1 /* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * Definitions for the AF_INET socket handler. 7 * 8 * Version: @(#)sock.h 1.0.4 05/13/93 9 * 10 * Authors: Ross Biro 11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 12 * Corey Minyard <wf-rch!minyard@relay.EU.net> 13 * Florian La Roche <flla@stud.uni-sb.de> 14 * 15 * Fixes: 16 * Alan Cox : Volatiles in skbuff pointers. See 17 * skbuff comments. May be overdone, 18 * better to prove they can be removed 19 * than the reverse. 20 * Alan Cox : Added a zapped field for tcp to note 21 * a socket is reset and must stay shut up 22 * Alan Cox : New fields for options 23 * Pauline Middelink : identd support 24 * Alan Cox : Eliminate low level recv/recvfrom 25 * David S. Miller : New socket lookup architecture. 26 * Steve Whitehouse: Default routines for sock_ops 27 * Arnaldo C. Melo : removed net_pinfo, tp_pinfo and made 28 * protinfo be just a void pointer, as the 29 * protocol specific parts were moved to 30 * respective headers and ipv4/v6, etc now 31 * use private slabcaches for its socks 32 * Pedro Hortas : New flags field for socket options 33 * 34 * 35 * This program is free software; you can redistribute it and/or 36 * modify it under the terms of the GNU General Public License 37 * as published by the Free Software Foundation; either version 38 * 2 of the License, or (at your option) any later version. 39 */ 40 #ifndef _SOCK_H 41 #define _SOCK_H 42 43 #include <linux/kernel.h> 44 #include <linux/list.h> 45 #include <linux/timer.h> 46 #include <linux/cache.h> 47 #include <linux/module.h> 48 #include <linux/lockdep.h> 49 #include <linux/netdevice.h> 50 #include <linux/skbuff.h> /* struct sk_buff */ 51 #include <linux/mm.h> 52 #include <linux/security.h> 53 54 #include <linux/filter.h> 55 56 #include <asm/atomic.h> 57 #include <net/dst.h> 58 #include <net/checksum.h> 59 #include <net/net_namespace.h> 60 61 /* 62 * This structure really needs to be cleaned up. 63 * Most of it is for TCP, and not used by any of 64 * the other protocols. 65 */ 66 67 /* Define this to get the SOCK_DBG debugging facility. */ 68 #define SOCK_DEBUGGING 69 #ifdef SOCK_DEBUGGING 70 #define SOCK_DEBUG(sk, msg...) do { if ((sk) && sock_flag((sk), SOCK_DBG)) \ 71 printk(KERN_DEBUG msg); } while (0) 72 #else 73 #define SOCK_DEBUG(sk, msg...) do { } while (0) 74 #endif 75 76 /* This is the per-socket lock. The spinlock provides a synchronization 77 * between user contexts and software interrupt processing, whereas the 78 * mini-semaphore synchronizes multiple users amongst themselves. 79 */ 80 typedef struct { 81 spinlock_t slock; 82 int owned; 83 wait_queue_head_t wq; 84 /* 85 * We express the mutex-alike socket_lock semantics 86 * to the lock validator by explicitly managing 87 * the slock as a lock variant (in addition to 88 * the slock itself): 89 */ 90 #ifdef CONFIG_DEBUG_LOCK_ALLOC 91 struct lockdep_map dep_map; 92 #endif 93 } socket_lock_t; 94 95 struct sock; 96 struct proto; 97 98 /** 99 * struct sock_common - minimal network layer representation of sockets 100 * @skc_family: network address family 101 * @skc_state: Connection state 102 * @skc_reuse: %SO_REUSEADDR setting 103 * @skc_bound_dev_if: bound device index if != 0 104 * @skc_node: main hash linkage for various protocol lookup tables 105 * @skc_bind_node: bind hash linkage for various protocol lookup tables 106 * @skc_refcnt: reference count 107 * @skc_hash: hash value used with various protocol lookup tables 108 * @skc_prot: protocol handlers inside a network family 109 * @skc_net: reference to the network namespace of this socket 110 * 111 * This is the minimal network layer representation of sockets, the header 112 * for struct sock and struct inet_timewait_sock. 113 */ 114 struct sock_common { 115 unsigned short skc_family; 116 volatile unsigned char skc_state; 117 unsigned char skc_reuse; 118 int skc_bound_dev_if; 119 struct hlist_node skc_node; 120 struct hlist_node skc_bind_node; 121 atomic_t skc_refcnt; 122 unsigned int skc_hash; 123 struct proto *skc_prot; 124 struct net *skc_net; 125 }; 126 127 /** 128 * struct sock - network layer representation of sockets 129 * @__sk_common: shared layout with inet_timewait_sock 130 * @sk_shutdown: mask of %SEND_SHUTDOWN and/or %RCV_SHUTDOWN 131 * @sk_userlocks: %SO_SNDBUF and %SO_RCVBUF settings 132 * @sk_lock: synchronizer 133 * @sk_rcvbuf: size of receive buffer in bytes 134 * @sk_sleep: sock wait queue 135 * @sk_dst_cache: destination cache 136 * @sk_dst_lock: destination cache lock 137 * @sk_policy: flow policy 138 * @sk_rmem_alloc: receive queue bytes committed 139 * @sk_receive_queue: incoming packets 140 * @sk_wmem_alloc: transmit queue bytes committed 141 * @sk_write_queue: Packet sending queue 142 * @sk_async_wait_queue: DMA copied packets 143 * @sk_omem_alloc: "o" is "option" or "other" 144 * @sk_wmem_queued: persistent queue size 145 * @sk_forward_alloc: space allocated forward 146 * @sk_allocation: allocation mode 147 * @sk_sndbuf: size of send buffer in bytes 148 * @sk_flags: %SO_LINGER (l_onoff), %SO_BROADCAST, %SO_KEEPALIVE, %SO_OOBINLINE settings 149 * @sk_no_check: %SO_NO_CHECK setting, wether or not checkup packets 150 * @sk_route_caps: route capabilities (e.g. %NETIF_F_TSO) 151 * @sk_gso_type: GSO type (e.g. %SKB_GSO_TCPV4) 152 * @sk_lingertime: %SO_LINGER l_linger setting 153 * @sk_backlog: always used with the per-socket spinlock held 154 * @sk_callback_lock: used with the callbacks in the end of this struct 155 * @sk_error_queue: rarely used 156 * @sk_prot_creator: sk_prot of original sock creator (see ipv6_setsockopt, IPV6_ADDRFORM for instance) 157 * @sk_err: last error 158 * @sk_err_soft: errors that don't cause failure but are the cause of a persistent failure not just 'timed out' 159 * @sk_ack_backlog: current listen backlog 160 * @sk_max_ack_backlog: listen backlog set in listen() 161 * @sk_priority: %SO_PRIORITY setting 162 * @sk_type: socket type (%SOCK_STREAM, etc) 163 * @sk_protocol: which protocol this socket belongs in this network family 164 * @sk_peercred: %SO_PEERCRED setting 165 * @sk_rcvlowat: %SO_RCVLOWAT setting 166 * @sk_rcvtimeo: %SO_RCVTIMEO setting 167 * @sk_sndtimeo: %SO_SNDTIMEO setting 168 * @sk_filter: socket filtering instructions 169 * @sk_protinfo: private area, net family specific, when not using slab 170 * @sk_timer: sock cleanup timer 171 * @sk_stamp: time stamp of last packet received 172 * @sk_socket: Identd and reporting IO signals 173 * @sk_user_data: RPC layer private data 174 * @sk_sndmsg_page: cached page for sendmsg 175 * @sk_sndmsg_off: cached offset for sendmsg 176 * @sk_send_head: front of stuff to transmit 177 * @sk_security: used by security modules 178 * @sk_write_pending: a write to stream socket waits to start 179 * @sk_state_change: callback to indicate change in the state of the sock 180 * @sk_data_ready: callback to indicate there is data to be processed 181 * @sk_write_space: callback to indicate there is bf sending space available 182 * @sk_error_report: callback to indicate errors (e.g. %MSG_ERRQUEUE) 183 * @sk_backlog_rcv: callback to process the backlog 184 * @sk_destruct: called at sock freeing time, i.e. when all refcnt == 0 185 */ 186 struct sock { 187 /* 188 * Now struct inet_timewait_sock also uses sock_common, so please just 189 * don't add nothing before this first member (__sk_common) --acme 190 */ 191 struct sock_common __sk_common; 192 #define sk_family __sk_common.skc_family 193 #define sk_state __sk_common.skc_state 194 #define sk_reuse __sk_common.skc_reuse 195 #define sk_bound_dev_if __sk_common.skc_bound_dev_if 196 #define sk_node __sk_common.skc_node 197 #define sk_bind_node __sk_common.skc_bind_node 198 #define sk_refcnt __sk_common.skc_refcnt 199 #define sk_hash __sk_common.skc_hash 200 #define sk_prot __sk_common.skc_prot 201 #define sk_net __sk_common.skc_net 202 unsigned char sk_shutdown : 2, 203 sk_no_check : 2, 204 sk_userlocks : 4; 205 unsigned char sk_protocol; 206 unsigned short sk_type; 207 int sk_rcvbuf; 208 socket_lock_t sk_lock; 209 /* 210 * The backlog queue is special, it is always used with 211 * the per-socket spinlock held and requires low latency 212 * access. Therefore we special case it's implementation. 213 */ 214 struct { 215 struct sk_buff *head; 216 struct sk_buff *tail; 217 } sk_backlog; 218 wait_queue_head_t *sk_sleep; 219 struct dst_entry *sk_dst_cache; 220 struct xfrm_policy *sk_policy[2]; 221 rwlock_t sk_dst_lock; 222 atomic_t sk_rmem_alloc; 223 atomic_t sk_wmem_alloc; 224 atomic_t sk_omem_alloc; 225 int sk_sndbuf; 226 struct sk_buff_head sk_receive_queue; 227 struct sk_buff_head sk_write_queue; 228 struct sk_buff_head sk_async_wait_queue; 229 int sk_wmem_queued; 230 int sk_forward_alloc; 231 gfp_t sk_allocation; 232 int sk_route_caps; 233 int sk_gso_type; 234 int sk_rcvlowat; 235 unsigned long sk_flags; 236 unsigned long sk_lingertime; 237 struct sk_buff_head sk_error_queue; 238 struct proto *sk_prot_creator; 239 rwlock_t sk_callback_lock; 240 int sk_err, 241 sk_err_soft; 242 unsigned short sk_ack_backlog; 243 unsigned short sk_max_ack_backlog; 244 __u32 sk_priority; 245 struct ucred sk_peercred; 246 long sk_rcvtimeo; 247 long sk_sndtimeo; 248 struct sk_filter *sk_filter; 249 void *sk_protinfo; 250 struct timer_list sk_timer; 251 ktime_t sk_stamp; 252 struct socket *sk_socket; 253 void *sk_user_data; 254 struct page *sk_sndmsg_page; 255 struct sk_buff *sk_send_head; 256 __u32 sk_sndmsg_off; 257 int sk_write_pending; 258 void *sk_security; 259 void (*sk_state_change)(struct sock *sk); 260 void (*sk_data_ready)(struct sock *sk, int bytes); 261 void (*sk_write_space)(struct sock *sk); 262 void (*sk_error_report)(struct sock *sk); 263 int (*sk_backlog_rcv)(struct sock *sk, 264 struct sk_buff *skb); 265 void (*sk_destruct)(struct sock *sk); 266 }; 267 268 /* 269 * Hashed lists helper routines 270 */ 271 static inline struct sock *__sk_head(const struct hlist_head *head) 272 { 273 return hlist_entry(head->first, struct sock, sk_node); 274 } 275 276 static inline struct sock *sk_head(const struct hlist_head *head) 277 { 278 return hlist_empty(head) ? NULL : __sk_head(head); 279 } 280 281 static inline struct sock *sk_next(const struct sock *sk) 282 { 283 return sk->sk_node.next ? 284 hlist_entry(sk->sk_node.next, struct sock, sk_node) : NULL; 285 } 286 287 static inline int sk_unhashed(const struct sock *sk) 288 { 289 return hlist_unhashed(&sk->sk_node); 290 } 291 292 static inline int sk_hashed(const struct sock *sk) 293 { 294 return !sk_unhashed(sk); 295 } 296 297 static __inline__ void sk_node_init(struct hlist_node *node) 298 { 299 node->pprev = NULL; 300 } 301 302 static __inline__ void __sk_del_node(struct sock *sk) 303 { 304 __hlist_del(&sk->sk_node); 305 } 306 307 static __inline__ int __sk_del_node_init(struct sock *sk) 308 { 309 if (sk_hashed(sk)) { 310 __sk_del_node(sk); 311 sk_node_init(&sk->sk_node); 312 return 1; 313 } 314 return 0; 315 } 316 317 /* Grab socket reference count. This operation is valid only 318 when sk is ALREADY grabbed f.e. it is found in hash table 319 or a list and the lookup is made under lock preventing hash table 320 modifications. 321 */ 322 323 static inline void sock_hold(struct sock *sk) 324 { 325 atomic_inc(&sk->sk_refcnt); 326 } 327 328 /* Ungrab socket in the context, which assumes that socket refcnt 329 cannot hit zero, f.e. it is true in context of any socketcall. 330 */ 331 static inline void __sock_put(struct sock *sk) 332 { 333 atomic_dec(&sk->sk_refcnt); 334 } 335 336 static __inline__ int sk_del_node_init(struct sock *sk) 337 { 338 int rc = __sk_del_node_init(sk); 339 340 if (rc) { 341 /* paranoid for a while -acme */ 342 WARN_ON(atomic_read(&sk->sk_refcnt) == 1); 343 __sock_put(sk); 344 } 345 return rc; 346 } 347 348 static __inline__ void __sk_add_node(struct sock *sk, struct hlist_head *list) 349 { 350 hlist_add_head(&sk->sk_node, list); 351 } 352 353 static __inline__ void sk_add_node(struct sock *sk, struct hlist_head *list) 354 { 355 sock_hold(sk); 356 __sk_add_node(sk, list); 357 } 358 359 static __inline__ void __sk_del_bind_node(struct sock *sk) 360 { 361 __hlist_del(&sk->sk_bind_node); 362 } 363 364 static __inline__ void sk_add_bind_node(struct sock *sk, 365 struct hlist_head *list) 366 { 367 hlist_add_head(&sk->sk_bind_node, list); 368 } 369 370 #define sk_for_each(__sk, node, list) \ 371 hlist_for_each_entry(__sk, node, list, sk_node) 372 #define sk_for_each_from(__sk, node) \ 373 if (__sk && ({ node = &(__sk)->sk_node; 1; })) \ 374 hlist_for_each_entry_from(__sk, node, sk_node) 375 #define sk_for_each_continue(__sk, node) \ 376 if (__sk && ({ node = &(__sk)->sk_node; 1; })) \ 377 hlist_for_each_entry_continue(__sk, node, sk_node) 378 #define sk_for_each_safe(__sk, node, tmp, list) \ 379 hlist_for_each_entry_safe(__sk, node, tmp, list, sk_node) 380 #define sk_for_each_bound(__sk, node, list) \ 381 hlist_for_each_entry(__sk, node, list, sk_bind_node) 382 383 /* Sock flags */ 384 enum sock_flags { 385 SOCK_DEAD, 386 SOCK_DONE, 387 SOCK_URGINLINE, 388 SOCK_KEEPOPEN, 389 SOCK_LINGER, 390 SOCK_DESTROY, 391 SOCK_BROADCAST, 392 SOCK_TIMESTAMP, 393 SOCK_ZAPPED, 394 SOCK_USE_WRITE_QUEUE, /* whether to call sk->sk_write_space in sock_wfree */ 395 SOCK_DBG, /* %SO_DEBUG setting */ 396 SOCK_RCVTSTAMP, /* %SO_TIMESTAMP setting */ 397 SOCK_RCVTSTAMPNS, /* %SO_TIMESTAMPNS setting */ 398 SOCK_LOCALROUTE, /* route locally only, %SO_DONTROUTE setting */ 399 SOCK_QUEUE_SHRUNK, /* write queue has been shrunk recently */ 400 }; 401 402 static inline void sock_copy_flags(struct sock *nsk, struct sock *osk) 403 { 404 nsk->sk_flags = osk->sk_flags; 405 } 406 407 static inline void sock_set_flag(struct sock *sk, enum sock_flags flag) 408 { 409 __set_bit(flag, &sk->sk_flags); 410 } 411 412 static inline void sock_reset_flag(struct sock *sk, enum sock_flags flag) 413 { 414 __clear_bit(flag, &sk->sk_flags); 415 } 416 417 static inline int sock_flag(struct sock *sk, enum sock_flags flag) 418 { 419 return test_bit(flag, &sk->sk_flags); 420 } 421 422 static inline void sk_acceptq_removed(struct sock *sk) 423 { 424 sk->sk_ack_backlog--; 425 } 426 427 static inline void sk_acceptq_added(struct sock *sk) 428 { 429 sk->sk_ack_backlog++; 430 } 431 432 static inline int sk_acceptq_is_full(struct sock *sk) 433 { 434 return sk->sk_ack_backlog > sk->sk_max_ack_backlog; 435 } 436 437 /* 438 * Compute minimal free write space needed to queue new packets. 439 */ 440 static inline int sk_stream_min_wspace(struct sock *sk) 441 { 442 return sk->sk_wmem_queued / 2; 443 } 444 445 static inline int sk_stream_wspace(struct sock *sk) 446 { 447 return sk->sk_sndbuf - sk->sk_wmem_queued; 448 } 449 450 extern void sk_stream_write_space(struct sock *sk); 451 452 static inline int sk_stream_memory_free(struct sock *sk) 453 { 454 return sk->sk_wmem_queued < sk->sk_sndbuf; 455 } 456 457 extern void sk_stream_rfree(struct sk_buff *skb); 458 459 static inline void sk_stream_set_owner_r(struct sk_buff *skb, struct sock *sk) 460 { 461 skb->sk = sk; 462 skb->destructor = sk_stream_rfree; 463 atomic_add(skb->truesize, &sk->sk_rmem_alloc); 464 sk->sk_forward_alloc -= skb->truesize; 465 } 466 467 static inline void sk_stream_free_skb(struct sock *sk, struct sk_buff *skb) 468 { 469 skb_truesize_check(skb); 470 sock_set_flag(sk, SOCK_QUEUE_SHRUNK); 471 sk->sk_wmem_queued -= skb->truesize; 472 sk->sk_forward_alloc += skb->truesize; 473 __kfree_skb(skb); 474 } 475 476 /* The per-socket spinlock must be held here. */ 477 static inline void sk_add_backlog(struct sock *sk, struct sk_buff *skb) 478 { 479 if (!sk->sk_backlog.tail) { 480 sk->sk_backlog.head = sk->sk_backlog.tail = skb; 481 } else { 482 sk->sk_backlog.tail->next = skb; 483 sk->sk_backlog.tail = skb; 484 } 485 skb->next = NULL; 486 } 487 488 #define sk_wait_event(__sk, __timeo, __condition) \ 489 ({ int __rc; \ 490 release_sock(__sk); \ 491 __rc = __condition; \ 492 if (!__rc) { \ 493 *(__timeo) = schedule_timeout(*(__timeo)); \ 494 } \ 495 lock_sock(__sk); \ 496 __rc = __condition; \ 497 __rc; \ 498 }) 499 500 extern int sk_stream_wait_connect(struct sock *sk, long *timeo_p); 501 extern int sk_stream_wait_memory(struct sock *sk, long *timeo_p); 502 extern void sk_stream_wait_close(struct sock *sk, long timeo_p); 503 extern int sk_stream_error(struct sock *sk, int flags, int err); 504 extern void sk_stream_kill_queues(struct sock *sk); 505 506 extern int sk_wait_data(struct sock *sk, long *timeo); 507 508 struct request_sock_ops; 509 struct timewait_sock_ops; 510 511 /* Networking protocol blocks we attach to sockets. 512 * socket layer -> transport layer interface 513 * transport -> network interface is defined by struct inet_proto 514 */ 515 struct proto { 516 void (*close)(struct sock *sk, 517 long timeout); 518 int (*connect)(struct sock *sk, 519 struct sockaddr *uaddr, 520 int addr_len); 521 int (*disconnect)(struct sock *sk, int flags); 522 523 struct sock * (*accept) (struct sock *sk, int flags, int *err); 524 525 int (*ioctl)(struct sock *sk, int cmd, 526 unsigned long arg); 527 int (*init)(struct sock *sk); 528 int (*destroy)(struct sock *sk); 529 void (*shutdown)(struct sock *sk, int how); 530 int (*setsockopt)(struct sock *sk, int level, 531 int optname, char __user *optval, 532 int optlen); 533 int (*getsockopt)(struct sock *sk, int level, 534 int optname, char __user *optval, 535 int __user *option); 536 int (*compat_setsockopt)(struct sock *sk, 537 int level, 538 int optname, char __user *optval, 539 int optlen); 540 int (*compat_getsockopt)(struct sock *sk, 541 int level, 542 int optname, char __user *optval, 543 int __user *option); 544 int (*sendmsg)(struct kiocb *iocb, struct sock *sk, 545 struct msghdr *msg, size_t len); 546 int (*recvmsg)(struct kiocb *iocb, struct sock *sk, 547 struct msghdr *msg, 548 size_t len, int noblock, int flags, 549 int *addr_len); 550 int (*sendpage)(struct sock *sk, struct page *page, 551 int offset, size_t size, int flags); 552 int (*bind)(struct sock *sk, 553 struct sockaddr *uaddr, int addr_len); 554 555 int (*backlog_rcv) (struct sock *sk, 556 struct sk_buff *skb); 557 558 /* Keeping track of sk's, looking them up, and port selection methods. */ 559 void (*hash)(struct sock *sk); 560 void (*unhash)(struct sock *sk); 561 int (*get_port)(struct sock *sk, unsigned short snum); 562 563 #ifdef CONFIG_SMP 564 /* Keeping track of sockets in use */ 565 void (*inuse_add)(struct proto *prot, int inc); 566 int (*inuse_getval)(const struct proto *prot); 567 int *inuse_ptr; 568 #else 569 int inuse; 570 #endif 571 /* Memory pressure */ 572 void (*enter_memory_pressure)(void); 573 atomic_t *memory_allocated; /* Current allocated memory. */ 574 atomic_t *sockets_allocated; /* Current number of sockets. */ 575 /* 576 * Pressure flag: try to collapse. 577 * Technical note: it is used by multiple contexts non atomically. 578 * All the sk_stream_mem_schedule() is of this nature: accounting 579 * is strict, actions are advisory and have some latency. 580 */ 581 int *memory_pressure; 582 int *sysctl_mem; 583 int *sysctl_wmem; 584 int *sysctl_rmem; 585 int max_header; 586 587 struct kmem_cache *slab; 588 unsigned int obj_size; 589 590 atomic_t *orphan_count; 591 592 struct request_sock_ops *rsk_prot; 593 struct timewait_sock_ops *twsk_prot; 594 595 struct module *owner; 596 597 char name[32]; 598 599 struct list_head node; 600 #ifdef SOCK_REFCNT_DEBUG 601 atomic_t socks; 602 #endif 603 }; 604 605 /* 606 * Special macros to let protos use a fast version of inuse{get|add} 607 * using a static percpu variable per proto instead of an allocated one, 608 * saving one dereference. 609 * This might be changed if/when dynamic percpu vars become fast. 610 */ 611 #ifdef CONFIG_SMP 612 # define DEFINE_PROTO_INUSE(NAME) \ 613 static DEFINE_PER_CPU(int, NAME##_inuse); \ 614 static void NAME##_inuse_add(struct proto *prot, int inc) \ 615 { \ 616 __get_cpu_var(NAME##_inuse) += inc; \ 617 } \ 618 \ 619 static int NAME##_inuse_getval(const struct proto *prot)\ 620 { \ 621 int res = 0, cpu; \ 622 \ 623 for_each_possible_cpu(cpu) \ 624 res += per_cpu(NAME##_inuse, cpu); \ 625 return res; \ 626 } 627 # define REF_PROTO_INUSE(NAME) \ 628 .inuse_add = NAME##_inuse_add, \ 629 .inuse_getval = NAME##_inuse_getval, 630 #else 631 # define DEFINE_PROTO_INUSE(NAME) 632 # define REF_PROTO_INUSE(NAME) 633 #endif 634 635 extern int proto_register(struct proto *prot, int alloc_slab); 636 extern void proto_unregister(struct proto *prot); 637 638 #ifdef SOCK_REFCNT_DEBUG 639 static inline void sk_refcnt_debug_inc(struct sock *sk) 640 { 641 atomic_inc(&sk->sk_prot->socks); 642 } 643 644 static inline void sk_refcnt_debug_dec(struct sock *sk) 645 { 646 atomic_dec(&sk->sk_prot->socks); 647 printk(KERN_DEBUG "%s socket %p released, %d are still alive\n", 648 sk->sk_prot->name, sk, atomic_read(&sk->sk_prot->socks)); 649 } 650 651 static inline void sk_refcnt_debug_release(const struct sock *sk) 652 { 653 if (atomic_read(&sk->sk_refcnt) != 1) 654 printk(KERN_DEBUG "Destruction of the %s socket %p delayed, refcnt=%d\n", 655 sk->sk_prot->name, sk, atomic_read(&sk->sk_refcnt)); 656 } 657 #else /* SOCK_REFCNT_DEBUG */ 658 #define sk_refcnt_debug_inc(sk) do { } while (0) 659 #define sk_refcnt_debug_dec(sk) do { } while (0) 660 #define sk_refcnt_debug_release(sk) do { } while (0) 661 #endif /* SOCK_REFCNT_DEBUG */ 662 663 /* Called with local bh disabled */ 664 static __inline__ void sock_prot_inc_use(struct proto *prot) 665 { 666 #ifdef CONFIG_SMP 667 prot->inuse_add(prot, 1); 668 #else 669 prot->inuse++; 670 #endif 671 } 672 673 static __inline__ void sock_prot_dec_use(struct proto *prot) 674 { 675 #ifdef CONFIG_SMP 676 prot->inuse_add(prot, -1); 677 #else 678 prot->inuse--; 679 #endif 680 } 681 682 static __inline__ int sock_prot_inuse(struct proto *proto) 683 { 684 #ifdef CONFIG_SMP 685 return proto->inuse_getval(proto); 686 #else 687 return proto->inuse; 688 #endif 689 } 690 691 /* With per-bucket locks this operation is not-atomic, so that 692 * this version is not worse. 693 */ 694 static inline void __sk_prot_rehash(struct sock *sk) 695 { 696 sk->sk_prot->unhash(sk); 697 sk->sk_prot->hash(sk); 698 } 699 700 /* About 10 seconds */ 701 #define SOCK_DESTROY_TIME (10*HZ) 702 703 /* Sockets 0-1023 can't be bound to unless you are superuser */ 704 #define PROT_SOCK 1024 705 706 #define SHUTDOWN_MASK 3 707 #define RCV_SHUTDOWN 1 708 #define SEND_SHUTDOWN 2 709 710 #define SOCK_SNDBUF_LOCK 1 711 #define SOCK_RCVBUF_LOCK 2 712 #define SOCK_BINDADDR_LOCK 4 713 #define SOCK_BINDPORT_LOCK 8 714 715 /* sock_iocb: used to kick off async processing of socket ios */ 716 struct sock_iocb { 717 struct list_head list; 718 719 int flags; 720 int size; 721 struct socket *sock; 722 struct sock *sk; 723 struct scm_cookie *scm; 724 struct msghdr *msg, async_msg; 725 struct kiocb *kiocb; 726 }; 727 728 static inline struct sock_iocb *kiocb_to_siocb(struct kiocb *iocb) 729 { 730 return (struct sock_iocb *)iocb->private; 731 } 732 733 static inline struct kiocb *siocb_to_kiocb(struct sock_iocb *si) 734 { 735 return si->kiocb; 736 } 737 738 struct socket_alloc { 739 struct socket socket; 740 struct inode vfs_inode; 741 }; 742 743 static inline struct socket *SOCKET_I(struct inode *inode) 744 { 745 return &container_of(inode, struct socket_alloc, vfs_inode)->socket; 746 } 747 748 static inline struct inode *SOCK_INODE(struct socket *socket) 749 { 750 return &container_of(socket, struct socket_alloc, socket)->vfs_inode; 751 } 752 753 extern void __sk_stream_mem_reclaim(struct sock *sk); 754 extern int sk_stream_mem_schedule(struct sock *sk, int size, int kind); 755 756 #define SK_STREAM_MEM_QUANTUM ((int)PAGE_SIZE) 757 758 static inline int sk_stream_pages(int amt) 759 { 760 return DIV_ROUND_UP(amt, SK_STREAM_MEM_QUANTUM); 761 } 762 763 static inline void sk_stream_mem_reclaim(struct sock *sk) 764 { 765 if (sk->sk_forward_alloc >= SK_STREAM_MEM_QUANTUM) 766 __sk_stream_mem_reclaim(sk); 767 } 768 769 static inline int sk_stream_rmem_schedule(struct sock *sk, struct sk_buff *skb) 770 { 771 return (int)skb->truesize <= sk->sk_forward_alloc || 772 sk_stream_mem_schedule(sk, skb->truesize, 1); 773 } 774 775 static inline int sk_stream_wmem_schedule(struct sock *sk, int size) 776 { 777 return size <= sk->sk_forward_alloc || 778 sk_stream_mem_schedule(sk, size, 0); 779 } 780 781 /* Used by processes to "lock" a socket state, so that 782 * interrupts and bottom half handlers won't change it 783 * from under us. It essentially blocks any incoming 784 * packets, so that we won't get any new data or any 785 * packets that change the state of the socket. 786 * 787 * While locked, BH processing will add new packets to 788 * the backlog queue. This queue is processed by the 789 * owner of the socket lock right before it is released. 790 * 791 * Since ~2.3.5 it is also exclusive sleep lock serializing 792 * accesses from user process context. 793 */ 794 #define sock_owned_by_user(sk) ((sk)->sk_lock.owned) 795 796 /* 797 * Macro so as to not evaluate some arguments when 798 * lockdep is not enabled. 799 * 800 * Mark both the sk_lock and the sk_lock.slock as a 801 * per-address-family lock class. 802 */ 803 #define sock_lock_init_class_and_name(sk, sname, skey, name, key) \ 804 do { \ 805 sk->sk_lock.owned = 0; \ 806 init_waitqueue_head(&sk->sk_lock.wq); \ 807 spin_lock_init(&(sk)->sk_lock.slock); \ 808 debug_check_no_locks_freed((void *)&(sk)->sk_lock, \ 809 sizeof((sk)->sk_lock)); \ 810 lockdep_set_class_and_name(&(sk)->sk_lock.slock, \ 811 (skey), (sname)); \ 812 lockdep_init_map(&(sk)->sk_lock.dep_map, (name), (key), 0); \ 813 } while (0) 814 815 extern void FASTCALL(lock_sock_nested(struct sock *sk, int subclass)); 816 817 static inline void lock_sock(struct sock *sk) 818 { 819 lock_sock_nested(sk, 0); 820 } 821 822 extern void FASTCALL(release_sock(struct sock *sk)); 823 824 /* BH context may only use the following locking interface. */ 825 #define bh_lock_sock(__sk) spin_lock(&((__sk)->sk_lock.slock)) 826 #define bh_lock_sock_nested(__sk) \ 827 spin_lock_nested(&((__sk)->sk_lock.slock), \ 828 SINGLE_DEPTH_NESTING) 829 #define bh_unlock_sock(__sk) spin_unlock(&((__sk)->sk_lock.slock)) 830 831 extern struct sock *sk_alloc(struct net *net, int family, 832 gfp_t priority, 833 struct proto *prot); 834 extern void sk_free(struct sock *sk); 835 extern struct sock *sk_clone(const struct sock *sk, 836 const gfp_t priority); 837 838 extern struct sk_buff *sock_wmalloc(struct sock *sk, 839 unsigned long size, int force, 840 gfp_t priority); 841 extern struct sk_buff *sock_rmalloc(struct sock *sk, 842 unsigned long size, int force, 843 gfp_t priority); 844 extern void sock_wfree(struct sk_buff *skb); 845 extern void sock_rfree(struct sk_buff *skb); 846 847 extern int sock_setsockopt(struct socket *sock, int level, 848 int op, char __user *optval, 849 int optlen); 850 851 extern int sock_getsockopt(struct socket *sock, int level, 852 int op, char __user *optval, 853 int __user *optlen); 854 extern struct sk_buff *sock_alloc_send_skb(struct sock *sk, 855 unsigned long size, 856 int noblock, 857 int *errcode); 858 extern void *sock_kmalloc(struct sock *sk, int size, 859 gfp_t priority); 860 extern void sock_kfree_s(struct sock *sk, void *mem, int size); 861 extern void sk_send_sigurg(struct sock *sk); 862 863 /* 864 * Functions to fill in entries in struct proto_ops when a protocol 865 * does not implement a particular function. 866 */ 867 extern int sock_no_bind(struct socket *, 868 struct sockaddr *, int); 869 extern int sock_no_connect(struct socket *, 870 struct sockaddr *, int, int); 871 extern int sock_no_socketpair(struct socket *, 872 struct socket *); 873 extern int sock_no_accept(struct socket *, 874 struct socket *, int); 875 extern int sock_no_getname(struct socket *, 876 struct sockaddr *, int *, int); 877 extern unsigned int sock_no_poll(struct file *, struct socket *, 878 struct poll_table_struct *); 879 extern int sock_no_ioctl(struct socket *, unsigned int, 880 unsigned long); 881 extern int sock_no_listen(struct socket *, int); 882 extern int sock_no_shutdown(struct socket *, int); 883 extern int sock_no_getsockopt(struct socket *, int , int, 884 char __user *, int __user *); 885 extern int sock_no_setsockopt(struct socket *, int, int, 886 char __user *, int); 887 extern int sock_no_sendmsg(struct kiocb *, struct socket *, 888 struct msghdr *, size_t); 889 extern int sock_no_recvmsg(struct kiocb *, struct socket *, 890 struct msghdr *, size_t, int); 891 extern int sock_no_mmap(struct file *file, 892 struct socket *sock, 893 struct vm_area_struct *vma); 894 extern ssize_t sock_no_sendpage(struct socket *sock, 895 struct page *page, 896 int offset, size_t size, 897 int flags); 898 899 /* 900 * Functions to fill in entries in struct proto_ops when a protocol 901 * uses the inet style. 902 */ 903 extern int sock_common_getsockopt(struct socket *sock, int level, int optname, 904 char __user *optval, int __user *optlen); 905 extern int sock_common_recvmsg(struct kiocb *iocb, struct socket *sock, 906 struct msghdr *msg, size_t size, int flags); 907 extern int sock_common_setsockopt(struct socket *sock, int level, int optname, 908 char __user *optval, int optlen); 909 extern int compat_sock_common_getsockopt(struct socket *sock, int level, 910 int optname, char __user *optval, int __user *optlen); 911 extern int compat_sock_common_setsockopt(struct socket *sock, int level, 912 int optname, char __user *optval, int optlen); 913 914 extern void sk_common_release(struct sock *sk); 915 916 /* 917 * Default socket callbacks and setup code 918 */ 919 920 /* Initialise core socket variables */ 921 extern void sock_init_data(struct socket *sock, struct sock *sk); 922 923 /** 924 * sk_filter - run a packet through a socket filter 925 * @sk: sock associated with &sk_buff 926 * @skb: buffer to filter 927 * @needlock: set to 1 if the sock is not locked by caller. 928 * 929 * Run the filter code and then cut skb->data to correct size returned by 930 * sk_run_filter. If pkt_len is 0 we toss packet. If skb->len is smaller 931 * than pkt_len we keep whole skb->data. This is the socket level 932 * wrapper to sk_run_filter. It returns 0 if the packet should 933 * be accepted or -EPERM if the packet should be tossed. 934 * 935 */ 936 937 static inline int sk_filter(struct sock *sk, struct sk_buff *skb) 938 { 939 int err; 940 struct sk_filter *filter; 941 942 err = security_sock_rcv_skb(sk, skb); 943 if (err) 944 return err; 945 946 rcu_read_lock_bh(); 947 filter = rcu_dereference(sk->sk_filter); 948 if (filter) { 949 unsigned int pkt_len = sk_run_filter(skb, filter->insns, 950 filter->len); 951 err = pkt_len ? pskb_trim(skb, pkt_len) : -EPERM; 952 } 953 rcu_read_unlock_bh(); 954 955 return err; 956 } 957 958 /** 959 * sk_filter_release: Release a socket filter 960 * @sk: socket 961 * @fp: filter to remove 962 * 963 * Remove a filter from a socket and release its resources. 964 */ 965 966 static inline void sk_filter_release(struct sk_filter *fp) 967 { 968 if (atomic_dec_and_test(&fp->refcnt)) 969 kfree(fp); 970 } 971 972 static inline void sk_filter_uncharge(struct sock *sk, struct sk_filter *fp) 973 { 974 unsigned int size = sk_filter_len(fp); 975 976 atomic_sub(size, &sk->sk_omem_alloc); 977 sk_filter_release(fp); 978 } 979 980 static inline void sk_filter_charge(struct sock *sk, struct sk_filter *fp) 981 { 982 atomic_inc(&fp->refcnt); 983 atomic_add(sk_filter_len(fp), &sk->sk_omem_alloc); 984 } 985 986 /* 987 * Socket reference counting postulates. 988 * 989 * * Each user of socket SHOULD hold a reference count. 990 * * Each access point to socket (an hash table bucket, reference from a list, 991 * running timer, skb in flight MUST hold a reference count. 992 * * When reference count hits 0, it means it will never increase back. 993 * * When reference count hits 0, it means that no references from 994 * outside exist to this socket and current process on current CPU 995 * is last user and may/should destroy this socket. 996 * * sk_free is called from any context: process, BH, IRQ. When 997 * it is called, socket has no references from outside -> sk_free 998 * may release descendant resources allocated by the socket, but 999 * to the time when it is called, socket is NOT referenced by any 1000 * hash tables, lists etc. 1001 * * Packets, delivered from outside (from network or from another process) 1002 * and enqueued on receive/error queues SHOULD NOT grab reference count, 1003 * when they sit in queue. Otherwise, packets will leak to hole, when 1004 * socket is looked up by one cpu and unhasing is made by another CPU. 1005 * It is true for udp/raw, netlink (leak to receive and error queues), tcp 1006 * (leak to backlog). Packet socket does all the processing inside 1007 * BR_NETPROTO_LOCK, so that it has not this race condition. UNIX sockets 1008 * use separate SMP lock, so that they are prone too. 1009 */ 1010 1011 /* Ungrab socket and destroy it, if it was the last reference. */ 1012 static inline void sock_put(struct sock *sk) 1013 { 1014 if (atomic_dec_and_test(&sk->sk_refcnt)) 1015 sk_free(sk); 1016 } 1017 1018 extern int sk_receive_skb(struct sock *sk, struct sk_buff *skb, 1019 const int nested); 1020 1021 /* Detach socket from process context. 1022 * Announce socket dead, detach it from wait queue and inode. 1023 * Note that parent inode held reference count on this struct sock, 1024 * we do not release it in this function, because protocol 1025 * probably wants some additional cleanups or even continuing 1026 * to work with this socket (TCP). 1027 */ 1028 static inline void sock_orphan(struct sock *sk) 1029 { 1030 write_lock_bh(&sk->sk_callback_lock); 1031 sock_set_flag(sk, SOCK_DEAD); 1032 sk->sk_socket = NULL; 1033 sk->sk_sleep = NULL; 1034 write_unlock_bh(&sk->sk_callback_lock); 1035 } 1036 1037 static inline void sock_graft(struct sock *sk, struct socket *parent) 1038 { 1039 write_lock_bh(&sk->sk_callback_lock); 1040 sk->sk_sleep = &parent->wait; 1041 parent->sk = sk; 1042 sk->sk_socket = parent; 1043 security_sock_graft(sk, parent); 1044 write_unlock_bh(&sk->sk_callback_lock); 1045 } 1046 1047 extern int sock_i_uid(struct sock *sk); 1048 extern unsigned long sock_i_ino(struct sock *sk); 1049 1050 static inline struct dst_entry * 1051 __sk_dst_get(struct sock *sk) 1052 { 1053 return sk->sk_dst_cache; 1054 } 1055 1056 static inline struct dst_entry * 1057 sk_dst_get(struct sock *sk) 1058 { 1059 struct dst_entry *dst; 1060 1061 read_lock(&sk->sk_dst_lock); 1062 dst = sk->sk_dst_cache; 1063 if (dst) 1064 dst_hold(dst); 1065 read_unlock(&sk->sk_dst_lock); 1066 return dst; 1067 } 1068 1069 static inline void 1070 __sk_dst_set(struct sock *sk, struct dst_entry *dst) 1071 { 1072 struct dst_entry *old_dst; 1073 1074 old_dst = sk->sk_dst_cache; 1075 sk->sk_dst_cache = dst; 1076 dst_release(old_dst); 1077 } 1078 1079 static inline void 1080 sk_dst_set(struct sock *sk, struct dst_entry *dst) 1081 { 1082 write_lock(&sk->sk_dst_lock); 1083 __sk_dst_set(sk, dst); 1084 write_unlock(&sk->sk_dst_lock); 1085 } 1086 1087 static inline void 1088 __sk_dst_reset(struct sock *sk) 1089 { 1090 struct dst_entry *old_dst; 1091 1092 old_dst = sk->sk_dst_cache; 1093 sk->sk_dst_cache = NULL; 1094 dst_release(old_dst); 1095 } 1096 1097 static inline void 1098 sk_dst_reset(struct sock *sk) 1099 { 1100 write_lock(&sk->sk_dst_lock); 1101 __sk_dst_reset(sk); 1102 write_unlock(&sk->sk_dst_lock); 1103 } 1104 1105 extern struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie); 1106 1107 extern struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie); 1108 1109 static inline int sk_can_gso(const struct sock *sk) 1110 { 1111 return net_gso_ok(sk->sk_route_caps, sk->sk_gso_type); 1112 } 1113 1114 extern void sk_setup_caps(struct sock *sk, struct dst_entry *dst); 1115 1116 static inline void sk_charge_skb(struct sock *sk, struct sk_buff *skb) 1117 { 1118 sk->sk_wmem_queued += skb->truesize; 1119 sk->sk_forward_alloc -= skb->truesize; 1120 } 1121 1122 static inline int skb_copy_to_page(struct sock *sk, char __user *from, 1123 struct sk_buff *skb, struct page *page, 1124 int off, int copy) 1125 { 1126 if (skb->ip_summed == CHECKSUM_NONE) { 1127 int err = 0; 1128 __wsum csum = csum_and_copy_from_user(from, 1129 page_address(page) + off, 1130 copy, 0, &err); 1131 if (err) 1132 return err; 1133 skb->csum = csum_block_add(skb->csum, csum, skb->len); 1134 } else if (copy_from_user(page_address(page) + off, from, copy)) 1135 return -EFAULT; 1136 1137 skb->len += copy; 1138 skb->data_len += copy; 1139 skb->truesize += copy; 1140 sk->sk_wmem_queued += copy; 1141 sk->sk_forward_alloc -= copy; 1142 return 0; 1143 } 1144 1145 /* 1146 * Queue a received datagram if it will fit. Stream and sequenced 1147 * protocols can't normally use this as they need to fit buffers in 1148 * and play with them. 1149 * 1150 * Inlined as it's very short and called for pretty much every 1151 * packet ever received. 1152 */ 1153 1154 static inline void skb_set_owner_w(struct sk_buff *skb, struct sock *sk) 1155 { 1156 sock_hold(sk); 1157 skb->sk = sk; 1158 skb->destructor = sock_wfree; 1159 atomic_add(skb->truesize, &sk->sk_wmem_alloc); 1160 } 1161 1162 static inline void skb_set_owner_r(struct sk_buff *skb, struct sock *sk) 1163 { 1164 skb->sk = sk; 1165 skb->destructor = sock_rfree; 1166 atomic_add(skb->truesize, &sk->sk_rmem_alloc); 1167 } 1168 1169 extern void sk_reset_timer(struct sock *sk, struct timer_list* timer, 1170 unsigned long expires); 1171 1172 extern void sk_stop_timer(struct sock *sk, struct timer_list* timer); 1173 1174 extern int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb); 1175 1176 static inline int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb) 1177 { 1178 /* Cast skb->rcvbuf to unsigned... It's pointless, but reduces 1179 number of warnings when compiling with -W --ANK 1180 */ 1181 if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >= 1182 (unsigned)sk->sk_rcvbuf) 1183 return -ENOMEM; 1184 skb_set_owner_r(skb, sk); 1185 skb_queue_tail(&sk->sk_error_queue, skb); 1186 if (!sock_flag(sk, SOCK_DEAD)) 1187 sk->sk_data_ready(sk, skb->len); 1188 return 0; 1189 } 1190 1191 /* 1192 * Recover an error report and clear atomically 1193 */ 1194 1195 static inline int sock_error(struct sock *sk) 1196 { 1197 int err; 1198 if (likely(!sk->sk_err)) 1199 return 0; 1200 err = xchg(&sk->sk_err, 0); 1201 return -err; 1202 } 1203 1204 static inline unsigned long sock_wspace(struct sock *sk) 1205 { 1206 int amt = 0; 1207 1208 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) { 1209 amt = sk->sk_sndbuf - atomic_read(&sk->sk_wmem_alloc); 1210 if (amt < 0) 1211 amt = 0; 1212 } 1213 return amt; 1214 } 1215 1216 static inline void sk_wake_async(struct sock *sk, int how, int band) 1217 { 1218 if (sk->sk_socket && sk->sk_socket->fasync_list) 1219 sock_wake_async(sk->sk_socket, how, band); 1220 } 1221 1222 #define SOCK_MIN_SNDBUF 2048 1223 #define SOCK_MIN_RCVBUF 256 1224 1225 static inline void sk_stream_moderate_sndbuf(struct sock *sk) 1226 { 1227 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK)) { 1228 sk->sk_sndbuf = min(sk->sk_sndbuf, sk->sk_wmem_queued / 2); 1229 sk->sk_sndbuf = max(sk->sk_sndbuf, SOCK_MIN_SNDBUF); 1230 } 1231 } 1232 1233 static inline struct sk_buff *sk_stream_alloc_pskb(struct sock *sk, 1234 int size, int mem, 1235 gfp_t gfp) 1236 { 1237 struct sk_buff *skb; 1238 1239 /* The TCP header must be at least 32-bit aligned. */ 1240 size = ALIGN(size, 4); 1241 1242 skb = alloc_skb_fclone(size + sk->sk_prot->max_header, gfp); 1243 if (skb) { 1244 skb->truesize += mem; 1245 if (sk_stream_wmem_schedule(sk, skb->truesize)) { 1246 /* 1247 * Make sure that we have exactly size bytes 1248 * available to the caller, no more, no less. 1249 */ 1250 skb_reserve(skb, skb_tailroom(skb) - size); 1251 return skb; 1252 } 1253 __kfree_skb(skb); 1254 } else { 1255 sk->sk_prot->enter_memory_pressure(); 1256 sk_stream_moderate_sndbuf(sk); 1257 } 1258 return NULL; 1259 } 1260 1261 static inline struct sk_buff *sk_stream_alloc_skb(struct sock *sk, 1262 int size, 1263 gfp_t gfp) 1264 { 1265 return sk_stream_alloc_pskb(sk, size, 0, gfp); 1266 } 1267 1268 static inline struct page *sk_stream_alloc_page(struct sock *sk) 1269 { 1270 struct page *page = NULL; 1271 1272 page = alloc_pages(sk->sk_allocation, 0); 1273 if (!page) { 1274 sk->sk_prot->enter_memory_pressure(); 1275 sk_stream_moderate_sndbuf(sk); 1276 } 1277 return page; 1278 } 1279 1280 /* 1281 * Default write policy as shown to user space via poll/select/SIGIO 1282 */ 1283 static inline int sock_writeable(const struct sock *sk) 1284 { 1285 return atomic_read(&sk->sk_wmem_alloc) < (sk->sk_sndbuf / 2); 1286 } 1287 1288 static inline gfp_t gfp_any(void) 1289 { 1290 return in_atomic() ? GFP_ATOMIC : GFP_KERNEL; 1291 } 1292 1293 static inline long sock_rcvtimeo(const struct sock *sk, int noblock) 1294 { 1295 return noblock ? 0 : sk->sk_rcvtimeo; 1296 } 1297 1298 static inline long sock_sndtimeo(const struct sock *sk, int noblock) 1299 { 1300 return noblock ? 0 : sk->sk_sndtimeo; 1301 } 1302 1303 static inline int sock_rcvlowat(const struct sock *sk, int waitall, int len) 1304 { 1305 return (waitall ? len : min_t(int, sk->sk_rcvlowat, len)) ? : 1; 1306 } 1307 1308 /* Alas, with timeout socket operations are not restartable. 1309 * Compare this to poll(). 1310 */ 1311 static inline int sock_intr_errno(long timeo) 1312 { 1313 return timeo == MAX_SCHEDULE_TIMEOUT ? -ERESTARTSYS : -EINTR; 1314 } 1315 1316 extern void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk, 1317 struct sk_buff *skb); 1318 1319 static __inline__ void 1320 sock_recv_timestamp(struct msghdr *msg, struct sock *sk, struct sk_buff *skb) 1321 { 1322 ktime_t kt = skb->tstamp; 1323 1324 if (sock_flag(sk, SOCK_RCVTSTAMP)) 1325 __sock_recv_timestamp(msg, sk, skb); 1326 else 1327 sk->sk_stamp = kt; 1328 } 1329 1330 /** 1331 * sk_eat_skb - Release a skb if it is no longer needed 1332 * @sk: socket to eat this skb from 1333 * @skb: socket buffer to eat 1334 * @copied_early: flag indicating whether DMA operations copied this data early 1335 * 1336 * This routine must be called with interrupts disabled or with the socket 1337 * locked so that the sk_buff queue operation is ok. 1338 */ 1339 #ifdef CONFIG_NET_DMA 1340 static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb, int copied_early) 1341 { 1342 __skb_unlink(skb, &sk->sk_receive_queue); 1343 if (!copied_early) 1344 __kfree_skb(skb); 1345 else 1346 __skb_queue_tail(&sk->sk_async_wait_queue, skb); 1347 } 1348 #else 1349 static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb, int copied_early) 1350 { 1351 __skb_unlink(skb, &sk->sk_receive_queue); 1352 __kfree_skb(skb); 1353 } 1354 #endif 1355 1356 extern void sock_enable_timestamp(struct sock *sk); 1357 extern int sock_get_timestamp(struct sock *, struct timeval __user *); 1358 extern int sock_get_timestampns(struct sock *, struct timespec __user *); 1359 1360 /* 1361 * Enable debug/info messages 1362 */ 1363 extern int net_msg_warn; 1364 #define NETDEBUG(fmt, args...) \ 1365 do { if (net_msg_warn) printk(fmt,##args); } while (0) 1366 1367 #define LIMIT_NETDEBUG(fmt, args...) \ 1368 do { if (net_msg_warn && net_ratelimit()) printk(fmt,##args); } while(0) 1369 1370 /* 1371 * Macros for sleeping on a socket. Use them like this: 1372 * 1373 * SOCK_SLEEP_PRE(sk) 1374 * if (condition) 1375 * schedule(); 1376 * SOCK_SLEEP_POST(sk) 1377 * 1378 * N.B. These are now obsolete and were, afaik, only ever used in DECnet 1379 * and when the last use of them in DECnet has gone, I'm intending to 1380 * remove them. 1381 */ 1382 1383 #define SOCK_SLEEP_PRE(sk) { struct task_struct *tsk = current; \ 1384 DECLARE_WAITQUEUE(wait, tsk); \ 1385 tsk->state = TASK_INTERRUPTIBLE; \ 1386 add_wait_queue((sk)->sk_sleep, &wait); \ 1387 release_sock(sk); 1388 1389 #define SOCK_SLEEP_POST(sk) tsk->state = TASK_RUNNING; \ 1390 remove_wait_queue((sk)->sk_sleep, &wait); \ 1391 lock_sock(sk); \ 1392 } 1393 1394 static inline void sock_valbool_flag(struct sock *sk, int bit, int valbool) 1395 { 1396 if (valbool) 1397 sock_set_flag(sk, bit); 1398 else 1399 sock_reset_flag(sk, bit); 1400 } 1401 1402 extern __u32 sysctl_wmem_max; 1403 extern __u32 sysctl_rmem_max; 1404 1405 extern void sk_init(void); 1406 1407 #ifdef CONFIG_SYSCTL 1408 extern struct ctl_table core_table[]; 1409 #endif 1410 1411 extern int sysctl_optmem_max; 1412 1413 extern __u32 sysctl_wmem_default; 1414 extern __u32 sysctl_rmem_default; 1415 1416 #endif /* _SOCK_H */ 1417