xref: /linux/include/net/sock.h (revision 65aa371ea52a92dd10826a2ea74bd2c395ee90a8)
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Definitions for the AF_INET socket handler.
8  *
9  * Version:	@(#)sock.h	1.0.4	05/13/93
10  *
11  * Authors:	Ross Biro
12  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
13  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
14  *		Florian La Roche <flla@stud.uni-sb.de>
15  *
16  * Fixes:
17  *		Alan Cox	:	Volatiles in skbuff pointers. See
18  *					skbuff comments. May be overdone,
19  *					better to prove they can be removed
20  *					than the reverse.
21  *		Alan Cox	:	Added a zapped field for tcp to note
22  *					a socket is reset and must stay shut up
23  *		Alan Cox	:	New fields for options
24  *	Pauline Middelink	:	identd support
25  *		Alan Cox	:	Eliminate low level recv/recvfrom
26  *		David S. Miller	:	New socket lookup architecture.
27  *              Steve Whitehouse:       Default routines for sock_ops
28  *              Arnaldo C. Melo :	removed net_pinfo, tp_pinfo and made
29  *              			protinfo be just a void pointer, as the
30  *              			protocol specific parts were moved to
31  *              			respective headers and ipv4/v6, etc now
32  *              			use private slabcaches for its socks
33  *              Pedro Hortas	:	New flags field for socket options
34  */
35 #ifndef _SOCK_H
36 #define _SOCK_H
37 
38 #include <linux/hardirq.h>
39 #include <linux/kernel.h>
40 #include <linux/list.h>
41 #include <linux/list_nulls.h>
42 #include <linux/timer.h>
43 #include <linux/cache.h>
44 #include <linux/bitops.h>
45 #include <linux/lockdep.h>
46 #include <linux/netdevice.h>
47 #include <linux/skbuff.h>	/* struct sk_buff */
48 #include <linux/mm.h>
49 #include <linux/security.h>
50 #include <linux/slab.h>
51 #include <linux/uaccess.h>
52 #include <linux/page_counter.h>
53 #include <linux/memcontrol.h>
54 #include <linux/static_key.h>
55 #include <linux/sched.h>
56 #include <linux/wait.h>
57 #include <linux/cgroup-defs.h>
58 #include <linux/rbtree.h>
59 #include <linux/filter.h>
60 #include <linux/rculist_nulls.h>
61 #include <linux/poll.h>
62 #include <linux/sockptr.h>
63 #include <linux/indirect_call_wrapper.h>
64 #include <linux/atomic.h>
65 #include <linux/refcount.h>
66 #include <net/dst.h>
67 #include <net/checksum.h>
68 #include <net/tcp_states.h>
69 #include <linux/net_tstamp.h>
70 #include <net/l3mdev.h>
71 #include <uapi/linux/socket.h>
72 
73 /*
74  * This structure really needs to be cleaned up.
75  * Most of it is for TCP, and not used by any of
76  * the other protocols.
77  */
78 
79 /* Define this to get the SOCK_DBG debugging facility. */
80 #define SOCK_DEBUGGING
81 #ifdef SOCK_DEBUGGING
82 #define SOCK_DEBUG(sk, msg...) do { if ((sk) && sock_flag((sk), SOCK_DBG)) \
83 					printk(KERN_DEBUG msg); } while (0)
84 #else
85 /* Validate arguments and do nothing */
86 static inline __printf(2, 3)
87 void SOCK_DEBUG(const struct sock *sk, const char *msg, ...)
88 {
89 }
90 #endif
91 
92 /* This is the per-socket lock.  The spinlock provides a synchronization
93  * between user contexts and software interrupt processing, whereas the
94  * mini-semaphore synchronizes multiple users amongst themselves.
95  */
96 typedef struct {
97 	spinlock_t		slock;
98 	int			owned;
99 	wait_queue_head_t	wq;
100 	/*
101 	 * We express the mutex-alike socket_lock semantics
102 	 * to the lock validator by explicitly managing
103 	 * the slock as a lock variant (in addition to
104 	 * the slock itself):
105 	 */
106 #ifdef CONFIG_DEBUG_LOCK_ALLOC
107 	struct lockdep_map dep_map;
108 #endif
109 } socket_lock_t;
110 
111 struct sock;
112 struct proto;
113 struct net;
114 
115 typedef __u32 __bitwise __portpair;
116 typedef __u64 __bitwise __addrpair;
117 
118 /**
119  *	struct sock_common - minimal network layer representation of sockets
120  *	@skc_daddr: Foreign IPv4 addr
121  *	@skc_rcv_saddr: Bound local IPv4 addr
122  *	@skc_addrpair: 8-byte-aligned __u64 union of @skc_daddr & @skc_rcv_saddr
123  *	@skc_hash: hash value used with various protocol lookup tables
124  *	@skc_u16hashes: two u16 hash values used by UDP lookup tables
125  *	@skc_dport: placeholder for inet_dport/tw_dport
126  *	@skc_num: placeholder for inet_num/tw_num
127  *	@skc_portpair: __u32 union of @skc_dport & @skc_num
128  *	@skc_family: network address family
129  *	@skc_state: Connection state
130  *	@skc_reuse: %SO_REUSEADDR setting
131  *	@skc_reuseport: %SO_REUSEPORT setting
132  *	@skc_ipv6only: socket is IPV6 only
133  *	@skc_net_refcnt: socket is using net ref counting
134  *	@skc_bound_dev_if: bound device index if != 0
135  *	@skc_bind_node: bind hash linkage for various protocol lookup tables
136  *	@skc_portaddr_node: second hash linkage for UDP/UDP-Lite protocol
137  *	@skc_prot: protocol handlers inside a network family
138  *	@skc_net: reference to the network namespace of this socket
139  *	@skc_v6_daddr: IPV6 destination address
140  *	@skc_v6_rcv_saddr: IPV6 source address
141  *	@skc_cookie: socket's cookie value
142  *	@skc_node: main hash linkage for various protocol lookup tables
143  *	@skc_nulls_node: main hash linkage for TCP/UDP/UDP-Lite protocol
144  *	@skc_tx_queue_mapping: tx queue number for this connection
145  *	@skc_rx_queue_mapping: rx queue number for this connection
146  *	@skc_flags: place holder for sk_flags
147  *		%SO_LINGER (l_onoff), %SO_BROADCAST, %SO_KEEPALIVE,
148  *		%SO_OOBINLINE settings, %SO_TIMESTAMPING settings
149  *	@skc_listener: connection request listener socket (aka rsk_listener)
150  *		[union with @skc_flags]
151  *	@skc_tw_dr: (aka tw_dr) ptr to &struct inet_timewait_death_row
152  *		[union with @skc_flags]
153  *	@skc_incoming_cpu: record/match cpu processing incoming packets
154  *	@skc_rcv_wnd: (aka rsk_rcv_wnd) TCP receive window size (possibly scaled)
155  *		[union with @skc_incoming_cpu]
156  *	@skc_tw_rcv_nxt: (aka tw_rcv_nxt) TCP window next expected seq number
157  *		[union with @skc_incoming_cpu]
158  *	@skc_refcnt: reference count
159  *
160  *	This is the minimal network layer representation of sockets, the header
161  *	for struct sock and struct inet_timewait_sock.
162  */
163 struct sock_common {
164 	/* skc_daddr and skc_rcv_saddr must be grouped on a 8 bytes aligned
165 	 * address on 64bit arches : cf INET_MATCH()
166 	 */
167 	union {
168 		__addrpair	skc_addrpair;
169 		struct {
170 			__be32	skc_daddr;
171 			__be32	skc_rcv_saddr;
172 		};
173 	};
174 	union  {
175 		unsigned int	skc_hash;
176 		__u16		skc_u16hashes[2];
177 	};
178 	/* skc_dport && skc_num must be grouped as well */
179 	union {
180 		__portpair	skc_portpair;
181 		struct {
182 			__be16	skc_dport;
183 			__u16	skc_num;
184 		};
185 	};
186 
187 	unsigned short		skc_family;
188 	volatile unsigned char	skc_state;
189 	unsigned char		skc_reuse:4;
190 	unsigned char		skc_reuseport:1;
191 	unsigned char		skc_ipv6only:1;
192 	unsigned char		skc_net_refcnt:1;
193 	int			skc_bound_dev_if;
194 	union {
195 		struct hlist_node	skc_bind_node;
196 		struct hlist_node	skc_portaddr_node;
197 	};
198 	struct proto		*skc_prot;
199 	possible_net_t		skc_net;
200 
201 #if IS_ENABLED(CONFIG_IPV6)
202 	struct in6_addr		skc_v6_daddr;
203 	struct in6_addr		skc_v6_rcv_saddr;
204 #endif
205 
206 	atomic64_t		skc_cookie;
207 
208 	/* following fields are padding to force
209 	 * offset(struct sock, sk_refcnt) == 128 on 64bit arches
210 	 * assuming IPV6 is enabled. We use this padding differently
211 	 * for different kind of 'sockets'
212 	 */
213 	union {
214 		unsigned long	skc_flags;
215 		struct sock	*skc_listener; /* request_sock */
216 		struct inet_timewait_death_row *skc_tw_dr; /* inet_timewait_sock */
217 	};
218 	/*
219 	 * fields between dontcopy_begin/dontcopy_end
220 	 * are not copied in sock_copy()
221 	 */
222 	/* private: */
223 	int			skc_dontcopy_begin[0];
224 	/* public: */
225 	union {
226 		struct hlist_node	skc_node;
227 		struct hlist_nulls_node skc_nulls_node;
228 	};
229 	unsigned short		skc_tx_queue_mapping;
230 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
231 	unsigned short		skc_rx_queue_mapping;
232 #endif
233 	union {
234 		int		skc_incoming_cpu;
235 		u32		skc_rcv_wnd;
236 		u32		skc_tw_rcv_nxt; /* struct tcp_timewait_sock  */
237 	};
238 
239 	refcount_t		skc_refcnt;
240 	/* private: */
241 	int                     skc_dontcopy_end[0];
242 	union {
243 		u32		skc_rxhash;
244 		u32		skc_window_clamp;
245 		u32		skc_tw_snd_nxt; /* struct tcp_timewait_sock */
246 	};
247 	/* public: */
248 };
249 
250 struct bpf_local_storage;
251 
252 /**
253   *	struct sock - network layer representation of sockets
254   *	@__sk_common: shared layout with inet_timewait_sock
255   *	@sk_shutdown: mask of %SEND_SHUTDOWN and/or %RCV_SHUTDOWN
256   *	@sk_userlocks: %SO_SNDBUF and %SO_RCVBUF settings
257   *	@sk_lock:	synchronizer
258   *	@sk_kern_sock: True if sock is using kernel lock classes
259   *	@sk_rcvbuf: size of receive buffer in bytes
260   *	@sk_wq: sock wait queue and async head
261   *	@sk_rx_dst: receive input route used by early demux
262   *	@sk_dst_cache: destination cache
263   *	@sk_dst_pending_confirm: need to confirm neighbour
264   *	@sk_policy: flow policy
265   *	@sk_receive_queue: incoming packets
266   *	@sk_wmem_alloc: transmit queue bytes committed
267   *	@sk_tsq_flags: TCP Small Queues flags
268   *	@sk_write_queue: Packet sending queue
269   *	@sk_omem_alloc: "o" is "option" or "other"
270   *	@sk_wmem_queued: persistent queue size
271   *	@sk_forward_alloc: space allocated forward
272   *	@sk_reserved_mem: space reserved and non-reclaimable for the socket
273   *	@sk_napi_id: id of the last napi context to receive data for sk
274   *	@sk_ll_usec: usecs to busypoll when there is no data
275   *	@sk_allocation: allocation mode
276   *	@sk_pacing_rate: Pacing rate (if supported by transport/packet scheduler)
277   *	@sk_pacing_status: Pacing status (requested, handled by sch_fq)
278   *	@sk_max_pacing_rate: Maximum pacing rate (%SO_MAX_PACING_RATE)
279   *	@sk_sndbuf: size of send buffer in bytes
280   *	@__sk_flags_offset: empty field used to determine location of bitfield
281   *	@sk_padding: unused element for alignment
282   *	@sk_no_check_tx: %SO_NO_CHECK setting, set checksum in TX packets
283   *	@sk_no_check_rx: allow zero checksum in RX packets
284   *	@sk_route_caps: route capabilities (e.g. %NETIF_F_TSO)
285   *	@sk_route_nocaps: forbidden route capabilities (e.g NETIF_F_GSO_MASK)
286   *	@sk_route_forced_caps: static, forced route capabilities
287   *		(set in tcp_init_sock())
288   *	@sk_gso_type: GSO type (e.g. %SKB_GSO_TCPV4)
289   *	@sk_gso_max_size: Maximum GSO segment size to build
290   *	@sk_gso_max_segs: Maximum number of GSO segments
291   *	@sk_pacing_shift: scaling factor for TCP Small Queues
292   *	@sk_lingertime: %SO_LINGER l_linger setting
293   *	@sk_backlog: always used with the per-socket spinlock held
294   *	@sk_callback_lock: used with the callbacks in the end of this struct
295   *	@sk_error_queue: rarely used
296   *	@sk_prot_creator: sk_prot of original sock creator (see ipv6_setsockopt,
297   *			  IPV6_ADDRFORM for instance)
298   *	@sk_err: last error
299   *	@sk_err_soft: errors that don't cause failure but are the cause of a
300   *		      persistent failure not just 'timed out'
301   *	@sk_drops: raw/udp drops counter
302   *	@sk_ack_backlog: current listen backlog
303   *	@sk_max_ack_backlog: listen backlog set in listen()
304   *	@sk_uid: user id of owner
305   *	@sk_prefer_busy_poll: prefer busypolling over softirq processing
306   *	@sk_busy_poll_budget: napi processing budget when busypolling
307   *	@sk_priority: %SO_PRIORITY setting
308   *	@sk_type: socket type (%SOCK_STREAM, etc)
309   *	@sk_protocol: which protocol this socket belongs in this network family
310   *	@sk_peer_lock: lock protecting @sk_peer_pid and @sk_peer_cred
311   *	@sk_peer_pid: &struct pid for this socket's peer
312   *	@sk_peer_cred: %SO_PEERCRED setting
313   *	@sk_rcvlowat: %SO_RCVLOWAT setting
314   *	@sk_rcvtimeo: %SO_RCVTIMEO setting
315   *	@sk_sndtimeo: %SO_SNDTIMEO setting
316   *	@sk_txhash: computed flow hash for use on transmit
317   *	@sk_filter: socket filtering instructions
318   *	@sk_timer: sock cleanup timer
319   *	@sk_stamp: time stamp of last packet received
320   *	@sk_stamp_seq: lock for accessing sk_stamp on 32 bit architectures only
321   *	@sk_tsflags: SO_TIMESTAMPING flags
322   *	@sk_bind_phc: SO_TIMESTAMPING bind PHC index of PTP virtual clock
323   *	              for timestamping
324   *	@sk_tskey: counter to disambiguate concurrent tstamp requests
325   *	@sk_zckey: counter to order MSG_ZEROCOPY notifications
326   *	@sk_socket: Identd and reporting IO signals
327   *	@sk_user_data: RPC layer private data
328   *	@sk_frag: cached page frag
329   *	@sk_peek_off: current peek_offset value
330   *	@sk_send_head: front of stuff to transmit
331   *	@tcp_rtx_queue: TCP re-transmit queue [union with @sk_send_head]
332   *	@sk_security: used by security modules
333   *	@sk_mark: generic packet mark
334   *	@sk_cgrp_data: cgroup data for this cgroup
335   *	@sk_memcg: this socket's memory cgroup association
336   *	@sk_write_pending: a write to stream socket waits to start
337   *	@sk_state_change: callback to indicate change in the state of the sock
338   *	@sk_data_ready: callback to indicate there is data to be processed
339   *	@sk_write_space: callback to indicate there is bf sending space available
340   *	@sk_error_report: callback to indicate errors (e.g. %MSG_ERRQUEUE)
341   *	@sk_backlog_rcv: callback to process the backlog
342   *	@sk_validate_xmit_skb: ptr to an optional validate function
343   *	@sk_destruct: called at sock freeing time, i.e. when all refcnt == 0
344   *	@sk_reuseport_cb: reuseport group container
345   *	@sk_bpf_storage: ptr to cache and control for bpf_sk_storage
346   *	@sk_rcu: used during RCU grace period
347   *	@sk_clockid: clockid used by time-based scheduling (SO_TXTIME)
348   *	@sk_txtime_deadline_mode: set deadline mode for SO_TXTIME
349   *	@sk_txtime_report_errors: set report errors mode for SO_TXTIME
350   *	@sk_txtime_unused: unused txtime flags
351   */
352 struct sock {
353 	/*
354 	 * Now struct inet_timewait_sock also uses sock_common, so please just
355 	 * don't add nothing before this first member (__sk_common) --acme
356 	 */
357 	struct sock_common	__sk_common;
358 #define sk_node			__sk_common.skc_node
359 #define sk_nulls_node		__sk_common.skc_nulls_node
360 #define sk_refcnt		__sk_common.skc_refcnt
361 #define sk_tx_queue_mapping	__sk_common.skc_tx_queue_mapping
362 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
363 #define sk_rx_queue_mapping	__sk_common.skc_rx_queue_mapping
364 #endif
365 
366 #define sk_dontcopy_begin	__sk_common.skc_dontcopy_begin
367 #define sk_dontcopy_end		__sk_common.skc_dontcopy_end
368 #define sk_hash			__sk_common.skc_hash
369 #define sk_portpair		__sk_common.skc_portpair
370 #define sk_num			__sk_common.skc_num
371 #define sk_dport		__sk_common.skc_dport
372 #define sk_addrpair		__sk_common.skc_addrpair
373 #define sk_daddr		__sk_common.skc_daddr
374 #define sk_rcv_saddr		__sk_common.skc_rcv_saddr
375 #define sk_family		__sk_common.skc_family
376 #define sk_state		__sk_common.skc_state
377 #define sk_reuse		__sk_common.skc_reuse
378 #define sk_reuseport		__sk_common.skc_reuseport
379 #define sk_ipv6only		__sk_common.skc_ipv6only
380 #define sk_net_refcnt		__sk_common.skc_net_refcnt
381 #define sk_bound_dev_if		__sk_common.skc_bound_dev_if
382 #define sk_bind_node		__sk_common.skc_bind_node
383 #define sk_prot			__sk_common.skc_prot
384 #define sk_net			__sk_common.skc_net
385 #define sk_v6_daddr		__sk_common.skc_v6_daddr
386 #define sk_v6_rcv_saddr	__sk_common.skc_v6_rcv_saddr
387 #define sk_cookie		__sk_common.skc_cookie
388 #define sk_incoming_cpu		__sk_common.skc_incoming_cpu
389 #define sk_flags		__sk_common.skc_flags
390 #define sk_rxhash		__sk_common.skc_rxhash
391 
392 	socket_lock_t		sk_lock;
393 	atomic_t		sk_drops;
394 	int			sk_rcvlowat;
395 	struct sk_buff_head	sk_error_queue;
396 	struct sk_buff_head	sk_receive_queue;
397 	/*
398 	 * The backlog queue is special, it is always used with
399 	 * the per-socket spinlock held and requires low latency
400 	 * access. Therefore we special case it's implementation.
401 	 * Note : rmem_alloc is in this structure to fill a hole
402 	 * on 64bit arches, not because its logically part of
403 	 * backlog.
404 	 */
405 	struct {
406 		atomic_t	rmem_alloc;
407 		int		len;
408 		struct sk_buff	*head;
409 		struct sk_buff	*tail;
410 	} sk_backlog;
411 #define sk_rmem_alloc sk_backlog.rmem_alloc
412 
413 	int			sk_forward_alloc;
414 	u32			sk_reserved_mem;
415 #ifdef CONFIG_NET_RX_BUSY_POLL
416 	unsigned int		sk_ll_usec;
417 	/* ===== mostly read cache line ===== */
418 	unsigned int		sk_napi_id;
419 #endif
420 	int			sk_rcvbuf;
421 
422 	struct sk_filter __rcu	*sk_filter;
423 	union {
424 		struct socket_wq __rcu	*sk_wq;
425 		/* private: */
426 		struct socket_wq	*sk_wq_raw;
427 		/* public: */
428 	};
429 #ifdef CONFIG_XFRM
430 	struct xfrm_policy __rcu *sk_policy[2];
431 #endif
432 	struct dst_entry	*sk_rx_dst;
433 	struct dst_entry __rcu	*sk_dst_cache;
434 	atomic_t		sk_omem_alloc;
435 	int			sk_sndbuf;
436 
437 	/* ===== cache line for TX ===== */
438 	int			sk_wmem_queued;
439 	refcount_t		sk_wmem_alloc;
440 	unsigned long		sk_tsq_flags;
441 	union {
442 		struct sk_buff	*sk_send_head;
443 		struct rb_root	tcp_rtx_queue;
444 	};
445 	struct sk_buff_head	sk_write_queue;
446 	__s32			sk_peek_off;
447 	int			sk_write_pending;
448 	__u32			sk_dst_pending_confirm;
449 	u32			sk_pacing_status; /* see enum sk_pacing */
450 	long			sk_sndtimeo;
451 	struct timer_list	sk_timer;
452 	__u32			sk_priority;
453 	__u32			sk_mark;
454 	unsigned long		sk_pacing_rate; /* bytes per second */
455 	unsigned long		sk_max_pacing_rate;
456 	struct page_frag	sk_frag;
457 	netdev_features_t	sk_route_caps;
458 	netdev_features_t	sk_route_nocaps;
459 	netdev_features_t	sk_route_forced_caps;
460 	int			sk_gso_type;
461 	unsigned int		sk_gso_max_size;
462 	gfp_t			sk_allocation;
463 	__u32			sk_txhash;
464 
465 	/*
466 	 * Because of non atomicity rules, all
467 	 * changes are protected by socket lock.
468 	 */
469 	u8			sk_padding : 1,
470 				sk_kern_sock : 1,
471 				sk_no_check_tx : 1,
472 				sk_no_check_rx : 1,
473 				sk_userlocks : 4;
474 	u8			sk_pacing_shift;
475 	u16			sk_type;
476 	u16			sk_protocol;
477 	u16			sk_gso_max_segs;
478 	unsigned long	        sk_lingertime;
479 	struct proto		*sk_prot_creator;
480 	rwlock_t		sk_callback_lock;
481 	int			sk_err,
482 				sk_err_soft;
483 	u32			sk_ack_backlog;
484 	u32			sk_max_ack_backlog;
485 	kuid_t			sk_uid;
486 #ifdef CONFIG_NET_RX_BUSY_POLL
487 	u8			sk_prefer_busy_poll;
488 	u16			sk_busy_poll_budget;
489 #endif
490 	spinlock_t		sk_peer_lock;
491 	struct pid		*sk_peer_pid;
492 	const struct cred	*sk_peer_cred;
493 
494 	long			sk_rcvtimeo;
495 	ktime_t			sk_stamp;
496 #if BITS_PER_LONG==32
497 	seqlock_t		sk_stamp_seq;
498 #endif
499 	u16			sk_tsflags;
500 	int			sk_bind_phc;
501 	u8			sk_shutdown;
502 	u32			sk_tskey;
503 	atomic_t		sk_zckey;
504 
505 	u8			sk_clockid;
506 	u8			sk_txtime_deadline_mode : 1,
507 				sk_txtime_report_errors : 1,
508 				sk_txtime_unused : 6;
509 
510 	struct socket		*sk_socket;
511 	void			*sk_user_data;
512 #ifdef CONFIG_SECURITY
513 	void			*sk_security;
514 #endif
515 	struct sock_cgroup_data	sk_cgrp_data;
516 	struct mem_cgroup	*sk_memcg;
517 	void			(*sk_state_change)(struct sock *sk);
518 	void			(*sk_data_ready)(struct sock *sk);
519 	void			(*sk_write_space)(struct sock *sk);
520 	void			(*sk_error_report)(struct sock *sk);
521 	int			(*sk_backlog_rcv)(struct sock *sk,
522 						  struct sk_buff *skb);
523 #ifdef CONFIG_SOCK_VALIDATE_XMIT
524 	struct sk_buff*		(*sk_validate_xmit_skb)(struct sock *sk,
525 							struct net_device *dev,
526 							struct sk_buff *skb);
527 #endif
528 	void                    (*sk_destruct)(struct sock *sk);
529 	struct sock_reuseport __rcu	*sk_reuseport_cb;
530 #ifdef CONFIG_BPF_SYSCALL
531 	struct bpf_local_storage __rcu	*sk_bpf_storage;
532 #endif
533 	struct rcu_head		sk_rcu;
534 };
535 
536 enum sk_pacing {
537 	SK_PACING_NONE		= 0,
538 	SK_PACING_NEEDED	= 1,
539 	SK_PACING_FQ		= 2,
540 };
541 
542 /* Pointer stored in sk_user_data might not be suitable for copying
543  * when cloning the socket. For instance, it can point to a reference
544  * counted object. sk_user_data bottom bit is set if pointer must not
545  * be copied.
546  */
547 #define SK_USER_DATA_NOCOPY	1UL
548 #define SK_USER_DATA_BPF	2UL	/* Managed by BPF */
549 #define SK_USER_DATA_PTRMASK	~(SK_USER_DATA_NOCOPY | SK_USER_DATA_BPF)
550 
551 /**
552  * sk_user_data_is_nocopy - Test if sk_user_data pointer must not be copied
553  * @sk: socket
554  */
555 static inline bool sk_user_data_is_nocopy(const struct sock *sk)
556 {
557 	return ((uintptr_t)sk->sk_user_data & SK_USER_DATA_NOCOPY);
558 }
559 
560 #define __sk_user_data(sk) ((*((void __rcu **)&(sk)->sk_user_data)))
561 
562 #define rcu_dereference_sk_user_data(sk)				\
563 ({									\
564 	void *__tmp = rcu_dereference(__sk_user_data((sk)));		\
565 	(void *)((uintptr_t)__tmp & SK_USER_DATA_PTRMASK);		\
566 })
567 #define rcu_assign_sk_user_data(sk, ptr)				\
568 ({									\
569 	uintptr_t __tmp = (uintptr_t)(ptr);				\
570 	WARN_ON_ONCE(__tmp & ~SK_USER_DATA_PTRMASK);			\
571 	rcu_assign_pointer(__sk_user_data((sk)), __tmp);		\
572 })
573 #define rcu_assign_sk_user_data_nocopy(sk, ptr)				\
574 ({									\
575 	uintptr_t __tmp = (uintptr_t)(ptr);				\
576 	WARN_ON_ONCE(__tmp & ~SK_USER_DATA_PTRMASK);			\
577 	rcu_assign_pointer(__sk_user_data((sk)),			\
578 			   __tmp | SK_USER_DATA_NOCOPY);		\
579 })
580 
581 /*
582  * SK_CAN_REUSE and SK_NO_REUSE on a socket mean that the socket is OK
583  * or not whether his port will be reused by someone else. SK_FORCE_REUSE
584  * on a socket means that the socket will reuse everybody else's port
585  * without looking at the other's sk_reuse value.
586  */
587 
588 #define SK_NO_REUSE	0
589 #define SK_CAN_REUSE	1
590 #define SK_FORCE_REUSE	2
591 
592 int sk_set_peek_off(struct sock *sk, int val);
593 
594 static inline int sk_peek_offset(struct sock *sk, int flags)
595 {
596 	if (unlikely(flags & MSG_PEEK)) {
597 		return READ_ONCE(sk->sk_peek_off);
598 	}
599 
600 	return 0;
601 }
602 
603 static inline void sk_peek_offset_bwd(struct sock *sk, int val)
604 {
605 	s32 off = READ_ONCE(sk->sk_peek_off);
606 
607 	if (unlikely(off >= 0)) {
608 		off = max_t(s32, off - val, 0);
609 		WRITE_ONCE(sk->sk_peek_off, off);
610 	}
611 }
612 
613 static inline void sk_peek_offset_fwd(struct sock *sk, int val)
614 {
615 	sk_peek_offset_bwd(sk, -val);
616 }
617 
618 /*
619  * Hashed lists helper routines
620  */
621 static inline struct sock *sk_entry(const struct hlist_node *node)
622 {
623 	return hlist_entry(node, struct sock, sk_node);
624 }
625 
626 static inline struct sock *__sk_head(const struct hlist_head *head)
627 {
628 	return hlist_entry(head->first, struct sock, sk_node);
629 }
630 
631 static inline struct sock *sk_head(const struct hlist_head *head)
632 {
633 	return hlist_empty(head) ? NULL : __sk_head(head);
634 }
635 
636 static inline struct sock *__sk_nulls_head(const struct hlist_nulls_head *head)
637 {
638 	return hlist_nulls_entry(head->first, struct sock, sk_nulls_node);
639 }
640 
641 static inline struct sock *sk_nulls_head(const struct hlist_nulls_head *head)
642 {
643 	return hlist_nulls_empty(head) ? NULL : __sk_nulls_head(head);
644 }
645 
646 static inline struct sock *sk_next(const struct sock *sk)
647 {
648 	return hlist_entry_safe(sk->sk_node.next, struct sock, sk_node);
649 }
650 
651 static inline struct sock *sk_nulls_next(const struct sock *sk)
652 {
653 	return (!is_a_nulls(sk->sk_nulls_node.next)) ?
654 		hlist_nulls_entry(sk->sk_nulls_node.next,
655 				  struct sock, sk_nulls_node) :
656 		NULL;
657 }
658 
659 static inline bool sk_unhashed(const struct sock *sk)
660 {
661 	return hlist_unhashed(&sk->sk_node);
662 }
663 
664 static inline bool sk_hashed(const struct sock *sk)
665 {
666 	return !sk_unhashed(sk);
667 }
668 
669 static inline void sk_node_init(struct hlist_node *node)
670 {
671 	node->pprev = NULL;
672 }
673 
674 static inline void sk_nulls_node_init(struct hlist_nulls_node *node)
675 {
676 	node->pprev = NULL;
677 }
678 
679 static inline void __sk_del_node(struct sock *sk)
680 {
681 	__hlist_del(&sk->sk_node);
682 }
683 
684 /* NB: equivalent to hlist_del_init_rcu */
685 static inline bool __sk_del_node_init(struct sock *sk)
686 {
687 	if (sk_hashed(sk)) {
688 		__sk_del_node(sk);
689 		sk_node_init(&sk->sk_node);
690 		return true;
691 	}
692 	return false;
693 }
694 
695 /* Grab socket reference count. This operation is valid only
696    when sk is ALREADY grabbed f.e. it is found in hash table
697    or a list and the lookup is made under lock preventing hash table
698    modifications.
699  */
700 
701 static __always_inline void sock_hold(struct sock *sk)
702 {
703 	refcount_inc(&sk->sk_refcnt);
704 }
705 
706 /* Ungrab socket in the context, which assumes that socket refcnt
707    cannot hit zero, f.e. it is true in context of any socketcall.
708  */
709 static __always_inline void __sock_put(struct sock *sk)
710 {
711 	refcount_dec(&sk->sk_refcnt);
712 }
713 
714 static inline bool sk_del_node_init(struct sock *sk)
715 {
716 	bool rc = __sk_del_node_init(sk);
717 
718 	if (rc) {
719 		/* paranoid for a while -acme */
720 		WARN_ON(refcount_read(&sk->sk_refcnt) == 1);
721 		__sock_put(sk);
722 	}
723 	return rc;
724 }
725 #define sk_del_node_init_rcu(sk)	sk_del_node_init(sk)
726 
727 static inline bool __sk_nulls_del_node_init_rcu(struct sock *sk)
728 {
729 	if (sk_hashed(sk)) {
730 		hlist_nulls_del_init_rcu(&sk->sk_nulls_node);
731 		return true;
732 	}
733 	return false;
734 }
735 
736 static inline bool sk_nulls_del_node_init_rcu(struct sock *sk)
737 {
738 	bool rc = __sk_nulls_del_node_init_rcu(sk);
739 
740 	if (rc) {
741 		/* paranoid for a while -acme */
742 		WARN_ON(refcount_read(&sk->sk_refcnt) == 1);
743 		__sock_put(sk);
744 	}
745 	return rc;
746 }
747 
748 static inline void __sk_add_node(struct sock *sk, struct hlist_head *list)
749 {
750 	hlist_add_head(&sk->sk_node, list);
751 }
752 
753 static inline void sk_add_node(struct sock *sk, struct hlist_head *list)
754 {
755 	sock_hold(sk);
756 	__sk_add_node(sk, list);
757 }
758 
759 static inline void sk_add_node_rcu(struct sock *sk, struct hlist_head *list)
760 {
761 	sock_hold(sk);
762 	if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport &&
763 	    sk->sk_family == AF_INET6)
764 		hlist_add_tail_rcu(&sk->sk_node, list);
765 	else
766 		hlist_add_head_rcu(&sk->sk_node, list);
767 }
768 
769 static inline void sk_add_node_tail_rcu(struct sock *sk, struct hlist_head *list)
770 {
771 	sock_hold(sk);
772 	hlist_add_tail_rcu(&sk->sk_node, list);
773 }
774 
775 static inline void __sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
776 {
777 	hlist_nulls_add_head_rcu(&sk->sk_nulls_node, list);
778 }
779 
780 static inline void __sk_nulls_add_node_tail_rcu(struct sock *sk, struct hlist_nulls_head *list)
781 {
782 	hlist_nulls_add_tail_rcu(&sk->sk_nulls_node, list);
783 }
784 
785 static inline void sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
786 {
787 	sock_hold(sk);
788 	__sk_nulls_add_node_rcu(sk, list);
789 }
790 
791 static inline void __sk_del_bind_node(struct sock *sk)
792 {
793 	__hlist_del(&sk->sk_bind_node);
794 }
795 
796 static inline void sk_add_bind_node(struct sock *sk,
797 					struct hlist_head *list)
798 {
799 	hlist_add_head(&sk->sk_bind_node, list);
800 }
801 
802 #define sk_for_each(__sk, list) \
803 	hlist_for_each_entry(__sk, list, sk_node)
804 #define sk_for_each_rcu(__sk, list) \
805 	hlist_for_each_entry_rcu(__sk, list, sk_node)
806 #define sk_nulls_for_each(__sk, node, list) \
807 	hlist_nulls_for_each_entry(__sk, node, list, sk_nulls_node)
808 #define sk_nulls_for_each_rcu(__sk, node, list) \
809 	hlist_nulls_for_each_entry_rcu(__sk, node, list, sk_nulls_node)
810 #define sk_for_each_from(__sk) \
811 	hlist_for_each_entry_from(__sk, sk_node)
812 #define sk_nulls_for_each_from(__sk, node) \
813 	if (__sk && ({ node = &(__sk)->sk_nulls_node; 1; })) \
814 		hlist_nulls_for_each_entry_from(__sk, node, sk_nulls_node)
815 #define sk_for_each_safe(__sk, tmp, list) \
816 	hlist_for_each_entry_safe(__sk, tmp, list, sk_node)
817 #define sk_for_each_bound(__sk, list) \
818 	hlist_for_each_entry(__sk, list, sk_bind_node)
819 
820 /**
821  * sk_for_each_entry_offset_rcu - iterate over a list at a given struct offset
822  * @tpos:	the type * to use as a loop cursor.
823  * @pos:	the &struct hlist_node to use as a loop cursor.
824  * @head:	the head for your list.
825  * @offset:	offset of hlist_node within the struct.
826  *
827  */
828 #define sk_for_each_entry_offset_rcu(tpos, pos, head, offset)		       \
829 	for (pos = rcu_dereference(hlist_first_rcu(head));		       \
830 	     pos != NULL &&						       \
831 		({ tpos = (typeof(*tpos) *)((void *)pos - offset); 1;});       \
832 	     pos = rcu_dereference(hlist_next_rcu(pos)))
833 
834 static inline struct user_namespace *sk_user_ns(struct sock *sk)
835 {
836 	/* Careful only use this in a context where these parameters
837 	 * can not change and must all be valid, such as recvmsg from
838 	 * userspace.
839 	 */
840 	return sk->sk_socket->file->f_cred->user_ns;
841 }
842 
843 /* Sock flags */
844 enum sock_flags {
845 	SOCK_DEAD,
846 	SOCK_DONE,
847 	SOCK_URGINLINE,
848 	SOCK_KEEPOPEN,
849 	SOCK_LINGER,
850 	SOCK_DESTROY,
851 	SOCK_BROADCAST,
852 	SOCK_TIMESTAMP,
853 	SOCK_ZAPPED,
854 	SOCK_USE_WRITE_QUEUE, /* whether to call sk->sk_write_space in sock_wfree */
855 	SOCK_DBG, /* %SO_DEBUG setting */
856 	SOCK_RCVTSTAMP, /* %SO_TIMESTAMP setting */
857 	SOCK_RCVTSTAMPNS, /* %SO_TIMESTAMPNS setting */
858 	SOCK_LOCALROUTE, /* route locally only, %SO_DONTROUTE setting */
859 	SOCK_MEMALLOC, /* VM depends on this socket for swapping */
860 	SOCK_TIMESTAMPING_RX_SOFTWARE,  /* %SOF_TIMESTAMPING_RX_SOFTWARE */
861 	SOCK_FASYNC, /* fasync() active */
862 	SOCK_RXQ_OVFL,
863 	SOCK_ZEROCOPY, /* buffers from userspace */
864 	SOCK_WIFI_STATUS, /* push wifi status to userspace */
865 	SOCK_NOFCS, /* Tell NIC not to do the Ethernet FCS.
866 		     * Will use last 4 bytes of packet sent from
867 		     * user-space instead.
868 		     */
869 	SOCK_FILTER_LOCKED, /* Filter cannot be changed anymore */
870 	SOCK_SELECT_ERR_QUEUE, /* Wake select on error queue */
871 	SOCK_RCU_FREE, /* wait rcu grace period in sk_destruct() */
872 	SOCK_TXTIME,
873 	SOCK_XDP, /* XDP is attached */
874 	SOCK_TSTAMP_NEW, /* Indicates 64 bit timestamps always */
875 };
876 
877 #define SK_FLAGS_TIMESTAMP ((1UL << SOCK_TIMESTAMP) | (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE))
878 
879 static inline void sock_copy_flags(struct sock *nsk, struct sock *osk)
880 {
881 	nsk->sk_flags = osk->sk_flags;
882 }
883 
884 static inline void sock_set_flag(struct sock *sk, enum sock_flags flag)
885 {
886 	__set_bit(flag, &sk->sk_flags);
887 }
888 
889 static inline void sock_reset_flag(struct sock *sk, enum sock_flags flag)
890 {
891 	__clear_bit(flag, &sk->sk_flags);
892 }
893 
894 static inline void sock_valbool_flag(struct sock *sk, enum sock_flags bit,
895 				     int valbool)
896 {
897 	if (valbool)
898 		sock_set_flag(sk, bit);
899 	else
900 		sock_reset_flag(sk, bit);
901 }
902 
903 static inline bool sock_flag(const struct sock *sk, enum sock_flags flag)
904 {
905 	return test_bit(flag, &sk->sk_flags);
906 }
907 
908 #ifdef CONFIG_NET
909 DECLARE_STATIC_KEY_FALSE(memalloc_socks_key);
910 static inline int sk_memalloc_socks(void)
911 {
912 	return static_branch_unlikely(&memalloc_socks_key);
913 }
914 
915 void __receive_sock(struct file *file);
916 #else
917 
918 static inline int sk_memalloc_socks(void)
919 {
920 	return 0;
921 }
922 
923 static inline void __receive_sock(struct file *file)
924 { }
925 #endif
926 
927 static inline gfp_t sk_gfp_mask(const struct sock *sk, gfp_t gfp_mask)
928 {
929 	return gfp_mask | (sk->sk_allocation & __GFP_MEMALLOC);
930 }
931 
932 static inline void sk_acceptq_removed(struct sock *sk)
933 {
934 	WRITE_ONCE(sk->sk_ack_backlog, sk->sk_ack_backlog - 1);
935 }
936 
937 static inline void sk_acceptq_added(struct sock *sk)
938 {
939 	WRITE_ONCE(sk->sk_ack_backlog, sk->sk_ack_backlog + 1);
940 }
941 
942 /* Note: If you think the test should be:
943  *	return READ_ONCE(sk->sk_ack_backlog) >= READ_ONCE(sk->sk_max_ack_backlog);
944  * Then please take a look at commit 64a146513f8f ("[NET]: Revert incorrect accept queue backlog changes.")
945  */
946 static inline bool sk_acceptq_is_full(const struct sock *sk)
947 {
948 	return READ_ONCE(sk->sk_ack_backlog) > READ_ONCE(sk->sk_max_ack_backlog);
949 }
950 
951 /*
952  * Compute minimal free write space needed to queue new packets.
953  */
954 static inline int sk_stream_min_wspace(const struct sock *sk)
955 {
956 	return READ_ONCE(sk->sk_wmem_queued) >> 1;
957 }
958 
959 static inline int sk_stream_wspace(const struct sock *sk)
960 {
961 	return READ_ONCE(sk->sk_sndbuf) - READ_ONCE(sk->sk_wmem_queued);
962 }
963 
964 static inline void sk_wmem_queued_add(struct sock *sk, int val)
965 {
966 	WRITE_ONCE(sk->sk_wmem_queued, sk->sk_wmem_queued + val);
967 }
968 
969 void sk_stream_write_space(struct sock *sk);
970 
971 /* OOB backlog add */
972 static inline void __sk_add_backlog(struct sock *sk, struct sk_buff *skb)
973 {
974 	/* dont let skb dst not refcounted, we are going to leave rcu lock */
975 	skb_dst_force(skb);
976 
977 	if (!sk->sk_backlog.tail)
978 		WRITE_ONCE(sk->sk_backlog.head, skb);
979 	else
980 		sk->sk_backlog.tail->next = skb;
981 
982 	WRITE_ONCE(sk->sk_backlog.tail, skb);
983 	skb->next = NULL;
984 }
985 
986 /*
987  * Take into account size of receive queue and backlog queue
988  * Do not take into account this skb truesize,
989  * to allow even a single big packet to come.
990  */
991 static inline bool sk_rcvqueues_full(const struct sock *sk, unsigned int limit)
992 {
993 	unsigned int qsize = sk->sk_backlog.len + atomic_read(&sk->sk_rmem_alloc);
994 
995 	return qsize > limit;
996 }
997 
998 /* The per-socket spinlock must be held here. */
999 static inline __must_check int sk_add_backlog(struct sock *sk, struct sk_buff *skb,
1000 					      unsigned int limit)
1001 {
1002 	if (sk_rcvqueues_full(sk, limit))
1003 		return -ENOBUFS;
1004 
1005 	/*
1006 	 * If the skb was allocated from pfmemalloc reserves, only
1007 	 * allow SOCK_MEMALLOC sockets to use it as this socket is
1008 	 * helping free memory
1009 	 */
1010 	if (skb_pfmemalloc(skb) && !sock_flag(sk, SOCK_MEMALLOC))
1011 		return -ENOMEM;
1012 
1013 	__sk_add_backlog(sk, skb);
1014 	sk->sk_backlog.len += skb->truesize;
1015 	return 0;
1016 }
1017 
1018 int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb);
1019 
1020 static inline int sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
1021 {
1022 	if (sk_memalloc_socks() && skb_pfmemalloc(skb))
1023 		return __sk_backlog_rcv(sk, skb);
1024 
1025 	return sk->sk_backlog_rcv(sk, skb);
1026 }
1027 
1028 static inline void sk_incoming_cpu_update(struct sock *sk)
1029 {
1030 	int cpu = raw_smp_processor_id();
1031 
1032 	if (unlikely(READ_ONCE(sk->sk_incoming_cpu) != cpu))
1033 		WRITE_ONCE(sk->sk_incoming_cpu, cpu);
1034 }
1035 
1036 static inline void sock_rps_record_flow_hash(__u32 hash)
1037 {
1038 #ifdef CONFIG_RPS
1039 	struct rps_sock_flow_table *sock_flow_table;
1040 
1041 	rcu_read_lock();
1042 	sock_flow_table = rcu_dereference(rps_sock_flow_table);
1043 	rps_record_sock_flow(sock_flow_table, hash);
1044 	rcu_read_unlock();
1045 #endif
1046 }
1047 
1048 static inline void sock_rps_record_flow(const struct sock *sk)
1049 {
1050 #ifdef CONFIG_RPS
1051 	if (static_branch_unlikely(&rfs_needed)) {
1052 		/* Reading sk->sk_rxhash might incur an expensive cache line
1053 		 * miss.
1054 		 *
1055 		 * TCP_ESTABLISHED does cover almost all states where RFS
1056 		 * might be useful, and is cheaper [1] than testing :
1057 		 *	IPv4: inet_sk(sk)->inet_daddr
1058 		 * 	IPv6: ipv6_addr_any(&sk->sk_v6_daddr)
1059 		 * OR	an additional socket flag
1060 		 * [1] : sk_state and sk_prot are in the same cache line.
1061 		 */
1062 		if (sk->sk_state == TCP_ESTABLISHED)
1063 			sock_rps_record_flow_hash(sk->sk_rxhash);
1064 	}
1065 #endif
1066 }
1067 
1068 static inline void sock_rps_save_rxhash(struct sock *sk,
1069 					const struct sk_buff *skb)
1070 {
1071 #ifdef CONFIG_RPS
1072 	if (unlikely(sk->sk_rxhash != skb->hash))
1073 		sk->sk_rxhash = skb->hash;
1074 #endif
1075 }
1076 
1077 static inline void sock_rps_reset_rxhash(struct sock *sk)
1078 {
1079 #ifdef CONFIG_RPS
1080 	sk->sk_rxhash = 0;
1081 #endif
1082 }
1083 
1084 #define sk_wait_event(__sk, __timeo, __condition, __wait)		\
1085 	({	int __rc;						\
1086 		release_sock(__sk);					\
1087 		__rc = __condition;					\
1088 		if (!__rc) {						\
1089 			*(__timeo) = wait_woken(__wait,			\
1090 						TASK_INTERRUPTIBLE,	\
1091 						*(__timeo));		\
1092 		}							\
1093 		sched_annotate_sleep();					\
1094 		lock_sock(__sk);					\
1095 		__rc = __condition;					\
1096 		__rc;							\
1097 	})
1098 
1099 int sk_stream_wait_connect(struct sock *sk, long *timeo_p);
1100 int sk_stream_wait_memory(struct sock *sk, long *timeo_p);
1101 void sk_stream_wait_close(struct sock *sk, long timeo_p);
1102 int sk_stream_error(struct sock *sk, int flags, int err);
1103 void sk_stream_kill_queues(struct sock *sk);
1104 void sk_set_memalloc(struct sock *sk);
1105 void sk_clear_memalloc(struct sock *sk);
1106 
1107 void __sk_flush_backlog(struct sock *sk);
1108 
1109 static inline bool sk_flush_backlog(struct sock *sk)
1110 {
1111 	if (unlikely(READ_ONCE(sk->sk_backlog.tail))) {
1112 		__sk_flush_backlog(sk);
1113 		return true;
1114 	}
1115 	return false;
1116 }
1117 
1118 int sk_wait_data(struct sock *sk, long *timeo, const struct sk_buff *skb);
1119 
1120 struct request_sock_ops;
1121 struct timewait_sock_ops;
1122 struct inet_hashinfo;
1123 struct raw_hashinfo;
1124 struct smc_hashinfo;
1125 struct module;
1126 struct sk_psock;
1127 
1128 /*
1129  * caches using SLAB_TYPESAFE_BY_RCU should let .next pointer from nulls nodes
1130  * un-modified. Special care is taken when initializing object to zero.
1131  */
1132 static inline void sk_prot_clear_nulls(struct sock *sk, int size)
1133 {
1134 	if (offsetof(struct sock, sk_node.next) != 0)
1135 		memset(sk, 0, offsetof(struct sock, sk_node.next));
1136 	memset(&sk->sk_node.pprev, 0,
1137 	       size - offsetof(struct sock, sk_node.pprev));
1138 }
1139 
1140 /* Networking protocol blocks we attach to sockets.
1141  * socket layer -> transport layer interface
1142  */
1143 struct proto {
1144 	void			(*close)(struct sock *sk,
1145 					long timeout);
1146 	int			(*pre_connect)(struct sock *sk,
1147 					struct sockaddr *uaddr,
1148 					int addr_len);
1149 	int			(*connect)(struct sock *sk,
1150 					struct sockaddr *uaddr,
1151 					int addr_len);
1152 	int			(*disconnect)(struct sock *sk, int flags);
1153 
1154 	struct sock *		(*accept)(struct sock *sk, int flags, int *err,
1155 					  bool kern);
1156 
1157 	int			(*ioctl)(struct sock *sk, int cmd,
1158 					 unsigned long arg);
1159 	int			(*init)(struct sock *sk);
1160 	void			(*destroy)(struct sock *sk);
1161 	void			(*shutdown)(struct sock *sk, int how);
1162 	int			(*setsockopt)(struct sock *sk, int level,
1163 					int optname, sockptr_t optval,
1164 					unsigned int optlen);
1165 	int			(*getsockopt)(struct sock *sk, int level,
1166 					int optname, char __user *optval,
1167 					int __user *option);
1168 	void			(*keepalive)(struct sock *sk, int valbool);
1169 #ifdef CONFIG_COMPAT
1170 	int			(*compat_ioctl)(struct sock *sk,
1171 					unsigned int cmd, unsigned long arg);
1172 #endif
1173 	int			(*sendmsg)(struct sock *sk, struct msghdr *msg,
1174 					   size_t len);
1175 	int			(*recvmsg)(struct sock *sk, struct msghdr *msg,
1176 					   size_t len, int noblock, int flags,
1177 					   int *addr_len);
1178 	int			(*sendpage)(struct sock *sk, struct page *page,
1179 					int offset, size_t size, int flags);
1180 	int			(*bind)(struct sock *sk,
1181 					struct sockaddr *addr, int addr_len);
1182 	int			(*bind_add)(struct sock *sk,
1183 					struct sockaddr *addr, int addr_len);
1184 
1185 	int			(*backlog_rcv) (struct sock *sk,
1186 						struct sk_buff *skb);
1187 	bool			(*bpf_bypass_getsockopt)(int level,
1188 							 int optname);
1189 
1190 	void		(*release_cb)(struct sock *sk);
1191 
1192 	/* Keeping track of sk's, looking them up, and port selection methods. */
1193 	int			(*hash)(struct sock *sk);
1194 	void			(*unhash)(struct sock *sk);
1195 	void			(*rehash)(struct sock *sk);
1196 	int			(*get_port)(struct sock *sk, unsigned short snum);
1197 #ifdef CONFIG_BPF_SYSCALL
1198 	int			(*psock_update_sk_prot)(struct sock *sk,
1199 							struct sk_psock *psock,
1200 							bool restore);
1201 #endif
1202 
1203 	/* Keeping track of sockets in use */
1204 #ifdef CONFIG_PROC_FS
1205 	unsigned int		inuse_idx;
1206 #endif
1207 
1208 	bool			(*stream_memory_free)(const struct sock *sk, int wake);
1209 	bool			(*stream_memory_read)(const struct sock *sk);
1210 	/* Memory pressure */
1211 	void			(*enter_memory_pressure)(struct sock *sk);
1212 	void			(*leave_memory_pressure)(struct sock *sk);
1213 	atomic_long_t		*memory_allocated;	/* Current allocated memory. */
1214 	struct percpu_counter	*sockets_allocated;	/* Current number of sockets. */
1215 	/*
1216 	 * Pressure flag: try to collapse.
1217 	 * Technical note: it is used by multiple contexts non atomically.
1218 	 * All the __sk_mem_schedule() is of this nature: accounting
1219 	 * is strict, actions are advisory and have some latency.
1220 	 */
1221 	unsigned long		*memory_pressure;
1222 	long			*sysctl_mem;
1223 
1224 	int			*sysctl_wmem;
1225 	int			*sysctl_rmem;
1226 	u32			sysctl_wmem_offset;
1227 	u32			sysctl_rmem_offset;
1228 
1229 	int			max_header;
1230 	bool			no_autobind;
1231 
1232 	struct kmem_cache	*slab;
1233 	unsigned int		obj_size;
1234 	slab_flags_t		slab_flags;
1235 	unsigned int		useroffset;	/* Usercopy region offset */
1236 	unsigned int		usersize;	/* Usercopy region size */
1237 
1238 	unsigned int __percpu	*orphan_count;
1239 
1240 	struct request_sock_ops	*rsk_prot;
1241 	struct timewait_sock_ops *twsk_prot;
1242 
1243 	union {
1244 		struct inet_hashinfo	*hashinfo;
1245 		struct udp_table	*udp_table;
1246 		struct raw_hashinfo	*raw_hash;
1247 		struct smc_hashinfo	*smc_hash;
1248 	} h;
1249 
1250 	struct module		*owner;
1251 
1252 	char			name[32];
1253 
1254 	struct list_head	node;
1255 #ifdef SOCK_REFCNT_DEBUG
1256 	atomic_t		socks;
1257 #endif
1258 	int			(*diag_destroy)(struct sock *sk, int err);
1259 } __randomize_layout;
1260 
1261 int proto_register(struct proto *prot, int alloc_slab);
1262 void proto_unregister(struct proto *prot);
1263 int sock_load_diag_module(int family, int protocol);
1264 
1265 #ifdef SOCK_REFCNT_DEBUG
1266 static inline void sk_refcnt_debug_inc(struct sock *sk)
1267 {
1268 	atomic_inc(&sk->sk_prot->socks);
1269 }
1270 
1271 static inline void sk_refcnt_debug_dec(struct sock *sk)
1272 {
1273 	atomic_dec(&sk->sk_prot->socks);
1274 	printk(KERN_DEBUG "%s socket %p released, %d are still alive\n",
1275 	       sk->sk_prot->name, sk, atomic_read(&sk->sk_prot->socks));
1276 }
1277 
1278 static inline void sk_refcnt_debug_release(const struct sock *sk)
1279 {
1280 	if (refcount_read(&sk->sk_refcnt) != 1)
1281 		printk(KERN_DEBUG "Destruction of the %s socket %p delayed, refcnt=%d\n",
1282 		       sk->sk_prot->name, sk, refcount_read(&sk->sk_refcnt));
1283 }
1284 #else /* SOCK_REFCNT_DEBUG */
1285 #define sk_refcnt_debug_inc(sk) do { } while (0)
1286 #define sk_refcnt_debug_dec(sk) do { } while (0)
1287 #define sk_refcnt_debug_release(sk) do { } while (0)
1288 #endif /* SOCK_REFCNT_DEBUG */
1289 
1290 INDIRECT_CALLABLE_DECLARE(bool tcp_stream_memory_free(const struct sock *sk, int wake));
1291 
1292 static inline bool __sk_stream_memory_free(const struct sock *sk, int wake)
1293 {
1294 	if (READ_ONCE(sk->sk_wmem_queued) >= READ_ONCE(sk->sk_sndbuf))
1295 		return false;
1296 
1297 #ifdef CONFIG_INET
1298 	return sk->sk_prot->stream_memory_free ?
1299 		INDIRECT_CALL_1(sk->sk_prot->stream_memory_free,
1300 			        tcp_stream_memory_free,
1301 				sk, wake) : true;
1302 #else
1303 	return sk->sk_prot->stream_memory_free ?
1304 		sk->sk_prot->stream_memory_free(sk, wake) : true;
1305 #endif
1306 }
1307 
1308 static inline bool sk_stream_memory_free(const struct sock *sk)
1309 {
1310 	return __sk_stream_memory_free(sk, 0);
1311 }
1312 
1313 static inline bool __sk_stream_is_writeable(const struct sock *sk, int wake)
1314 {
1315 	return sk_stream_wspace(sk) >= sk_stream_min_wspace(sk) &&
1316 	       __sk_stream_memory_free(sk, wake);
1317 }
1318 
1319 static inline bool sk_stream_is_writeable(const struct sock *sk)
1320 {
1321 	return __sk_stream_is_writeable(sk, 0);
1322 }
1323 
1324 static inline int sk_under_cgroup_hierarchy(struct sock *sk,
1325 					    struct cgroup *ancestor)
1326 {
1327 #ifdef CONFIG_SOCK_CGROUP_DATA
1328 	return cgroup_is_descendant(sock_cgroup_ptr(&sk->sk_cgrp_data),
1329 				    ancestor);
1330 #else
1331 	return -ENOTSUPP;
1332 #endif
1333 }
1334 
1335 static inline bool sk_has_memory_pressure(const struct sock *sk)
1336 {
1337 	return sk->sk_prot->memory_pressure != NULL;
1338 }
1339 
1340 static inline bool sk_under_memory_pressure(const struct sock *sk)
1341 {
1342 	if (!sk->sk_prot->memory_pressure)
1343 		return false;
1344 
1345 	if (mem_cgroup_sockets_enabled && sk->sk_memcg &&
1346 	    mem_cgroup_under_socket_pressure(sk->sk_memcg))
1347 		return true;
1348 
1349 	return !!*sk->sk_prot->memory_pressure;
1350 }
1351 
1352 static inline long
1353 sk_memory_allocated(const struct sock *sk)
1354 {
1355 	return atomic_long_read(sk->sk_prot->memory_allocated);
1356 }
1357 
1358 static inline long
1359 sk_memory_allocated_add(struct sock *sk, int amt)
1360 {
1361 	return atomic_long_add_return(amt, sk->sk_prot->memory_allocated);
1362 }
1363 
1364 static inline void
1365 sk_memory_allocated_sub(struct sock *sk, int amt)
1366 {
1367 	atomic_long_sub(amt, sk->sk_prot->memory_allocated);
1368 }
1369 
1370 #define SK_ALLOC_PERCPU_COUNTER_BATCH 16
1371 
1372 static inline void sk_sockets_allocated_dec(struct sock *sk)
1373 {
1374 	percpu_counter_add_batch(sk->sk_prot->sockets_allocated, -1,
1375 				 SK_ALLOC_PERCPU_COUNTER_BATCH);
1376 }
1377 
1378 static inline void sk_sockets_allocated_inc(struct sock *sk)
1379 {
1380 	percpu_counter_add_batch(sk->sk_prot->sockets_allocated, 1,
1381 				 SK_ALLOC_PERCPU_COUNTER_BATCH);
1382 }
1383 
1384 static inline u64
1385 sk_sockets_allocated_read_positive(struct sock *sk)
1386 {
1387 	return percpu_counter_read_positive(sk->sk_prot->sockets_allocated);
1388 }
1389 
1390 static inline int
1391 proto_sockets_allocated_sum_positive(struct proto *prot)
1392 {
1393 	return percpu_counter_sum_positive(prot->sockets_allocated);
1394 }
1395 
1396 static inline long
1397 proto_memory_allocated(struct proto *prot)
1398 {
1399 	return atomic_long_read(prot->memory_allocated);
1400 }
1401 
1402 static inline bool
1403 proto_memory_pressure(struct proto *prot)
1404 {
1405 	if (!prot->memory_pressure)
1406 		return false;
1407 	return !!*prot->memory_pressure;
1408 }
1409 
1410 
1411 #ifdef CONFIG_PROC_FS
1412 /* Called with local bh disabled */
1413 void sock_prot_inuse_add(struct net *net, struct proto *prot, int inc);
1414 int sock_prot_inuse_get(struct net *net, struct proto *proto);
1415 int sock_inuse_get(struct net *net);
1416 #else
1417 static inline void sock_prot_inuse_add(struct net *net, struct proto *prot,
1418 		int inc)
1419 {
1420 }
1421 #endif
1422 
1423 
1424 /* With per-bucket locks this operation is not-atomic, so that
1425  * this version is not worse.
1426  */
1427 static inline int __sk_prot_rehash(struct sock *sk)
1428 {
1429 	sk->sk_prot->unhash(sk);
1430 	return sk->sk_prot->hash(sk);
1431 }
1432 
1433 /* About 10 seconds */
1434 #define SOCK_DESTROY_TIME (10*HZ)
1435 
1436 /* Sockets 0-1023 can't be bound to unless you are superuser */
1437 #define PROT_SOCK	1024
1438 
1439 #define SHUTDOWN_MASK	3
1440 #define RCV_SHUTDOWN	1
1441 #define SEND_SHUTDOWN	2
1442 
1443 #define SOCK_BINDADDR_LOCK	4
1444 #define SOCK_BINDPORT_LOCK	8
1445 
1446 struct socket_alloc {
1447 	struct socket socket;
1448 	struct inode vfs_inode;
1449 };
1450 
1451 static inline struct socket *SOCKET_I(struct inode *inode)
1452 {
1453 	return &container_of(inode, struct socket_alloc, vfs_inode)->socket;
1454 }
1455 
1456 static inline struct inode *SOCK_INODE(struct socket *socket)
1457 {
1458 	return &container_of(socket, struct socket_alloc, socket)->vfs_inode;
1459 }
1460 
1461 /*
1462  * Functions for memory accounting
1463  */
1464 int __sk_mem_raise_allocated(struct sock *sk, int size, int amt, int kind);
1465 int __sk_mem_schedule(struct sock *sk, int size, int kind);
1466 void __sk_mem_reduce_allocated(struct sock *sk, int amount);
1467 void __sk_mem_reclaim(struct sock *sk, int amount);
1468 
1469 /* We used to have PAGE_SIZE here, but systems with 64KB pages
1470  * do not necessarily have 16x time more memory than 4KB ones.
1471  */
1472 #define SK_MEM_QUANTUM 4096
1473 #define SK_MEM_QUANTUM_SHIFT ilog2(SK_MEM_QUANTUM)
1474 #define SK_MEM_SEND	0
1475 #define SK_MEM_RECV	1
1476 
1477 /* sysctl_mem values are in pages, we convert them in SK_MEM_QUANTUM units */
1478 static inline long sk_prot_mem_limits(const struct sock *sk, int index)
1479 {
1480 	long val = sk->sk_prot->sysctl_mem[index];
1481 
1482 #if PAGE_SIZE > SK_MEM_QUANTUM
1483 	val <<= PAGE_SHIFT - SK_MEM_QUANTUM_SHIFT;
1484 #elif PAGE_SIZE < SK_MEM_QUANTUM
1485 	val >>= SK_MEM_QUANTUM_SHIFT - PAGE_SHIFT;
1486 #endif
1487 	return val;
1488 }
1489 
1490 static inline int sk_mem_pages(int amt)
1491 {
1492 	return (amt + SK_MEM_QUANTUM - 1) >> SK_MEM_QUANTUM_SHIFT;
1493 }
1494 
1495 static inline bool sk_has_account(struct sock *sk)
1496 {
1497 	/* return true if protocol supports memory accounting */
1498 	return !!sk->sk_prot->memory_allocated;
1499 }
1500 
1501 static inline bool sk_wmem_schedule(struct sock *sk, int size)
1502 {
1503 	if (!sk_has_account(sk))
1504 		return true;
1505 	return size <= sk->sk_forward_alloc ||
1506 		__sk_mem_schedule(sk, size, SK_MEM_SEND);
1507 }
1508 
1509 static inline bool
1510 sk_rmem_schedule(struct sock *sk, struct sk_buff *skb, int size)
1511 {
1512 	if (!sk_has_account(sk))
1513 		return true;
1514 	return size <= sk->sk_forward_alloc ||
1515 		__sk_mem_schedule(sk, size, SK_MEM_RECV) ||
1516 		skb_pfmemalloc(skb);
1517 }
1518 
1519 static inline int sk_unused_reserved_mem(const struct sock *sk)
1520 {
1521 	int unused_mem;
1522 
1523 	if (likely(!sk->sk_reserved_mem))
1524 		return 0;
1525 
1526 	unused_mem = sk->sk_reserved_mem - sk->sk_wmem_queued -
1527 			atomic_read(&sk->sk_rmem_alloc);
1528 
1529 	return unused_mem > 0 ? unused_mem : 0;
1530 }
1531 
1532 static inline void sk_mem_reclaim(struct sock *sk)
1533 {
1534 	int reclaimable;
1535 
1536 	if (!sk_has_account(sk))
1537 		return;
1538 
1539 	reclaimable = sk->sk_forward_alloc - sk_unused_reserved_mem(sk);
1540 
1541 	if (reclaimable >= SK_MEM_QUANTUM)
1542 		__sk_mem_reclaim(sk, reclaimable);
1543 }
1544 
1545 static inline void sk_mem_reclaim_final(struct sock *sk)
1546 {
1547 	sk->sk_reserved_mem = 0;
1548 	sk_mem_reclaim(sk);
1549 }
1550 
1551 static inline void sk_mem_reclaim_partial(struct sock *sk)
1552 {
1553 	int reclaimable;
1554 
1555 	if (!sk_has_account(sk))
1556 		return;
1557 
1558 	reclaimable = sk->sk_forward_alloc - sk_unused_reserved_mem(sk);
1559 
1560 	if (reclaimable > SK_MEM_QUANTUM)
1561 		__sk_mem_reclaim(sk, reclaimable - 1);
1562 }
1563 
1564 static inline void sk_mem_charge(struct sock *sk, int size)
1565 {
1566 	if (!sk_has_account(sk))
1567 		return;
1568 	sk->sk_forward_alloc -= size;
1569 }
1570 
1571 static inline void sk_mem_uncharge(struct sock *sk, int size)
1572 {
1573 	int reclaimable;
1574 
1575 	if (!sk_has_account(sk))
1576 		return;
1577 	sk->sk_forward_alloc += size;
1578 	reclaimable = sk->sk_forward_alloc - sk_unused_reserved_mem(sk);
1579 
1580 	/* Avoid a possible overflow.
1581 	 * TCP send queues can make this happen, if sk_mem_reclaim()
1582 	 * is not called and more than 2 GBytes are released at once.
1583 	 *
1584 	 * If we reach 2 MBytes, reclaim 1 MBytes right now, there is
1585 	 * no need to hold that much forward allocation anyway.
1586 	 */
1587 	if (unlikely(reclaimable >= 1 << 21))
1588 		__sk_mem_reclaim(sk, 1 << 20);
1589 }
1590 
1591 static inline void sk_wmem_free_skb(struct sock *sk, struct sk_buff *skb)
1592 {
1593 	sk_wmem_queued_add(sk, -skb->truesize);
1594 	sk_mem_uncharge(sk, skb->truesize);
1595 	__kfree_skb(skb);
1596 }
1597 
1598 static inline void sock_release_ownership(struct sock *sk)
1599 {
1600 	if (sk->sk_lock.owned) {
1601 		sk->sk_lock.owned = 0;
1602 
1603 		/* The sk_lock has mutex_unlock() semantics: */
1604 		mutex_release(&sk->sk_lock.dep_map, _RET_IP_);
1605 	}
1606 }
1607 
1608 /*
1609  * Macro so as to not evaluate some arguments when
1610  * lockdep is not enabled.
1611  *
1612  * Mark both the sk_lock and the sk_lock.slock as a
1613  * per-address-family lock class.
1614  */
1615 #define sock_lock_init_class_and_name(sk, sname, skey, name, key)	\
1616 do {									\
1617 	sk->sk_lock.owned = 0;						\
1618 	init_waitqueue_head(&sk->sk_lock.wq);				\
1619 	spin_lock_init(&(sk)->sk_lock.slock);				\
1620 	debug_check_no_locks_freed((void *)&(sk)->sk_lock,		\
1621 			sizeof((sk)->sk_lock));				\
1622 	lockdep_set_class_and_name(&(sk)->sk_lock.slock,		\
1623 				(skey), (sname));				\
1624 	lockdep_init_map(&(sk)->sk_lock.dep_map, (name), (key), 0);	\
1625 } while (0)
1626 
1627 static inline bool lockdep_sock_is_held(const struct sock *sk)
1628 {
1629 	return lockdep_is_held(&sk->sk_lock) ||
1630 	       lockdep_is_held(&sk->sk_lock.slock);
1631 }
1632 
1633 void lock_sock_nested(struct sock *sk, int subclass);
1634 
1635 static inline void lock_sock(struct sock *sk)
1636 {
1637 	lock_sock_nested(sk, 0);
1638 }
1639 
1640 void __lock_sock(struct sock *sk);
1641 void __release_sock(struct sock *sk);
1642 void release_sock(struct sock *sk);
1643 
1644 /* BH context may only use the following locking interface. */
1645 #define bh_lock_sock(__sk)	spin_lock(&((__sk)->sk_lock.slock))
1646 #define bh_lock_sock_nested(__sk) \
1647 				spin_lock_nested(&((__sk)->sk_lock.slock), \
1648 				SINGLE_DEPTH_NESTING)
1649 #define bh_unlock_sock(__sk)	spin_unlock(&((__sk)->sk_lock.slock))
1650 
1651 bool __lock_sock_fast(struct sock *sk) __acquires(&sk->sk_lock.slock);
1652 
1653 /**
1654  * lock_sock_fast - fast version of lock_sock
1655  * @sk: socket
1656  *
1657  * This version should be used for very small section, where process wont block
1658  * return false if fast path is taken:
1659  *
1660  *   sk_lock.slock locked, owned = 0, BH disabled
1661  *
1662  * return true if slow path is taken:
1663  *
1664  *   sk_lock.slock unlocked, owned = 1, BH enabled
1665  */
1666 static inline bool lock_sock_fast(struct sock *sk)
1667 {
1668 	/* The sk_lock has mutex_lock() semantics here. */
1669 	mutex_acquire(&sk->sk_lock.dep_map, 0, 0, _RET_IP_);
1670 
1671 	return __lock_sock_fast(sk);
1672 }
1673 
1674 /* fast socket lock variant for caller already holding a [different] socket lock */
1675 static inline bool lock_sock_fast_nested(struct sock *sk)
1676 {
1677 	mutex_acquire(&sk->sk_lock.dep_map, SINGLE_DEPTH_NESTING, 0, _RET_IP_);
1678 
1679 	return __lock_sock_fast(sk);
1680 }
1681 
1682 /**
1683  * unlock_sock_fast - complement of lock_sock_fast
1684  * @sk: socket
1685  * @slow: slow mode
1686  *
1687  * fast unlock socket for user context.
1688  * If slow mode is on, we call regular release_sock()
1689  */
1690 static inline void unlock_sock_fast(struct sock *sk, bool slow)
1691 	__releases(&sk->sk_lock.slock)
1692 {
1693 	if (slow) {
1694 		release_sock(sk);
1695 		__release(&sk->sk_lock.slock);
1696 	} else {
1697 		mutex_release(&sk->sk_lock.dep_map, _RET_IP_);
1698 		spin_unlock_bh(&sk->sk_lock.slock);
1699 	}
1700 }
1701 
1702 /* Used by processes to "lock" a socket state, so that
1703  * interrupts and bottom half handlers won't change it
1704  * from under us. It essentially blocks any incoming
1705  * packets, so that we won't get any new data or any
1706  * packets that change the state of the socket.
1707  *
1708  * While locked, BH processing will add new packets to
1709  * the backlog queue.  This queue is processed by the
1710  * owner of the socket lock right before it is released.
1711  *
1712  * Since ~2.3.5 it is also exclusive sleep lock serializing
1713  * accesses from user process context.
1714  */
1715 
1716 static inline void sock_owned_by_me(const struct sock *sk)
1717 {
1718 #ifdef CONFIG_LOCKDEP
1719 	WARN_ON_ONCE(!lockdep_sock_is_held(sk) && debug_locks);
1720 #endif
1721 }
1722 
1723 static inline bool sock_owned_by_user(const struct sock *sk)
1724 {
1725 	sock_owned_by_me(sk);
1726 	return sk->sk_lock.owned;
1727 }
1728 
1729 static inline bool sock_owned_by_user_nocheck(const struct sock *sk)
1730 {
1731 	return sk->sk_lock.owned;
1732 }
1733 
1734 /* no reclassification while locks are held */
1735 static inline bool sock_allow_reclassification(const struct sock *csk)
1736 {
1737 	struct sock *sk = (struct sock *)csk;
1738 
1739 	return !sk->sk_lock.owned && !spin_is_locked(&sk->sk_lock.slock);
1740 }
1741 
1742 struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
1743 		      struct proto *prot, int kern);
1744 void sk_free(struct sock *sk);
1745 void sk_destruct(struct sock *sk);
1746 struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority);
1747 void sk_free_unlock_clone(struct sock *sk);
1748 
1749 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
1750 			     gfp_t priority);
1751 void __sock_wfree(struct sk_buff *skb);
1752 void sock_wfree(struct sk_buff *skb);
1753 struct sk_buff *sock_omalloc(struct sock *sk, unsigned long size,
1754 			     gfp_t priority);
1755 void skb_orphan_partial(struct sk_buff *skb);
1756 void sock_rfree(struct sk_buff *skb);
1757 void sock_efree(struct sk_buff *skb);
1758 #ifdef CONFIG_INET
1759 void sock_edemux(struct sk_buff *skb);
1760 void sock_pfree(struct sk_buff *skb);
1761 #else
1762 #define sock_edemux sock_efree
1763 #endif
1764 
1765 int sock_setsockopt(struct socket *sock, int level, int op,
1766 		    sockptr_t optval, unsigned int optlen);
1767 
1768 int sock_getsockopt(struct socket *sock, int level, int op,
1769 		    char __user *optval, int __user *optlen);
1770 int sock_gettstamp(struct socket *sock, void __user *userstamp,
1771 		   bool timeval, bool time32);
1772 struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
1773 				    int noblock, int *errcode);
1774 struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
1775 				     unsigned long data_len, int noblock,
1776 				     int *errcode, int max_page_order);
1777 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority);
1778 void sock_kfree_s(struct sock *sk, void *mem, int size);
1779 void sock_kzfree_s(struct sock *sk, void *mem, int size);
1780 void sk_send_sigurg(struct sock *sk);
1781 
1782 struct sockcm_cookie {
1783 	u64 transmit_time;
1784 	u32 mark;
1785 	u16 tsflags;
1786 };
1787 
1788 static inline void sockcm_init(struct sockcm_cookie *sockc,
1789 			       const struct sock *sk)
1790 {
1791 	*sockc = (struct sockcm_cookie) { .tsflags = sk->sk_tsflags };
1792 }
1793 
1794 int __sock_cmsg_send(struct sock *sk, struct msghdr *msg, struct cmsghdr *cmsg,
1795 		     struct sockcm_cookie *sockc);
1796 int sock_cmsg_send(struct sock *sk, struct msghdr *msg,
1797 		   struct sockcm_cookie *sockc);
1798 
1799 /*
1800  * Functions to fill in entries in struct proto_ops when a protocol
1801  * does not implement a particular function.
1802  */
1803 int sock_no_bind(struct socket *, struct sockaddr *, int);
1804 int sock_no_connect(struct socket *, struct sockaddr *, int, int);
1805 int sock_no_socketpair(struct socket *, struct socket *);
1806 int sock_no_accept(struct socket *, struct socket *, int, bool);
1807 int sock_no_getname(struct socket *, struct sockaddr *, int);
1808 int sock_no_ioctl(struct socket *, unsigned int, unsigned long);
1809 int sock_no_listen(struct socket *, int);
1810 int sock_no_shutdown(struct socket *, int);
1811 int sock_no_sendmsg(struct socket *, struct msghdr *, size_t);
1812 int sock_no_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t len);
1813 int sock_no_recvmsg(struct socket *, struct msghdr *, size_t, int);
1814 int sock_no_mmap(struct file *file, struct socket *sock,
1815 		 struct vm_area_struct *vma);
1816 ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset,
1817 			 size_t size, int flags);
1818 ssize_t sock_no_sendpage_locked(struct sock *sk, struct page *page,
1819 				int offset, size_t size, int flags);
1820 
1821 /*
1822  * Functions to fill in entries in struct proto_ops when a protocol
1823  * uses the inet style.
1824  */
1825 int sock_common_getsockopt(struct socket *sock, int level, int optname,
1826 				  char __user *optval, int __user *optlen);
1827 int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
1828 			int flags);
1829 int sock_common_setsockopt(struct socket *sock, int level, int optname,
1830 			   sockptr_t optval, unsigned int optlen);
1831 
1832 void sk_common_release(struct sock *sk);
1833 
1834 /*
1835  *	Default socket callbacks and setup code
1836  */
1837 
1838 /* Initialise core socket variables */
1839 void sock_init_data(struct socket *sock, struct sock *sk);
1840 
1841 /*
1842  * Socket reference counting postulates.
1843  *
1844  * * Each user of socket SHOULD hold a reference count.
1845  * * Each access point to socket (an hash table bucket, reference from a list,
1846  *   running timer, skb in flight MUST hold a reference count.
1847  * * When reference count hits 0, it means it will never increase back.
1848  * * When reference count hits 0, it means that no references from
1849  *   outside exist to this socket and current process on current CPU
1850  *   is last user and may/should destroy this socket.
1851  * * sk_free is called from any context: process, BH, IRQ. When
1852  *   it is called, socket has no references from outside -> sk_free
1853  *   may release descendant resources allocated by the socket, but
1854  *   to the time when it is called, socket is NOT referenced by any
1855  *   hash tables, lists etc.
1856  * * Packets, delivered from outside (from network or from another process)
1857  *   and enqueued on receive/error queues SHOULD NOT grab reference count,
1858  *   when they sit in queue. Otherwise, packets will leak to hole, when
1859  *   socket is looked up by one cpu and unhasing is made by another CPU.
1860  *   It is true for udp/raw, netlink (leak to receive and error queues), tcp
1861  *   (leak to backlog). Packet socket does all the processing inside
1862  *   BR_NETPROTO_LOCK, so that it has not this race condition. UNIX sockets
1863  *   use separate SMP lock, so that they are prone too.
1864  */
1865 
1866 /* Ungrab socket and destroy it, if it was the last reference. */
1867 static inline void sock_put(struct sock *sk)
1868 {
1869 	if (refcount_dec_and_test(&sk->sk_refcnt))
1870 		sk_free(sk);
1871 }
1872 /* Generic version of sock_put(), dealing with all sockets
1873  * (TCP_TIMEWAIT, TCP_NEW_SYN_RECV, ESTABLISHED...)
1874  */
1875 void sock_gen_put(struct sock *sk);
1876 
1877 int __sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested,
1878 		     unsigned int trim_cap, bool refcounted);
1879 static inline int sk_receive_skb(struct sock *sk, struct sk_buff *skb,
1880 				 const int nested)
1881 {
1882 	return __sk_receive_skb(sk, skb, nested, 1, true);
1883 }
1884 
1885 static inline void sk_tx_queue_set(struct sock *sk, int tx_queue)
1886 {
1887 	/* sk_tx_queue_mapping accept only upto a 16-bit value */
1888 	if (WARN_ON_ONCE((unsigned short)tx_queue >= USHRT_MAX))
1889 		return;
1890 	sk->sk_tx_queue_mapping = tx_queue;
1891 }
1892 
1893 #define NO_QUEUE_MAPPING	USHRT_MAX
1894 
1895 static inline void sk_tx_queue_clear(struct sock *sk)
1896 {
1897 	sk->sk_tx_queue_mapping = NO_QUEUE_MAPPING;
1898 }
1899 
1900 static inline int sk_tx_queue_get(const struct sock *sk)
1901 {
1902 	if (sk && sk->sk_tx_queue_mapping != NO_QUEUE_MAPPING)
1903 		return sk->sk_tx_queue_mapping;
1904 
1905 	return -1;
1906 }
1907 
1908 static inline void sk_rx_queue_set(struct sock *sk, const struct sk_buff *skb)
1909 {
1910 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
1911 	if (skb_rx_queue_recorded(skb)) {
1912 		u16 rx_queue = skb_get_rx_queue(skb);
1913 
1914 		if (WARN_ON_ONCE(rx_queue == NO_QUEUE_MAPPING))
1915 			return;
1916 
1917 		sk->sk_rx_queue_mapping = rx_queue;
1918 	}
1919 #endif
1920 }
1921 
1922 static inline void sk_rx_queue_clear(struct sock *sk)
1923 {
1924 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
1925 	sk->sk_rx_queue_mapping = NO_QUEUE_MAPPING;
1926 #endif
1927 }
1928 
1929 static inline int sk_rx_queue_get(const struct sock *sk)
1930 {
1931 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
1932 	if (sk && sk->sk_rx_queue_mapping != NO_QUEUE_MAPPING)
1933 		return sk->sk_rx_queue_mapping;
1934 #endif
1935 
1936 	return -1;
1937 }
1938 
1939 static inline void sk_set_socket(struct sock *sk, struct socket *sock)
1940 {
1941 	sk->sk_socket = sock;
1942 }
1943 
1944 static inline wait_queue_head_t *sk_sleep(struct sock *sk)
1945 {
1946 	BUILD_BUG_ON(offsetof(struct socket_wq, wait) != 0);
1947 	return &rcu_dereference_raw(sk->sk_wq)->wait;
1948 }
1949 /* Detach socket from process context.
1950  * Announce socket dead, detach it from wait queue and inode.
1951  * Note that parent inode held reference count on this struct sock,
1952  * we do not release it in this function, because protocol
1953  * probably wants some additional cleanups or even continuing
1954  * to work with this socket (TCP).
1955  */
1956 static inline void sock_orphan(struct sock *sk)
1957 {
1958 	write_lock_bh(&sk->sk_callback_lock);
1959 	sock_set_flag(sk, SOCK_DEAD);
1960 	sk_set_socket(sk, NULL);
1961 	sk->sk_wq  = NULL;
1962 	write_unlock_bh(&sk->sk_callback_lock);
1963 }
1964 
1965 static inline void sock_graft(struct sock *sk, struct socket *parent)
1966 {
1967 	WARN_ON(parent->sk);
1968 	write_lock_bh(&sk->sk_callback_lock);
1969 	rcu_assign_pointer(sk->sk_wq, &parent->wq);
1970 	parent->sk = sk;
1971 	sk_set_socket(sk, parent);
1972 	sk->sk_uid = SOCK_INODE(parent)->i_uid;
1973 	security_sock_graft(sk, parent);
1974 	write_unlock_bh(&sk->sk_callback_lock);
1975 }
1976 
1977 kuid_t sock_i_uid(struct sock *sk);
1978 unsigned long sock_i_ino(struct sock *sk);
1979 
1980 static inline kuid_t sock_net_uid(const struct net *net, const struct sock *sk)
1981 {
1982 	return sk ? sk->sk_uid : make_kuid(net->user_ns, 0);
1983 }
1984 
1985 static inline u32 net_tx_rndhash(void)
1986 {
1987 	u32 v = prandom_u32();
1988 
1989 	return v ?: 1;
1990 }
1991 
1992 static inline void sk_set_txhash(struct sock *sk)
1993 {
1994 	/* This pairs with READ_ONCE() in skb_set_hash_from_sk() */
1995 	WRITE_ONCE(sk->sk_txhash, net_tx_rndhash());
1996 }
1997 
1998 static inline bool sk_rethink_txhash(struct sock *sk)
1999 {
2000 	if (sk->sk_txhash) {
2001 		sk_set_txhash(sk);
2002 		return true;
2003 	}
2004 	return false;
2005 }
2006 
2007 static inline struct dst_entry *
2008 __sk_dst_get(struct sock *sk)
2009 {
2010 	return rcu_dereference_check(sk->sk_dst_cache,
2011 				     lockdep_sock_is_held(sk));
2012 }
2013 
2014 static inline struct dst_entry *
2015 sk_dst_get(struct sock *sk)
2016 {
2017 	struct dst_entry *dst;
2018 
2019 	rcu_read_lock();
2020 	dst = rcu_dereference(sk->sk_dst_cache);
2021 	if (dst && !atomic_inc_not_zero(&dst->__refcnt))
2022 		dst = NULL;
2023 	rcu_read_unlock();
2024 	return dst;
2025 }
2026 
2027 static inline void __dst_negative_advice(struct sock *sk)
2028 {
2029 	struct dst_entry *ndst, *dst = __sk_dst_get(sk);
2030 
2031 	if (dst && dst->ops->negative_advice) {
2032 		ndst = dst->ops->negative_advice(dst);
2033 
2034 		if (ndst != dst) {
2035 			rcu_assign_pointer(sk->sk_dst_cache, ndst);
2036 			sk_tx_queue_clear(sk);
2037 			sk->sk_dst_pending_confirm = 0;
2038 		}
2039 	}
2040 }
2041 
2042 static inline void dst_negative_advice(struct sock *sk)
2043 {
2044 	sk_rethink_txhash(sk);
2045 	__dst_negative_advice(sk);
2046 }
2047 
2048 static inline void
2049 __sk_dst_set(struct sock *sk, struct dst_entry *dst)
2050 {
2051 	struct dst_entry *old_dst;
2052 
2053 	sk_tx_queue_clear(sk);
2054 	sk->sk_dst_pending_confirm = 0;
2055 	old_dst = rcu_dereference_protected(sk->sk_dst_cache,
2056 					    lockdep_sock_is_held(sk));
2057 	rcu_assign_pointer(sk->sk_dst_cache, dst);
2058 	dst_release(old_dst);
2059 }
2060 
2061 static inline void
2062 sk_dst_set(struct sock *sk, struct dst_entry *dst)
2063 {
2064 	struct dst_entry *old_dst;
2065 
2066 	sk_tx_queue_clear(sk);
2067 	sk->sk_dst_pending_confirm = 0;
2068 	old_dst = xchg((__force struct dst_entry **)&sk->sk_dst_cache, dst);
2069 	dst_release(old_dst);
2070 }
2071 
2072 static inline void
2073 __sk_dst_reset(struct sock *sk)
2074 {
2075 	__sk_dst_set(sk, NULL);
2076 }
2077 
2078 static inline void
2079 sk_dst_reset(struct sock *sk)
2080 {
2081 	sk_dst_set(sk, NULL);
2082 }
2083 
2084 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie);
2085 
2086 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie);
2087 
2088 static inline void sk_dst_confirm(struct sock *sk)
2089 {
2090 	if (!READ_ONCE(sk->sk_dst_pending_confirm))
2091 		WRITE_ONCE(sk->sk_dst_pending_confirm, 1);
2092 }
2093 
2094 static inline void sock_confirm_neigh(struct sk_buff *skb, struct neighbour *n)
2095 {
2096 	if (skb_get_dst_pending_confirm(skb)) {
2097 		struct sock *sk = skb->sk;
2098 		unsigned long now = jiffies;
2099 
2100 		/* avoid dirtying neighbour */
2101 		if (READ_ONCE(n->confirmed) != now)
2102 			WRITE_ONCE(n->confirmed, now);
2103 		if (sk && READ_ONCE(sk->sk_dst_pending_confirm))
2104 			WRITE_ONCE(sk->sk_dst_pending_confirm, 0);
2105 	}
2106 }
2107 
2108 bool sk_mc_loop(struct sock *sk);
2109 
2110 static inline bool sk_can_gso(const struct sock *sk)
2111 {
2112 	return net_gso_ok(sk->sk_route_caps, sk->sk_gso_type);
2113 }
2114 
2115 void sk_setup_caps(struct sock *sk, struct dst_entry *dst);
2116 
2117 static inline void sk_nocaps_add(struct sock *sk, netdev_features_t flags)
2118 {
2119 	sk->sk_route_nocaps |= flags;
2120 	sk->sk_route_caps &= ~flags;
2121 }
2122 
2123 static inline int skb_do_copy_data_nocache(struct sock *sk, struct sk_buff *skb,
2124 					   struct iov_iter *from, char *to,
2125 					   int copy, int offset)
2126 {
2127 	if (skb->ip_summed == CHECKSUM_NONE) {
2128 		__wsum csum = 0;
2129 		if (!csum_and_copy_from_iter_full(to, copy, &csum, from))
2130 			return -EFAULT;
2131 		skb->csum = csum_block_add(skb->csum, csum, offset);
2132 	} else if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY) {
2133 		if (!copy_from_iter_full_nocache(to, copy, from))
2134 			return -EFAULT;
2135 	} else if (!copy_from_iter_full(to, copy, from))
2136 		return -EFAULT;
2137 
2138 	return 0;
2139 }
2140 
2141 static inline int skb_add_data_nocache(struct sock *sk, struct sk_buff *skb,
2142 				       struct iov_iter *from, int copy)
2143 {
2144 	int err, offset = skb->len;
2145 
2146 	err = skb_do_copy_data_nocache(sk, skb, from, skb_put(skb, copy),
2147 				       copy, offset);
2148 	if (err)
2149 		__skb_trim(skb, offset);
2150 
2151 	return err;
2152 }
2153 
2154 static inline int skb_copy_to_page_nocache(struct sock *sk, struct iov_iter *from,
2155 					   struct sk_buff *skb,
2156 					   struct page *page,
2157 					   int off, int copy)
2158 {
2159 	int err;
2160 
2161 	err = skb_do_copy_data_nocache(sk, skb, from, page_address(page) + off,
2162 				       copy, skb->len);
2163 	if (err)
2164 		return err;
2165 
2166 	skb->len	     += copy;
2167 	skb->data_len	     += copy;
2168 	skb->truesize	     += copy;
2169 	sk_wmem_queued_add(sk, copy);
2170 	sk_mem_charge(sk, copy);
2171 	return 0;
2172 }
2173 
2174 /**
2175  * sk_wmem_alloc_get - returns write allocations
2176  * @sk: socket
2177  *
2178  * Return: sk_wmem_alloc minus initial offset of one
2179  */
2180 static inline int sk_wmem_alloc_get(const struct sock *sk)
2181 {
2182 	return refcount_read(&sk->sk_wmem_alloc) - 1;
2183 }
2184 
2185 /**
2186  * sk_rmem_alloc_get - returns read allocations
2187  * @sk: socket
2188  *
2189  * Return: sk_rmem_alloc
2190  */
2191 static inline int sk_rmem_alloc_get(const struct sock *sk)
2192 {
2193 	return atomic_read(&sk->sk_rmem_alloc);
2194 }
2195 
2196 /**
2197  * sk_has_allocations - check if allocations are outstanding
2198  * @sk: socket
2199  *
2200  * Return: true if socket has write or read allocations
2201  */
2202 static inline bool sk_has_allocations(const struct sock *sk)
2203 {
2204 	return sk_wmem_alloc_get(sk) || sk_rmem_alloc_get(sk);
2205 }
2206 
2207 /**
2208  * skwq_has_sleeper - check if there are any waiting processes
2209  * @wq: struct socket_wq
2210  *
2211  * Return: true if socket_wq has waiting processes
2212  *
2213  * The purpose of the skwq_has_sleeper and sock_poll_wait is to wrap the memory
2214  * barrier call. They were added due to the race found within the tcp code.
2215  *
2216  * Consider following tcp code paths::
2217  *
2218  *   CPU1                CPU2
2219  *   sys_select          receive packet
2220  *   ...                 ...
2221  *   __add_wait_queue    update tp->rcv_nxt
2222  *   ...                 ...
2223  *   tp->rcv_nxt check   sock_def_readable
2224  *   ...                 {
2225  *   schedule               rcu_read_lock();
2226  *                          wq = rcu_dereference(sk->sk_wq);
2227  *                          if (wq && waitqueue_active(&wq->wait))
2228  *                              wake_up_interruptible(&wq->wait)
2229  *                          ...
2230  *                       }
2231  *
2232  * The race for tcp fires when the __add_wait_queue changes done by CPU1 stay
2233  * in its cache, and so does the tp->rcv_nxt update on CPU2 side.  The CPU1
2234  * could then endup calling schedule and sleep forever if there are no more
2235  * data on the socket.
2236  *
2237  */
2238 static inline bool skwq_has_sleeper(struct socket_wq *wq)
2239 {
2240 	return wq && wq_has_sleeper(&wq->wait);
2241 }
2242 
2243 /**
2244  * sock_poll_wait - place memory barrier behind the poll_wait call.
2245  * @filp:           file
2246  * @sock:           socket to wait on
2247  * @p:              poll_table
2248  *
2249  * See the comments in the wq_has_sleeper function.
2250  */
2251 static inline void sock_poll_wait(struct file *filp, struct socket *sock,
2252 				  poll_table *p)
2253 {
2254 	if (!poll_does_not_wait(p)) {
2255 		poll_wait(filp, &sock->wq.wait, p);
2256 		/* We need to be sure we are in sync with the
2257 		 * socket flags modification.
2258 		 *
2259 		 * This memory barrier is paired in the wq_has_sleeper.
2260 		 */
2261 		smp_mb();
2262 	}
2263 }
2264 
2265 static inline void skb_set_hash_from_sk(struct sk_buff *skb, struct sock *sk)
2266 {
2267 	/* This pairs with WRITE_ONCE() in sk_set_txhash() */
2268 	u32 txhash = READ_ONCE(sk->sk_txhash);
2269 
2270 	if (txhash) {
2271 		skb->l4_hash = 1;
2272 		skb->hash = txhash;
2273 	}
2274 }
2275 
2276 void skb_set_owner_w(struct sk_buff *skb, struct sock *sk);
2277 
2278 /*
2279  *	Queue a received datagram if it will fit. Stream and sequenced
2280  *	protocols can't normally use this as they need to fit buffers in
2281  *	and play with them.
2282  *
2283  *	Inlined as it's very short and called for pretty much every
2284  *	packet ever received.
2285  */
2286 static inline void skb_set_owner_r(struct sk_buff *skb, struct sock *sk)
2287 {
2288 	skb_orphan(skb);
2289 	skb->sk = sk;
2290 	skb->destructor = sock_rfree;
2291 	atomic_add(skb->truesize, &sk->sk_rmem_alloc);
2292 	sk_mem_charge(sk, skb->truesize);
2293 }
2294 
2295 static inline __must_check bool skb_set_owner_sk_safe(struct sk_buff *skb, struct sock *sk)
2296 {
2297 	if (sk && refcount_inc_not_zero(&sk->sk_refcnt)) {
2298 		skb_orphan(skb);
2299 		skb->destructor = sock_efree;
2300 		skb->sk = sk;
2301 		return true;
2302 	}
2303 	return false;
2304 }
2305 
2306 static inline void skb_prepare_for_gro(struct sk_buff *skb)
2307 {
2308 	if (skb->destructor != sock_wfree) {
2309 		skb_orphan(skb);
2310 		return;
2311 	}
2312 	skb->slow_gro = 1;
2313 }
2314 
2315 void sk_reset_timer(struct sock *sk, struct timer_list *timer,
2316 		    unsigned long expires);
2317 
2318 void sk_stop_timer(struct sock *sk, struct timer_list *timer);
2319 
2320 void sk_stop_timer_sync(struct sock *sk, struct timer_list *timer);
2321 
2322 int __sk_queue_drop_skb(struct sock *sk, struct sk_buff_head *sk_queue,
2323 			struct sk_buff *skb, unsigned int flags,
2324 			void (*destructor)(struct sock *sk,
2325 					   struct sk_buff *skb));
2326 int __sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
2327 int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
2328 
2329 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb);
2330 struct sk_buff *sock_dequeue_err_skb(struct sock *sk);
2331 
2332 /*
2333  *	Recover an error report and clear atomically
2334  */
2335 
2336 static inline int sock_error(struct sock *sk)
2337 {
2338 	int err;
2339 
2340 	/* Avoid an atomic operation for the common case.
2341 	 * This is racy since another cpu/thread can change sk_err under us.
2342 	 */
2343 	if (likely(data_race(!sk->sk_err)))
2344 		return 0;
2345 
2346 	err = xchg(&sk->sk_err, 0);
2347 	return -err;
2348 }
2349 
2350 void sk_error_report(struct sock *sk);
2351 
2352 static inline unsigned long sock_wspace(struct sock *sk)
2353 {
2354 	int amt = 0;
2355 
2356 	if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
2357 		amt = sk->sk_sndbuf - refcount_read(&sk->sk_wmem_alloc);
2358 		if (amt < 0)
2359 			amt = 0;
2360 	}
2361 	return amt;
2362 }
2363 
2364 /* Note:
2365  *  We use sk->sk_wq_raw, from contexts knowing this
2366  *  pointer is not NULL and cannot disappear/change.
2367  */
2368 static inline void sk_set_bit(int nr, struct sock *sk)
2369 {
2370 	if ((nr == SOCKWQ_ASYNC_NOSPACE || nr == SOCKWQ_ASYNC_WAITDATA) &&
2371 	    !sock_flag(sk, SOCK_FASYNC))
2372 		return;
2373 
2374 	set_bit(nr, &sk->sk_wq_raw->flags);
2375 }
2376 
2377 static inline void sk_clear_bit(int nr, struct sock *sk)
2378 {
2379 	if ((nr == SOCKWQ_ASYNC_NOSPACE || nr == SOCKWQ_ASYNC_WAITDATA) &&
2380 	    !sock_flag(sk, SOCK_FASYNC))
2381 		return;
2382 
2383 	clear_bit(nr, &sk->sk_wq_raw->flags);
2384 }
2385 
2386 static inline void sk_wake_async(const struct sock *sk, int how, int band)
2387 {
2388 	if (sock_flag(sk, SOCK_FASYNC)) {
2389 		rcu_read_lock();
2390 		sock_wake_async(rcu_dereference(sk->sk_wq), how, band);
2391 		rcu_read_unlock();
2392 	}
2393 }
2394 
2395 /* Since sk_{r,w}mem_alloc sums skb->truesize, even a small frame might
2396  * need sizeof(sk_buff) + MTU + padding, unless net driver perform copybreak.
2397  * Note: for send buffers, TCP works better if we can build two skbs at
2398  * minimum.
2399  */
2400 #define TCP_SKB_MIN_TRUESIZE	(2048 + SKB_DATA_ALIGN(sizeof(struct sk_buff)))
2401 
2402 #define SOCK_MIN_SNDBUF		(TCP_SKB_MIN_TRUESIZE * 2)
2403 #define SOCK_MIN_RCVBUF		 TCP_SKB_MIN_TRUESIZE
2404 
2405 static inline void sk_stream_moderate_sndbuf(struct sock *sk)
2406 {
2407 	u32 val;
2408 
2409 	if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
2410 		return;
2411 
2412 	val = min(sk->sk_sndbuf, sk->sk_wmem_queued >> 1);
2413 	val = max_t(u32, val, sk_unused_reserved_mem(sk));
2414 
2415 	WRITE_ONCE(sk->sk_sndbuf, max_t(u32, val, SOCK_MIN_SNDBUF));
2416 }
2417 
2418 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp,
2419 				    bool force_schedule);
2420 
2421 /**
2422  * sk_page_frag - return an appropriate page_frag
2423  * @sk: socket
2424  *
2425  * Use the per task page_frag instead of the per socket one for
2426  * optimization when we know that we're in the normal context and owns
2427  * everything that's associated with %current.
2428  *
2429  * gfpflags_allow_blocking() isn't enough here as direct reclaim may nest
2430  * inside other socket operations and end up recursing into sk_page_frag()
2431  * while it's already in use.
2432  *
2433  * Return: a per task page_frag if context allows that,
2434  * otherwise a per socket one.
2435  */
2436 static inline struct page_frag *sk_page_frag(struct sock *sk)
2437 {
2438 	if (gfpflags_normal_context(sk->sk_allocation))
2439 		return &current->task_frag;
2440 
2441 	return &sk->sk_frag;
2442 }
2443 
2444 bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag);
2445 
2446 /*
2447  *	Default write policy as shown to user space via poll/select/SIGIO
2448  */
2449 static inline bool sock_writeable(const struct sock *sk)
2450 {
2451 	return refcount_read(&sk->sk_wmem_alloc) < (READ_ONCE(sk->sk_sndbuf) >> 1);
2452 }
2453 
2454 static inline gfp_t gfp_any(void)
2455 {
2456 	return in_softirq() ? GFP_ATOMIC : GFP_KERNEL;
2457 }
2458 
2459 static inline gfp_t gfp_memcg_charge(void)
2460 {
2461 	return in_softirq() ? GFP_NOWAIT : GFP_KERNEL;
2462 }
2463 
2464 static inline long sock_rcvtimeo(const struct sock *sk, bool noblock)
2465 {
2466 	return noblock ? 0 : sk->sk_rcvtimeo;
2467 }
2468 
2469 static inline long sock_sndtimeo(const struct sock *sk, bool noblock)
2470 {
2471 	return noblock ? 0 : sk->sk_sndtimeo;
2472 }
2473 
2474 static inline int sock_rcvlowat(const struct sock *sk, int waitall, int len)
2475 {
2476 	int v = waitall ? len : min_t(int, READ_ONCE(sk->sk_rcvlowat), len);
2477 
2478 	return v ?: 1;
2479 }
2480 
2481 /* Alas, with timeout socket operations are not restartable.
2482  * Compare this to poll().
2483  */
2484 static inline int sock_intr_errno(long timeo)
2485 {
2486 	return timeo == MAX_SCHEDULE_TIMEOUT ? -ERESTARTSYS : -EINTR;
2487 }
2488 
2489 struct sock_skb_cb {
2490 	u32 dropcount;
2491 };
2492 
2493 /* Store sock_skb_cb at the end of skb->cb[] so protocol families
2494  * using skb->cb[] would keep using it directly and utilize its
2495  * alignement guarantee.
2496  */
2497 #define SOCK_SKB_CB_OFFSET ((sizeof_field(struct sk_buff, cb) - \
2498 			    sizeof(struct sock_skb_cb)))
2499 
2500 #define SOCK_SKB_CB(__skb) ((struct sock_skb_cb *)((__skb)->cb + \
2501 			    SOCK_SKB_CB_OFFSET))
2502 
2503 #define sock_skb_cb_check_size(size) \
2504 	BUILD_BUG_ON((size) > SOCK_SKB_CB_OFFSET)
2505 
2506 static inline void
2507 sock_skb_set_dropcount(const struct sock *sk, struct sk_buff *skb)
2508 {
2509 	SOCK_SKB_CB(skb)->dropcount = sock_flag(sk, SOCK_RXQ_OVFL) ?
2510 						atomic_read(&sk->sk_drops) : 0;
2511 }
2512 
2513 static inline void sk_drops_add(struct sock *sk, const struct sk_buff *skb)
2514 {
2515 	int segs = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
2516 
2517 	atomic_add(segs, &sk->sk_drops);
2518 }
2519 
2520 static inline ktime_t sock_read_timestamp(struct sock *sk)
2521 {
2522 #if BITS_PER_LONG==32
2523 	unsigned int seq;
2524 	ktime_t kt;
2525 
2526 	do {
2527 		seq = read_seqbegin(&sk->sk_stamp_seq);
2528 		kt = sk->sk_stamp;
2529 	} while (read_seqretry(&sk->sk_stamp_seq, seq));
2530 
2531 	return kt;
2532 #else
2533 	return READ_ONCE(sk->sk_stamp);
2534 #endif
2535 }
2536 
2537 static inline void sock_write_timestamp(struct sock *sk, ktime_t kt)
2538 {
2539 #if BITS_PER_LONG==32
2540 	write_seqlock(&sk->sk_stamp_seq);
2541 	sk->sk_stamp = kt;
2542 	write_sequnlock(&sk->sk_stamp_seq);
2543 #else
2544 	WRITE_ONCE(sk->sk_stamp, kt);
2545 #endif
2546 }
2547 
2548 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
2549 			   struct sk_buff *skb);
2550 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
2551 			     struct sk_buff *skb);
2552 
2553 static inline void
2554 sock_recv_timestamp(struct msghdr *msg, struct sock *sk, struct sk_buff *skb)
2555 {
2556 	ktime_t kt = skb->tstamp;
2557 	struct skb_shared_hwtstamps *hwtstamps = skb_hwtstamps(skb);
2558 
2559 	/*
2560 	 * generate control messages if
2561 	 * - receive time stamping in software requested
2562 	 * - software time stamp available and wanted
2563 	 * - hardware time stamps available and wanted
2564 	 */
2565 	if (sock_flag(sk, SOCK_RCVTSTAMP) ||
2566 	    (sk->sk_tsflags & SOF_TIMESTAMPING_RX_SOFTWARE) ||
2567 	    (kt && sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) ||
2568 	    (hwtstamps->hwtstamp &&
2569 	     (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE)))
2570 		__sock_recv_timestamp(msg, sk, skb);
2571 	else
2572 		sock_write_timestamp(sk, kt);
2573 
2574 	if (sock_flag(sk, SOCK_WIFI_STATUS) && skb->wifi_acked_valid)
2575 		__sock_recv_wifi_status(msg, sk, skb);
2576 }
2577 
2578 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
2579 			      struct sk_buff *skb);
2580 
2581 #define SK_DEFAULT_STAMP (-1L * NSEC_PER_SEC)
2582 static inline void sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
2583 					  struct sk_buff *skb)
2584 {
2585 #define FLAGS_TS_OR_DROPS ((1UL << SOCK_RXQ_OVFL)			| \
2586 			   (1UL << SOCK_RCVTSTAMP))
2587 #define TSFLAGS_ANY	  (SOF_TIMESTAMPING_SOFTWARE			| \
2588 			   SOF_TIMESTAMPING_RAW_HARDWARE)
2589 
2590 	if (sk->sk_flags & FLAGS_TS_OR_DROPS || sk->sk_tsflags & TSFLAGS_ANY)
2591 		__sock_recv_ts_and_drops(msg, sk, skb);
2592 	else if (unlikely(sock_flag(sk, SOCK_TIMESTAMP)))
2593 		sock_write_timestamp(sk, skb->tstamp);
2594 	else if (unlikely(sk->sk_stamp == SK_DEFAULT_STAMP))
2595 		sock_write_timestamp(sk, 0);
2596 }
2597 
2598 void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags);
2599 
2600 /**
2601  * _sock_tx_timestamp - checks whether the outgoing packet is to be time stamped
2602  * @sk:		socket sending this packet
2603  * @tsflags:	timestamping flags to use
2604  * @tx_flags:	completed with instructions for time stamping
2605  * @tskey:      filled in with next sk_tskey (not for TCP, which uses seqno)
2606  *
2607  * Note: callers should take care of initial ``*tx_flags`` value (usually 0)
2608  */
2609 static inline void _sock_tx_timestamp(struct sock *sk, __u16 tsflags,
2610 				      __u8 *tx_flags, __u32 *tskey)
2611 {
2612 	if (unlikely(tsflags)) {
2613 		__sock_tx_timestamp(tsflags, tx_flags);
2614 		if (tsflags & SOF_TIMESTAMPING_OPT_ID && tskey &&
2615 		    tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK)
2616 			*tskey = sk->sk_tskey++;
2617 	}
2618 	if (unlikely(sock_flag(sk, SOCK_WIFI_STATUS)))
2619 		*tx_flags |= SKBTX_WIFI_STATUS;
2620 }
2621 
2622 static inline void sock_tx_timestamp(struct sock *sk, __u16 tsflags,
2623 				     __u8 *tx_flags)
2624 {
2625 	_sock_tx_timestamp(sk, tsflags, tx_flags, NULL);
2626 }
2627 
2628 static inline void skb_setup_tx_timestamp(struct sk_buff *skb, __u16 tsflags)
2629 {
2630 	_sock_tx_timestamp(skb->sk, tsflags, &skb_shinfo(skb)->tx_flags,
2631 			   &skb_shinfo(skb)->tskey);
2632 }
2633 
2634 /**
2635  * sk_eat_skb - Release a skb if it is no longer needed
2636  * @sk: socket to eat this skb from
2637  * @skb: socket buffer to eat
2638  *
2639  * This routine must be called with interrupts disabled or with the socket
2640  * locked so that the sk_buff queue operation is ok.
2641 */
2642 static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb)
2643 {
2644 	__skb_unlink(skb, &sk->sk_receive_queue);
2645 	__kfree_skb(skb);
2646 }
2647 
2648 static inline
2649 struct net *sock_net(const struct sock *sk)
2650 {
2651 	return read_pnet(&sk->sk_net);
2652 }
2653 
2654 static inline
2655 void sock_net_set(struct sock *sk, struct net *net)
2656 {
2657 	write_pnet(&sk->sk_net, net);
2658 }
2659 
2660 static inline bool
2661 skb_sk_is_prefetched(struct sk_buff *skb)
2662 {
2663 #ifdef CONFIG_INET
2664 	return skb->destructor == sock_pfree;
2665 #else
2666 	return false;
2667 #endif /* CONFIG_INET */
2668 }
2669 
2670 /* This helper checks if a socket is a full socket,
2671  * ie _not_ a timewait or request socket.
2672  */
2673 static inline bool sk_fullsock(const struct sock *sk)
2674 {
2675 	return (1 << sk->sk_state) & ~(TCPF_TIME_WAIT | TCPF_NEW_SYN_RECV);
2676 }
2677 
2678 static inline bool
2679 sk_is_refcounted(struct sock *sk)
2680 {
2681 	/* Only full sockets have sk->sk_flags. */
2682 	return !sk_fullsock(sk) || !sock_flag(sk, SOCK_RCU_FREE);
2683 }
2684 
2685 /**
2686  * skb_steal_sock - steal a socket from an sk_buff
2687  * @skb: sk_buff to steal the socket from
2688  * @refcounted: is set to true if the socket is reference-counted
2689  */
2690 static inline struct sock *
2691 skb_steal_sock(struct sk_buff *skb, bool *refcounted)
2692 {
2693 	if (skb->sk) {
2694 		struct sock *sk = skb->sk;
2695 
2696 		*refcounted = true;
2697 		if (skb_sk_is_prefetched(skb))
2698 			*refcounted = sk_is_refcounted(sk);
2699 		skb->destructor = NULL;
2700 		skb->sk = NULL;
2701 		return sk;
2702 	}
2703 	*refcounted = false;
2704 	return NULL;
2705 }
2706 
2707 /* Checks if this SKB belongs to an HW offloaded socket
2708  * and whether any SW fallbacks are required based on dev.
2709  * Check decrypted mark in case skb_orphan() cleared socket.
2710  */
2711 static inline struct sk_buff *sk_validate_xmit_skb(struct sk_buff *skb,
2712 						   struct net_device *dev)
2713 {
2714 #ifdef CONFIG_SOCK_VALIDATE_XMIT
2715 	struct sock *sk = skb->sk;
2716 
2717 	if (sk && sk_fullsock(sk) && sk->sk_validate_xmit_skb) {
2718 		skb = sk->sk_validate_xmit_skb(sk, dev, skb);
2719 #ifdef CONFIG_TLS_DEVICE
2720 	} else if (unlikely(skb->decrypted)) {
2721 		pr_warn_ratelimited("unencrypted skb with no associated socket - dropping\n");
2722 		kfree_skb(skb);
2723 		skb = NULL;
2724 #endif
2725 	}
2726 #endif
2727 
2728 	return skb;
2729 }
2730 
2731 /* This helper checks if a socket is a LISTEN or NEW_SYN_RECV
2732  * SYNACK messages can be attached to either ones (depending on SYNCOOKIE)
2733  */
2734 static inline bool sk_listener(const struct sock *sk)
2735 {
2736 	return (1 << sk->sk_state) & (TCPF_LISTEN | TCPF_NEW_SYN_RECV);
2737 }
2738 
2739 void sock_enable_timestamp(struct sock *sk, enum sock_flags flag);
2740 int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len, int level,
2741 		       int type);
2742 
2743 bool sk_ns_capable(const struct sock *sk,
2744 		   struct user_namespace *user_ns, int cap);
2745 bool sk_capable(const struct sock *sk, int cap);
2746 bool sk_net_capable(const struct sock *sk, int cap);
2747 
2748 void sk_get_meminfo(const struct sock *sk, u32 *meminfo);
2749 
2750 /* Take into consideration the size of the struct sk_buff overhead in the
2751  * determination of these values, since that is non-constant across
2752  * platforms.  This makes socket queueing behavior and performance
2753  * not depend upon such differences.
2754  */
2755 #define _SK_MEM_PACKETS		256
2756 #define _SK_MEM_OVERHEAD	SKB_TRUESIZE(256)
2757 #define SK_WMEM_MAX		(_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
2758 #define SK_RMEM_MAX		(_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
2759 
2760 extern __u32 sysctl_wmem_max;
2761 extern __u32 sysctl_rmem_max;
2762 
2763 extern int sysctl_tstamp_allow_data;
2764 extern int sysctl_optmem_max;
2765 
2766 extern __u32 sysctl_wmem_default;
2767 extern __u32 sysctl_rmem_default;
2768 
2769 #define SKB_FRAG_PAGE_ORDER	get_order(32768)
2770 DECLARE_STATIC_KEY_FALSE(net_high_order_alloc_disable_key);
2771 
2772 static inline int sk_get_wmem0(const struct sock *sk, const struct proto *proto)
2773 {
2774 	/* Does this proto have per netns sysctl_wmem ? */
2775 	if (proto->sysctl_wmem_offset)
2776 		return *(int *)((void *)sock_net(sk) + proto->sysctl_wmem_offset);
2777 
2778 	return *proto->sysctl_wmem;
2779 }
2780 
2781 static inline int sk_get_rmem0(const struct sock *sk, const struct proto *proto)
2782 {
2783 	/* Does this proto have per netns sysctl_rmem ? */
2784 	if (proto->sysctl_rmem_offset)
2785 		return *(int *)((void *)sock_net(sk) + proto->sysctl_rmem_offset);
2786 
2787 	return *proto->sysctl_rmem;
2788 }
2789 
2790 /* Default TCP Small queue budget is ~1 ms of data (1sec >> 10)
2791  * Some wifi drivers need to tweak it to get more chunks.
2792  * They can use this helper from their ndo_start_xmit()
2793  */
2794 static inline void sk_pacing_shift_update(struct sock *sk, int val)
2795 {
2796 	if (!sk || !sk_fullsock(sk) || READ_ONCE(sk->sk_pacing_shift) == val)
2797 		return;
2798 	WRITE_ONCE(sk->sk_pacing_shift, val);
2799 }
2800 
2801 /* if a socket is bound to a device, check that the given device
2802  * index is either the same or that the socket is bound to an L3
2803  * master device and the given device index is also enslaved to
2804  * that L3 master
2805  */
2806 static inline bool sk_dev_equal_l3scope(struct sock *sk, int dif)
2807 {
2808 	int mdif;
2809 
2810 	if (!sk->sk_bound_dev_if || sk->sk_bound_dev_if == dif)
2811 		return true;
2812 
2813 	mdif = l3mdev_master_ifindex_by_index(sock_net(sk), dif);
2814 	if (mdif && mdif == sk->sk_bound_dev_if)
2815 		return true;
2816 
2817 	return false;
2818 }
2819 
2820 void sock_def_readable(struct sock *sk);
2821 
2822 int sock_bindtoindex(struct sock *sk, int ifindex, bool lock_sk);
2823 void sock_set_timestamp(struct sock *sk, int optname, bool valbool);
2824 int sock_set_timestamping(struct sock *sk, int optname,
2825 			  struct so_timestamping timestamping);
2826 
2827 void sock_enable_timestamps(struct sock *sk);
2828 void sock_no_linger(struct sock *sk);
2829 void sock_set_keepalive(struct sock *sk);
2830 void sock_set_priority(struct sock *sk, u32 priority);
2831 void sock_set_rcvbuf(struct sock *sk, int val);
2832 void sock_set_mark(struct sock *sk, u32 val);
2833 void sock_set_reuseaddr(struct sock *sk);
2834 void sock_set_reuseport(struct sock *sk);
2835 void sock_set_sndtimeo(struct sock *sk, s64 secs);
2836 
2837 int sock_bind_add(struct sock *sk, struct sockaddr *addr, int addr_len);
2838 
2839 int sock_get_timeout(long timeo, void *optval, bool old_timeval);
2840 int sock_copy_user_timeval(struct __kernel_sock_timeval *tv,
2841 			   sockptr_t optval, int optlen, bool old_timeval);
2842 
2843 #endif	/* _SOCK_H */
2844