx); 453 int sk_err; 454 struct socket *sk_socket; 455 #ifdef CONFIG_MEMCG 456 struct mem_cgroup *sk_memcg; 457 #endif 458 #ifdef CONFIG_XFRM 459 struct xfrm_policy __rcu *sk_policy[2]; 460 #endif 461 #if IS_ENABLED(CONFIG_INET_PSP) 462 struct psp_assoc __rcu *psp_assoc; 463 #endif 464 __cacheline_group_end(sock_read_rxtx); 465 466 __cacheline_group_begin(sock_write_rxtx); 467 socket_lock_t sk_lock; 468 u32 sk_reserved_mem; 469 int sk_forward_alloc; 470 u32 sk_tsflags; 471 __cacheline_group_end(sock_write_rxtx); 472 473 __cacheline_group_begin(sock_write_tx); 474 int sk_write_pending; 475 atomic_t sk_omem_alloc; 476 int sk_err_soft; 477 478 int sk_wmem_queued; 479 refcount_t sk_wmem_alloc; 480 unsigned long sk_tsq_flags; 481 union { 482 struct sk_buff *sk_send_head; 483 struct rb_root tcp_rtx_queue; 484 }; 485 struct sk_buff_head sk_write_queue; 486 struct page_frag sk_frag; 487 union { 488 struct timer_list sk_timer; 489 struct timer_list tcp_retransmit_timer; 490 struct timer_list mptcp_retransmit_timer; 491 }; 492 unsigned long sk_pacing_rate; /* bytes per second */ 493 atomic_t sk_zckey; 494 atomic_t sk_tskey; 495 unsigned long sk_tx_queue_mapping_jiffies; 496 __cacheline_group_end(sock_write_tx); 497 498 __cacheline_group_begin(sock_read_tx); 499 u32 sk_dst_pending_confirm; 500 u32 sk_pacing_status; /* see enum sk_pacing */ 501 unsigned long sk_max_pacing_rate; 502 long sk_sndtimeo; 503 u32 sk_priority; 504 u32 sk_mark; 505 kuid_t sk_uid; 506 u16 sk_protocol; 507 u16 sk_type; 508 struct dst_entry __rcu *sk_dst_cache; 509 netdev_features_t sk_route_caps; 510 #ifdef CONFIG_SOCK_VALIDATE_XMIT 511 struct sk_buff* (*sk_validate_xmit_skb)(struct sock *sk, 512 struct net_device *dev, 513 struct sk_buff *skb); 514 #endif 515 u16 sk_gso_type; 516 u16 sk_gso_max_segs; 517 unsigned int sk_gso_max_size; 518 gfp_t sk_allocation; 519 u32 sk_txhash; 520 int sk_sndbuf; 521 u8 sk_pacing_shift; 522 bool sk_use_task_frag; 523 __cacheline_group_end(sock_read_tx); 524 525 /* 526 * Because of non atomicity rules, all 527 * changes are protected by socket lock. 528 */ 529 u8 sk_gso_disabled : 1, 530 sk_kern_sock : 1, 531 sk_no_check_tx : 1, 532 sk_no_check_rx : 1; 533 u8 sk_shutdown; 534 unsigned long sk_lingertime; 535 struct proto *sk_prot_creator; 536 rwlock_t sk_callback_lock; 537 u32 sk_ack_backlog; 538 u32 sk_max_ack_backlog; 539 unsigned long sk_ino; 540 spinlock_t sk_peer_lock; 541 int sk_bind_phc; 542 struct pid *sk_peer_pid; 543 const struct cred *sk_peer_cred; 544 545 ktime_t sk_stamp; 546 #if BITS_PER_LONG==32 547 seqlock_t sk_stamp_seq; 548 #endif 549 int sk_disconnects; 550 551 union { 552 u8 sk_txrehash; 553 u8 sk_scm_recv_flags; 554 struct { 555 u8 sk_scm_credentials : 1, 556 sk_scm_security : 1, 557 sk_scm_pidfd : 1, 558 sk_scm_rights : 1, 559 sk_scm_unused : 4; 560 }; 561 }; 562 u8 sk_clockid; 563 u8 sk_txtime_deadline_mode : 1, 564 sk_txtime_report_errors : 1, 565 sk_txtime_unused : 6; 566 #define SK_BPF_CB_FLAG_TEST(SK, FLAG) ((SK)->sk_bpf_cb_flags & (FLAG)) 567 u8 sk_bpf_cb_flags; 568 569 void *sk_user_data; 570 #ifdef CONFIG_SECURITY 571 void *sk_security; 572 #endif 573 struct sock_cgroup_data sk_cgrp_data; 574 void (*sk_state_change)(struct sock *sk); 575 void (*sk_write_space)(struct sock *sk); 576 void (*sk_error_report)(struct sock *sk); 577 int (*sk_backlog_rcv)(struct sock *sk, 578 struct sk_buff *skb); 579 void (*sk_destruct)(struct sock *sk); 580 struct sock_reuseport __rcu *sk_reuseport_cb; 581 #ifdef CONFIG_BPF_SYSCALL 582 struct bpf_local_storage __rcu *sk_bpf_storage; 583 #endif 584 struct numa_drop_counters *sk_drop_counters; 585 struct rcu_head sk_rcu; 586 netns_tracker ns_tracker; 587 struct xarray sk_user_frags; 588 589 #if IS_ENABLED(CONFIG_PROVE_LOCKING) && IS_ENABLED(CONFIG_MODULES) 590 struct module *sk_owner; 591 #endif 592 }; 593 594 struct sock_bh_locked { 595 struct sock *sock; 596 local_lock_t bh_lock; 597 }; 598 599 enum sk_pacing { 600 SK_PACING_NONE = 0, 601 SK_PACING_NEEDED = 1, 602 SK_PACING_FQ = 2, 603 }; 604 605 /* flag bits in sk_user_data 606 * 607 * - SK_USER_DATA_NOCOPY: Pointer stored in sk_user_data might 608 * not be suitable for copying when cloning the socket. For instance, 609 * it can point to a reference counted object. sk_user_data bottom 610 * bit is set if pointer must not be copied. 611 * 612 * - SK_USER_DATA_BPF: Mark whether sk_user_data field is 613 * managed/owned by a BPF reuseport array. This bit should be set 614 * when sk_user_data's sk is added to the bpf's reuseport_array. 615 * 616 * - SK_USER_DATA_PSOCK: Mark whether pointer stored in 617 * sk_user_data points to psock type. This bit should be set 618 * when sk_user_data is assigned to a psock object. 619 */ 620 #define SK_USER_DATA_NOCOPY 1UL 621 #define SK_USER_DATA_BPF 2UL 622 #define SK_USER_DATA_PSOCK 4UL 623 #define SK_USER_DATA_PTRMASK ~(SK_USER_DATA_NOCOPY | SK_USER_DATA_BPF |\ 624 SK_USER_DATA_PSOCK) 625 626 /** 627 * sk_user_data_is_nocopy - Test if sk_user_data pointer must not be copied 628 * @sk: socket 629 */ 630 static inline bool sk_user_data_is_nocopy(const struct sock *sk) 631 { 632 return ((uintptr_t)sk->sk_user_data & SK_USER_DATA_NOCOPY); 633 } 634 635 #define __sk_user_data(sk) ((*((void __rcu **)&(sk)->sk_user_data))) 636 637 /** 638 * __locked_read_sk_user_data_with_flags - return the pointer 639 * only if argument flags all has been set in sk_user_data. Otherwise 640 * return NULL 641 * 642 * @sk: socket 643 * @flags: flag bits 644 * 645 * The caller must be holding sk->sk_callback_lock. 646 */ 647 static inline void * 648 __locked_read_sk_user_data_with_flags(const struct sock *sk, 649 uintptr_t flags) 650 { 651 uintptr_t sk_user_data = 652 (uintptr_t)rcu_dereference_check(__sk_user_data(sk), 653 lockdep_is_held(&sk->sk_callback_lock)); 654 655 WARN_ON_ONCE(flags & SK_USER_DATA_PTRMASK); 656 657 if ((sk_user_data & flags) == flags) 658 return (void *)(sk_user_data & SK_USER_DATA_PTRMASK); 659 return NULL; 660 } 661 662 /** 663 * __rcu_dereference_sk_user_data_with_flags - return the pointer 664 * only if argument flags all has been set in sk_user_data. Otherwise 665 * return NULL 666 * 667 * @sk: socket 668 * @flags: flag bits 669 */ 670 static inline void * 671 __rcu_dereference_sk_user_data_with_flags(const struct sock *sk, 672 uintptr_t flags) 673 { 674 uintptr_t sk_user_data = (uintptr_t)rcu_dereference(__sk_user_data(sk)); 675 676 WARN_ON_ONCE(flags & SK_USER_DATA_PTRMASK); 677 678 if ((sk_user_data & flags) == flags) 679 return (void *)(sk_user_data & SK_USER_DATA_PTRMASK); 680 return NULL; 681 } 682 683 #define rcu_dereference_sk_user_data(sk) \ 684 __rcu_dereference_sk_user_data_with_flags(sk, 0) 685 #define __rcu_assign_sk_user_data_with_flags(sk, ptr, flags) \ 686 ({ \ 687 uintptr_t __tmp1 = (uintptr_t)(ptr), \ 688 __tmp2 = (uintptr_t)(flags); \ 689 WARN_ON_ONCE(__tmp1 & ~SK_USER_DATA_PTRMASK); \ 690 WARN_ON_ONCE(__tmp2 & SK_USER_DATA_PTRMASK); \ 691 rcu_assign_pointer(__sk_user_data((sk)), \ 692 __tmp1 | __tmp2); \ 693 }) 694 #define rcu_assign_sk_user_data(sk, ptr) \ 695 __rcu_assign_sk_user_data_with_flags(sk, ptr, 0) 696 697 static inline 698 struct net *sock_net(const struct sock *sk) 699 { 700 return read_pnet(&sk->sk_net); 701 } 702 703 static inline 704 void sock_net_set(struct sock *sk, struct net *net) 705 { 706 write_pnet(&sk->sk_net, net); 707 } 708 709 /* 710 * SK_CAN_REUSE and SK_NO_REUSE on a socket mean that the socket is OK 711 * or not whether his port will be reused by someone else. SK_FORCE_REUSE 712 * on a socket means that the socket will reuse everybody else's port 713 * without looking at the other's sk_reuse value. 714 */ 715 716 #define SK_NO_REUSE 0 717 #define SK_CAN_REUSE 1 718 #define SK_FORCE_REUSE 2 719 720 int sk_set_peek_off(struct sock *sk, int val); 721 722 static inline int sk_peek_offset(const struct sock *sk, int flags) 723 { 724 if (unlikely(flags & MSG_PEEK)) { 725 return READ_ONCE(sk->sk_peek_off); 726 } 727 728 return 0; 729 } 730 731 static inline void sk_peek_offset_bwd(struct sock *sk, int val) 732 { 733 s32 off = READ_ONCE(sk->sk_peek_off); 734 735 if (unlikely(off >= 0)) { 736 off = max_t(s32, off - val, 0); 737 WRITE_ONCE(sk->sk_peek_off, off); 738 } 739 } 740 741 static inline void sk_peek_offset_fwd(struct sock *sk, int val) 742 { 743 sk_peek_offset_bwd(sk, -val); 744 } 745 746 /* 747 * Hashed lists helper routines 748 */ 749 static inline struct sock *sk_entry(const struct hlist_node *node) 750 { 751 return hlist_entry(node, struct sock, sk_node); 752 } 753 754 static inline struct sock *__sk_head(const struct hlist_head *head) 755 { 756 return hlist_entry(head->first, struct sock, sk_node); 757 } 758 759 static inline struct sock *sk_head(const struct hlist_head *head) 760 { 761 return hlist_empty(head) ? NULL : __sk_head(head); 762 } 763 764 static inline struct sock *__sk_nulls_head(const struct hlist_nulls_head *head) 765 { 766 return hlist_nulls_entry(head->first, struct sock, sk_nulls_node); 767 } 768 769 static inline struct sock *sk_nulls_head(const struct hlist_nulls_head *head) 770 { 771 return hlist_nulls_empty(head) ? NULL : __sk_nulls_head(head); 772 } 773 774 static inline struct sock *sk_next(const struct sock *sk) 775 { 776 return hlist_entry_safe(sk->sk_node.next, struct sock, sk_node); 777 } 778 779 static inline struct sock *sk_nulls_next(const struct sock *sk) 780 { 781 return (!is_a_nulls(sk->sk_nulls_node.next)) ? 782 hlist_nulls_entry(sk->sk_nulls_node.next, 783 struct sock, sk_nulls_node) : 784 NULL; 785 } 786 787 static inline bool sk_unhashed(const struct sock *sk) 788 { 789 return hlist_unhashed(&sk->sk_node); 790 } 791 792 static inline bool sk_hashed(const struct sock *sk) 793 { 794 return !sk_unhashed(sk); 795 } 796 797 static inline void sk_node_init(struct hlist_node *node) 798 { 799 node->pprev = NULL; 800 } 801 802 static inline void __sk_del_node(struct sock *sk) 803 { 804 __hlist_del(&sk->sk_node); 805 } 806 807 /* NB: equivalent to hlist_del_init_rcu */ 808 static inline bool __sk_del_node_init(struct sock *sk) 809 { 810 if (sk_hashed(sk)) { 811 __sk_del_node(sk); 812 sk_node_init(&sk->sk_node); 813 return true; 814 } 815 return false; 816 } 817 818 /* Grab socket reference count. This operation is valid only 819 when sk is ALREADY grabbed f.e. it is found in hash table 820 or a list and the lookup is made under lock preventing hash table 821 modifications. 822 */ 823 824 static __always_inline void sock_hold(struct sock *sk) 825 { 826 refcount_inc(&sk->sk_refcnt); 827 } 828 829 /* Ungrab socket in the context, which assumes that socket refcnt 830 cannot hit zero, f.e. it is true in context of any socketcall. 831 */ 832 static __always_inline void __sock_put(struct sock *sk) 833 { 834 refcount_dec(&sk->sk_refcnt); 835 } 836 837 static inline bool sk_del_node_init(struct sock *sk) 838 { 839 bool rc = __sk_del_node_init(sk); 840 841 if (rc) 842 __sock_put(sk); 843 844 return rc; 845 } 846 #define sk_del_node_init_rcu(sk) sk_del_node_init(sk) 847 848 static inline bool __sk_nulls_del_node_init_rcu(struct sock *sk) 849 { 850 if (sk_hashed(sk)) { 851 hlist_nulls_del_init_rcu(&sk->sk_nulls_node); 852 return true; 853 } 854 return false; 855 } 856 857 static inline bool sk_nulls_del_node_init_rcu(struct sock *sk) 858 { 859 bool rc = __sk_nulls_del_node_init_rcu(sk); 860 861 if (rc) 862 __sock_put(sk); 863 864 return rc; 865 } 866 867 static inline bool sk_nulls_replace_node_init_rcu(struct sock *old, 868 struct sock *new) 869 { 870 if (sk_hashed(old)) { 871 hlist_nulls_replace_init_rcu(&old->sk_nulls_node, 872 &new->sk_nulls_node); 873 __sock_put(old); 874 return true; 875 } 876 877 return false; 878 } 879 880 static inline void __sk_add_node(struct sock *sk, struct hlist_head *list) 881 { 882 hlist_add_head(&sk->sk_node, list); 883 } 884 885 static inline void sk_add_node(struct sock *sk, struct hlist_head *list) 886 { 887 sock_hold(sk); 888 __sk_add_node(sk, list); 889 } 890 891 static inline void sk_add_node_rcu(struct sock *sk, struct hlist_head *list) 892 { 893 sock_hold(sk); 894 if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport && 895 sk->sk_family == AF_INET6) 896 hlist_add_tail_rcu(&sk->sk_node, list); 897 else 898 hlist_add_head_rcu(&sk->sk_node, list); 899 } 900 901 static inline void sk_add_node_tail_rcu(struct sock *sk, struct hlist_head *list) 902 { 903 sock_hold(sk); 904 hlist_add_tail_rcu(&sk->sk_node, list); 905 } 906 907 static inline void __sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list) 908 { 909 hlist_nulls_add_head_rcu(&sk->sk_nulls_node, list); 910 } 911 912 static inline void __sk_nulls_add_node_tail_rcu(struct sock *sk, struct hlist_nulls_head *list) 913 { 914 hlist_nulls_add_tail_rcu(&sk->sk_nulls_node, list); 915 } 916 917 static inline void sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list) 918 { 919 sock_hold(sk); 920 __sk_nulls_add_node_rcu(sk, list); 921 } 922 923 static inline void __sk_del_bind_node(struct sock *sk) 924 { 925 __hlist_del(&sk->sk_bind_node); 926 } 927 928 static inline void sk_add_bind_node(struct sock *sk, 929 struct hlist_head *list) 930 { 931 hlist_add_head(&sk->sk_bind_node, list); 932 } 933 934 #define sk_for_each(__sk, list) \ 935 hlist_for_each_entry(__sk, list, sk_node) 936 #define sk_for_each_rcu(__sk, list) \ 937 hlist_for_each_entry_rcu(__sk, list, sk_node) 938 #define sk_nulls_for_each(__sk, node, list) \ 939 hlist_nulls_for_each_entry(__sk, node, list, sk_nulls_node) 940 #define sk_nulls_for_each_rcu(__sk, node, list) \ 941 hlist_nulls_for_each_entry_rcu(__sk, node, list, sk_nulls_node) 942 #define sk_for_each_from(__sk) \ 943 hlist_for_each_entry_from(__sk, sk_node) 944 #define sk_nulls_for_each_from(__sk, node) \ 945 if (__sk && ({ node = &(__sk)->sk_nulls_node; 1; })) \ 946 hlist_nulls_for_each_entry_from(__sk, node, sk_nulls_node) 947 #define sk_for_each_safe(__sk, tmp, list) \ 948 hlist_for_each_entry_safe(__sk, tmp, list, sk_node) 949 #define sk_for_each_bound(__sk, list) \ 950 hlist_for_each_entry(__sk, list, sk_bind_node) 951 #define sk_for_each_bound_safe(__sk, tmp, list) \ 952 hlist_for_each_entry_safe(__sk, tmp, list, sk_bind_node) 953 954 /** 955 * sk_for_each_entry_offset_rcu - iterate over a list at a given struct offset 956 * @tpos: the type * to use as a loop cursor. 957 * @pos: the &struct hlist_node to use as a loop cursor. 958 * @head: the head for your list. 959 * @offset: offset of hlist_node within the struct. 960 * 961 */ 962 #define sk_for_each_entry_offset_rcu(tpos, pos, head, offset) \ 963 for (pos = rcu_dereference(hlist_first_rcu(head)); \ 964 pos != NULL && \ 965 ({ tpos = (typeof(*tpos) *)((void *)pos - offset); 1;}); \ 966 pos = rcu_dereference(hlist_next_rcu(pos))) 967 968 static inline struct user_namespace *sk_user_ns(const struct sock *sk) 969 { 970 /* Careful only use this in a context where these parameters 971 * can not change and must all be valid, such as recvmsg from 972 * userspace. 973 */ 974 return sk->sk_socket->file->f_cred->user_ns; 975 } 976 977 /* Sock flags */ 978 enum sock_flags { 979 SOCK_DEAD, 980 SOCK_DONE, 981 SOCK_URGINLINE, 982 SOCK_KEEPOPEN, 983 SOCK_LINGER, 984 SOCK_DESTROY, 985 SOCK_BROADCAST, 986 SOCK_TIMESTAMP, 987 SOCK_ZAPPED, 988 SOCK_USE_WRITE_QUEUE, /* whether to call sk->sk_write_space in sock_wfree */ 989 SOCK_DBG, /* %SO_DEBUG setting */ 990 SOCK_RCVTSTAMP, /* %SO_TIMESTAMP setting */ 991 SOCK_RCVTSTAMPNS, /* %SO_TIMESTAMPNS setting */ 992 SOCK_LOCALROUTE, /* route locally only, %SO_DONTROUTE setting */ 993 SOCK_MEMALLOC, /* VM depends on this socket for swapping */ 994 SOCK_TIMESTAMPING_RX_SOFTWARE, /* %SOF_TIMESTAMPING_RX_SOFTWARE */ 995 SOCK_FASYNC, /* fasync() active */ 996 SOCK_RXQ_OVFL, 997 SOCK_ZEROCOPY, /* buffers from userspace */ 998 SOCK_WIFI_STATUS, /* push wifi status to userspace */ 999 SOCK_NOFCS, /* Tell NIC not to do the Ethernet FCS. 1000 * Will use last 4 bytes of packet sent from 1001 * user-space instead. 1002 */ 1003 SOCK_FILTER_LOCKED, /* Filter cannot be changed anymore */ 1004 SOCK_SELECT_ERR_QUEUE, /* Wake select on error queue */ 1005 SOCK_RCU_FREE, /* wait rcu grace period in sk_destruct() */ 1006 SOCK_TXTIME, 1007 SOCK_XDP, /* XDP is attached */ 1008 SOCK_TSTAMP_NEW, /* Indicates 64 bit timestamps always */ 1009 SOCK_RCVMARK, /* Receive SO_MARK ancillary data with packet */ 1010 SOCK_RCVPRIORITY, /* Receive SO_PRIORITY ancillary data with packet */ 1011 SOCK_TIMESTAMPING_ANY, /* Copy of sk_tsflags & TSFLAGS_ANY */ 1012 }; 1013 1014 #define SK_FLAGS_TIMESTAMP ((1UL << SOCK_TIMESTAMP) | (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE)) 1015 /* 1016 * The highest bit of sk_tsflags is reserved for kernel-internal 1017 * SOCKCM_FLAG_TS_OPT_ID. There is a check in core/sock.c to control that 1018 * SOF_TIMESTAMPING* values do not reach this reserved area 1019 */ 1020 #define SOCKCM_FLAG_TS_OPT_ID BIT(31) 1021 1022 static inline void sock_copy_flags(struct sock *nsk, const struct sock *osk) 1023 { 1024 nsk->sk_flags = osk->sk_flags; 1025 } 1026 1027 static inline void sock_set_flag(struct sock *sk, enum sock_flags flag) 1028 { 1029 __set_bit(flag, &sk->sk_flags); 1030 } 1031 1032 static inline void sock_reset_flag(struct sock *sk, enum sock_flags flag) 1033 { 1034 __clear_bit(flag, &sk->sk_flags); 1035 } 1036 1037 static inline void sock_valbool_flag(struct sock *sk, enum sock_flags bit, 1038 int valbool) 1039 { 1040 if (valbool) 1041 sock_set_flag(sk, bit); 1042 else 1043 sock_reset_flag(sk, bit); 1044 } 1045 1046 static inline bool sock_flag(const struct sock *sk, enum sock_flags flag) 1047 { 1048 return test_bit(flag, &sk->sk_flags); 1049 } 1050 1051 #ifdef CONFIG_NET 1052 DECLARE_STATIC_KEY_FALSE(memalloc_socks_key); 1053 static inline int sk_memalloc_socks(void) 1054 { 1055 return static_branch_unlikely(&memalloc_socks_key); 1056 } 1057 1058 void __receive_sock(struct file *file); 1059 #else 1060 1061 static inline int sk_memalloc_socks(void) 1062 { 1063 return 0; 1064 } 1065 1066 static inline void __receive_sock(struct file *file) 1067 { } 1068 #endif 1069 1070 static inline gfp_t sk_gfp_mask(const struct sock *sk, gfp_t gfp_mask) 1071 { 1072 return gfp_mask | (sk->sk_allocation & __GFP_MEMALLOC); 1073 } 1074 1075 static inline void sk_acceptq_removed(struct sock *sk) 1076 { 1077 WRITE_ONCE(sk->sk_ack_backlog, sk->sk_ack_backlog - 1); 1078 } 1079 1080 static inline void sk_acceptq_added(struct sock *sk) 1081 { 1082 WRITE_ONCE(sk->sk_ack_backlog, sk->sk_ack_backlog + 1); 1083 } 1084 1085 /* Note: If you think the test should be: 1086 * return READ_ONCE(sk->sk_ack_backlog) >= READ_ONCE(sk->sk_max_ack_backlog); 1087 * Then please take a look at commit 64a146513f8f ("[NET]: Revert incorrect accept queue backlog changes.") 1088 */ 1089 static inline bool sk_acceptq_is_full(const struct sock *sk) 1090 { 1091 return READ_ONCE(sk->sk_ack_backlog) > READ_ONCE(sk->sk_max_ack_backlog); 1092 } 1093 1094 /* 1095 * Compute minimal free write space needed to queue new packets. 1096 */ 1097 static inline int sk_stream_min_wspace(const struct sock *sk) 1098 { 1099 return READ_ONCE(sk->sk_wmem_queued) >> 1; 1100 } 1101 1102 static inline int sk_stream_wspace(const struct sock *sk) 1103 { 1104 return READ_ONCE(sk->sk_sndbuf) - READ_ONCE(sk->sk_wmem_queued); 1105 } 1106 1107 static inline void sk_wmem_queued_add(struct sock *sk, int val) 1108 { 1109 WRITE_ONCE(sk->sk_wmem_queued, sk->sk_wmem_queued + val); 1110 } 1111 1112 static inline void sk_forward_alloc_add(struct sock *sk, int val) 1113 { 1114 /* Paired with lockless reads of sk->sk_forward_alloc */ 1115 WRITE_ONCE(sk->sk_forward_alloc, sk->sk_forward_alloc + val); 1116 } 1117 1118 void sk_stream_write_space(struct sock *sk); 1119 1120 /* OOB backlog add */ 1121 static inline void __sk_add_backlog(struct sock *sk, struct sk_buff *skb) 1122 { 1123 /* dont let skb dst not refcounted, we are going to leave rcu lock */ 1124 skb_dst_force(skb); 1125 1126 if (!sk->sk_backlog.tail) 1127 WRITE_ONCE(sk->sk_backlog.head, skb); 1128 else 1129 sk->sk_backlog.tail->next = skb; 1130 1131 WRITE_ONCE(sk->sk_backlog.tail, skb); 1132 skb->next = NULL; 1133 } 1134 1135 /* 1136 * Take into account size of receive queue and backlog queue 1137 * Do not take into account this skb truesize, 1138 * to allow even a single big packet to come. 1139 */ 1140 static inline bool sk_rcvqueues_full(const struct sock *sk, unsigned int limit) 1141 { 1142 unsigned int qsize = sk->sk_backlog.len + atomic_read(&sk->sk_rmem_alloc); 1143 1144 return qsize > limit; 1145 } 1146 1147 /* The per-socket spinlock must be held here. */ 1148 static inline __must_check int sk_add_backlog(struct sock *sk, struct sk_buff *skb, 1149 unsigned int limit) 1150 { 1151 if (sk_rcvqueues_full(sk, limit)) 1152 return -ENOBUFS; 1153 1154 /* 1155 * If the skb was allocated from pfmemalloc reserves, only 1156 * allow SOCK_MEMALLOC sockets to use it as this socket is 1157 * helping free memory 1158 */ 1159 if (skb_pfmemalloc(skb) && !sock_flag(sk, SOCK_MEMALLOC)) 1160 return -ENOMEM; 1161 1162 __sk_add_backlog(sk, skb); 1163 sk->sk_backlog.len += skb->truesize; 1164 return 0; 1165 } 1166 1167 int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb); 1168 1169 INDIRECT_CALLABLE_DECLARE(int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb)); 1170 INDIRECT_CALLABLE_DECLARE(int tcp_v6_do_rcv(struct sock *sk, struct sk_buff *skb)); 1171 1172 static inline int sk_backlog_rcv(struct sock *sk, struct sk_buff *skb) 1173 { 1174 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) 1175 return __sk_backlog_rcv(sk, skb); 1176 1177 return INDIRECT_CALL_INET(sk->sk_backlog_rcv, 1178 tcp_v6_do_rcv, 1179 tcp_v4_do_rcv, 1180 sk, skb); 1181 } 1182 1183 static inline void sk_incoming_cpu_update(struct sock *sk) 1184 { 1185 int cpu = raw_smp_processor_id(); 1186 1187 if (unlikely(READ_ONCE(sk->sk_incoming_cpu) != cpu)) 1188 WRITE_ONCE(sk->sk_incoming_cpu, cpu); 1189 } 1190 1191 1192 static inline void sock_rps_save_rxhash(struct sock *sk, 1193 const struct sk_buff *skb) 1194 { 1195 #ifdef CONFIG_RPS 1196 /* The following WRITE_ONCE() is paired with the READ_ONCE() 1197 * here, and another one in sock_rps_record_flow(). 1198 */ 1199 if (unlikely(READ_ONCE(sk->sk_rxhash) != skb->hash)) 1200 WRITE_ONCE(sk->sk_rxhash, skb->hash); 1201 #endif 1202 } 1203 1204 static inline void sock_rps_reset_rxhash(struct sock *sk) 1205 { 1206 #ifdef CONFIG_RPS 1207 /* Paired with READ_ONCE() in sock_rps_record_flow() */ 1208 WRITE_ONCE(sk->sk_rxhash, 0); 1209 #endif 1210 } 1211 1212 #define sk_wait_event(__sk, __timeo, __condition, __wait) \ 1213 ({ int __rc, __dis = __sk->sk_disconnects; \ 1214 release_sock(__sk); \ 1215 __rc = __condition; \ 1216 if (!__rc) { \ 1217 *(__timeo) = wait_woken(__wait, \ 1218 TASK_INTERRUPTIBLE, \ 1219 *(__timeo)); \ 1220 } \ 1221 sched_annotate_sleep(); \ 1222 lock_sock(__sk); \ 1223 __rc = __dis == __sk->sk_disconnects ? __condition : -EPIPE; \ 1224 __rc; \ 1225 }) 1226 1227 int sk_stream_wait_connect(struct sock *sk, long *timeo_p); 1228 int sk_stream_wait_memory(struct sock *sk, long *timeo_p); 1229 void sk_stream_wait_close(struct sock *sk, long timeo_p); 1230 int sk_stream_error(struct sock *sk, int flags, int err); 1231 void sk_stream_kill_queues(struct sock *sk); 1232 void sk_set_memalloc(struct sock *sk); 1233 void sk_clear_memalloc(struct sock *sk); 1234 1235 void __sk_flush_backlog(struct sock *sk); 1236 1237 static inline bool sk_flush_backlog(struct sock *sk) 1238 { 1239 if (unlikely(READ_ONCE(sk->sk_backlog.tail))) { 1240 __sk_flush_backlog(sk); 1241 return true; 1242 } 1243 return false; 1244 } 1245 1246 int sk_wait_data(struct sock *sk, long *timeo, const struct sk_buff *skb); 1247 1248 struct request_sock_ops; 1249 struct timewait_sock_ops; 1250 struct inet_hashinfo; 1251 struct raw_hashinfo; 1252 struct smc_hashinfo; 1253 struct module; 1254 struct sk_psock; 1255 1256 /* 1257 * caches using SLAB_TYPESAFE_BY_RCU should let .next pointer from nulls nodes 1258 * un-modified. Special care is taken when initializing object to zero. 1259 */ 1260 static inline void sk_prot_clear_nulls(struct sock *sk, int size) 1261 { 1262 if (offsetof(struct sock, sk_node.next) != 0) 1263 memset(sk, 0, offsetof(struct sock, sk_node.next)); 1264 memset(&sk->sk_node.pprev, 0, 1265 size - offsetof(struct sock, sk_node.pprev)); 1266 } 1267 1268 struct proto_accept_arg { 1269 int flags; 1270 int err; 1271 int is_empty; 1272 bool kern; 1273 }; 1274 1275 /* Networking protocol blocks we attach to sockets. 1276 * socket layer -> transport layer interface 1277 */ 1278 struct proto { 1279 void (*close)(struct sock *sk, 1280 long timeout); 1281 int (*pre_connect)(struct sock *sk, 1282 struct sockaddr_unsized *uaddr, 1283 int addr_len); 1284 int (*connect)(struct sock *sk, 1285 struct sockaddr_unsized *uaddr, 1286 int addr_len); 1287 int (*disconnect)(struct sock *sk, int flags); 1288 1289 struct sock * (*accept)(struct sock *sk, 1290 struct proto_accept_arg *arg); 1291 1292 int (*ioctl)(struct sock *sk, int cmd, 1293 int *karg); 1294 int (*init)(struct sock *sk); 1295 void (*destroy)(struct sock *sk); 1296 void (*shutdown)(struct sock *sk, int how); 1297 int (*setsockopt)(struct sock *sk, int level, 1298 int optname, sockptr_t optval, 1299 unsigned int optlen); 1300 int (*getsockopt)(struct sock *sk, int level, 1301 int optname, char __user *optval, 1302 int __user *option); 1303 void (*keepalive)(struct sock *sk, int valbool); 1304 #ifdef CONFIG_COMPAT 1305 int (*compat_ioctl)(struct sock *sk, 1306 unsigned int cmd, unsigned long arg); 1307 #endif 1308 int (*sendmsg)(struct sock *sk, struct msghdr *msg, 1309 size_t len); 1310 int (*recvmsg)(struct sock *sk, struct msghdr *msg, 1311 size_t len, int flags, int *addr_len); 1312 void (*splice_eof)(struct socket *sock); 1313 int (*bind)(struct sock *sk, 1314 struct sockaddr_unsized *addr, int addr_len); 1315 int (*bind_add)(struct sock *sk, 1316 struct sockaddr_unsized *addr, int addr_len); 1317 1318 int (*backlog_rcv) (struct sock *sk, 1319 struct sk_buff *skb); 1320 bool (*bpf_bypass_getsockopt)(int level, 1321 int optname); 1322 1323 void (*release_cb)(struct sock *sk); 1324 1325 /* Keeping track of sk's, looking them up, and port selection methods. */ 1326 int (*hash)(struct sock *sk); 1327 void (*unhash)(struct sock *sk); 1328 void (*rehash)(struct sock *sk); 1329 int (*get_port)(struct sock *sk, unsigned short snum); 1330 void (*put_port)(struct sock *sk); 1331 #ifdef CONFIG_BPF_SYSCALL 1332 int (*psock_update_sk_prot)(struct sock *sk, 1333 struct sk_psock *psock, 1334 bool restore); 1335 #endif 1336 1337 /* Keeping track of sockets in use */ 1338 #ifdef CONFIG_PROC_FS 1339 unsigned int inuse_idx; 1340 #endif 1341 1342 bool (*stream_memory_free)(const struct sock *sk, int wake); 1343 bool (*sock_is_readable)(struct sock *sk); 1344 /* Memory pressure */ 1345 void (*enter_memory_pressure)(struct sock *sk); 1346 void (*leave_memory_pressure)(struct sock *sk); 1347 atomic_long_t *memory_allocated; /* Current allocated memory. */ 1348 int __percpu *per_cpu_fw_alloc; 1349 struct percpu_counter *sockets_allocated; /* Current number of sockets. */ 1350 1351 /* 1352 * Pressure flag: try to collapse. 1353 * Technical note: it is used by multiple contexts non atomically. 1354 * Make sure to use READ_ONCE()/WRITE_ONCE() for all reads/writes. 1355 * All the __sk_mem_schedule() is of this nature: accounting 1356 * is strict, actions are advisory and have some latency. 1357 */ 1358 unsigned long *memory_pressure; 1359 long *sysctl_mem; 1360 1361 int *sysctl_wmem; 1362 int *sysctl_rmem; 1363 u32 sysctl_wmem_offset; 1364 u32 sysctl_rmem_offset; 1365 1366 int max_header; 1367 bool no_autobind; 1368 1369 struct kmem_cache *slab; 1370 unsigned int obj_size; 1371 unsigned int ipv6_pinfo_offset; 1372 slab_flags_t slab_flags; 1373 unsigned int useroffset; /* Usercopy region offset */ 1374 unsigned int usersize; /* Usercopy region size */ 1375 1376 struct request_sock_ops *rsk_prot; 1377 struct timewait_sock_ops *twsk_prot; 1378 1379 union { 1380 struct inet_hashinfo *hashinfo; 1381 struct udp_table *udp_table; 1382 struct raw_hashinfo *raw_hash; 1383 struct smc_hashinfo *smc_hash; 1384 } h; 1385 1386 struct module *owner; 1387 1388 char name[32]; 1389 1390 struct list_head node; 1391 int (*diag_destroy)(struct sock *sk, int err); 1392 } __randomize_layout; 1393 1394 int proto_register(struct proto *prot, int alloc_slab); 1395 void proto_unregister(struct proto *prot); 1396 int sock_load_diag_module(int family, int protocol); 1397 1398 INDIRECT_CALLABLE_DECLARE(bool tcp_stream_memory_free(const struct sock *sk, int wake)); 1399 1400 static inline bool __sk_stream_memory_free(const struct sock *sk, int wake) 1401 { 1402 if (READ_ONCE(sk->sk_wmem_queued) >= READ_ONCE(sk->sk_sndbuf)) 1403 return false; 1404 1405 return sk->sk_prot->stream_memory_free ? 1406 INDIRECT_CALL_INET_1(sk->sk_prot->stream_memory_free, 1407 tcp_stream_memory_free, sk, wake) : true; 1408 } 1409 1410 static inline bool sk_stream_memory_free(const struct sock *sk) 1411 { 1412 return __sk_stream_memory_free(sk, 0); 1413 } 1414 1415 static inline bool __sk_stream_is_writeable(const struct sock *sk, int wake) 1416 { 1417 return sk_stream_wspace(sk) >= sk_stream_min_wspace(sk) && 1418 __sk_stream_memory_free(sk, wake); 1419 } 1420 1421 static inline bool sk_stream_is_writeable(const struct sock *sk) 1422 { 1423 return __sk_stream_is_writeable(sk, 0); 1424 } 1425 1426 static inline int sk_under_cgroup_hierarchy(struct sock *sk, 1427 struct cgroup *ancestor) 1428 { 1429 #ifdef CONFIG_SOCK_CGROUP_DATA 1430 return cgroup_is_descendant(sock_cgroup_ptr(&sk->sk_cgrp_data), 1431 ancestor); 1432 #else 1433 return -ENOTSUPP; 1434 #endif 1435 } 1436 1437 #define SK_ALLOC_PERCPU_COUNTER_BATCH 16 1438 1439 static inline void sk_sockets_allocated_dec(struct sock *sk) 1440 { 1441 percpu_counter_add_batch(sk->sk_prot->sockets_allocated, -1, 1442 SK_ALLOC_PERCPU_COUNTER_BATCH); 1443 } 1444 1445 static inline void sk_sockets_allocated_inc(struct sock *sk) 1446 { 1447 percpu_counter_add_batch(sk->sk_prot->sockets_allocated, 1, 1448 SK_ALLOC_PERCPU_COUNTER_BATCH); 1449 } 1450 1451 static inline u64 1452 sk_sockets_allocated_read_positive(struct sock *sk) 1453 { 1454 return percpu_counter_read_positive(sk->sk_prot->sockets_allocated); 1455 } 1456 1457 static inline int 1458 proto_sockets_allocated_sum_positive(struct proto *prot) 1459 { 1460 return percpu_counter_sum_positive(prot->sockets_allocated); 1461 } 1462 1463 #ifdef CONFIG_PROC_FS 1464 #define PROTO_INUSE_NR 64 /* should be enough for the first time */ 1465 struct prot_inuse { 1466 int all; 1467 int val[PROTO_INUSE_NR]; 1468 }; 1469 1470 static inline void sock_prot_inuse_add(const struct net *net, 1471 const struct proto *prot, int val) 1472 { 1473 this_cpu_add(net->core.prot_inuse->val[prot->inuse_idx], val); 1474 } 1475 1476 static inline void sock_inuse_add(const struct net *net, int val) 1477 { 1478 this_cpu_add(net->core.prot_inuse->all, val); 1479 } 1480 1481 int sock_prot_inuse_get(struct net *net, struct proto *proto); 1482 int sock_inuse_get(struct net *net); 1483 #else 1484 static inline void sock_prot_inuse_add(const struct net *net, 1485 const struct proto *prot, int val) 1486 { 1487 } 1488 1489 static inline void sock_inuse_add(const struct net *net, int val) 1490 { 1491 } 1492 #endif 1493 1494 1495 /* With per-bucket locks this operation is not-atomic, so that 1496 * this version is not worse. 1497 */ 1498 static inline int __sk_prot_rehash(struct sock *sk) 1499 { 1500 sk->sk_prot->unhash(sk); 1501 return sk->sk_prot->hash(sk); 1502 } 1503 1504 /* About 10 seconds */ 1505 #define SOCK_DESTROY_TIME (10*HZ) 1506 1507 /* Sockets 0-1023 can't be bound to unless you are superuser */ 1508 #define PROT_SOCK 1024 1509 1510 #define SHUTDOWN_MASK 3 1511 #define RCV_SHUTDOWN 1 1512 #define SEND_SHUTDOWN 2 1513 1514 #define SOCK_BINDADDR_LOCK 4 1515 #define SOCK_BINDPORT_LOCK 8 1516 /** 1517 * define SOCK_CONNECT_BIND - &sock->sk_userlocks flag for auto-bind at connect() time 1518 */ 1519 #define SOCK_CONNECT_BIND 16 1520 1521 struct socket_alloc { 1522 struct socket socket; 1523 struct inode vfs_inode; 1524 }; 1525 1526 static inline struct socket *SOCKET_I(struct inode *inode) 1527 { 1528 return &container_of(inode, struct socket_alloc, vfs_inode)->socket; 1529 } 1530 1531 static inline struct inode *SOCK_INODE(struct socket *socket) 1532 { 1533 return &container_of(socket, struct socket_alloc, socket)->vfs_inode; 1534 } 1535 1536 /* 1537 * Functions for memory accounting 1538 */ 1539 int __sk_mem_raise_allocated(struct sock *sk, int size, int amt, int kind); 1540 int __sk_mem_schedule(struct sock *sk, int size, int kind); 1541 void __sk_mem_reduce_allocated(struct sock *sk, int amount); 1542 void __sk_mem_reclaim(struct sock *sk, int amount); 1543 1544 #define SK_MEM_SEND 0 1545 #define SK_MEM_RECV 1 1546 1547 /* sysctl_mem values are in pages */ 1548 static inline long sk_prot_mem_limits(const struct sock *sk, int index) 1549 { 1550 return READ_ONCE(sk->sk_prot->sysctl_mem[index]); 1551 } 1552 1553 static inline int sk_mem_pages(int amt) 1554 { 1555 return (amt + PAGE_SIZE - 1) >> PAGE_SHIFT; 1556 } 1557 1558 static inline bool sk_has_account(struct sock *sk) 1559 { 1560 /* return true if protocol supports memory accounting */ 1561 return !!sk->sk_prot->memory_allocated; 1562 } 1563 1564 static inline bool sk_wmem_schedule(struct sock *sk, int size) 1565 { 1566 int delta; 1567 1568 if (!sk_has_account(sk)) 1569 return true; 1570 delta = size - sk->sk_forward_alloc; 1571 return delta <= 0 || __sk_mem_schedule(sk, delta, SK_MEM_SEND); 1572 } 1573 1574 static inline bool 1575 __sk_rmem_schedule(struct sock *sk, int size, bool pfmemalloc) 1576 { 1577 int delta; 1578 1579 if (!sk_has_account(sk)) 1580 return true; 1581 delta = size - sk->sk_forward_alloc; 1582 return delta <= 0 || __sk_mem_schedule(sk, delta, SK_MEM_RECV) || 1583 pfmemalloc; 1584 } 1585 1586 static inline bool 1587 sk_rmem_schedule(struct sock *sk, const struct sk_buff *skb, int size) 1588 { 1589 return __sk_rmem_schedule(sk, size, skb_pfmemalloc(skb)); 1590 } 1591 1592 static inline int sk_unused_reserved_mem(const struct sock *sk) 1593 { 1594 int unused_mem; 1595 1596 if (likely(!sk->sk_reserved_mem)) 1597 return 0; 1598 1599 unused_mem = sk->sk_reserved_mem - sk->sk_wmem_queued - 1600 atomic_read(&sk->sk_rmem_alloc); 1601 1602 return unused_mem > 0 ? unused_mem : 0; 1603 } 1604 1605 static inline void sk_mem_reclaim(struct sock *sk) 1606 { 1607 int reclaimable; 1608 1609 if (!sk_has_account(sk)) 1610 return; 1611 1612 reclaimable = sk->sk_forward_alloc - sk_unused_reserved_mem(sk); 1613 1614 if (reclaimable >= (int)PAGE_SIZE) 1615 __sk_mem_reclaim(sk, reclaimable); 1616 } 1617 1618 static inline void sk_mem_reclaim_final(struct sock *sk) 1619 { 1620 sk->sk_reserved_mem = 0; 1621 sk_mem_reclaim(sk); 1622 } 1623 1624 static inline void sk_mem_charge(struct sock *sk, int size) 1625 { 1626 if (!sk_has_account(sk)) 1627 return; 1628 sk_forward_alloc_add(sk, -size); 1629 } 1630 1631 static inline void sk_mem_uncharge(struct sock *sk, int size) 1632 { 1633 if (!sk_has_account(sk)) 1634 return; 1635 sk_forward_alloc_add(sk, size); 1636 sk_mem_reclaim(sk); 1637 } 1638 1639 void __sk_charge(struct sock *sk, gfp_t gfp); 1640 1641 #if IS_ENABLED(CONFIG_PROVE_LOCKING) && IS_ENABLED(CONFIG_MODULES) 1642 static inline void sk_owner_set(struct sock *sk, struct module *owner) 1643 { 1644 __module_get(owner); 1645 sk->sk_owner = owner; 1646 } 1647 1648 static inline void sk_owner_clear(struct sock *sk) 1649 { 1650 sk->sk_owner = NULL; 1651 } 1652 1653 static inline void sk_owner_put(struct sock *sk) 1654 { 1655 module_put(sk->sk_owner); 1656 } 1657 #else 1658 static inline void sk_owner_set(struct sock *sk, struct module *owner) 1659 { 1660 } 1661 1662 static inline void sk_owner_clear(struct sock *sk) 1663 { 1664 } 1665 1666 static inline void sk_owner_put(struct sock *sk) 1667 { 1668 } 1669 #endif 1670 /* 1671 * Macro so as to not evaluate some arguments when 1672 * lockdep is not enabled. 1673 * 1674 * Mark both the sk_lock and the sk_lock.slock as a 1675 * per-address-family lock class. 1676 */ 1677 #define sock_lock_init_class_and_name(sk, sname, skey, name, key) \ 1678 do { \ 1679 sk_owner_set(sk, THIS_MODULE); \ 1680 sk->sk_lock.owned = 0; \ 1681 init_waitqueue_head(&sk->sk_lock.wq); \ 1682 spin_lock_init(&(sk)->sk_lock.slock); \ 1683 debug_check_no_locks_freed((void *)&(sk)->sk_lock, \ 1684 sizeof((sk)->sk_lock)); \ 1685 lockdep_set_class_and_name(&(sk)->sk_lock.slock, \ 1686 (skey), (sname)); \ 1687 lockdep_init_map(&(sk)->sk_lock.dep_map, (name), (key), 0); \ 1688 } while (0) 1689 1690 static inline bool lockdep_sock_is_held(const struct sock *sk) 1691 { 1692 return lockdep_is_held(&sk->sk_lock) || 1693 lockdep_is_held(&sk->sk_lock.slock); 1694 } 1695 1696 void lock_sock_nested(struct sock *sk, int subclass); 1697 1698 static inline void lock_sock(struct sock *sk) 1699 { 1700 lock_sock_nested(sk, 0); 1701 } 1702 1703 void __lock_sock(struct sock *sk); 1704 void __release_sock(struct sock *sk); 1705 void release_sock(struct sock *sk); 1706 1707 /* BH context may only use the following locking interface. */ 1708 #define bh_lock_sock(__sk) spin_lock(&((__sk)->sk_lock.slock)) 1709 #define bh_lock_sock_nested(__sk) \ 1710 spin_lock_nested(&((__sk)->sk_lock.slock), \ 1711 SINGLE_DEPTH_NESTING) 1712 #define bh_unlock_sock(__sk) spin_unlock(&((__sk)->sk_lock.slock)) 1713 1714 bool __lock_sock_fast(struct sock *sk) __acquires(&sk->sk_lock.slock); 1715 1716 /** 1717 * lock_sock_fast - fast version of lock_sock 1718 * @sk: socket 1719 * 1720 * This version should be used for very small section, where process won't block 1721 * return false if fast path is taken: 1722 * 1723 * sk_lock.slock locked, owned = 0, BH disabled 1724 * 1725 * return true if slow path is taken: 1726 * 1727 * sk_lock.slock unlocked, owned = 1, BH enabled 1728 */ 1729 static inline bool lock_sock_fast(struct sock *sk) 1730 { 1731 /* The sk_lock has mutex_lock() semantics here. */ 1732 mutex_acquire(&sk->sk_lock.dep_map, 0, 0, _RET_IP_); 1733 1734 return __lock_sock_fast(sk); 1735 } 1736 1737 /* fast socket lock variant for caller already holding a [different] socket lock */ 1738 static inline bool lock_sock_fast_nested(struct sock *sk) 1739 { 1740 mutex_acquire(&sk->sk_lock.dep_map, SINGLE_DEPTH_NESTING, 0, _RET_IP_); 1741 1742 return __lock_sock_fast(sk); 1743 } 1744 1745 /** 1746 * unlock_sock_fast - complement of lock_sock_fast 1747 * @sk: socket 1748 * @slow: slow mode 1749 * 1750 * fast unlock socket for user context. 1751 * If slow mode is on, we call regular release_sock() 1752 */ 1753 static inline void unlock_sock_fast(struct sock *sk, bool slow) 1754 __releases(&sk->sk_lock.slock) 1755 { 1756 if (slow) { 1757 release_sock(sk); 1758 __release(&sk->sk_lock.slock); 1759 } else { 1760 mutex_release(&sk->sk_lock.dep_map, _RET_IP_); 1761 spin_unlock_bh(&sk->sk_lock.slock); 1762 } 1763 } 1764 1765 void sockopt_lock_sock(struct sock *sk); 1766 void sockopt_release_sock(struct sock *sk); 1767 bool sockopt_ns_capable(struct user_namespace *ns, int cap); 1768 bool sockopt_capable(int cap); 1769 1770 /* Used by processes to "lock" a socket state, so that 1771 * interrupts and bottom half handlers won't change it 1772 * from under us. It essentially blocks any incoming 1773 * packets, so that we won't get any new data or any 1774 * packets that change the state of the socket. 1775 * 1776 * While locked, BH processing will add new packets to 1777 * the backlog queue. This queue is processed by the 1778 * owner of the socket lock right before it is released. 1779 * 1780 * Since ~2.3.5 it is also exclusive sleep lock serializing 1781 * accesses from user process context. 1782 */ 1783 1784 static inline void sock_owned_by_me(const struct sock *sk) 1785 { 1786 #ifdef CONFIG_LOCKDEP 1787 WARN_ON_ONCE(!lockdep_sock_is_held(sk) && debug_locks); 1788 #endif 1789 } 1790 1791 static inline void sock_not_owned_by_me(const struct sock *sk) 1792 { 1793 #ifdef CONFIG_LOCKDEP 1794 WARN_ON_ONCE(lockdep_sock_is_held(sk) && debug_locks); 1795 #endif 1796 } 1797 1798 static inline bool sock_owned_by_user(const struct sock *sk) 1799 { 1800 sock_owned_by_me(sk); 1801 return sk->sk_lock.owned; 1802 } 1803 1804 static inline bool sock_owned_by_user_nocheck(const struct sock *sk) 1805 { 1806 return sk->sk_lock.owned; 1807 } 1808 1809 static inline void sock_release_ownership(struct sock *sk) 1810 { 1811 DEBUG_NET_WARN_ON_ONCE(!sock_owned_by_user_nocheck(sk)); 1812 sk->sk_lock.owned = 0; 1813 1814 /* The sk_lock has mutex_unlock() semantics: */ 1815 mutex_release(&sk->sk_lock.dep_map, _RET_IP_); 1816 } 1817 1818 /* no reclassification while locks are held */ 1819 static inline bool sock_allow_reclassification(const struct sock *csk) 1820 { 1821 struct sock *sk = (struct sock *)csk; 1822 1823 return !sock_owned_by_user_nocheck(sk) && 1824 !spin_is_locked(&sk->sk_lock.slock); 1825 } 1826 1827 struct sock *sk_alloc(struct net *net, int family, gfp_t priority, 1828 struct proto *prot, int kern); 1829 void sk_free(struct sock *sk); 1830 void sk_net_refcnt_upgrade(struct sock *sk); 1831 void sk_destruct(struct sock *sk); 1832 struct sock *sk_clone(const struct sock *sk, const gfp_t priority, bool lock); 1833 1834 static inline struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority) 1835 { 1836 return sk_clone(sk, priority, true); 1837 } 1838 1839 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force, 1840 gfp_t priority); 1841 void __sock_wfree(struct sk_buff *skb); 1842 void sock_wfree(struct sk_buff *skb); 1843 struct sk_buff *sock_omalloc(struct sock *sk, unsigned long size, 1844 gfp_t priority); 1845 void skb_orphan_partial(struct sk_buff *skb); 1846 void sock_rfree(struct sk_buff *skb); 1847 void sock_efree(struct sk_buff *skb); 1848 #ifdef CONFIG_INET 1849 void sock_edemux(struct sk_buff *skb); 1850 void sock_pfree(struct sk_buff *skb); 1851 1852 static inline void skb_set_owner_edemux(struct sk_buff *skb, struct sock *sk) 1853 { 1854 skb_orphan(skb); 1855 if (refcount_inc_not_zero(&sk->sk_refcnt)) { 1856 skb->sk = sk; 1857 skb->destructor = sock_edemux; 1858 } 1859 } 1860 #else 1861 #define sock_edemux sock_efree 1862 #endif 1863 1864 int sk_setsockopt(struct sock *sk, int level, int optname, 1865 sockptr_t optval, unsigned int optlen); 1866 int sock_setsockopt(struct socket *sock, int level, int op, 1867 sockptr_t optval, unsigned int optlen); 1868 int do_sock_setsockopt(struct socket *sock, bool compat, int level, 1869 int optname, sockptr_t optval, int optlen); 1870 int do_sock_getsockopt(struct socket *sock, bool compat, int level, 1871 int optname, sockptr_t optval, sockptr_t optlen); 1872 1873 int sk_getsockopt(struct sock *sk, int level, int optname, 1874 sockptr_t optval, sockptr_t optlen); 1875 int sock_gettstamp(struct socket *sock, void __user *userstamp, 1876 bool timeval, bool time32); 1877 struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len, 1878 unsigned long data_len, int noblock, 1879 int *errcode, int max_page_order); 1880 1881 static inline struct sk_buff *sock_alloc_send_skb(struct sock *sk, 1882 unsigned long size, 1883 int noblock, int *errcode) 1884 { 1885 return sock_alloc_send_pskb(sk, size, 0, noblock, errcode, 0); 1886 } 1887 1888 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority); 1889 void *sock_kmemdup(struct sock *sk, const void *src, 1890 int size, gfp_t priority); 1891 void sock_kfree_s(struct sock *sk, void *mem, int size); 1892 void sock_kzfree_s(struct sock *sk, void *mem, int size); 1893 void sk_send_sigurg(struct sock *sk); 1894 1895 static inline void sock_replace_proto(struct sock *sk, struct proto *proto) 1896 { 1897 if (sk->sk_socket) 1898 clear_bit(SOCK_SUPPORT_ZC, &sk->sk_socket->flags); 1899 WRITE_ONCE(sk->sk_prot, proto); 1900 } 1901 1902 struct sockcm_cookie { 1903 u64 transmit_time; 1904 u32 mark; 1905 u32 tsflags; 1906 u32 ts_opt_id; 1907 u32 priority; 1908 u32 dmabuf_id; 1909 }; 1910 1911 static inline void sockcm_init(struct sockcm_cookie *sockc, 1912 const struct sock *sk) 1913 { 1914 *sockc = (struct sockcm_cookie) { 1915 .mark = READ_ONCE(sk->sk_mark), 1916 .tsflags = READ_ONCE(sk->sk_tsflags), 1917 .priority = READ_ONCE(sk->sk_priority), 1918 }; 1919 } 1920 1921 int __sock_cmsg_send(struct sock *sk, struct cmsghdr *cmsg, 1922 struct sockcm_cookie *sockc); 1923 int sock_cmsg_send(struct sock *sk, struct msghdr *msg, 1924 struct sockcm_cookie *sockc); 1925 1926 /* 1927 * Functions to fill in entries in struct proto_ops when a protocol 1928 * does not implement a particular function. 1929 */ 1930 int sock_no_bind(struct socket *sock, struct sockaddr_unsized *saddr, int len); 1931 int sock_no_connect(struct socket *sock, struct sockaddr_unsized *saddr, int len, int flags); 1932 int sock_no_socketpair(struct socket *, struct socket *); 1933 int sock_no_accept(struct socket *, struct socket *, struct proto_accept_arg *); 1934 int sock_no_getname(struct socket *, struct sockaddr *, int); 1935 int sock_no_ioctl(struct socket *, unsigned int, unsigned long); 1936 int sock_no_listen(struct socket *, int); 1937 int sock_no_shutdown(struct socket *, int); 1938 int sock_no_sendmsg(struct socket *, struct msghdr *, size_t); 1939 int sock_no_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t len); 1940 int sock_no_recvmsg(struct socket *, struct msghdr *, size_t, int); 1941 int sock_no_mmap(struct file *file, struct socket *sock, 1942 struct vm_area_struct *vma); 1943 1944 /* 1945 * Functions to fill in entries in struct proto_ops when a protocol 1946 * uses the inet style. 1947 */ 1948 int sock_common_getsockopt(struct socket *sock, int level, int optname, 1949 char __user *optval, int __user *optlen); 1950 int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size, 1951 int flags); 1952 int sock_common_setsockopt(struct socket *sock, int level, int optname, 1953 sockptr_t optval, unsigned int optlen); 1954 1955 void sk_common_release(struct sock *sk); 1956 1957 /* 1958 * Default socket callbacks and setup code 1959 */ 1960 1961 /* Initialise core socket variables using an explicit uid. */ 1962 void sock_init_data_uid(struct socket *sock, struct sock *sk, kuid_t uid); 1963 1964 /* Initialise core socket variables. 1965 * Assumes struct socket *sock is embedded in a struct socket_alloc. 1966 */ 1967 void sock_init_data(struct socket *sock, struct sock *sk); 1968 1969 /* 1970 * Socket reference counting postulates. 1971 * 1972 * * Each user of socket SHOULD hold a reference count. 1973 * * Each access point to socket (an hash table bucket, reference from a list, 1974 * running timer, skb in flight MUST hold a reference count. 1975 * * When reference count hits 0, it means it will never increase back. 1976 * * When reference count hits 0, it means that no references from 1977 * outside exist to this socket and current process on current CPU 1978 * is last user and may/should destroy this socket. 1979 * * sk_free is called from any context: process, BH, IRQ. When 1980 * it is called, socket has no references from outside -> sk_free 1981 * may release descendant resources allocated by the socket, but 1982 * to the time when it is called, socket is NOT referenced by any 1983 * hash tables, lists etc. 1984 * * Packets, delivered from outside (from network or from another process) 1985 * and enqueued on receive/error queues SHOULD NOT grab reference count, 1986 * when they sit in queue. Otherwise, packets will leak to hole, when 1987 * socket is looked up by one cpu and unhasing is made by another CPU. 1988 * It is true for udp/raw, netlink (leak to receive and error queues), tcp 1989 * (leak to backlog). Packet socket does all the processing inside 1990 * BR_NETPROTO_LOCK, so that it has not this race condition. UNIX sockets 1991 * use separate SMP lock, so that they are prone too. 1992 */ 1993 1994 /* Ungrab socket and destroy it, if it was the last reference. */ 1995 static inline void sock_put(struct sock *sk) 1996 { 1997 if (refcount_dec_and_test(&sk->sk_refcnt)) 1998 sk_free(sk); 1999 } 2000 /* Generic version of sock_put(), dealing with all sockets 2001 * (TCP_TIMEWAIT, TCP_NEW_SYN_RECV, ESTABLISHED...) 2002 */ 2003 void sock_gen_put(struct sock *sk); 2004 2005 int __sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested, 2006 unsigned int trim_cap, bool refcounted); 2007 static inline int sk_receive_skb(struct sock *sk, struct sk_buff *skb, 2008 const int nested) 2009 { 2010 return __sk_receive_skb(sk, skb, nested, 1, true); 2011 } 2012 2013 static inline void sk_tx_queue_set(struct sock *sk, int tx_queue) 2014 { 2015 /* sk_tx_queue_mapping accept only upto a 16-bit value */ 2016 if (WARN_ON_ONCE((unsigned short)tx_queue >= USHRT_MAX)) 2017 return; 2018 /* Paired with READ_ONCE() in sk_tx_queue_get() and 2019 * other WRITE_ONCE() because socket lock might be not held. 2020 */ 2021 if (READ_ONCE(sk->sk_tx_queue_mapping) != tx_queue) { 2022 WRITE_ONCE(sk->sk_tx_queue_mapping, tx_queue); 2023 WRITE_ONCE(sk->sk_tx_queue_mapping_jiffies, jiffies); 2024 return; 2025 } 2026 2027 /* Refresh sk_tx_queue_mapping_jiffies if too old. */ 2028 if (time_is_before_jiffies(READ_ONCE(sk->sk_tx_queue_mapping_jiffies) + HZ)) 2029 WRITE_ONCE(sk->sk_tx_queue_mapping_jiffies, jiffies); 2030 } 2031 2032 #define NO_QUEUE_MAPPING USHRT_MAX 2033 2034 static inline void sk_tx_queue_clear(struct sock *sk) 2035 { 2036 /* Paired with READ_ONCE() in sk_tx_queue_get() and 2037 * other WRITE_ONCE() because socket lock might be not held. 2038 */ 2039 WRITE_ONCE(sk->sk_tx_queue_mapping, NO_QUEUE_MAPPING); 2040 } 2041 2042 int sk_tx_queue_get(const struct sock *sk); 2043 2044 static inline void __sk_rx_queue_set(struct sock *sk, 2045 const struct sk_buff *skb, 2046 bool force_set) 2047 { 2048 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING 2049 if (skb_rx_queue_recorded(skb)) { 2050 u16 rx_queue = skb_get_rx_queue(skb); 2051 2052 if (force_set || 2053 unlikely(READ_ONCE(sk->sk_rx_queue_mapping) != rx_queue)) 2054 WRITE_ONCE(sk->sk_rx_queue_mapping, rx_queue); 2055 } 2056 #endif 2057 } 2058 2059 static inline void sk_rx_queue_set(struct sock *sk, const struct sk_buff *skb) 2060 { 2061 __sk_rx_queue_set(sk, skb, true); 2062 } 2063 2064 static inline void sk_rx_queue_update(struct sock *sk, const struct sk_buff *skb) 2065 { 2066 __sk_rx_queue_set(sk, skb, false); 2067 } 2068 2069 static inline void sk_rx_queue_clear(struct sock *sk) 2070 { 2071 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING 2072 WRITE_ONCE(sk->sk_rx_queue_mapping, NO_QUEUE_MAPPING); 2073 #endif 2074 } 2075 2076 static inline int sk_rx_queue_get(const struct sock *sk) 2077 { 2078 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING 2079 if (sk) { 2080 int res = READ_ONCE(sk->sk_rx_queue_mapping); 2081 2082 if (res != NO_QUEUE_MAPPING) 2083 return res; 2084 } 2085 #endif 2086 2087 return -1; 2088 } 2089 2090 static inline void sk_set_socket(struct sock *sk, struct socket *sock) 2091 { 2092 sk->sk_socket = sock; 2093 if (sock) { 2094 WRITE_ONCE(sk->sk_uid, SOCK_INODE(sock)->i_uid); 2095 WRITE_ONCE(sk->sk_ino, SOCK_INODE(sock)->i_ino); 2096 } else { 2097 /* Note: sk_uid is unchanged. */ 2098 WRITE_ONCE(sk->sk_ino, 0); 2099 } 2100 } 2101 2102 static inline wait_queue_head_t *sk_sleep(struct sock *sk) 2103 { 2104 BUILD_BUG_ON(offsetof(struct socket_wq, wait) != 0); 2105 return &rcu_dereference_raw(sk->sk_wq)->wait; 2106 } 2107 /* Detach socket from process context. 2108 * Announce socket dead, detach it from wait queue and inode. 2109 * Note that parent inode held reference count on this struct sock, 2110 * we do not release it in this function, because protocol 2111 * probably wants some additional cleanups or even continuing 2112 * to work with this socket (TCP). 2113 */ 2114 static inline void sock_orphan(struct sock *sk) 2115 { 2116 write_lock_bh(&sk->sk_callback_lock); 2117 sock_set_flag(sk, SOCK_DEAD); 2118 sk_set_socket(sk, NULL); 2119 sk->sk_wq = NULL; 2120 write_unlock_bh(&sk->sk_callback_lock); 2121 } 2122 2123 static inline void sock_graft(struct sock *sk, struct socket *parent) 2124 { 2125 WARN_ON(parent->sk); 2126 write_lock_bh(&sk->sk_callback_lock); 2127 rcu_assign_pointer(sk->sk_wq, &parent->wq); 2128 parent->sk = sk; 2129 sk_set_socket(sk, parent); 2130 security_sock_graft(sk, parent); 2131 write_unlock_bh(&sk->sk_callback_lock); 2132 } 2133 2134 static inline unsigned long sock_i_ino(const struct sock *sk) 2135 { 2136 /* Paired with WRITE_ONCE() in sock_graft() and sock_orphan() */ 2137 return READ_ONCE(sk->sk_ino); 2138 } 2139 2140 static inline kuid_t sk_uid(const struct sock *sk) 2141 { 2142 /* Paired with WRITE_ONCE() in sockfs_setattr() */ 2143 return READ_ONCE(sk->sk_uid); 2144 } 2145 2146 static inline kuid_t sock_net_uid(const struct net *net, const struct sock *sk) 2147 { 2148 return sk ? sk_uid(sk) : make_kuid(net->user_ns, 0); 2149 } 2150 2151 static inline u32 net_tx_rndhash(void) 2152 { 2153 u32 v = get_random_u32(); 2154 2155 return v ?: 1; 2156 } 2157 2158 static inline void sk_set_txhash(struct sock *sk) 2159 { 2160 /* This pairs with READ_ONCE() in skb_set_hash_from_sk() */ 2161 WRITE_ONCE(sk->sk_txhash, net_tx_rndhash()); 2162 } 2163 2164 static inline bool sk_rethink_txhash(struct sock *sk) 2165 { 2166 if (sk->sk_txhash && sk->sk_txrehash == SOCK_TXREHASH_ENABLED) { 2167 sk_set_txhash(sk); 2168 return true; 2169 } 2170 return false; 2171 } 2172 2173 static inline struct dst_entry * 2174 __sk_dst_get(const struct sock *sk) 2175 { 2176 return rcu_dereference_check(sk->sk_dst_cache, 2177 lockdep_sock_is_held(sk)); 2178 } 2179 2180 static inline struct dst_entry * 2181 sk_dst_get(const struct sock *sk) 2182 { 2183 struct dst_entry *dst; 2184 2185 rcu_read_lock(); 2186 dst = rcu_dereference(sk->sk_dst_cache); 2187 if (dst && !rcuref_get(&dst->__rcuref)) 2188 dst = NULL; 2189 rcu_read_unlock(); 2190 return dst; 2191 } 2192 2193 static inline void __dst_negative_advice(struct sock *sk) 2194 { 2195 struct dst_entry *dst = __sk_dst_get(sk); 2196 2197 if (dst && dst->ops->negative_advice) 2198 dst->ops->negative_advice(sk, dst); 2199 } 2200 2201 static inline void dst_negative_advice(struct sock *sk) 2202 { 2203 sk_rethink_txhash(sk); 2204 __dst_negative_advice(sk); 2205 } 2206 2207 static inline void 2208 __sk_dst_set(struct sock *sk, struct dst_entry *dst) 2209 { 2210 struct dst_entry *old_dst; 2211 2212 sk_tx_queue_clear(sk); 2213 WRITE_ONCE(sk->sk_dst_pending_confirm, 0); 2214 old_dst = rcu_dereference_protected(sk->sk_dst_cache, 2215 lockdep_sock_is_held(sk)); 2216 rcu_assign_pointer(sk->sk_dst_cache, dst); 2217 dst_release(old_dst); 2218 } 2219 2220 static inline void 2221 sk_dst_set(struct sock *sk, struct dst_entry *dst) 2222 { 2223 struct dst_entry *old_dst; 2224 2225 sk_tx_queue_clear(sk); 2226 WRITE_ONCE(sk->sk_dst_pending_confirm, 0); 2227 old_dst = unrcu_pointer(xchg(&sk->sk_dst_cache, RCU_INITIALIZER(dst))); 2228 dst_release(old_dst); 2229 } 2230 2231 static inline void 2232 __sk_dst_reset(struct sock *sk) 2233 { 2234 __sk_dst_set(sk, NULL); 2235 } 2236 2237 static inline void 2238 sk_dst_reset(struct sock *sk) 2239 { 2240 sk_dst_set(sk, NULL); 2241 } 2242 2243 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie); 2244 2245 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie); 2246 2247 static inline void sk_dst_confirm(struct sock *sk) 2248 { 2249 if (!READ_ONCE(sk->sk_dst_pending_confirm)) 2250 WRITE_ONCE(sk->sk_dst_pending_confirm, 1); 2251 } 2252 2253 static inline void sock_confirm_neigh(struct sk_buff *skb, struct neighbour *n) 2254 { 2255 if (skb_get_dst_pending_confirm(skb)) { 2256 struct sock *sk = skb->sk; 2257 2258 if (sk && READ_ONCE(sk->sk_dst_pending_confirm)) 2259 WRITE_ONCE(sk->sk_dst_pending_confirm, 0); 2260 neigh_confirm(n); 2261 } 2262 } 2263 2264 bool sk_mc_loop(const struct sock *sk); 2265 2266 static inline bool sk_can_gso(const struct sock *sk) 2267 { 2268 return net_gso_ok(sk->sk_route_caps, sk->sk_gso_type); 2269 } 2270 2271 void sk_setup_caps(struct sock *sk, struct dst_entry *dst); 2272 2273 static inline void sk_gso_disable(struct sock *sk) 2274 { 2275 sk->sk_gso_disabled = 1; 2276 sk->sk_route_caps &= ~NETIF_F_GSO_MASK; 2277 } 2278 2279 static inline int skb_do_copy_data_nocache(struct sock *sk, struct sk_buff *skb, 2280 struct iov_iter *from, char *to, 2281 int copy, int offset) 2282 { 2283 if (skb->ip_summed == CHECKSUM_NONE) { 2284 __wsum csum = 0; 2285 if (!csum_and_copy_from_iter_full(to, copy, &csum, from)) 2286 return -EFAULT; 2287 skb->csum = csum_block_add(skb->csum, csum, offset); 2288 } else if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY) { 2289 if (!copy_from_iter_full_nocache(to, copy, from)) 2290 return -EFAULT; 2291 } else if (!copy_from_iter_full(to, copy, from)) 2292 return -EFAULT; 2293 2294 return 0; 2295 } 2296 2297 static inline int skb_add_data_nocache(struct sock *sk, struct sk_buff *skb, 2298 struct iov_iter *from, int copy) 2299 { 2300 int err, offset = skb->len; 2301 2302 err = skb_do_copy_data_nocache(sk, skb, from, skb_put(skb, copy), 2303 copy, offset); 2304 if (err) 2305 __skb_trim(skb, offset); 2306 2307 return err; 2308 } 2309 2310 static inline int skb_copy_to_page_nocache(struct sock *sk, struct iov_iter *from, 2311 struct sk_buff *skb, 2312 struct page *page, 2313 int off, int copy) 2314 { 2315 int err; 2316 2317 err = skb_do_copy_data_nocache(sk, skb, from, page_address(page) + off, 2318 copy, skb->len); 2319 if (err) 2320 return err; 2321 2322 skb_len_add(skb, copy); 2323 sk_wmem_queued_add(sk, copy); 2324 sk_mem_charge(sk, copy); 2325 return 0; 2326 } 2327 2328 #define SK_WMEM_ALLOC_BIAS 1 2329 /** 2330 * sk_wmem_alloc_get - returns write allocations 2331 * @sk: socket 2332 * 2333 * Return: sk_wmem_alloc minus initial offset of one 2334 */ 2335 static inline int sk_wmem_alloc_get(const struct sock *sk) 2336 { 2337 return refcount_read(&sk->sk_wmem_alloc) - SK_WMEM_ALLOC_BIAS; 2338 } 2339 2340 /** 2341 * sk_rmem_alloc_get - returns read allocations 2342 * @sk: socket 2343 * 2344 * Return: sk_rmem_alloc 2345 */ 2346 static inline int sk_rmem_alloc_get(const struct sock *sk) 2347 { 2348 return atomic_read(&sk->sk_rmem_alloc); 2349 } 2350 2351 /** 2352 * sk_has_allocations - check if allocations are outstanding 2353 * @sk: socket 2354 * 2355 * Return: true if socket has write or read allocations 2356 */ 2357 static inline bool sk_has_allocations(const struct sock *sk) 2358 { 2359 return sk_wmem_alloc_get(sk) || sk_rmem_alloc_get(sk); 2360 } 2361 2362 /** 2363 * skwq_has_sleeper - check if there are any waiting processes 2364 * @wq: struct socket_wq 2365 * 2366 * Return: true if socket_wq has waiting processes 2367 * 2368 * The purpose of the skwq_has_sleeper and sock_poll_wait is to wrap the memory 2369 * barrier call. They were added due to the race found within the tcp code. 2370 * 2371 * Consider following tcp code paths:: 2372 * 2373 * CPU1 CPU2 2374 * sys_select receive packet 2375 * ... ... 2376 * __add_wait_queue update tp->rcv_nxt 2377 * ... ... 2378 * tp->rcv_nxt check sock_def_readable 2379 * ... { 2380 * schedule rcu_read_lock(); 2381 * wq = rcu_dereference(sk->sk_wq); 2382 * if (wq && waitqueue_active(&wq->wait)) 2383 * wake_up_interruptible(&wq->wait) 2384 * ... 2385 * } 2386 * 2387 * The race for tcp fires when the __add_wait_queue changes done by CPU1 stay 2388 * in its cache, and so does the tp->rcv_nxt update on CPU2 side. The CPU1 2389 * could then endup calling schedule and sleep forever if there are no more 2390 * data on the socket. 2391 * 2392 */ 2393 static inline bool skwq_has_sleeper(struct socket_wq *wq) 2394 { 2395 return wq && wq_has_sleeper(&wq->wait); 2396 } 2397 2398 /** 2399 * sock_poll_wait - wrapper for the poll_wait call. 2400 * @filp: file 2401 * @sock: socket to wait on 2402 * @p: poll_table 2403 * 2404 * See the comments in the wq_has_sleeper function. 2405 */ 2406 static inline void sock_poll_wait(struct file *filp, struct socket *sock, 2407 poll_table *p) 2408 { 2409 /* Provides a barrier we need to be sure we are in sync 2410 * with the socket flags modification. 2411 * 2412 * This memory barrier is paired in the wq_has_sleeper. 2413 */ 2414 poll_wait(filp, &sock->wq.wait, p); 2415 } 2416 2417 static inline void skb_set_hash_from_sk(struct sk_buff *skb, struct sock *sk) 2418 { 2419 /* This pairs with WRITE_ONCE() in sk_set_txhash() */ 2420 u32 txhash = READ_ONCE(sk->sk_txhash); 2421 2422 if (txhash) { 2423 skb->l4_hash = 1; 2424 skb->hash = txhash; 2425 } 2426 } 2427 2428 void skb_set_owner_w(struct sk_buff *skb, struct sock *sk); 2429 2430 /* 2431 * Queue a received datagram if it will fit. Stream and sequenced 2432 * protocols can't normally use this as they need to fit buffers in 2433 * and play with them. 2434 * 2435 * Inlined as it's very short and called for pretty much every 2436 * packet ever received. 2437 */ 2438 static inline void skb_set_owner_r(struct sk_buff *skb, struct sock *sk) 2439 { 2440 skb_orphan(skb); 2441 skb->sk = sk; 2442 skb->destructor = sock_rfree; 2443 atomic_add(skb->truesize, &sk->sk_rmem_alloc); 2444 sk_mem_charge(sk, skb->truesize); 2445 } 2446 2447 static inline __must_check bool skb_set_owner_sk_safe(struct sk_buff *skb, struct sock *sk) 2448 { 2449 if (sk && refcount_inc_not_zero(&sk->sk_refcnt)) { 2450 skb_orphan(skb); 2451 skb->destructor = sock_efree; 2452 skb->sk = sk; 2453 return true; 2454 } 2455 return false; 2456 } 2457 2458 static inline struct sk_buff *skb_clone_and_charge_r(struct sk_buff *skb, struct sock *sk) 2459 { 2460 skb = skb_clone(skb, sk_gfp_mask(sk, GFP_ATOMIC)); 2461 if (skb) { 2462 if (sk_rmem_schedule(sk, skb, skb->truesize)) { 2463 skb_set_owner_r(skb, sk); 2464 return skb; 2465 } 2466 __kfree_skb(skb); 2467 } 2468 return NULL; 2469 } 2470 2471 static inline void skb_prepare_for_gro(struct sk_buff *skb) 2472 { 2473 if (skb->destructor != sock_wfree) { 2474 skb_orphan(skb); 2475 return; 2476 } 2477 skb->slow_gro = 1; 2478 } 2479 2480 void sk_reset_timer(struct sock *sk, struct timer_list *timer, 2481 unsigned long expires); 2482 2483 void sk_stop_timer(struct sock *sk, struct timer_list *timer); 2484 2485 void sk_stop_timer_sync(struct sock *sk, struct timer_list *timer); 2486 2487 int __sk_queue_drop_skb(struct sock *sk, struct sk_buff_head *sk_queue, 2488 struct sk_buff *skb, unsigned int flags, 2489 void (*destructor)(struct sock *sk, 2490 struct sk_buff *skb)); 2491 int __sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb); 2492 2493 int sock_queue_rcv_skb_reason(struct sock *sk, struct sk_buff *skb, 2494 enum skb_drop_reason *reason); 2495 2496 static inline int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb) 2497 { 2498 return sock_queue_rcv_skb_reason(sk, skb, NULL); 2499 } 2500 2501 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb); 2502 struct sk_buff *sock_dequeue_err_skb(struct sock *sk); 2503 2504 /* 2505 * Recover an error report and clear atomically 2506 */ 2507 2508 static inline int sock_error(struct sock *sk) 2509 { 2510 int err; 2511 2512 /* Avoid an atomic operation for the common case. 2513 * This is racy since another cpu/thread can change sk_err under us. 2514 */ 2515 if (likely(data_race(!sk->sk_err))) 2516 return 0; 2517 2518 err = xchg(&sk->sk_err, 0); 2519 return -err; 2520 } 2521 2522 void sk_error_report(struct sock *sk); 2523 2524 static inline unsigned long sock_wspace(struct sock *sk) 2525 { 2526 int amt = 0; 2527 2528 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) { 2529 amt = sk->sk_sndbuf - refcount_read(&sk->sk_wmem_alloc); 2530 if (amt < 0) 2531 amt = 0; 2532 } 2533 return amt; 2534 } 2535 2536 /* Note: 2537 * We use sk->sk_wq_raw, from contexts knowing this 2538 * pointer is not NULL and cannot disappear/change. 2539 */ 2540 static inline void sk_set_bit(int nr, struct sock *sk) 2541 { 2542 if ((nr == SOCKWQ_ASYNC_NOSPACE || nr == SOCKWQ_ASYNC_WAITDATA) && 2543 !sock_flag(sk, SOCK_FASYNC)) 2544 return; 2545 2546 set_bit(nr, &sk->sk_wq_raw->flags); 2547 } 2548 2549 static inline void sk_clear_bit(int nr, struct sock *sk) 2550 { 2551 if ((nr == SOCKWQ_ASYNC_NOSPACE || nr == SOCKWQ_ASYNC_WAITDATA) && 2552 !sock_flag(sk, SOCK_FASYNC)) 2553 return; 2554 2555 clear_bit(nr, &sk->sk_wq_raw->flags); 2556 } 2557 2558 static inline void sk_wake_async(const struct sock *sk, int how, int band) 2559 { 2560 if (sock_flag(sk, SOCK_FASYNC)) { 2561 rcu_read_lock(); 2562 sock_wake_async(rcu_dereference(sk->sk_wq), how, band); 2563 rcu_read_unlock(); 2564 } 2565 } 2566 2567 static inline void sk_wake_async_rcu(const struct sock *sk, int how, int band) 2568 { 2569 if (unlikely(sock_flag(sk, SOCK_FASYNC))) 2570 sock_wake_async(rcu_dereference(sk->sk_wq), how, band); 2571 } 2572 2573 /* Since sk_{r,w}mem_alloc sums skb->truesize, even a small frame might 2574 * need sizeof(sk_buff) + MTU + padding, unless net driver perform copybreak. 2575 * Note: for send buffers, TCP works better if we can build two skbs at 2576 * minimum. 2577 */ 2578 #define TCP_SKB_MIN_TRUESIZE (2048 + SKB_DATA_ALIGN(sizeof(struct sk_buff))) 2579 2580 #define SOCK_MIN_SNDBUF (TCP_SKB_MIN_TRUESIZE * 2) 2581 #define SOCK_MIN_RCVBUF TCP_SKB_MIN_TRUESIZE 2582 2583 static inline void sk_stream_moderate_sndbuf(struct sock *sk) 2584 { 2585 u32 val; 2586 2587 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK) 2588 return; 2589 2590 val = min(sk->sk_sndbuf, sk->sk_wmem_queued >> 1); 2591 val = max_t(u32, val, sk_unused_reserved_mem(sk)); 2592 2593 WRITE_ONCE(sk->sk_sndbuf, max_t(u32, val, SOCK_MIN_SNDBUF)); 2594 } 2595 2596 /** 2597 * sk_page_frag - return an appropriate page_frag 2598 * @sk: socket 2599 * 2600 * Use the per task page_frag instead of the per socket one for 2601 * optimization when we know that we're in process context and own 2602 * everything that's associated with %current. 2603 * 2604 * Both direct reclaim and page faults can nest inside other 2605 * socket operations and end up recursing into sk_page_frag() 2606 * while it's already in use: explicitly avoid task page_frag 2607 * when users disable sk_use_task_frag. 2608 * 2609 * Return: a per task page_frag if context allows that, 2610 * otherwise a per socket one. 2611 */ 2612 static inline struct page_frag *sk_page_frag(struct sock *sk) 2613 { 2614 if (sk->sk_use_task_frag) 2615 return ¤t->task_frag; 2616 2617 return &sk->sk_frag; 2618 } 2619 2620 bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag); 2621 2622 static inline bool __sock_writeable(const struct sock *sk, int wmem_alloc) 2623 { 2624 return wmem_alloc < (READ_ONCE(sk->sk_sndbuf) >> 1); 2625 } 2626 /* 2627 * Default write policy as shown to user space via poll/select/SIGIO 2628 */ 2629 static inline bool sock_writeable(const struct sock *sk) 2630 { 2631 return __sock_writeable(sk, refcount_read(&sk->sk_wmem_alloc)); 2632 } 2633 2634 static inline gfp_t gfp_any(void) 2635 { 2636 return in_softirq() ? GFP_ATOMIC : GFP_KERNEL; 2637 } 2638 2639 static inline gfp_t gfp_memcg_charge(void) 2640 { 2641 return in_softirq() ? GFP_ATOMIC : GFP_KERNEL; 2642 } 2643 2644 #ifdef CONFIG_MEMCG 2645 static inline struct mem_cgroup *mem_cgroup_from_sk(const struct sock *sk) 2646 { 2647 return sk->sk_memcg; 2648 } 2649 2650 static inline bool mem_cgroup_sk_enabled(const struct sock *sk) 2651 { 2652 return mem_cgroup_sockets_enabled && mem_cgroup_from_sk(sk); 2653 } 2654 2655 static inline bool mem_cgroup_sk_under_memory_pressure(const struct sock *sk) 2656 { 2657 struct mem_cgroup *memcg = mem_cgroup_from_sk(sk); 2658 2659 #ifdef CONFIG_MEMCG_V1 2660 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) 2661 return !!memcg->tcpmem_pressure; 2662 #endif /* CONFIG_MEMCG_V1 */ 2663 2664 do { 2665 if (time_before64(get_jiffies_64(), mem_cgroup_get_socket_pressure(memcg))) 2666 return true; 2667 } while ((memcg = parent_mem_cgroup(memcg))); 2668 2669 return false; 2670 } 2671 #else 2672 static inline struct mem_cgroup *mem_cgroup_from_sk(const struct sock *sk) 2673 { 2674 return NULL; 2675 } 2676 2677 static inline bool mem_cgroup_sk_enabled(const struct sock *sk) 2678 { 2679 return false; 2680 } 2681 2682 static inline bool mem_cgroup_sk_under_memory_pressure(const struct sock *sk) 2683 { 2684 return false; 2685 } 2686 #endif 2687 2688 static inline long sock_rcvtimeo(const struct sock *sk, bool noblock) 2689 { 2690 return noblock ? 0 : READ_ONCE(sk->sk_rcvtimeo); 2691 } 2692 2693 static inline long sock_sndtimeo(const struct sock *sk, bool noblock) 2694 { 2695 return noblock ? 0 : READ_ONCE(sk->sk_sndtimeo); 2696 } 2697 2698 static inline int sock_rcvlowat(const struct sock *sk, int waitall, int len) 2699 { 2700 int v = waitall ? len : min_t(int, READ_ONCE(sk->sk_rcvlowat), len); 2701 2702 return v ?: 1; 2703 } 2704 2705 /* Alas, with timeout socket operations are not restartable. 2706 * Compare this to poll(). 2707 */ 2708 static inline int sock_intr_errno(long timeo) 2709 { 2710 return timeo == MAX_SCHEDULE_TIMEOUT ? -ERESTARTSYS : -EINTR; 2711 } 2712 2713 struct sock_skb_cb { 2714 u32 dropcount; 2715 }; 2716 2717 /* Store sock_skb_cb at the end of skb->cb[] so protocol families 2718 * using skb->cb[] would keep using it directly and utilize its 2719 * alignment guarantee. 2720 */ 2721 #define SOCK_SKB_CB_OFFSET (sizeof_field(struct sk_buff, cb) - \ 2722 sizeof(struct sock_skb_cb)) 2723 2724 #define SOCK_SKB_CB(__skb) ((struct sock_skb_cb *)((__skb)->cb + \ 2725 SOCK_SKB_CB_OFFSET)) 2726 2727 #define sock_skb_cb_check_size(size) \ 2728 BUILD_BUG_ON((size) > SOCK_SKB_CB_OFFSET) 2729 2730 static inline void sk_drops_add(struct sock *sk, int segs) 2731 { 2732 struct numa_drop_counters *ndc = sk->sk_drop_counters; 2733 2734 if (ndc) 2735 numa_drop_add(ndc, segs); 2736 else 2737 atomic_add(segs, &sk->sk_drops); 2738 } 2739 2740 static inline void sk_drops_inc(struct sock *sk) 2741 { 2742 sk_drops_add(sk, 1); 2743 } 2744 2745 static inline int sk_drops_read(const struct sock *sk) 2746 { 2747 const struct numa_drop_counters *ndc = sk->sk_drop_counters; 2748 2749 if (ndc) { 2750 DEBUG_NET_WARN_ON_ONCE(atomic_read(&sk->sk_drops)); 2751 return numa_drop_read(ndc); 2752 } 2753 return atomic_read(&sk->sk_drops); 2754 } 2755 2756 static inline void sk_drops_reset(struct sock *sk) 2757 { 2758 struct numa_drop_counters *ndc = sk->sk_drop_counters; 2759 2760 if (ndc) 2761 numa_drop_reset(ndc); 2762 atomic_set(&sk->sk_drops, 0); 2763 } 2764 2765 static inline void 2766 sock_skb_set_dropcount(const struct sock *sk, struct sk_buff *skb) 2767 { 2768 SOCK_SKB_CB(skb)->dropcount = sock_flag(sk, SOCK_RXQ_OVFL) ? 2769 sk_drops_read(sk) : 0; 2770 } 2771 2772 static inline void sk_drops_skbadd(struct sock *sk, const struct sk_buff *skb) 2773 { 2774 int segs = max_t(u16, 1, skb_shinfo(skb)->gso_segs); 2775 2776 sk_drops_add(sk, segs); 2777 } 2778 2779 static inline ktime_t sock_read_timestamp(struct sock *sk) 2780 { 2781 #if BITS_PER_LONG==32 2782 unsigned int seq; 2783 ktime_t kt; 2784 2785 do { 2786 seq = read_seqbegin(&sk->sk_stamp_seq); 2787 kt = sk->sk_stamp; 2788 } while (read_seqretry(&sk->sk_stamp_seq, seq)); 2789 2790 return kt; 2791 #else 2792 return READ_ONCE(sk->sk_stamp); 2793 #endif 2794 } 2795 2796 static inline void sock_write_timestamp(struct sock *sk, ktime_t kt) 2797 { 2798 #if BITS_PER_LONG==32 2799 write_seqlock(&sk->sk_stamp_seq); 2800 sk->sk_stamp = kt; 2801 write_sequnlock(&sk->sk_stamp_seq); 2802 #else 2803 WRITE_ONCE(sk->sk_stamp, kt); 2804 #endif 2805 } 2806 2807 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk, 2808 struct sk_buff *skb); 2809 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk, 2810 struct sk_buff *skb); 2811 2812 bool skb_has_tx_timestamp(struct sk_buff *skb, const struct sock *sk); 2813 int skb_get_tx_timestamp(struct sk_buff *skb, struct sock *sk, 2814 struct timespec64 *ts); 2815 2816 static inline void 2817 sock_recv_timestamp(struct msghdr *msg, struct sock *sk, struct sk_buff *skb) 2818 { 2819 struct skb_shared_hwtstamps *hwtstamps = skb_hwtstamps(skb); 2820 u32 tsflags = READ_ONCE(sk->sk_tsflags); 2821 ktime_t kt = skb->tstamp; 2822 /* 2823 * generate control messages if 2824 * - receive time stamping in software requested 2825 * - software time stamp available and wanted 2826 * - hardware time stamps available and wanted 2827 */ 2828 if (sock_flag(sk, SOCK_RCVTSTAMP) || 2829 (tsflags & SOF_TIMESTAMPING_RX_SOFTWARE) || 2830 (kt && tsflags & SOF_TIMESTAMPING_SOFTWARE) || 2831 (hwtstamps->hwtstamp && 2832 (tsflags & SOF_TIMESTAMPING_RAW_HARDWARE))) 2833 __sock_recv_timestamp(msg, sk, skb); 2834 else 2835 sock_write_timestamp(sk, kt); 2836 2837 if (sock_flag(sk, SOCK_WIFI_STATUS) && skb_wifi_acked_valid(skb)) 2838 __sock_recv_wifi_status(msg, sk, skb); 2839 } 2840 2841 void __sock_recv_cmsgs(struct msghdr *msg, struct sock *sk, 2842 struct sk_buff *skb); 2843 2844 #define SK_DEFAULT_STAMP (-1L * NSEC_PER_SEC) 2845 static inline void sock_recv_cmsgs(struct msghdr *msg, struct sock *sk, 2846 struct sk_buff *skb) 2847 { 2848 #define FLAGS_RECV_CMSGS ((1UL << SOCK_RXQ_OVFL) | \ 2849 (1UL << SOCK_RCVTSTAMP) | \ 2850 (1UL << SOCK_RCVMARK) | \ 2851 (1UL << SOCK_RCVPRIORITY) | \ 2852 (1UL << SOCK_TIMESTAMPING_ANY)) 2853 #define TSFLAGS_ANY (SOF_TIMESTAMPING_SOFTWARE | \ 2854 SOF_TIMESTAMPING_RAW_HARDWARE) 2855 2856 if (READ_ONCE(sk->sk_flags) & FLAGS_RECV_CMSGS) 2857 __sock_recv_cmsgs(msg, sk, skb); 2858 else if (unlikely(sock_flag(sk, SOCK_TIMESTAMP))) 2859 sock_write_timestamp(sk, skb->tstamp); 2860 else if (unlikely(sock_read_timestamp(sk) == SK_DEFAULT_STAMP)) 2861 sock_write_timestamp(sk, 0); 2862 } 2863 2864 void __sock_tx_timestamp(__u32 tsflags, __u8 *tx_flags); 2865 2866 /** 2867 * _sock_tx_timestamp - checks whether the outgoing packet is to be time stamped 2868 * @sk: socket sending this packet 2869 * @sockc: pointer to socket cmsg cookie to get timestamping info 2870 * @tx_flags: completed with instructions for time stamping 2871 * @tskey: filled in with next sk_tskey (not for TCP, which uses seqno) 2872 * 2873 * Note: callers should take care of initial ``*tx_flags`` value (usually 0) 2874 */ 2875 static inline void _sock_tx_timestamp(struct sock *sk, 2876 const struct sockcm_cookie *sockc, 2877 __u8 *tx_flags, __u32 *tskey) 2878 { 2879 __u32 tsflags = sockc->tsflags; 2880 2881 if (unlikely(tsflags)) { 2882 __sock_tx_timestamp(tsflags, tx_flags); 2883 if (tsflags & SOF_TIMESTAMPING_OPT_ID && tskey && 2884 tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK) { 2885 if (tsflags & SOCKCM_FLAG_TS_OPT_ID) 2886 *tskey = sockc->ts_opt_id; 2887 else 2888 *tskey = atomic_inc_return(&sk->sk_tskey) - 1; 2889 } 2890 } 2891 } 2892 2893 static inline void sock_tx_timestamp(struct sock *sk, 2894 const struct sockcm_cookie *sockc, 2895 __u8 *tx_flags) 2896 { 2897 _sock_tx_timestamp(sk, sockc, tx_flags, NULL); 2898 } 2899 2900 static inline void skb_setup_tx_timestamp(struct sk_buff *skb, 2901 const struct sockcm_cookie *sockc) 2902 { 2903 _sock_tx_timestamp(skb->sk, sockc, &skb_shinfo(skb)->tx_flags, 2904 &skb_shinfo(skb)->tskey); 2905 } 2906 2907 static inline bool sk_is_inet(const struct sock *sk) 2908 { 2909 int family = READ_ONCE(sk->sk_family); 2910 2911 return family == AF_INET || family == AF_INET6; 2912 } 2913 2914 static inline bool sk_is_tcp(const struct sock *sk) 2915 { 2916 return sk_is_inet(sk) && 2917 sk->sk_type == SOCK_STREAM && 2918 sk->sk_protocol == IPPROTO_TCP; 2919 } 2920 2921 static inline bool sk_is_udp(const struct sock *sk) 2922 { 2923 return sk_is_inet(sk) && 2924 sk->sk_type == SOCK_DGRAM && 2925 sk->sk_protocol == IPPROTO_UDP; 2926 } 2927 2928 static inline bool sk_is_unix(const struct sock *sk) 2929 { 2930 return sk->sk_family == AF_UNIX; 2931 } 2932 2933 static inline bool sk_is_stream_unix(const struct sock *sk) 2934 { 2935 return sk_is_unix(sk) && sk->sk_type == SOCK_STREAM; 2936 } 2937 2938 static inline bool sk_is_vsock(const struct sock *sk) 2939 { 2940 return sk->sk_family == AF_VSOCK; 2941 } 2942 2943 static inline bool sk_may_scm_recv(const struct sock *sk) 2944 { 2945 return (IS_ENABLED(CONFIG_UNIX) && sk->sk_family == AF_UNIX) || 2946 sk->sk_family == AF_NETLINK || 2947 (IS_ENABLED(CONFIG_BT) && sk->sk_family == AF_BLUETOOTH); 2948 } 2949 2950 /** 2951 * sk_eat_skb - Release a skb if it is no longer needed 2952 * @sk: socket to eat this skb from 2953 * @skb: socket buffer to eat 2954 * 2955 * This routine must be called with interrupts disabled or with the socket 2956 * locked so that the sk_buff queue operation is ok. 2957 */ 2958 static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb) 2959 { 2960 __skb_unlink(skb, &sk->sk_receive_queue); 2961 __kfree_skb(skb); 2962 } 2963 2964 static inline bool 2965 skb_sk_is_prefetched(struct sk_buff *skb) 2966 { 2967 #ifdef CONFIG_INET 2968 return skb->destructor == sock_pfree; 2969 #else 2970 return false; 2971 #endif /* CONFIG_INET */ 2972 } 2973 2974 /* This helper checks if a socket is a full socket, 2975 * ie _not_ a timewait or request socket. 2976 */ 2977 static inline bool sk_fullsock(const struct sock *sk) 2978 { 2979 return (1 << sk->sk_state) & ~(TCPF_TIME_WAIT | TCPF_NEW_SYN_RECV); 2980 } 2981 2982 static inline bool 2983 sk_is_refcounted(struct sock *sk) 2984 { 2985 /* Only full sockets have sk->sk_flags. */ 2986 return !sk_fullsock(sk) || !sock_flag(sk, SOCK_RCU_FREE); 2987 } 2988 2989 static inline bool 2990 sk_requests_wifi_status(struct sock *sk) 2991 { 2992 return sk && sk_fullsock(sk) && sock_flag(sk, SOCK_WIFI_STATUS); 2993 } 2994 2995 /* This helper checks if a socket is a LISTEN or NEW_SYN_RECV 2996 * SYNACK messages can be attached to either ones (depending on SYNCOOKIE) 2997 */ 2998 static inline bool sk_listener(const struct sock *sk) 2999 { 3000 return (1 << sk->sk_state) & (TCPF_LISTEN | TCPF_NEW_SYN_RECV); 3001 } 3002 3003 /* This helper checks if a socket is a LISTEN or NEW_SYN_RECV or TIME_WAIT 3004 * TCP SYNACK messages can be attached to LISTEN or NEW_SYN_RECV (depending on SYNCOOKIE) 3005 * TCP RST and ACK can be attached to TIME_WAIT. 3006 */ 3007 static inline bool sk_listener_or_tw(const struct sock *sk) 3008 { 3009 return (1 << READ_ONCE(sk->sk_state)) & 3010 (TCPF_LISTEN | TCPF_NEW_SYN_RECV | TCPF_TIME_WAIT); 3011 } 3012 3013 void sock_enable_timestamp(struct sock *sk, enum sock_flags flag); 3014 int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len, int level, 3015 int type); 3016 3017 bool sk_ns_capable(const struct sock *sk, 3018 struct user_namespace *user_ns, int cap); 3019 bool sk_capable(const struct sock *sk, int cap); 3020 bool sk_net_capable(const struct sock *sk, int cap); 3021 3022 void sk_get_meminfo(const struct sock *sk, u32 *meminfo); 3023 3024 /* Take into consideration the size of the struct sk_buff overhead in the 3025 * determination of these values, since that is non-constant across 3026 * platforms. This makes socket queueing behavior and performance 3027 * not depend upon such differences. 3028 */ 3029 #define _SK_MEM_PACKETS 256 3030 #define _SK_MEM_OVERHEAD SKB_TRUESIZE(256) 3031 #define SK_WMEM_DEFAULT (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS) 3032 #define SK_RMEM_DEFAULT (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS) 3033 3034 extern __u32 sysctl_wmem_max; 3035 extern __u32 sysctl_rmem_max; 3036 3037 extern __u32 sysctl_wmem_default; 3038 extern __u32 sysctl_rmem_default; 3039 3040 #define SKB_FRAG_PAGE_ORDER get_order(32768) 3041 DECLARE_STATIC_KEY_FALSE(net_high_order_alloc_disable_key); 3042 3043 static inline int sk_get_wmem0(const struct sock *sk, const struct proto *proto) 3044 { 3045 /* Does this proto have per netns sysctl_wmem ? */ 3046 if (proto->sysctl_wmem_offset) 3047 return READ_ONCE(*(int *)((void *)sock_net(sk) + proto->sysctl_wmem_offset)); 3048 3049 return READ_ONCE(*proto->sysctl_wmem); 3050 } 3051 3052 static inline int sk_get_rmem0(const struct sock *sk, const struct proto *proto) 3053 { 3054 /* Does this proto have per netns sysctl_rmem ? */ 3055 if (proto->sysctl_rmem_offset) 3056 return READ_ONCE(*(int *)((void *)sock_net(sk) + proto->sysctl_rmem_offset)); 3057 3058 return READ_ONCE(*proto->sysctl_rmem); 3059 } 3060 3061 /* Default TCP Small queue budget is ~1 ms of data (1sec >> 10) 3062 * Some wifi drivers need to tweak it to get more chunks. 3063 * They can use this helper from their ndo_start_xmit() 3064 */ 3065 static inline void sk_pacing_shift_update(struct sock *sk, int val) 3066 { 3067 if (!sk || !sk_fullsock(sk) || READ_ONCE(sk->sk_pacing_shift) == val) 3068 return; 3069 WRITE_ONCE(sk->sk_pacing_shift, val); 3070 } 3071 3072 /* if a socket is bound to a device, check that the given device 3073 * index is either the same or that the socket is bound to an L3 3074 * master device and the given device index is also enslaved to 3075 * that L3 master 3076 */ 3077 static inline bool sk_dev_equal_l3scope(struct sock *sk, int dif) 3078 { 3079 int bound_dev_if = READ_ONCE(sk->sk_bound_dev_if); 3080 int mdif; 3081 3082 if (!bound_dev_if || bound_dev_if == dif) 3083 return true; 3084 3085 mdif = l3mdev_master_ifindex_by_index(sock_net(sk), dif); 3086 if (mdif && mdif == bound_dev_if) 3087 return true; 3088 3089 return false; 3090 } 3091 3092 void sock_def_readable(struct sock *sk); 3093 3094 int sock_bindtoindex(struct sock *sk, int ifindex, bool lock_sk); 3095 void sock_set_timestamp(struct sock *sk, int optname, bool valbool); 3096 int sock_set_timestamping(struct sock *sk, int optname, 3097 struct so_timestamping timestamping); 3098 3099 #if defined(CONFIG_CGROUP_BPF) 3100 void bpf_skops_tx_timestamping(struct sock *sk, struct sk_buff *skb, int op); 3101 #else 3102 static inline void bpf_skops_tx_timestamping(struct sock *sk, struct sk_buff *skb, int op) 3103 { 3104 } 3105 #endif 3106 void sock_no_linger(struct sock *sk); 3107 void sock_set_keepalive(struct sock *sk); 3108 void sock_set_priority(struct sock *sk, u32 priority); 3109 void sock_set_rcvbuf(struct sock *sk, int val); 3110 void sock_set_mark(struct sock *sk, u32 val); 3111 void sock_set_reuseaddr(struct sock *sk); 3112 void sock_set_reuseport(struct sock *sk); 3113 void sock_set_sndtimeo(struct sock *sk, s64 secs); 3114 3115 int sock_bind_add(struct sock *sk, struct sockaddr_unsized *addr, int addr_len); 3116 3117 int sock_get_timeout(long timeo, void *optval, bool old_timeval); 3118 int sock_copy_user_timeval(struct __kernel_sock_timeval *tv, 3119 sockptr_t optval, int optlen, bool old_timeval); 3120 3121 int sock_ioctl_inout(struct sock *sk, unsigned int cmd, 3122 void __user *arg, void *karg, size_t size); 3123 int sk_ioctl(struct sock *sk, unsigned int cmd, void __user *arg); 3124 static inline bool sk_is_readable(struct sock *sk) 3125 { 3126 const struct proto *prot = READ_ONCE(sk->sk_prot); 3127 3128 if (prot->sock_is_readable) 3129 return prot->sock_is_readable(sk); 3130 3131 return false; 3132 } 3133 #endif /* _SOCK_H */ 3134